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Chapter 1

Introduction

Aim of the thesis: relativistic effects on dynamical electronic excitations

The main aim of the work performed in this thesis has been the study of relativistic
effects on the dynamics of electronic excitations in crystals. Relativistic effects are
remarkable in elements presenting a big atomic number, whose core electrons are con-
straint to a tiny spatial region around the atomic nucleus. As a result, the kinetic
energy of these core elecrons is large and they exhibit a velocity which represents an
appreciable fraction of the speed of light. Consequently, a relativistic treatment is
needed to study systems containing atomic species of big atomic number.

Throughout this thesis the relativistic effects have been incorporated via the spin-
orbit coupling (SOC). SOC has been known to play an important role in the physics
of semiconductors for decades [Win03]. However, in recent years SOC has been found
to give rise to physical phenomena in metallic systems with previously unknown prop-
erties. It is the case of solids presenting Rashba splittings of electronic states [IR60,
Win03,VEANMK+12] and of the so-called topological insulators (TI) [ZHLK10], where
SOC lifts the spin degeneracy of certain energy bands, the latter representing one of
the hottest research fields in solid state physics nowadays. These two different physical
systems are highly interesting materials not only for basic research, but also for the
development of new technologies, mainly of spintronics [vFDS04].

Here, Pb has been chosen as subject of study, as it presents a big atomic number
(Z = 82) together with a simple crystalline structure, namely the face-centered cubic
(fcc) structure. Pb presents the second highest superconducting critical temperature
among the elemental metals [YSBVC+11], and relativistic effects have been shown
to substantially affect the lattice vibrations (phonons) [JVTJ+08] and their coupling
to the electrons (electron-phonon coupling) [HBYSVC10] in bulk lead. Additionally,
Pb(111) thin films have recently become the widest used playground in the study of
the so-called quantum-size effects (QSE), giving rise to a broad experimental as well
as theoretical bibliography (see, i.e., Ref. [JLZX07] for a review). Thus, it is of interest

1



2 Introduction

to investigate the SOC effects on the dynamical electronic excitations of lead, both in
the bulk and in nanosized films.

Chronological outline

The starting point of the work reported in this thesis consisted in the implementation
of the SOC into the ground state computational code, based on density functional
theory (DFT) [HK64, KJS65] and norm-conserving pseudopotentials (NCP) [EP89].
Once the band structure of bulk fcc lead was checked to be in fairly good agreement
with experimental measurements and previous theoretical studies, the evaluation of
the dynamical electronic excitations was undertaken. First, calculations of the in-
elastic electron-electron contribution to the decay rate of excited quasiparticles was
performed. In principle, here the relativistic effects were included only through the
SOC-corrected energy bands. Nevertheless, this ad hoc approximation was supposed
to give a satisfactory description of the relativistic effects as the SOC-splitted bulk
band structure of Pb is well reproduced in the first order perturbation theory.

Then, the study of the dielectric response of bulk Pb in the low-energy transfer
range was performed, investigating the effects of several physical ingredients: SOC,
exchange-correlation short-range effects, the inhomogeneity of the electron density...
As expected, SOC effects on the low-energy transfer energy-loss function were found
to be satisfactorily reproduced by only including the SOC-induced energy splittings
while still using the scalar-relativistic wave functions, justifying the aforementioned ad
hoc approximation in the evaluation of inelastic decay rates. Interestingly, acoustic
plasmons (AP) were detected in our first-principles calculations, and a careful analysis
allows us to suggest the most suitable momentum transfer range to experimentally
detect the AP in bulk lead.

Once the investigation of the low-energy excitations in bulk Pb reached an advanced
status, the study of the high-energy range of the dielectric response was undertaken.
While the low-energy transfer results showed good agreement with previously pub-
lished theoretical as well as experimental works, the energy of the main bulk plasmon
was overestimated at any level of inclusion of the different physical ingredients in the
calculations. At first sight, this was surprising, as lead is a simple metal whose bulk
plasmon energy is well estimated by classical electrodynamics. As a possible reason
for this problem the semicore 5d electrons were considered as the missing feature in
our preliminary calculations. Then, the 5d electrons were explicitly incorporated in
the computation of the dielectric response of bulk lead, and the discrepancy with the
available experimental data was considerably reduced.

The second part of this thesis has been devoted to the study of the electronic
structure and dielectric response of freestanding Pb(111) films, analyzing the SOC
effects and possible appearance of QSE. Concerning the ground state of the films, SOC
effects on the band structure of the slabs were found to be irrelevant except for the
single monolayer (ML). The density of states (DOS) of the latter exhibits a transition
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from a metallic to a semimetallic character upon SOC inclusion. Regarding the QSE,
they were found in the thickness dependence of the DOS and work function of the films
as a bilayer oscillation, with a beating pattern of 9 ML period superimposed, in good
agreement with previous theoretical and experimental works.

Finally, the computational study of the dielectric response and plasma losses of 1
- 15 MLs thick Pb(111) films was initiated. The first retrieved results showed no sign
of the split thin film modes stemming from the hybridization of the surface plasmons
of both slab surfaces in the long wavelength limit. This finding is shown to be a
consequence of the fully three-dimensional scheme applied to the supercell approach.
Once the calculation scheme was modified in attempt to partially remove the artificial
long-range Coulomb interaction resulting from the repeated slab geometry used, the
split thin film modes were obtained.

QSE have been found in the single monolayer energy-loss spectra. The 2 MLs thick
slab represents the crossover with the thickness range where no consequences of the
quantization of the electron states were found. Interestingly, the low-energy plasmon
mode of the films disappears upon SOC inclusion. This effect has been shown to
arise from the incorporation of the two-component spinors into the evaluation of the
dielectric response of the films. Work is still in progress to gain further insight into
this SOC-induced disappearance of the low-energy symmetric mode.

Additional projects

The PhD candidate has been also involved in other research projects. Mainly, he has
spent 7 months as a visitor in the Max Planck Insitute (MPI) of Halle (Germany)
working under the supervision of Dr. Ernst.

The research project being carried out in collaboration with Dr. Ernst consists
in the ab initio study of topological insulators out of stoichiometry. The employed
theoretical method is the Korringa-Kohn-Rostoker (KKR) method formulated in terms
of Green’s functions [Ern07], which allows the treatment of off-stechiometry systems
by the use of the coherent potential approximation, commonly known as CPA [Ern07].

The objective of the project is twofold. On the one hand, to study alloys of topo-
logical insulators, seeking to predict TI systems with improved characteristics for their
application in devices. On the other hand, TIs are doped with magnetic impurities in
order to get insight in the interplay between the characteristic features in the electronic
structure of TIs and magnetism.

As we have been facing technical problems with the fully-relativistic version of the
computational code used in this collaboration [Ern07], results are still incomplete and
are not presented in this thesis.



4 Introduction

Structure of the manuscript

The rest of the thesis is organized as follows.

The following three chapters present the theoretical frameworks applied in the
present work. Chapter 2 is devoted to the theoretical methods used in the study
of the electronic structure of both bulk Pb and Pb(111) films. The DFT-NCP are
outlined and particular emphasis is made on the SOC inclusion. Chapter 3 deals with
the linear-response theory and the explicit expressions derived from it as applied in
this thesis to study the electronic excitations in crystalline Pb. Chapter 4 presents the
concept of self-energy and describes the method used to compute it, known as GW
approximation.

Then results on the electronic structure of bulk Pb as well as on its electronic
collective and single-particle excitations are analyzed. Chapter 5 introduces the details
of the calculated Pb bulk band structure calculations together with the SOC effects
on it. Chapter 6 and 7 deal with the detailed study of the dielectric response and
dynamics of electronic collective excitations in the low- and high-energy transfer ranges,
respectively. In Chapter 8 we discuss the first-principles inelastic decay rates obtained
in this thesis.

Chapter 9 is devoted to the study of the electronic structure of freestanding Pb(111)
films, analyzing both QSE and SOC effects. Next, results of the calculation of the
surface loss function of the films is presented and discussed in Chapter 10, highlighting
again QSE as well as the role of SOC effects.

Last, in Chapter 11 the main contents of the thesis are outlined, together with a
summary of the comparison of present results with available experimental data.

Unless otherwise stated, atomic units are used throughout this thesis, i.e., e2 = ~ =
me = 1.



Chapter 2

Theoretical methods I: Electronic
structure

2.1 Introduction

The microscopic description of solids is a formidable task, since the number of particles
involved is ∼ 1023. Even taking advantage of periodicity of crystals, one still faces
systems (unit cells) composed by ∼10 nuclei and ∼100 electrons. Therefore one would
still be dealing with a ∼ 102 − 103 coordinates dependent system [see Eq. (2.2)].

In this chapter we briefly review the different theoretical approaches used in our
work to make the study of the electronic ground state properties of solids feasible.
These approaches are among the most widespreadly applied theoretical frameworks
in the chemistry and solid state physics communities. First the DFT is described
pointing to its usefullness and limitations. Then the approach chosen for modeling
the ion-electron interaction, namely the norm-conserving pseudopotential scheme, is
shortly introduced.

Finally, we derive the SOC potential matrix element expression corresponding to
the formalism used in the present thesis, and show its inclusion following two different
schemes into the ground state computational code. Both the implementation of the
spin-orbit interaction and its inclusion into the computational tools previously devel-
oped by his thesis supervisors were carried by the PhD candidate.

2.2 The many-particle problem

Ordinary matter is composed of electrons moving around and in between the massive
nuclei, working as a glue and thus allowing the formation of molecules and solids. The
ground state properties of such a system can be derived solving the (non-relativistic)

5
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time-independent Schrödinger equation

ĤΨ({r} , {R}) = EΨ({r} , {R}), (2.1)

being Ĥ the Hamiltonian operator expressed as

Ĥ =
∑

i

1

2me

∇2
i +

∑
j

1

2Mj

∇2
j

+
1

2

Nnuc∑
j

Nnuc∑
j′ 6=j

ZjZj′

|Rj −Rj′|
+

1

2

Ne∑
i

Ne∑
i′ 6=i

1

|ri − ri′|
−

Nnuc∑
j

Ne∑
i

Zj

|Rj − ri|
≡

≡ T̂e + T̂N + V̂NN + V̂ee + V̂eN , (2.2)

for a system with Ne electrons of mass me and Nnuc nuclei of atomic number (charge)

Zj and mass Mj. In Eq. (2.2) T̂e and T̂N stand for the kinetic energy operators of
electrons and nuclei, respectively. The remaining three terms are Coulomb-like po-
tentials between different nuclei V̂NN , different electrons V̂ee, and electrons and nuclei
V̂eN . {r} and {R} represent all the spatial and spin coordinates of all the particles,
i.e., {r} ≡ (r1, σ1, r2, σ2, ...., rNe , σNe).

In order to simplify the description of the many-particle system, we apply the well-
known Born-Oppenheimer approximation [MM04], by which one decouples the nuclear
and electronic degrees of freedom. The approximation is supported by the big difference
of electron and nuclear masses, Mj >> me, ∀Zj. Thus, in this approximation electrons
see the nuclei motionless, and the nuclear coordinates {R} become parameters. As a
consequence, the relevant equation is now given by

Ĥeψi({r}) = Eiψi({r}) (2.3)

with the electronic Hamiltonian operator built for a fixed choice of the nuclear coordi-
nates {R}:

Ĥe = T̂e + V̂ee + V̂eN({R}). (2.4)

The eigenstates ψi of Ĥe are now considered as the stationary states of the system once
{R} are fixed.

In summary, the original many-particle problem has been reformulated as the study
of a system of interacting electrons subject to a external potential due to the frozen
nuclei. In several theoretical approaches the role of the nucleus is played by the ion
composed of the tightly bound core electrons and the atomic nucleus itself (see Section
2.4).
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2.3 Density Functional Theory

After applying the Born-Oppenheimer appoximation still the electronic problem is
difficult to tackle, even numerically, as the remaining quantum-mechanical description
of the system [see Eq. (2.3)] depends on the 3Ne degrees of freedom of all the valence
electrons.

DFT [OJG89], the most widely used tool for determining the electronic structure
of molecules and solids, greatly simplifies the problem. It reduces the study of a Ne

interacting electron system to the resolution of a one-particle equation, moving in an
effective external potential, different from V̂eN({R}) of Eq. (2.4). As a result, the the-
oretical description of the many-particle system depending on 3Ne degrees of freedom
is encoded in a formalism which depends only on 3, namely the spatial coordinates of
the electron density.

Thomas [HT27] and Fermi [Fer28] were the firsts in proposing such a “change of
variable” in the 1920s. However, it was in the 1960s when DFT was established as
a powerful tool for electronic structure studies following the work of Hohenberg and
Khon [HK64] and Kohn and Sham [KJS65]. We briefly review their work below.

2.3.1 Hohenberg-Kohn theorems

The Hohenberg-Kohn (HK) theorems [HK64] form the basis of the DFT. The original
proof of the theorems was carried for the ground state of a non spin-polarized system
subject to a static external potential. In this work we are not interested neither in
spin-polarized nor in time-dependent systems. Generalization of the Hohenberg-Kohn
theorems to those situations can be found elsewhere.

Suppose a system of interacting particles subject to an external potential w(r) [see
Eq. (2.4)] and presenting the ground state electron density ρ0(r) = ρ0(x, y, z). The
first HK theorem states that if replacing w(r) by a different w′(r) the new ground
state electron density ρ′0(r) is equal to ρ0(r), then w(r) and w′(r) can only differ by a
constant shift. Hence, the ground state electron density determines the properties of
the system.

The second HK theorem states that if we define the energy of a N electron system
in an external potential w(r) as a functional of the electron density as follows

E[ρ] = F [ρ] +

∫
w(r)ρ(r), (2.5)

then the minimum of E[ρ] corresponds to the ground state of the system, that is,

min {E[ρ]} = E[ρ0] ≡ E0. In our case, F̂ [ρ] = T̂e[ρ] + V̂ee[ρ], see Eq. (2.4).

The HK theorems have enormously simplified the problem of obtaining the ground
state of our interacting electron system. Unfortunately, it is not possible to directly



8 Theoretical methods I: Electronic structure

evaluate the derivative of the energy functional with respect to the electron density.
This is due to the lack of an analytical expression for T̂e[ρ], the kinetic energy of an
interacting electron system as a functional of the density. Kohn and Sham overcame
this obstacle with their formalism.

2.3.2 Kohn-Sham equations

The key of the Kohn-Sham approach [KJS65] is to replace the interacting electron sys-
tem by a fictitious non-interacting one. Seeking this replacement, Eq. (2.5) is rewritten
in the following form

E[ρ] =

∫
drρ(r)w(r) +

1

2

∫
dr

∫
dr’

ρ(r)ρ(r’)

|r− r’|
+ T [ρ] + Exc[ρ], (2.6)

where the second term is the Hartree energy, T [ρ] is the kinetic energy of a non-
interacting electron system andExc[ρ] is a crucial term, the so-called exchange-correlation
(xc) energy. It accounts for the many-body physics missing in the classical descrip-
tion of the Hartree energy and of the correlation effects absent now in the new non-
interacting kinetic energy term.

With the HK theorems in mind, we minimize the energy functional of Eq. (2.6)
and obtain the Kohn-Sham equations, which present the same form as a one-electron
Schrödinger equation: {

−1

2
∇2 + Veff(r)

}
ψi(r) = εiψi(r), (2.7)

with the effective potential

Veff [r, ρ(r)] = w(r) +

∫
dr’

ρ(r’)

|r− r’|
+
δExc[ρ(r)]

δρ(r)
, (2.8)

where the first term is the external potential, the one built by the ions in our case, the
second term is the Hartree potential VH and the third one is defined as the exchange-
correlation potential Vxc.

Solving Eq. (2.7) we get the set of KS energies
{
εKS
i

}
and orbitals

{
ψKS

i

}
. Finally

we compute the electron density as the sum of the contributions of each occupied KS
orbital,

ρ(r) =
occ∑
i

|ψKS
i (r)|, (2.9)

where the occupation of the KS orbitals is known after obtaining the Fermi level
through the condition

Ne =

∫
drρ(r). (2.10)

Equations (2.7)-(2.10) are solved self-consistently.
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2.3.3 Local Density Approximation

In principle, the KS formalism is exact. However, the expression for the exchange-
correlation energy is unknown and Vxc has to be approximated. Throughout this thesis
we have used the Local Density Approximation (LDA), the most widely applied one.
It was already proposed in the original paper by Kohn and Sham [KJS65] as a good
approximation for Vxc in systems presenting smoothly varying electron density, as it is
the case of simple metals. Mathematically, this condition can be expressed as

|∇ρ(r)|
ρ(r)kF (r)

� 1, (2.11)

where kF (r) is the Fermi momentum.

Nevertheless, LDA has prove itself to give acceptable results for a big variety of
systems, with some well known limitations as it is the case of its bad description of
absolut energy band gaps in semiconductors and insulators. In LDA, corrections to the
exchange-correlation energy due to the inhomogeneities in the electron charge density
around a position r are ignored. Considering this, it may at first seem surprising that
LDA works satisfactorily not only for simple metals. This can be partially attributed to
the fact that LDA gives the correct sum rule to the exchange-correlation hole [OJG89].
That is, using LDA there is a total electronic charge equal to one electron excluded
from the neighbourhood of an electron positioned at r. Indeed, it can also be shown
that the exchange-correlation energy depends only weakly on the detailed shape of the
exchange-correlation hole [GIL76].

Usually, the exchange-correlation energy term is written as

Exc =

∫
εxc[ρ(r)]ρ(r)dr, (2.12)

defining in this way εxc as the xc energy per electron. This quantity has been evaluated
with a high precision for the homogeneous electron gas using Monte-Carlo simulations
[MCJA80], and several parametrizations can be found in the literature. In the present
work we use the one due to Perdew and Zunger [PPZ81], with the following expressions
for εxc and Vxc

εxc =
0.458

rs

− γ

1 + β1
√
rs + β2rs

, (2.13)

Vxc = −0.611

rs

−
γ(1 + 7

6
β1
√
rs + 4

3
β2rs)

(1 + β1
√
rs + β2rs)2

, (2.14)

where the parameters γ = 0.1423, β1 = 1.0529 and β2 = 0.3334 are in atomic units. εxc

and Vxc are functions of the density through rs, the electron density parameter defined
as

rs =

(
3

4πρ(r)

)1/3

, (2.15)
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where ρ(r) denotes the valence density of the solid at point r.

For metallic surfaces [Lie97], LDA gives an exponential decay of the potential in
the vacuum. This is an incorrect behaviour as the potential should present an image-
like tail outside a metallic surface. To obtain the proper decay in vacuum a non-local
exchange-correlation potential is needed (i.e., Ref. [DWWGMRJN98]). A different ap-
proach is the construction of a hybrid potential which coincides with the self-consistent
LDA in the solid and close to the surface while enforcing it to present the correct image
potential-like behaviour further in the vacuum [MSZG+09]. Note that the incorrect ex-
ponential decay in the vacuum given by LDA is of no significance for occupied states,
whereas it removes the whole Rydberg-like series of image states [MEBP78]. Hence,
the LDA incorrect asymptotic behaviour in the vacuum needs to be corrected in any
study of the physics of image potential states.

2.3.4 Validity and physical meaning of DFT-KS quantities

DFT has shown itself to be a priceless theoretical framework, making the electronic
structure calculations of realistic systems feasible. However, care should be taken in
using DFT results and KS quantities as exact or even valid. Below I review some points
one should keep in mind in making use of DFT.

As stated above, the exchange-correlation functional has to be approximated. Thus,
strictly speaking, any practical use of DFT gives unexact results. It is the record of
satisfactory results which determines a posteriori the validity of any xc functional for
a given kind of systems (metal, semiconductor, strongly correlated one, etc.).

Even though in practice there is no problem converging to the ground-state mini-
mum of the energy density functional because of its convex nature [PPL85], a priori
there is no reason for the self-consistent cycle of Eqs. (2.7)-(2.10) to converge. Actually,
the naive scheme of using the output potentials (Hartree and xc) of one iteration as the
input of the next one usually does not converge and a mixing of the output potentials
of several previous iterations has to be used. In the present thesis the simplest mixing
scheme is applied. The input potentials for the n-th iteration V in

n have been chosen as
aV in

n−1 + bV out
n−1, with a+ b = 1 and a > b for all bulk and films ground state calculations

in the present work. As an example, for systems with d electrons around the Fermi
level, i.e. noble metals, usually a� b is needed to converge within the described simple
mixing scheme.

Concerning KS quantities, only the electron density, total energy and highest occu-
pied energy level [GV05] are physically meaningful. Even though the highest occupied
energy level is correctly described by the solutions of the KS equation, in general the
Fermi surface differs from the true one [Mea88]. As DFT is a ground state theory,
in principle KS energies εKS

i and orbitals ψKS
i should not be used to perform studies

of excitations, for example, in TDDFT or GW calculations [ORR02]. The εKS
i ener-

gies (occupied and unoccupied) are just Lagrange multipliers coming out the energy
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functional minimization carried under the constraints of preserving the number of par-
ticles and the normalization of wave functions. Nevertheless, in Ref. [G9̈6] the author
states that, according to Görling-Levy perturbation theory [GL93], the difference of
εKS
i − εKS

j with i 6= j has physical meaning as a transition energie at zeroth order in the
electron-electron interaction.

KS orbitals have no physical interpretation as they are the eigenvectors of a fictitious
non-interacting system. Still, a detailed study of the overlap between LDA and self-
consistent GW (see Chapter 4) wave functions presented in Ref. [BVR06] showed LDA
valence wave functions and ground state densities are in excellent agreement with the
fully self-consistent GW ones, whereas in the case of conduction states LDA gives
also a satisfactory description in metals. The authors proved that the good quality of
LDA wave functions is a consequence of cancelation of errors in the self-consistent GW
cycles [BVR06]. More generally, in Ref. [DPCECRS94] the KS orbitals were shown to
represent a satisfactory approximation to the quasiparticle (see Chapters 3 and 4) wave
functions. Again, it is a posteriori that the quality of KS-LDA orbitals is attested.

In conclusion, KS energies εKS
i and orbitals ψKS

i obtained using the LDA represent
a good starting point for calculations of electronic excitations, specially in metals.

2.4 Norm-conserving pseudopotentials

In solving Eq. (2.7) with the potential given by Eq. (2.8) a choice for the external po-
tential w(r) has to be made. In the present study we use the so-called norm-conserving
pseudopotentials (NCP). The following are the two main motivations for the develop-
ment of the pseudopotential concept:

i) As it is well known, the core electrons are mainly insensitive to the chemical
environment of the atom, chemistry being carried mostly by the valence electrons.
Anyway, as shown in Chapter 7, in some cases there is no unambiguous definition of
which are the core electrons.

ii) In modeling the atomic wave functions a huge number of basis functions (e.g.,
plane waves) is needed. This is due to the orthogonality between different orbitals of
the same angular momentum, which results in a strongly oscillating nodal structure of
the atomic wave functions mainly close to the nucleus.

Use of the pseudopotential approximation allows to freeze the core electrons and the
substitution of true valence wave functions by smooth nodeless fictitious pseudoorbitals
which far from the nucleus are identical to the true ones. Thus, pseudopotentials are
fictitious potentials between the ion (formed by the nucleus and the core electrons)
and the valence electrons which should fulfill the following demands:
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i) Once introduced in a KS equation, pseudopotentials should give eigenvalues
in agreement with the energy levels for the valence electrons of the true all-electron
Schrödinger equation.

ii) Give smooth nodeless pseudo-wave functions indistinguishable from the all-
electron orbitals beyond some cut-off radius rc.

iii) Be soft. This is needed to ensure the smoothness of pseudo-wave functions.

iv) Be finite at r → 0 (often pseudopotentials are also enforced to have a vanishing
laplacian at r → 0), in contrast to the 1/r divergence of the all-electron potential.

The pseudopotential approximation began as an extension of the Orthogonalized
Plane Wave (OPW) method [CPK59]. Since then, the pseudopotential approach ex-
perienced several steps forward until in 1979 first-principles NCP were introduced by
Hamann, Schlüter and Chiang [RHSC79]. NCP are built with two additional con-
straints:

v) Norm-conservation. This stands for the conservation of the square of the norm
of any valence orbital integrated up to any r > rc.

vi) Give pseudo-wave functions that present the same logarithmic derivative with
respect to the energy as the true all-electron orbitals around the true energy eigenvalue
of the orbital under consideration, again for r > rc.

The latter two properties of NCP are related by the following equation [CTJH74],

− 2π

[
(rφ)2 d

dE

d

dr
lnφi

]
R,εi

= 4π

∫ R

0

φ2
i r

2dr, (2.16)

where R > rc and εi is the eigenvalue energy associated with the orbital φi. The
logarithmic derivative gives the scattering properties of the system [Mes99]. As a con-
sequence NCP present the same scattering properties of the true all-electron orbitals
around their energy eigenvalues. This ensures a crucial quality of NCP: transferability,
that is, good performance of the atomic pseudopotential in different chemical environ-
ments.

There are several schemes to build NCP. In the present thesis the pseudopoten-
tials used were generated following the Hamann-Schlüter-Chiang (HSC) recipe of Ref.
[RHSC79], as implemented in the atom computational package [ATO], even though
pseudopotentials generated by the scheme developed by Troullier and Martins (TM)
[TLM91] were also tested (for further details on generation and testing of NCP, see
Section 5.1). HSC pseudopotentials are semilocal, local functions of the distance to
the nucleus r, while non-local in both the azimuthal and polar angles. Hence, there
is a V̂ ion

l (r) for each angular momentum l. For further details, in Ref. [BBRHS82]
the authors give a detailed description of the generation of HSC-like NCP. Note also
that as DFT is used to perform the atomic all-electron calculations from which the
pseudopotentials are constructed, an election for the xc functional is also needed in
working in the generation of the pseudopotentials, and LDA was chosen here.
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2.5 Plane wave basis and Hamiltonian matrix ele-

ments

2.5.1 Plane wave basis

In order to write down the explicit expressions for the matrix elements of the different
terms of the Hamiltonian in Eq. (2.7), a plane wave basis is used. Thus, wave functions
are built as linear combinations of plane waves

φn,k(r) =
1√
Ω

∑
G

cn,k(G)ei(k+G)·r, (2.17)

for an electron state with momentum k belonging to the first Brillouin zone (BZ). In
Eq. (2.17) n labels the electronic states, whereas G are the reciprocal lattice vectors.

As plane waves represent a complete but infinite basis, in practice a truncation of
the basis must be applied. This is done by fixing the maximum energy Ecut the plane
waves of the basis can carry. Calculations must be checked to be converged with respect
to this cut-off energy Ecut. The number of plane waves included in the truncated basis
for a system (unit cell) of volume Ω and with a given Ecut is

Npw ' Ω(Ecut)
3/2. (2.18)

Therefore, the number of basis functions not only increases with Ecut, it also scales
almost linearly with the volume of the unit cell. This is an important point, since in
performing calculations of the ground state of freestanding films the usual supercell
scheme is used in the present work. For such a supercell approach a thick region of
vacuum is needed in between two subsequent films in order to avoid possible interactions
of the different slabs. As a consequence, one of the dimensions of the unit cell in the
slab calculations is ∼10 times bigger than in a three-dimensional (3D) solid making
computations for films much heavier.

2.5.2 Matrix elements

By using NCP, the external potential in Eq. (2.7) is divided into two different contri-

butions, one local V̂ loc and one non-local V̂ nl in the angular coordinates ϕ and θ. As
NCP are used, both contributions are local in r. Then,

w(r) =
∑

l

V̂ ion
l (r)Pl = V̂ loc(r) +

∑
l

V̂ nl
l (r)Pl ≡ V̂ loc(r) + V̂ nl(r), (2.19)

where Pl stands for the projector on the angular momentum channel l. Finally, the
Hamiltonian reads

Ĥ(r) = T̂ + V̂ loc(r) + V̂ nl(r) + V̂H(r) + V̂xc(r). (2.20)
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Using the plane wave basis one gets the following expressions for the matrix elements of
each term in Eq. (2.20) between plane waves of momentum k+G and k+G’ (explicitly
in natural units):

T (G,G’) =
|G’|2

2m
δ(G−G’), (2.21)

VH(G−G’) =
4πρ(G−G’)

|G−G’|2
, (2.22)

V loc(G,G’) = 4π
S(G−G’)

|G−G’|
×

×
{
− Z

|G−G’|
+

∫ ∞

0

[
V loc(r) +

Z

r

]
r sin(|G−G’|r)dr

}
, (2.23)

V NL(G,G’) = 4πS(G−G’)×

×
∑

l

(2l + 1)Pl(cosγ)

∫
r2jl(KGr)jl(KG′r)V NL

l (r)dr, (2.24)

and Vxc(G,G’) is calculated numerically from Eq. (2.14).

In the Hartree potential matrix elements expression, ρ(G) is the Fourier compo-
nent of the electron density ρ(r) corresponding to the reciprocal lattice vector G. In
Eq. (2.24) Pl(x) are Legendre polynomials [AS64], jl(KGr) are spherical Bessel func-
tions [AS64], KG ≡ k+G and γ is the angle between vectors KG and KG′ . S(G’−G)
stands for the structure factor, which contains the information about the positions of
the different atoms in the unit cell [see Eq. (B.5) in Appendix B].

2.5.3 Hamiltonian diagonalization and reconstruction of the
valence electron density.

The Schrödinger equation with the Hamiltonian (2.20) is solved at a fixed k point of
the irreducible BZ (IBZ) by direct diagonalization and ρn,k(G), the contribution of
each energy band n to the Fourier components of the density at k, is obtained through

ρn,k(G) =
∑

G’,G”

cn,k(G’)cn,k(G”)δ(G−G’−G”). (2.25)

This procedure is carried out for a mesh of k points spanning the IBZ, taking advantage
of the symmetry operation of the point group of the particular system under study.
Throughout the present work, regular Monkhorst-Park [JMDP76] grids are used both
in bulk and film calculations. Then, the Fourier components of the electron density
are retrieved summing the contribution of all occupied bands throughout the IBZ,

ρ(G) =
∑
nocc

∫
ρn,k(G)dk ' 2π3

Ω

∑
nocc,k

ρn,k(G), (2.26)
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obtaining in this way the Fourier transform of the valence electron density, and then
ρ(r) in real space by Fourier transforming ρ(G). If convergence has not been achieved,
VH(G −G’) and Vxc(G,G’) are updated and the next iteration of the self-consistent
loop starts.

The diagonalization of the Hamiltonian is the computationally most demanding
step in the ground state calculations and the CPU time needed scales as N3

pw. Note
that as a consequence, the slab calculations where N slab

pw ∼ 10N bulk
pw (see discussion at

the end of Sec. 2.5.1) need roughly ∼ 103 the CPU time of a bulk calculation if the
same cut-off energy and similar number of k points is used in both cases.

2.6 Spin-orbit coupling

In large atomic number elements the core electrons are spatially constraint to a tiny
region around the nucleus. As a consequence, their kinetic energy is extremely large
and relativistic effects become important. Pure lead in different geometries is a subject
under study here. Pb has a high atomic number Z = 82. Consequently, relativistic
effects are relevant and should be taken into account in theoretical studies of any system
which contains Pb, as it is the case here.

In this section the theoretical and technical details of the procedure followed to
include relativistic effects in this thesis are described. The incorporation of the rela-
tivistic effects in the electronic structure is done by the spin-orbit coupling term in the
Hamiltonian.

2.6.1 SOC pseudopotential and matrix element

SOC couples the spin and orbital angular momenta of the electrons. It appears as a
relativistic correction to the non-relativistic Schrödinger equation. In the central field
approximation, that is, for a spherical potential, it presents the following form,

V̂ SOC =
1

2Mc

1

r

dV

dr
L · σ, (2.27)

where L and σ are the angular momentum operators and Pauli matrices vectors, re-
spectively. This SOC term is the relevant one here, as the pseudopotentials are un-
screened from the interaction between the valence electrons, and their final expressions
are spherically symmetric for each angular momentum channel l (see Section 2.4).

Working with NCP generated from a relativistic calculation, the pseudopotentials
retrieved are dependent not on l but on the total angular momentum l±1/2 [BBRHS82,
KMB82]. Then the total pseudopotential is written in the form

V̂ ion(r) =
∑

l

[
V̂ ion

l (r) + V̂ SOC
l (r)L · σ

]
Pl, (2.28)
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where Pl stands for the projector on the angular momentum channel l, and

V̂ ion
l =

1

2l + 1

[
lV̂ ion

l−1/2 + (l + 1)V̂ ion
l+1/2

]
, (2.29)

is the average pseudopotential for the states with angular momentum j = l ± 1/2 [see
Eq. (2.19)], and

V̂ SOC
l =

2

2l + 1

[
V̂ ion

l+1/2 − V̂ ion
l−1/2

]
, (2.30)

accounts for the SOC [BBRHS82,KMB82]. Following this procedure the scalar-relativistic

effects are included in the Hamiltonian through V̂ ion
l (r). In practice, when working with

NCP Eq. (2.27) is replaced by the following expression

V̂ SOC =
∑

l

V SOC
l (r)L · σPl. (2.31)

The matrix element of the SOC potential Eq. (2.31) are actually 2×2 matrices in the
electrons 1/2 spin subspace through

L · σ =
1

2

(
L̂z L̂−

L̂+ −L̂z

)
, (2.32)

where L̂± = L̂x ± iL̂y are the usual angular momentum ladder operators. Then to
include the SOC in the calculations, the matrix elements of the following operators are
needed,

V̂ SOC
↑↑ =

∑
l

V SOC
l (r)L̂zPl, (2.33)

V̂ SOC
↑↓ =

∑
l

V SOC
l (r)L̂−Pl, (2.34)

V̂ SOC
↓↑ =

∑
l

V SOC
l (r)L̂+Pl, (2.35)

which present the following expressions in a plane wave basis,

V̂ SOC
↑↑ (G,G’) = S ′(G,G’)

∑
l,m

mY ∗
l,m(K̂G′)Yl,m(K̂G)Al(KG, KG′), (2.36)

V̂ SOC
↑↓ (G,G’) = S ′(G,G’)

∑
l,m

C−(l,m)Y ∗
l,m(K̂G′)Yl,m−1(K̂G)Al(KG, KG′), (2.37)

V̂ SOC
↓↑ (G,G’) = S ′(G,G’)

∑
l,m

C+(l,m)Y ∗
l,m(K̂G′)Yl,m+1(K̂G)Al(KG, KG′), (2.38)

where S ′(G −G’) = 2π2S(G −G’). C±(l,m) =
√
l(l + 1)−m(m± 1) are Clebsch-

Gordan coefficients [JS94], Yl,m(K̂G) are spherical harmonics of the azimuthal and polar
angles in the reciprocal space defined by the vector KG ≡k+G, and

Al(KG, KG′) =

∫ ∞

0

jl(KGr)jl(KG′r)V SO
l (r)r2dr. (2.39)
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See Appendix C for a detailed derivation of Eqs. (2.36)-(2.38).

Now the electron wave functions are spinors, in which each spin component presents
a wave function built as a linear combination similar to Eq. (2.17). As a result, once
the SOC is included in the calculations the electron states are represented in the form

Ψn,k(r) =
1√
2Ω

∑
σ

∑
G

cn,k,σ(G)ei(k+G)·rχσ ≡
∑

σ

ψn,k,σ(r)χσ (2.40)

with

χ↑ =

(
1

0

)
and χ↓ =

(
0

1

)
. (2.41)

In the present work all studied systems present inversion symmetry. For such systems
the coefficients cn,k(G) of the plane wave expansion of the scalar-relativistic electron
states are real. However, once SOC is switched on the corresponding cn,k,σ(G) coef-
ficients are complex. This has to be taken into account when implementing the SOC
in a computational code, as the memory allocated for the wave functions is four times
the one needed at the scalar-relativistic level for the same set of physical and com-
putational parameters if the same precision is sought. The factor four is the result
of needing twice as much coefficients [compare Eqs. (2.17) and (2.40)] and the double
memory required for each of them once they become complex variables.

