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Transition metal (TM) layered oxides constitute a promising family of materials for
use in Na-ion battery cathodes. Here O3-Na (Ni1/3Mn1/3Fe1/3) O2 was synthesised
using optimised sol-gel and solid-state routes, and the physico- and
electrochemical natures of the resulting materials were thoroughly studied.
Significant differences in electrochemical behaviour were observed, and the
use of in operando XRD determined this stemmed from the suppression of the
P3 phase in the sol-gel material during cycling. This was attributable to differences
in the degree of transition metal migration in the materials ensuing from the
selection of synthetic route. This demonstrates that not only the choice of
material, but also that of synthesis route, can have dramatic impact on the
resulting structural and electrochemical nature, making such considerations
critical in the future development of advanced Na-ion cathode materials.
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1 Introduction

The dependence of modern society on the generation, storage, and distribution of
electrical energy has led to these topics becoming areas of vital research—and, while a range
of storage technologies exist, batteries remain critical to these efforts. Indeed, the ever-
increasing demand on the energy infrastructure—from multiple sectors—is creating an
impetus to develop application-led systems. In this way, devices may be developed with
strengths which may be exploited and whose limitations are related to non-critical
parameters. In short, it is imperative to develop a plethora of different battery
technologies as a “toolbox” which may be tailored to meet specific application demands.

Sodium-ion (Na-ion) batteries are coming to prominence due to potential combination of
attractive properties (such as low-cost, sustainability and flexible utility) and the relative abundance
of their constituents (Slater et al., 2013; Bauer et al., 2018; Che et al., 2018)—particularly in
comparison to analogous Lithium-ion (Li-ion) based systems (Palomares et al., 2013; Muñoz-
Márquez et al., 2017; Vaalma et al., 2018). Nevertheless, despite this renaissance of Na-ion research,
challenges remain facing these systems. Cathodes remain a key area for improvement, with a range
of different systems available. These include polyanions (Senthilkumar et al., 2019; Berlanga et al.,
2020; Chen et al., 2020), Prussian blue analogues (PBAs) (Li et al., 2019; Liu et al., 2020; Zhou et al.,
2021), and Na-based transition metal layered oxides—with the latter proving particularly popular,
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as they are in many ways analogous to their lithium counterparts, which
has led to rapid advances in this area (particularly as they may be
produced via a scalable synthesis method and they can exhibit high
theoretical capacities).

In brief,Na-based transitionmetal layered oxides (NaxMO2;whereM
represents one or more elements, typically including a transition metal)
may be thought of as MO2 layers of edge-sharing MO6 octahedra with
Na+ ions occupying interlayer space—which can be expressed as different
structures depending on the oxygen stacking ordering (the notation for
which was established by C. Delmas in the early 1980s) (Delmas et al.,
1980; Yabuuchi et al., 2012; Han et al., 2015). As a general trend, themore
ionic compounds adopt the O3 structure, while the more covalent prefer
theO1 structure at high and low intercalant compositions (x ~ 0 or x ~ 1).
At intermediate concentrations (x ~ 1/2), however, the P3 structure is
often preferred for intercalants that are large enough to support prismatic
coordination (Radin and Van der Ven, 2016). Considerable work has
been carried out investigating the O3 and P2 phases, which typically
(though not exclusively) shows a strong link between the phase formed,
the sodium content, and the resulting electrochemical performance—and
though typically P2 phases are attractive due to their high working
potential they are also sodium deficient, while by way of contrast the
O3 phases are also of interest as their fully sodiated nature allows direct
use in full cells (Pan et al., 2013; Fatima et al., 2021). Consequently,
challenges remain—and one of the key ones is the largemechanical strain
occurring during cycling, a result of the large Na-ion radius. This often
leads to phase-transformations and structural rearrangements which—if
not properly understood and handled—can result in poor structural
stability and electrochemical performance (Wang et al., 2018).

