

CRANFIELD UNIVERSITY

GONZALO PEREZ BADA

Digital Virtual Wind Tunnel Workflow

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

Computational and Software Techniques in Engineering

MSc

Academic Year: 2015 - 2016

Supervisor: Karl Jenkins

July 2016

CRANFIELD UNIVERSITY

SCHOOL OF AEROSPACE, TRANSPORT AND

MANUFACTURING

Computational and Software Techniques in Engineering

MSc

Academic Year 2015 - 2016

GONZALO PEREZ BADA

Digital Virtual Wind Tunnel Workflow

Supervisor: Karl Jenkins

July 2016

This thesis is submitted in partial fulfilment of the requirements for

the degree of Computational and Software Techniques in

Engineering

© Cranfield University 2016. All rights reserved. No part of this

publication may be reproduced without the written permission of the

copyright owner.

ABSTRACT

Nowadays most motorsport, automotive and aerospace elements require

testing in wind tunnel facilities for checking their aerodynamic behaviour. This

implies a need of countless tests in this kind of facility when developing elements

with either new materials or structural composition, and an important part of this

elements are proven useless during this testing stage.

Wind tunnel tests, however, are not available in every academic facility,

and are not costless, hence, developing a digital and intuitive procedure for

performing initial tests on new designs would provide small universities and

independent researchers a way to discard unsuccessful experiments before

having to make an economical commitment.

Actually some tools such as OpenFOAM[1] provide researchers a way to

apply different flow solvers digitally, without the need of an actual Wind Tunnel

facility. This means that skilful researchers can program their own experiments

and advance in their projects before performing the physical tests. However this

kind of tools usually require expertise in computing and the OpenFOAM operating

command, and the learning process might be complicated for some students.

Cranfield University decided to coordinate multiple students for developing

a Virtual Digital Wind tunnel that uses the high performance computing facilities

available in campus for generating a fast and powerful simulation of Wind Tunnel

experiments. The main objective is to provide the user a web-based simulation

of basic Wind tunnel experiments.

This project is focused on the automation of all the necessary steps to take

in a wind tunnel experiment workflow, as well as the structure of the webpage

backend server, with Database managing, file uploading and parameter entry

interface.

Keywords:

Wind Tunnel, Grid Computing, Windows Workflow Foundation, ASP.NET Core,

OpenFOAM

ACKNOWLEDGEMENTS

In this section I would like to acknowledge my gratitude to my supervisor,

Dr Karl Jenkins, for providing me guidance even before picking a thesis subject,

and being helpful in every situation and issue that appeared due to some conflicts

with my professional career.

I would also like to thank my fellow researcher Aljaz Jelen, for all the support in

mechanical engineering related fields, and also the willingness to coordinate

properly both our thesis to implement the same technologies in order to make the

final integration easier.

TABLE OF CONTENTS

ABSTRACT .. 1

ACKNOWLEDGEMENTS... 2

LIST OF FIGURES ... 5

LIST OF TABLES .. ¡Error! Marcador no definido.

LIST OF EQUATIONS ... ¡Error! Marcador no definido.

LIST OF ABBREVIATIONS .. 7

1 USE STYLE HEADING 1 FOR CHAPTER TITLES¡Error! Marcador no

definido.

1.1 Use Style Heading 2 for Section Headings ¡Error! Marcador no definido.

1.1.1 Use Style Heading 3 for Subsection Headings¡Error! Marcador no

definido.

1.2 Section Breaks ... ¡Error! Marcador no definido.

1.3 Inserting captions in the main document ¡Error! Marcador no definido.

1.3.1 Referring to captions for figures, tables etc¡Error! Marcador no

definido.

1.4 Updating Tables of Contents, Lists of Figures and Captions 14

1.5 Inserting Landscape Pages ¡Error! Marcador no definido.

2 CHAPTER TITLE (USE HEADING 1) ... 19

2.1 Section Heading (use Heading 2) ¡Error! Marcador no definido.

2.1.1 Subsection Heading (use Heading 3) .. ¡Error! Marcador no definido.

3 CHAPTER TITLE (USE HEADING 1) ¡Error! Marcador no definido.

3.1 Section Heading (use Heading 2) ¡Error! Marcador no definido.

3.1.1 Subsection Heading (use Heading 3) .. ¡Error! Marcador no definido.

4 CHAPTER TITLE (USE HEADING 1) ¡Error! Marcador no definido.

4.1 Section Heading (use Heading 2) ¡Error! Marcador no definido.

4.1.1 Subsection Heading (use Heading 3) .. ¡Error! Marcador no definido.

5 CHAPTER TITLE (USE HEADING 1) ¡Error! Marcador no definido.

5.1 Section Heading (use Heading 2) ¡Error! Marcador no definido.

5.1.1 Subsection Heading (use Heading 3) .. ¡Error! Marcador no definido.

6 CHAPTER TITLE (USE HEADING 1) ¡Error! Marcador no definido.

6.1 Section Heading (use Heading 2) ¡Error! Marcador no definido.

6.1.1 Subsection Heading (use Heading 3) .. ¡Error! Marcador no definido.

7 CHAPTER TITLE (USE HEADING 1) ¡Error! Marcador no definido.

7.1 Section Heading (use Heading 2) ¡Error! Marcador no definido.

7.1.1 Subsection Heading (use Heading 3) .. ¡Error! Marcador no definido.

8 CHAPTER TITLE (USE HEADING 1) ¡Error! Marcador no definido.

8.1 Section Heading (use Heading 2) ¡Error! Marcador no definido.

8.1.1 Subsection Heading (use Heading 3) .. ¡Error! Marcador no definido.

9 CHAPTER TITLE (USE HEADING 1) ¡Error! Marcador no definido.

9.1 Section Heading (use Heading 2) ¡Error! Marcador no definido.

9.1.1 Subsection Heading (use Heading 3) .. ¡Error! Marcador no definido.

REFERENCES ... 61

APPENDICES .. 63

Appendix A Appendix Title (Use Heading 7) ¡Error! Marcador no definido.

LIST OF FIGURES

Figure 1 - Wind Tunnel Design ... 8

Figure 2 – System architecture ... 28

Figure 3 - CFD Direct from the Cloud Instance .. 30

Figure 4 - File System Structure ... 31

Figure 5 - Model View Controller schema... 32

Figure 6 - Identity Structure .. 33

Figure 7 - Experiment Model .. 34

Figure 8 - Experiment Name Validation .. 35

Figure 9 - Web page's shared views .. 36

Figure 10 - Webpage Layout file .. 37

Figure 11 - Create experiment View ... 38

Figure 12 - Webpage Controllers ... 39

Figure 13 - Experiments controller overview .. 39

Figure 14 - Experiment creation POST .. 41

Figure 15 - Experiment solving map check... 42

Figure 16 - Experiment Details GET Request .. 42

Figure 17 - Webpage ViewModels ... 43

Figure 18 - FormUpload class structure ... 44

Figure 19 - FileHandle Class Structure .. 45

Figure 20 - FileHandle methods ... 46

Figure 21 - SSH Connect class structure ... 47

Figure 22 - SSH Create directory ... 48

Figure 23 - User experiments summary ... 50

Figure 24 - Failed experiment creation ... 51

Figure 25 - Experiment removal ... 52

Figure 26 - Experiment files.. 52

Figure 27 - Register view ... 53

Figure 28 - Cavity experiment creation ... 54

file:///C:/Users/Gonzalo/Google%20Drive/Thesis-Gonzalo-Perez.docx%23_Toc459232554

Figure 29 - Cavity initial state ... 55

Figure 30 - Cavity meshed files .. 55

Figure 31 - Cavity timestep results ... 56

LIST OF ABBREVIATIONS

CU

WWF

ASP

PHP

JS

Cranfield University

Windows Workflow Foundation

Active Server Page

Hypertext PreProcessor

JavaScript

1 INTRODUCTION

Aerodynamic research is taking great importance nowadays in the

development of any type of vehicle. One of the main tools for checking a vehicle

model is the wind tunnel, a tubular structure with powerful fans, which allows an

object to be mounted in its middle. The aforementioned object is a Wind Tunnel

Model, and is usually instrumented with sensors to measure the pressure

distribution, aerodynamic forces and other related characteristics.

Figure 1 - Wind Tunnel Design

Wind tunnel design is done considering the specific experiments to be

performed, and imply different areas depending on the flow nature to test:

supersonic or subsonic. As explained in Figure 1 by NASA (1), there are multiple

wind tunnel types, and each one requires certain design and instrumentation,

depending mainly in the speed range to test, due to compressibility effects. This

means a different distribution of the air density in the two main structures,

implying a different speed gradient. Similarly, other parameters also affect the

wind speed, such as the cross sectional area and the test section area, both of

which affect differently in subsonic and supersonic experiments.

All this considerations make the Wind Tunnel design not only complicated,

but also expensive, and they imply limitations on the experiments based on the

physical facilities.

