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I am grateful to Rémy Petit and François Ehrenmann for providing the phy-

logenetic distribution of Quercus. I acknowledge the fruitful discussions arisen in

the the WG1 of the FPS COST Action FP1202 (MaP-FGR, “Strengthening con-

servation: a key issue for adaptation of marginal/peripheral populations of forest

trees to climate change in Europe”). I am also grateful to the ENSEMBLES

project (GOCE-CT-2003-505539), supported by the European Commission’s

i



ii

6th Framework Programme for providing publicly the RCM simulations used

in this study. This work was carried out at Neiker-Tecnalia and the Institute of

Physics of Cantabria, and was supported by the EC-funded project ADAPTA-

CLIMA II (INTERREG IVB SUDOE Program) and the EC-funded project

INTACT (FP7-SEC-2013-1).

Quiero dedicar mi Tesis a mi familia y amigos, en especial a aquellos que

han sido estudiantes de doctorado a la vez que yo: Mi hermana Ane y mis

colegas Deiene, Nebai, Aritz, Ania, Maialen, Maite, Urtzi y Damaris.

Esker anitz gurasoei, Donostia, Bilbo, Gasteiz eta Santanderreko lagunei,

Kuadrupediari, Damarisi, Nebairi, Aritzi eta Violetari.

Zuek denoi bihotzez, eskerrik beroenak.

Maialen Iturbide Mart́ınez de Albéniz

Santander, 16 de Mayo de 2017



Contents

Acknowledgements i

List of Figures xiii

List of Tables xxi

I Introduction 1

1 Species Distribution Modeling 3

1.1 Species Distribution Models (SDMs) . . . . . . . . . . . . . . . 4

1.2 Common SDM Techniques . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Generalized Lineas Models (GLMs) . . . . . . . . . . . . 7

1.2.2 MAXENT . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Multivariate Adaptive Regression Splines (MARS) . . . 9

1.2.4 Support Vector Machines (SVM) . . . . . . . . . . . . . 9

1.2.5 Random Forests (RF) . . . . . . . . . . . . . . . . . . . 10

1.2.6 Classification and Regression Trees (CART) . . . . . . . 11

1.3 Presence Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Methods for Pseudo-absence Data Generation . . . . . . . . . . 13

1.4.1 Overview of Usage of the Different SDMs . . . . . . . . 15

iii



iv CONTENTS

1.5 Environmental Data . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Baseline Climate Data . . . . . . . . . . . . . . . . . . . 18

1.5.2 Strategy for Variable Selection . . . . . . . . . . . . . . 21

1.6 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.1 Model Performance Assessment . . . . . . . . . . . . . . 23

1.6.2 Validation Procedure . . . . . . . . . . . . . . . . . . . . 26

1.7 Illustrative Example: Reference Climate . . . . . . . . . . . . . 27

2 Future Projections of Species Distributions 35

2.1 Future Climate Projections . . . . . . . . . . . . . . . . . . . . 36

2.1.1 Emission Scenarios . . . . . . . . . . . . . . . . . . . . . 36

2.1.2 Global Climate Models (GCMs) . . . . . . . . . . . . . 39

2.1.3 Regional Climate Models (RCMs) . . . . . . . . . . . . 42

2.1.4 The ENSEMBLES Regional Climate Projections Dataset 43

2.2 Application for SDM Projections . . . . . . . . . . . . . . . . . 47

2.2.1 The “delta” Method . . . . . . . . . . . . . . . . . . . . 47

2.2.2 Model Extrapolation and Transferability . . . . . . . . . 47

2.2.3 Uncertainty of Future Projections . . . . . . . . . . . . 48

2.2.4 Available Tools . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Illustrative Example: Future projections . . . . . . . . . . . . . 50

3 Objectives and Outline 53

II Results 57

4 Pseudo-absence Data Generation Methods 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Presence Data and Study Domain . . . . . . . . . . . . 61

4.2.2 Climate Data . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 SDM Development, Evaluation and Projection . . . . . 63



CONTENTS v

4.2.4 Pseudo-absence Data . . . . . . . . . . . . . . . . . . . . 65

4.2.5 Implementation and Tools . . . . . . . . . . . . . . . . . 69

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 TG Method . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 RSEP, TS and TSKM Methods . . . . . . . . . . . . . . 70