Also, the non-diagonal matrix elements of the SOC term Eqs. (2.37) and (2.38) are
in general complex, turning the Hamiltonian a complex quantity. For centrosymmetric
systems, for a given pair of reciprocal lattice vectors V̂ SOC(G,G’) is antihermitian in
the spin subspace:

V̂ SOC
↑↓ = −(V̂ SOC

↓↑ )∗, (2.42)

offering the possibility of computational time and memory saving. The proof of
Eq. (2.42) can be found in Appendix B.

2.7 Solving the Hamiltonian including the SOC

2.7.1 Diagonalization

As mentioned above, at the scalar-relativistic level the Hamiltonian is solved by direct
diagonalization at each k point of a mesh spanning the IBZ. Including the SOC the
matrix doubles its size as each scalar-relativistic matrix element becomes a 2×2 matrix
of the form

H(G,G’) =

(
Hsca + V SOC

↑↑ V SOC
↑↓

V SOC
↓↑ Hsca − V SOC

↑↑

)
, (2.43)
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where Hsca stands for the scalar-relativistic Hamiltonian Eq. (2.20). Immediatly the
plane wave basis

{
G1,G2, ...,GNpw

}
transforms in the double sized basis which intro-

duces the spinorial structure of the new electron states,{
G1,↑,G1,↓,G2,↑,G2,↓, ...,GNpw,↑,GNpw,↓

}
. (2.44)

Note that due to the fact that the computational time required to diagonalize a matrix
of size N is O(N3), including SOC is a drawback as doubling the size of the Hamiltonian
matrix increases the CPU time needed to carry its diagonalization by roughly a factor
of 8. Indeed, as the Hamiltonian matrix becomes complex when SOC is switched on,
reminding that the diagonalization of a complex Hermitian matrix costs 8 times the
CPU time of a real matrix of the same size, one concludes that including SOC the cal-
culation becomes roughly 64 times heavier. In practice, the diagonalization subroutine
used in the implementation of the SOC [ABB+99] first reduces the Hermitian matrix
to a real tridiagonal matrix, saving CPU time.

Diagonalizing the new 2Npw × 2Npw Hamiltonian matrix the coefficients {cn,k,σ} of
the expansion (2.40) are retrieved in the following order:

{c1,k,↑, c1,k,↓, c2,k,↑, c2,k,↓, ...} . (2.45)

Next, the Fourier transform of the electron density in real space is constructed following
a procedure analogous to the one described in Sec. 2.5.3.

This way of proceeding necessarily doubles also the number of energy bands. Ac-
tually, at the scalar-relativistic level with no spin-dependent terms in the Hamiltonian
each energy level is doubly degenerated, corresponding to two electron states. Note
there is no possibility of deducing this fact from the scalar-relativistic treatment (in
which the spin does not figure at all) without explicitly including spin-dependent in-
teractions.

Spin quantization axis

Switching on the SOC a spin quantization axis is fixed, which throughout this thesis
is chosen as the z axis, both in bulk and films. Concerning the appearance of the
quantization axis, two points should be underlined.

The symmetry is lowered in the passage from the point group of the scalar-relativistic
system to the double point group [Lax01] after inclusion of the SOC. As a consequence
the IBZ becomes larger, as only symmetry operations which leave the quantization
axis unchanged are relevant in the double point group representation. In practice, this
means that the IBZ and the Monkhorst-Pack grid used in spanning it must be doubled
following

{(kx,1, ky,1, kz,1), (kx,2, ky,2, kz,2), ...)} =⇒
=⇒ {(kx,1, ky,1, kz,1), (kx,1, ky,1,−kz,1), (kx,2, ky,2, kz,2), (kx,2, ky,2,−kz,2), ...)} . (2.46)
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In using Eq. (2.31) one assumes that the electron spin represents a good quantum
number. However, it is precisely the coupling between the atomic lattice and the spin
of the electrons -the SOC- which rotates the spins out of the quantization axis. Then,
in the self-consistent cycle this rotation should be evaluated after each iteration and
SOC matrix elements updated taking it into account in a non-collinear calculation
scheme. This makes calculations much longer as calculating the new SOC matrix
elements involves the evaluation of the relative angles between different electron spins
which present each its own rotation of the spin with respect to the global z quantization
axis. In the present work those rotations are neglected, and calculations are performed
following a collinear approach in which the electron spin still constitues a good quantum
number. The electronic structure results shown in this thesis are in good agreement
with other theoretical and experimental studies, implying that the local spin rotations
with respect to the global spin quantization z axis are small and can be neglected in
pure Pb systems.

2.7.2 Variational principle

For bulk Pb one additional method has been used to obtain its electronic structure
incorporating the SOC. The approach consisted in applying once the variational prin-
ciple after the scalar-relativistic problem was solved, including SOC as a perturbation.
A short general description of this method and its application to the SOC inclusion can
be found in Appendix C. Below the main expressions used in applying the variational
principle to the inclusion of the SOC in the study of bulk lead are reviewed and briefly
explained.

The following determinant must vanish in order to obtain the energy spectrum of
the system once the SOC is included via the variational principle,

det|(εn,k,σ − En′,k,σ′)δn,n′δσ,σ′ − 〈ψn′,k,σ′|V̂ SOC |ψn,k,σ〉| = 0, (2.47)

where δ stands for the Kronecker delta. V̂ SOC is given by Eq. (2.31), En,k,σ are the
values of the energy bands at k after switching on the SOC, while εn,k,σ and ψn,k,σ are
the scalar-relativistic energy and states which are doubled in the following manner (see
the discussion at the end of Appendix C)

εn,k,↑ = εn,k↓ = εn,k, (2.48)

ψn,k,↑ = ψn,k,↓ = φn,k. (2.49)

This procedure is satisfactory not only because it avoids doubling the size of the
Hamiltonian matrix which results in a roughly 64 times longer computational load
[indeed, note the small size of the determinant (2.47)]. It also gives insight into the
way SOC mixes different states. This is due to the freedom in choosing which energy
bands (labeled by n) enter Eq. (2.47), that is, in selecting which unperturbed (scalar-
relativistic) energy levels are mixed by the perturbation (SOC) fixing the minimum
and maximum band indexes nmin and nmax in Eq. (2.47).
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Despite of the computational time saved by avoiding doubling the Hamiltonian
matrix size, the sum over G and G’ of the SOC matrix elements [see Eqs. (2.36)-
(2.38)] which enters the calculation of the bracket 〈ψn′,k,σ′|V̂ SOC |ψn,k,σ〉 can make this
procedure slow. For bulk lead both methods, full self-consistency and applying the vari-
ational principle, needed similar time to obtain the SOC-included electronic structure.
For slabs, the present approach was too demanding from the point of view of the re-
quired memory, as the above cited sum over G and G’ becomes enormous in computing
〈ψn′,k,σ′|V̂ SOC |ψn,k,σ〉. As a consequence, only for bulk Pb was the variational principle
applied in the present thesis, whereas films were always solved self-consistently, also
when SOC was included in the Hamiltonian.



Chapter 3

Theoretical methods II: Collective
electronic excitations

3.1 Introduction: elementary excitations

In the previous Chapter we have described the procedure followed in the present work
to obtain the ground state properties of a solid. The approach is based on a single-
particle Hamiltonian. Now we are prepared to study the low-energy excitations of
the system which arise from the charge degrees of freedom, leaving the ones related
to the spin aside (see Section 3.3.4). Usually there is a concept introduced when
the knowledge of the low-energy excitations of a many-particle is sought, namely the
concept of quasiparticles.

Quasiparticles are fictitious particles representing elementary excitations which are
built in such a way that low-energy excitations of a many-particle system, which are
truly the result of many-body strong interactions between many particles, are reason-
ably described by weakly interacting quasiparticles. Quasiparticles are a good descrip-
tion of the low-energy excitations at low temperature, when the Boltzmann distribution
makes high-energy excitation states highly improbable. A different way of characteriz-
ing the quasiparticles is to define them as the excitations arising from the slow degrees
of freedom [GV05]. In principle the meaning of slow is ambiguous. For excited single
electrons, slow means a frequency ω ∼ EF/~. Therefore quasiparticles are decou-
pled from higher frequency excitations as they are not able to follow them due to the
different time scales [VCSK+12].

In general, elementary excitations are usually divided into two different categories
depending on whether they are fermions or bosons, and often the former are named
quasiparticles while the latter are called collective excitations. In this sense, quasipar-
ticles are single particles carrying a certain polarization of some degrees of freedom
(charge, lattice, spin,...) of the system which are also known as dressed particles,
whereas collective excitations are excited modes which truly involve many particles.

21
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An example to see the different nature between quasiparticles and collective excitations
is the difference between a polaron and a phonon. A polaron is an electron moving
through a crystal carrying a certain lattice distortion in its way, while a phonon is a
truly collective vibrational mode of a crystal lattice.

In the present Chapter we review the theoretical framework in which the study of
the dynamical collective electronic excitations in Pb, both bulk and films, has been
based. The main equations used in practice are also sketched.

First, linear-response theory (LRT) and its application to the density-density re-
sponse function derivation is outlined, analyzing the main expressions and approxi-
mations used to obtain the dielectric function. Then the steps to derive the explicit
expressions for bulk and surface energy-loss functions for periodic solids are shown.
Next, the character of the different collective electronic excitations is briefly analyzed.
And finally, we shortly review the physics of the electron energy loss spectroscopy
experimental technique, which offers the possiblity of comparison with calculated di-
electric energy-loss functions.

3.2 Linear-response theory

3.2.1 General remarks and Kramers-Kronig relations

Let us suppose that the ground state properties of a given many-electron system are
known (note that as shown in Section 2.3.1, following the DFT the knowledge of the
ground state electron density of the system is enough to that purpose), and an exter-
nal perturbation (time-dependent in general) U ext(t) is switched on. Next, two main
assumptions are made. On the one hand, a weak coupling is assumed between the
system and the perturbation. On the other hand, we suppose that the ground state of
the many-electron system is stable against the external perturbation we are interested
in applying to it. If both conditions are fulfilled, LRT gives the relation between the
driving force that the perturbation represents and the response of our many-electron
system defining a crucial physical property of the system, namely the generalized sus-
ceptibility, also called generalized response function.

Let us recapitulate schematically the main assumptions and steps involved in the
derivation of the generalized susceptibility as given by LRT (for further details, Ref.
[GV05] is suggested). First, we assume that an observable B̂ couples linearly to the per-
turbation U ext(t), so the coupling between them is weak (the first condition mentioned
above). Then the system is supposed to be in thermal equilibrium before the pertur-
bation is applied, and is supposed to be stable with respect to switching on U ext(t)
(the second condition mentioned above). Particularly, the occupation numbers of each
state (the probability for each state to be occupied) is assumed to remain unchanged
once the system is perturbed.
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Now, we seek to obtain the response of a second observable Â of the system to the
impulse represented by its coupling to the observable B̂, the one weakly coupled to the
perturbation U ext(t). It can be shown [GV05] that this response of Â at time t is given
by

〈Â(t)〉 =

∫ ∞

0

χAB(t′)U ext(t− t′)dt′, (3.1)

where the retarded susceptibility is defined as

χAB(t) ≡ − i

~
θ(t)〈[Â(t), B̂]〉0, (3.2)

where θ(t) is the Heaviside function [AS64], [Â, B̂] stands for the commutator of the
two operators, 〈...〉0 denotes the average on equilibrium and B̂ reflects the observable
in the thermal equilibrium of the system before U ext(t) was switched on. In Eq. (3.2)
t > 0 as the time at which the perturbation is turned on is chosen as t0 = 0 without loss
of generality. Thus, this generalized response function is appropietly called retarded,
as it describes the response of observable Â at time t to the action of the perturbation
at a previous time (t−t′). Since it presents such a causal structure, it is also named the
causal response function. Note that, supposing that Â and B̂ are hermitian operators
and consequently their expectation values are real, one deduces from Eq. (3.1) that
χAB(t) is also a real quantity.

Now, all three quantities appearing in Eq. (3.1) are Fourier transformed to the fre-
quency domain (or equivalently, energy domain). This can be done if previously U ext(t)
has been decomposed in its Fourier components, an allowed procedure for physically
meaningful functions, which usually are well-behaved functions of time t. Then, in
virtue of Eq. (3.1) 〈Â(t)〉 becomes also Fourier decomposed. Finally, the relationship
between the Fourier components of the response 〈Â(ω)〉 and the ones corresponding to
the perturbation U ext(ω) reads

χAB(ω) =
〈Â(ω)〉
U ext(ω)

, (3.3)

where χAB(ω) is the Fourier transform of the general susceptibility defined by Eq. (3.2).

Let us cite some general properties the general susceptibility obeys. As χAB(t)
is real, χAB(ω) = χR

AB(ω) + iχI
AB(ω) is complex because of the definition of Fourier

transform, from which it also follows that (we drop the subscripts from here on),

χ(−ω) = χ∗(ω). (3.4)

A crucial result in linear-response theory is the so-called Kramers-Kronig (KK)
relations [LJSPMV05], which read

χR(ω) =
2

π
P

∫ ∞

0

ω′χI(ω)

ω′2 − ω2
dω′, (3.5)
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χI(ω) =
2ω

π
P

∫ ∞

0

χR(ω)

ω′2 − ω2
dω′, (3.6)

where P stands for the Cauchy principal value. KK relations result from the principle
of causality which allows the connection of the real and imaginary parts of a com-
plex function through Hilbert transforms [LJSPMV05], together with Eq. (3.4) and
the assumption that χR(ω) and χI(ω) are square-integrable functions. The latter is a
reasonable supposition for any physical property. KK relations are Hilbert transforms,
but rewritten so that the integration is extended only over the positive real axis of ω.
Note the relevance of Eqs. (3.5)-(3.6), as the real and imaginary parts of the suscep-
tibility are related to different phenomena, i.e. light absorption and light dispersion,
which usually must be measured using different experimental techniques.

In the present thesis, we use (see below) the KK relations to obtain the real part
of the susceptibility from its imaginary counterpart.

3.2.2 Density-density response function

The interest of the present work is in analyzing the electronic excitations in a metal. In
order to perform such a study on collective electronic excitations, the above described
LRT is applied to the case in which the observable Â which follows the external per-
turbation and the observable B̂ responding to the variations in Â are both the density
operator,

ρ̂(r) =
1

N

∑
i

δ(r− ri), (3.7)

where ri are the spatial coordinates of the electrons and N their total number. The
perturbation V ext(r, t) is taken as the potential generated by a probe charged particle
or an applied electric field.

Then, applying the LRT to the operator (3.7), the following expression for the
density-density response function is obtained [GV05],

χ(r, r’, ω) =
∑

n

〈Ψ0|ρ̂(r)|Ψn〉〈Ψn|ρ̂(r’)|Ψ0〉
ω + (En − E0) + iη

. (3.8)

Here Ψn represents the many-electron wave function of the excited state of energy En

of the perturbed system, whereas Ψ0 stands for the ground state many-particle wave
function of energy E0. η = 0+ is a positive infinitesimal. Now the question is how
the many-electron wave functions can be represented. Time-dependent density func-
tional theory (TDDFT) [RKUG84,KUGK85] gives an answer, making the assumption
that the total electron density, given by the sum of the ground state density ρ0(r) of
the isolated many-electron system and ρind(r, t) the density induced by the external
perturbation,

ρ(r, t) = ρ0(r) + ρind(r, t), (3.9)
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can be reproduced by a fictitious system of non-interacting electrons in an effec-
tive single-particle potential [RKUG84, KUGK85]. Then, the susceptibility χ(r, r’, ω)
Eq. (3.8) can be replaced by the non-interacting KS susceptibility written in the fol-
lowing form,

χ0(r, r’, ω) =
∑
i,j

[θ(EF − εi)− θ(EF − εj)]
φ∗i (r)φi(r’)φj(r)φ∗j(r’)

ω + (εi − εj) + iη
. (3.10)

Here θ(x) is the Heaviside function representing in Eq. (3.10) the occupation numbers at
T = 0 temperature, and again η = 0+. Most importantly, εi and φi are KS eigenvalues
and orbitals of the non-interacting system, obtained solving self-consistently the KS
equations (2.7)-(2.10).

The density induced by the external perturbation V ext(r, ω) produces an induced
potential V ind(r, ω) through new Hartree and xc potential terms

V ind(r, ω) =

∫
dr’

[
1

|r− r’|
+Kxc(r, r’, ω)

]
ρind(r’, ω), (3.11)

where Kxc(r, r’, ω), known as the xc kernel, represents the second functional derivative
of the xc energy with respect to the density evaluated at the ground state electron
density [see Eq. (2.8)],

Kxc(r, r’, ω) =

[
δVxc[ρ](r;ω)

δρ(r’;ω)

]
ρ=ρ0

=

[
δ2Exc[ρ]

δρ(r;ω)δρ(r’;ω)

]
ρ=ρ0

. (3.12)

Then the sum of the potentials [V ext(r, ω) + V ind(r, ω)] induces a new ρind(r, ω),

ρind(r, ω) =

∫
dr’χ0(r, r’, ω)[V ext(r’, ω) + V ind(r’, ω)]. (3.13)

Comparing Eq. (3.13) with the relation given by ordinary time-dependent perturbation
theory between the induced electron density and the external perturbative potential,

ρind(r, ω) =

∫
dr’χ(r, r’, ω)V ext(r’, ω), (3.14)

the following Dyson-like equation is deduced:

χ(r, r’, ω) = χ0(r, r’, ω) +

∫
dr1

∫
dr2χ

0(r, r1, ω)F (r1, r2, ω)χ(r2, r’, ω), (3.15)

where

F (r, r’, ω) =
1

|r− r’|
+Kxc(r, r’, ω). (3.16)

Solving Eq. (3.15) yields the interacting susceptibility χ(r, r’, ω), also known as the
density-density response function, which in principle is exact as derived above. How-
ever, as the exact form of the xc energy functional is unknown (see Section 2.3.3) the
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xc kernel Kxc(r, r’, ω) must be approximated. In the present study we use two different
approaches in modeling the xc kernel. One is the so-called random-phase approxima-
tion (RPA) which consists in simply neglecting the xc short-range effects in χ(r, r’, ω),
KRPA

xc (r, r’, ω) = 0. The second choice used for approximating Kxc(r, r’, ω) is known
as the time-dependent local density approximation (TDLDA), an adiabatic extension
of the LDA, also called adiabatic local-density appoximation (ALDA) [ZS80]. In the
TDLDA one assumes that not only the ground state density (as in the LDA, see Section
2.3.3) but also the induced density shows a slow spatial variation. Therefore, in anal-
ogy with the LDA, the long-wavelength limit (therefore local) of the static (therefore
frequency-independent) xc kernel of a homogeneous electron gas at the ground state
local density is taken [MPMSVCME07],

KTDLDA
xc (r, r’, ω) =

[
δV LDA

xc [ρ](r)

δρ(r’)

]
ρ=ρ0

δ(r− r’). (3.17)

As both RPA as well as TDLDA are static (frequency-independent), none of them
seems to be appropiate to describe the excitation energies of a system at energies of the
order of the characteristic one-particle transition energies (that is, of the order of EF ).
However, TDLDA has been shown to give a satisfactory description of the screening
in semiconductors [EB97,WSH+06,WSH+10] and metals [AQGE93,CWH+11,Caz12].
This can be understood by considering that the relevant excitation energies for the xc
potential are the ones corresponding to the multi-particle excitations, which usually lie
much higher in energy than single-particle excitations. Consequently, TDLDA turns
out to be reasonable to calculate the latter.

Note that finally one faces the problem of approximating the xc term twice when
carrying a density response function study based in DFT. First, a xc functional enters
the potential (2.8) in Eq. (2.7). Once the ground state properties are obtained, the
choice of an additional approximation to Kxc(r, r’, ω) is unavoidable. In Sections 2.3.3
it was argued that LDA gives satisfactory results for the ground state of metals, while
in Section 2.3.4 some ground for the usage of LDA energies and orbitals as an input
to perform studies on excitations was given, specially in the case of metals. Hence, as
stated in the previous Chapter, LDA has been chosen to obtain the ground state of Pb
bulk and films and, consequently, the LDA energy bands and wave functions enter the
calculation of collective electronic excitations [see Eq. (3.19) below].

3.3 Expressions for periodic solids

In the approach we use here, the starting point is the calculation of the Fourier trans-
form of the non-interacting susceptibility χ0(q, ω), sometimes named as KS suscepti-
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bility, which for a 3D periodic solids reads

χ0
G,G’(q, ω) =

2

Ω

BZ∑
k

∑
n,n′

(fn,k − fn′,k+q)
〈
φn,k|e−i(q+G)·r|φn′,k+q

〉 〈
φn′,k+q|ei(q+G’)·r|φn,k

〉
εn,k − εn′,k+q + (ω + iη)

,

(3.18)

where Ω is the volume of the crystal, q is in the first BZ, G are reciprocal lattice
vectors, η = 0+, and εn,k and φn,k are KS energy levels and orbitals. fn,k are occupation
numbers which in practice are modeled by error functions [AS64] representing a certain
electronic temperature, this is a usual trick used in metals to avoid problems with the
discretization of the Fermi surface due to the finite sampling of the BZ.

A crucial point is that not only the non-interacting susceptibility Eq. (3.18), but
all the quantities involved in the calculation of the dielectric response are now matrices
in the reciprocal lattice vectors (G,G’).

In practice we avoid the direct evaluation of Eq. (3.18). Instead we calculate the
so-called spectral function [AG94,Ary01],

S0
G,G’(q, ω) =

2

Ω

BZ∑
k

occ∑
n

unocc∑
n′

〈φn,k|e−i(q+G)·r|φn′,k+q〉×

× 〈φn′,k+q|ei(q+G’)·r|φn,k〉δ(εn,k − εn′,k+q + ω), (3.19)

whose calculation saves computational time in comparison to the direct evaluation of
χ0

G,G’(q, ω), see Refs. [AG94,Ary01]. Note the factor 2 stems from the spin degeneracy.
As we expand the wave functions in a plane wave basis [see Eq. (2.17) in Section 2.5.1],
the expression for S0

G,G’(q, ω) is evaluated as

S0
G,G’(q, ω) =

2

Ω

BZ∑
k

occ∑
n

unocc∑
n′

∑
G”,G”’

{
c∗n,k(G”)cn′,k+q(G”−G)

}
×

×
{
c∗n′,k+q(G”’)cn,k(G”’−G’)

}
δ(εn,k − εn′,k+q + ω), (3.20)

In practice, the Dirac delta δ(εnk−εn′,k+q +ω) in Eqs. (3.19) and (3.20) is replaced
by a modified Gaussian of finite width, see Appendix D for further details. From the
knowledge of S0

G,G’(q, ω) the imaginary part of the non-interacting susceptibility is
evaluated through the expression

S0
G,G’(q, ω) = − 1

π
sgn(ω)Im[χ0

G,G’(q, ω)]. (3.21)

where sgn(ω) = 1 (−1) for ω > 0 (ω < 0). Then the real part of χ0
G,G’ is obtained from

its imaginary counterpart using the KK relations, more precisely Eq. (3.5).
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As the Fourier transforms of the main quantities are used, now Eq. (3.15) becomes
a matrix equation,

χG,G’(q, ω) = χ0
G,G’(q, ω) +

∑
G”

∑
G”’

χ0
G,G”(q, ω)×

× [vG”(q)δG”,G”’ +Kxc
G”,G”’(q)]χG”’,G’(q, ω), (3.22)

where Kxc
G,G’(q) stands for the Fourier components of the xc kernel, see Eqs. (3.15)-

(3.16).

χG,G’(q, ω) is the most fundamental quantity retrieved, as it contains all the infor-
mation on the response of a many-electron system to an external perturbation gener-
ated by a charged probe particle or applied electric field. Notice that the passage from
the non-interacting susceptibility χ0 to the interacting one χ, through Eq. (3.22) in
its matrix form, reflects the screening of the non-interacting susceptibility built with
transitions between independent particle energy levels [KS states and energies, see
Eq. (3.19)], by the many-particle Hartree and xc interactions.

3.3.1 Three-dimensional crystals

Collective charge excitations in a 3D crystal are given by the peaks in the so-called
energy-loss function, which corresponds to the imaginary part of the inverse longitudi-
nal dielectric function of the solid, Im[ε−1

G,G(q, ω)]. The energy-loss function provides
the information about the efficiency of an exchange of energy ω and momentum q+G
between the system and the perturbation.

More precisely, the energy-loss function inherits its name from the zero-temperature
limit of the fluctuation-dissipation theorem for particles subjected to a Coulomb inter-
action [BCAW51],

S(q + G, ω) = −Ω|q + G|2

2π
Im[ε−1

G,G(q, ω)], (3.23)

where Ω is the volume of the perturbed system and q+G is the reciprocal momentum
carried by the perturbation [Kuz98]. Equation (3.23) states that the dynamical struc-
ture factor S(q+G, ω) is proportional to the energy-loss function, since the dynamical
structure factor describes the energy dissipated by the probe particle creating the per-
turbation the many-electron is responding to. More precisely, the inelastic scattering
cross section of x-rays and electrons is proportional to S(q+G, ω) within the first Born
approximation. In experiments, the dynamical structure factor is directly probed in
the inelastic x-ray and electron scattering measurements, see Section 3.5.

Note that the dielectric function ε(q, ω) is the response function (obeying the prop-
erties described in detail in Section 3.2.1) of the system to a charge probe particle, or
equivantly to an electric field. Thus, the evaluation of ε−1

G,G’(q, ω) is seek to obtain the
information on the collective electronic excitations of the many-electron system under
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study that raise as a response to the perturbation. This goal is achieved using the
following relation

ε−1
G,G’(q, ω) = δG,G’ + vG(q)χG,G’(q, ω), (3.24)

where χG,G’(q, ω) is given by Eq. (3.22).

3.3.2 Surfaces

The approach to the investigation of the surface collective electronic excitations differs
from the one sketched in Section 3.3.1. First, we assume that the perturbation is due
to a charge particle located far from the surface. This probe particle carries an energy
ω and a two-dimensional (2D) momentum q‖ parallel to the surface of the solid. Then
its cross section for the scattering by the electrons of the surface is proportional to
the imaginary part of the quantity named surface response function g(q‖, ω) defined
as [Lie97,NJPZ85],

g(q‖, ω) =

∫
drρind(r, ω)eq‖z, (3.25)

where r ≡ (r‖, z). Thus, Im[g(q‖, ω)] is defined as the surface loss function.

In the case of surfaces, the external perturbation is of the form

V ext(r, ω) = −2π

q
eq‖z eiq‖r‖ e−iωt, (3.26)

and combining Eqs. (3.14), (3.22), (3.26) and (3.27) we finally obtain

g(q‖, ω) = −2π

q

∫
dz

∫
dz′χG=0,G’=0(z, z

′,q‖, ω)eq‖(z+z′). (3.27)

As we use the supercell approach, that is, a repeated slab geometry, the interacting
susceptibility χG,G’(q, ω) is also evaluated following the 3D approach described above.

In order to save computational time, in most of the cases χ0
G,G’(q, ω) has been

calculated retaining only G = (0, 0, Gz) reciprocal space vectors. Physically, this means
that lateral crystal local field effects were neglected. This approach was already found
to give indistinguishable results compared with the calculations carried out using the
3D G’s for metal surfaces [MSVCME04]. All important 3D effects are included in the
evaluation of χ0

G,G’(q, ω) through the use of the fully 3D Bloch functions and their
respective one-electron energies.

Note that in contrast to the widely used jellium models [Lie97], here the sur-
face response function depends not only in the value but also in the direction of
the parallel momentum transfer q‖, allowing the study of possible anisotropy effects
[MSMPVC+08].
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3.3.3 Local-field effects

3D and 2D Fourier transform density-density response functions are obtain solving a
matrix equation. The procedure is common to both cases. We illustrate this in the
case of a fully 3D periodic solid. Thus, the solutions of Eq. (3.22) are sought. In order
to obtain them, we use the following expression:

χG,G’(q, ω) =
∑
G”

A−1
G,G”(q, ω) · χ0

G”,G’(q, ω), (3.28)

where the transition from the non-interacting to the fully interacting susceptibility is
given by the matrix

AG,G’(q, ω) = δG,G’−χ0
G,G’(q, ω)· 4π

|q + G’|2
−

∑
G”

χ0
G,G”(q, ω)·Kxc

G,G’(G”−G’). (3.29)

Note that when making use of the RPA as the approximation for the xc kernel Kxc

the last term in Eq. (3.29) is dropped.

Importantly, through the inversion of the AG,G’(q, ω), the matrix elements corre-
sponding to different (q+G)’s are coupled. This mixing of the contributions stemming
from different reciprocal lattice vectors represent the so-called crystalline local-field
effects (LFE) [LA62, Wis63]. LFE are a consequence of the spatial variations in the
electron density in real solids, that is, of the inhomogeneity of ρ(r). Therefore exclud-
ing LFE can turn results of the dielectric response calculations wrong, even though
their importance strongly depends of the class of material investigated. Nevertheless,
as metallic bonding in a Fermi sea of electrons is often satisfactorily modeled by sys-
tems of interacting homogeneous electron gases, i.e. jellium models, the impact of LFE
seems to be small. However, recent first-principles studies showed the full inclusion of
LFE is needed for a correct quantitative description of the dielectric response of some
metallic systems (see for example Refs. [NFAMS12,PEVCMEMS12]), specially at large
momentum transfers.

Inclusion of LFE is important also from a macroscopic point of view. The macro-
scopic dieletric function of a periodic solid is defined as [ORR02]

εM(q, ω) =
1

ε−1
G=0,G’=0(q, ω)

, (3.30)

Thus, εG=0,G’=0(q, ω) is not the true macroscopic dielectric constant, once LFE are
omitted. If LFE are neglected, the energy-loss function is simply given by

Im[ε−1
G,G’(q, ω)] =

Im [εG,G’(q, ω)]

|εG,G’(q, ω)|2
=

Im [εG,G’(q, ω)]

{Re [εG,G’(q, ω)]}2 + {Im [εG,G’(q, ω)]}2
. (3.31)
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3.3.4 Spin-orbit coupling

In the case when the SOC is included in the ground state calculations, there are two
aspects that must be revised in the evaluation of the susceptibilities, and more precisely
in the calculation of the density-density response function as it is done in this thesis.

First, the transition from the non-interacting susceptibility χ0 to the interacting
one χ, i.e. Eq. (3.22), reflects the screening of the independent particle non-interacting
susceptibility by the many-particle interactions. In the theoretical approach applied
throughout the present work, the SOC is included in the Hamiltonian as a part of the
non-local term in the external potential [see Eqs. (2.19,2.20)] using norm-conserving
pseudopotentials. Consequently the density-density response function χG,G’(q, ω) is
screened only by the Hartree and xc potentials here, also when SOC is included in the
Hamiltonian.

Secondly, the calculation of the susceptibility can be carried out taking as a starting
point a more general formulation [AB08], in which one formulates in a compact form the
response of the charge and spin degrees of freedom to each other, thus generalizing the
response-respone function. This formulation allows to treat systems with an existing
spin-structure, as it is the case when SOC is switched on [AB08]. Nevertheless it is
easy to see using the general formalism of Ref. [AB08] together with the expression
of the non-interacting Green’s function as function of the spectral function (see i.e.
Ref. [ANVC09]) that the expressions we use in practice here remain unchanged. The
only replacement we must carry is the substitution of the scalar wave functions by
spinors in Eq. (3.20), which now reads

S0
G,G’(q, ω) =

=
1

Ω

BZ∑
k

occ∑
n

unocc∑
n′

∑
G”,G”’

[
c∗n,k,↑(G”)cn′,k+q,↑(G”−G) + c∗n,k,↓(G”)cn′,k+q,↓(G”−G)

]
×

×
[
c∗n′,k+q,↑(G”’)cn,k,↑(G”’−G’) + c∗n′,k+q,↓(G”’)cn,k,↓(G”’−G’)

]
δ(εn,k−εn′,k+q+ω),

(3.32)

see Eq. (2.40) for the representation of the two-component spinors in the plane wave
basis.

3.4 Collective electronic excitations

The response functions described in the present Chapter contain the information on
the collective excitations of both bulk and surface electron densities of solids to a
charged probe particle or external electric field. These modes are usually known as
plasmons or plasma modes and represent the longitudinal oscillations of the electron
density. Classically, in bulk these modes present energies corresponding to the zeros of
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the longitudinal dielectric function,

ε(q, ω) = 0. (3.33)

Here we call this relation the classical plasmon condition.

3.4.1 Bulk

Concerning the plasmon mode of bulk systems, it is well known from classical electro-
dynamics [GPP00] that it exhibits an energy given by the simple expression (in atomic
units) ωp =

√
3r−3

s , where rs is the average electron density parameter [see Eq. (2.15)].
For metallic densities, ωp ' 3 − 20 eV. A dispersion of the bulk plasmon can be de-
duced from a quantum-mechanical treatment, that is, analyzing the density-density
response function χG,G′(q, ω). To obtain an analytical expression for ωp = ωp(q) the
limits q → 0 and ω � qvF (where vF is the Fermi velocity) are applied to the Lindhard
dielectric function (LDF). The LDF is the dielectric function of a homogeneous non-
interacting electron gas, for the explicit expressions related to the LDF, see Appendix
E. Then the dispersion of the main bulk charge oscillation is given to the lowest order
in the momentum q = |q| by [GPP00,GV05]

ωp ' ωp

[
1 +

3

10

v2
F q

2

ω2
p

]
, (3.34)

which for a system of non-interacting electrons is a function of only the electron density
through the expression vF = (9π/4)1/3r−1

s . As the coefficient of the q2 term in Eq. (3.34)
is small for metallic densities, often ωp is supposed to be dispersionless in metals.
However, as it is shown in Chapter 7 in bulk lead the classical bulk plasmon disperses
clearly as a function of the momentum q.

3.4.2 Surfaces

Regarding surfaces (we suppose the surfaces and films are in contact with vacuum),
the classical surface plasmon energy in the optical range q → 0 is given by [HR57]

ωs = ωp/
√

2. (3.35)

There are several approaches to derive the surface plasmon dispersion as a function
of the momentum ωs = ωs(q), for a review see Ref. [MPMSVCME07]. In the clas-
sical electrodynamics approach leading to Eq. (3.35) the electron density is suppose
to present a step-like discontinuity at the surface, passing from exhibiting a constant
value inside the semiinfinite solid to vanishing outside. Note that the dispersion of the
surface plasmon is a general consequence of the inhomogeneity of the electron density
at the surface [Lie97].
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The density induced in the direction perpendicular to the surface plane by the
classical surface plasmon of energy ωs presents the simple form of a monopole-like
peak, whereas in the surface plane it propagates as a plane wave, with positive and
negative induced density regions alternating.

3.4.3 Thin films

Thin films represent a special case in the study of collective electronic excitations. As
the thickness of the film decreases, the surface plasmons of the surfaces can interact,
breaking their energy degeneracy by hybridization. Based on classical electrodynamic
arguments Ritchie first derived [HR57] the dispersion of the coupled thin film modes,

ω± =
ωp√

2
(1± e−q‖L)1/2, (3.36)

where L stands for the film thickness. The energy splitting between the modes depends
on the film thickness L and the in-plane 2D momentum transfer q‖, which is a scalar
for a electron gas. The low-energy mode ω− correponds to a symmetric induced charge
profile in the direction perpendicular to the film plane, whereas the high-energy mode
ω+ corresponds to an asymmetric one. As L increases, the coupling between the two
modes decreases. In the limit L �1/q‖ the two film modes are decoupled and the

two classical surface plasmons of frequency ωp/
√

2 are retrieved. From Eq. (3.36) one
deduces that for a given thickness L, the modes are decoupled and thus degenerate in
energy for 2D momenta q‖ & 1/L. Note that this classical model ignores the electronic
structure of the films. However, the quantization of states in the direction perpendicu-
lar to the film plane affects the actual characteristic and dispersion of the film plasmon
modes ω± (see, i.e., Ref. [YG06]).