But even in the case of having access to the perfect Wind Tunnel facilities

for their experiments, researchers are forced to build expensive models that could

end up harmed during the physical testing, generating additional costs for the

investigation.

The aim of the project is to give researchers an alternate way to test their

models virtually, based on an initial geometry, and being able to set up the

simulation parameters beforehand, and just wait for the result.

For this purpose, an ASP.NET based webpage has been developed,

which implements a windows workflow state machine, which sends the required

OpenFOAM tasks to the server, monitors the progress and shows the user the

results of each stage. This work will be also combined with a visualizing user

interface developed by some of the fellow researchers, and also specific meshing

and flow solving implementations researched by Cranfield University students.

The main alternative to Wind tunnel experiments for testing initial models

are CFD software solutions, such as OpenFOAM, ANSYS Fluent, KRATOS

Multiphysics and ABAQUS. These are really powerful tools that provide great

detail on the experiment, but most of them are proprietary and require training on

the platform for the researcher to get a solution to his problem.

There are also complete Wind Tunnel Simulators available Online such as

Altair Hyperworks Virtual Wind Tunnel and FlowSimulator, but all of them have

limitations, and the Altair Hyperworks one might not be affordable for non-industry

related purposes.

This joint project consisted on developing a new take on Virtual Wind

tunnels, by using Cranfield University’s HPC facilities for high speed simulations,

and also providing the user the outcome from each of the Workflow stages.

My thesis is focused on the workflow design of the process, as well as the

main security and data management requirements for the webpage. In this report,

the main implementation of this aspects is exposed, as well as alternative optios

and recommended additions to the system.

The basic workflow for a Wind Tunnel experiment is composed by pre-

processing (Meshing and Analysis Setup), flow solving process and post-

processing (usually visualization and experiment reports). Nevertheless, in our

project, some additional check stages where added for confirming the input

parameters before actually submitting the experiment to the virtual wind tunnel.

This means that the workflow of the webpage has to be a bit different from

the manual process for making automation possible, since the user should not

simply restart the process in case of an input problem, but return to the creation

state instead. This means the state machine for the workflow should be able to

let the user change his input in case of failure in the early stages of the

experiment.

This thesis is arranged in different parts:

Chapter 2 is the literature review, where several articles regarding

scientific workflows, OpenFOAM and Wind Tunnel simulations are exposed and

briefly explained.

Chapter 3 is the problem description, and tries to expose the aims of the

project, as well as the main issues I faced during the development of the solution.

Chapter 4 is the implementation, the main section of the report, where I

explain the steps taken for solving the problem and also the technologies used.

Here multiple aspects of the project are highlighted and described in detail, such

as the webpage layout, the database structure and the workflow state machine.

Chapter 5, Testing and Results, exposes the main procedures followed for

testing the system and obtaining the final results. And it will also contain

interpretation of the aforementioned results.

Chapter 6, the Conclusion, will consist of a review of the whole thesis, a

summary of the work performed, and also includes a brief discussion on possible

improvements and future work.

2 LITERATURE REVIEW

2.1 Introduction

This section aims to define the multiple approaches available for solving

the main problems faced in my thesis. Firstly, the project requires to stablish the

method for performing the actual Wind Tunnel simulation, and there are multiple

options available for defining this workflow. Then, the web server has to be

properly arranged, and there are also different technologies and versions

available. Finally, there are also web security and data encryption considerations

to take into account.

For each of the aspects previously mentioned, this literature review will try

to describe how several actors approach the solution. The main differences and

points in common will be highlighted for a better understanding of each problem

and potential solutions.

This section is composed by 3 parts:

1) Wind Tunnel Workflow: Focus on the scientific approach to wind

tunnel experiment simulations and Grid computing as a solution to the

problem.

2) OpenFOAM developing: Main design guidelines for flow solve

experiments using the OpenFOAM toolkit.

3) Web design and security: Design patters and technologies available

for designing the web server, and al security considerations:

Encryption, authentication and authorization.

2.2 Wind Tunnel Workflow

2.2.1 Workflow Technologies

The workflow word can be used to describe different things depending on

the context, however, according to Y. Zhao [en la página 61], scientific workflows

are usually applied to four aspects of computations: description of complex

procedures, data derivation automation, high performance computing and

provenance management. The author highlights the trend towards grid

computing systems as a scientific computation infrastructure, as opposed to

supercomputer, which have fallen out of flavour. It also exposes the main

strengths of the available workflow related technologies, such as WWF (workflow

integration in an application), Swift (bridge between workflows and parallel

computing) or Pegasus workflow system (long job scheduling). The author also

states that the technologies available are sufficient for workflow deployment, but

parallelism can be optimized for maximizing performance.

In [61], A. Pavethan highlights the need of a really automatic process for

Wind Tunnel Experiments, since at the day, the coordination between software,

hardware and data acquisition was not perfect, and most Wind Tunnel

experiments required manual data movement operations. It also states the main

states required for an automated solution: 1) Data verification 2) Experiment

metadata annotation 3) Raw data movement 4) Processing defined by user.

Pavethan also supports his statements by a real Laser Doppler Anemometry

experiment, explaining each step in detail. The same paper also states the basics

needed for developing a scientific workflow using WWF and Globus Middleware.

Also A.Pavethan, in [61], explains every step necessary to develop a

Commodity Grid toolkit with the help of Globus Middleware. This is a toolkit to

exploit the computing capabilities of a Grid Computing system for scientific

experiment. The need for developing a new toolkit is due to every alternative

being language-specific, and the MyCoG.NET toolkit developed runs under

Microsoft .NET framework, providing the necessary API functions for grid

management in FORTRAN, C++, C# and Java. In the paper, the author highlights

the main considerations when developing a grid computing system, such as

Security (Authentication, Authorization and Delegation), job submission scheme

and queries, file transfer features and performance. It also supports .NET

framework as a perfect framework for achieving good results in the

aforementioned aspects. The paper backs up the toolkit with a case study of a

Wind Tunnel application workflow, using Southampton University’s Wind Tunnel

facilities, using WWF as well as .NET for the workflow implementation of the

experiment. The whole workflow architecture is defined and each activity is

composed by Experiment specific activities, MyCoG activities and WWF

activities; all of the architecture running under Workflow runtime and .NET

Common Language Runtime (CLR).

2.2.2 OpenFOAM principles

Thanks to Computational Fluid Dynamics (CFD), it is possible to perform

a detailed numerical study on three dimensional flows, as well as an analysis of

the numerical results. As stated in [61] by A. Gartmann, CFD has been used not

only as a previous security check for scientific flow experiments, but also as a

compliment for post-processing, since the measurement techniques have their

own limitations. In this paper, a study in CFD modelling for characterizing a

portable wind and rainfall tunnel is performed, describing numerical solving

schemes, simulating and validating the wind speed patterns, and finding potential

issues that might appear in this wind tunnel. The whole modelling is performed

using OpenFoam 1.7.0 with the simpleFoam solver, and it is a great example on

wind tunnel modelling.

OpenFOAM is proven a really powerful tool for scientific simulations, and

this is not restrained to Wind Tunnel simulation, as S. Pashami highlights in [61],

OpenFOAM based CFD is a really powerful modelling tool for Gas behaviour.

This paper is focused mainly in compressible flows, but the design principles are

similar, and with the proper theory basics adaptation, can be used as a base for

non-compressible flow simulations too. The author clearly states the three main

stages of any OpenFOAM design: geometry and environment definition as pre-

processing, actual flow solving and finally post processing and result

visualization. He also presents a list of multiple OpenFOAM solvers

recommended for this specific task, highlighting their main characteristics, and

also stating that all of them require the same initial condition set.

2.2.3 Web Design and Security

Web Design is one of the most critical of Software Development nowadays.

Whether for designing web applications or just setting up APIs or web services,

there are loads of different technologies and design patterns available to every

developer. Our approach is related to authentication, database entries and also

file hosting, and also requires setting up a computation Server. This means that

we will have to consider different frameworks for both Front end and Backend.

First off, for the Database possibilities, there are two main branches: Relational

Databases (SQL) and Non-relational Databases (NoSQL). This distinction has

been discussed several times since the early 80s, and as stated by E.F. Codd

[7], we can call relational to Databases with the ability to process he date in a

relational way. Meaning that these databases are the ones with capabilities to

access the data by value, not only by ID, and then retrieve the values of the same

able entry. This meant a huge performance increase for data management in

computation, and made it easy for programmers to develop data management

algorithms. The main advantages of the relational model are the simple structure

of the Data Model are using data dependence as a boundary between logical an

physical aspects of a database, simple model structure and providing high level

language statements for retrieving big chunks of data. The most usual relational

database technology is MySQL, and there are multiple possibilities for setup and

deployment, but the choice is usually dependant on the technologies used for

accessing them. A bit more recently, a new approach on databases appeared,

and it quickly got loads of supporters. Michael Stonebreaker [8] distinguished

two different types of NoSQL databases: the document databases, containing a

key, a value and a payload, designed for storing documents, being MongoDB and

CouchDB the most relevant examples. And the key-value stores, usually

distributed hash tables that only include pairs of keys and values, being Dynamo

the most used example. This approach’s main advantages are performance and

flexibility, since they allow the developer to deal with huge chunks of data, and

perform map and reduce operations way faster than relational databases. They

also allow the database schema to be more flexible, which is really useful when

the data does not follow a rigid relational design. Nowadays this technologies are

widely used in Big Data approaches and some databases with less focus on

querying. However, it is complicated to deal with ownership in this kind of

databases, and for some problems with intensive data querying and relational

searches, NoSQL options are not really a good choice. Therefore, depending on

the approach of our project, we should consider both relational and non-relational

databases and study which advantages could we exploit to further extent.