Recent studies into the O3-Na (Ni1/3Mn1/3Fe1/3) O2 material
(herein O3-NaNMF) have revealed interesting insights into the
nature of the phase transitions during cycling (Xie et al., 2020) and
electrochemical performance (Wang et al., 2016; Xie et al., 2016; Zhang
et al., 2017; Sun et al., 2018; Xie et al., 2018; Jeong et al., 2019; Jung et al.,
2020). In order to facilitate rapid, lab-scale materials development, we
developed two novel, optimised synthetic routes to forming O3-Na
(Ni1/3Mn1/3Fe1/3) O2. In this work we present both a one-pot,
resorcinol-formaldehyde synthesis capable of forming nanoparticles
(Han et al., 2005; Shaju and Bruce, 2008; Huang et al., 2010; Gao et al.,
2015; Luo et al., 2016; Zheng et al., 2016; Guo et al., 2020), as well as a
carbonate-precursor based solid state synthesis [the selection of
precursors being carefully undertaken, resulting in a performance
superior to that of the previously reported oxide-precursor solid-
state synthesized O3-NaNMF (Zhang et al., 2017)]. In order to
evaluate and compare these two facile synthetic routes, we present a
comprehensive analysis of the structural, physicochemical and
electrochemical properties of both materials, as well as offer a
discussion of the observed differences. In this way, we offer insights
into not only simple routes to validating sodium layered oxides, but also
the important role the selection of synthetic route plays on the structural
and electrochemical properties of the product.

2 Experimental

2.1 Solid state synthesis

Stoichiometric amounts of Na2CO3 (Sigma Aldrich, 99.5%), Fe
(NO3)3 9H2O (Sigma Aldrich, 99%), MnCO3 (Alfa Aesar 99.9%),

and NiCO3 2Ni(OH)2 (Fisher, 99%) were ball-milled with a sample
mass: balls ratio of 20:1 at 250 rpm for 1 h. After, the powder was
placed in a crucible at it was heated up to 920°C for 12 h under air
atmosphere using a muffle (Carbolite, RHF 1600). Once the furnace
was cooled down to ≈ 180°C, the pellet was quickly transferred to an
Argon-filled glove box (<0.1 ppmH2O and O2) in order to minimize
the exposure to air.

2.2 Sol-Gel Synthesis (hereafter O3-
NaNMF-SG)

A stoichiometric ratio of resorcinol (Sigma Aldrich, 99%),
NaNO3 (Sigma Aldrich, 99%), Ni (NO3)2 6H2O (Sigma Aldrich,
99%), Mn (NO3)2 4H2O (Sigma Aldrich, 98%) and Fe (NO3)3 9H2O
(Sigma Aldrich, 99%) was dissolved in water, and heated to 80°C.
After reaching temperature, formaldehyde (37 wt%) was added and
the solution stirred until polymerization of the resorcinol and
formaldehyde initiated. Subsequently, this resorcinol-
formaldehyde gel was cooled to room temperature, aged for 2 h,
then dried at 90°C overnight (to evaporate the bulk of the water).
Calcination was then carried out at 200°C for 2 h to form a powder,
which was cooled to room temperature and reground. This powder
was then heated at 5.5°C min−1–920°C for 12 h, then cooled to 180°C
before transfer to a glove box under inert atmosphere (<0.1 ppm
H2O and O2). The powder was then re-ground to give the final
product.

2.3 X-Ray Diffraction (XRD)

The structural characterization was carried out using a Bruker
D8 Discover X-ray diffractometer equipped with a LYNXEYE XE
detector with Cu Kα radiation of λ = 1.54053 Å. The XRD patterns
were refined using FullProf Suite program (Rodríguez-Carvajal,
1993). The ex-situ XRD patterns were remeasured by removing
the electrodes form the used coin cell, which was firstly washed with
dimethylcarbonate (DMC) and dried in order to remove the excess
of the electrolyte.