4.3.3 RS Method vs. RSEP, TS and TSKM Methods . . . . . 72

4.3.4 Sensitivity of Model Performance to the Pseudo–absence

Generation Method . . . . . . . . . . . . . . . . . . . . 74

4.3.5 Sample Size Effect on Results . . . . . . . . . . . . . . . 76

5 On the Impact of Pseudo–absences in Future Climate-Driven

Projections 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Presence/pseudo–absence Data . . . . . . . . . . . . . . 78

5.2.2 Climate Data . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.3 SDM Development, Evaluation and Projection . . . . . 81

5.2.4 Uncertainty Derived from Pseudo–absence Data . . . . 82

5.2.5 Implementation and Tools . . . . . . . . . . . . . . . . . 83

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Model Performance . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Sensitivity Range . . . . . . . . . . . . . . . . . . . . . . 85

5.3.3 Future Projections Uncertainty Due to Pseudo-absences 87

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 On the Impact of Predictors in Future Climate-Driven Projec-

tions 97

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . 98

6.2.1 Strategies for Variable Selection . . . . . . . . . . . . . . 99

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 99



vi CONTENTS

6.3.1 Model Performance and Niche Dissimilarities . . . . . . 99

6.3.2 Uncertainty of Future Projections Due to Pseudo–absences106

III Developed Tools 109

7 The R Package MOPA for Species Distribution MOdelling

with Pseudo–Absences 111

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1.1 MOPA Within the “SDM ecosystem” in R . . . . . . . 113

7.1.2 Integration of MOPA with Climate Services . . . . . . . 113

7.1.3 Package Installation . . . . . . . . . . . . . . . . . . . . 114

7.2 Input Data Pre-processing . . . . . . . . . . . . . . . . . . . . . 114

7.2.1 Climate Data . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.2 Species Distribution Data . . . . . . . . . . . . . . . . . 115

7.2.3 Geographic Background . . . . . . . . . . . . . . . . . . 115

7.3 Pseudo-absence Generation . . . . . . . . . . . . . . . . . . . . 116

7.4 SDM Fitting and Prediction . . . . . . . . . . . . . . . . . . . . 121

7.4.1 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4.2 The Special Case of Model Fitting with TS Pseudo–absences122

7.4.3 Model Assessment . . . . . . . . . . . . . . . . . . . . . 123

7.4.4 Model Predictions . . . . . . . . . . . . . . . . . . . . . 125

7.5 Exploring the Uncertainty in SDM Projections . . . . . . . . . 126

7.5.1 Partition of the Uncertainty into Components Using Vari-

ance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 SDM Ensemble Building . . . . . . . . . . . . . . . . . . . . . . 130

IV Concluding Remarks 133

8 Conclusions, Achievements and Future Work 135

8.1 Main Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 135



CONTENTS vii

8.2 Publications and Contributions . . . . . . . . . . . . . . . . . . 141

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

V Summary in Spanish 145

9 Resumen 147

9.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.2 Generación de Pseudo–Ausencias . . . . . . . . . . . . . . . . . 148

9.3 Transferabilidad de los modelos y cambio climático . . . . . . . 150
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CHAPTER 1

Species Distribution Modeling

Species Distribution Models (SDMs), also known as Environmental Niche

Models (ENMs), are statistical tools used for the generation of probabilis-

tic predictions of the presence of biological entities in the geographical space

(Guisan & Zimmermann, 2000; Elith & et al, 2006). SDMs operate through the

establishment of an empirical link between known presence/absence locations

(predictand) and the physical characteristics of their environment (predictors).

A popular application of these models is the future projection of species dis-

tributions —from future climate projections— in order to assess key topics in

environmental conservation such as monitoring biological responses to climate

change (Hamann & Wang, 2006), species invasions (Jeschke & Strayer, 2008)

or disease transmission (Drake & Beier, 2014) among others.