The database usually acts as link between the frontend and backend of a web

application, and these two sides of the web also provide several valid options.

Since the birth of Javascript [9], the way to design webs has changed wildly. No

more static webpages with loads of links to more static content. Every webpage

is developed taking dynamic interaction into account, and all of them adapt their

content to its users’ needs. In the mentioned book, the basics of Javascript are

explained, and this helps to the development of dynamic content. However, this

is no longer enough to keep web design up to date, and loads of frontend

development frameworks and libraries have been created in the last decade.

Javascript can be complicated while trying to find specific elements in the web

document, and this was the main reason for the creation of jQuery [10] which

provides querying tools for multiple element modification at the same time. jQuery

is a javascript library that exploits the $ symbol for quering the HTML DOM, easy

to learn and quite powerful, although it has some limitations over the complete

Javascript language. AngularJS [11] is one of the newest frameworks available

for web design, created in 2009 by M. Hevery and A. Abrons with the purpose of

extending HTML in a declarative way. The result is a powerful language that

allows easy creation of user interfaces. This language has been widely used by

both big and small companies, and has been empowered by companies such as

Google for their client side web design. There are plenty of other options for this

Front end design, but not nearly as popular as AngularJS. Aside of the actual

logic design, the styling is an important part of every webpage, and the base of

this styling is Cascade Styling Sheets [12]. In the reference the basic concepts of

cascade styling are defined. Originally, HTML styling was described in each

component, and although that´s still done in certain cases, CSS changed the

whole design concept. By using id and class tags, we can define the elements’

style in separated files, and then apply it to the HTML DOM elements simply by

adding this class or id tags to them.

But this design concept has been pushed even further lately, and new

frameworks have emerged, due mostly to the need for consistent and responsive

styling in webpages. Most big companies have decided to make their own styling

libraries, being the two most popular Twitter Bootstrap and Google Material-ui.

Both frameworks define the styling in such a way that the developer can easily

setup a webpage that will adapt to the user’s screen size and remain stable.

However, the Google framework requires the use of Facebook React framework

for modular design, and might be a bit more complicated to setup than Bootstrap.

Twitter’s Bootstrap [13] is simply the easiest to setup and use, and has become

the de-facto standard for web styling. It allows the creation of navigation bars,

dropdown menus, tabbed contend, element toggling, and much more; and does

not rely on third party libraries to work.

The final part of the webpage is the backend, where the whole server-side logic

should be held. There are also plenty of options for the server side, but I mainly

considered three different options: NodeJS, Ruby on Rails and ASP.Net.

NodeJS is the most used out of the three options, and it provides almost limitless

possibilities due to the plethora of available libraries to pair it with. Additionally,

by pairing it with npm, a developer can easily extend the program using

thousands of Javascript libraries. As stated in [10], node has become really

powerful as a server-side development tool, and supports long-running server

side programs based on events, as opposed to other programming environments,

much more focused on multi-threading; but this does not imply a performance

decrease, and it makes it way easier to design the application flow, since there is

no need to define bit by bit the timing for each running task.

Ruby on Rails [14] is also an interesting alternative for the server-side design,

and it provides a great advantage: an already implemented frontend architecture.

This framework follows the Model-View-Controller system, which allows to easily

follow separation of concerns and get modularity on a webpage. This frameworks

provides a really easy way to get a webpage running, and supports prototype

oriented design. This means that a starting draft of the web can be shippable

really quickly, and all the development can be oriented for adding functional

increments to this initial prototype. This development schema has been widely

used in software engineering, and supports agile methodologies, hence, Ruby on

Rails shall be considered as a valid option. It has an embedded SQLite database,

and can be easily connected to any kind of relational Database Server, by altering

the drivers. The system is based on migrations, which can be generated on the

command line, and this allows any change in the model to be reflected in the

database, and also recovered by rolling back to the previous migration.

Controllers hold the logic of the application, and retrieve data from the models to

generate an updated View to the user, who can also call back the controller’s

functions by interacting with the view.

The final possibility for the backend is the Microsoft option, ASP.NET [15]. It

stands for Active Server Pages, and is the main proprietary technology for server

web design. It is also based on the .NET framework, and usually makes use of

Visual Studio Tools for development. The .NET framework has two basic

component, the Common Language Runtime (CLR) and the Framework Class

Library (FCL). The CLR defines the execution environment, manages the .NET

code execution, memory allocation and garbage collection. It runs for every

programming language available in .NET (C# and Visual Basic, usually) and

translates it into native code for the processor, so there’s no need to set up a

different runtime environment for each. The FCL defines a series of classes that

implement the whole functionality of the ASP.NET system, and also classes that

allow the developer to add functionalities to the system. The FCL does not only

support web development, but also provides the same functionalities for console

application design.

Hipertext PreProcessor or PHP [16] is another server-side language worth

mentioning, since it had been widely used as the main language for server side

design in the early 2000s, but has no longer such a big influence, and most

developer lean towards other possibilities. This is mainly due to PHP not having

a defined architectural structure. This means that it allows innovation in several

ways, but is also complicated to approach a problem without a time consuming

architectural design phase before even starting to solve it.

3 PROBLEM DESCRIPTION

The initial objective of this thesis is to coordinate all the necessary function

calls for a Wind Tunnel Workflow, hence being able to run a Wind Tunnel

experiment simulation based on web services and concurrent function calls.

A wind tunnel is the basic tool for any kind of aerodynamic research

nowadays, about the physical experiments are quite expensive, and not every

researcher can afford to run all the experiments there, especially in the early

stages of the research, where discarding a design before submitting it to the wind

tunnel can generate considerable savings in both time and money.

Digital solutions are already available, as stated in previous chapters, but

these tools usually have drawbacks in the sense that they need extra investments

even for basic usage, either be them monetary inversions or just time investments

for learning how to use the technologies.

Hence, this thesis main goal is to provide researches a free to use and

easy to configure tool, so that they can submit their experiment geometries to a

webpage, setup the experiment parameters using a web form, and let the

webpage go through the states of the simulation. He shall also be able to

download any of the experiment related files to his computer, and save multiple

experiments with different parameters in his own experiment database.

 This goal is not only meant for my thesis, but to the whole subset of Virtual

Digital Wind Tunnel thesis in which some of my colleagues have been working,

and my main goal was to define an optimised workflow and coordinate each one

of the stages of the process. This chapter is meant to briefly explain the stages

involved in the Wind Tunnel process and also showcase the main difficulties I

had to face during my work on the project, in order to properly comprehend the

scope of my work and the whole virtual-digital wind tunnel project.

3.1 Wind Tunnel Stages

The physical wind tunnel is a duct mounted with a viewing port for being

able to identify the geometry in detail. Air flow was originally generated by a series

of fans in one of the duct’s ends, and the geometry of the element is mounted

inside with sensors for being able to model the flow data across the object. For

coping with the effects of physical viscosity, the cross section of the wind tunnel

is usually circular rather than square, and this also helps a smoother air flow than

a the square option. This last fact is also critical, since the turbulent flow is not

useful for the experiments, and this also sets some limitations on the materials

used for building the whole system.

As for the digital equivalent of the Wind Tunnel, the whole process is a bit

different, but the main problem remains the same: applying a steady wind flow to

an object, and measuring the flow field, pressure and other parameters, but this

times those values are numerical rather than experimental. As previously stated,

the main advantage of this option is the possibility to run the experiments in early

development stages, and without requiring to build a physical geometry model of

the object, or use wind tunnel specific facilities.

For being able to perform the digital simulation, the stage division is

defined as pre-processing, flow solving and post-processing.

3.1.1 Pre-processing

This initial part of the whole process has to deal with the experiment setup.

The mesh defines the environment in which the experiment will be ran, and an

incorrect configuration would mean getting completely useless results, hence,

this is a critical stage in every experiment.

This stage is tightly related to the experiment mesh, which defines the

boundaries in which the flow solving simulation will take place. The geometry

definition is usually composed by points in 3D space, and the format is pretty

specific to the application used to deal with the experiment.