3.4.4 Acoustic modes

Finally, there is another kind of collective electronic excitation, the so-called acoustic
plasmon (AP). In general, AP arises in a two-component electron gas, in which the
slow component is incompletely screened by the fast one. At surfaces, the acoustic sur-
face plasmon (ASP) [MSGLMP+04,MPMSVCME07] has been recently experimentally
detected [DPV+07], while their existence was predicted years before [MPUNMS+04].
ASP steem from a 3D (fast component) screening of 2D states (slow component), as
it is the case of screening of surface Shockley states by bulk electrons in (111) sur-
faces of noble metals or in Be(0001) [MPUNMS+04, DPV+07, MPMSVCME07]. The
Shockley states would support a purely 2D plasmon mode with dispersion ω2D ∝ √

q
in the absence of the 3D bulk crystal [GV05]. Nevertheless, in the presence of the
three-dimensional bulk states, a novel collective electronic excitation appears which
disperses linearly as a function of momentum, the surface acoustic plasmon mode.
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Now the question raises whether acoustic-like plasmons can exist in the bulk of
metals or there is no bulk analogous to ASP. Pines [Pin56,PN58] in the fifties predicted
the existence of a very-low energy excitation, which should be present in systems with
two energy bands crossing the Fermi level with different Fermi velocities, as it is the
case of bulk Pb. This very-low energy mode presents an acoustic-like dispersion at
small momenta, ωAP = v · q, where v is the constant group velocity of the acoustic
plasmon. Hence, ωAP tends to zero as q → 0. Exchange of acoustic plasmons have
been suggested as a possible mechanism of electron pairing in superconductors (see, i.e.,
Ref [IR93] and references therein). Very recently detailed ab initio calculations of the
dynamical dielectric response of several metallic bulk systems predicted the existence
of bulk acoustic plasmons [MSBMEVC09, BVCMEMS08, MSPCMKVC09]. However,
to the best of our knowledge this kind of acoustic excitations has not been shown to
exist experimentally so far.

3.5 Electron energy-loss spectroscopy

Several experimental techniques probe the density-density response functions, i.e. x-
ray inelastic scattering, optical absorption or ellipsometry. An additional technique
which directly measures the dynamical structure factor, or equivalently, the energy-
loss function is known as electron energy-loss spectroscopy (EELS).

In EELS experiments a beam of electrons carrying a momentum ki and energy ωi is
scattered by the system under study. As a result of the scattering, the electrons transfer
a momentum q and energy ω to the system. Note the EELS technique is conceptually
the same as Raman scattering [Kuz98]. However, unlike the case of Raman scattering,
the incident electrons in an EELS experiment can have a large range of wave vectors
ki so that the change in momentum for the electron in the solid can be comparable to
Brillouin zone dimensions. The incident electrons typically have energies up to ∼ 100
eV, with wave vectors up to ki ' 5Å−1.

Let us now derive the relation of the EELS measured scattered electrons and the
above described energy-loss function Im[ε−1

G,G(q, ω)]. One defines the cross section
(d2σ/dΩdω), where Ω is the solid angle, as the number of scattered electrons mea-
sured per unit of time, solid angle and energy for a given incident beam intensity. As
it is mentioned in Section 3.3.1, within the first Born approximation (d2σ/dΩdω) is
proportional to the dynamical structure factor S(q, ω),

d2σ

dΩdω
= f(q)S(q, ω), (3.37)

where function f(q) reflects the elastic (energy-conserving) contribution to the cross
section [Kuz98], which is assumed to show a f(q) ∝ q−4 dependence (Rutherford
classical scattering).
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On the other hand, the dynamical structure factor is linked to the energy-loss
function by Eq. (3.23), where the prefactor q2/2π is the inverse of the Fourier transform
of the Coulomb interaction. The resulting relationship between the measure cross
section and the energy-loss function is given by

d2σ

dΩdω
∝ 1

|q + G|2
Im[ε−1

G,G(q, ω)]. (3.38)

Consequently, the energy-loss spectra calculated in this thesis can be directly com-
pared with EELS experimental measurements.
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Chapter 4

Theoretical methods III: Inelastic
linewidth of excited quasiparticles

4.1 Introduction

In this thesis we study not only collective electronic excitations, but also those present-
ing a single-particle character. More precisely, we seek to study the decay of excited
electrons and holes, analyzing their inelastic linewidth due to electron-hole pair cre-
ation (see below). In the present Chapter we review the formalism used to obtain
information on the decay of quasiparticles through electron-hole pairs and plasmons,
namely the so-called GW approximation (see i.e. Ref. [ORR02]). After that we analyze
the main assumptions involved and its connection to the physical properties studied
within the linear-response theory. Finally, the explicit GW expressions used in crystals
are derived.

We call the excited electrons and holes quasiparticles as they represent a kind of
dressed particle (see Section 3.1). Actually they are composed by an electron, a single-
particle state represented here by a KS state in the formalism described in Chapter 2,
and the so-called exchange-correlation hole they carry around. The xc hole stands for

Figure 4.1: Cartoon showing the composition of
the quasiparticles as the sum of an electron (red
circles) and the xc hole. The thick line marks the
strong Coulomb interaction v(r, r’) between elec-
trons, which in the elementary excitations picture
is replaced by the screened Coulomb interaction
W (r, r’) between the quasiparticles, marked as a
thin line in the plot.

37
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the electron deficiency around an electron as a result of the repulsive interaction with
the rest of the quasiparticles. As a consequence, a quasiparticle in the present study
is the sum of an electron and the cloud of positively charged holes around it, which
screens the electron. Each electron is screened by its own xc hole and the picture of
weakly interacting quasiparticles sketched in Section 3.1 holds, see Fig. 4.1.

4.2 Quasiparticle lifetimes: self-energy and decay

rate

It can be shown from many-body (Green’s function) theory [FS06] that the quasipar-
ticle energies Ei can be obtained from the one-particle quasiparticle equation

Ĥ0Ψi(r) +

∫
Σ(r, r′;Ei)Ψi(r

′)dr′ = EiΨi(r) (4.1)

Ĥ0 is a one-electron Hamiltonian of the form

Ĥ0(r) = −1

2
∇2 + w(r) +

∫
ρ(r′)

|r− r′|
dr′, (4.2)

where w(r) is a mean-field external potential, as the one defined in the KS formalism,
see Section 2.3.2. Eq. (4.1) is called a one-particle equation as it applies to one-particle-
like states Ψi. One could include within the quasiparticle picture two-body elementary
excitations [GV05], i.e., excitons, but in metals they are of negligible importance.

Even though Eq. (4.1) presents a similar structure to the KS Eqs. (2.7)-(2.8) or
other mean-field equations, the quasiparticle equation exhibits important differences
arising from the potential Σ(r, r′;Ei), which is usually named the self-energy of the
quasiparticles. From Eq. (4.1) one deduces that the self-energy is the responsible for
including the many-body effects which represent the passage from a non-interacting
particle picture (mean-field approaches) to the quasiparticle framework.

The energy dependence of the self-energy Σ(r, r′;Ei) has important consequences
as it makes the self-energy operator non-Hermitian. Thus, in general the quasiparticle
energies Ei are complex and the associated quasiparticle wave functions Ψi are non-
orthogonal.

As it was stated in Section 2.3.4, Kohn-Sham LDA energies εi and wave functions ψi

represent good approximations of their quasiparticle counterparts, specially for metals.
Then one is allowed to use first-order perturbation theory. From a comparison of the
KS Eqs. (2.7)-(2.8) with the quasiparticle equation (4.1) it follows that the difference
is the appearance of the self-energy term in Eq. (4.1) replacing the energy-independent
xc in the KS equations. Thus we approximate the quasiparticle energies by

Ei ' εi +

∫∫
drdr′ψ∗

i (r)ψi(r
′) [Σ(r, r′;Ei)− Vxc(r

′)δ(r− r′)] . (4.3)
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In order to solve this nonlinear equation the knowledge of the self-energy as a function of
the quasiparticle energy is needed. However, its exact form is generally unknown. There
are two different strategies to overcome this problem starting from some approximate
ansatz for Σ(r, r’;E) [GV05]. One consists in solving the Dyson equation Ei = εi +
Re[Σ(r, r’;Ei)], the second one (the one we apply here) is to take advantage again of
the fact that Ei ≈ εi and use the linear expansion

Σ(r, r’;Ei) ' Σ(r, r’; εi) + (Ei − εi)
∂Σ(r, r’;ω)

∂ω

∣∣∣∣
ω=εi

, (4.4)

which leads to the expression

Ei ' εi + Zi

∫∫
drdr′ψ∗

i (r)ψi(r
′) [Σ(r, r′; εi)− Vxc(r

′)δ(r− r′)] , (4.5)

where the so-called renormalization factor is expressed as

Zi =

(
1−

〈
ψi

∣∣∣∂Σ(εi)

∂ω

∣∣∣ψi

〉)−1

. (4.6)

Finally, we suppose the renormalization factor is Zi = 1 which is known as the on-shell
approximation [MPPZK+04], obtaining the following expression for the quasiparticle
energies

Ei ' εi +

∫∫
drdr′ψ∗

i (r)ψi(r
′) [Σ(r, r′; εi)− Vxc(r

′)δ(r− r′)] . (4.7)

4.2.1 Spectral function

Also from many-body Green’s function theory one can define a crucial quantity known
as the spectral function [GV05] (not to be confused with the quantity S0 defined in Sec-
tion 3.3). The spectral function represents the probability of increasing or decreasing
the many-particle system energy by an amount of ω by adding or removing a particle
in the state Ψi. At zero temperature it has the following expression (dropping any
spin-dependence),

A(k, ω) = − 1

π

Im[Σ(k, ω)]

{ω − εk − Re[Σ(k, ω)]}2 + {Im[Σ(k, ω)]}2 , (4.8)

where Σ(k, ω) stands for the self-energy.

The spectral function exhibits the form of a Lorentzian centered in εk−Re[Σ(k, ω)]
and of Im[Σ(k, ω)] half-width at half-maximum (HWHM). Let us now switch off the
interactions adiabatically. For a non-interacting system Σ(k, ω) = 0. The spectral
function Eq. (4.8) should smoothly become a Dirac delta, actually for a non-interacting
system the spectral function is simply A(k, ω) =

∑
k δ(ω − εk). This results from the

fact that in the non-interacting limit the (KS) states ψi of energy εi are the true
eigenstates of the system, and as such they present an infinite lifetime.
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One deduces that the finite width of the interacting spectral function is related to
the quasiparticle lifetime. The stronger the interactions between particles, the wider
the peak in A(k, ω) and the shorter the lifetime of the quasiparticle. Even though
this picture is valid in general, note that when the quasiparticle energy approaches
the Fermi level, the width of the spectral function must vanish for a 3D ideal periodic
solid no matter how strong the interaction is. This can be analytically derived for the
homogeneous electron gas [GV05].

Thus, the imaginary part of the self-energy gives the lifetime of the quasiparticle.
A practical way of realizing it comes again from taking the non-interacting limit of
the many-particle system. In this limit, wave functions are well approximated by plane
waves of well defined momentum ki and energy Ei =Re[Ei]+iIm[Ei], with Im[Ei] small
(let us define small as Im[Ei] � Re[Ei]). Then the probability of finding that excited
particle in position r decays in time as

|Ψi(r, t)|2 ∝ e−2Im[Ei]t ≡ e−t/Γ, (4.9)

where we have defined the decay rate Γ (also known as damping rate) as the inverse of
the lifetime.

If the imaginary part of the quasiparticle energy is evaluated in the above mentioned
on-shell approximation, from Eq. (4.7) follows that the decay rate of the excited state
Ψi with energy εi can be calculated by the expression

Γi = −2 Im

[∫∫
dr dr′Ψ∗

i (r)Σ(r, r′; εi)Ψi(r
′)

]
. (4.10)

The spectral function A(k, ω) is directly measured in angle-resolved photoemission
spectrocopy (ARPES) experiments. In ARPES an electron which was below the Fermi
level is removed as the result of being photoexcited. By measuring the momentum
and kinetic energy of the removed electrons for different energies and momenta k one
can construct the spectral function for the occupied states, due to the fact that one
is extracting an energy from the (photo-) excited system which corresponds precisely
to the quasiparticle energy Ei. This way ARPES has access to detailed information
about the band structure as well as many-body effects in the system. However, it is
restricted to occupied quasiparticle states.

To study the unoccupied quasiparticle states the inverse procedure is needed. Con-
sequently, an electron is added to the system with an energy Ei > EF . This extra
electron decays to the Fermi level emitting a photon which is detected and analyzed as
a function of its energy. This technique is known as inverse photoemission spectroscopy
(IPES).

Further developments in photoemission experimental techniques lead recently to the
direct measurement in time of the population decay of quasiparticles [Kir08,SKRZ+10]
using the time-resolved two-photon photoemission (TR-2PPE) technique [SBW+02].
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4.2.2 Decay rate

As stated above, the linewidth of a quasiparticle represents the inverse of its lifetime,
that is, the inverse of the time needed for the quasiparticle state to be depopulated.
More precisely the lifetime of the state is determined by the Heisenberg energy-time
uncertainty principle ∆E∆t > 1, from where it follows τ−1 = Γ. Usually the decay rate
in metals is given in meV and the lifetime is measured in femtoseconds [1 femtosecond
(fs) = 10−15 seconds]. The two quantities are related by

τ ' 658

Γ
meV · fs. (4.11)

As we have described, quasiparticles present a finite linewidth as a consequence of
their interaction with other particles, that can be seen as scattering centers. Notice
the latter can be electrons (γe−e) or any kind of elementary excitations [i.e., phonons
(γe−ph), plasmons (γe−pl), magnons (γe−mg), polarons (γe−po)]. Also, in real systems
there are two more decay channels, namely the scattering by defects (γe−def ) and the
elastic scattering (γ1e), if interfaces are present. The latter decay channel consists of
energy-conserving resonant electron transfer mechanisms through an interface.

In general it is a good approximation to consider that the different decay channels
contribute additively to the total decay rate [VCGBPG+06],

Γ = γe−e + γe−def + γ1e + γe−ph + γe−pl + ... (4.12)

Now the question arises: which of the different scattering mechanisms are relevant
in the quasiparticle decay for a given system? As Pb is the subject of study, we are
interested in the decay channels of importance in metals. At low temperature quasi-
particles in metals decay through three main scattering mechanisms [HBP+09]: the
inelastic electron-electron (e − e) scattering (properly, the quasiparticle-quasiparticle
scattering), the electron-phonon coupling and the scattering by defects. Among them,
the inelastic e−e decay rate is usually the main contribution to the total decay rate or
linewidth of quasiparticles in metals, specially for energies not close to the Fermi level.

Let us recall at this point (see Section 4.2) that in metals quasiparticles with energy
Ei > EF can be viewed as electrons being promoted from an occupied state below the
Fermi level to a higher energy unoccupied state, leaving a hole with energy lower than
EF . As a hole behaves like an electron with positive charge, the mutual interaction
between the electron and the corresponding hole can form a bound state which rep-
resents a different kind of (two-body) excitation, the so-called exciton. However, the
high density of free carriers in a metal results in an “instantaneous” screening of the
excited electron and the excitonic effects become negligible in metals.

Note the quasiparticles are of paramount importance in many physical and chemical
phenomena, as excitation mediated desorption and oxidation of molecules at surfaces,
spin transport, energy transfer in photochemical reactions or catalytic reactions, to cite
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some examples (see Ref. [VCGBPG+06] and references therein). And more specifically,
the lifetime of the excitations determines the efficiency of any chemical reaction channel,
therefore emerging as a key quantity.

4.3 The inelastic e− e decay rate:

GW approximation

Following the discussions of the previous Sections, in order to study the quasiparticle
lifetime in Pb a procedure to calculate the self-energy stemming from electron-electron
inelastic scattering processes is needed. Below we review the theoretical framework
and practical expressions employed here in calculating the electron-eletron self-energy
Σe−e(k, ω) and then γe−e using Eq. (4.10).

However, as a reference, let us first discuss the electron-electron inelastic lifetime of
quasiparticles in a homogeneous electron gas for excitation energies close to the Fermi
level and in the high density and low temperature limit, given by the Quinn-Ferrell
(QF) formula [JQAF58]

τQF (E) ' 0.3997

r
5/2
s (E − EF )2

, (4.13)

where rs is the average valence density parameter [see Eq. (2.15)]. For completeness,
we outline the derivation of Eq. (4.13) in Appendix F. Thus ΓQF (E) ∝ (E − EF )2. A
quadratic dependence of the decay rate on the quasiparticle energy is usually referred
to as a 3D Fermi liquid behavior. In this quadratic dependence one factor (E − EF )
arises from the phase space available to decay while the second one stems from the linear
energy dependence of the number of electron-hole pair that can be excited when E → 0
[GV05] (see Appendix E). It has been found that this model, although in principle only
valid for the high density limit, does a good job in estimating the e − e decay rates
in metals with realistic densities. Then, an important issue to address when studying
lifetimes of quasiparticles is to what extent the actual lifetimes behaviour deviates
from the 3D Fermi liquid behavior, that is, from a simple quadratic dependence on the
energy (see, i.e, [ANVCME07]). Note also that for a 2D homogeneous electron gas,
the same approximations applied in deriving Eq. (4.13) lead to a different dependence
which includes a logarithmic factor, Γ2D(E) ∝ (E − EF )2 ln |E − EF |−1 [GV05].

4.3.1 Hedin’s equations

In this thesis we use the Green’s function theory to address the inelastic electron-
electron contribution to the linewidth of quasiparticles. In a system of N interacting
electrons, the probability amplitude of an additional electron to be propagated from
(r′, t′) to (r, t) for t > t′ is given by the one-electron Green’s function

G(r, r′, t, t′) = −i〈N |T [ψ̂(r, t)ψ̂†(r′, t′)]|N〉, (4.14)
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where T is the time-ordering operator defined by

T
[
Â(t1)B̂(t2)

]
=

{
Â(t1)B̂(t2) if t1 > t2

B̂(t2)Â(t1) if t2 > t1,
(4.15)

with ψ̂ being the electron annihilation field operator in the Heisenberg picture and
|N〉 is the many-body N -electron ground state [AG98]. The Green’s function is the
solution to an equation similar to the quasiparticle equation (4.1), namely

Ĥ0G(r, r’) +

∫
Σ(r, r”;ω)G(r”, r’;ω)dr” = G(r, r’)δ(r− r’). (4.16)

Within many-body perturbation theory it is possible to obtain the self-energy as
a series in the bare Coulomb interaction v(r, r’). However, due to the long range of
this interaction such a perturbation series contains divergent contributions. In order to
avoid these divergences, the infinite terms in the series build up the so-called dynamical
screened interaction W (r, r’;ω) (see Fig. 4.1) and the self-energy is rewritten as a series
in the frequency dependent W (r, r’;ω). This was first done by Hedin [Hed65] who
reformulated the exact many-body mathematical problem codified in Eq. (4.16) as the
following set of integro-differential equations, known precisely as Hedin’s equations,

W (1, 2) =v(1, 2) +

∫
v(1, 3)P (3, 4)W (4, 2) d3d4,

Σ(1, 2) =i

∫∫
G(1, 3+)W (1, 4)Λ(3, 2, 4) d3d4,

G(1, 2) =G0(1, 2) +

∫∫
G0(1, 3)Σ(3, 4)G(4, 2) d3d4,

Λ(1, 2, 3) =δ(1− 2)δ(1− 3)−
∫∫∫

δΣ(1, 2)

δG(4, 5)
G(4, 6)Λ(6, 7, 3)G(7, 5) d4d5d6d7,

P (1, 2) =− i

∫∫
G(1, 3)Λ(3, 4, 2)G(4, 1+) d3d4,

(4.17)
which has to be solved self-consistently [Hed65, AG98]. In the notation above (1) ≡
(r, t) refers to the standard spatial and temporal compact notation and 1+ refers to
the t→ t + iη substitution, where η = 0+ is a positive infinitesimal. P stands for the
time-ordered polarization operator and Λ is the so-called vertex function.

4.3.2 GW approximation

The functional derivative in the expression for the vertex function Λ prevents Hedin’s
equations to be solved in a straightforward manner and usually approximations are
applied. The most widely used approximation consists in neglecting the second term
in Λ(1, 2, 3), thus writing the vertex function as

Λ0(1, 2, 3) = δ(1− 2)δ(2− 3), (4.18)
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neglecting the commonly named vertex corrections. This is the so-called GW approx-
imation [AG98,ORR02], resulting in the following set of equations

Σ(1, 2) = iG(1, 2)W (1, 2), (4.19a)

G(1, 2) = G0(1, 2) +

∫∫
G0(1, 3)Σ(3, 4)G(4, 2)d3d4, (4.19b)

P (1, 2) = −iG(1, 2)G(2, 1), (4.19c)

W (1, 2) = v(1, 2) +

∫∫
v(1, 3)P (3, 4)W (4, 2)d3d4. (4.19d)

These equations might be solved iteratively until self-consistency is obtained. Never-
theless, these calculations are still computationally hard, and usually different approx-
imations or levels of self-consistency are employed within the general GW scheme.

Note that in the GW approximation the polarizability is related to the dielectric
function ε through the expression ε = 1− Pv, so that the screened interaction can be
schematically written as

W = ε−1v, (4.20)

which is non-local in space and time.

More precisely, in this thesis we use two different approaches in evaluating the
screened interaction, which result in two different GW schemes, which we call G0W 0

and G0W approximations. In both approaches G0 stands for the non-interacting
Green’s function, thus the second term in Eq. (4.19b) has been neglected through-
out the present work. G0 can be expressed in terms of the one-electron states (here,
KS states) as

G0(r, r’;ω) =
∑

i

ψi(r)ψ∗
i (r’)

ω − εi + iη sgn(εi − EF )
, (4.21)

where in practice ψi and εi are KS wave functions and energies, η = 0+ and sgn(x) =
1 (−1) for x > 0 (x < 0). Strictly, all states must be summed in Eq. (4.21). Obviously,
in practice one seeks the convergence of G0 with respect to the unoccupied states
included in the sum.

The difference between the G0W 0 and G0W approximations then stems from the
way the screened interaction is treated. With W 0 we denote the RPA form of the
screened interaction, which is obtained using the RPA susceptibility in the calculation
of the dielectric function entering Eq. (4.20), see Chapter 3. On the other hand, in
the G0W scheme the xc kernel is included in the calculation of the susceptibility, and
consequently in the screened interaction W through ε.

The inelastic electron-electron scattering mechanism can be seen as the decay of
the quasiparticle in energy by creating a electron-hole pair, that is, by promoting an
electron from the Fermi sea to an unoccupied state. Obviously, energy conservation
applies and the energy transfered to the system in the decay of the quasiparticle corre-
sponds to the energy gained by the electron promoted above the Fermi level. In terms
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Figure 4.2: Sketch showing the mechanism of quasiparticle decay through inelastic electron-electron
scattering. The two different approximations used in this thesis to evaluate the e−e contribution to
the linewidth are shown (see text). Orange and red circles represent the decaying quasiparticle and
the electrons in the Fermi sea, respectively. The green circles signal the inclusion of the xc short
range effects in the susceptibility from which the screened interaction W (r, r’;ω) is built (see text).

of this picture, in this thesis we neglect the xc hole of the quasiparticle resulting from
adding an electron (hole) to (from) the system, as we make use of the non-interacting
Green’s function neglecting the second term in Eq. (4.19b). On the other hand, the xc
short range effects in the dielectric function are taken into account when including the
TDLDA xc kernel in the calculation of the susceptibility (G0W scheme), and they are
neglected in the G0W 0 approximation, see Fig. 4.2.

4.3.3 Expressions for a periodic solid

In the present work we are interested in studying from first-principles the inelastic
electron-electron contribution to the lifetime of excited electrons and holes in periodic
solids. In order to obtain an expression for the e− e contribution to the quasiparticle
damping rate Eq. (4.10) following the approach outlined in Chapter 3, we combine
Eqs. (4.10), (4.20) and (3.24). This leads to

Γe−e(i,k) =
1

π2

∑
f

∫
BZ

dq
∑
G,G’

Im[−ε−1
G,G’(q, ω)]

B∗
i,f(k,q,G)Bi,f(k,q,G’)

|q + G|2
, (4.22)
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where i and j are energy band labels. This is the expression employed in this thesis for
evaluating the inelastic e− e linewidth of a quasiparticle of energy Ei and momentum
k. The first sum is over all final states φf,k−q(r) with energies εf,k−q between εi,k and
the Fermi level EF , ω = εi,k − εf,k−q, G and G’ are reciprocal lattice vectors, and

Bi,f (k,q,G) =

∫
drφ∗i,k(r)ei(q+G)·rφf,k−q(r), (4.23)

are coupling matrices. The KS wave functions φi,k(r) are expanded in a plane wave
basis as explained in previous Chapters [see Eq. (2.17)], and in practice Bi,f (k,q,G)
are calculated using the following expression,

Bi,f (k,q,G) =
1

Ω

∑
G’

ci,k(G’)cf,k−q(G’−G), (4.24)

where Ω is the normalization volume.

4.3.4 Spin-orbit coupling

Recently, the Hedin’s scheme has been generalized to include spin-dependent interac-
tions [AB08]. However, this new generalized theoretical framework leaves unaffected
our formalism also when SOC is included. This is due to the combination of two fac-
tors: we do not go beyond the GW approximation and we are interested in the decay of
quasiparticles only through the creation of electron-hole pairs. The latter point means
we are only including the density-density response in the calculation of the quasiparti-
cle self-energy Σ(r, r′;ω), excluding the response of the electron density to changes in
the spin degrees of freedom.

Consequently, when including the spin-orbit coupling in the ground state and
susceptibility calculations, the only variation in evaluating Γe−e(i,k) in the outlined
scheme is the replacement of the scalar-relativistic wave functions φi,k(r) by the two-
component spinors Ψi,k(r) given by Eq. (2.40). Consequently, the coupling matrices
when SOC is included present the form

Bi,f (k,q,G) =
1

2Ω

∑
G’

[
c∗n,k,↑(G’)cn′,k+q,↑(G’−G) + c∗n,k,↓(G’)cn′,k+q,↓(G’−G)

]
.

(4.25)



Chapter 5

Bulk Pb electronic structure

5.1 Introduction: pseudopotentials

Before analyzing in detail the bulk Pb electronic structure and the SOC effects on it, let
us outline the generation and testing of pseudopotentials as it has been applied to the
present study. As it was stated in Chapter 2, in the present work the external potential
in the Kohn-Sham equations is modeled by norm-conserving pseudopotentials.

In generating NCP, one has to fix the valence electronic configuration from which
NCP are built, the cut-off radii rl

c for each angular momentum channel l, the xc func-
tional and the generation scheme. Whereas the LDA was always chosen as the xc
functional (see Section 2.3.3) several combinations of valence electronic configurations
and

{
rl
c

}
sets where examined for two different generation schemes. The two different

flavours of NCP tested have been the HSC [RHSC79, BBRHS82] scheme and the one
proposed by Troullier and Martins (TM) [TLM91].

The tests consist in comparing the true atomic valence energy eigenvalues for differ-
ent electronic configurations with the ones retrieved using a pseudopotential generated
for a fixed valence configuration. That is, transferability is checked, estimating the
quality of the performance of the NCP in different chemical environments.

Pb (Z=82) presents an electronic structure in which usually the valence electronic
configuration is chosen to be [62

s 62
p]. Concerning the starting electronic configuration,

we found that the highest quality pesudopotentials for Pb (regardless of the generation
scheme) correspond to the valence configuration

6s1.50
1/2 6p0.42

1/2 6p0.83
3/2 6d0.10

3/2 6d0.15
5/2 5f 0.11

5/2 5f 0.14
7/2 . (5.1)

Note the presence of 6d and 5f orbitals, which play the role of polarizability orbitals
aiming to improve the transferability. Also, notice that it is a positive ionic configura-
tion with +0.75e− charge. This situtation is usual when generating NCP for metals, as
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Figure 5.1: Ionic (top
panel) and SOC (bot-
tom panel) pseudopoten-
tials used in this thesis.

the less strongly bounded electrons in the isolated atoms usually become delocalized
in the solid, forming the Fermi sea. As a consequence, the valence electrons which
remain localized are overbinded with respect to the neutral isolated atom. This effect
is mimicked using positively charged valence configuration when building the NCP.

Regarding the two different flavours HSC and TM of the NCP generation, the TM
scheme gives softer pseudopotentials than HSC, allowing cut-off radii which are usually
slightly bigger than the position of the outermost maximum of the corresponding all-
electron wave function. On the other hand, the procedure developed by HSC gives
more accurate results than TM NCP, but at the price of deeper pseudopotentials.
HSC cut-off radii are slightly smaller than the position of the outermost maximum
of the corresponding all-electron wave function. Then one has to find a compromise
between softness and quality of the NCP.

In this thesis we deal with simple systems and consequently softness of the NCP
does not represent a concern. Thus, we chose a pseudopotential generated by applying
the HSC scheme. The best transferability tests were obtained for the cut-off radii values
rl
c = 1.60, 2.00, 3.50 and 3.50 a.u. for s, p, d and f electrons, respectively. The max-

imum error of the pseudopotentials employed in this thesis for realistic transferability
tests has been found to be ∆ε . 200 meV corresponding to promoting or removing a
6s electron, which are unlikely processes in bulk Pb. In the rest of the transferability
tests, the errors were always below 100 meV.

As it is explained in Section 2.6.1, NCP are separated in two different contributions,
mimicking the ionic (scalar-relativistic) V ion

l (r) and SOC V SOC
l (r) contributions to the

atomic potential the valence electrons feel [see Eqs. (2.29)-(2.30)]. In Fig. 5.1 V ion
l (r)

and V SOC
l (r) are plotted for each angular momentum channel l as a function of the
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Figure 5.2: Plot of the first BZ for a
face-centered-cubic crystal. The pink
volume represents the irreducible BZ
when SOC is excluded from the
Hamiltonian. The yellow volume has
to be added to the IBZ when SOC is
turned on (see text). The symmetry
points relevant to the work presented
here are labeled. The arrows repre-
sent a cartesian coordinate system.

distance to the atomic nucleus r. For the SOC pseudopotentials, the l = 1 component
is clearly the most important, whereas the l = 3 one vanishes. This is as expected
because the 6p electrons are closer to the nucleus than the 6d and 6f ones, thus being
more strongly affected by SOC. Hence, noticeable SOC effects are expected essentially
on p-like states.

5.2 Electronic structure: SOC effects

Bulk Pb has a face-centered-cubic (fcc) crystal structure. In Fig. 5.2 the first Brillouin
zone for an fcc structure is plotted. The pink volume corresponds to the irreducible BZ
when working at the scalar-relativistic level. When SOC is switched on, the IBZ has to
be doubled (see Section 2.7.1). Thus, in Fig. 5.2 the IBZ when SOC is included in the
Hamiltonian consists in summing the pink and yellow volumes. Note the huge saving
in computational load when taking advantage of the symmetries. More precisely, in
the scalar-relativistic case the IBZ volume is only a 1/48 of the total BZ volume, while
a 1/24 once SOC is taken into account.

The three reciprocal space directions in which the dielectric response has been
studied in this thesis (see Chapters 6 and 7) correspond to the Γ−X, Γ−K and Γ−L
BZ high-symmetry directions. In each of the mentioned directions, the momentum q
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Figure 5.3: Calculated band structure of bulk lead, with (solid red lines) and without (dashed
black lines) inclusion of the spin-orbit coupling. Symbols mark regions where the SOC-induced
band splittings are reflected in the density of states shown in Fig. 5.4. The horizontal dashed line
represents the Fermi level.

is of the form

qX =
2π

a
(
l

M
, 0, 0), (5.2)

qK =
2π

a
(
l

M
,
l

M
, 0), (5.3)

qL =
2π

a
(
l

M
,
l

M
,
l

M
), (5.4)

where a is the lattice parameter, l is any integer number and M corresponds to the
M×M×M Monkhorst-Pack grid used (see below).

The convergence of the electron density has been performed using a 12×12×12
Monkhorst-Pack [JMDP76] grid for the scalar-relativistic calculations, while a 12×12×24
mesh replaced it once SOC was included. The band structure was converged with re-
spect to the kinetic energy cut-off of the plane wave basis (see Section 2.5). It has been
found that a kinetic energy cut-off of 190 eV, which corresponds to the inclusion of
∼180 plane waves in the expansion of the KS states [see Eq. (2.18)], gave satisfactory
results with energy bands converged to within 20 meV.

Figure 5.3 presents the calculated band structure of bulk lead along the high-
symmetry directions of the BZ obtained with the use of the experimental lattice pa-
rameter ac = 4.95 Å. In the figure one set of data (solid red lines) corresponds to the
calculation with the inclusion of the SOC in the KS Hamiltonian whereas dashed black
lines represent the electronic structure obtained at the scalar-relativistic level. The
Hamiltonian including the SOC was solved fully self-consistently. First, notice that as
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the fcc lattice has inversion symmetry, due to the Kramers degeneracy [Tin71] each
energy band is at least double degenerate in spin no matter whether SOC is turned on
or off. The Kramers degeneracy is a consequence of the combination of time-reversal
(εn,σ,k = εn,−σ,−k) and inversion symmetry (εn,σ,k = εn,σ,−k) , which necessarily leads to
the spin-degeneration of all the energy bands: εn,σ,k = εn,−σ,k, ∀(n, σ,k).

The calculated band structure is in good agreement with other theoretical results
[JVTJ+08] and with the experimental data [JP90] once SOC is taken into account. As
can be seen in Fig. 5.3, the inclusion of SOC affects specially the three p energy bands
(the only ones that cross the Fermi level), mainly around the high-symmetry points. In
Table 5.I, a comparison of the energies of the p bands at the high-symmetry points with
the inclusion and exclusion of SOC in the Hamiltonian is presented. However, notice
following Fig. 5.3 that the Fermi surface remains nearly unchanged upon inclusion of
the SOC.

On the other hand, remarkable SOC splittings appear also for d states at energies
above 13 eV (see Fig. 5.3) around the high-symmetry point L and in the Γ-X direction.
Taking into account the small intensity of the SOC pseudopotential for d electrons
V SOC

l=2 (see Fig. 5.1), the splittings of the d states reflect the importance of the mixing
of scalar-relativistic states by the spin-orbit coupling. Nevertheless, these splittings
occur at energies ε & EF + 20 eV, therefore playing a marginal role in the results
presented in the following Chapters of this thesis.

In general, one can see that SOC produces two main effects in the Pb band structure:

a) As SOC breaks the three-dimensional symmetry setting a preferential direction
(see Section 2.7.1), its inclusion leads to a breaking of symmetry degeneracies at high-
symmetry points and directions of the BZ. The most important ones in the case of
bulk Pb are the SOC-split p electron bands along Γ-X and Γ-L symmetry directions
and the energy splitting, ∆εSOC , at the high-symmetry points: ∆εSOC = 3.21 eV at
Γ, 1.20 eV at X and W, and 1.85 eV at L. K is the only high-symmetry point where
all three p-like states are nondegenerate even at the scalar-relativistic level (see Table
5.I).

b) SOC avoids band-crossings, as can be observed between p-like states marked by
green circles in Fig. 5.3.

Table 5.I: Energies εi of p-like electronic states at some high-symmetry points in the Brillouin zone
obtained at the scalar-relativistic (sc) and full relativistic (SOC) level. All energies are in eV with
respect to the Fermi level.