2.4 Induced coupled plasma optical
emission spectrometry (ICP-OES)

The amounts of sodium and transition metals were
determined by using a Horiba Scientific Ultima
2 spectrometer (Jobin Yvon, Longjumeau, France) in
conjunction with a AS500 autosampler and Activanalyst
software (version 5.4). Digestion of materials was carried out
using aqua regia (1:3 HNO3:HCl molar ratio) and stirring at
room temperature for 3 days. A blank sample (containing aqua
regia of the same concentration, treated under identical
conditions) was also measured. Individual standard solutions
of 1,000 mg L−1 of Fe, Mn, Na, and Ni supplied by Scharlab
(Barcelona, Spain) was used for calibration. HNO3 69% and HCl
37% from Scharlab (Barcelona, Spain) analytical grade and
Ultrapure Water from Fischer Scientific (Waltham,
Massachusetts, United States) were used. The analytical
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wavelengths used for the measurements are 216.556 nm Ni,
257.610 nm Mn, 259.940 nm Fe, and 588.995 nm Na.
Concentrations of elements were quantified using four-point
external calibration curves within the concentration range of
[1–100] mg L−1. The intensities corresponding to the blank
solution were subtracted from the intensities of the samples
so as to obtain the final concentration of each element.

2.5 Electron microscopy

Morphology and homogeneity were studied by scanning
electron microscopy (Thermofisher SEM-FEG Quanta 200) using
a current accelerating voltage of 30 kV. Structural phase
identification and compositional elemental analysis of the
samples were carried out by transmission electron microscopy
[Thermofisher TEM-FEG, Technai G2 F20 Super Twin (S-Twin)]
operating at 200 kV by means the selected area electron diffraction
(SAED)mode and the energy-dispersive X-ray spectroscopy (EDXS)
respectively.

2.6 Electrochemical characterization

For electrochemical measurements, slurry formulation, the
electrode preparation and cell assembling we carried out under
argon atmosphere in a MBraun glove box (O2 and H2O
ppm <0.1). O3-NaNMF powder, carbon C65, and poly
(vinylidene fluoride) (PVdF; SOLEF) were mixed in a ratio of
80:10:10 with 1-methyl-2-pyrrolidone (NMP; Sigma Aldrich,
99.5%). The slurry was coated onto a battery-grade
aluminium foil current collector. Then the dried electrodes
(mass loadings of 3.5 and 3.2 mg cm−2 for the SG and SS
samples, respectively) were pressed at 7 tons before being
assembled in a CR2032 type coin cells 1 M NaClO4 (Organic
Across, 99%) in EC:PC (Ethylene carbonate:Propylene
carbonate, 1:1 by wt%) as electrolyte and Whatman GF/D
borosilicate glass fibre as separator. The cell assembly was
performed under argon atmosphere in a glovebox. The
measurements were carried out using a MACCOR cycler
operated in the working voltage window of 4.0–2.0 V vs. Na+/
Na at C/10 and 1C, with C based on the theoretical capacity of
O3-NaNMF (240.41 mA h g−1).

The operando X-ray diffraction pattern evolution of O3-
NaNMF-SG at C/30 rate was collected every 45 min using a lab-
scale Brüker D8 Advance X-ray diffractometer (CuKα) equipped
with a LYNXEYE detector. The operando X-ray diffraction pattern
evolution of O3-NaNMF-SS was recorded at C/10 rate using
synchrotron light (λ = 0.8256 Å) at BL04-MSPD synchrotron
beamline available at ALBA facilities (1 pattern every ~5 min).
All operando XRD experiments were performed using a
homemade electrochemical cell equipped with a beryllium
window as current collector, operating in reflection geometry in
the case of laboratory measurements and in transmission geometry
using a transparent plunger also equipped with a beryllium window
in the case of synchrotron measurements. Cells were charged and
discharged in the voltage window of 2–4 V using 1 MNaClO4 in EC:
PC as electrolyte, Whatman GF/D borosilicate glass fibre as

separator, and high purity sodium metal (Sigma-Aldrich) as an
anode. The cell was galvanostatically cycled using a SP200 Biologic
potentiostat.

2.7 Coupled PITT-EIS experiments

Potentiostatic Intermittent Titration Technique (PITT) was
performed using a Bio-Logic VMP3 potentiostat, by applying
successive constant potential steps of 25 mV, during which the
current was allowed to relax down to 0.5 mA g−1, corresponding
to C/500, with a duration limit of 20 h. At the end of each PITT
relaxation step a potentiostatic EIS spectrum has been acquired with
a frequency range 10 mHz–100 kHz.