The mesh can be generated by a different tool than the solver, but it

requires conversion to an understandable format, and it also usually has to pass

a series of format checks before being accepted by the flow solving tool.

Pre-processing also includes additional parameter settings, such as the

air flow velocity or experiment temperature, since these factors d not only affect

the final results of the numerical analysis, but also might imply requiring a

completely different numerical resolution method for obtaining an accurate result.

Boundary definition is also critical, and not only in the physical sense, but

the mathematical implications of those. Boundary and inter-boundary conditions

are an integral part of any computational method for solving a differential

equation. For being able to apply this conditions to the different parts of the

geometry, these conditions are usually divided, and the solving tool will treat them

differently.

3.1.2 Flow solving

The critical part of the system is actually simulating the experiment, and

this means solving multiple differential equations across the element’s geometry.

This is usually the most resource-intensive task of the whole process, and some

experiments might require complex problem structure and long simulation

periods.

Most of the flow solving tools have parallel computing capabilities, and

having access to a super computer makes the simulations times much shorter.

However, big experiments such as airplane or motorsport designs still require

countless simulation hours, even when having access to supercomputing

facilities.

The solving can usually be also configured for a specific area of the object,

and this can also affect the way computations are performed. There are multiple

solvers available, and each specific experiment might require using a different

one, and hence configuring an optimal wind tunnel simulation is impossible

without a previous setup for a specific experiment. Therefore, each experiment

kind shall be predefined, and its parameters should be limited before setting up

the whole experiment work flow, even applying combined limits on different input

parameters that the user could introduce.

3.1.3 Post-processing

The final stage of the whole Wind Tunnel flow is the post-processing,

where the output data from the flow solving is managed and treated in order for

being understandable to the final user. This stage is often tightly bound to

visualization, but can also be done in a more statistical sense, such as

highlighting relevant simulation parameters that evolved across the whole

simulation time.

There are multiple visualization tools, and once again the file format

compatibility can be an issue between different tools at the different stages.

 These tools usually offer a graphical user interface, and are not easy to

embed in a web service structure, and due to time restrictions and complexity

issues, this part of the project was set as out of scope when he project was under

development.

However, once the result data is generated, being able to post-process it

outside the web application is relatively simple, so the implementation inside the

web application is not really critical for the Wind Tunnel Project right now.

3.2 Difficulties and issues

The initial problem definition and scope for the problem were constantly

modified during the thesis, mainly due to the workflow being dependant on all the

other stages and the specific wind tunnel experiment for the workflow

implementation. This meant that a flexibility on scope was required in every stage,

and due to the other related thesis being constantly evolving due to their own

requirements and issues, in the end; the specific implementation for discarding

them was discarded, and I had to focus on a more general implementation.

Some of the initial problems I had to deal with were technical debt issues

and library dependencies being broken. Most of my initial research was focused

on the Globus and Windows Workflow Foundation interaction for wind tunnel

simulations on high performance computing approaches. There were plenty of

papers on the subject, and although none of them got into implementation details,

I was able to subtract loads of ideas from them. However, I had to leave this

approach aside, due to the Cranfield HPC facilities being updated and not using

Globus infrastructure anymore. This meant that most of the advantages of using

Windows Workflow Foundation were no longer relevant, and after doing some

research on the latest webpage design technologies, I decided to park that idea

too, since not even Microsoft’s ASP.NET was supporting the WWF framework in

the latest releases.

Instead I opted for an SSH connection approach on the problem, which

would mean a way more general option for calling external functions, and could

also enforce separation of concerns between the webpage design and the actual

experiment solving, which was not part of my project’s scope in the first place.

The most critical problem I had to face was the license expiry for Visual

Studio Enterprise, my basic developing tool for the whole process. The

downgrade to the Community Edition had quite a bad interaction with my project’s

inner dependencies, and the webpage code was rendered useless. I had to

completely wipe out the program from the machine and reinstall the community

edition, and then restart the webpage from scratch and port al the code

sequentially. This mas a major problem for the thesis, and some of the planned

features had to be cut out of the scope during the last weeks of the thesis.

4 IMPLEMENTATION

4.1 Selected Technologies

A great part of my work on the thesis has been related to the selection of

the tools and technologies I was going to use for each of the components of the

system, and this section is focused on justifying most of the elections and

showcasing the process followed for taking this decisions.

As previously stated, my project is focused on the workflow, hence, the

stage definition and coordination across the entire Wind tunnel simulation

process. However, I cannot decide the way to implement each one of the stages,

since those are carried by other colleagues from Cranfield University.

The initial idea was to coordinate all the students under Karl Jenkins

supervision, and focus the workflow on coordinating those different functions that

dealt with the Wind Tunnel simulation stages.

Unfortunately, this approach was discarded early on the project, since the

timing for all the thesis was the same, and it was not possible to deal with the

different technologies and scope changes of each thesis. Hence, I decided to

restructure the thesis in a more general manner. And set a template for delivering

wind tunnel experiments based on web services, which could be customized once

each stage was properly defined. This will prepare the project for further

evolution, and make it possible to coordinate the finished optimisations of pre-

processing, flow solving, and potentially post-processing.

4.1.1 Wind Tunnel simulation

The technology selected for the actual wind tunnel simulation was

OpenFoam, and as previously stated, is an Open Source tool with a wide user

community. This means that there is a huge support on the Internet, and also

plenty of tutorials and online resources. However, it is still quite a complicated

technology, and I decided not to spend too much time researching the optimal

implementation of the wind tunnel, and instead of that just focus on the basics of

the program and design a way to customize an easy experiment through the web

application.

OpenFoam is a really powerful tool, but it is not based on a Graphical User

Interface, as the proprietary alternatives, but in a command line approach, that

deals with several files at the same time. This files are quite complicated to

properly deal with separately, and creating an experiment from scratch is really

difficult, even for experienced aerodynamic experts.

For dealing with this issue, the OpenFoam releases a series of example

files within each new release, and the quickest way to get an experiment to work

is just to pick one of the releases and modify the inner file structure for meeting

the needed criteria. This is indeed complicated, mainly because of having to deal

with multiple values inside multiple files and folders, and that is almost impossible

to deal with for a non-expert user. The main goal of this whole project was to

simplify this wind tunnel simulation task, and then the main goal as far as this

technology is implied, is to create a way to customize an experiment according

to the parameters introduced by the user through the web application; and for

that purpose, it is imperative to comprehend the starting state of an experiment,

and also the main differences between stages and the way to trigger them.

However, this task changes depending on the experiment, and therefore I will

explain it in one of the further sections of the chapter.

4.1.2 Web Design

As far as the web design goes, I already showcased loads of different

options across the available technologies nowadays. Since I already had some

knowledge on Javascript web design, this was initially my preferred options, but

after an initial spike on the popular frameworks and libraries, I notices my

backend knowledge was lacking, and this would require me to invest an

outstanding amount of time trying to learn NodeJS on my own just for setting up

a simple database. This did not force me to discard the technology, but it did

indeed lead me to research into the rest of technologies with an open mind.

This led me to focus on ASP.NET, the Microsoft proprietary language,

which provides great compatibility for Windows users, who are the vast majority

of the computer users. So I did research on the latest available frameworks by

Microsoft, and the latest release offered great capabilities for web design and

additional features. ASP.NET Core unified all the previous webpage design

templates into a single one: the ASP.NET Core Web Application. This made the

architecture of the web really easy, but it also had three important new features.

First off, the whole core had been redesigned for being able to run in any machine

that holds the server, and then there is no longer a need to rely on Windows

architectures for the server side. This might not sound like an important

advantage, but might be really useful when the Wind Tunnel is released, since

both the webpage server and OpenFoam could be run in the same machine, and

therefore the server could potentially run the computer command line for running

the simulation and avoid unnecessary inter-server communication. The second

relevant feature is the Model-View-Controller structure for the webpage.

Previously, the framework offered this as an option, but it separated different

templates for different webpage purposes, such as Windows Forms applications,

web applications, static webpages… This new architecture layout means that a

single starting prototype can evolve into whatever we need it to. The last new

feature is the integration of NuGet, Bower and Gulp inside the framework, which

makes library additions and debugging so much easier than before. This will also

make extensions of the system easy to implement, and the library search can be

dealt with within Visual Studio. Additionally, the MVC Structure made it easy to

implement both the front and backend at the same time. All these reasons made

me choose ASP.NET Core MVC as the web design technology

4.1.3 Database

In the literature review, I also stated different possibilities for holding the

experiment data, and I picked a relational database as the technology to use for

several reasons.

First and foremost, the Microsoft ASP.NET Core provides SQL database

functionalities embedded into the MVC framework. This means that it is almost

automatic to adapt the database to the desired data models, and this makes the

database management and maintenance really easy. The MVC framework can

also be reconfigured for using different database connections, but if possible, I

would have liked to avoid this problem, and using SQL aligned with DNX core

seemed like a perfect fit for my thesis goals.