Γ X W L K

sc SOC sc SOC sc SOC sc SOC sc SOC

ε2 7.14 4.97 -3.18 -3.30 -1.40 -2.09 -4.07 -4.13 -2.25 -2.52
ε3 7.14 8.18 1.73 1.20 -1.40 -0.89 5.23 4.30 -1.19 -1.04
ε4 7.14 8.18 1.73 2.40 0.28 0.45 5.23 6.15 2.70 2.79
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Figure 5.4: DOS obtained in the scalar-relativistic calculation (DOSsc, dashed black line) and the
calculation with inclusion of the SOC (DOSSOC , solid red line). The main variations in the DOS
upon the SOC inclusion reflected in the differential ∆DOS=DOSSOC-DOSsc (dashed-dotted green
line) are related to different band structure splittings marked by the same symbols as in Fig. 5.3.
DOS is in arbitrary units and energy is according to the Fermi level.

In Fig. 5.4 the total density of states (DOS) is plotted as a function of energy.
The most important effect of the inclusion of SOC is the appearance of a valley at
-1.4 eV and an amplitude increasing of the peak at -2.4 eV, whose position is also
slightly shifted to higher binding energies. These variations reflect the disappearance
of the band-crossing points. The additional effect of the SOC on the band structure
mentioned above - breaking of band degeneracies - has no such important effects on
the DOS, because it does not flatten significantly the band dispersion. Nevertheless,
the SOC-induced splitting around X, L and Γ points affects remarkably the DOS at
∼1.6 eV, ∼5 eV and ∼8 eV, respectively, as can be seen in Fig. 5.4 (features in ∆DOS
marked by symbols, see also Fig. 5.3).

5.2.1 Variational principle approach

Following the recipe outlined in Section 2.7.2 (and developed in detail in Appendix C),
SOC was included also in the electronic structure of bulk Pb by means of the variational
principle. In Fig. 5.5 we present the comparison of the electronic structure when SOC
is taken into account both self-consistently (red lines) and through the variational
approach (blue lines). As it is clearly seen, both methods give almost indistinguishable
band structures.

This allows one to conclude that the electron density of bulk lead is nearly unaffected
by the SOC. A similar conclusion was drawn in Ref. [GMV90] where the influence of
SOC in the charge-density of bulk bismuth was found to be negligible in electronic
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Figure 5.5: Calculated bulk
Pb electronic structure
including spin-orbit coupling.
The red solid lines represent
the energy bands obtained
solving the SOC-included
Hamiltonian self-consistently,
whereas the blue dashed
set of bands stands for the
results obtained includ-
ing the SOC by means of
the variational principle.
The horizontal dashed line
represents the Fermi level.

Figure 5.6: Comparison of
the p-like bands in Pb
bulk when including the
SOC using the variational
recipe with two different
number of states mixed.
Black solid (green dashed)
lines stand for the energy
spectrum obtained includ-
ing up to 12 (4) bands,
thus 24 (8) KS states, in
Eq. (2.47). The horizon-
tal dashed line represents
the Fermi level.

structure calculations. More generally, the similarity between the band structures
obtained using self-consistency and the variational principle as methods to include the
SOC in the ground state calculations points to the fact that the contribution of each
KS state to the electron density remains unaltered. Notice however that the density
matrix [JS94] and more precisely the coupling matrices entering the expressions used in
this thesis to calculate the dielectric response and quasiparticle lifetime [see Eqs. (3.19)
and (4.22)-(4.23)] could still change significantly upon inclusion of SOC.

Let us now use the advantages offered by the variational principle to get further
insight in the way SOC affects the electronic structure of bulk Pb. As it has been
explained in Section 2.7.2 the variational approach gives here the possibility of choosing
which scalar-relativistic states are “perturbed” by the SOC. In Fig. 5.6 a comparison of
the p-like bands in bulk Pb when including the SOC using the variational recipe with
two different number of states mixed is shown. Blue (green) lines stand for the band
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structure obtained including up to 12 (4) bands, thus 24 (8) KS states, in Eq. (2.47).
Clearly, the dispersion of the p states along the high-symmetry directions remains
nearly the same when only the first 4 bands are introduced in the variational procedure.
Nevertheless, small variations exist between the two different sets of bands plotted in
Fig. 5.6, specially around the BZ center (Γ point), showing small but appreciable effects
of SOC mixing between p and d states.

As a conclusion, the analysis carried out here applying the variational principle
shows that the coupling matrices between different KS states are affected by the SOC,
to first order, only for couplings between different p states. In addition, coupling
matrices between a p state and other wave functions with a different orbital character
could be also influenced by the switching of SOC, as the next correcting term in the
“perturbation”. Hence, the SOC effects on the calculated elementary excitations are
expected to arise mainly from energy splittings (see Fig. 5.3), but also from the spinorial
structure of the KS orbitals once the SOC is turned on.



Chapter 6

Low energy dielectric response of
bulk Pb

6.1 Introduction

Lead represents a remarkable example of a system where SOC produces strong vari-
ations in the band structure (see Chapter 5). Moreover, SOC has a strong impact
on the electron-phonon interaction in bulk Pb, increasing its strength as much as
44% [HBYSVC10]. Also, it was demonstrated that the SOC induces sizeable effects in
the optical properties in the bulk of heavy elements [RLdB05, SMWRLdB09, GAD10]
i.e. in the small momentum transfer limit. As a well known example of SOC effects
on optical properties of metals, one can cite that the distinct colour of gold is due to
a relativistic lowering of the 6s and raising of the 5d bands, which strongly affects the
onset of absorption.

Even though the effect of the SOC on the electronic structure was investigated in
the past very intensively, the inclusion of this interaction in the calculation of dielectric
properties from first-principles was performed in counted cases. A detailed study of
impact of the SOC on the excitation spectrum of Pb over a whole momentum-energy
domain is still missing. Particularly in the low-energy region where the major effect is
expected due to modifications in the band structure (see Chapter 5, specially Section
5.2.1). It is interesting to perform such study as the whole picture of a low-energy
dynamics in elemental lead may be completed along together with phonon dynamics
studied heavily up to now.

For many years the electron-density response of solids was studied using the free-
electron gas (FEG) model, that is, the Lindhard dielectric function (see Appendix
E) in which the valence electron density is parametrized by a single quantity: the
average density parameter rs [see Eq. (2.15)], which stands for the average inter-electron
distance. The Lindhard dielectric function gave insight into basic properties of the
momentum- and frequency-dependent dynamical dielectric response. However, band

55
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structure effects that are missing in a FEG model can frequently produce strong impact
on the dynamical dielectric response of solids. In particular, interband transitions
(not presented in a FEG model) give rise, for instance, to a strong red shift of the
Ag plasmon frequency [ACSDRME00] or to a negative momentum dispersion of the
plasmon in Cs [AK94]. Additionally, interband peaks dominate the energy-loss in the
optical range.

For 3D solids the FEG model predicts the existence of a rs-dependent threshold
for collective excitations, which gives for realistic metallic densities ωp ' 3 − 20 eV
(see Appendix E). Hence, according to the FEG theory, plasmons can not participate
directly in the low-energy dynamical processes near the Fermi surface. However, in the
fifties it was predicted [Pin56, PN58] the existence of an acoustic-like very-low energy
excitation, which should be present in systems with two energy bands crossing the
Fermi level with different Fermi velocities, vF , as it is the case of bulk Pb (see Section
3.4.4). Even though this kind of acoustic-like modes has not been demonstrated to exist
in bulk metallic systems experimentally so far, recent detailed ab initio calculations of
the dynamical dielectric response in variety of bulk metallic systems like MgB2 [MSB-
MEVC09,BVCMEMS08], Pd [MSPCMKVC09], and CaC6 [PEVCMEMS12] predicted,
after some initial controversy [PZMSVCME01, KEPTSGE02], the existence of a such
kind of acoustic plasmons in metallic systems. In particular, in the case of Pd and
CaC6 this acoustic mode presents a 3D character while in a layered compound MgB2

the corresponding mode exists only for the momentum transfers along the direction
perpendicular to basal planes.

In the FEG model, the plasma frequency is determined as ωp =
√

3r−3
s . For lead,

using the value of rPb
s = 2.298 determined on base of experimental data, one obtains

ωPb
p = 13.53 eV. This value is in good agreement with the one obtained in electron

energy-loss experiments (references are given in Ref. [MAWG73]). Thus, the energy
transfer range ω 68 eV, which is of interest in the present Chapter, is well below the
bulk plasmon energy in lead.

Recently the dielectric properties at small momentum transfers over a wide range
energy transfer interval and optical properties of Pb were investigated in detail theo-
retically by ab initio calculations and experimentally by reflection electron energy-loss
spectroscopy (REELS) [SMWRLdB09,GAD10] Therefore it would be useful to compare
those data with the ones obtained by a different calculation method.

The aim of the present study is twofold. First, the complexity of the low-energy
dielectric response of bulk Pb is demonstrated, together with the role played by the
different physical ingredients. Second, the results on the modes characterized by an
acoustic-like dispersion are presented and analyzed in detail. In particular we demon-
strate the anisotropic character of such low-energy collective excitations in bulk lead.
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Figure 6.1: Relevant energy
range of the band struc-
ture of bulk lead, calculated
with (solid lines) and with-
out (dashed lines) spin-orbit
coupling term in the Hamilto-
nian. The horizontal dashed
line represents the Fermi level
set to zero.

6.2 Computational details

Two different sets of calculations were carried out in evaluating Eq. (3.20). First,
S0

G,G′(q, ω) was calculated in the range 0 < ω < 30 eV with a step of ∆ω = 0.005 eV,
the band indexes in Eq. (3.20) running up to n = 25. A Monkhorst-Pack 144×144×144
grid of k vectors was used in the BZ sampling which corresponds to inclusion of≈ 32000
points in the irreducible part of the BZ (IBZ). The delta function was represented by
a modified Gaussian (see Appendix D) of width of 0.05 eV. Second, Eq. (3.20) was
evaluated in the 0 < ω < 4 eV range, with a step ∆ω = 1 meV and taking into account
up to 12 energy bands. In this second set of calculations a fine 432×432×432 grid
was used, with ≈ 850000 k points in the IBZ, and the width of the modified Gaussian
replacing the delta function was set to 2 meV.

When performing the calculations with inclusion of the spinors through Eq. (3.32),
in order to maintain the computational load reasonable, a 96×96×96 mesh was used.
Also, a 144×144×144 mesh was used for the detailed calculations in the 0 < ω < 4 eV
energy range. The results retrieved show fine enough structure, see Figs. 6.2-6.3.

Note that by calculating the dielectric response up to 30 eV the present results are
well converged with respect to the finite energy range used in the numerical Hilbert
transformation procedure.

For completeness in Fig. 6.1 a zoom over the relevant energy range for the results
presented in this Chapter of the calculated band structure of bulk fcc lead along some
high-symmetry directions of the first BZ is shown.
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6.3 Optical range results

Comparison of the calculated energy-loss function with optical experimental data from
Ref. [GMPM71] obtained at 140 K and room temperature is performed in Fig. 6.2. The
calculated curves correspond to the smallest momentum transfer q=0.009 a.u. along
the Γ-X direction, allowing comparison with optical measurements. As can be seen in
the figure, the loss function calculated without spin-orbit splitting significantly deviates
from both experimental curves. In particular, the first peak in the calculated curve
is located at 1.5 eV, i.e. at a notably lower energy in comparison with experiment.
Other broad peaks centered at energies of 2.35 eV and 3.4 eV, are also located at lower
energies. Only full inclusion of the SOC effects in the band structure leads to a fairly
good agreement in energy positions of all three features in this energy range with the
experimental ones, specially with the measurements carried out at 140 K. Also our
data with full inclusion of the SOC-induced splittings and two-component spinors are
in good agreement with other ab initio calculation [GAD10].

The strong increase of intensity of the interband peak at ∼1.65 eV in the fully
relativistic energy-loss function can be explained by the fact that, as seen in the up-
per panel of Fig. 6.2, the real part of the dielectric function reaches zero at fairly
the same energy due to sharp increase in the corresponding imaginary part of the di-
electric function at slightly higher energies. It seems in our calculation this effect is
more pronounced than in the calculation of Glantsching and Ambrosch-Draxl [GAD10].
Nevertheless, the evaluated loss functions in both calculations are rather similar in this
energy range. Only little difference can be observed at larger energies, where the loss
function calculated in Ref. [GAD10] is slightly larger than the one evaluated here. This
is explained by the larger imaginary part of the dielectric function on our calculation
in the 1.7-2.7 eV energy region.

From the present analysis we can conclude that the experimental optical data reflect
clear SOC effects. In order to get further insight in the way the spin-orbit interaction
affects the energy-loss of bulk Pb in the optical range, in Fig. 6.3 we present the
comparison of the results of the present study for the optical energy-loss function with
experimental data obtained at T = 140 K (solid black line) and room temperature
(dashed black curve), as published in Ref. [GMPM71]. Comparing the red and green
curves the significance of including the two-component spinors in the calculation can
be seen. By using the true two-component spinors states, the first dominating peak
is slightly blueshifted and, most importantly, the intensity of the energy-loss spectrum
for energies ω & 2 eV is considerably increased. Both changes visibly improve the
agreement with the experimental data measured at T=140 K.

The effects of the inclusion of the spinors on the optics we have demonstrated here
is in agreement with the analysis carried out in Section 5.2.1, where it was shown that
SOC affects the overlap between different p states (the ones involved in the present
energy transfer range), and consequently it should influence the interband transitions
which dominate the optical properties (q → 0).
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Figure 6.2: (Upper panel) Imaginary (dashed lines) and real (solid lines) parts of dielectric function
obtained in the RPA calculations at q=0.014 a.u. along the Γ-X direction. In the lower panel
corresponding energy-loss function evaluated with (solid lines) and without (dotted lines) inclusion
of the LFEs is shown. Thick (thin) lines present results obtained with (without) inclusion of spin-
orbit splitting. Experimental data for loss function from Ref. [GMPM71] measured at 140 K and
room temperature are shown by thin green dashed-dotted and violet dashed-dashed-dotted-dotted
lines, respectively. Thin long-dashed line in the upper panel shows the measured imaginary part
of dielectric function [CLPR73]. Filled triangles, diamonds, and circles present corresponding data
obtained in first-principles calculations of Glantschnig and Ambrosch-Draxl [SMWRLdB09,GAD10].
Filled squares show the energy-loss function obtained in the REELS experiment [SMWRLdB09].
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Figure 6.3: Comparison of the results of the present study for the optical energy-loss function with
experimental data obtained at T = 140 K (solid black line) and room temperature (dashed black
curve), as published in Ref. [GMPM71]. The blue line represents the results calculated at the scalar-
relativistic level. The red line shows the energy-loss function obtained including the SOC-induced
splittings in the band structure while using the scalar-relativistic wave functions. The green curve
represents the results obtained with full SOC inclusion.

Note that in the experimental data of Ref. [GMPM71] the two first lowest energy
peaks are barely visible in the room temperature loss spectra and significantly more
pronounced in the measurements performed at T=140 K. This is in agreement with
the fact that Pb presents a strong electron-phonon coupling, which modifies the one-
electron energy levels with increasing temperature. Hence, one can expect that in
measurements performed at even lower temperatures, the first interband peak might
increase its intensity, decrease its width and downshift in energy, in such a way im-
proving agreement with calculations.

On the other hand, comparison of the calculated data with the recently measured
data obtained in reflection electron energy-loss spectroscopy (REELS) [SMWRLdB09]
reveals only a broad weak peak around 2 eV in the experimental spectrum and presents
significant underestimation in intensity of the whole spectrum. These might be a con-
sequence that this REELS experiment setup might have insufficient resolution in this
low-energy range, being apparently more suitable at higher energies [SMWRLdB09].

6.4 General results

In Figs. 6.4-6.6 the energy-loss function, Im[ε−1(q, ω)], calculated using the RPA ap-
proximation for the exchange-correlation kernel (see Section 3.2.2) and with full incor-
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Figure 6.4: Calculated energy-loss function of bulk Pb versus energy ω and momentum transfer q
along the Γ-X symmetry direction. Results are obtained with full inclusion of the SOC and the
RPA kernel and (a) with and (b) without inclusion of the LFEs. Thick yellow dashed lines highlight
dispersion of the plasmon modes. Thin white dashed lines show peaks corresponding to strongly
damped modes. Vertical white lines mark positions of the X point and the Γ point in the subsequent
BZ.
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Figure 6.5: Calculated energy-loss function of bulk Pb versus energy ω and momentum transfer q
along the Γ-K symmetry direction. Results are obtained with full inclusion of the SOC and the
RPA kernel and (a) with and (b) without inclusion of the LFEs. Thick yellow dashed lines highlight
dispersion of the plasmon modes. Thin white dashed lines show peaks corresponding to strongly
damped modes. Vertical white lines mark positions of the K point and the X, K, and Γ points in
the subsequent BZs.
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Figure 6.6: Calculated energy-loss function of bulk Pb versus energy ω and momentum transfer q
along the Γ-L symmetry direction. Results are obtained with inclusion of the SOC and the RPA
kernel and (a) with and (b) without inclusion of the LFEs. Thick yellow dashed lines highlight
dispersion of the plasmon modes. Thin white dashed lines show peaks corresponding to strongly
damped modes. Vertical white lines mark positions of the L point and the Γ and L points in the
subsequent BZs.
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Figure 6.7: Energy-loss
function derived from the
Lindhard dielectric func-
tion (see Appendix E) for
the valence electron den-
sity of Pb, rPb

s = 2.298.
Plot for approximately the
same (ω, q) range and
colour code as Figs. 6.4-
6.6.

poration of the SOC, is presented as a function of energy transfer ω and the momentum
transfer q along three main high-symmetry directions, both including and neglecting
the LFEs (see Section 3.3.3). In these figures, at small q’s one can observe several peaks
in the energy range below the prominent broad peak structure presented at energies
above ∼ 6.5 eV (which coincides with the energy threshold for interband transitions
from the occupied s and unoccupied d states to the p states around the Fermi level).
This is in accordance with the DOS depicted in Fig. 5.4, with two prominent peaks
raising at energies |ε−EF | & 6 eV. Thus, at small q momentum transfer the structure
of the DOS is reflected in the energy-loss function through interband transitions.

In Figs. 6.4-6.6 one can see how the peaks in the loss function strongly disperse
upwards upon increase of momentum transfer values in all three directions. Thus
the dominating 1.65 eV peak (marked by a thick yellow dashed line in Figs. 6.4-6.6)
increases its energy up to ∼ 7.5 eV at q = 0.5 a.u. along the Γ-K direction. The other
weaker 2.35 eV (only with q along Γ-X) and 3.7 eV peaks (marked by thin white dashed
lines in Figs. 6.4-6.6) disperse almost in a parallel fashion up to energies above 6 eV
where they enter the manifold corresponding to s-p interband transitions and can be
resolved as separate features up to ω = 8 eV for q in the Γ-X and Γ-K directions. On
the other hand, along the Γ-L direction the 1.65 eV possesses much less dispersion and
quickly disappears at ω = 2.1 eV. On the contrary, the upper-energy peaks disperse up
to 5.5 eV where they merge each other and a much stronger peak continue dispersion
up to energies above 6 eV. Starting from q = 0.6 a.u. the dispersion of this peak turns
from positive to negative and it can be clearly resolved up to q ∼ 1 a.u.

Note the highly anisotropic character of the dielectric response of bulk Pb, with the
energy-loss function presenting a qualitatively different structure for the momentum
transfer in the Γ-K high-symmetry direction in the ω . 3 eV energy transfer range (see
also Section 7.4). The anisotropy of Im[ε−1] can be readily checked below in Fig. 6.10.
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Figure 6.8: Calculated energy-loss
function at some fixed momentum
transfers q’s as a function of energy.
Calculations were performed with full
inclusion of the SOC in the bandstruc-
ture and at the RPA level. Solid
(dashed) lines are obtained with (with-
out) inclusion of LFEs. The data at q’s
along Γ-X, Γ-K, and Γ-L symmetry di-
rections are presented in (a), (b), and
(c), respectively.

In order to further clarify the key role of the band structure in the density response of
bulk lead, in Fig. 6.7 the energy-loss function of a FEG presenting the bulk lead valence
electron density is plotted for approximately the same (ω, q) range and colour code as
Figs. 6.4-6.6. As readily seen, the FEG model gives a completely wrong picture in
which the interband transitions are missing (no optics). There is no dispersing feature
in Fig. 6.7 and the complex and anisotropic character of the energy-loss function shown
in Figs. 6.4-6.6 is entirely absent. Notice also the absence of any acoustic mode (see
Section 6.6).

Below we present a systematic analysis of the effect of the main physical ingredients
like LFEs and xc effects on the low-energy electronic collective excitations in bulk Pb.

6.4.1 Local-field effects

From comparison of the upper and lower panels in Figs. 6.4-6.6 one can deduce that the
LFEs affect the calculated dielectric properties rather weakly. From Figs. 6.2 and 6.8
it is seen that this effect is barely visible at small momentum transfers. Along the Γ-X,
Γ-K and Γ-L directions the main result of the LFEs in the formation of the excitation
spectra in Pb is some distortion of the intensity of the aforementioned peaks at the
finite momentum transfers. At energies above ω ∼ 6 eV the LFEs produce significant
increases in the intensity of the dominant peaks.
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Additionally the LFEs produce an upward shift in energy of all the features. How-
ever the effect is not very pronounced and in general do not exceed several tenths of
eV. Thus in Fig. 6.8 one can see that the major upward shift about 0.3-0.4 eV occurs
in the case of the ∼ 6 eV feature at intermediate momentum transfers along the Γ-L
direction.

Another consequence of inclusion of the LFEs is the transmission of the 1.65 eV
peak at small q’s to momentum transfers close to q = 2π/a = 1.35 a.u. in the Γ-X
direction. At momentum transfers close to this q one can see how the intensity of
the loss function at ω ≈ 1.65 eV notably increases when the LFEs are included. At
q = 1.23 a.u. the corresponding increasing in the loss function at ω ≈ 2.25 eV due to
LFEs can be seen in Fig. 6.8(a). Also some increase in the loss function caused by the
LFEs due to the ω = 1.65 eV mode can be detected in the vicinity of q = 1.16 a.u.
along the Γ-L direction. The example of this enhancement can be seen in Fig. 6.8(c),
where a broad feature in the loss function appears at energies around 1.6 eV at q = 1.04
a.u. when the LFEs are taken into account.

However, in general, the impact of the LFEs on the loss spectra in Pb, being quite
notable at certain energies, is not so strong as in other systems like in MgB2 [MSB-
MEVC09] and compressed lithium [ERPR+10]. This signals about a less inhomogeneity
in the valence charge density in Pb in comparison with these systems, as expected.

6.4.2 xc kernel

In Fig. 6.9, the calculated energy-loss function for several values of q belonging to the
three different high-symmetry directions is plotted, where comparison between results
obtained with the RPA and the TDLDA kernels is made. As can be seen in the figure,
the main effect of the TDLDA with respect to the RPA is the increase of the intensity
of the calculated Im [ε−1(q, ω)], but without qualitative changes in its shape. The
most significant change is seen in Fig. 6.9(c) at energies between 6 and 7 eV in the Γ-L
direction, where the dominant interband peak is downward shifted in energy by ∼0.1
eV upon inclusion of the xc effects at the TDLDA level.

6.5 SOC effects

Full inclusion of the SOC in the ground state affects the dielectric response of bulk
Pb in an anisotropic way. In all three high-symmetry directions the SOC lowers the
intensity of the broad feature located at energies above 6 eV at momentum transfer
q . 0.2 a.u. As was previously discussed, inclusion of the SOC in the calculation of
the energy-loss function has sizeable effects at small momentum transfers at energies
of 1.65 eV, 2.35 eV, and 3.7 eV. The impact of the SOC on the excitation spectra can
also be observed in Fig. 6.11. At q = 0.11 a.u. along the Γ-X the appearance of the
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Figure 6.9: Solid lines represent the
same as in Fig. 6.8, while the dashed
lines show the energy-loss function
evaluated at the corresponding q’s at
the TDLDA level, also with full inclu-
sion of SOC and LFE.

clear peak at 2.15 eV and two broad peaks at ω = 4.0 eV and ω = 5.2 eV caused
by the SOC can be noticed. At larger q’s the effect is smaller and consist mainly in
the upward shift of the existing peaks. The same trend is observed in the Γ-K and
Γ-L directions as well, although with less impact at intermediate and large momentum
transfers. Additionally, In Fig. 6.11 one can detect that at small q’s in the low-energy
region the inclusion of the SOC leads to appearance of a pronounced peak. Thus at
q = 0.11 a.u. along the Γ-X direction it is located at ω = 1 eV, whereas at q = 0.12
a. u. the corresponding peak it is present at ω = 1.15 eV and ω = 1.6 eV along the
Γ-K and Γ-L directions, respectively. The dispersion of these peaks is highlighted in
Figs. 6.4-6.6 and discussed in the next section.

Another question is how important the inclusion of the two-component spinors is
in the calculations of the dielectric properties of bulk lead. That is, which is the effect
of using Eq. (3.20) instead of Eq. (3.32) once the energy spectrum has been evaluated
with the SOC included. To clarify this point we plot in Fig. 6.10 the results obtained
in the present thesis for the energy-loss function of bulk Pb up to 8 eV energy transfer
and with the momentum transfer in three high-symmetry directions (all data calculated
with LFE and TDLDA kernel inclusion). Three different levels of SOC inclusion are
shown. Comparing the central and lower rows we conclude that the inclusion of the
two-component spinors in the calculations leaves Im[ε−1] qualitatively unchanged, with
only small quantitative effects for the big-momentum transfer range in Γ-X and Γ-L.
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Figure 6.10: Comparison of the bulk Pb energy-loss function obtained up to 8 eV energy transfer
and with the momentum transfer in three high-symmetry directions (all data calculated with LFE
and TDLDA kernel inclusion). Three different levels of SOC inclusion are shown. Concerning the
orange square in the central panel, see Section 6.6.
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Figure 6.11: Solid lines represent the
same as in Fig. 6.8, while the dashed
lines show the energy-loss function
evaluated at the corresponding q’s
without inclusion of SOC, also at the
RPA level and incorporating the LFE.

6.6 Acoustic-like excitations

In the “low momentum–low energy” region of Figs. 6.4-6.6 the calculated loss function
presents several peaks dispersing almost linearly with momentum, i.e, with vanishing
energy transfer at vanishing momentum transfer. Upon momentum transfer increase
these peaks can be traced up to an energy of about 2 eV in Γ-K and Γ-L, and up to even
higher energy in Γ-X. The number of such peaks depend on the direction, being two in
the case of Γ-X, one in Γ-K, and three along Γ-L (in the scale of Figs. 6.4-6.6). To study
in more detail the origin of these modes characterized by an acoustic-like dispersion,
in Figs. 6.12-6.14 we report the calculated dielectric and energy-loss functions at small
momentum transfers in all three directions. The red, blue, black and green curves
correspond to the results obtained at the scalar-relativistic level, including the SOC-
induced energy splittings, with full inclusion of the SOC and to the Lindhard dielectric
function for rPb

s = 2.298, respectively. All curves were obtained for q ' 0.027 and with
inclusion of LFE and the TDLDA kernel, even though these two physical ingredients
were found to affect negligibly the results in all cases.

In Fig. 6.12 one can observe three clear peaks in the loss function, whose shape and
intensity depends on wheter SOC is included or excluded from the calcution. From
the analysis of the real part of the dielectric function we conclude that neither of these
peaks can be considered as a true plasmon mode as the real part of ε does not cross
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Figure 6.12: Calculated dielectric and energy-loss functions for q ' 0.027 a.u. in the Γ-X direction.
Red, blue, black and green curves correspond to the results obtained at the scalar-relativistic level,
including the SOC-induced energy splittings, with full inclusion of the SOC and to the Lindhard
dielectric function for rPb

s = 2.298, respectively. In the upper panel the solid (dashed) lines stand
for the real (imaginary) part of ε.



6.6 Acoustic-like excitations 71

Figure 6.13: Same as Fig. 6.12 but for q in the Γ-K direction.

zero at the corresponding energies. The only zero-crossing in Re[ε] occurs at 0.32 eV
close to the energy where Im[ε] has a maximum. As a result, at this energy the loss
function presents a local minimum. Therefore this zero-crossing must be considered
as a conventional Landau-overdamped mode which can not be realized [PN66]. At
the same time inspection of Fig. 6.12 shows that the peaks present in the energy-
loss function are located at energies where the Im[ε] possesses local minima. Hence,
despite rather large values of the Re[ε] at corresponding energies these peaks can be
considered as heavily damped acoustic plasmons. Compare with FEG model, where a
zero-crossing of Re[ε] does not produce any peak in the loss function due to the peak
in Im[ε].

The presence of peaks in the loss function is explained by the presence of a similar
number of peaks in Im[ε]. These peaks are due to intraband excitations within the
energy bands crossing the Fermi level. Although all these bands are of the same p-like
character, their dispersion with different Fermi-velocity components in this symmetry
direction is reflected in the presence of several peaks in Im[ε].

Concerning the Γ-K direction, the loss function presented in Fig. 6.13 shows a broad
main peak which is centered at ∼0.35 eV when SOC is included in the calculations.
Moreover, one can see that Re[ε] is rather small at that energy and even crosses zero
at 0.30 eV with positive slope, when SOC is included in the calculations. This signals
that this peak corresponds to a true plasmon mode, although severely damped due to
decay into electron-hole pairs. The presence of this peak in Im[ε−1] can be explained
by the presence of two clear main peaks in Im[ε] at 0.26 eV and 0.40 eV, again when
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Figure 6.14: Same as Fig. 6.12 but for q in the Γ-K direction. Note the results obtained with full
inclusion of SOC are missing (see text).

SOC is included in the calculations. This makes the real part of the dielectric function
cross zero three times, the second one with positive slope leading to the appearance of
the peak in the loss function. Again, as in the Γ-X direction, in the scalar-relativistic
case all the peaks in Im[ε] and Im[ε−1] are located at higher energies.

At momentum transfers along the Γ-L direction the number of peaks in the loss
function is maximal. As an example, in Fig. 6.14 one can detect up to three peaks
in Im[ε−1] at energies of 0.30 eV, 0.39 eV, and 0.53 eV. Their dispersion is shown in
Fig. 6.6. The presence of such large number of peaks in Im[ε−1] can be again explained
by a large number of peaks in Im[ε] seen in Fig. 6.14 (up to five). However, neither of
this peak leads to an additional zero-crossing in Re[ε]. For this reason, al these peaks
are can be considered as heavily damped plasmonic mode. Similar to what occurs in
other symmetry directions the effect of inclusion of SOC is limited to the downward
shift of these modes without qualitative changes. Note the results retrieved with full
inclusion of SOC are missing in Fig. 6.14 as a consequence of the mismatch of the
different momentum transfer meshes used at the different levels of SOC inclusion (see
Section 6.2). However, based on the results obtained for Γ-X and Γ-K (compare blue
and black lines in Figs.6.12 and 6.13) no change upon inclusion of the two-component
spinors is expected.

In the calculation at the scalar-relativistic level we obtain that the upper border
for the intraband e-h transitions is located at the higher energies than when SOC is
included. This is explained by modifications in the energy bands around the Fermi
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surface. The main effect of the inclusion of SOC is the flattening of the band dis-
persion accompanying the opening energy gaps seen in Fig. 6.1. Consequently, this
causes modifications of intraband excitations reflected in the integrated form through
Eq. (3.20) in Im[ε]. Regarding the shape of the acoustic-like dispersing modes, SOC
only slighlty affects ε for q in Γ-X, where it gives rise to a new peak (which is located
at ω ' 0.27 eV in Fig. 6.12).

Notice from Figs. 6.12-6.13 that inclusion of the two-component spinors leaves the
results unaffected with respesct to only correcting the band energies by the SOC split-
tings (in Fig. 6.14 the data obtained with full inclusion of SOC are missing because of
unmatched |q| values of the different momentum transfer grids use, see Section 6.2).
Note that the analysis of the SOC effects on the KS states carried in Section 5.2.1,
where it was concluded that the contribution of a KS state to the electron density in
bulk Pb remains the same upon SOC inclusion, pointed in the same direction.

6.6.1 Group velocities: comparison with vF

Concerning the group velocities vg of the acoustic modes, the values are dependent on
the momentum transfer direction as readily seen from the slopes of the corresponding
lines in Figs. 6.4-6.6, thus showing anisotropy as a result of band structure effects.
More precisely, the group velocities present values of 0.33 and 0.41 a.u. in the Γ-X
direction, 0.41 a.u. in Γ-K, and 0.40, 0.51 and 0.71 a.u. in Γ-L. The velocity atomic
unit is 2.1877×106 m/s. All the reported velocities are lower than the Fermi velocity
derived from the FEG model [WADM76] of vFEG

F = 0.84 a.u. On the other hand, all
the estimated vg are higher than the experimental value of vexp

F = 0.23 a.u. [BRS61]
obtained in skin depth measurements.

Note the estimated group velocities of the acoustic modes can not be simply assigned
to the Fermi velocities of the bands crossing the Fermi surface on a fixed reciprocal
space point in the calculated band structure. As an example, comparison of the above
reported values of vg with the Fermi velocities of the bands in the high-symmetry
directions (see Fig. 6.1) of 0.60 a.u. (Γ-X), 0.47 and 0.54 a.u. (Γ-K) and 0.84 a.u. (Γ-
L) shows clear deviations between the calculated vF and vg values. In all cases vF > vg.
This is as expected, since collective electronic excitations can not be built faster than
the velocity of the individual electrons. Thus, in each q direction, the maximum vF

can be seen as the upper bound for the group velocities of the acoustic modes.

Notice that the modified Gaussian used to model the Dirac delta which ensures
energy conservation in Eq. 3.19 (see Appendix D) affects negligibly the group velocities
reported here, as the acoustic modes preserve their character up to energies ∼ 2 eV.

As a conclusion, let us emphasize the relevance of the acoustic modes present in the
results of our calculations. In Figs. 6.4-6.6 comparing our first-principles energy-loss
function with the one derived from the Lindhard dielectric function, it is readily seen
that the accurate inclusion of the band structure provides to the FEG structureless
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Figure 6.15: Comparison of
the energy-loss function for the
acoustic dispersing peaks for
a momentum transfer of q =
|q| ' 0.027 a.u. in all three
high-symmetry directions, to-
gether with the loss function
derived from the Lindhard di-
electric function (see Appendix
E) at the same q. First-
principles results are broadened
with a broadening parameter of
75 meV (see text).

intraband peak a complex shape. Some of the raising acoustic modes can be clearly
identified even after a 75 meV broadening is applied (see Fig. 6.15). Thus, we predict
that this modes exhibit a well defined dispersion relation, which is crucial as it shows
the collective nature of the acoustic plasmons. The fact that these features exhibit a
well defined energy for a given momentum transfer means they represent well defined
coherent oscillations of the electron density in bulk lead, even at ω → 0.

6.6.2 Possibility of detection in EELS experiments

In order to evaluate the possibility of experimental detection of the aforementioned
acoustic modes, in Fig. 6.15 a comparison of the energy-loss function for the acous-
tic dispersing peaks for a momentum transfer of q = |q| ' 0.027 a.u. in all three
high-symmetry directions, together with the loss function derived from the Lindhard
dielectric function (see Appendix E) at the same q. Also the acoustic-like plasmon
mode is shown for q in the second BZ in the Γ-K direction as a dashed red curve, cor-
responding to the peak marked by the orange square in the central panel of Fig. 6.10.
A Gaussian broadening has been applied to the first-principles results. The broad-
ening parameter was fixed as 75 meV corresponding to the experimentally measured
linewidth of quantum-well states in Pb(111) thin films [HBP+09] at T = 5 K. The
intensity of the acoustic mode peak is maximal in the Γ-L direction. However, from
Fig. 6.15 we conclude that the most suitable acoustic plasmon for experimental de-
tection corresponds to the peak dispersing in the second BZ in the Γ-K direction. It
presents the smaller linewidth once the broadening is applied, and more importantly it
is located in a (q, ω) range in which the energy-loss function presents vanishing values
except for the acoustic mode itself, getting isolated this way (see Figs. 6.10 and 6.15).
Note also that the presence of the factor q−2 in Eq. (3.38) makes weak features in the
low-momentum transfer range more difficult to be resolved in EELS experiments.
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However, an additional possibility of detecting an acoustic plasmon in bulk Pb is
suggested based on the general results obtained for the momentum transfer along the
Γ-X direction. As seen from Fig. 6.4, the fastest dispersing acoustic mode reaches an
energy of ∼5 eV at q ' 0.45 a.u., gradually increasing its intensity. Thus, once the
peak at ∼5 eV and q ' 0.45 a.u. would be detected, one could think of tracing back
its dispersion towards vanishing energy and momentum transfer values.