3 Results and discussion

3.1 Structural and morphological
characterizations

The X-ray diffraction patterns of compounds synthesized via
sol-gel and solid-state routes are shown in Figure 1. As can be seen,
both materials are phase pure and exhibit good crystallinity, with
strong peaks which may be assigned to the R-3m space group with
the a-NaFeO2 structure (Gummow et al., 1992; Takeda et al., 1994).
The cell parameters obtained via LeBail refinement (see
Supplementary Figure S1) are summarized in Table 1, which
shows good agreement with the literature (Kim et al., 2012). The
average crystallite sizes determined from refinement for the O3-
NaNMF-SS and O3-NaNMF-SGmaterials were found to be 140 and
55 nm, respectively (see Table 1). This is in agreement with the SEM
images (Figure 1), which revealed that both materials present a good
degree of homogeneity (with particles possessing size distributions
in the range of 0.5–1.0 and 0.5–2.5 µm for sol-gel and solid-sate
synthesis, respectively), but also showed that the solid-state particles
are slightly larger with a more pronounced prismatic shape. The
targeted O3-NaNMF compositions were verified by TEM-EDAX
(see Figures 2A, D) measurement, which are consistent with the
expected stoichiometry within the error of the determination, which
agrees with ICP-OES measurements (Supplementary Table S1).
Figures 2B, E shows TEM images of the characteristic particles
and the electron diffraction patterns corresponding to [010] zone
axis for each synthesized compound (Figures 2C, F). The tendency
of the nanocrystals to grow into characteristic shapes was simulated
using Shape software, based on Wulff plots (Dowty, 1995), and is
also displayed in Figure 2G. According to the obtained morphology,
the largest facets correspond to {003}, {102}, and {101} indices.
Although the peaks (003)/(104) and (110)/(018) are very well
resolved, indicating a high degree of crystallinity of the structure
for both samples, the integrated intensity ratio I(003)/I(104) is lower in
the O3-NaNMF-SG sample (see Supplementary Figure S2). This
indicates a higher degree of deviation from the ideal structure which
may be attributed to transition metal (TM) migration in the sodium
layers of O3-NaNMF-SG (i.e., transition metals and Na atoms
exchanging their positions) (Gummow et al., 1992; Bréger et al.,
2005; Li et al., 2016). This was substantiated by simulation of the
XRD patterns with different degrees of TM migration
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(Supplementary Figure S3), where the % of TMmigration was found
to be ca. 10% for O3-NNMF-SG and ca. 0%–2.5% for O3-NNMF-SS.

3.2 Electrochemical characterization

The materials were cycled between 2.0 and 4.0 V vs. Na+/Na at
C/10 (where C is taken as 240.41 mA h g−1, based on the theoretical
capacity of the materials) for 100 cycles (see Figure 3), with the O3-
NaNMF-SG sample thereafter exhibiting a noticeable decrease in
stability while the O3-NaNMF-SS sample maintained this good
cyclability over the full 100 cycles. From this it can be seen that the
O3-NaNMF-SG offers a slightly higher capacity than the O3-
NaNMF-SS (see Table 2). Closer examination of the differential
capacity plots and load curves for the O3-NaNMF-SG and O3-
NaNMF-SS materials at this rate (see Figure 4) shows that both
materials are broadly similar and exhibit redox activity in keeping
with that previously reported—namely, a notable peak in the
2.7–3.1 V vs. Na+/Na region (which has previously been
assigned to the Ni component and the reversible phase
transition between the O3 and P3 phases) and subsequently a
much broader peak at higher voltages (which has previously
predominantly been attributed to additional Ni3+/4+ and/or