The second main reason was the structure I decided to give to the

database. A user based approach where each individual user had his own

experiment history seemed perfect for our web based approach on the wind

tunnel. This implied an ownership relationship between the user model and the

experiment model, hence not being the optimal option for non-relational database

performance.

The volume of experiment data was also worth considering, since non-

relational databases reach their maximum performance on Big Data situations.

We can define Big Data as any quantity of data over one Terabyte, and it is

usually linked to map and reduce kind of operations rather than regular queries.

By map and reduce operations, we refer to a certain data process operation dealt

on a subset of the whole data collection, or an operation that is incrementally

applied across the whole data domain. This is not really the case for the Digital

Wind Tunnel, where each experiments data is only used to run the simulations,

and then is stored and queried, but not really modified. Taking all of this into

account, most of non-relational databases advantages were nullified for the

project, so sticking to the easiest to implement relational database was

considered the best possible option.

4.2 System Architecture

After introducing my technology stack, the next logical step is to expose

the structure of my solution to the problem stated in the previous chapter. I

already talked about the need to redefine the project’s scope to a more realistic

target, mainly due to lacking the interface to the stages of the process.

This fact forced me to think of a way to model the wind tunnel experiment

on my own, and it also had to be easy to adapt for adjusting to the rest of the

functions once my colleagues finished their own thesis. This was quite a

challenging task, but not having any previous knowledge on wind tunnel physics

or technologies made it really complicated for me.

Therefore, I decided to stick to the simplest possible wind tunnel

experiment and think of a solution that could connect with external servers in an

easy way. Therefore, I decided to setup my own external server for the

computations, and try to find a way to connect the webpage with the server. The

final architecture is showcased in the following image:

The three main components of the system are the two servers and the

User. The webpage server hosts most of the project, and serves as a link

between the user and the actual solver for his Wind Tunnel experiment.

The user interacts with the webpage using his web browser, and can easily

setup the experiment parameters, and upload his own files to the webpage. This

means that he no longer cares about the way to run the simulations, and can just

wait for his experiment to be handled by the web server.

In the webpage, the user will be able to generate new experiments, move

their experiments to the next stages, or delete the experiments. In the

experiments tab, a history of previously generated experiments will be showed to

him, and he will be able to view its details and download each of the experiments

files, for both the setup and results.

Then the webpage will generate an ssh connection and an scp connection

with the AWS server, and copy al the needed files to run the simulation to a new

folder in the flow solve server. Then, in each one of the following stages, the

webpage wlll use the ssh and scp connections to run the OpenFoam commands

and take the files back to the webpage, so that the user can download all the

results.

Flow Solving Server

• AWS Cloud Server
running OpenFoam

UserWebpage Server

Figure 2 – System architecture

This architectural design was designed for maximizing compatibility and

expansion capabilities. SSH and SCP are really powerful functions that allow for

secure connections with Ubuntu servers, and this allows to easily adapt the

system to interact with new implementations of the flow solving system. Modifying

the ssh calls is as easy as reconfiguring the commands used in the ssh call.

Hence, getting the system to work would mean that we could reconfigure it for

implementing the subsequent calls to the optimised functions once my

colleagues’ thesis were also completed.

Therefore, the architecture was designed in such a way that completing

the project would guarantee a starting point for the whole Wind Tunnel Process,

which could be further developed by future students and generate a complete

solution to the problem without having to redefine the whole workflow for each

new improvement.

4.3 Flow Solving Server

As just stated, setting up a server to deal with the computations mean that

the whole solution would be easy to adapt to different implementations of the

functions, since the connection would only need a reconfiguration to target a

different server.

The server had to be able to run the OpenFoam simulations, but it would

also be interesting to set up ParaView in the server, for being able to process the

results and customize visualization in further stages of the Virtual Digital Wind

Tunnel.

It was also in the projects best interest to set up the server in most widely

used setup possible. And after some research, I decided to set the server using

Amazon Web Services. Amazon provides cloud computing capabilities to loads

of huge companies and projects worldwide, and allows for easy setup of Unix and

Windows servers; while also providing a wide variety of pre-loaded server

images.

In fact, the designers of OpenFoam provide huge amounts of content and

tutorials on setting up and using their tool, and after researching through the

portal, I found an already preset AMI for a server running both OpenFoam and

Paraview at [17].

The server was setup by launching a new EC2 Instance from the AWS

Console, and I was configured for using the minimal resources, in order to

minimize server costs. A micro instance of the server was launched and could

easily be accessed using the .pem keyp provided for ssh connection with AWS.

Figure 3 - CFD Direct from the Cloud Instance

In Figure 3 we can see the description of the instance in the AWS EC2

Console, and in the same AWS Console we can get the servers IP address, and

set up the security restrictions. AWS is a really complete service that allows for

great customisation, and we could even setup different user roles, with various

permissions, and hence we could configure these permissions to adapt to our

connection’s needs.

However, for now I decided not to focus on the server configuration, since

the ultimate goal of the collective Digital Wind Tunnel is to build a joint solution,

and these server might have to be set aside once the rest of the stages have

been properly set up in a single Flow Solving server.

For the initial testing stages of the process, MobaXTerm [18] was the

selected tool for running the AWS Server. This is a tool for remote computing in

Windows, which allows Windows user to run bash command line interfacing. This

allowed for easy testing in the same machine I was running Visual Studio, without

having to restart the computer and run the Linux partition.

4.4 File Structure

For supporting the experiments from multiple users, I also had to think of

a way to save all the files from the experiments, and I decided to arrange the

structure in such a way that each user would have his personal folder inside the

Files folder of the web server, and then inside that folder, each experiment will

have its own subfolder to hold all the OpenFoam files, as we can see in Figure 4.

Figure 4 - File System Structure

This file structure means that there will be no filename duplication system

between the users, and as far as the experiments are not named the same for a

single user, creating new experiments or modifying old ones will never affect the

rest of the experiment files. This means that users can play with the parameters

of experiments without having to worry about their already finished ones.

 This structure also allows for easy tracking of each experiment’s files, and

thus the webpage can easily create, remove or modify files inside each

experiments folder with simple logic.

User
•Folder Containing all

the user files

Experiment
•Contains all the data

relative to a single
experiment

OpenFoam
Files

4.5 Webpage Structure

The main workload of the thesis was designing the whole webpage for

serving as a link between the user and the Wind Tunnel experiment resolution,

and as stated in previous chapters, the development tool of my choice was

ASP.NET Core MVC. For being able to develop in the ASP.NET environment and

take maximum profit out of the MVC Web application template, I used Visual

Studio 2015. Initially, I used the Enterprise version of the software, but during the

last stages of the project, the Cranfield license for the software expired and I had

to downgrade to the community version. This meant some losses on the testing

department, but the main issue was the effect the downgrade had on the code.

Apparently, some of the installed dependencies were configured for the

Enterprise version, and while moving back to the Community version, these

dependencies remained incompatible, and fixing them was impossible. After

some trial and error, repairing the thesis project resulted almost impossible, so

for being able to advance with the project, I had to start a new project and code

the whole solution again. This ended up being the main difficulty of the whole

project, but I was able to cope with it relatively easy and keep working on the

project.

Figure 5 - Model View Controller schema

ControllerModel View

I decided to use the MVC structure for the Web application, which stands

for the Model-View-Controller design pattern that can be seen in the figure 4. This

design facilitates encapsulation and separation of concerns.

4.5.1 Models

The Model is holds the database structure, and defines how the

information on the data entities will be structured. For this solution, I defined two

basic models, the user model and the experiment model. The user model is an

extension of the ASP.NET Identity system, designed for holding user account

information in a secure way. This system was redefined for holding some

university related information, and using a username rather than an email for

logging in.

Figure 6 - Identity Structure

In the Figure 6 the structure of the SQL table for the user model can be

seen in detail, and most of this was provided by the Identity model, but it was

extended with Company Name and Full Name in our model. It is easy to

recognise the password hash being stored instead of the actual password. This

allows for secure login, and we don’t have to focus on implementing the

encryption ourselves. This was taken into account while picking the technology

stack, and was a great advantage of ASP.NET, which allowed class extension

for developing webpages in an Object Oriented Approach.

Figure 7 - Experiment Model

In the Figure 7, some of the fields of the experiment model are showcased.

Inspecting the code, the model can easily be identified as a class that is only

composed by attributes, with no methods at all. However, some differences

between regular C-like classes can be spotted. First of, the definition syntax

includes get and set methods, right after the definition. This is for the controllers

and views for being able to access and overwrite the value of the specific field

during webpage runtime, and this is needed because of binding them to database

models. Additionally, in some of the methods, there are some rules wrote

between square brackets. These labels indicate the ASP.NET framework what to

expect out of each attribute. Some of them are meant for validation, such as the

Required tag or the Remote tag. Required means that the field has to be filled for

being able to push the item to the database, and the Remote tag allows for

runtime validation using algorithms defined in the code.