6.7 Summary

We have presented first-principles calculations of the low-energy (ω 68 eV) electronic
collective excitations in bulk Pb and studied in detail the effect of the main physical
ingredients involved, as well as the existence and character of acoustic-like modes.
Good agreement with available optical experimental data [GMPM71] is interpreted
as an evidence of remarkable SOC effects, also in agreement with other theoretical
works [SMWRLdB09,GAD10].

In general, strong anisotropic effects are found, results showing a distinct topology
of Im[ε−1

G,G(q, ω)] for q ∈ Γ-K. LFE and SOC have sizeable effects on the dielectric
screening of bulk Pb, showing an anisotropic behavior. For q vectors in the second
BZ, LFE on the energy-loss function are remarkable. Inclusion of exchange-correlation
effects through the TDLDA kernel increases the intensity of the energy-loss function
in the studied range, however without affecting its shape in a significant way.

Very-low energy modes with acoustic-like dispersions are found in all three studied
high-symmetry directions and are shown to be a consequence of band structure effects.
The character of these acoustic modes depends on the direction of q. The possibility
of experimental check of the existence of these acoustic modes by electron energy-loss
measurements seems feasible as these modes keep their character up to ω '2 eV. As
a result of a detailed analysis, the acoustic plasmon along Γ-K in the second BZ is
suggested as the most suitable for its experimental detection.
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Chapter 7

High energy dielectric response of
bulk Pb

7.1 Introduction: something is missing

In the present Chapter we report on the calculations of bulk Pb dielectric and energy-
loss functions obtained up to energy transfer values of 30 eV.

As seen in Fig. 7.1, a value higher the experimental one of the bulk plasmon en-
ergy for small momentum transfer is found at all levels of inclusion of the SOC. The
disagreement with the experimental data is independent of the xc kernel used and of
incorporation of LFE. As shown in Fig. 7.1, the values of ωp(q → 0) obtained is roughly
∼ 1.5 (∼ 2.5) eV higher than the EELS data of Ref. [JP60] (green thick line) when
SOC is excluded from (included in) the calculations. This seems surprising as Pb is a
simple elemental metal, whose experimental bulk plasmon frequency is well reproduced

Figure 7.1: Energy-loss function for
q → 0 calculated without inclu-
sion of the semicore electrons at the
scalar-relativistic level (red curve),
including the SOC-induced energy
splittings (blue curve) and with full
inclusion of SOC (black curve). The
vertical dashed line represents the
FEG plasmon energy of ωPb

p ' 13.5
eV, while green and brown thick
lines mark the EELS and optical
experimental data from Ref. [JP60]
and Ref. [MAWG73], respectively.

77
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Figure 7.2: Upper panel: opti-
cal (q = 0) dielectric and energy-
loss functions calculated by an
all-electron method at the scalar-
relativistic level. The orange el-
lipse marks the important transi-
tions missing in the results shown
in the lower panel. Lower panel:
the present results for the energy-
loss function with q → 0 with the
5d electrons in the core, also at
the scalar-relativistic level. All-
electron calculation courtesy of
Prof. Krasovskii.

by simply applying the expression ωp =
√

3r−3
s derived from classical electrodynam-

ics (see Section 3.4.1), which gives a value of ωPb
p ' 13.5 eV (dashed orange line in

Fig. 7.1).

Following the comparison of our results for q → 0 with all electron optical (q = 0)
calculations as shown in Fig. 7.2, the semicore 5d electrons (which have been included
in the core so far in this thesis) seem to be a necessary physical ingredient to be taken
into account when performing calculations of the main bulk Pb plasmon. Actually, in
reflectance measurements reported in Ref. [MAWG73], the authors found two peaks
in Im[ε] at 18.7 and 21.5 eV, assigning them to transitions from the 5d5/2 and 5d3/2

semicore levels to the Fermi surface.

Hence, we need to explicitly include the 5d electrons in the calculations through
their incorporation in the valence configuration. Its inclusion in the pseudopotentials
and the band structure is shown in the following Section.

7.2 Semicore electrons of Pb

As stated in Section 2.4, the difference between core and valence electrons is blurred
for several elements of the periodic table, and the number of the valence orbitals must
be increased in some cases, depending not only on the atomic species but also on the
precise physical property under consideration. As examples of elements whose semicore
electrons play an important role in their physical properties, let us cite the semicore
3d electrons of gallium which usually need to be treated using the so-called non-linear
core correction [GLFLC82], and the 3s and 3p electrons of titanium whose inclusion in
the valence electrons leads to a different theoretical crystal structure [ETJA12].
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Figure 7.3: Cartoon showing schematically the binding energy of the semicore 5d electrons of lead
in the atom, bulk and surface. The blue rectangle represents the 6s band in solid Pb, with a finite
bandwidth. For simplicity the bulk and surface Fermi levels are considered equal.

In Fig. 7.3 we show schematically the binding energy of the semicore 5d electrons of
atomic, bulk and surface lead. Note the big SOC splitting between the 5d5/2 and 5d3/2

levels. The upward shift of the binding energy of the 5d electrons when solid phases
are formed opens the possibility to find effects arising from the semicore 5d states in
the density-density response of lead on its different solid forms.

Thus, 5d electrons have been included in the valence configuration to perform the
dielectric response calculations of bulk Pb as reported in the present Chapter. The
first step in incorporating the semicore electrons in the calculations is to build new
NCP with the 5d electrons present in the valence configuration. To that purpose we
use the new valence configuration

5d3.33
3/2 5d6.66

5/2 6s1.50
1/2 6p0.42

1/2 6p0.83
3/2 5f 0.21

5/2 5f 0.29
7/2 (7.1)

which again is +0.76e− positively charged (see Section 5.1). In Fig. 7.4 the new ionic
and SOC NCP are shown (solid lines), together with the ones generated with the 5d
electrons in the core (dashed lines). As expected, the l = 2 ionic pseudopotential be-
comes now deeper, while the ones corresponding to other angular momentum channels
are also stronger than those in the previous case. The latter change is a consequence
of the orthogonality of the wave functions for different l. Nevertheless, only the cut-off
radius for l = 2 must be changed, and the new set of cut-off radii (see Sections 2.4 and
5.1) is rl

c = 1.60, 2.00, 1.00 and 3.50 a.u. for s, p, d and f electrons, respectively. Note
that in Fig. 7.4 the new SOC pseudopotentials for p and f electrons are indistinguish-
able from the ones retrieved when the 5d electrons were in the core, whereas V SOC

l=2 (r)
is clearly enhanced. This is as expected, as the more localized the electrons are, the
stronger the effect of the spin-orbit interaction is.
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Figure 7.4: Ionic
(upper panel) and
SOC (lower panel)
pseudopotentials used
when the 5d electrons
are included in (solid
lines) and excluded
(dashed lines) from the
valence configuration.

Figure 7.5: Calculated band structure of bulk lead, calculated with (red solid lines) and without
(black dashed lines) the SOC term in the Hamiltonian with inclusion of the 5d semicore electrons,
which are located at energies ε−EF < -15 eV. The horizontal dashed line represents the Fermi level
set to zero.
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Figure 7.6: Zoom of Fig. 7.5 over the energy range of the 5d bands.

The calculations of the electronic structure including the 5d electrons were carried
using a kinetic energy cut-off of 544 eV, which corresponds to the inclusion of ∼880
plane waves in the expansion of the KS states [see Eq. (2.18)] and satisfactory conver-
gence of the energy bands was found. In Fig. 7.5 the bulk Pb band structure calculated
with the semicore 5d electrons included is shown. First, notice that all the rest of the
bands remain unchanged with respect to the electronic structure obtained with the 5d
electrons in the core, both excluding and including the SOC (compare Figs. 5.3 and
7.4). Second, the semicore electrons appear as dispersionless bands, clearly showing
their highly localized character. Note however that, as shown in Fig. 7.6, zooming in
the appropiate energy range reveals some dispersing structure in the 5d bands.

The energies of the 5d bands obtained are located (with respect to the Fermi level)
at ∼ -17 eV at the scalar-relativistic level, while when SOC is included they are splitted
into the 5d5/2 and 5d3/2 levels with energies ∼ -15.6 and ∼ -18.1 eV. The electronic
structure of bulk Pb shown in Fig. 7.5 is in fairly good agreement with a recent theo-
retical study [JVTJ+08] in which the NCP-DFT theoretical framework was also used.
In particular, the semicore states in Ref. [JVTJ+08] present the same energies as the
reported ones in the present work.

Recently, the photoionization spectra of atomic and solid lead was measured [IPAA12]
and the 5d5/2 and 5d3/2 levels were found in the latter at energies (with respecto to EF )
of -17.93 and -20.58 eV, respectively. This is in clear disagreement with the present
results as shown in Fig. 7.5 by ∼ 2.4 eV. In order to check the calculated binding
energies of the semicore electrons, we performed the calculation of the band structure
using a completely different method, namely the KKR Green’s function method as
implemented in the HUTSEPOT code [Ern07]. The energies of the 5d bands obtained
are (with respect to the Fermi level) at ∼ -17.4 eV at the scalar-relativistic level, while
of ∼ -16.3 and ∼ -19.2 eV for the 5d5/2 and 5d3/2 levels respectively when SOC was
included. The results on the semicore energy levels obtained with the two different
theoretical approaches are in disagreement both with each other and with respect to
the photoionization data [IPAA12].
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Figure 7.7: Imaginary part
of the non-interacting sus-
ceptibility, Im[χ0(q, ω)].
Panel (a) shows the dif-
ferent domains of the e-h
continuum in a FEG (see
Appendix E). Panels (b)
and (c) show Im[χ0(q, ω)]
for momentum transfers
along the Γ−X direction
with full inclusion of SOC,
excluding [(b)] and includ-
ing [(c)] the semicore 5d
electrons. ω in eV and q
in a.u.

The reasons for the aforementioned disagreements are still unclear. The experi-
mental measurements were carried on a polycristalline sample and no structure char-
acterization was performed. However, the data obtained are in good agreement with
previous experimental works (see Table I in Ref. [IPAA12]). On the other hand, once
the 5d electrons are included in the dielectric response calculations, we retrieve results
in fairly good agreement with the all-electron optical scalar-relativistic calculations
shown in the upper panel of Fig. 7.2 (see below).

7.3 Computational parameters

When 5d electrons are included in the calculations of the dielectric and energy-loss func-
tions at the scalar-relativistic level [see Eq. (3.19)], a Monkhorst-Pack 144×144×144
grid of k vectors was used as the BZ sampling. The broadening of the modified Gaus-
sian modeling the energy conservation Dirac delta (see Appendix D) is fixed as 50 meV,
while the energy transfer mesh step is ∆ω = 40 meV.

For full SOC inclusion, a coarser 48×48×48 mesh was employed in evaluating
Eq. (3.32). The broadening of the modified Gaussian ensuring the energy conservation
is fixed as 150 meV, while the energy transfer mesh step is ∆ω = 20 meV.

In both cases up to 40 plane waves were employed in the expansion of the the
susceptibility and dielectric function matrices.
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Figure 7.8: Calculated imaginary part of the dielectric function for q → 0. Red (black) curve
represents the results with full SOC inclusion and the 5d electrons incorporated in (excluded from)
the valence electons. The green curve stands for Im[ε] obtained at the scalar-relativistic level and
taking the semicore electrons into account. The TDLDA kernel and LFE were included in all
three calculations. The blue curve stands for the Im[ε] retrieved from reflectance measurements as
reported in Ref. [MAWG73].

7.4 Semicore effects on the dielectric response

In Fig. 7.7 we compare the obtained imaginary part of the non-interacting susceptibility
evaluated excluding [panel (b)] and including [panel (c)] the 5d semicore electrons in
the valence configuration. Also, in panel (a) the different domains of the e-h continuum
in a FEG (see Appendix E) are depicted. As readily seen, Im[χ0(q, ω)] when the 5d
electrons are excluded from the valence ones shows a free-electron like behaviour and
the different domains sketched in panel (a) can be easily recognized. However, once the
semicore 5d electrons are included in the valence configuration, Im[χ0(q, ω)] is distorted
for energy tranfers ω & 15 eV, as seen in Fig. 7.7(c). Thus, upon inclusion of the 5d
electrons in the valence configuration, not only a lowering of the main bulk plasmon
energy ωp is expected (see Section 7.1), but also a non-free-electron like behaviour
of its dispersion induced by the transitions from the semicore to unoccupied states.
Nevertheless, as shown below, this deviation from a FEG-like response is less significant
when the calculations are carried at the scalar-relativistic level.

In order to check whether the inclusion of the semicore electrons in the calculations
leads to an agreement with the all-electron optical calculations shown in Fig. 7.2, in
Fig. 7.8 the imaginary part on the dielectric function is plotted. Red (black) curve
represents the results with full SOC inclusion and the 5d electrons incorporated in
(excluded from) the valence electrons, while the green curve stands for Im[ε] obtained
at the scalar-relativistic level and taking the semicore electrons into account. The
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Figure 7.9: Energy-loss function
evaluated (a) without and (b)
with inclusion of the semicore
5d states. Calculations were
performed taking into account
SOC, LFE and the TDLDA xc
kernel.

TDLDA kernel and LFE were included in all three calculations. Comparing the green
curve in Fig. 7.8 with the black one in the upper panel of Fig. 7.2, a fairly good
agreement is found.

Moreover, in Fig. 7.8 the imaginary part of the dielectric function as deduced from
reflectance measurements [MAWG73] is also shown as a blue curve. The position of
the broad peak between ∼17 and ∼24 eV in the experimental Im[ε] is in disagreement
with the present results when SOC is included, while presenting good agreement with
both the scalar-relativistic results (the present result for q → 0, and the all-electron
one for q = 0 as shown in the upper panel of Fig. 7.2).

Before analyzing in detail the general results on the high energy dielectric response
of bulk Pb, as an example of the lowering of the bulk plasmon energy by the inclusion of
the semicore electrons, we show in Fig. 7.9 the energy-loss function calculated without
(a) and with (b) inclusion of the semicore 5d states. Calculations were performed
taking into account SOC, LFE and the TDLDA xc kernel and with the momentum
transfer along the Γ−X direction. Incorporation of the semicore 5d electrons in the
calculations lowers the bulk Pb plasmon energy in the long wavelength limit by roughly
3 eV (see also Fig. 7.10). Notice it also shortens significantly the momentum transfer
range in which the plasmon is well defined. These remarkable effects of the semicore
inclusion on the bulk Pb dielectric response calculations are found independently of
the level of description of xc effects (RPA or TDLDA) and inclusion of LFE. Also, note
that the lowering of the long wavelength limit of the bulk plasmon energy ω(q → 0) is
slightly affected by exclusion of the SOC, as shown in Fig. 7.10.

As we show below, the interplay between the transitions involving the 5d electrons
and the SOC effects shapes the dielectric response of bulk Pb at energies ω & 8 eV,
strongly affecting the energy-loss function at high energy transfer values.
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Figure 7.10: Energy-loss function at
q → 0 calculated with SOC and semi-
core inclusion (red curve), with semi-
core inclusion at the scalar-relativistic
level (green curve), with SOC and no
semicore incorporated (black curve) and
at the scalar-relativistic level without
including the semicore electrons (blue
curve). All calculations were carried in-
cluding LFE and the TDLDA xc kernel.

7.5 General results: LFE and SOC effects

In Fig. 7.11 the general results are shown for the Im[ε−1
G=0,G’=0(q, ω)] surfaces obtained

with the 5d semicore electrons included in the valence configuration, at the momentum
transfer along the three reciprocal space high-symmetry directions studied. The right
column stands for the results obtained with full SOC and LFE inclusion, while SOC
(LFE) was excluded from the calculations corresponding to the left (middle) column.

As was demonstrated in Fig. 7.9, the incorporation of the semicore electrons in the
calculations of the dielectric response of bulk Pb leads to a completely different picture
of the energy-loss function. Instead of finding a broad bulk plasmon peak presenting
a full-width at half-maximum (FWHM) of roughly 4 eV and exhibiting a manifest
upwards dispersion, now it only slightly disperses while its linewidth is decreased to
∼ 1.5 eV (see Fig. 7.10). This strong effect of including the 5d electrons is found
independent of the direction of the momentum transfer and of inclusion of the SOC,
LFE or the TDLDA xc kernel. The latter plays a negligible role in the dielectric
response results obtained here and xc effects are not analyzed. Thus, all the results
reported in the present Chapter were obtained using the TDLDA xc kernel.

However, the spin-orbit interaction and the local-field effects still affect remarkably
the energy-loss function when the semicore is explicitly taken into account. First,
the presence of the large SOC-induced energy splitting of the 5d5/2 and 5d3/2 states
should sizeably influence the calculated dielectric response. Second, because LFE are
a consequence of the inhomogeneity of the electron density (see Section 3.3.3), when
highly localized states as the Pb semicore 5d states are present in the calculations LFE
are expected to give raise to substantial changes, specially in the energy transfer range
corresponding to transitions stemming from the localized electronic states.

In fact, as seen in Fig. 7.11, both SOC and LFE considerably affect the calculated
Im[ε−1

G=0,G’=0(q, ω)] of bulk Pb once the 5d electrons are included in the valence con-
figuration. Thus, ignoring the LFE (compare the left and middle columns in Fig. 7.11)
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SOC and LFE included SOC included, no LFE No SOC, LFE included 

A

B

Figure 7.11: Energy-loss function obtained once the semicore electrons are included in the valence
configuration. The upper, middle and bottom rows correspond to the results with q along Γ−X,
Γ−K and Γ−L, respectively. High-symmetry points are marked by thin white lines and labeled.
The right column stands for the Im[ε−1

G=0,G’=0(q, ω)] retrieved with full SOC and LFE inclusion,
whereas SOC (LFE) was excluded from the calculations corresponding to the left (middle) column.
See the text for the meaning of the symbols in panels (g) and (i). ω in eV and q in a.u.
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Figure 7.12: Energy-loss function at
three different values of q along Γ−L.
Black solid, red dashed and green
dashed-dotted curves stand for the
results obtained with full SOC and
LFE inclusion, excluding SOC, and
ignoring LFE, respectively. The ver-
tical shaded green intervals in (a)
represent the experimental electron
energy-loss data of Ref. [JP60], while
the brown ones stand for the re-
flectance measurements results as re-
ported in Ref. [MAWG73].

results in a spectral weight transfer from the bulk plasmon at ω ' 12− 13 eV [labeled
by the letter A in panel (g) of Fig. 7.11] to the broad peak formed by transitions from
the 5d electrons to the lowest unoccupied states [labeled by the letter B in panel (g) of
Fig. 7.11] occupying an energy transfer range of ∼ 5 eV (19 . ω . 24 eV). Thus exclu-
sion of the LFE decreases the bulk plasmon intensity. Also, ignoring LFE weakens the
strongly upwards dispersing feature [signaled by the red arrow in panel (i) of Fig. 7.11]
which connects the final stages of the bulk plasmon dispersion at q ' 0.4 a.u. with the
high-energy peak involving transitions from the 5d semicore states. This connection
actually follows the border of the intraband e-h continuum (see also Fig. 7.13 below)
represented by the left parabola in panel (a) of Fig. 7.7. The mentioned LFE effects
are readily seen by comparing the black solid and green dashed-dotted lines in panel
(a) of Fig. 7.12.

On the other hand, comparing the right and left columns of Fig. 7.11, it is found
that full SOC inclusion in the evaluation of the energy-loss function leads to an in-
creased intensity of high-energy peak related to the semicore presence (compare also
the green and red curves in Fig. 7.10). More importantly, SOC shortens the momentum
transfer range in which the bulk plasmon is well-defined, smearing its intensity in the
0.35 . q . 0.5 a.u. range. This strong SOC effect is clearly observed in the cut of
Im[ε−1

G=0,G’=0(q, ω)] plotted in Fig. 7.12 (b) where the bulk plasmon peak is still well-
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defined in the scalar-relativistic results. Also, inclusion of the SOC leads to a smaller
bulk plasmon linewidth by 0.5 eV, as seen in Fig. 7.10.

7.5.1 Comparison with experimental results

In Fig. 7.12 (a) the vertical thick green lines mark the peak positions in experimental
electron energy-loss data of Ref. [JP60], while the brown ones stand for the reflectance
measurements results as reported in Ref. [MAWG73]. The explicit semicore inclusion
in the calculations gives a value of ωp(q → 0) = 12.3 eV, close to the reflectance peak
reported at 12.7±0.2 eV [MAWG73]. On the other hand, comparison with the EELS
value of 13.9±0.2 eV is unsatisfactory.

The situation at higher energy transfer values is different. As seen in Fig. 7.12 (a),
two peaks at 18.7 and 21.5 eV where found in the reflectance measurements [MAWG73],
while a broad peak was detected in Ref. [JP60] centered at 23.3 eV. Close inspection
of the black curve in Fig. 7.12 (a) reveals a small peak at 23.9 eV (and a second one
at 26 eV) which is in good agreement with the broad feature in the reported EELS
measurements, while no peaks corresponding to the measured ones in Ref. [MAWG73]
at 18.7 and 21.5 eV are found in our calculations.

The disceprancy between the two different experimental techniques prevents from
getting a clear conclusion. However, the reflectance experiments probe the optical (q
= 0) dielectric function. On the contrary, EELS experiments carried out 50 years
ago probably presented a finite unknown range of momentum transfer of the probe
electrons, resulting in peaks averaged over a appreciable momentum transfer range.

As a conclusion, new EELS experiments probing the energy-loss function of bulk
Pb at high energy transfers are highly desirable, as they could shed light on the precise
role played by the localized polarizable 5d electrons, as well as on the SOC effects.

7.5.2 Anisotropy

In order to analyze possible anisotropy effects arising from the real atomic structure, in
Fig. 7.13 the bulk Pb imaginary part of the non-interacting susceptibility [(a)-(c)] and
the corresponding energy-loss function [(d)-(f)] are shown up to 30 eV energy transfer
values, with q along Γ−X [(a) and (d)], Γ−K [(b) and (e)] and Γ−L [(c) and (f)].
Calculations were performed with full inclusion of the 5d, SOC, LFE and the TDLDA
xc kernel.

Analyzing the energy-loss function and its dependence on the direction of q in
light of the corresponding non-interacting susceptibility helps clarifying several aspects.
First note the appearance in Im[χ0(q, ω)] of the two thresholds for transitions from the
strongly SOC-splitted 5d5/2 and 5d3/2 states to the Fermi surface, as marked by arrows
in panels (a)-(c) of Fig. 7.13.
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Figure 7.13: Comparison of the imaginary part of the non-interacting susceptibility of bulk Pb [(a)-
(c)] and the corresponding energy-loss function [(d)-(f)] shown up to 30 eV energy transfer values,
with q along Γ−X [(a) and (d)], Γ−K [(b) and (e)] and Γ−L [(c) and (f)]. Calculations were carried
with full inclusion of the 5d electrons, and of SOC, LFE and the TDLDA xc kernel in the energy-loss
evaluation. White short arrows point to the onset of the transitions from the semicore electrons to
the Fermi surface. See the text for the meaning of the black dashed curves and long black arrows.



90 High energy dielectric response of bulk Pb

Moreover, from Fig. 7.13 it is clear that anisotropy effects are present in the energy-
loss function of bulk Pb at finite momentum transfer. Comparison with the correspond-
ing non-interacting susceptibility sheds light on this issue, showing that anisotropy
effects originate from the distinct shapes of the e-h continuum. In the Im[χ0(q, ω)]
results shown in Fig. 7.13, black dashed lines highlight the border betwen different
(q, ω) regions on the non-interacting susceptibility in analogy with the clearly defined
domains on its FEG counterpart [see Fig. 7.7 (a) and Appendix E]. One can appreciate
a different topology of the e-h continuum in Γ−K. Focusing on the black dashed lines
on (a)-(c), one concludes that the different character of Im[χ0(q, ω)] in Γ−K stems from
the distinct size of the e-h continuum region delimited by the black dashed line, which
is proportional to the reciprocal space distance between the center of two subsequent
BZs. Note that for q vectors along Γ−K, the region delimited by the black dashed line
is enlarged up to values of ω corresponding to the lower threshold for transitions from
the semicore states. This anisotropic character of Im[χ0(q, ω)] was already detected in
the low-energy results reported in Chapter 6.

Thus, the manner in which the main bulk plasmon decays into electron-hole pairs
when entering the region of the e-h continuum in which intraband transitions are
allowed is dependent on the direction of the momentum transfer q. As a result, only
for q along Γ−K well-defined peaks are present beyond the first BZ limit in the energy
transfer range 10 . ω . 14 eV. These features directly reflect the existence of analogous
peaks showing exactly the same dispersion in the imaginary part of the non-interacting
susceptibility [see Fig. 7.13 (b)]. Thus, in spite of presenting an energy close to the one
corresponding to the main bulk plasmon, both peaks present a strong single-particle-
like character.

7.6 Summary

Semicore electrons are found to play a crucial role in the high-energy dielectric proper-
ties of bulk Pb, strongly affecting the dynamics of the main bulk plasmon by redshifting
its energy at q → 0 by ∼ 3 eV and producing the appearance of a broad peak at higher
energies. The latter reflects the plasma losses due to transitions between the strongly
SOC-splitted 5d5/2 and 5d3/2 states to the Fermi surface.

Once the 5d electrons are explicitly incorporated to the dielectric response calcu-
lations, the energy-loss function is shaped by the interplay between LFE and SOC
effects. Inclusion of the SOC shortens the momentum transfer range in which the bulk
plasmon is well-defined, while enhancing the high-energy broad peak. On the other
hand, a spectral weight transfer from the high-energy broad feature to the main bulk
plasmon due to LFE has been found.

Anisotropy effects are understood in terms of the different shapes of the electron-
hole continuum depending on the momentum transfer direction, showing that the dif-
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ferent sizes of the reciprocal space paths between subsequent BZ centers are the origin
of the anisotropy effects found in the dielectric response of bulk Pb.

Comparison with reflectance measurements [MAWG73] shows good agreement with
the calculated bulk plasmon energy ωp once the semicore has been incorporated in the
evaluation of the energy-loss function, while no agreement has been found with the ωp

obtained in electron energy-loss measurements as reported in Ref. [JP60]. However, on
the latter experimental work a broad feature centered at 23.3 eV was found, which is
in fairly good agreement with our results.

Finally, one could think on using a model dielectric function εd to include the
semicore effect without its explicit incorporation in the calculations, in the usually
known as s−d polarization model [Lie97]. This is based on the picture of the response of
free-like valence electrons embedded in a polarizable medium originated on the presence
of the semicore d electrons. However, the choice of εd is ambiguous and its use has
been discarded in this thesis.
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Chapter 8

Inelastic electron-electron damping
rate of excited quasiparticles in
bulk Pb

8.1 Introduction: summary of recent advances

In metals electron-electron inelastic scattering processes give rise to the main contribu-
tion to the damping rate of excited electrons (and holes) with energies &0.5 eV above
(below) the Fermi level. As for the dielectric response studies, for a long time the
basic knowledge for such kind of processes was based on FEG models [JQAF58,Noz62,
ANVC06] or convolution of density of states [RPAMG85,ZAME99,PZVC09]. Recently,
when the calculations from first-principles became to be computationally feasible, this
field has experienced profound modifications. Thus the first-principles calculations
[CMPR+99,SKBE99,KSE00,LHPAD04,VCGBPG+06,ANPZVC07,DMSPMS+11] have
shown that the inelastic lifetime of excited electrons indeed is a result of balance be-
tween localization, screening and band structure details, even in metals whose elec-
tronic structure is frequently considered as being a free-electron-like one [CMSMP+00,
ANYSMS+08].

In previous theoretical works a non-free-electron like behavior of damping rates in
Be [CMSMP+00, MSVCME03], the role of the screening of the d-electrons in inelas-
tic lifetimes on Cu [CMSMP+00, KSE00], transient exciton [ESK00, Sch03] and full
inclusion of xc effects [GGMPME04] as well as renormalization effects on quasiparti-
cle lifetimes in noble and transition paramagnetic [PZAVC+01, RBSKE02, Sch07] and
ferromagnetic metals [PZVCME04] and compounds [ANVC09, ANVC10] were stud-
ied by means of the GW approximation (see Chapter 4). Using the T-matrix the-
ory [LFDW71,DM90] the consequences of spin-flip processes on damping rates in mag-
netic materials were found to be significant for the spin-minority states [PZVCME04,
PZVCME05, BSPD+10]. In Ref. [PZAVCME02] good agreement was found between

93
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the inelastic lifetimes for excited electrons and holes in several metals evaluated within
the GW approximation and the semiempirical scattering-theory approach. Role of in-
clusion of the accurate quasiparticle band structure of Cu and Ag in the quasiparticle
lifetimes was also investigated [MDSRO02,YMR+10].

At the same time, in heavy elements an additional ingredient, namely the SOC
starts to be important in the description of the electronic structure. Well-known exam-
ples are the corresponding modifications in the band structures of Bi and Pb. However,
to the best of our knowledge, up to now the effect of the SOC on quasiparticle lifetimes
in real materials taking into account its band structure evaluated from first principles
has not been investigated. In this thesis, for the first time, inelastic lifetimes of excited
electrons and holes are studied in bulk lead by means of first-principle calculations,
analyzing in detail the band structure as well as SOC effects.

Recently thin films of Pb grown on different substrates have obtained great deal
of attention. The questions regarding growth, transport, magnetic, and superconduct-
ing properties of these systems have been considered. For instance, the confinement
effects on the superconducting transition temperature [GZB+04, EQCKS06, QKNS09,
BHP+09, ZCL+10] and quasiparticle decay rates [HBP+09, SKRZ+10] were studied.
Recent lifetime measurements by two-photon spectroscopy [SKRZ+10] for few mono-
layers thick Pb films deposited on a silicon substrate point out to the conservation of
the bulk-like behavior of decay processes in Pb even in the very thin slabs. Quasi-
particle inelastic lifetime in bulk Pb was investigated with a 2PPE photoemission in
Ref. [MRD+10]. In this material the absence of a momentum dependent anisotropy in
the derived lifetime of the excited electrons with energies in the 2.6-3.2 eV range was
observed. At the same time in a single monolayer of Pb on Cu(111), the strong depen-
dence of lifetime on the momentum was found [MRD+10]. Ultrafast electron dynamics
in unoccupied quantum well states (QWSs) in ultrathin Pb films on Si(111) has been
investigated by femtosecond-time-resolved 2PPE [MRD+10, SKB08]. Lifetime broad-
ening of QWSs has been measured by scanning tunneling spectroscopy in Pb films on
Ag(111) [BB10] and Cu(111) [MLBSLL+10]. Therefore detailed first principles investi-
gation of the inelastic decay rates of quasiparticles in bulk lead can serve as a reference
for existing and future experiments.

8.2 Computational details

The inelastic electron-electron damping rates were calculated through Eq. (4.22) using
a Monkhorst-Pack 24×24×24 grid of q wave vectors, for a total amount of 1504 q in
the IBZ. The evaluation of Eq. (3.19) was carried out using a finer 144×144×144 k
sampling with ≈ 32000 vectors in the IBZ. Also, 25 energy bands were included in
calculating χo, spaning energies up to 38 eV above the Fermi level. The broadening
parameter of the modified Gaussian (see Appendix D) replacing the energy conservation
Dirac delta was set to 10 meV. In the expansion of the dielectric matrices 40 plane
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waves have been considered. The sums over reciprocal vectors G and G′ in Eq. (4.22)
have been extended over 40 vectors.

The main convergence parameter in the calculation of the damping rates is the size
of the inverse dielectric matrices used in the evaluation of Eq. (4.22). The truncation
of Im[−ε−1

G,G′(q, ω)] has been found to affect the value of τ−1
i differently for each k. In

practice, the convergence of the damping rates with the size of the inverse dielectric
matrices is found to be monotonic, allowing an empirical estimation of the error in the
reported τ−1

i of ≈ 5% in the most pathological cases.

Comparing the central and lower lines of Fig. 6.10 we see that the inclusion of spinors
leaves the energy-loss function for 0 < ω < 8 eV almost unchanged with respect to
the results of the calculations including the SOC effects only through the corrected
energy bands. Therefore we do not expect that the replacement of the spinor wave
function by a scalar one should significantly modify the evaluated SOC damping rates.
Thus Eq. (4.25) is not used here and only the energy bands are SOC-corrected when
including the spin-orbit interaction in the calculations of the inelastic electron-electron
decay rate.

8.3 Results

In Fig. 8.1 the calculated distribution of the damping rates Γnk = τ−1
nk of hot electrons

and holes for all the values of band index n and wave vectors k - with k belonging to
the IBZ - used in the calculations, both using the scalar-relativistic energy spectrum
(black dots) and the one including the SOC in the band structure (red dots), are
presented. In addition, the results obtained using the Lindhard dielectric function (see
Appendix E) together with the ab initio scalar-relativistic wave functions and one-
particle energies are shown (blue dots). The orange line is the result for a FEG model,
i.e. when the band structure is described by a band with parabolic dispersion, the wave
functions are represented by plane-waves, and the Lindhard dielectric function is used
for the screening. In the inset of Fig. 8.1, the green curve represents the Quinn-Ferrel
result [JQAF58] for the damping rate for very low energy quasiparticles as given by
Eq. (4.13). In the following we shall refer to these five kinds of lifetime calculations as
SC, SO, LDF-SC, FEG, and QF ones, respectively.

There are three main features in the distribution of the damping rates in Fig. 8.1.
First, for -8 eV < ε < -6 eV the damping rates corresponding to the s-like holes are
presented. On the opposite side of the studied energy range, the values of Γnk for
excited electrons in the d-like bands appear for energies in the 5.5 eV < ε < 8 eV
interval. However the main feature of Fig. 8.1 is the parabolic-like distribution of the
damping rates for the p-like holes and electrons in bands crossing the Fermi level. The
linewidth data for the p states is separated from that for the s-like holes by the energy
gap of ≈ 2.5 eV presented in the Pb band structure, see Fig. 5.3.
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Figure 8.1: Calculated damping rate for excited quasiparticles (electrons and holes) in all the bands
and k points set over the irreducible part of the Brillouin zone. Red dots represent the values
calculated including the spin-orbit coupling in the band structure, the black dots represent the
purely scalar-relativistic (SC) results and the blue dots are the results obtained using the Lindhard
dielectric function together with the scalar-relativistic wave functions (LDF-SC). The orange line
shows the linewidth obtained from a free electron gas model with the Pb valence charge density
parameter rPb

s = 2.298 a.u. The green curve in the inset represents results for linewidth calculated
according to the Quinn-Ferrel expression of Eq. (4.13) also for rPb

s . The black arrow points to the
linewidth results for the lowest p band near the BZ center calculated with the inclusion of the SOC
(see the text).

It is interesting to compare the observed difference in the calculated damping rates
for p and d electrons with the same energies. As can be seen in Fig. 8.1, at the same
energy in the 5.5 eV < ε < 8 eV interval quasiparticles in the d bands present a
damping rate roughly two times smaller in comparison with that for the p bands. This
is a consequence of the different coupling matrices [see Eq. (4.23)] for p and d states
thereby signalling about strong localization effects in the inelastic electron-electron
contribution to the lifetimes in bulk Pb.