Fe3+/4+ redox activity, as well as homogenous higher-voltage
phase processes) (Xie et al., 2016; Zhang et al., 2017; Sun et al.,
2018; Xie et al., 2018; Jeong et al., 2019; Jung et al., 2020). However,
the plateau at 2.7 V vs. Na+/Na is more pronounced for O3-
NaNMF-SS, leading to sharper peak in the derivative curve -
suggesting the synthesis route had an effect on the Na
insertion-extraction process. As can be seen, both materials
exhibited good stability over the 50 cycles, with relatively little
reduction in redox activity (which is proportional to the relatively
little reduction in capacity on cycling observed in the cyclability
plot, Figure 3). Examination of the dQ/dV plots and the voltage
profile (Supplementary Figure S4) reveals that while the difference
between the potentials at which the charge and discharge peaks
occur is relatively stable for the O3-NaNMF-SG material during
the first 50 cycles, the O3-NaNMF-SS material appears to exhibit
an initially greater difference which rapidly decreases by cycle 5 to
be less than that of the O3-NaNMF-SG and thereafter remains
more stable by cycle 100. This would seem to suggest that, overall,
the stability and the Coulombic efficiency of the O3-NaNMF-SS
material is greater than that of the O3-NaNMF-SG, implying that
the choice of synthetic route has significant consequences with
respect to electrochemical behaviour, especially during the later
cycles. This phenomenon may tentatively be attributed to the
higher degree of TM migration observed in the initial structure
of O3-NaNMF-SG using XRD (see previous section), particularly
as the presence of TM in the Na layers is a known source of
capacity loss in transition metal layered oxides (Gummow et al.,
1992; Bréger et al., 2005; Li et al., 2016). Furthermore, in the dQ/dV
plot for the O3-NaNMF-SG material, it can be seen that there is
activity in the region near 4.0 V vs. Na+/Na which is not apparent
in O3-NaNMF-SS (Figure 4).

Differences between the behaviour of the two materials is also
observed at the higher rate of 1C when cycled between 2.0 and 4.0 V
vs. Na+/Na (see Figure 5).While the O3-NaNMF-SG again displayed

FIGURE 1
PXRD patterns and SEM images of O3-NaNMF synthesized via solid-sate (O3-NaMF-SS) and sol-gel (O3-NaMF-SG) routes.

TABLE 1 Unit Cell Parameters and crystallite size of synthesis compounds
obtained by Le Bail refinements.

Sample Unit cell
parameters (Å)

Crystallite size (nm)

a = b c

O3-NaNMF-SS 2.9803 (1) 16.0717 (9) 140 ± 41

O3-NaNMF-SG 2.9656 (2) 16.1204 (2) 55 ± 15
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a higher initial capacity, the solid state showed superior cyclability
over the 100 cycles (see Table 3). An examination of the differential
capacity plots and load curves was undertaken (see Figure 6) and the
O3-NaNMF-SS material exhibits notably greater stability of both
electrochemical peaks, with the decrease in capacity arising
predominantly from the loss of redox activity in the 2.7–3.1 V vs.
Na+/Na region.

Finally, it should be noted that both O3-NaNMF samples offer

excellent performance compared to those previously reported in the

literature—able to provide a capacity similar or superior to other

well-optimised materials at the same rate, they also offer cyclability

comparable or superior to materials cycled at much lower rates

(SupplementaryTable S2).
In order to further investigate these differences in

electrochemical behaviour, operando XRD was carried out on
both materials to elucidate structural changes during charge and
discharge.

FIGURE 2
TEM images of the characteristic particles, EDX measurements and SAED patterns for (A–C) O3-NaNMF-SS and (D–F) O3-NaNMF-SG. Selected
areas, where EDX measurements and electron diffraction patterns have been carried out, are highlighted. EDX quantifications are presented in atomic
percentages and the values are normalized with respect to the values of Ni, Mn, Fe (G) The simulation of the habit of the particles.

FIGURE 3
Cyclability plots of O3-NaNMFO-SS (dark turquoise) and O3-
NaNMFO-SG (orange) at C/10.

TABLE 2 Tabulated electrochemical performance at C/10.

Material Discharge capacity at cycle/
mAhg-1

Cycle 100 capacity retained/% Energy density/Wh kg-1 Average Voltage/V

2 5 10 50 100

O3-NaNMF-SS 117.60 116.48 113.81 100.53 90.11 77 367.08 3.12

O3-NaNMF-SG 125.50 124.06 122.77 109.05 76.04 61 393.44 3.13
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3.3 Operando XRD