Figure 8 - Experiment Name Validation

In the Figure 8, the code used for validating an experiments name is

showcased. The only condition for these remote validation scripts is the return

value, which has to be a JsonResult. In this algorithm, we iterate through all the

user’s experiments and check if the name for the new experiment is already in

use by the user. The _context variable allows us to check the experiment that is

being introduced by the user, even before submitting the form, and this allows for

dynamic validation on the client side. In this specific case, the system is not

backed up for uniqueness in the database, mainly because of the uniqueness

being only restricted to a user, and not to the whole experiment database. I

decided not to structure the database in order to generate a different experiment

table for each user, so this validation cannot be performed on the server end.

This might be troublesome in some spots, but the main issue with name

duplication is the user mixing his own experiments, so the client side validation

should be enough, since the file system structure is arranged to have a folder for

each user, as exposed in Figure 4.

4.5.2 Views

The Views of the system are in charge of the interaction with the user, they

define what the user can see, all the styling and the forms for the user to actually

send information to the server. This is a critical part of every webpage, and

defines important qualities of the final product, especially usability and

attractiveness.

Fortunately, the ASP.NET framework implements Bootstrap, and this

allows for easy and quick styling without having to expend the time planning the

responsive adaptation to the browser of each user, and also designing each of

the webpages small components. Instead, it is possible to use Bootstrap’s

predefined components, such as navigation bars, input forms and buttons, to

quickly generate a good looking webpage that adapts to the user’s screen size.

Figure 9 - Web page's shared views

The design of the whole webpages is a bit complex, due to ASP.NET’s

way to arrange these views. The user interface is not defined in a single cshtml

file, but rather is divided in multiple subpages that are arrange in the

_Layout.cshtml. In the Views folder, we have one views folder for each of the

models, as well as a Manage and a Home folder, which define the views for the

admin view of the webpage and the homepage.

Figure 10 - Webpage Layout file

The most interesting folder, however is the Shared one, in which the whole

structure of the page relies. The _Layout.cshtml file is the one holding the

component arrangement, and if we take a closer look, in Figure 10 we can

appreciate the navigation bar division followed by the rest of the body.

Nevertheless, two tags stand out as unusual:

First off, the line @await Html.PartialAsync(“_LoginPartial”) is in charge of

showing a different end of the navigation bar depending on the user being

anonymous or logged in. Therefore, the _Loginpartial.cshtml view file is the one

in charge of defining this specific end of the bar.

The second important statement to notice is the @RenderBody()

statement inside the container body division. This is indeed what renders the rest

of the webpage, depending on which view are we looking at the moment.

If we consider the rest of the _shared views folder, we only have three: the

_ViewStart, which defines the Layout to use as the main view. The

_LoginScriptsPartial, which makes it possible to include all the model validation

skills. Finally, the Error.cshtml file defines the view to show the user in case

anything fails while processing a user request.

Let’s take a closer look to one of the views, in order to fully comprehend

the possibilities offered by asp.net. For this purpose, the most complete view

developed for my thesis was the Create new Experiment view, which dealt with

multiple validation algorithms, as well as file binding.

Figure 11 - Create experiment View

In the code, we have a special attribute in the inputs called asp-for that

defines the field of the model to which we are linking the specific input form. It is

also easy to spot the span with the asp-validation-for tag right beneath each input.

This span is empty in regular conditions, but is filled with an error message

whenever a user tries to feed the system an incorrect value.

Then we have the file binding input. We can see this input mapped as a

file type, and then we have some Javascript code for the onchage tag. This code

is bound to show the user some information on the file he chose to upload, and

thus he will be able to overwrite it if he accidentally chose an incorrect file. The

file validation is not done dynamically, and in case of it not fulfilling the file check,

the create view will reload with no file selected while maintaining all the remaining

information introduced by the user.

4.5.3 Controllers

 The most important part of the webpage are the controllers, the entities

that hold all the logic behind a web application, and is here is where most of the

developing time was spent.

Figure 12 - Webpage Controllers

There is one controller for each one of the models, plus once again the

Home controller that defines the logic for the homepage, and also the manage

controller for allowing administration tasks to be performed.

The main part of my work in this section was once again while focusing on

the experiments section, and ExperimentsController holds the majority of the web

applications Logic.

Figure 13 - Experiments controller overview

In the Figure 13, I exposed a brief overview of the class structure, where

some key features can be appreciated. First, the [Authorize] tag, that indicates

the framework that this controller can only be accessed by an authorized user.

This means that the Controller remains invisible for guest and anonymous users,

guaranteeing safety and traceability in case of any error. Also, there are three

private variables, the _context, which holds all the temporary data of the

experiment (all the runtime data not saved in the database), the

_hostingEnvironment, variable that holds the information needed for dealing with

user file uploads, and the uploadedFile, which holds the actual file uploaded by

the user until is copied to the proper folder and its name is saved in the Database.

Then, some differences can be spotted in the declarations of the different

methods. Some private methods are used for intermediate functions used

multiple times across the controller. Most of them are tightly bonded to the file

handling, which requires directory and extension control, for both tracking and

validating the files. These methods are only used inside the controller, and

extracting them to an external logic file makes no sense. The methods with a

JsonResult return value are used for validation purposes, and usually perform

remote checks that cannot be dealt with straight from the experiment model. The

rest of the methods are the way the Controller answers the GET and POST

requests from the Views previously mentioned. The answer to the GET is just

redirecting the user to the appropriate view, sometimes parsing the experiment

id received into the actual experiment object.

 Figure 14 - Experiment creation POST

In the Figure 14 the logic behind a post for creating a new experiment,

which happens after the user submits the information in the Experiment creation

form hold by the View. The inputs for the method are an experiment object and a

IFormFile object, both bond directly from the view that called the method. After

checking the validation through the ModelState, the first action is creating a new

instance of FormUpload. This class will be explained later in the project, but is its

main goal is handling these file uploading process and creating the appropriate

folders or the experiment. Afterwards, we will try to upload the file using the

instance, and some checks will be performed based on the result. If everything

went right, the Controller will fill some of the database row values and then create

the files based on the used template. Finally, the experiment is added to the

context, and the context is updated; before redirecting the user to the index page,

where he will be able to check his experiment set.

Figure 15 - Experiment solving map check

Some of the functions developed for the experiment are related to the

nature of each experiment. For example, the getMap function from Figure 15

calculates the kind of map needed to use for an experiment, depending on this

experiments velocity and temperature. A different map, would mean having to

apply a different flow solve schema, and this type of checks are necessary for the

system to be properly implemented. Right now, this fact is not considered for the

basic wind tunnel experiment implemented, but it would be really easy to check

this value during the file generation, and using different file templates and solving

commands.

Figure 16 - Experiment Details GET Request

As previously stated, GET requests are way simpler than POST requests,

and they only need to return the proper view. In Figure 16, we can appreciate the

simplicity of method, although it also explains the way to access a certain item

from a view. The input parameter of the method is a non-null id, and this id is

used to identify the experiment the user is trying to access. After some basics

checks, the user is either answered with a no found response or the detailed view

of the object. This schema is also followed in other experiment related methods,

such as calling the meshing or removing an experiment.

4.5.4 ViewModels

Figure 17 - Webpage ViewModels

Additionally, there are some complicated forms that require an

intermediate model before updating the database one. This models do not need

to be stored in the database, and are usually meant for making validation easier

in complex views. In the thesis, the only important one is the ViewModel related

to the User register system. I had to modify the model, for holding additional

information and also stop focusing on the email as login or register key.

4.6 Additional Classes

The main webpage structure is really complete and useful, but in order to

guarantee the proper workflow and calls to external servers and functions, I had

to develop several additional classes.

4.6.1 FormUpload Class

The first class that I created to guarantee the webpages functionality is the

FormUpload class, on charge of making it possible for the user to upload his own

input files to the web server, and arrange them in the proper folders.

Figure 18 - FormUpload class structure

As exposed in Figure 18 - FormUpload class structure, the class has four

attributes, a constant MAXFILESIZE for setting the file size boundaries of the

upload, the UploadDestination string, which sets the path where the uploaded file

will be copied, the hosting environment, and an array of strings that hold all the

allowed file extensions for the user. These were set as attributes in order for the

developer extending the project to easily adapt it to new necessities, where

different file extensions are allowed or bigger files are required, but for now, these

values were set low for ensuring the prototype was working. The constructor

requires a string pointing to the destiny path and a hosting environment, both of

which will be passed by the controller that calls the function.

The class has a single public method, guaranteeing the proper use of it

and minimizing complexity. This method is called after the object is instantiated,

and takes care of actually copying the file to the desired folder. This function

makes use of the other two private methods for checking that the file extension

are size are not out of the set limitations. In case any of those returns a false

value, an error string will be sent to the controller, and no file will be uploaded to

the folder. If everything goes right, the file will be copied and the controller will get

the Filename as a result.