SDMs have become a valuable tool for the vulnerability and impact assess-

ment community, as a means of estimating distribution shifts due to climate

variations, a problem of current interest in environmental conservation studies

(see e.g.: Araújo et al., 2004; Hamann & Wang, 2006; Jeschke & Strayer, 2008;

Felićısimo et al., 2011). However, there are important sources of uncertainty that

3
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affect the credibility of future distribution estimates, such as SDM predictive

ability outside the training period/spatial extent (known as SDM transferabil-

ity in time/space; Fronzek et al., 2011), uncertainties regarding the training

data (Mateo et al., 2010b; Bedia et al., 2013), the assumptions underlying the

different emission scenarios (Nakićenović, 2000), the global/regional climate

model (GCM/RCM) biases (Turco et al., 2013) and others (see e.g.: Falloon

et al., 2014, for an overview).

Therefore it is crucial to analyze the contribution of each source of uncer-

tainty in future SDM projections in order to provide reliable estimates of species

distributions under climate change conditions.

1.1 Species Distribution Models (SDMs)

In this Thesis we use the acronym SDM (Species Distribution Model) to refer

to the modeling technique or algorithm used to characterize the ecological niche

of a species population as a function of the presence/absence data (predictand,

Sections 1.3 and 1.4) and a set of explanatory variables that characterize the

environment of the species population (predictors, Section 1.5, Fig. 1.1). Two

types of spatial data are required for model calibration: (1) occurrence data

documenting presences (and sometimes absences) of a species population and

(2) gridded data of the environmental variables (e.g. raster-format GIS layers).

The spatial distribution of the environments suitable for the modeled population

(a.k.a. suitability maps, Fig. 1.1) are then estimated by projecting (predicting)

the built SDMs into the environmental data used for model calibration (reference

suitability maps) or into an unsampled environment from other spatial domain

(e.g. for estimating potential areas of species invasions, Jeschke & Strayer,

2008) or time period (e.g. for estimating habitat shifts due to climate change,

Hamann & Wang, 2006). Depending on the modeling approach used, the

resulting suitability maps can be probabilistic or deterministic predictions,

this is, predictions of the probability of occurrence of a species population

(values ranging from 0 to 1) versus those that directly predict suitable and
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unsuitable areas (1 and 0). The representation of this information in the form of

geographical maps (distribution of the probabilities, Guisan & Thuiller, 2005),

constitutes a clear advantage for planning territorial uses or for the management

and conservation of species.

Probabilistic predictions have a number of advantages over deterministic

predictions. The main advantage is that a probability of occurrence is a relevant

information from the ecological point of view, since it allows to quantitatively

evaluate the degree of suitability of a given habitat to house a particular

species population. Additionally, for this type of applications, it is possible to

generate different deterministic outputs of the models using different probability

thresholds that best fit the pursued objectives (see e.g. Freeman & Moisen,

2008; Gude et al., 2009).

SDM techniques can be broadly classified into two types: profile and group

discrimination techniques. The first group refers to those modeling approaches

that rely solely on known presences to infer the potential distribution of the

species (a.k.a. presence–only algorithms), while group discrimination techniques

require information of the environmental range where the species do not occur,

that is, absence data. Group discrimination techniques have gained popularity

in recent years, as they have been reported to yield better results than profile

techniques (Engler et al., 2004; Chefaoui & Lobo, 2008; Elith & et al, 2006;

Mateo et al., 2010a).

However, in part due to the great effort involved in true absence sampling,

most of the available biodiversity datasets for predictive modeling (generally

natural history collections, see. e.g. Araújo & Williams, 2000) are lacking

explicit absence data. Thus, in most cases discrimination techniques are used,

requiring the environmental characterization of the sites of presence in front of a

background sample —also known as pseudo–absence data— that characterizes

the available environment in the study region (see Section 1.4).
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1.2 Common SDM Techniques

A number of techniques used for binomial regression and classification con-

stitute the benchmark for modeling species distributions (Muñoz & Felićısimo,

2004; Terribile et al., 2010; Mateo et al., 2011) and building ensembles of the

results derived from multiple SDMs (Araújo & New, 2007), ranging from simple

and parsimonius Generalized Lineas Models (GLMs) to more complex nonlin-

ear techniques, such as MARS or Random Forest. The most commonly used

techniques are described below.