The O3-NaNMF-SS sample shows the expected structural

evolution upon Na+ extraction (see Figure 7A), with the initial

O3 phase transforming fully into a P3 phase. The transition from O

to P stacking is demonstrated by the disappearance of the (104)

reflection concomitant with the (105) reflection appearing near 1.5 h

(c.a. x = 0.85), as previously reported et al., 2016). Interestingly, the

O3 to P3 transition occurs through an intermediate O3b phase. This

O3b phase seems similar to the initial O3 phase, albeit with shifted

peaks indicating difference in cell parameters (and probably also Na

content). There is no peak splitting, peak extinction or new peak

appearing, which indicates this phase has same space group than

the initial O3 phase (e.g., without monoclinic distortion). Such

intermediate O3b phase has not been previously reported for this

compound, possibly because the time resolution of previous

FIGURE 4
Differential capacity plots and load curves for O3-NaNMFO-SS (dark turquoise) and O3-NaNMFO-SG (orange) at C/10.

FIGURE 5
Cyclability plots of O3-NaNMFO-SS (dark turquoise) and O3-
NaNMFO-SG (orange) at 1C.

TABLE 3 Tabulated electrochemical performance at 1C.

Material Discharge capacity at cycle/
mAhg-1

Cycle 100 capacity retained/% Energy density/Wh kg-1 Average voltage/V

2 10 25 50 100

O3-NaNMF-SS 107.86 103.49 96.92 87.77 70.76 66 336.19 3.12

O3-NaNMF-SG 117.04 108.69 105.46 92.86 53.40 46 363.23 3.10
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experiments did not allow its observation. After 6.5 h (x <0.4), the
P3 phase vanishes, transforming into a new phase with lower interlayer
distance indicated by the strong high angle shift of the (00l) reflections.
According to previous studies, this phase is an OP or “Z” phase
(depending if ordered or disordered) made of O and P alternate
stacking (Xie, et al., 2016). This phase transition must be avoided
for good cycling, as the strong shrinking of the interlayer distancemakes
it prone to structural instabilities such as TM migration and O redox
(Yabuuchi et al., 2012; Talaie et al., 2015; Rong et al., 2019). For this
reason, suchmaterials are usually cycled in the range of 2–4.3 V vs. Na+/
Na, ensuring the P3-OP/Z transition is not triggered.

Surprisingly, the structural evolution uponNa+ extraction of theO3-
NaNMF-SG sample exhibits strong differences compared to that of the
O3-NaNMF-SS sample (see Figure 7B). Here no phase transition is
observed, the structure remaining O3 during the whole Na+ extraction
down to xNa = 0.1. This is confirmed by the persistence of the (104)
reflection. A possible explanation is that the higher degree of TM
migration present in the as-prepared O3-NaNMF-SG sample would
forbid layer gliding, which is required for the O3-P3 transition to occur
(Vassilaras et al., 2017; Xiao et al., 2021). Interestingly, aroundhalf charge
(4 V vs. Na+/Na and xNa ~ 0.5) a change in the trend of the (003)
reflection is observed for the O3-NaNMF-SG sample: while it is shifted
toward lower angle (indicating interlayer distance expansion) at the
beginning of charge, it shifts toward larger angle above xNa ~ 0.5
(indicating interlayer distance contraction). The interlayer distance in
sodium transition metal layered oxides is known to be highly dependent
on sodium content, and commonly assumed to result from the balance
betweenO-O electrostatic repulsion andVan derWaals attraction forces
(Mortemard de Boisse et al., 2019). At high sodium content, the Na is

screening the O-O repulsion, so removal of sodium induces increase of
interlayer distance. However, below a certain Na concentration, Van der
Waals forces between the TM-O layers start to enter into play, shrinking
the interlayer distance. This is when the layered structure starts to lose its
stability and structural degradation phenomena such as TM migration
into the Na layers (Silván et al., 2018), or O redox activity (Li et al., 2018;
Susanto et al., 2019), may enter into play. This is further confirmed, for
when bothmaterials were charged beyond this inflection of the interlayer
distance, as indicated by the black arrow (see Figure 7), in both cases
there is a notable loss of reversibility upon discharge.