4.6.2 FileHandle Class

The second extension class that I developed is in charge of generating all

the files needed for running an experiment in the OpenFoam simulation

environment. As stated in previous chapters, OpenFoam requires a specific

folder arrangement system, and the best way to generate these files is relying on

templates.

Figure 19 - FileHandle Class Structure

 In Figure 19, the structure of the FileHandle class can be appreciated,

where the private attributes are strings set up in the constructor call. These strings

hold the input path that points to the template file, and the output path for saving

the template once the parameters have been changed. The last string holds each

files text, and will be used together with regular expression for customizing the

template to the user’s needs.

Figure 20 - FileHandle methods

In Figure 20, the methods from the class can be seen in depth. The first

function basically reads the template files, and for each file and subfolder in the

specified path, generates another one inside the experiment folder. The second

function is run right after the generation, and updates these files one by one for

replacing the references to parameters for their actual value. For this to work, the

parameter names in the template are defined with the same name as the ones in

the Experiment model. The second function iterates through all the files in the

experiment folder and saves them after applying regular expressions.

The class also has two private functions, one for replacing a pattern inside

the file and the other one for saving the modified one .Both are called inside the

updateFile method.

4.6.3 SSHConnect Class

The final class created for supporting the webpage is the one in charge of

the connection to the AWS Flow Solving server. As explained in previous

chapters, this connection is easily modifiable, and the class is built in an easy to

extend way, so that new experiment schemas can be implemented without further

issues.

Figure 21 - SSH Connect class structure

As can be appreciated in Figure 21, the structure of this file needs a bigger

setup. The attributes are private and some of them static. Those are the ones

related to the connection to the specific server. There are also two additional

Client attributes, that are needed for opening the connection to the server, either

for a command line interface (ssh) or a file transfer (scp).

Then the methods implemented make use of these private attributes for

the connection handling, and I designed different functions for each one of the

stages needed for fulfilling the OpenFoam workflow.

The whole class was developed using the Renci SSH.NET library [18],

which is not implemented in DNX5 yet, but could be used in the webpage

combined with DNX core 4.5.

Figure 22 - SSH Create directory

The method shown in Figure 22 is in charge of creating the needed folders

for the experiment in the OpenFoam enabled server, and for that purpose takes

the username and experiment as inputs. It has two different commands, the first

one is the actual command line action, and the second one is for retrieving the

file structure of the folder once it was created. The commands are created as

variables using the client.CreateCommand() function, and then run using

client.Execute(). For being able to run the commands, we have to open and close

the ssh connection using the myClient attribute’s Connect and Disconnect

methods.

5 RESULTS

5.1 Overview

This section of the thesis is focused on highlighting all the

accomplishments met during the extension of the project. Before showing the

actual webpage and results, I will outline the main accomplishments that were

fulfilled.

 Generated an experiment database for storing all the details of

each experiment

 Implemented a user login system with Userbase and Password

seeded to the system

 Linked each system user with his own experiments and displayed

the state of each one of his experiments

 Allowed each user to create a new flow solving experiments

 Allowed users to upload their own files to send for simulation

 Generate an experiment template for calling the OpenFoam Solver

 Setup a OpenFoam and Paraview enabled Web Server using

Amazon Web Services

 Created an SSH Connection Library for interaction with the

OpenFoam Server

 Generated a FileHandling class which used the OpenFoam

template and changed the required parameters for each experiment

 Implement a simple workflow solution, using the cavity example

from OpenFoam

5.2 Webpage

Now I will showcase the main parts of the webpage, which acts as the user

interface with the flow solving system.

Figure 23 - User experiments summary

In the Figure 23, the summary of all of the user’s experiments is

showcased, with basic information on each one of the experiments. From this

view, we can create a new experiment, get the details of a current experiment

and delete them. The basic details from the experiment are name, the submission

date, the Experiment status, some experiment fields that can be modified, the

mapping mode and the actions that can be performed in the event. The mapping

mode is showed for showcasing that this value can be calculated using the

controller method getMap() that was explained in the previous chapter.

Figure 24 - Failed experiment creation

In the Figure 24, we tried to create a new experiment, but we did not fill

the proper values, and the validation script is failing. As we can see, web will not

allow us for the introduction of a new experiment with the name of another one.

We will fill all the values properly, using the username CavityTestingExperiment.

In the, Figure 25 show how the webpage deals with removing an

experiment. This process does not only remove the entry for the database, but

also the files from the wwwroot Files folder, so that the user cannot see that

experiment anymore. Before removing the item, the user is showed some details

on the experiment, and given the option to confirm the file deletion or just go back

to the list of experiments.

Figure 25 - Experiment removal

Finally, the detailed view of an object not only shows all the fields filled for

the object, but also has a file list, where the user can download all the files related

to the experiment, as can be seen in Figure 26. The experiment was just created,

and we can already download all the files from the adapted template. After

running through some of the other stages, the result file swill be added to this

table, and the user shall be able to retrieve all the results.

Figure 26 - Experiment files

The next figure shows the user register system, where the user has to fill

the following fields: username, email, full name, company name, password and

confirmation. The username has to follow the pattern used for the cranfiield

university usernames, hence a letter followed by a six digit number, as can be

seen in the

Figure 27 - Register view

This register script is designed to only allow Cranfield user IDs for

registration, but could be worked a bit, with confirmation emails or even setting

up admins to confirm user’s identities. Additionally, it shouldn’t be difficult to

perform a check on Cranfield University’s database to confirm the username and

email or full name are linked.

The webpage is fully functional, although it has plenty of room for upgrades

and additionall functionalities. However, the result obtained offers a really easy

to understand interface that can be easily extended.

5.3 Cavity Example

For demonstrating that the webpage can deal with OpenFoam

experiments, I decided to use the cavity tutorial as a template. This experiment

is a really simple one, but it’s good enough for demonstrating the workflow

through the webpage, and serves as a demonstration of the whole process. This

is the proof that the workflow can be handled by the webpage in a seamless way

for the user, while not having to worry about performance issues of each stage,

since those are my colleague’s thesis’ goals.

The cavity example is one of the OpenFoam tutorials, and a computational

walkthrough is available at [19], where the whole experiment basics are

explained.

The webpage was setup to use the tutorial file as an example, and the

related parameters were introduced into the input files, for the FileHandle class

to modify them. In this section, we will cover how a user can perform this

experiment using the Wind Tunnel Webpage. In the next figure, we can see the

needed inputs for the user to fill in order for the experiment to work.

Figure 28 - Cavity experiment creation

The only parameters that will be taken into account for the experiment are

the ones noted above: the simulation start and end times, the meshing resolution,

that affects the way that blockMesh will work, and the Kinetic viscosity, which

affects the final solution. This way, we can check that the results are actually

changing due to each stage, since we have parameters related to both meshing

(pre-processing) and the flow solving. I created an experiment that will run

simulations from 0.1 to 0.6, with a meshing resolution of 40 and a kinetic viscosity

of 0.01. As a file input, the user has to upload the p file, which holds the pressure

field initial values, and has to be stored in the 0 folder, where all the initial

conditions are saved. That folder is generated by the webpage, and the only

missing file was this. The design could be however adapted to take a different

input, but the FileHandle class should be adapted in consequence. The p file is

available at the first appendix [6.1.7Appendix A].

Figure 29 - Cavity initial state

In Figure 29, the initial state of the experiment is showed, where we can

not only see and download the initial template files copied to the experiment folder

(with their file types), but also a button at the end of the page, that runs the

meshing part of the experiment.

Figure 30 - Cavity meshed files

Once clicked in the button, we can go back to the experiment details and

check that not only the experiment state was generated, but also new files have

been added to our experiment folder. These files are inside the

constant/polymesh/ folder, and hold the mesh data generated in the ASP.NET

server using the blockMesh command. This generated mesh used the

meshResolution value we set in the previous steps.

Figure 31 - Cavity timestep results

After running the solver, which calls the server again for running the

icoFoam command, with the kinetic viscosity that was set on the first stage,

running in the time interval that we set. Now for each one of the timesteps set,

we get four files that contain the simulation results.

U and p are still the velocity and pressure fields, but the values we

stablished as initial values are modified in each time step. In this specific

simulation, the pressure does not change that much, but in more complex

situation, these changes are more obvious.

The result files also contain a phi file that holds the values of the air flow

going through the cells defined in the experiment, and also a uniform/time file that

holds time information, and although not useful in this case, generates

information needed for running parallel simulations.

After this stage is simulated, the experiment has no additional stages to

go through, so its status is changed to done and the meshing and simulating

actions are no longer accessible.

6 CONCLUSION

The final result of the thesis is a functional and well styled webpage that

allows the user to configure his own way the cavity experiment. This experiment

could be configured in a more advanced way, and additional experiments could

be setup with minimal effort, but due to time constraints, I decided not to focus on

these alternative implementations, since that would require a deep understanding

of OpenFoam, and I had no previous background on it.