1.2.1 Generalized Lineas Models (GLMs)

Generalized Lineas Models (GLMs) build the probabilistic prediction of the

occurrence of an event y (presence/absence of the species population in this

case) fitting the data to the following formula:

y = f(

m∑
k=1

αkxk), (1.1)

where X = {X1, . . . , Xm} is a set of predictors (in this case the variables

used to characterize te environment of the species population) and f(z) =

1/(1 +exp(−z)) is the sigmoidal type logistic function (or logit) with a bounded

output in the [0, 1] range. The unknown parameters αk are usually estimated

through maximum verisimilitude, resulting in a simple optimization problem.

GLMs have been widely used in species distribution modeling (see Guisan

et al., 2002, for a description and analysis of its application in ecology).

1.2.2 MAXENT

In essence, maximum entropy-based techniques (MAXENT, Phillips et al., 2006)

estimate the distribution of a given variable by calculating the distribution with

maximum entropy (i.e. the most uniform), subject to the condition that the

expected value under this estimated distribution coincides with its empirical

mean. Let {X1, · · · , Xn} be a set of independent observations taken from a
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region of X, according to a certain probability of distribution π (in this case the

localities of known occurrence of a particular species population). The problem

is to construct the distribution of estimated probabilities π̂ that are closer to

π, using a set of explanatory variables {f1, · · · , fn} (predictors, in this case

variables characterizing the environment) that act as constraints. The principle

of maximum entropy suggests that, among all possible distributions satisfying

these constraints, the appropriate is the one that is closest to uniformity (i.e.

the one with the greatest entropy). Entropy is here defined as:

H(p) = −
∑
xεX

p(x) ln p(x) (1.2)

According to DellaPietra et al. (1997), this equates to finding the Gibbs

distribution of maximum likelihood (i.e. the distribution that is exponential in

a linear combination of variables) of the shape:

qλ(x) = eλ×f(x)/Zλ (1.3)

where

Zλ =
∑
xεX

eλ×f(x) (1.4)

and λ ε IRn.

Subsequently, a regularization process is applied in order to avoid over-

adjustment (Phillips et al., 2004).

Maximum entropy techniques (MAXENT) have been used more frequently

in the last two decades in different fields of research, such as natural language

processing (Berger et al., 1996) or spatial physics (Chu & Dowsett, 1997). In the

field of ecology and species distribution modeling, MAXENT was introduced as

a presence–only technique (Phillips et al., 2004, 2006), for efficiently modeling

occurrences lacking absence data. Since then, MAXENT has demonstrated

its great performance in comparison with other profiling techniques, such as

GARP (garp Genetic Algorithm for Rule set Production, Phillips et al., 2004),
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or a battery of benchmark algorithms for modeling different species in different

geographic areas of the world, (Elith & et al, 2006).

However, the reference to MAXENT as a presence-only method is misleading

—as well as for GARP—, since actually do require the use of background or

pseudo–absence data (Barbet-Massin et al., 2012; Jiménez-Valverde, 2012), this

is, data about a random sample of locations with no information about the

presence of the species (see Section 1.4).

1.2.3 Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) is a non-parametric regres-

sion method developed at the beginning of the 90s by Friedman (1991). In

essence, MARS allows the approximation of the underlying function using a

series of linear regressions by sections —known as base functions— as follows:

y = αo +
K∑
k=1

αkbk(x), (1.5)

The slope of these base functions can change in a series of nodes Zki = zki,

i = 1, . . . ,m con Zki ⊂ X. The popularity of this technique is primarily due to

the efficiency of the optimization algorithm that is used for the iterative search

of the base functions and the nodes.

In the context of SDMs, MARS has been shown to outperform GLMs in

terms of model performance (e.g. Muñoz & Felićısimo, 2004).

1.2.4 Support Vector Machines (SVM)

Support Vector Machines (SVM) are classification and regression methods

recently developed in the field of artificial intelligence (Scholkopf & Smola, 2001).

This technique consists in projecting the input vectors into a multidimensional

space in which a hyperplane of maximum separation is constructed, using a

metric that is insensitive to ε, by which the (absolute) errors less than ε are

minimized to zero.
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The approximation function can be defined as follows:

y =< w; x > +b (1.6)

where <;> denotes the scalar product (in the linear case) or a kernel function

(e.g. Gaussian kernel) in the general case of non-linear classifiers. Parameters

are obtained from the data by solving the following optimization problem:

minimize
1

2
||w||2 + C

l∑
i=1

(ξi + ξ∗i ) (1.7)

conditioned to


yi− < w;xi >≤ ε+ ξi

< w;xi > +b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(1.8)

SVMs have recently been developed as a supervised learning technique

used for regression and classification, as well as for probabilistic estimation.