For quasiparticles in the p-like states, the role of final states in its decay [see
Eq. (4.22)] can be seen in Fig. 8.1 from comparison of the distribution of the LDF-SC
results (blue dots) with the FEG line. As in both these cases the Lindhard dielectric
function was employed, the difference arises only in the wave functions entering the
coupling matrix expression, Eq. (4.23). The blue dots show the result of the calcula-
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Figure 8.2: Calculated ab ini-
tio damping rates for excited
electrons in states near the
Fermi level with wave vectors
along the Γ−L direction without
(squares, black line) and with
(circles, red line) inclusion of
the SOC. Lines are fits by a
quadratic function, Γ = α ×
ε2. Filled triangles and empty
inverted triangles show experi-
mental values extracted from Pb
thin film measurements of Ref.
[HBP+09] and Ref. [SKRZ+10],
respectively.

tions using the self-consistent Kohn-Sham scalar-relativistic wave functions, whereas
the orange line was obtained when wave functions are represented by plane waves. For
the p electrons and holes in the energy range -4 eV6 ε 6 5 eV, both sets of data
look very similar. Nevertheless, a more careful analysis (presented below) shows some
differences which are reflected in the calculated inelastic lifetimes (see Table 8.II below).

The strongest SOC effect in lifetime is observed for p states in vicinity of the BZ
center. In Fig. 8.1, the arrow points to the Γ(n=2,k) results for the second band from
the bottom and k vectors close to the Γ point calculated with the inclusion of the SO
splitting in the band structure. As an example, in Table 8.I the linewidth values for
the lowest p band states at some k’s along the Γ−X direction are presented. Note that
the same trend holds for k’s along the other symmetry directions as well. These data
demonstrate how the giant SOC-induced splitting of the p bands around the Γ point
reduces the linewidth of the excited states in this band by as much as ≈ 60% which
is mainly explained by the reduction of lower energy states available for the excited
electron to decay. Hence, SOC remarkably affects the inelastic decay rates of p-like
excited electrons around the BZ center through the reduction of the avalaible phase
space for decay processes.

Table 8.I: Linewidth of the lowest p states at k’s in vicinity of the Γ point along the Γ−X direction,
calculated at the scalar-relativistic level (Γsc) and including the SOC splitting (Γso) in the band
structure. All values are in meV. The k vectors are labeled with the κ index, corresponding to
k = 2π

24ac
(κ, 0, 0).

κ 0 1 2 3 4 5 6

Γsc 1135 1100 1010 895 776 663 559
Γso 440 430 410 381 345 307 268
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8.3.1 Link with damping rates of quantum-well states

Very recently lifetime measurements have been performed for the thin Pb films with
(111) orientation grown on silicon substrates [HBP+09, SKRZ+10]. Such orientation
corresponds to the quantization of bulk electronic states along the Γ−L symmetry
direction [MWYC02, HBP+09]. Figure 8.2 presents the calculated damping rates for
the excited electrons in p states along this high-symmetry direction of the bulk. In
contrast with the situation for the electronic states around the Γ point one can see
that the SOC produces small effect on the inelastic lifetime for these states. Note also
that the lifetime data for states along the Γ−L direction in Fig. 8.2, both at the SC
and SO levels, are well fitted by a quadratic function over a rather extended energy
range.

Note the good agreement of the parabolae fitted to the bulk results in Γ−L with
the experimental data for electron energies below 0.7 eV. The agreeement is worsen for
higher energies. As in both experiments lead films were deposited on a silicon substrate,
the underestimation of the theoretical parabolae can be assigned to the additional decay
channels opened above the silicon band gap edge located 0.8 eV [SKRZ+10].

Then, from Fig. 8.2 one can deduce that the calculated results are in reasonably
good agreement with the experimental data for thin films [HBP+09, SKRZ+10]. This
signals that low energy quasiparticles dynamics in such systems can be well represented
by that in bulk Pb. This can be understood in terms of the screening length, which in
the Thomas-Fermi theory [GV05] presents the form

λTF =
1

2

√
π(4/9π)1/3rs, (8.1)

where rs is the average valence electron density. For Pb, rPb
s = 2.298 and hence

λPb
TF = 0.97 a.u., which is smaller than the effective electronic thickness of a single Pb

monolayer (ML), d = 5.41 a.u. Thus, even for a single Pb ML, the screening of an
excited quasiparticle is bulk-like allowing satisfactory estimation of its e − e inelastic
lifetime from bulk results [SKRZ+10].

8.3.2 Dependence on the quasiparticle energy

Although the damping rate Γnk of a quasiparticle in a state (n,k) depends on its band
index n and on its wave vector k, one can define Γ(ε) as an average of Γnk over states
with all wave vectors and bands lying at the same narrow energy window in the BZ. In
Fig. 8.3 the results for Γ(ε) are presented for quasiparticles in the p-like bands. Notice
the good agreement with the experimental data of Ref. [MRD+10] as shown in Fig. 8.3.
If one takes into account that the electron-phonon contribution to the decay rate is
absent in our computational study, the agreement is satisfactory.

In Fig. 8.3 a different energy dependence of the averaged damping rate for holes is
observed for energies below and above ε ≈ -2.5 eV. At energies ε above -2.5 eV, the
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Figure 8.3: Energy dependence of the
averaged damping rates, Γ(ε), of quasi-
particles in the p-like bands obtained in
the scalar-relativistic calculation (black
dashed line), the one including the SOC
(red solid line) and the calculation which
includes the ab initio eigenstates and the
Lindhard dielectric function (blue dashed-
dotted line). The green dashed-dotted-
dotted line shows the same as the orange
solid line in Fig. 8.1. Black diamonds show
the averaged lifetimes in bulk Pb measured
with TR-2PPE [MRD+10].

Table 8.II: Fitting coefficients of the Γ(ε) data using a third-order polynomial [see Eq. (8.2)] for
holes in the energy interval above -2.5 eV and p electrons. Meaning of abbreviations “SC”, “SO”,
“LDF-SC”, and “FEG” is explained in the text (see page 85). a2 in eV−1 and a3 in eV−2.

holes electrons

SC SO LDF-SC FEG SC SO LDF-SC FEG

a1 −0.0030 0.0000 −0.0020 0.0000 0.0007 −0.0020 0.0002 0.0060
a2 0.0195 0.0313 0.0150 0.0216 0.0175 0.0190 0.0180 0.0161
a3 0.0000 0.0050 −0.0009 −0.0002 0.0007 0.0004 −0.0007 −0.0008

averaged linewidth presents a quasi-quadratic dependence on quasiparticle energy. For
more detailed analysis of this dependence, we fitted the Γ(ε) data for -2.5 eV 6 ε 6 0
by a third-order polynomial:

Γfit(ε) = a1 × ε+ a2 × ε2 + a3 × ε3. (8.2)

The coefficients ai obtained from this fitting are presented in Table 8.II for all four kinds
of linewidth calculations. Note the highest value of the curvature in the SO case which
is a direct consequence of the avoiding of band-crossings effect produced by inclusion of
the SOC in the Hamiltonian (see Fig. 5.3). In the -4.2 eV 6 ε 6 -2.5 eV energy range
the coefficients a1 ≈ a2 � a3 for the SC, SO, LDF-SC levels of calculation present a
strong contribution of a linear term in contrast with the FEG results which are well
described by a quadratic function for any energy. Hence the quasi-linear behavior of
the averaged damping rates in all the calculations performed with the use of the ab
initio eigenstates reflects the non-free-electron like behavior of holes in the lowest p
band at energies below -2.5 eV.

In the case of electrons, all curves in Fig. 8.3 present an apparent quadratic de-
pendence on the quasiparticle energy. Nevertheless, in this case we performed also
the fitting procedure with the use of Eq. (8.2). Table 8.II presents the obtained corre-
sponding coefficients ai as well. At first sight, all four studied curves show the expected
quadratic energy dependence with the FEG results presenting the greatest deviation.
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Table 8.III: Effective charge density parameters obtained from Eq. (8.3) on base of four sets of data
as explained in the text. δrs stands for the deviation from a conventional value for Pb rPb

s = 2.298
a.u.

SC SO LDF-SC FEG

reff
s 2.37 2.49 2.18 2.33

δreff
s (%) +3.0 +8.3 -5.2 +1.3

At the same time, from the data of Table 8.II it is clear that the SO curve has the
strongest curvature (biggest quadratic coefficient).

An interesting point comes from the comparison of the two Γ(ε) curves calculated
using the Lindhard dielectric screening (LDF-SC and FEG cases), with the two curves
calculated using the ab initio screening (SC and SO cases). The former ones deviate
considerably from the two latter for energies above ∼ 3 eV. This fact can not be
explained by difference in the curvature (i.e., a2 coefficients) which is similar for all
four curves (see Table 8.II) and originates from different signs of the a3 coefficients
(the sign of which being related to the screening). As a result, though a2 � a3, for
sufficiently high electron energies (ε > ∼ 3 eV) the cubic term in the dependence of
Γ(ε) on the energy can start to play a significant role.

From the results for Γ(ε) an effective charge density parameter reff
s can be derived

with the use of the Quinn-Ferrel expression Eq. (4.13). Fitting again the averaged
linewidth curves with Eq. (8.2), new ai coefficients are calculated. Because of the
approximations that lead to Eq. (4.13) (see Appendix F), τ−1

QF is only valid for very
low energy quasiparticles. Thus, the new fitting is carried in the energy range -1 eV
6 ε 6 1 eV, averaging the effect of possible different curvatures for electrons and holes.
Finally, the reff

s parameters are found using the following expression:

reff
s = (399.7× a2)

2/5. (8.3)

In Table 8.III the calculated values of reff
s and their deviation from the conventional

rPb
s = 2.298 a.u., derived from average valence density in Pb, are presented. One can

see that in this energy interval the lifetimes derived in the FEG model can closely be
described by the QF expression. The effect of inclusion of the ab initio band structure
at the LDF-SC level consists in notable reduction of the reff

s , whereas incorporation of
the screening evaluated at the ab initio level works in opposite direction increasing reff

s .
Also higher value of reff

s in the SO case in comparison with the SC one signals about
weaker effective screening in the former case at such low energies. In Table 8.IV we
present the calculated values for averaged inelastic lifetimes for excited electrons and
holes in Pb at |ε−EF | = 0.5, 1.0, 2.0 and 3.0 eV obtained in all the calculations. For
excited electrons, the QF, FEG, and SC calculations give similar results. Noting that
the calculated lifetimes using the self-consistent eigenstates and the Lindhard screening
differ from that three ones, we can conclude that, even if lead is a free-electron-like
metal, lifetime of quasiparticles in bulk Pb is the result of a balance between screening
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Figure 8.4: Averaged inelastic lifetimes of
electrons (black solid line) and the lifetimes
calculated for states at k’s in the vicinity of
the W point (red circles) evaluated in the
scalar-relativistic calculation. The triangle
highlights τ at the W point. Dashed line:
FEG results.

and localization. Interestingly, the lifetimes in this energy interval calculated including
the SOC splittings in the band structure are the lowest ones for each quasiparticle
energy, both for electrons and holes. This is in agreement with the aforementioned
analysis of the effective screening, see Table 8.III.

As seen in Fig. 5.3, at the W point only one unoccupied p band approaches but
does not cross EF , presenting a local minimum. This proximity to the Fermi level to-
gether with the absence of available unoccupied states for decay with small momentum
transfers leads to notably longer inelastic lifetimes for the states around the W point.
This is a strong band structure effect. In Fig. 8.4 we compare the averaged inelastic
lifetimes, τ av, of electrons with very low energies (solid line) with the values calculated
for states close to W (shown by symbols) obtained in the scalar-relativistic calculation
(note that for this analysis the SOC has negligible effect). For comparison, the FEG
results are shown by dashed line. As can be seen, upon approaching the W point
(reducing energy) τ increases faster in comparison with the averaged inelastic lifetime
at those energies, being by ≈ 50% higher than τ av at the same energy in other parts
of the BZ. Hence, around the W point, τ behaves in a non-free-electron-like manner.

Table 8.IV: Lifetime of excited electrons (holes) at four different values of |ε − EF |. All values are
in fs.

|ε− EF | SC SO LDF-SC FEG QF

0.5 eV 130(114) 114(87) 162(145) 128(130) 133
1.0 eV 34(29) 31(23) 41(36) 34(31) 33
2.0 eV 9(8) 8(7) 10(9) 9(7) 8
3.0 eV 4(3) 4(3) 4(3) 5(3) 4
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Figure 8.5: Ratio τe(ε)/τh(ε)
as a function of the quasipar-
ticle energy |ε − EF | for four
levels of calculations. The
dash line separates two en-
ergy regions with different
physical behavior (see text).
Lines are guides to the eye.

8.3.3 Ratio of the lifetime of electrons and holes

In Fig. 8.5, the ratio of lifetimes for electrons, τe, and holes, τh, at the same absolute
value of the quasiparticle energy are shown for four different calculations. The curves
show two energy ranges with different behavior. At energies |ε−EF | >2 eV all the four
curves present a quasi-linear behavior. However, for quasiparticle energies below 2 eV,
only the FEG curve remains quasi-linear. The other three calculations present quite
different dependence of the τe/τh ratio at those energies. The quasi-linear behavior of
τe/τh is found in the homogeneous electron gas calculations (see as an example Fig. 2
of Ref. [MEMPVCR00]). Hence in bulk Pb the band structure effects are remarkable
on the electron-electron inelastic scattering processes for quasiparticles with energies
|ε−EF | < 2 eV. As the LDF-SC curve deduced from the lifetime results obtained with
the use the Lindhard screening and the ab initio eigenstates presents also the band
structure effects, these effects are the consequence of using the true eigenstates in the
evaluation of the coupling matrices [see Eq. (4.23)], and not of the ab initio screening
used. Note also that τe > τh,∀|ε|, for all four levels of calculations.

8.3.4 xc effects: preliminary results

So far we have reported G0W 0 calculations (see Section 4.3.2) analyzing the band
structure, localization and SOC effects. However, based on the results reported in
Section 6.4.2, xc could affect remarkably the damping rates of excited quasiparticles.
It has been shown that the main effect of including the xc short range effects on the
low-energy transfer dielectric response of bulk Pb is the enhancement of the energy-loss
function without changing its shape with respect to its RPA counterpart (see Section
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Figure 8.6: Distribution of
calculated damping rates. Data
are the same as in Fig. 8.1, ex-
cept the green dots which stand
for the G0W results obtained
using the scalar-relativistic
ground state (see text).

6.4.2). This has been found not only when SOC is included, but also at the scalar-
relativistic level of calculations.

Thus, we have carried G0W calculations (see Section 4.3.2) to evaluate the impact
of the xc effects on the inelastic lifetime of excited electrons and holes through the
inclusion of the xc kernel in the evaluation of the screened potential W (r, r’, ω). For
the evaluation of the screened potential as well as of the decay rates through Eq. (4.22)
a 24×24×24 Monkhorst-Pack grid with 240 k points in the IBZ was used. These are
preliminary results, reported here only at the scalar-relativistic level.

In Fig. 8.6 the distribution of the damping rates is plotted again, this time with the
additional G0W results shown as green dots. As readily seen from the figure, the G0W
inelastic decay rates are the highest for all the energies and orbital characters of the
decaying electron or hole. This is in agreement with the aforementioned enhacement of
the energy-loss function, and hence, of the screened potential at low energy transfers.

Also, in Fig. 8.7 the averaged calculated damping rates as a function of the quasi-
particle energy for states of p character is shown. The plot is a copy of Fig. 8.3 with the
addition of the G0W scalar-relativistic results shown by a thick orange line. Comparing
the newly obtained results with the experimental TR-2PPE data of Ref. [MRD+10],
the TDLDA kernel incorporated at the G0W level of calculations seems to give a satis-
factory description of the quasiparticle e−e inelastic decay rates in bulk Pb. However,
note that the experiments reported in Ref. [MRD+10] were carried at a temperature of
150 K. Thus, electron-phonon could remarkably contribute to the measured inelastic
damping rates [HBP+09]. We conclude that the present scalar-relativistic TDLDA-
G0W results seem to overestimate the electron-electron inelastic decay rates in bulk
Pb.
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Figure 8.7: Energy dependence
of the averaged calculated
damping rates. Data are the
same as in Fig. 8.3, except the
thick orange line which stands
for the G0W results obtained
using the scalar-relativistic
ground state (see text). Black
diamonds show the averaged
lifetimes in bulk Pb measured
with TR-2PPE [MRD+10].

The inclusion of the SOC in the G0W level of calculations could improve the agree-
ment with the experimental data. This work is in progress, as we need to make use of
Eq. (4.25), and some modifications are necessary in the computational tools.

8.3.5 SOC effects on lifetime

Modifications in the Pb band structure upon inclusion of the SOC increase the lifetime
of electrons in the d bands and reduce that for holes in the s ones, as demonstrated
in Fig. 8.1. In all the cases the variation of τ upon inclusion of the SOC does not
exceed 10% in comparison with values obtained in the scalar-relativistic calculations.
In Fig. 8.8 the ratio τ(εSC)/τ(ε

SO) as a function of energy is plotted for the p holes
and electrons. For holes with ε 6 −2 eV and electrons with 2.5 eV 6 ε 6 5.5 eV
inclusion of the SOC splittings increases the quasiparticle lifetimes, in both cases less
than 10%. On the other hand, for holes with binding energies less than 2 eV, SOC-
induced splittings reduce lifetimes as much as by 30%. For electrons with ε 6 2.5 eV,
as can be seen in Fig. 8.8, SOC lowers τ by ≈ 10%. One can expect that this tendency
will continue for electronic states around the Fermi surface.

8.4 Summary

Strong localization effects are found on the inelastic electron-electron contribution to
the decay rate of excited electrons with energies 5.5 eV 6 ε 6 8 eV, where Γnk for d
states is roughly 2 times the one for p states.

The states in the lowest valence p energy band at the center of the BZ reduce their
damping rates by roughly 60% upon inclusion of the SOC in comparison with the pure
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Figure 8.8: Ratio τSC(ε)/τSO(ε)
as a function of the quasiparticle
energy |ε−EF | for p-like states,
both for holes (circles) and elec-
trons (squares).

scalar-relativistic calculation. For the p electrons the damping rates Γ(ε) averaged over
the BZ present a quadratic dependence on energy ε, whereas for p holes the quasi-linear
dependence of Γ(ε) for energies ε below -2.5 eV reflects a non-free-electron-like nature
of the electronic states at the bottom of the lowest p band. The calculated lifetime
ratio τe(ε)/τh(ε) reveals that band structure effects are important in electron-electron
inelastic scattering processes for quasiparticles with binding energies less than 2 eV.

Present lifetime calculations for bulk Pb are in good agreement with inelastic damp-
ing rates of quantum well states of metallic thin films measured recently, presenting
thereby evidence that quasiparticle dynamics can be considered as being bulk-like even
in very thin Pb films.

Finally, one can think of new experiments that could test the effect of the physical
ingredients studied in the present work. As an example, studies of field emission
resonances (FERs) on Pb(111) [CYLLBS+09, ZZGBVC11a] could shed light on SOC
effects analyzed in the present work. Band structure effects may be tested too by
experimental studies on Pb films grown in different crystallographic directions, even
though, to our knowledge, nowadays only Pb(111) films can be grown epitaxially with
thicknesses greater than 2 MLs [HDHUK+10].
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Chapter 9

Pb(111) films: ground state

9.1 Introduction: quantum-size effects

In thin metallic films, the confinement in the direction perpendicular to the film plane
gives rise to the quantization of the electronic wave functions. As a result of the
appearance of these so-called quantum-well states (QWS) [Chi00], the properties of
the metallic slabs might strongly depend on the exact thickness of the film. This
dependence is a purely quantum phenomena known as quantum-size effect (QSE),
which often appears as an oscillatory dependence of a variety of physical properties on
the film thickness. In particular, QSE also affect the dielectric response of films and
overlayers (see, i.e., Ref. [PC12]).

Thin lead films exhibit important quantum-size oscillations in the layer-by-layer
growth [JHKPTZ89], first observed by He-atom scattering and attributed to inter-
ference with the quantum-well states. The latter modulate the electron density of
states at the Fermi level, causing oscillations with varying thickness in the supercon-
ducting critical temperature and the upper critical field [MORTHW06, YSBVC+11],
interlayer distances [JWHWYZ06], island height distributions [OLVdPM02], zone-
center phonon frequencies [YPJ08, BRZ+09], electronic transport [JHB96], photoe-
mission properties [SKWHD+07], work functions [KQY+10] and quasiparticle life-
times [HBP+09,SKRZ+10].

Also, recently superconductivity was discovered in a single lead monolayer on silicon
[ZCL+10]. Thus, lead films have become an important model system for exploring
electronic and structural properties of metals on the nanoscale [JLZX07].

In the present Chapter we analyze the ground state properties of Pb(111) films,
with thicknesses ranging from 1 to 15 MLs. SOC effects are found to be remarkable
only for the single Pb(111) monolayer, which is understood in terms of the bulk band
structure. QSE are found on the DOS, QWS effective masses and the work function
of the films, in agreement with previous theoretical works.
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Figure 9.1: Surface Brillouin zone
for a fcc crystal in the (111) direc-
tion. The red area represents the
ISBZ. The high-symmetry points
are labeled.

9.2 Band structure of Pb(111) freestanding films

9.2.1 Supercell approach and surface Brillouin zone

In this thesis the supercell approach is used in dealing with slabs. Thus, Pb(111) films
are represented by freestanding slabs infinite in the xy plane and periodically repeated
in the z direction, separated by a vacuum region whose thickness is fixed in all cases
as 10 interlayer distances of the lead atoms of the film in the z -(111)- direction, which
gives a vacuum region thickness of d = 28.6 Å. Films were not relaxed, representing
ideal cuts of the face-centered cubic bulk Pb in the (111) direction with the bulk
experimental lattice parameter of 4.95 Å. Thus, the in-plane lattice parameter is
a = 3.50 Å and the interlayer distance is c = 2.86 Å. However, in the case of 4 - 6 MLs
thick films were also converged for atomic positions corresponding to the films relaxed
in the z direction, their band structure showing negligible variations with respect to
their unrelaxed counterparts. The main effect of the relaxation was a slight change of
the energies of the QWS in Γ, by at most a few tenths of eV, as a consequence of the
modification of the film thickness by the structural relaxation.

Well-converged results have been found with a kinetic energy cut-off of ∼220 eV,
including from ∼ 2200 (1 ML) to ∼ 5300 (15 MLs) plane-waves in the expansion of the
Bloch states [see Eq. (3.19)]. A Monkhorst-Pack 12×12×1 grid of k vectors was used
in the convergence of the electron density.

As the supercell size in the z direction is roughly 10 times larger than in the plane
of the films, throughout this thesis we make use of the surface Brillouin zone (SBZ),
in which kz = 0. In Fig. 9.1 the SBZ is shown, in which the irreducible SBZ (ISBZ)
has been highlighted together with the high-symmetry points. For the 1 - 4 MLs thick
films, the Hamiltonian was also solved including the SOC term fully self consistently.
Note that as the SBZ is used, the k vectors lie always in the kz = 0 plane and the ISBZ
once SOC is included is the same than at the scalar-relativistic level (represented by
the red area in Fig. 9.1).
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Figure 9.2: Calculated band structure and density of states of Pb(111) freestanding films 1 - 3, 6,
10 and 15 MLs thick, without (solid black lines) and with (dashed red lines) inclusion of the SOC
in the Hamiltonian. The horizontal dashed-dotted blue lines represent the Fermi level of each film.
DOS in arbitrary units.

The two reciprocal space directions in which the surface dielectric response has been
studied in this thesis (see Chapter 10) correspond to the Γ−K and Γ−M SBZ high-
symmetry directions (see Fig. 9.1). In each of the mentioned directions, the momentum
q is of the form

qK =
2π

a
(
2l

M
, 0, 0), (9.1)

qM =
2π

a
(
l

M
,

1√
3

l

M
, 0), (9.2)

where a is the in-plane lattice parameter, l is any integer number and M corresponds
to the M×M×1 Monkhorst-Pack grid used.

9.2.2 Band structure

As an example, in Fig. 9.2 the calculated electronic band structure of Pb(111) free-
standing films of several thicknesses is shown. For a N MLs thick film, each electron
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state energy level is unfolded in N subbands. The subbands below -6 eV are of s char-
acter. They are separated by a gap from the 3N subbands of p character which form
the Fermi surfaces of the slabs. As can be seen from Fig. 9.2, the width of the gap is
already fixed as ∼2 eV for the 3 MLs thick film.

Around the SBZ center (Γ point) the energy bands present a parabolic free-electron-
like dispersion. The p bands around Γ have a pz character, while acquiring an increasing
px,y component as they loss their parabolic-like dispersion moving away from Γ. The
pz states at Γ represent the QWS of the Pb(111) films. The present work found that
the inverse of the energy separation of the QWS around EF is linearly proportional to
the film thickness, in good agreement with a previous study [MWYC02].

SOC effects

As a centrosymmetric supercell was used in the calculations, due to the Kramers de-
generacy (see Section 5.2) the electron energy bands are doubly degenerated also when
SOC is included in the Hamiltonian (see Fig. 9.2). In contrast with its remarkable effect
on the bulk electronic band structure, SOC has little impact on the energy bands of
the Pb(111) films. In Fig. 9.2 the band structure and DOS for the 1 - 3 MLs thick films
is shown with (dashed red lines) and without (solid black lines) SOC included in the
Hamiltonian. As readily seen, SOC effects are remarkable only for the single monolayer
case, which becomes semimetallic when SOC is switched on, as a result of the avoiding
of the band-crossings present for the scalar-relativistic system around the Fermi level.
Also, the s band is shifted upwards by ∼ 0.4 eV for the 1 ML upon switching on the
SOC.

As the slab thickness is increased, also the filling of the phase space by the unfolding
of the subbands increases. Because of the fast filling of the phase space, SOC effects
on the ground state of Pb(111) films become small for slabs as thin as 3 MLs (see
Fig. 9.2), as avoiding of the band-crossings is the only SOC effect noted on the electronic
structure of the films. As a result only for the somewhat artificial semimetallic single
Pb(111) monolayer SOC effects are remarkable. Also, inclusion of SOC leaves the
effective masses of the QWS and the Fermi contours unchanged, except for the single
monolayer. Notice that SOC affects the states with a remarkable px,y character, while
the pz QWS around Γ remain unchanged upon inclusion of the spin-orbit interaction.

The small significance of the SOC effects on the electronic structure of Pb(111)
films is in agreement with the fact that the QWS arise from the quantization of bulk
electronic states along the Γ−L symmetry direction [MWYC02, HBP+09], direction
in which (as was shown in Fig. 5.3) SOC has negligible effect on the p band crossing
EF for energies ε − EF < 3.5 eV. Actually, it has been found that in Pb(111) films
SOC effects on the energy bands are negligible for ε− EF & 5 eV. This finding seems
surprising at first sight as the bulk Pb parental energy band in Γ−L present strong
SOC-induced energy lowering when approaching the BZ center, at energies ε−EF & 3.5
eV (see Fig. 5.3). However, at those energies the electrons in the Pb(111) films are
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Figure 9.3: Pb(111) surface elec-
tronic structure. The orange (brown)
area represents the bulk band struc-
ture projected on the (111) surface
without (with) the SOC included.
Black lines are the bands correspond-
ing to the electronic structure of a
12 MLs thick film, obtained at the
scalar-relativistic level. The dashed
blue horizontal line marks the Fermi
level.

close to the vacuum level (see Section 9.3.3) and start to acquire and image state-like
character [ZZMS+12]. As a consequence, electrons in the Pb(111) films with energies
ε−EF & 4.2 eV are unbounded, their wave functions being located in the vacuum and
thus resting unaffected by the SOC potential.

9.2.3 Electronic structure of the Pb(111) surface

In Fig. 9.3 the calculated electronic structure of a 12 MLs thick film at the scalar-
relativistic level is shown together with the bulk band structure projected on the (111)
surface without (orange area) and with (brown area) the SOC included in the Hamil-
tonian. The surface states, that is, the bands of the 12 MLs thick slab which are
non-degenerated in energy with the continuum of the bulk electronic structure projec-
tion, were found to be converged with respect to the film thickness for the 12 MLs
case shown in Fig. 9.3. As seen in the figure, surface states are present along the
Γ−M high-symmetry direction at energies of -7 eV, -3.3 eV and an additional strongly
dispersing surface state band is also seen between roughly 1 and 2 eV binding energies.

On the other hand, around the K and at energies from ∼ −1.3 to ∼ −2.2 eV, bands
appear degenerated with the bulk continuum only when SOC is incoporated. Also, an
unocuppied surface state at energies ∼ 6 eV above EF is found around K in a sizeable
region of the BZ, presenting a negative effective mass (see Fig. 9.3). However, this
unoccupied state is unbounded as it is energetically located above the vacuum level
(concerning the work function of Pb(111) surface and films, see Section 9.3.3 below).

To the best of our knowledge, no surface states of lead have been experimentally
detected so far.
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9.3 Quantum-size effects on Pb(111) films

QSE reflected in the bilayer oscillations detected in several physical properties of
Pb(111) films as a function of the thickness (see Section 9.1) are a consequence of
the stability of electronic standing waves formed in the direction perpendicular to
the slab plane. In Pb(111) films, the magnitude of the interlayer spacing c is close
to 3λF/4 [JLZX07], where λF is the Fermi wavelength. Thus, in a layer-by-layer
growth, films presenting an even number of MLs (or odd number of MLs depend-
ing on the details and definition of the wetting layer/interface with the substrate
[BAYCT00,YBBZW+00,JWHWYZ06]) should be highly stable [AOZ07], forming the
so-called magic heights which have been detected in several experimental works (for a
review, see Ref. [JLZX07]). However, the ratio λF/c is not exactly of 4/3 and a beating
pattern is formed of period 9 ML.

The results of the calculations for the films ground state show bilayer oscillations
with the slab thickness on the density of states at the Fermi level and on the work func-
tion (see Section 9.3.3), with a beating pattern of period 9 ML superimposed. This is in
agreement with previous experimental and theoretical studies (see, i.e., Refs. [KQY+10]
and [MWYC02]).

9.3.1 QSE on the DOS of Pb(111) films

In Fig. 9.4 the DOS in the −4 eV < ε < 4 eV energy range is plotted as a function
of the film thickness. Good agreement is found with previous theoretical works, see
Ref. [MWYC02]. Note the branches of QWS can be labeled by a quantum number n
(see, i.e., Ref. [ZZMS+09]). The beating pattern of period 9 ML superimposed on the
bilayer oscillations of ground state properties is expected from an inspection of Fig. 9.4.
In particular, the period of 9 MLs of the beating pattern is observed in Fig. 9.4 as QWS
with ε ∼ EF appear for the 4 and 13 MLs thick films.

9.3.2 Effective masses of the QWS

It is of interest to analyze if QSE appear on the values of the effective masses of the
QWS, that is, the pz states at Γ. In order to clarify this question, the dispersion of the
QWS bands around Γ have been fitted to a parabola up to q = (0.12, 0, 0) a.u. Note
that the results are independent of inclusion of SOC, as explained in Section 9.2.2. The
results are plotted in Fig. 9.5 for the energy range of −4.2 . ε . 4.2 eV.

First, note that the values of m* show a distinct quantitative behaviour in two
different energy ranges, below and above ε = 0.7 eV. Nevertheless, in both ranges the
values of the effective masses tend to a thick film limit of m* as a function of the QWS
energy. This is seen in Fig. 9.5 by noting that the results for the QWS corresponding
to the thickest studied slabs are marked by diamonds. For ε < 0.7 eV m* exhibit small
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Figure 9.4: Normalized DOS of the
films in the−4 eV < ε < 4 eV energy
range as a function of the film thick-
ness. The white horizontal line rep-
resents the Fermi level. The energy
of the QWSs at ∼ EF are marked
and labeled with the number of MLs
of the corresponding film.

scattering, however, as shown in the left inset of Fig. 9.5 still the QWS corresponding
to the thinnest slabs show no convergence of their effective masses with respect to the
limit represented by the values of m* marked by diamonds. Thus, not only the energies
of the QWS, but also their effective masses show QSE.

Notice that there is a QWS at ε ∼ 0.7 eV for each film presenting an even number
of MLs (see right inset in Fig. 9.5). This is in agreement with previous theoretical
works [ZZGBVC11b,MWYC02], scanning tunneling spectroscopy (STS) measurements
on Pb/Cu(111) [CYLLBS+09] and 2PPE experiments in Pb/Si(111) [SKRZ+10]. In
the latter the series of QWS were clearly resolved as their energy lies in the silicon
absolut band gap.

Actually, two additional series of QWS at different thickness exhibiting roughly
constant energies are found, which are marked in the left inset of Fig. 9.5 by ellipses.
The series marked by a blue (orange) ellipse for QWS energies ∼ -2.6 eV (-1.6 eV) cor-
responds to states of Pb(111) films with a 2+4n (1+3n) number of MLs, where n is an
integer. This is in qualitative agreement with the results reported in Ref. [MWYC02].
The appearance of the constant-energy series is a clear QSE. Again, as for the series at
ε ∼ 0.7 eV, the effective masses of these states tend to converge for the thickest slabs.
Note that the scattering of the m* = m*(ε) increases after each of the constant-energy
QWS series.

Clearly enough, the constant-energy series reflect the particle-in-a-box character
of the quantum-well states. For a particle in an infinite potential well, the allowed
energies are of the form

εn =
π2n2

2m∗d2
, (9.3)
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 O  1 ML 
 O  2 ML
 O  3 ML
 O  4 ML
 O   5ML
 O   6 ML
 □   7 ML
 □   8 ML
 □   9 ML
 □  10 ML 
 □  11 ML
 □  12 ML
 ◊  13 ML
 ◊  14 ML
 ◊  15 ML

Figure 9.5: Effective masses of QWS in Pb(111) films of 1 - 15 MLs thick, obtained from scalar-
relativistic band structure calculations. See the text for an explanation of the insets. Effective
masses in units of the free electron mass.

where n is an integer and d stands for the width of the well. Thus, for a constant n/d
ratio, a series of QWS presenting the same energy are found. Notice that the small
scattering of the energies for a given n/d series is due precisely to the actual effective
masses which are a consequence of the band structure effects together with the deviation
of the actual potential from an infinite potential well. Also, in Ref. [SMOHD11] it was
shown that the QWS effective masses are highly sensitive to variations of the in-plane
lattice constant.

9.3.3 Work function of the Pb(111) films

It has been shown both theoretically [MWYC02] and experimentally [KQY+10] that
the work function of Pb(111) thin films exhibits bilayer oscillation on its thickness
dependence. In Fig. 9.6 we report the values of the work functions of Pb(111) thin
films as obtained in this thesis. Black squares (red circles) correspond to the work
functions of slabs converged using a 10×10×1 (12×12×1) Monkhorst-Pack grid. Note
that for the coarser k point mesh the values of the work function are higher than for
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Figure 9.6: Thickness dependence
of the work function of Pb(111)
films. Black squares (red cir-
cles) correspond to the work func-
tions of slabs converged using a
10×10×1 (12×12×1) Monkhorst-
Pack grid.

the finner mesh at every thickness except for the 4ML case, which is related to the
appearance of the aforementioned beating pattern.

Interestingly, using the 10×10×1 grid the beating pattern of 9 ML period is missing,
while it appears for the finner 12×12×1 SBZ sampling mesh calculations, where two
crossovers are found at 4 and 13 MLs (see Fig. 9.6).