The process that I went through during the thesis was not properly defined

due to the functions about to use in the experiment not being defined yet, and

also the lack of definition of the wind tunnel experiments to run or not, so I spend

a great part of my worktime trying to figure out the best way to approach a general

solution to the workflow issue. Some problems of dependencies also arouse

during the project and caused changes to the technology stack and library calls.

Considering the complex nature of the project and the need to coordinate

with thesis that were still under development, I am indeed happy with my

approach to the thesis, and I consider that this will allow future expansions to

implement a robust and optimised wind tunnel experiment.

I am also proud of the final solution I managed to get, since both the

webpage, file system and additional libraries provide a great structure for any

wind tunnel experiment, and duplicating the controller would allow experiment

specific customization, requiring minimal time refactoring the code, and adding

additional fields to the navigation bar.

However, I also think that this thesis had some issues, and probably the

whole development process would have been smoother if the tools for each

computing stage had been available at the start of the thesis. This made the

solution generated a bit too general, and not really useful for real world

simulations. That was a scope redefinition I had to take, and I am confident on

this being the best available option giving the situation.

6.1 Further Work

 This thesis was focused on potential improvements, hence, there are

plenty of features to improve and upgrading to do before achieving a completely

functional online web tunnel simulation. In this section, I will introduce the main

goals that were left out of scope during the work period, but were taking into

account during design. I will also comment some options that I considered to add

during the latest stages, but decided not to due to time constraints or lack of

resources.

6.1.1 Connection to a HPC Facility

The first thing to consider is using OpenFoam commands to exploit the

Astral computers parallel capabilities. This was the initial idea during the early

stages of the project, but when I discovered that Globus was no longer available

for use and moved away from WWF, I had to forget about this possibility.

Nevertheless, the ssh connection approach used is really powerful for

implementing this parallel approach, since it can be restructured for generating a

run script and submitting it to a super computer. This whole process can be done

only by modifying the methods inside the ssh connection class, and adding a

scripting function inside the FileHandle class.

6.1.2 User groups

Another important feature to add to the webpage would be shared

experiment folders, where researches could share their experiments’ details and

results. Most of the research nowadays is performed by groups rather than

individuals, and the webpage should support the research groups and university

departments in the Wind Tunnel framework.

For implementing this, two main actions would be needed. First, set a

Groups folder should be arranged, and a way to save the experiment files and

details shall be designed. Additionally, the database models should be changed,

in order to have a link between users and groups, and also a link between an

experiment and the related group (if this experiment is shared)

6.1.3 Error Handling

One of the main features I did not consider during development was Error

handling inside the webpage, and sometimes this can generate some

troublesome spots in the webpage, where the user ends up in empty pages.

This should be one of the main priorities to handle in the short term, and it

mainly infolves exception throwing and handling inside the C# code. However, I

was not sure about the interaction between C# and .NET framework in exception

spots, and I decided not to spend too much time in this kind of features.

6.1.4 Complex Wind Tunnel experiment

The whole webpage functionality was designed taking a really simple

tutorial in mind. This made the webpage easier to define, and was probably the

only way to get a suitable product at the end of the timeline, but also means that

some function adaptation to other experiments can be proven difficult.

However, by coordinating with some people who are more experienced

with OpenFoam files and commands, it can probably be dealt with in a short time

lapse.

6.1.5 File validation

The user can upload any file to the server, aside of some simple extension

checks, and this can be a hazard to the webpage and the flow solve server.

Another one of the first stages to take in the further development of the

project would be dealing with this validation, probably by performing a format

check inside the OpenFoam file, so that the webpage can reject files that

OpenFoam will not be able to simulate, and at the same time get rid of some

security issues.

6.1.6 Asynchronous handling

ASP.NET allows for asynchronous tasks inside the controllers, and this

would be the best way to run the connection to the Flow solve server. The final

version of the thesis runs this calls synchronously, meaning that the user will have

to wait for his browser to finish his simulation.

This can be quickly fixed using additional processes running

asynchronous tasks, but this was not implemented due to two reasons. First, the

task handling is not straightforward, and could mean a complicated task handle

scheme. Second, one of the first improvements to add is parallelisation, and this

meant dealing with HPC queuing, and hence, the way to call the functions and

retrieve the data might have been redefined, so the work spent on this task could

be useless. This is the reason that this upgrade is explained after the

parallelisation.

6.1.7 User Register and Login System

Although ASP.NET provides a great system for commercial users, where

anyone can register and use the webpage, this project might require additional

security checks, and not everyone should be able to register.

Therefore, a user validation system should be implemented, either by

checking an internal database that holds the allowed user details, so that these

can be check upon registry or by requiring an authorized user to validate

someone else’s registry request. The first method’s main advantage is

automatization of the register process, while the second one means that the user

base can be controlled more easily, and could improve some security constraints.

REFERENCES

(1) National Aeronautics and Space Administration (2016) Wind Tunnel

Design. Available at https://www.grc.nasa.gov/www/k-12/airplane/tunnozd.html

(2) Y. Zhao, I. Raicu and I. Foster, Scientific Workflow Systems for 21st

Century, New Bottle or New Wine?, 2008 IEEE Congress on Services - Part I,

Honolulu, HI, 2008, pp. 467-471.

(3) A. Pavethan, K. Takeda, S.J. Fox, D.A. Nicole, Workflows for Wind Tunnel

Grid Applications (2006). Lecture Notes in Computer Science Computational

Science – ICCS 2006, 3993, 928-935.

(4) A. Pavethan, K. Takeda, S.J. Cox, D.A. Nicole, MyCoG.NET: a multi-

language CoG toolkit (2006). Concurrency and Computation: Practice and

Experience – Wiley InterScience 2006,

(5) A. Gartman, W. Fister, W.Schwanghart, M.D. Muller, CFD Modelling and

validation of measured wind field data in a portable wind tunnel. Aeolian

Research, 2011, 315-325, University of Basel, Basel, Switzerland

(6) A. Pashami, S. Asadi, A. Lilienthal, Filament-Based Gas Propagation

Models for Gas Dispersion Simulation (2010), Proceedings of the Open Source

CFD International Conference, Örebro University, Sweden

(7) Codd, E. F. (1982). Relational database: a practical foundation for

productivity. Communications of the ACM, 25(2), 109-117.

(8) Michael Stonebreaker, Communications of the ACM (2009) The NoSQL

Discussion has nothing to do with SQL. Available at:

http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-

to-do-with-sql/fulltext (Accessed: 3 June 2016).

(9) Flanagan, D., (2006). JavaScript: the definitive guide. "O'Reilly Media,

Inc.".

https://www.grc.nasa.gov/www/k-12/airplane/tunnozd.html
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext
http://cacm.acm.org/blogs/blog-cacm/50678-the-nosql-discussion-has-nothing-to-do-with-sql/fulltext

(10) De Volder, K. (2006), January. JQuery: A generic code browser with a

declarative configuration language. In International Symposium on Practical

Aspects of Declarative Languages (pp. 88-102). Springer Berlin Heidelberg.

(11) Branas, R. (2014). AngularJS Essentials. Packt Publishing Ltd.

(12) Lie, H.W. and Bos, B. (2005). Cascading style sheets: Designing for the

web, Portable Documents. Addison-Wesley Professional.

(13) Cochran, D. (2012). Twitter Bootstrap Web Development How-To. Packt

Publishing Ltd.

(14) Hibbs, C. (2005). Ruby on Rails. OnLamp. com. O'Reilly Media, 13.

(15) Duthie, G.A. and MacDonald, M., 2003. ASP. NET in a Nutshell. " O'Reilly

Media, Inc.".

(16) Cui, W., Huang, L., Liang, L. and Li, J., 2009, November. The research of

PHP development framework based on MVC pattern. In Computer Sciences and

Convergence Information Technology, 2009. ICCIT'09. Fourth International

Conference on (pp. 947-949). IEEE.

(17) CFD Direct, The Architects of OpenFoam (2016). CFD Direct From the

Cloud: OpenFOAM on AWS EC2. Available at http://cfd.direct/cloud/

(18) Secure Shell Library for .NET, optimized for parallelism. Available at

https://github.com/sshnet/SSH.NET/

(19) CFD Direct, The Architects of OpenFoam (2016). OpenFOAM user guide:

2.1 Lid-driven cavity flow. Available at . http://cfd.direct/openfoam/user-

guide/cavity/#x5-40002.1

http://cfd.direct/cloud/
https://github.com/sshnet/SSH.NET/
http://cfd.direct/openfoam/user-guide/cavity/#x5-40002.1
http://cfd.direct/openfoam/user-guide/cavity/#x5-40002.1

APPENDICES

Appendix A Cavity Pressure initial conditions

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.4.0
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 object p;
}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{
 movingWall
 {
 type zeroGradient;
 }

 fixedWalls
 {
 type zeroGradient;
 }

 frontAndBack
 {
 type empty;
 }
}

// *** //