From the ecological point of view, can be conceptually assimilated into the

classic definition by Hutchinson (1957) of the ecological niche, this is, the

multidimensional environmental space in which a species is developed (Drake

et al., 2006).

Although its application in species distribution modeling is still rare, has

been shown to be a potentially useful tool in ecological studies, for example

in the prediction of the Zebra Mussel (Dreissena polymorpha) invasion in

freshwater systems of North America (Drake & Bossenbroek, 2009).

1.2.5 Random Forests (RF)

Random Forest (RF, Breiman, 2001), are a combination of tree predictors such

that each tree depends on the values of a random vector sampled independently

and with the same distribution for all trees in the forest. Random forests are a

way of averaging multiple deep decision trees, trained on different parts of the

same training data, with the goal of reducing the variance. This comes at the
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expense of a small increase in the bias and some loss of interpretability, but

generally greatly boosts the performance in the final model.

The training algorithm for random forests applies the general technique of

bootstrap aggregating, or bagging (Breiman, 1996), to tree learners. Given a

training set X = x1, ..., xn with responses Y = y1, ..., yn, and being b = 1, ..., B

selects a random sample Xb and Yb with replacement and trains a decision or

regression tree fb on Xb, Yb, B times. After training, predictions for unseen

samples x′ can be made by averaging the predictions from all the individual

regression trees on x′ as follows:

f̂ =
1

B

B∑
b=1

fb(x
′) (1.9)

RF is an algorithm that developed out of CART (see below) and bagging

approaches and its application in species distribution modeling has been studied

by Evans et al. (2011). This modeling technique is gaining prominence in

remote sensing (Lawrence et al., 2006), forestry (Falkowski et al., 2009), ecology

(Cutler et al., 2007), and climate change (Prasad et al., 2006).

1.2.6 Classification and Regression Trees (CART)

Models based in Classification and Regression Trees (CART) have shown a

better performance than GLMs to predict the distribution of three species of

the Californian oak, as well as to offer interesting properties such as their easy

implementation and interpretation of the results, by producing a multidimen-

sional space of variables fully described by a single tree (Hastie et al., 2010).

However, some authors have shown their worst behavior against, for instance,

GLMs constructed by introducing interactions between variables with simulated

species (Santika & Hutchinson, 2009).
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1.3 Presence Data

Presence data refers to the point localities in the geographical space where

individuals of a species population have been observed (defined by x and

y coordinates, see Fig. 1.1). The Global Biodiversity Information Facility

(GBIF, http://data.gbif.org) is a widely used database that collects

this information for more than 1.6 million species, shared freely by hundreds

of institutions worldwide, including natural history collections and current

observations from scientists, researchers and automated monitoring programs.

Another source for obtaining presence data is the Georeferenced Database of

Genetic Diversity (GD2, Ehrenmann et al., 2016, http://gd2.pierroton.

inra.fr/gd2/home), which contains georeferenced data of natural tree pop-

ulation phylogenies. The level of information that provides the GD2 constitutes

an added value in the context of species distribution modeling, since exper-

imental evidence suggests that conventional SDMs are not able to properly

capture the climatic response of species by treating them as homogeneous units

(Pearman et al., 2010; Beierkuhnlein et al., 2011), in fact, the term “species”

is a taxonomic designation, and may not necessarily refer to an ecologically

homogeneous group of organisms, specially when different ecotypes occur within

the study area (Oney et al., 2013). With this regard, Hernández et al. (2006)

suggested that research in environmental niche modeling should focus on broad

distributional sub-units based on distinct genetic linages. This is particularly

relevant in climate change studies, because these sub-specific units have dif-

ferentiated niches (Serra-Varela et al., 2015) and thus, a different response to

climate change can be expected (D’Amen et al., 2013). Moreover, González

et al. (2011) demonstrated that omission error (False Omission Rate, see Section

1.6) is reduced when “biologically meaningful” data (in reference to genetically

distinct populations of the same species) are modeled. Therefore, in this Thesis

we modeled the distribution of different Quercus sp phylogenies (Petit et al.,

2002a,b,c), from the GD2 database (Ehrenmann et al., 2016).

http://data.gbif.org
http://gd2.pierroton.inra.fr/gd2/home
http://gd2.pierroton.inra.fr/gd2/home
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1.4 Methods for Pseudo-absence Data Generation

Pseudo-absence data is generated by sampling the background area of the

study domain from which presence records have not been collected (see Fig.