The present results reported in Fig. 9.6 are in perfect agreement with the data
obtained in the theoretical study of Ref. [MWYC02]. This is in spite of the different
xc functional used, as the generalized-gradient approximation (GGA) [PPBE96] was
used in Ref. [MWYC02], and of the fact that the films were structuraly relaxed in
Ref. [MWYC02]. Thus, the agreement points to the insignificant relaxation effects in
the electronic structure of Pb(111) films (see Section 9.2.1).

9.4 Summary

In the present first-principles study of the ground state electronic properties of free-
standing Pb(111) thin films SOC effects were found remarkable only for the single
monolayer case, which can be understood in terms of the bulk band structure in the
Γ−L high-symmetry direction.

QSE have been observed in the QWS effective masses, DOS and work function of the
films. The two latter show a bilayer oscillatory dependence on the slab thickness, with
a beating pattern of period 9 ML superimposed. This is in failry good agreement with
previous theoretical and experimental results, reflecting the quality of the calculations
reported in the present Chapter and their convergence with respect to the different
computational parameters.
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Chapter 10

Dielectric response of Pb(111) films

10.1 Introduction: plasmons of thin metallic films

Even if Pb(111) thin films represent one of the most widely used playgrounds in the
study on QSE (see Section 9.1), to the best of our knowledge, there are few experi-
mental studies on the surface response of Pb thin slabs [JSZ02, JSZ04, PKFJ06], and
no theoretical works. Thus, the aim of the present work is to perform a computational
systematic study of the surface energy-loss function of Pb(111) films with different
thicknesses, starting from a single monolayer case, up to a 15 MLs thick slab.

An approximate description of thin film plasmons is given by the solution of the
Maxwell equations applied to a slab geometry [HR57]. It leads to the coupling between
the classical surface plasmons of the two different surfaces of the film. The resulting
coupled modes of the film disperse as [HR57,YG06,MPMSVCME07]

ω± =
ωp√

2
(1± e−qL)1/2, (10.1)

where ωp is the bulk plasmon frequency, which is given by ωp =
√

3r−3
s with rs the av-

erage valence electron density parameter (see Fig. 10.1). The energy splitting between
the modes depends on the film thickness L and the value of the in-plane momentum
transfer q. The low-energy mode ω− correponds to a symmetric induced charge profile
in the direction perpendicular to the film plane, whereas the high-energy mode ω+ cor-
responds to an antisymmetric one [YG06]. As L increases, the coupling between the
two modes decreases. In the limit L�1/q the two film modes are decoupled and the two
classical surface plasmons of frequency ωp/

√
2 are retrieved. This model description

ignores the electronic structure of the film. This is a serious drawback since the ground
state electronic structure has been shown to strongly affect the surface response to
external perturbations. More detailed classical models showed the dependence of the
surface plasmon dispersion on the microscopic details of the surface electronic density
profile [JB70,SLS82].
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Figure 10.1: Classical plasmon
modes in a thin film, Eq. (10.1).
The curves are evaluated for the
parameters corresponding to a 7
MLs thick Pb(111) film.

On a more quantitative level, the jellium model [DLK70] has been used to study the
quantum-mechanical electrodynamical response of metal slabs [GE83,FD92,LSFD94],
gaining basic insight into the nature of electronic excitations of metallic films. As an
example, Yuan and Gao have shown [YG06], using the jellium model with the electron
density corresponding to Ag, the disappearance of the antisymmetric mode ω+ for
q → 0 when the film thickness is comparable to the Fermi wavelength. Instead, a few
discrete interband peaks were found [YG06].

A more precise description of the electron band structure in the direction perpen-
dicular to the film plane [VCMSME97, VCMSME99], allowing to describe the surface
states which are missing in a jellium model, was recently used to study new collec-
tive electronic excitations at metal surfaces [MSMPVCME05,PDV+10,EKMSUN+10]
and thin metal films [MSND+11]. However, the recipe of the improved one-dimensional
potential [VCMSME97,VCMSME99] can not give a satisfactory description of the elec-
tronic structure of Pb(111) films. Thus, in the present work a first-principles approach
is used to study the dielectric response of Pb(111) films. Indeed, using an ab initio
calculation scheme possible anisotropy effects can be studied, which are missing in jel-
lium models or in using the potentials of Refs. [VCMSME97] and [VCMSME99], as
they assume in-plane free-electron-like behavior.

10.2 Computational parameters and choice of the

xc kernel

The calculation of χ0
G,G’(q‖, ω) was carried out using a Monkhorst-Pack 96×96×1

(192×192×1) grid (see Section 9.2.1) of k vectors as the hexagonal SBZ sampling with
817 (3169) k vectors in the ISBZ for the 1, 2, and 6-15 MLs (3-5 MLs) thick films. Up to
500 bands were included in the evaluation of χ0

G,G’(q‖, ω) for the thickest studied slabs.
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The width of the modified Gaussian replacing the energy-conservation Dirac delta (see
Appendix D) in the calculation of χ0

G,G’(q‖, ω) through Eqs. (3.19)-(3.21) was set to
0.15 eV, a value which has produced smooth resulting curves while not smearing out
any feature on the surface loss function of the films. Well converged results are found
including 750 plane waves in the expansion of the wave functions in the calculation of
χ0

G,G’(q‖, ω) and expanding the size of the polarizability matrices up to 60 G vectors.

Throughout the work reported in the present Chapter we use the RPA in which the
xc kernel is set to zero (see Section 3.2.2), i.e., the dynamical short-range exchange-
correlation effects are ignored. The previous studies of collective excitations at the
surfaces [Nag10,NHHH01,TWPL+91,MSVCME04] and in the bulk [AK94,EKS99] of
many metallic systems suggest that xc effects should have little impact on the study of
the surface dielectric response of Pb films. Actually, xc effects are known to remarkably
affect the dielectric response of solids presenting a low valence average density (rs >
4) [Lie97], while slightly influencing it in high valence density systems. Pb is a high-
density metal (rPb

s = 2.298), and thus xc effects should not be substantial. In fact,
studies on the surface loss function of aliminium [TWPL+91], which presents an average
valence electron density similar to Pb, showed appreciable but small xc effects on the
dispersion of the surface plasmon.

10.3 Results obtained using Eqs. (3.28)-(3.29)

In Fig. 10.2 the general results obtained using the recipe described in Section 3.3.2
together with the expressions (3.28)-(3.29) for the interacting susceptibility are pre-
sented. Based on the model of thin film plasmons Eq. (10.1), one expects the film
modes to be splitted in the range of momentum transfer studied. However, comparing
the results shown in Fig. 10.2 with the classical model of Eq. (10.1) remarkable dis-
similarities are revealed. No feature analogous to the classical antisymmetric mode ω+

is found starting from the single monolayer case. On the other hand, the symmetric
mode seems to be present. However, a detailed analysis of Im[g(q‖, ω)] of the single
monolayer shows that the peak in its surface loss function at ω ' 4.5 eV at q → 0 does
not correspond to the symmetric mode ω− predicted by Eq. (10.1).

In order to get further insight on this issue, the dispersion of the low-energy peak
seen in Fig. 10.2 for the single monolayer results has been fitted to ω−(q) as given
by Eq. (10.1), ignoring the first q values. The fitting parameters are then the surface
plasmon energy ωp/

√
2 and the film thickness L. In Fig. 10.3 the results on the disper-

sion of the low-energy mode are shown together with the fitting. The fitting helps to
clarify that the mode presents two different behaviors. For q > 0.1 a.u. it follows a
classical-like dispersion. However, for q < 0.1 a.u. the dispersion clearly deviates from
the classical description of ω−(q). Thus, from Fig. 10.3 a finite value of ∼ 4.5 - 5 eV is
deduced for the low-energy mode at q → 0.
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Figure 10.2: Surface loss func-
tion surfaces Im[g(q‖, ω)] for 1
- 8 and 15 MLs thick Pb(111)
films calculated at the scalar-
relativistic level, obtained using
Eqs. (3.28)-(3.29) for the eval-
uation of χG,G’(q‖, ω). The
momentum transfer vector q‖
is along Γ − M. The colour
bar applies to all plots, with its
maximum normalized individu-
ally for each case.

Figure 10.3: Dispersion of the low-
energy peak for the single Pb(111) re-
sults as shown in Fig. 10.2. The cir-
cles represent the results of the cal-
culations, while the solid line is the
result of fitting the data for q & 0.1
a.u. to the low-energy solution of
Eq. (10.1).
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Figure 10.4: 1 ML surface loss function
obtained using Eqs. (3.28)-(3.29)), and
with 54.1 and 108.2 a.u. of vacuum
thickness in the supercell in panel (a)
and (b), respectively.

To explain the origin of this finite value of the low-energy peak for the single mono-
layer case, the calculations were repeated doubling the amount of vacuum in the su-
percell up to 108.2 a.u. (20 interlayer distances). In Fig. 10.4 the comparison of the
Im[g(q‖, ω)] of 1 ML evaluated for both vacuum thicknesses is shown. As readily seen,
the low-energy peak at q → 0 is redshifted to a value of ∼ 3.5 - 4 eV, but still it exhibits
a finite energy. This points to a defficiency of the computational scheme used so far
when applied to supercell calculations.

The defficiency stems from the evaluation of Eqs. (3.28)-(3.29) resulting from the
Dyson-like equation Eq. (3.15), in which both integrations are extended over the whole
space. This makes the perturbation in the long wavelength limit see the infinite series
of slabs in the spatial z direction. As a consequence, the perturbation at q → 0
feels an average electron density, which can be parametrized by an effective density
parameter reff

s by distributing the number of valence electrons over the whole supercell
volume. Then, introducing reff

s in the expression ωp =
√

3r−3
s the energy of the artificial

supercell-bulk plasmon is obtained. Note that the supercell containing a vacuum region
of 10 (20) interlayer presents a volume 10 (20) times larger than the bulk Pb unit cell.
Then, as ωp ∝ Ω−1/2, where Ω is the unit cell or supercell volume, the finite values
of the low-energy peaks at q → 0 in Fig. 10.4 can be assigned to the aforementioned
artificial supercell-bulk plasmon.

The incorrect picture drawn by Eqs. (3.28)-(3.29) in the long wavelength limit when
dealing with supercell calculations was recently noted by Yuan and Gao in Ref. [YG09].
The authors showed that the three-dimensional periodicity must be removed in the
evaluation of the interacting susceptibility in order to avoid interaction between neigh-
boring slabs through the long range Coulomb interaction.



122 Dielectric response of Pb(111) films

Figure 10.5: Calculated surface loss
function for the 3MLs thick Pb(111)
film, with q‖ along two different high-
symmetry directions, Γ −M (a) and
Γ−K (b).

10.4 General results: corrected evaluation of

χG,G’(q‖, ω) for the supercell scheme

As shown in the previous Section, the calculation of χG,G’(q‖, ω) as given by Eqs. (3.28)-
(3.29) has to be corrected when dealing with supercell calculations. The way this prob-
lem is tackle in the present work is to still make use of formally the same Eqs. (3.28)-
(3.29), but constraining both integrations in Eq. (3.15) to a finite z range, which here
is fixed as the supercell size in the z direction. In practice, we keep using Eqs. (3.28)-
(3.29), but now the non-interacting susceptibility matrix χ0

G,G’(q‖, ω) is replaced in
Eqs. (3.28)-(3.29) by the following modified form:

χm
G,G’(q‖, ω) =

∑
G”

χ0
G,G”(q‖, ω) · δG”,G’×

×

δG′′
z ,G′

z
−

(|q‖ + G”|2 −G′′
zG

′
z)cos

[
(G′′

z +G′
z)T

2

]
(1− e−|q‖+G”‖|T )

|q‖ + G”‖|T (|q‖ + G”‖|2 +G′′2
z )

 , (10.2)

where 2T is the size of the integration domain (the supercell size in the z direction
in our case). Gz stands for the z-component of the reciprocal space vector G. Let us
remind that, as explained in Section 3.3.2, we actually work with the basis of reciprocal
vectors of the form G = (0, 0, Gz).

Before analyzing the general results retrieved with this corrected scheme, in Fig. 10.5
the calculated surface loss function for the 3MLs thick Pb(111) film, with q‖ along two

different high-symmetry directions, namely Γ − M [panel (a)] and Γ − K [panel (b)]
is shown. It is clear that Im[g(q‖, ω)] exhibits a highly isotropic character. In all the
carried tests the same isotropic behaviour of the surface loss function was found inde-
pendently of the film thickness. Thus, from here on only results for q‖ along Γ − M
are shown in this thesis, as the used grid in this high-symmetry direction is finer than
the one along Γ−K (see Section 9.2.1).

The general results obtained using the corrected scheme are shown in Fig. 10.6.
First, note the different general picture in comparison with the uncorrected results
presented in Fig. 10.2. Now the thin film modes analogous to the ω± plasmons of
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Eq. (10.1) are found. In order to get further insight, the dispersion of ω± = ω±(q) is
represented by green lines. For each freestanding slab, ω±(q) are plotted for an effective
thickness corresponding to a number of interlayer distances equal to the MLs forming
the slab, as the jellium edge in the first-principles calculations was fixed at half an
interlayer distance away from the outermost atomic layers.

10.4.1 Thin film modes

The results of the present work as plotted in Fig. 10.6 show several modes of different
character. First, the low-energy symmetric mode is detected for the thinnest slabs
at small momentum transfer values, closely following the dispersion described by the
low-energy ω− mode of Eq. (10.1) for all thicknesses as represented in Fig. 10.6 by the
bottom green line in each panel. However, notice that it disappears upon entering the
almost dispersionless peak present around ω ' 7 eV for all thicknesses.

Also, the high-energy plasmon mode analogous to the classical thin film ω+ mode
is found for thicknesses greater than 2MLs. Note however that it is placed at too high
energies in comparison with the predictions of Eq. (10.1). Unfortunately, calculations
including the 5d semicore electrons (see Section 7.2) are too computationally demand-
ing in the supercell scheme used here. Thus, it has not been checked whether the too
high energy of the antisymmetric mode found in this thesis is due to the absence of
the semicore states in the evaluation of the surface response function. Note that the
inclusion of the polarizable 5d semicore electrons through the use of a model dielec-
tric function εd [Lie97] is ambiguous and its use has been discarded in this thesis (see
Section 7.6).

As mentioned in Section 10.1, in Ref. [YG06] using jellium calculations it was
shown that the antisymmetric mode disappears for film thicknesses comparable or
smaller than the metal Fermi wavelength when q → 0. Instead, peaks corresponding
to discrete interband transitions show up. For Pb, using the value rPb

s = 2.298, one
finds λPb

F = 7.52 a.u. which is roughly 1.4 times the interlayer distance in Pb(111) films.
Thus, the 1 and 2 MLs thick Pb(111) films present electronic effective thicknesses equal
to 0.7 and 1.4 times λPb

F , respectively. As seen in Fig. 10.6, our results are in agreement
with the work of Ref. [YG06] as far as the disappereance of the high-energy mode for
thin films is concerned. In the surface loss function of the single monolayer shown
in Fig. 10.6, a manifold of interband peaks is present for energy transfers ω & 11 eV
[see also the black solid curve in Fig. 10.8 (a)], where the high-energy mode should be
present (see the upper green line in the first panel of Fig. 10.6). This is a manifestation
of strong QSE in the surface-loss function of the single Pb(111) monolayer. The 2
ML Im[g(q‖, ω)] results (see Fig. 10.6) correspond to the transition between the two

different thickness regimes, at L ' 1.4λPb
F .

An important conclusion of the present work is the large difference in spectral
weight between the low- and high-energy modes of the film, in sharp contrast with the
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Figure 10.6: Surface loss function surfaces Im[g(q‖, ω)] for 1 - 8 MLs thick Pb(111) films obtained
with the corrected scheme at the scalar-relativistic level. The momentum transfer q‖ is along
Γ −M. The green lines represent the dispersion of the classical thin film plasmon modes as given
by Eq. (10.1), plotted for the corresponding slab thickness (see the text). The colour bar applies to
all plots, with its maximum normalized individually for each case.

results reported in Ref. [YG06] for Ag slabs modeled by the jellium approximation.
The low-energy mode analogous to the classical symmetric ω− plasmon appears as a
faint feature in comparison with the rest of the peaks present in Im[g(q‖, ω)]. On the
contrary, the high-energy mode is the most intense feature in the surface loss function
of freestanding Pb(111) films, except for the single monolayer. In the latter case, a
slightly upwards dispersing interband peak raises at energies ω ' 5.5−6 eV. It exhibits
the highest intensity [see Fig. 10.8 (a) and (b)] together with a vanishing linewidth at
momentum transfer smaller than 0.1 a.u. This long-living mode stems from transitions
between the highest occupied and lowest unoccupied QWSs around the SBZ center (see
Fig. 9.2), representing strong QSE. Once more the 2 MLs results represent the crossover
with larger thicknesses for which the quantization of the states is not reflected in the
same fashion in the calculated surface loss function. Nevertheless, in the evaluated
Im[g(q‖, ω)] corresponding to the 2 MLs thick slab, still two peaks similar to the long-
living mode in 1ML are found overlaping with each other. However, their intensity is
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Figure 10.7: Real part of the induced density at q=0.014 a.u. for the 4 MLs Pb(111) film, as a
function of the energy transfer ω and the z coordinate. Panel (b) is a zoom in the (ω, z) range
delimited by the orange rectangle in panel (b). The orange circle in (b) highlights the fingerprint of
the low-energy symmetric mode (see the text). Black solid (red dashed) lines mark the position of
the atomic layers (jellium edges). ω in eV.

greatly decreased in comparison with the corresponding feature in the single monolayer
case.

In Fig. 10.7 the real part of the two-dimensional Fourier transform of the induced
density [see Eq. (3.14)] Re[ρind(z,q‖, ω)] for the 4 MLs thick slab is shown. The results
correspond to a momentum transfer of q = 0.0114 a.u. First, note the antisymmetric
distribution of the induced density with respect to z=0. Second, for spatial positions
inside the film, several changes of the sign of Re[ρind] are found. In panel (b) results
for 4 6 ω 6 8 eV are zoomed in. Interestingly a sharp change of phase of Re[ρind] can
be recognized at ω ' 7 eV, signaling about the presence of the dispersionless peak seen
in Im[g(q‖, ω)] at this energy. This is a general behaviour found at all thicknesses at
ω ' 7 eV.

Moreover, the fingerprint of the low-energy mode analogous to the classical sym-
metric ω− plasmon is found, as marked by the circle in panel (b) of Fig. 10.7. As
can be seen, ω ∼ 5 eV is the only energy at which there is a noticeable weight of
Re[ρind(z,q‖, ω)] at the center of the slab, z = 0. This notable distortion in the general
antisymmetric distribution of the real part of the two-dimensional Fourier transform of
the induced density signals about the presence of the symmetric plasmon mode. This
faint but appreciable ω−−like fingerprint has been found at all thicknesses in which
the symmetric mode could be resolved.
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10.4.2 Thickness dependence

In order to relate the results for different thicknesses, several cuts of Im[g(q‖, ω)] are
plotted in Fig. 10.8 comparing the surface loss function of Pb(111) films of distinct
thicknesses for the same momentum transfer values of q‖ along the Γ − M high-
symmetry direction.

In panel (a) of Fig. 10.8 the black curve at ω & 11 eV shows the manifold of
interband peaks which replaces a single high-energy antisymmetric mode for the Pb
monolayer, as discussed in Section 10.4.1. An additional important feature in the
surface loss function results for the 1 ML slab is the long-living interband peak found
at small momentum transfer, seen at ω = 5.5 eV in panels (a) and (b) of Fig. 10.8.

For the 3, 5 and 8 MLs thick films the surface plasmon is already present at q=0.1256
a.u., as seen in panel (c) of Fig. 10.8. Note that it presents a remarkably smaller
intensity than the high-energy asymmetric mode. On the other hand, the low-energy
symmetric mode can not be seen in the scale of Fig. 10.8, as it is a faint feature (see
also Fig. 10.6).

10.4.3 Surface plasmon

In Fig. 10.8 the vertical dashed line marks the classical surface plasmon energy ωs =
ωp/

√
2 =

√
1.5r−3

s , which for the averaged valence electron density of bulk lead rPb
s =

2.298 gives the value ωPb
s = 9.57 eV. Also, the results of the experimental electron

energy-loss measurements of 10.6±0.2 eV [JP60] are represented by the thin shaded
area. As can be seen, the classical expression gives a too low value of the surface
plasmon energy by about 1 eV.

On the other hand, in the optical limit (q → 0) the surface response function can
be calculated from the bulk dielectric function as [Lie87,Lie97]

g(q → 0, ω) =
εbulk(q → 0, ω)− 1

εbulk(q → 0, ω) + 1
, (10.3)

and thus the surface loss function is

Im[g(q → 0, ω)] ∝ −Im

[
1

εbulk(q → 0, ω) + 1

]
. (10.4)

In Fig. 10.8 the orange (grey) thick solid curve represents Im[g(q → 0, ω)] calculated
using Eq. (10.4) and including the 5d electrons in the core (valence). The energy of
this peak at HWHM is of 10.85 (9.3) eV with the semicore electrons excluded from (in-
cluded in) the valence configuration. When using the bulk dielectric function obtained
without including the 5d electrons, the value retrieved is close to the experimental one
of 10.6±0.2 eV. However, the agreement is worsen upon taking the semicore electrons
into account in the evaluation of εbulk(q → 0, ω). Note that the surface loss function
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Figure 10.8: Surface loss function for different values of q‖ along Γ−M and different film thicknesses.
Black solid, red dashed, green dashed-dotted and blue dashed-dotted-dotted curves represent results
for 1, 3, 5, and 8 MLs thick Pb(111) films, respectively. The thick orange (grey) solid curve stands
for the results deduced from bulk calculations without (with) inclusion of the 5d electrons. The
vertical dashed line marks the classical Pb surface plasmon energy of 9.57 eV, while the shaded
energy interval corresponds to the electron energy loss experimental value of 10.6±0.2 eV [JP60].



128 Dielectric response of Pb(111) films

Figure 10.9: Scalar-relativistic surface
loss function of the 15 MLs thick
Pb(111) film, q‖ along Γ − M. The
green lines stand for the dispersion
of the classical thin film modes as
given by Eq. (10.1). The pink square
represents the experimental data of
Ref. [JP60] of ωexp

s = 10.6± 0.2 eV.

obtained from a bulk calculation (without the semicore) through Eq. (10.4) is in qual-
itative agreeement with the slab surface plasmon for thicknesses greater than 2 MLs
at momentum transfer values where the modes ω± are uncoupled, see panel (c) in
Fig. 10.8.

Surprisingly, Im[g(q → 0, ω)] calculated from the knowledge of εbulk(q → 0, ω) shows
a faint peak at 7 eV, mimicking the dispersionless feature which plays the role of the
short wavelength limit of symmetric mode ω− in the the thinnest films (see Section
10.4.1). This signals about the bulk-like character of the aforementioned dispersionless
interband mode.

From Figs. 10.6 and 10.9, it seems the surface plasmon disperses roughly linearly
with the momentum transfer. In Fig. 10.10 the calculated dispersion ωs = ωs(q), with
q‖ along Γ − M, is shown for the 7 ML thick Pb(111) film. Thicker films did not
present any remarkable difference in the surface plasmon dispersion. The values of ωs

were evaluated at the position of the HWHM. As can be seen, the surface plasmon
presents a fairly linear dispersion as a function of the momentum transfer for q & 0.1
a.u.

The straight line in Fig. 10.10 is the result of fitting ω(q) = A + B · q for q > 0.1
a.u. The obtained values of the fitting parameters are A = 10.58 eV and B = 7.35
eV·a.u. It is interesting to compare this findings with a simple model giving a similar
behaviour of ωs = ωs(q).

In a semiinfinite jellium surface, using the so-called on-step hydrodynamic approach
[MPMSVCME07, Lun83], the following expression for the dispersion of the surface
plasmon is found at long wavelengths:

ωs(q) =
ωp√

2
+
βq

2
, (10.5)
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Figure 10.10: Surface plasmon dispersion for
the 7 MLs thick Pb(111) film as a function of
q‖ (along Γ−M). The circles represent the cal-
culated values of the HWHM position at each
q. The red solid line is a linear fit of the com-
putational results, while the green dashed one
stands for the surface plasmon dispersion in a
hydrodynamic approach of the jellium semiin-
finite surface (see the text). The shaded or-
ange square marks the experimental interval
of ωexp

s = 10.6± 0.2 eV [JP60].

where ωp/
√

2 =
√

1.5r−3
s and β =

√
3/5(vF/2) [MPMSVCME07, Lun83], being vF =

(9π/4)1/3r−1
s the Fermi velocity of a free-electron gas of average valence electron density

parameter rs. Using rPb
s one gets ωPb

p /
√

2 = 9.57 eV and βPb/2 = 8.801 eV·a.u. This
dispersion is plotted in Fig. 10.10 as a green dashed line, while the orange square
shows the energy interval for the experimentally determined value of ωexp

s = 10.6± 0.2
eV [JP60]. The dispersion derived from the hydrodynamic approach fails in reproducing
a correct value for the optical surface plasmon energy (as pointed above). However,
the difference in the obtained slope of the two lines in Fig. 10.10 makes the model
dispersion Eq. (10.5) move closer to the first-principles result as q increases. Note that
strictly speaking, Eq. (10.5) is valid for q � 2ωp/β [MPMSVCME07, Lun83]. In the
case of lead, this gives the condition q � 1.087 a.u.

Finally, note it is difficult to deduce a value of ωs(q → 0) from the present cal-
culations, as the surface plasmon disperses with the momentum transfer in contrast
to the classical picture described by Eq. (10.1). In addition, the well-known negative
dispersion of the surface plasmon as a function of q‖ in the long wavelength limit is
not retrieved in the present work, as even for the thickest film studied (15 MLs) the
low- and high- energy modes are splitted for the smallest values of q‖ used.

10.5 SOC effects

In Chapter 9 it was shown that SOC affects remarkably the electronic structure of a
1 ML Pb(111) slab close to EF , while mostly leaving unchanged the energy bands of
thicker Pb(111) films. In order to check the SOC effects on the surface loss function of
the Pb(111) thin films, Im[g(q‖, ω)] for the 1 and 2 MLs thick slabs has been calculated
with full SOC inclusion. The results are shown in Fig. 10.11 together with the scalar-
relativistic counterparts.

As readily seen in Fig. 10.11, in both cases the low-energy thin film plasmon mode
disappears upon inclusion of the SOC. This is not a surprising finding for the single
monolayer case, as it acquires a semimetallic character when the spin-orbit interaction
is switched on (see Fig. 9.2). However, the 2 MLs thick film results also show no
signature of the low-energy mode when SOC is included. This is an unexpected result,
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Figure 10.11: Surface loss function of 1, 2 and 4 MLs thick Pb(111) films obtained at the scalar-
relativistic level (“scalar”), with full inclusion of the SOC (“full SOC”) and using the scalar-
relativistic wave functions together with the SOC-included energy bands (“SOC energies”) in the
calculations. The low-energy symmetric mode ω− is highlighted when present.
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as the band structrure of the 2 MLs thick film calculated with inclusion of SOC is
qualitatively unaffected in comparison with its scalar-relativistic counterpart. In order
to get further insight into this issue, Im[g(q‖, ω)] for the 2 MLs slab was evaluated
using the scalar-relativistic wave functions together with the SOC-included energy
bands, and the results are shown in the leftmost panel of Fig. 10.11. As readily seen,
the surface loss function obtained is almost unchanged with respect to the purely
scalar-relativistic calculation. Thus, the low-energy mode is retrieved as long as the
scalar-relativistic states are used in the evaluation of the susceptibility. This is a
remarkable and unexpected SOC effect. Work is in progress to gain further insight
into this SOC-induced disappearance of the low-energy symmetric mode.

In general, apart of removing the low-energy mode, SOC leaves the surface loss
function qualitatively unchanged, as seen in Fig. 10.11. However, the intensity of
Im[g(q‖, ω)] is greatly decreased for the 2 MLs slab. Comparing the results obtained
using the scalar-relativistic wave functions together with the SOC-included energy
bands, it is concluded that the lowering of intensity of the surface loss function upon
full SOC inclusion is a consequence of the incorporation of the two-component spinors,
while the SOC-induced energy splittings have a negligible effect on the calculated
Im[g(q‖, ω)]. Also, the long-living interband peak present in the scalar-relativistic
surface loss function of the single monolayer is strongly smeared by the SOC, while
its dispersion remains unaffected. This, again, is interpreted as a consequence of the
coupling between two-component spinor wave functions, as the QWS energies around
Γ are unchanged by the SOC in the single monolayer band structure (see Fig. 9.2).

10.6 Summary

In the work reported in the present Chapter we have shown that the three-dimensional
estimation of the interacting susceptibility as given by Eqs. (3.28)-(3.29) draws an
incorrect picture for the surface loss function of thin films in the long wavelength limit.
The correct results are retrieved when the integrations in the Dyson-like equation
Eq. (3.15) are restricted to a finite z range.

For 1 and 2 MLs thick films strong QSE have been found. The high-energy mode
is completely absent in the single monolayer. This is a direct consequence of the
quantization of the electronic states, leading instead to the appearance of discrete
interband transitions for the high-energy range at small momentum transfer q [see
Fig. 10.8 (a)].

Incorporation of the the full 3D ab initio band structure also shows a new feature. It
does not disperse with the momentum transfer for films thicker than 2 MLs, presenting
an energy of ω ∼ 7 eV. In practice, this new mode plays the role of the classical surface
plasmon as the long-q limit of the low-energy thin film mode, as ω− disappears upon
coupling to the dispersionless peak. To the best of our knowledge, this is the first work
predicting the existence of this new mode as the short wavelength limit of the low-
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energy mode, replacing the role of the classical surface plasmon of energy ωs = ωp/
√

2.
Indeed, in Ref. [JP60] a value of 7.2±0.1 eV was reported as the average energy of
a feature below the surface plasmon energy in EELS measurements. We identify this
feature as the dispersionless mode found in the present ab initio study. Surprisingly,
the optical surface loss function evaluated from bulk calculations [see Eq. (10.4)] also
shows a faint peak at ∼ 7 eV.

Also, the surface loss function calculated from Eq. (10.4) without including the
semicore electrons (see Section 7.2) is in agreeement with the first-principle results [see
Fig. 10.8 (c) and (d)]. As regards the surface plasmon dispersion, a linear dependence
with q has been found in the present work. Once its dispersion is fitted to a linear
function of the momentum transfer, extrapolation of the fitting to q → 0 gives a value
of 10.58 eV, close to the experimental ωexp

s = 10.6±0.2 eV [JP60].

Unexpectedly, SOC is found to remove the low-energy symmetric mode through
the passage from scalar-relativistic states to two-component spinors as wave functions.

New electron energy loss spectroscopy measurements on Pb(111) thin films are
highly desirable to check the present predictions and gain further insight in the dy-
namics of collective excitations of nanostructured systems and the consequences of the
quantization of the electronic states. New experimental work could help solving the
question about the theoretically predicted disappearance of the low-energy mode once
SOC is taken into account.



Chapter 11

Summary and general conclusions

Here we schematically summarize the theoretical frameworks used and the physical
properties studied in the present work. Then a brief outline of the most important
results obtained in this thesis is presented, followed by a summary of the comparison
with available experimental results. Finally, we give an outlook of the possible future
steps to be undertaken.

I The present work has been based on the theoretical frameworks listed here:

(i) We have modeled the lattice potential felt by the valence electrons using
norm-conserving pseudopotentials (NCP), which also serve as the theoreti-
cal method for the inclusion of the spin-orbit coupling (SOC) in the Hamil-
tonian.

(ii) The density-functional theory (DFT) together with the Local Density Ap-
proximation (LDA) have been used to obtain the electronic ground state
properties of both bulk Pb and Pb(111) thin films.

(iii) Linear-response theory has been applied to evaluate the density-density re-
sponse function, particularly the plasma losses, of bulk Pb and Pb nanosized
films. The computational scheme was extended to allow calculations of the
susceptibility incorporating two-component spinors form for representing the
electron wave functions.

(iv) Many-body perturbation theory has been applied through the GW approx-
imation to obtain and analyze the inelastic decay rates of excited electrons
and holes in bulk Pb.

(v) For slab calculations, a supercell scheme has been used together with a
corrected approach to evaluate the interacting susceptibility, allowing the
study of the surface loss function of nanosized Pb films.

(vi) Throughout this thesis, simple models of the electron dynamics have been
used to gain insight into the properties of electronic single-particle and col-
lective excitations. Particularly, the free-electron gas (FEG) has served as
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a reference for most of the properties studied in the present work.

II We have performed a first-principles study of the following properties of the
electronic structure, and the dynamics of electronic single-particle and collective
excitations of Pb in two different solid forms:

(i) In bulk lead we have performed the study of

• SOC effects on the electronic ground state,

• influence of different physical factors [SOC, local-field effects (LFE) and
inclusion of xc effects] on energy-loss function on the low-energy transfer
range,

• acoustic plasmons, analyzing their anisotropic character,

• the importance of the inclusion of the Pb 5d semicore electons on the
study of the bulk plasmon dynamics,

• and the inelastic electron-electron (e− e) contribution to the lifetime of
excited quasiparticles.

(ii) In Pb(111) 1 - 15 monolayers (ML) thick films we carried out calculations
on

• quantum-size effects (QSE) on the density of states (DOS), effective
masses m∗ and work function,

• SOC effects in the electronic ground state and surface loss function of
the films,

• and the thickness dependence of the main plasmon modes.

III Based on the studies outlined above, we have obtained a general picture of the
dynamical electronic excitations in Pb bulk and thin films and the effects of the
different physical ingredients. Particular emphasis has been placed on ths study
of SOC effects. The following are the main conclusions drawn by the present
thesis:

(i) SOC effects.

• Spin-orbit interaction affects the band structure of bulk Pb and Pb(111)
films in a notably distinct way. While producing large energy spliitings
on bulk, it slightly affects the electronic structure of Pb(111) freestand-
ing slabs except for the single ML case which becomes semimetallic
upon SOC inclusion. This is understood in terms of the bulk electronic
structure along Γ−L.
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• Two manifestations of SOC effects on the energy-loss function of bulk
lead have been found. In the low-energy transfer range, SOC improves
the agreement with optical measurements. In the high-energy transfer
range, it strongly affects the bulk plasmon dynamics mainly through
the SOC-induced energy splitting between the 5d5/2 and 5d3/2 semicore
levels.

• SOC also lowers the group velocity of the bulk acoustic plasmons found
in the calculations.

• SOC affects the effective screening at low quasiparticle energies. More-
over, it reduces the decay rate of excited electrons around the Brillouin
zone (BZ) center by as much as 60%.

• The incorporation of the two-component spinors on the evaluation of
the susceptibility causes the disappearance of the low-energy symmetric
mode on Pb(111) films.

(ii) Acoustic plasmons in bulk Pb.

• The existence of acoustic plasmon modes in bulk Pb has been predicted.

• The number and group velocity of these acoustic modes depends on the
direction of the momentum transfer and on the inclusion of SOC.

• The possibility of experimental check of the existence of these acoustic
modes by electron energy-loss measurements seems feasible as these
modes keep their character up to ω '2 eV.

• The acoustic plasmon along Γ-K in the second BZ is suggested as the
most suitable for its experimental detection.

(iii) High-energy transfer dielectric response of bulk Pb.

• The inclusion of the 5d semicore electrons completely changes the high-
energy transfer dielectric properties of bulk Pb. In particular, it lowers
the bulk plasmon energy in the long wavelength limit by roughly 2.5
eV and it also shortens the momentum transfer range in which the bulk
plasmon can exist.

• LFE greatly affect the energy-loss function of bulk Pb once the semi-
core electrons are explicitly included. This reflects the highly localized
character of the 5d electrons in Pb.

• In general, we found that the high-energy transfer dielectric response of
bulk Pb is shaped by the interplay between the transitions stemming
from the semicore 5d electrons, the SOC effects and LFE.