It is reasonable to consider the beginning of interlayer distance
shrinking as the onset of such degradation, implying it occurs at x =
0.4 (4.2 V) for O3-NaNMF-SS sample, while for O3-NaNMF-SG
sample it occurs at x = 0.6 (3.8 V). This means that the O3-NaNMF-
SS sample can sustain reversible cycling up to 4.2 V, while for the
O3-NaNMF-SG sample charge voltage would need to be limited to
3.8 V to ensure good cycling. This offers an explanation for the
difference in capacity fading when cycled in the 2.0–4.0 V vs. Na+/
Na window (see Figures 4, 6), where the fading of the O3-NaNMF-
SG material is greater than that of the O3-NaNMF-SS material.

These expectations correspond well with the experimental data,
offering a good explanation for the observed differences in
performance. It might seem counter intuitive that the sample
showing less phase transition (the O3-NaNMF-SG sample) to
exhibit poorer cyclability than the sample showing clear phase
transition (O3-NaNMF-SS), because it is well known that such
phase transitions, occurring through gliding, tend to generate
overpolarization (Sun et al., 2019). However, here it is the
stability of the phase present at the end of charge that has the

FIGURE 6
Differential capacity plots and load curves for O3-NaNMFO-SS (dark turquoise) and O3-NaNMFO-SG (orange) at 1C.
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most significant effect on cyclability, and the P3 phase of O3-NMF-
SS allows more Na extraction before the interlayer distance collapses
than the O3 phase of O3-NMF-SG.

3.4 PITT-EIS studies

The voltage composition profile at equilibrium shows a side
reaction at the end of the first charge on both samples denoted
by an extended plateau, see Figure 8 (main panels), albeit more
pronounced for O3-NaNMF-SG. Interestingly, while for O3-
NaNMF-SS the next cycles no longer present this side reaction,
it is sustained upon cycling for O3-NaNMF-SG. As a

consequence, discharge capacity is more stable for O3-
NaNMF-SS than O3-NaNMF-SG. Nyquist plots of EIS
recorded at the end of charge show marginal evolution upon
cycling for O3-NaNMF-SS (inset of Figure 8A), while huge
increase of impedance is observed for O3-NaNMF-SG upon
cycling (inset of Figure 8B).

This increase of impedance relies essentially on the second semi-
circle, which is usually ascribed to charge transfer, while the semi-
circle at higher frequency is usually ascribed to interface processes.
This means the degradation of the electrochemical performance
relates to a charge transfer that is less and less facile. A similar effect
was previously reported for NaFeO2, and ascribed to the effect of TM
migration into the Na layers of the O3 phase (Silván et al., 2018).

FIGURE 7
Operando XRD taken during the first cycle charge of (A)O3-NaNMFO-SS and (B)O3-NaNMFO-SG. The black arrows indicate themomentwhen the
(003) peak starts to shift to larger angle.
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Although the texture and chemistry of the surface might also have an
influence, it seems reasonable to ascribe this increase of charge
transfer resistance to the nature of the main phase, being O3-type in
O3-NMF-SG and P3-type in O3-NMF-SG.

3.5 Post cycling studies

In order to get further insight into the degradation mechanism
occurring over long-term cycling, post cycling studies were carried
out. The structural stability of both O3-NaNFM-SS and O3-

NaNFM-SG after 100 cycles was evaluated by means of ex-situ
XRD measurements of both electrodes in discharge state at 2 V vs.
Na+/Na. From this (see Figure 9) it can be observed that after
100 cycles both the O3-NaNMF-SS and the O3-NaNMF-SG samples
maintained an O3 crystalline structure similar to the pristine
electrodes. This indicates a relatively high degree of reversibility
of both cathodes after 100 cycles. However, the faster capacity decay
of the O3-NaNMF-SG sample (comparative to the O3-NaNMF-SS)
could be related to the observations that after 100 cycles it possesses
a lower degree of crystallinity (broadening of the XRD peaks) and
has formed some MnO2 (as indicated by the presence of a small

FIGURE 9
Ex-situ XRD patterns of O3-NaNMF-SS of O3-NaNMF-SG pristine electrodes as well as the cycled ones after 100 cycles at 2 V and their
corresponding SEM images.

FIGURE 8
Results from the coupled PITT-EIS experiment of (A) O3-NaNMF-SS and (B) O3-NaNMF-SG. Main panels: PITT curve for five cycles. Insets: EIS
pattern at the end of each PITT charge (4 V).
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extra peak at 2θ ≈ 39°). Significantly, no identifiable difference
between the O3-NaNMF-SG and O3-NaNMF-SS Na-metal
counter electrodes was observed, which suggests that the
dominating factor for performance differences indeed results
from the cathode.