1.1), assuming that the species is missing in those sites, although they may

include presences (i.e. false absences). Consequently, pseudo–absences may

represent biased or arbitrary data, and the resulting SDMs may be unreliable

(Mateo et al., 2010a).

Pseudo–absence generation process has been shown to have a strong influence

on the results obtained. There are two basic questions involved in the generation

of pseudo–absences: (1)how and (2)how many. Regarding the second, Barbet-

Massin et al. (2012) provided different recommendations depending on the SDM

used. In this sense, a larger proportion of pseudo–absences against presences can

affect model performance positively or negatively, introducing biases in model

inter-comparisons, for which an intermediate level of prevalence (proportion

of presences vs pseudo–absences) should be kept (McPherson et al., 2004; Liu

et al., 2005). Alternatively, when working with different proportions, prevalence

can be balanced if model fitting is performed with equal weighting of presences

vs pseudo–absences (i.e. the total weight of all presences is the same as the

total weight of all pseudo–absences).

With respect to how pseudo–absences are generated, comparative analyses

addressing the suitability of different methods, some of them quite novel, are

scarce in the literature (Zaniewski et al., 2002; Phillips et al., 2009; Lobo et al.,

2010), and there is not a consensus on the way in which pseudo–absences

should be generated. In fact, several previous studies addressing this issue

(e.g. Hengl et al., 2009; Wisz & Guisan, 2009; Stokland et al., 2011; Senay

et al., 2013) propose contradictory solutions. As such, the inclusion of reliable

pseudo–absences in model calibration remains an open issue.

The most widely applied method of generating pseudo–absences is random

selection of the entire study area (RS method, e.g., Gastón & Garćıa-Viñas,
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2011; Hanspach et al., 2011; Domisch et al., 2013), however, this rises the risk

of introducing false absences into the model from locations that are suitable for

the species, leading to underestimates of its fundamental niche and potential

distribution (Anderson & Raza, 2010). This occurs naturally due to biotic

interactions and dispersal limitations that do not allow the species to inhabit,

and also very often as a result of sampling biases in the presence–data collections.

Faced with this problem, it is common practice to set a buffer distance from

known presence localities (exclusion buffer hereafter) in order to minimize the

false negative rate (e.g., Mateo et al., 2010a; Bedia et al., 2013).

More elaborated approaches apply a geographically weighted exclusion,

which keeps pseudo–absences out from presences using distance maps (Hirzel

et al., 2001; Barbet-Massin et al., 2012; Norris et al., 2011; Hengl et al., 2009)

or employ a profile technique (presence–only algorithm) as a preliminary step

to exclude the background areas classified as suitable, so that pseudo–absences

are moved away in the environmental space (RSEP method e.g. Zaniewski

et al., 2002; Engler et al., 2004; Barbet-Massin et al., 2012; Liu et al., 2013).

These strategies are intended to reduce the background data to those areas

where false absences are less likely to occur, while the target group background

method (TG method) has been posited as a solution to remove some of the

bias in presence–data collections, using the presence localities of other species

as biased background data (Phillips et al., 2009).

Another critical matter regarding pseudo–absence data is the extent from

which background is sampled. In fact, the available data in the background is

usually much larger than the data characterized by presence localities (Anderson

& Raza, 2010). A constrained distribution of pseudo–absences around presence

locations can lead to misleading models, while unconstrained sampling can

artificially inflate test statistics of model performance (see Section 1.6), as well

as the weight of less informative predictor variables (Van der Wal & Shoo,

2009). With this regard, Senay et al. (2013) limited the background data

using a variable importance change criterion based on principal component
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analysis, and proposed the three–step method (TS method) as an adequate

approach to overcome these limitations, envisaged to define the extent and

the environmental range of the background from which pseudo–absences are

sampled. However, variable importance may not always vary significantly for

the whole range of distances tested in a certain background, thus it is not a

generalizable method.