(iv) Inelastic e− e contribution to the decay rate of excited quasiparticles in Pb.

• Strong localization effects are found on the inelastic electron-electron
contribution to the decay rate of excited electrons with energies 5.5 eV
6 ε 6 8 eV, where Γnk for d states is roughly 2 times larger than for p
states.
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• For the p electrons the damping rates Γ(ε) averaged over the BZ present
a quadratic dependence on energy ε, whereas for p holes the quasi-
linear dependence of Γ(ε) for energies ε below -2.5 eV reflects a non-
free-electron-like nature of the electronic states at the bottom of the
lowest p band.

• The calculated lifetime ratio τe(ε)/τh(ε) reveals that band structure ef-
fects are important in electron-electron inelastic scattering processes for
quasiparticles with binding energies less than 2 eV.

• By comparing the obtained results with experimental measurements of
the lifetime of quantum-well states (QWS) in thin Pb films, we conclude
that low-energy quasiparticles dynamics in the latter systems can be
well represented by that in bulk Pb, even for a single Pb ML. This is
understood in terms of the screening length in lead.

• As a preliminary result, at the scalar-relativistic level, xc effects have
been found to noticeably increase the inelastic damping rates with re-
spect to the RPA calculations. This holds for all the states analyzed,
independently of their energy or orbital character.

(v) Fresstanding Pb(111) thin films: QSE and dielectric response.

• QSE have been found in the DOS, effective masses m∗ and work function
of the thin lead films.

• Plasmon modes analogous to the ones deduced from classical electro-
dynamics are found. The faint low-energy symmetric thin film plasmon
mode can be resolved for slabs with a thickness 65 MLs. The high-
energy antisymmetric one is the most intense feature in the surface loss
function for all the studied thickenesses.

• Remarkable QSE are found in the surface loss function of the single
Pb(111) monolayer, the 2MLs thick slab representing the crossover with
the thickness regime in which QSE are absent. This is shown to be
related to the thickness of the slab in units of the Pb Fermi wavelength.

• A dispersionless mode at energy ω ' 7 eV has been found in film cal-
culations. This peak appears as also as a faint feature in the optical
surface loss function deduce from bulk calculation, signaling the bulk-
like character of this mode.

IV Summary of comparisons with experimental and other theoretical works.

(i) The calculated band structure of bulk Pb with SOC included is in good
agreement with previous experimental [JP90] and theoretical [JVTJ+08]
studies.

(ii) The calculated binding energies of the SOC-splitted semicore 5d5/2 and 5d3/2

levels are lower than the ones reported in photoionization measurements
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[IPAA12] by ∼ 2.4 eV, while they are in excellent agreement with a previous
theoretical study [JVTJ+08].

(iii) Good agreement with available optical experimental data [GMPM71] on
the bulk Pb dielectric function is interpreted as an evidence of remarkable
SOC effects, also in agreement with other theoretical works [SMWRLdB09,
GAD10].

(iv) Comparison with reflectance measurements [MAWG73] shows good agree-
ment with the calculated bulk plasmon energy ωp, while no agreement has
been found with the ωp obtained in electron energy-loss measurements as
reported in Ref. [JP60]. However, on the latter experimental work a broad
feature centered at 23.3 eV was found, which is in fairly good agreement
with a peak obtained at a close energy in our calculations.

(v) Good agreement of the calculated inelastic decay rates with the time-resolved
two photon photoemission (TR-2PPE) experimental data of Ref. [MRD+10]
is found.

(vi) Present lifetime calculations for bulk Pb are in good agreement with inelas-
tic damping rates of quantum well states of metallic thin films measured
recently [HBP+09, SKRZ+10], presenting thereby evidence that quasipar-
ticle dynamics can be considered as being bulk-like even in very thin Pb
films.

(vii) QSE on the calculated DOS and work functions are in good agreement
with a large bibliography of both theoretical and experimental studies, see
Ref. [JLZX07] for a review on this issue.

(viii) As the 15 MLs thick Pb(111) film still presents in its calculated surface loss
function the effects of the finite thickness, no unambiguous comparison with
experimental values of the Pb surface plasmon energy was allowed.

(iv) Our first-principles results predict the existence of a mostly dispersionless
new mode as the short wavelength limit of the low-energy mode are in good
agreement with a mode found at 7.2±0.1 eV in EELS measurements re-
ported in Ref. [JP60]. This mode presents a negligible dispersion up to q =
0.25 a.u. We trace back the origin of this mode to the bulk.

V Outlook of possible future work.

(i) Inclusion of the image potential tail as the correct asymptotic form of the
Hartree potential in the vacuum. This could lead to changes in the surface
loss function, as the 1/z decay of the potential would give to the electron
states close to vacuum level a larger weight outside the slab surfaces [Lie97].

(ii) Inclusion of the substrate in the slab calculations in a realistic fashion. A
starting strategy could consist in performing ab initio calculations of the
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band structure of Pb(111) films on a silicon substrate. Once the effec-
tive masses of the QWSs are obtained, one could use this data to perform
model calculations analogous to the ones reported in Ref. [ZZMS+09] for the
Pb/Cu(111) system, using a one-dimensional pseudopotential for modeling
the substrate and the jellium model for the Pb overlayers.

(iii) Perform slab calculations of first-principles e−e decay rates of film electronic
states.
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Appendix A

Acronyms

2D Two-dimensional

3D Three-dimensional

ALDA Adiabatic LDA

AP Acoustic plasmon

ARPES Angle-resolved photoemission spectroscopy

ASP Acoustic surface plasmon

a.u. Atomic units

BZ Brillouin zone

CPA Coherent potential approximation

CPU Central processing unit

DFT Density functional theory

DOS Density of states

EELS Electron-energy loss spectroscopy

FEG Free-electron gas

fcc Face-centered cubic

FER Field emission resonance

FWHM Full-width at half-maximum

GW G: Green’s function and W : Screened Coulomb interaction (from the
German word Wechselwirkung)
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HK Hohenberg-Kohn

HSC Hamann-Schlüter-Chiang

HWHM Half-width at half-maximum

IBZ Irreducible Brillouin zone

IPES Inverse photoemission spectroscopy

ISBZ Irreducible surface Brillouin zone

KKR Korringa-Kohn-Rostoker

KS Kohn-Sham

LDA Local density approximation

LDF Lindhard dielectric function

LFE Local-field effects

ML Monolayer

NCP Norm-conserving pseudopotential

OPW Orthogonalized plane wave

QF Quinn-Ferrell

QSE Quantum-size effect

QWS Quantum-well state

RPA Random phase approximation

SBZ Surface Brillouin zone

SOC Spin-orbit coupling

STM Scanning tunneling microscope

STS Scanning tunneling spectroscopy

TDDFT Time-dependent DFT

TDLDA Time-dependent LDA

TM Troullier-Martins

TR-2PPE Time-resolved two-photon photoemission

xc Exchange-correlation



Appendix B

SOC matrix element derivation

Here we derive the SOC matrix elements Eqs. (2.36)-(2.38) for a plane wave basis.
Then the proof of the property given by Eq. (2.42) is shown.

B.1 SOC matrix elements

In this Section the matrix element of the operator [Eq. (2.31)]

V̂ SOC =
∑

l

V SOC
l (r)L · σPl (B.1)

is derived below using plane waves {|k + G〉} as the basis. Pl stands for the projector
on the angular momentum channel l.

First, the total operator is the sum of operators (B.1) for all the atoms in the
crystal. Each atom is positioned in a unit cell whose origin is placed at Rµ and with
the position vector τ i inner to the unit cell. Thus the atomic coordinates are given by
rµ,i = Rµ + τ i. Then,

V SOC(G,G’) =
∑
µ,i

〈k + G|V̂ SOC(r−Rµ − τ i, r’−Rµ − τ i)|k + G’〉 =

=
1

Ω

∑
µ,i

∫
Ω

∫
Ω

e−i(k+G)·rV̂ SOC(r−Rµ − τ i, r’−Rµ − τ i)e
i(k+G’)·r’drdr’, (B.2)

where Ω stands for the total volume of the system. Now, the change of variable
r → r + Rµ + τ i and the analogous of r’ are applied. Then using the definition of
reciprocal lattice vectors ∑

µ

e±i(G−G’)·Rµ = Ncells, (B.3)
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being Ncells the total number of unit cells in the crystal, the following expression is
obtained

V SOC(G,G’) =
1

Ωcell

∑
i

∫
Ω

∫
Ω

e−i(k+G)·rV̂ SOC(r, r’)ei(k+G’)·r’e−i(G−G’)·τ idrdr’, (B.4)

where Ωcell = Ω/Ncells is the volume of the unit cell. For the next step the structure
factor defined as

S(G) =
1

Ωcell

∑
i

e−iG·τ i , (B.5)

is introduced in Eq. (B.4) together with the expression (2.31) for the SOC potential
operator, leading to the equation

V SOC
σ,σ′ (G,G’) = S(G−G’)×

×
∫

Ω

∫
Ω

e−i(k+G)·r
∑
l,m

V SOC
l (r)L · σYl,m(θ, ϕ)Y ∗

l,m(θ′, ϕ′)ei(k+G’)·r’r2drdΩdΩ′. (B.6)

Here Yl.m(θ, ϕ) are spherical harmonics and Ω is the solid angle, not to be confused
with the volume of the system usually denoted by the same greek letter (as above).

As explained in Section 2.6.1, the operator product L·σ transforms the SOC matrix
element in a 2×2 matrix in the electron spin 1/2 subspace. As a result, three different
matrix elements are retrieved, whose derivation is followed in parallel. Consequently,
Eq. (B.6) is unfold in three [see Eq. (2.32)],

V SOC
↑↑ (G,G’) =

S(G−G’)

2
×

×
∫

Ω

∫
Ω

e−i(k+G)·r
∑
l,m

V SOC
l (r)mYl,m(θ, ϕ)Y ∗

l,m(θ′, ϕ′)ei(k+G’)·r’r2drdΩdΩ′, (B.7)

V SOC
↑↓ (G,G’) =

S(G−G’)

2
×

×
∫

Ω

∫
Ω

e−i(k+G)·r
∑
l,m

V SOC
l (r)C−(l,m)Yl,m(θ, ϕ)Y ∗

l,m(θ′, ϕ′)ei(k+G’)·r’r2drdΩdΩ′,

(B.8)

V SOC
↓↑ (G,G’) =

S(G−G’)

2
×

×
∫

Ω

∫
Ω

e−i(k+G)·r
∑
l,m

V SOC
l (r)C+(l,m)Yl,m(θ, ϕ)Y ∗

l,m(θ′, ϕ′)ei(k+G’)·r’r2drdΩdΩ′,

(B.9)
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where C±(l,m) =
√
l(l + 1)−m(m± 1) are Clebsch-Gordan coefficients [JS94] and

the action of the angular momentum operators L̂z, L̂− and L̂+ on the spherical har-
monics (here we explicitly include ~),

L̂zYl.m(θ, ϕ) = ~mYl.m(θ, ϕ),

L̂−Yl.m(θ, ϕ) = ~C−(l,m)Yl.m(θ, ϕ),

L̂+Yl.m(θ, ϕ) = ~C+(l,m)Yl.m(θ, ϕ),

(B.10)

has been used.

At this point the expansion of the exponential function in terms of spherical har-
monics is introduced,

eik·r = 4π
∑
l,m

iljl(kr)Y
∗
l,m(k̂)Yl,m(r̂) (B.11)

where k = |k|k̂ and r = |r|r̂, and the orthogonality of the spherical harmonics
〈Yl,m(θ, ϕ)|Yl′,m′(θ, ϕ)〉 = δll′δmm′ is applied to retrieve the final form of the SOC matrix
elements,

V̂ SOC
↑↑ (G,G’) = S ′(G,G’)

∑
l,m

mY ∗
l,m(K̂G′)Yl,m(K̂G)Al(KG, KG′), (B.12)

V̂ SOC
↑↓ (G,G’) = S ′(G,G’)

∑
l,m

C−(l,m)Y ∗
l,m(K̂G′)Yl,m−1(K̂G)Al(KG, KG′), (B.13)

V̂ SOC
↓↑ (G,G’) = S ′(G,G’)

∑
l,m

C+(l,m)Y ∗
l,m(K̂G′)Yl,m+1(K̂G)Al(KG, KG′), (B.14)

which coincides with Eqs. (2.36)-(2.38). Here KG ≡ k+G, and S ′(G−G’) = 2π2S(G−
G’) as in Section 2.6.1. Al(KG, KG′) is given by Eq. (2.39)

B.2 Proof of Eq. (2.42)

Here I prove the antihermicity of 〈ei(k+G′)rχσ′|V̂ SOC |ei(k+G)rχσ〉 regarding the spin for
a centrosymmetric system. The presence of a centre of inversion in a crystal results in
the following symmetry: F(±k ± G) = F(k + G) for any function F(k). Then it is
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straightforward to prove Eq. (2.42) as follows,

− 〈ei(k+G′)rχσ=↑|HSO
↑↓ |ei(k+G)rχσ′=↓〉∗ =

= −[S ′(G−G′)
∑

l

+l∑
m=−l+1

√
l(l + 1)−m(m− 1)Y ∗

l,m(K̂G′)Yl,m+1(K̂G)Al(KG, KG′)]∗ =

= −S ′(G−G′)
∑

l

+l∑
m=−l+1

√
l(l + 1)−m(m− 1)Yl,m(K̂G′)Y ∗

l,m+1(K̂G)Al(KG, KG′) =

= S ′(G−G′)
∑

l

+l∑
m=−l+1

√
l(l + 1)−m(m− 1)Y ∗

l,−m(K̂G′)Yl,−m−1(K̂G)Al(KG, KG′) =

= S ′(G−G′)
∑

l

+l−1∑
m=−l

√
l(l + 1)−m(m+ 1)Y ∗

l,m(K̂G′)Yl,m−1(K̂G)Al(KG, KG′) =

= 〈ei(k+G′)rχσ=↓|HSO
↓↑ |ei(k+G)rχσ′=↑〉,

where the property Y ∗
l,m = (−1)mYl,−m of the spherical harmonics has been used.

The structure factor S ′(G−G′) is supposed to be real and actually it is in systems
which present a centre of inversion. If it is not the case, the structure factor is in
general a complex quantity, but one could still make use of Eq. (2.42) by only changing
the structure factor by its complex conjugated value: S ′(G−G′) ⇒ S ′(G−G′)∗.



Appendix C

Variational principle and its
application to SOC inclusion in
electronic structure calculations

What follows is a brief review of the general variational method and its particular use
in the inclusion of the SOC in electronic structure calculations.

C.1 General formulation of the variational method

Let suppose that the system under study is described by the following eigenvalue
equation:

H0ψn = εnψn, (C.1)

and that the eigenstates of the system are orthonormal: 〈ψn|ψm〉 = δnm. Expanding
them on the basis {φi}, which is supposed to be complete and infinite,

ψn =
∞∑
i=1

cni
φi. (C.2)

Obviously, in practice the upper limit of the sum in (C.2) will be a finite integer.

Now, a linear combination of eigenstates of (C.1) can be built as:

Ψ =

N2∑
n=N1

ξnψn =

N2∑
n=N1

ξn

∞∑
i=1

cni
φi. (C.3)

Concerning the value of N1 and N2, see the discussion following Eq. (C.8).

Now the obtention of the eigenvalues and eigenstates of a different system described
by the Hamiltonian Ĥ = Ĥ0 + Ĥ1 is sought. Let define the functional L = L[Ψ] as

L[Ψ] = 〈Ψ|Ĥ0 + Ĥ1|Ψ〉 − E〈Ψ|Ψ〉. (C.4)
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The basis functions {φi} and their linear combinations {ψn} as solutions of Eq. (C.1)
are known and fixed, so L is only a function of the expansion coefficients in Eq. (C.3),
ξn. Putting (C.3) in Eq. (C.4) and using Eq. (C.1) together with the orthonormality
of {ψn} we get:

L[ξn, ξm] =
∑
n,m

ξnξ
∗
mεnδn,m +

∑
n,m

ξnξ
∗
m〈ψm|Ĥ1|ψn〉 − E

∑
n,m

ξnξ
∗
mδn,m, (C.5)

where the coefficients ξn are complex in general.

The next step is to apply the variational method to L,

∂L

∂ξn
= 0, (C.6)

which leads to

∂L

∂ξ∗m
=

∑
n

ξnεnδn,m +
∑

n

ξn〈ψm|H1|ψn〉 −
∑

n

Eξnδn,m = 0. (C.7)

In order to get a non-trivial solution, ξn 6= 0, of Eq. (C.7) we must solve

det|(εn − E)δn,m − 〈ψm|Ĥ1|ψn〉| = 0. (C.8)

Solving Eq. (C.8) the coefficients ξn and the new eigenvalues are collected, being the
latter the variational estimate of the energy levels of the Hamiltonian Ĥ0 + Ĥ1.

A few words about the values that m and n take in Eq. (C.7) must be said. From
Eq. (C.7) one sees clearly that there is a mixing introduced by 〈ψm|Ĥ1|ψn〉 between
different eigenstates of the original Hamiltonian Ĥ0. In the spirit of perturbation
theory, taking Ĥ1 as the perturbation, m and n could be only those labels corresponding
to the original eigenstates which present a non-negligible value of 〈ψm|Ĥ1|ψn〉 and thus
a noticeable mixing between them once the perturbation is switched on. Then, we have
the freedom of choosing which energy levels are going to be perturbed. This freedom
can be used to analyzed the way the perturbation Ĥ1 mixes the different unperturbed
eigenfunctions.

The approximation of the eigenstates of the Ĥ0 + Ĥ1 Hamiltonian which results
from the present procedure is

Ψj =
∑

n

ξj
nψn, (C.9)

with {ξj
n} corresponding to the variationally estimated eigenvalue εj of Ĥ0 + Ĥ1.

C.2 Applying the method to the inclusion of the

SOC in plane wave basis calculations

In this Section the methodology described above is applied to the inclusion of the SOC,
Ĥ1 ≡ V̂ SOC , in electronic structure calculations using two-component spinorial plane
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waves as basis functions, {
ei(k+G)rχσ

}
, (C.10)

where spin wave functions χσ are given by Eq. (3.15), and in our case G are reciprocal
lattice vectors. Thus the eigenstates of our Ĥ0 Hamiltonian -some scalar-relativistic
Hamiltonian- are expanded in the basis Eq. (C.10),

ψn,k,σ = (
∑
G

cn,k(G)ei(k+G)r)χσ ≡ ψn,k(r)χσ. (C.11)

Their linear combination gives the spinor

Ψk =

N2∑
n=N1

∑
σ=↑,↓

ξn,k,σψn,k,σ =

N2∑
n=N1

∑
σ=↑,↓

ξn,k,σ(
∑
G

cn,k(G)ei(k+G)r)χσ =

=

N2∑
n=N1

∑
σ=↑,↓

ξn,k,σχσ(
∑
G

cn,k(G)ei(k+G)r) =

N2∑
n=N1

∑
σ=↑,↓

ξn,k,σχσψn,k(r). (C.12)

Introducing it in Eq. (C.4), one is left with the functional:

L[ξn,k,σ, ξn′,k,σ′ ] =
∑
n,n′

∑
σ,σ′

ξn,k,σξ
∗
n′,k,σ′εn,k,σδn,n′δσ,σ′ +

+
∑
n,n′

∑
σ,σ′

ξn,k,σξ
∗
n′,k,σ′〈ψn′,k,σ′|V̂ SOC |ψn,k,σ〉 − Ek

∑
n,n′

∑
σ,σ′

ξn,k,σξ
∗
n′,k,σ′δn,n′δσ,σ′ . (C.13)

Appplying now the variational procedure,

∂L

∂ξ∗n′,k,σ′
=

∑
n,σ

ξn,k,σεn,k,σδn,n′δσ,σ′ +

+
∑
n,σ

ξn,k,σ〈ψn′,k,σ′|V̂ SOC |ψn,k,σ〉 −
∑
n,σ

Ekξn,k,σδn,n′δσ,σ′ = 0, (C.14)

and taking ξn,k,σ out as a common factor, one is left with the following system of linear
equations:∑

n,σ

ξn,k,σ[εn,k,σδn,n′δσ,σ′ + 〈ψn′,k,σ′|V̂ SOC |ψn,k,σ〉 − Ekδn,n′δσ,σ′ ] = 0, (C.15)

from where it follows that

det|(εn,k,σ − Ek)δn,n′δσ,σ′ − 〈ψn′,k,σ′|V̂ SOC |ψn,k,σ〉| = 0. (C.16)

Solving Eq. (C.16) the variational estimate of the energy levels and of the coefficients
ξj
n,k,σ in the expansion

Ψj =
∑
n,σ

ξj
n,k,σψn,σ (C.17)
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of the variational estimate of the eigenfunctions of Ĥ0 + V̂ SOC are obtained. It is worth
recalling that the coefficients ξj

n,k,σ are complex in general.

Finally, note that the matrix element 〈ψn′,k,σ′|V̂ SOC |ψn,k,σ〉 in the formalism adopted
in the present work (see Appendix B) is unfolded in three, which exhibit the following
form,

〈ψn′,k↑|V̂ SOC
↑↑ |ψn,k,↑〉 =

∑
G,G′

cn,k(G)c∗n′,k(G’)S ′(G−G′)×

×
∑
l,m

mY ∗
l,m(K̂G′)Yl,m(K̂G)Al(KG, KG′) (C.18)

〈ψn′,k,↑|V̂ SO
↑↓ |ψn,k,↓〉 =

∑
G,G′

cn,k(G)c∗n′,k(G’)S ′(G−G′)×

×
∑
l,m

C−(l,m)Y ∗
l,m(K̂G′)Yl,m−1(K̂G)Al(KG, KG′) (C.19)

〈ψn′,k↓|V̂ SO
↓↑ |ψn,k,↑〉 =

∑
G,G′

cn,k(G)c∗n′,k(G’)S ′(G−G′)×

×
∑
l,m

C+(l,m)Y ∗
l,m(K̂G′)Yl,m+1(K̂G)Al(KG, KG′) (C.20)

where S ′(G−G′) = 2π2S(G−G′), being S(G−G′) the structure factor. C±(l,m) =√
l(l + 1)−m(m± 1) are Clebsch-Gordan coefficients [JS94] and Al(KG, KG′) is given

by Eq. (2.39).

Note in the depicted application of the variational method to the inclusion of the
SOC we suppose that Ĥ0 has a implicit up-down spin structure. As a consequence the
eigenstates of Ĥ0 are chosen as purely spin-up or spin-down, with exactly the same spa-
tial part of the wave function for the modes corresponding to the same scalar-relativistic
electron states. This way we introduce at hand the electron 1/2 spin expanding the
Hilbert space of the truly scalar-relativistic Hamitonian, a procedure needed to in-
clude the SOC in the electronic structure calculations following the variational recipe.
Strictly, there is no spin in the scalar-relativistic system, as no spin-dependent terms
appear in the Hamiltonian Ĥ0, see Eq. (2.20).



Appendix D

Numerical representation of the
energy conservation in the
dynamical structure factor

In order to evaluate Eq. (3.19) in practice one needs to replace δ(εn,k − εn′,k+q + ω),
the Dirac delta which ensures energy conservation, with some function of finite width.

Probably the most usual choice is a Gaussian (see i.e. [AG94]),

δ(x) → 1

σ
√
π
e−x2/σ2

, (D.1)

where σ controls the width of the Gaussian. Using a Gaussian to model the Dirac delta
δ(εn,k− εn′,k+q +ω) presents a drawback. When ω is smaller than the Gaussian width,
in practice this applies for the first values of ω in the numerical grid {ωi}, some spectral
weight is lost. In other words, there is a small leackage of the calculated dynamical
structure factor to the range of negative energy tranfer ω < 0 (see Fig. D.1). We want
to avoid this, as it represents (via the fluctuation-dissipation theorem) a violation of
the sum rule any susceptibility must fulfill [GV05].

To solve this problem, a slightly different function is used to model the delta func-
tion, namely the following function

δ(x) → C xe−x2/σ2

. (D.2)

The normalization factor C is obtained from the condition∫ ∞

0

C xe−x2/σ2

dx = 1. (D.3)

More precisely, in our case we carry the substitution

δ(ω) → C ωe−(∆+ω)2/σ2

, (D.4)
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Figure D.1: Comparison of a Gaussian Eq. (D.1) with the modified function Eq. (D.4) for three
different values of ∆ = 0.12, 0.42, 1.00, from left to right. Blue (green) curves correspond to the
different Gaussians (modified functions). The shaded area represents the weight loss for a Gaussian
when ∆ � 1, which for the depicted example is of ∼ 4.5%. All curves are drawn for a fixed σ = 0.1.

defining ∆ ≡ (εn,k − εn′,k+q). Then applying Eq. (D.3) we obtain

C =
2

σ2e−
|∆|2
σ2 +

√
πσ|∆|

[
1 + erf

(
|∆|
σ

)] , (D.5)

where

erf(x) =
2√
π

∫ x

0

e−t2dt, (D.6)

is the so-called error function [AS64]. In Fig. D.1

One could still argue that a Gaussian, Eq. (D.1), can be used by only being careful
in choosing a σ small enough with respect to the {ωi} grid step ∆ωi in order to
avoid the leacking of spectral weight. The point is that σ has to be high enough
to ensure some overlap between the Dirac delta-like peaks centered at contiguous ωi

of the energy momentum mesh. This is needed to avoid spurious oscillations in the
dynamical structure factor and consequently in the imaginary part of the susceptibility
[see Eq. 3.23]. The presence of such oscillations would represent a numerical noise
which would be reflected by the Kramers-Kronig relations [see Eq. (3.5) Section 3.2.1)]
in the real part of the density-density response and dielectric functions. As it is stated
in Section 3.2.1, peaks in the loss function correspond classically to the condition
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Re[ε(q, ω)] = 0. Thus, strong numerical noise in Re[ε(q, ω)] would introduce not only
spurious oscillations in the energy-loss functions, but also spurious peaks.

The succession of peaks drawn in Fig. D.1 where the Dirac delta is modeled both by
a Gaussian (blue curves) and by our modified function Eq. (D.4) (green curves) shows
that our choice for replacing the Dirac delta avoids the leackage of spectral weight
while slightly distorting its shape compared to a Gaussian only for values of ∆ � 1.
As can be seen from the Figure, the dispersion of a peak remains unchanged, except
for a small blueshift when ω → 0.
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Appendix E

Lindhard dielectric function

The so-called Lindhard dielectric function corresponds to the quantum-mechanically
derived longitudinal dielectric function of the electron gas. In three-dimensions it
presents the form (throughout this Appendix we explicitly write down ~)

ε(q, ω) = 1 +
8πe2

q2Ω

∑
k

f(k)− f(k + q)

E(k + q)− E(k)− ~ω − iη
(E.1)

Replacing k + q → k’ in the term containing f(k + q) and relabelling it k, we obtain

ε(q, ω) = 1 +
8πe2

q2Ω

∑
k

[
f(k)

E(k + q)− E(k)− ~ω − iη
+

+
f(k)

E(k + q)− E(k) + ~ω + iη

]
, (E.2)

where q = |q|. The factor 8πe2/q2Ω results of multiplying the Fourier transform of the
Coulomb interaction V (q) = 4πq−2 by a factor 2 which accounts for the spin degeneracy,
finally dividing by the volume of the system, Ω. η = 0+ is a positive infinitesimal.

In order to derive an analytical expression, the zero-temperature limit is assumed, in
which the Fermi-Dirac distributions f(k) becomes a Heaviside step function θ(k−kF ).
Then, recalling that in the free electron gas E(k) = ~2k2/2m (k = |k|) one gets

ε(q, ω) = 1 +
2me2

π~2

kF

q2
+
me2

π~2

1

q3

[
k2

F −
(
q

2
− ω̃

2q

)2
]

ln
2qkF + q2 − ω̃

−2qkF + q2 − ω̃
+

+
me2

π~2

1

q3

[
k2

F −
(
q

2
+
ω̃

2q

)2
]

ln
2qkF + q2 + ω̃

−2qkF + q2 + ω̃
, (E.3)

where we have defined ω̃ ≡ (2m/~)(ω + iη/~). To separate the real and imaginary
parts, the limit η → 0, or equivalently Im ω̃ → 0 is taken. The logarithmic function
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Figure E.1: Sketch of the different regions (labelled by capital roman numbers) in the (q,ω) surface of
the imaginary part of the Lindhard ε(q, ω). The dashed line represents the dispersion of the plasmon
as the dispersion of the locus of (q,ω) points at which the real part of the Lindhard dielectric function
vanishes (see text).

of complex argument is defined with the cut from −∞ to 0, then lnz = ln|z| + iargz
with −π < argz < π. The real part of Eq. (E.3) becomes

Re[ε(q, ω)] = 1+
2me2

π~2

kF

q2
+
me2

π~2

1

q3

[
k2

F −
(
q

2
− m

~
ω

q

)2
]

ln
∣∣∣ 2qkF + q2 − (2m/~)ω

−2qkF + q2 − (2m/~)ω

∣∣∣+
+
me2

π~2

1

q3

[
k2

F −
(
q

2
+
m

~
ω

q

)2
]

ln
∣∣∣ 2qkF + q2 + (2m/~)ω

−2qkF + q2 + (2m/~)ω

∣∣∣. (E.4)

The imaginary part of the Lindhard dielectric function is not analytic. It can be
summarized as follows,

Im[ε(q, ω)] =



2m2e2

~3

ω

q3
if q < 2kF and 0 6 (2m/~)ω 6 2qkF − q2

me2

~2

1

q3

[
k2

F −
(
q

2
− m

~
ω

q

)2
]

if 2qkF − q2 6 (2m/~)ω 6 2qkF + q2

0 in other cases.
(E.5)

The structure of Im[ε(q, ω)] is better assimilated by plotting the three parabolas
(2m/~)ω = 2qkF + q2, (2m/~)ω = 2qkF − q2 and (2m/~)ω = −2qkF + q2. This is done
in Fig. E.1.

In regions I and IV electron-hole pairs of momentum q can not be generated, as
Im[ε] vanishes. Notice this has important consequences. In Fig. E.1 the dashed line
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Figure E.2: Lindhard energy-loss function in arbitrary units, evaluated at the bulk lead density
given by rPb

s = 2.298 or equivalently kPb
F = 0.835 Bohr−1. All three boundaries plotted in Fig. E.1

can be seen reflected here. ω in eV, q in Bohr−1.

represents the plasmon dispersion [an approximation of it is given by Eq. (3.34)], which
takes place for a certain range of q momenta in region I, that is, outside the electron-hole
continuum. Consequently the plasmon is undamped because its decay on electron-hole
pairs is impossible in that range of (q, ω). Thus it presents a vanishing linewidth, or
equivalently an infinite lifetime.

It can be easily shown that in the static limit ω → 0 the Lindhard dielectric function
presents a singularity at q = 2kF . This singular behaviour is responsible for several
interesting phenomena. Specific examples are the Friedel oscillations [Fri58] and in
one-dimensional systems the Peierls instability [EP55], related to the appearance of
charge density waves.

From Eqs. (E.4) and (E.5) the energy-loss function can be built as

Im[ε−1(q, ω)] =
−Im[ε(q, ω)]

Re[ε(q, ω)]2 + Im[ε(q, ω)]2
. (E.6)

Because of the non-analyticity of the imaginary part of the Lindhard dielectric function,
Eq. (E.6) must be evaluated separately for each of the regions defined in Fig. E.1.
Notice that from Eq. (E.6) one deduces that the energy-loss function vanishes for
regions I and II.

In Fig. E.2 the energy-loss function built using Eqs. (E.4) - (E.6) for the lead bulk
valence electronic density is plotted. This density corresponds to rPb

s = 2.298 [see
Eq. (2.15)], which gives a (free-electron-like) Fermi momentum of kPb

F = 0.835 Bohr−1.
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Notice the dissapearance of the plasmon (see the dashed line in Fig. E.1). Using
the simple expression ωp =

√
3r−3

s and rPb
s = 2.298 we deduce the value ωPb

p ' 13.5
eV. The plasmon is missing in Fig. E.2 as a consequence of its presence outside the
electron-hole continuum, as it is mentioned above. Thus we are not able of catching the
plasmon because it is undamped, becoming a Dirac delta which can not be reproduced.
Actually, the small region of maximum intensity in the energy-loss function in Fig. E.2
corresponds to the entrance of the plasmon in the electron-hole continuum, instantly
acquiring a finite width and showing up as the most prominent feature in the energy-
loss spectra.



Appendix F

Derivation of the Quinn-Ferrell
formula

As the starting point, let us consider the damping rate of electrons within the RPA
[MPPZK+04],

Γ(ω) =
2

(2π)3

∫
v(q)Im[−ε−1(q, ω)]dq, (F.1)

where Im[−ε−1(q, ω)] is the energy-loss function (see Section 3.3.1), v(q) = 4π/q2 is
the Fourier transfrom of the bare Coulomb potential and the momentum transfer is
subject to the condition 0 < ω < Ei − EF .

As we are interested in electrons with energies close to EF , the frequency entering
Im[ε−1(q, ω)] is always small. This allows us to use the low energy transfer limit of the
imaginary part of the Lindhard dielectric function (see Appendix E),

Im[ε(q, ω → 0)] ' 2ω

q3
. (F.2)

Then it follows that

Im[−ε−1(q, ω → 0)] =
Im[ε(q, ω → 0)]

|ε(q, 0)|2
' 2ω

q3
[ε(q, 0)]−2, (F.3)

as ε(q, ω = 0) is real.

Introducing Eq. (F.3) in Eq. (F.1) and in the limit |Ei/EF | ' 1 we obtain the
following equation:

Γ(Ei) =
2

π

∫ 2kF

0

dq

q4
[ε(q, 0)]−2 (Ei − EF )2

ki

, (F.4)

where kF and ki represent the Fermi and initial momentum, respectively.
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In the high-density limit (kF → ∞) a simple and appropiate choice for the static
dielectric function is the Thomas-Fermi model [GPP00],

εTF (q) ' 1 +
q2
TF

q2
, (F.5)

where qTF =
√

4kF/π is the Thomas-Fermi momentum in atomic units. Using εTF (q)
in Eq. (F.4) and exteding the integration to infinity (allowed by the high-density limit),
we obtain the expression:

Γ(Ei) =
(π/kF )3/2

16

(Ei − EF )2

ki

(F.6)

Applying again the approximation |Ei/EF | ' 1, we replace ki → kF and retrieve the
QF formula

ΓQF (Ei) = C(rs)(Ei − EF )2 (F.7)

The constant C(rs) is calculated using the expression of the Fermi momentum as a
function of the density parameter, kF = (9π/4)1/3r−1

s , finally obtaining the expression

τQF (Ei) =
0.3997

r
5/2
s (Ei − EF )2

, (F.8)

where τQF (Ei) is in femtoseconds when (Ei − EF ) in electronvolts.
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Phys. Rev. B, 78:045119, 2008.

[JWHWYZ06] Y. Jia, B. Wu, H. H. Weitering, and Z. Y. Zhang. Phys. Rev. B,
74:035433, 2006.

[KEPTSGE02] W. Ku, W. E. Pickett, R. T. Scalettar, and A G. Eguiluz. Phys.
Rev. Lett., 88:057001, 2002.

[Kir08] P. S. Kirchmann. Ultrafast Electron Dynamics in Low-Dimensional
Materials. PhD thesis, Freie Universität Berlin, 2008.

[KJS65] W. Kohn and L. J. Sham. Phys. Rev. B, 140:A1133, 1965.

[KMB82] L. Kleinman and D. M. Bylander. Phys. Rev. Lett., 48:1425, 1982.

[KQY+10] J. Kim, S. Qin, W. Yao, Q. Niu, M. Y. Chou, and C.-K. Shih.
PNAS, 107:12761, 2010.
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