The lower crystallinity of the O3-NaNMF-SG sample may be
attributed to a larger degree of TMmigration to the Na layer. This is
in keeping with the previous results, as in the cycling window
2.0–4.0 V vs. Na+/Na, the O3-NaNMF-SS sample is expected to
be P3 at the end of charge, while the O3-NaNMF-SG sample is
expected to remain O all along the charge. It has previously been
reported that the P phase is unfavourable for TM migration while
the O phase is not (Silván et al., 2018). Consequently, it is reasonable
to expect the O3-NaNMF-SG phase, with the defect induced
suppression of P phase transformation, will be more susceptible
to TM migration than the O3-NaNMF-SS material. Meanwhile, the
formation of MnO2 may be tentatively attributed to dissolution of
Mn from cathode/electrolyte interface, resulting from the
disproportionation reaction (2Mn3+ → Mn2+ + Mn4+) and
decreased structural stability of O3-NaNMF-SG (Xia et al., 1997;
Lu et al., 2014; Guo et al., 2017). In order to more conclusively
validate these hypotheses, future analyses (such as EXAFS, XANES,
NMR, etc.) could be carried out, so as to elucidate any effect of other
factors (including those such as disorder or compositional
homogeneity).

In this way, these results support the previous observations. The
O3-NaNMF-SGmaterial appears to be more prone to TMmigration
[and thus loss of crystallinity and decreased (de) intercalation
ability] than the O3-NaNMF-SS, due to the continual presence of
the O phase (which is more susceptible to TM migration) during
cycling, which in turn results from suppressing the structural
evolution to the P phase upon charge.

4 Conclusion

O3-NaNMF samples were synthesized via two different
techniques (sol-gel and solid state), both of which are fast,
facile, sustainable lab-scale routes able to support future
sodium layered oxide development. However, while both
materials offer excellent performance, key differences in
performance and behaviour were also observed, especially a
faster capacity fading for the O3-NaNMF-SG sample after
60 cycles. This, therefore, has significant implications on
investigations into such materials with respect to suitability
for high-power or fast-charging applications.

In depth characterisation of the structural changes during
cycling was carried out using in operando XRD. It has been
shown that while the expected O3-P3 transition was observed for
the O3-NaNMF-SS sample, it did not occur in the O3-NaNMF-
SG sample. This may be attributed to the presence of TM
migration in the SG sample after synthesis preventing the
layer gliding required for the O3-P3 transition to occur. While
typically decreased phase changes during cycling may be thought
of as beneficial to performance, in fact we see the opposite. This

may be explained by the differences in susceptibility to TM
migration of the phase at end of charge, which is less
favourable in P structure. Consequently, it may be expected
that the O3-NaNMF-SG will be more prone to TM migration
(and thus decreased crystallinity and performance) than the O3-
NaNMF-SS, which would explain the differences in observed
cycling stability. Thus, TM migrated to the Na layer have two
distinct effects in the O3-NaNMF-SG sample. On one hand, TM
migration in as prepared material forbids the expected O3-P3
transition upon cycling, which tends to smooth-out slightly the
voltage-composition profile compared to O3-NaNMF-SS sample.
This absence of gliding-related phase transition would be
beneficial to cycle life. On the other hand, as a consequence of
the latter, the material remains O3 (instead of transforming to
P3) at end of charge (when approaching 4 V vs. Na+/Na), in
which case further TM migration to the Na layer
occurs—eventually leading to a degradation of the
electrochemical performance.

Finally, it is worth highlighting these results demonstrate that
selection of synthetic route—a frequently neglected descriptor—can
have a substantial impact on the physico- and electrochemical
properties of ostensibly the same material. Moreover, the
techniques outlined here represent an important toolkit for
materials development, which can help understand what
phenomena are responsible for differences in performance.
Consequently, this work offers a good foundation for approaches
in analysing sodium-based layered oxide materials—facilitating the
comparison between experimentally derived performances by
helping to understand the root causes, a key issue when
developing novel materials.
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