1.4.1 Overview of Usage of the Different SDMs

0
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True Absences?

0
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NO
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Figure 1.2: Percentages of the strategies, regarding absence or pseudo–absence data, used

in 64 articles of the first quartile and the topic “environmental sciences” resulting from a

search in the SCOPUS database containing the terms “habitat suitability”, “niche modeling”

and “background data”, “pseudo–absence” or “presence-only”, for the period 2009–july 2014.

The first bar shows the percentages of true absence data availability. Acronym EP (pink bar)

refers to the use of profile modeling techniques. Red bars refer to different pseudo–absence

generation methods, these are: TG (Target Group), EC (Expert Criteria), RSEP (Randfom

Sampling + Environmental Profiling), TS (as RSEP but adding background distance limits)

and RS (Random Sampling of the entire background).

In order to have an approximate estimation of the frequency of use of

different methods for pseudo–absence data generation, we carried out a search

in the SCOPUS database containing the terms “habitat suitability”, “niche

modeling” and “background data”, “pseudo–absence” or “presence-only”. The
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amount of resulting articles were narrowed to the journals of the first quartile

and the topic “environmental sciences” for the period 2009–july 2014, yielding

a total of 64 articles from which roughly 80% used presence–only datasets, that

is, they were lacking true absence data (Fig. 1.2). Of them, the 92% used

randomly generated pseudo–absences by considering the entire background for

sampling (RS), either explicitly (38%), or implicitly (54%) via the MAXENT

algorithm (see e.g.: Barbet-Massin et al., 2012; Jiménez-Valverde, 2012, for

details), other 28% used profile techniques (EP, i.e. pseudo–absences are not

used) and a 12% used target group background (TG). Percentages under 10%

correspond to the novel approaches analyzed in this Thesis (RSEP and TS).

Note that some of the articles analyzed used more than one type of technique,

and therefore percentages do not sum up to 100%.

1.5 Environmental Data

The environmental conditions at locations of presences and (pseudo-)absences

constitute the explanatory variables (predictors) used to characterize the niche

of a species population (Environmental variables for the reference period in Fig.

1.1). A particular case of SDM application is the characterization of the cli-

matic conditions where a species can potentially live, for which specific climatic

variables are used as predictors, typically in the form of bioclimatic variables

(Nix, 1986; Busby, 1991). The set of climate predictors used to calibrate SDMs

constitute the reference or baseline climate.

Bioclimatic variables (Table 1.1) are derived from the monthly temperature

and rainfall values in order to generate more biologically meaningful variables,

representing annual trends (e.g., mean annual temperature, annual precipita-

tion) seasonality (e.g., annual range in temperature and precipitation) and

extreme or limiting environmental factors (e.g., temperature of the coldest and

warmest month, and precipitation of the wet and dry quarters).

Using climate change data, SDMs can project habitat shifts back in time
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Table 1.1: The standard set of 19 bioclimatic variables for modeling species distributions.

Source: http://www.worldclim.org/bioclim.

ID Variable definition

BIO1 Annual Mean Temperature

BIO2 Mean Diurnal Range

BIO3 Isothermality

BIO4 Temperature Seasonality

BIO5 Max Temperature of Warmest Month

BIO6 Min Temperature of Coldest Month

BIO7 Temperature Annual Range

BIO8 Mean Temperature of Wettest Quarter

BIO9 Mean Temperature of Driest Quarter

BIO10 Mean Temperature of Warmest Quarter

BIO11 Mean Temperature of Coldest Quarter

BIO12 Annual Precipitation

BIO13 Precipitation of Wettest Month

BIO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality

BIO16 Precipitation of Wettest Quarter

BIO17 Precipitation of Driest Quarter

BIO18 Precipitation of Warmest Quarter

BIO19 Precipitation of Coldest Quarter

http://www.worldclim.org/bioclim
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(e.g. Maiorano et al., 2013) or to the future (e.g. Engler et al., 2009). In this

sense, the possibility of building predictive models that are able to extrapolate

across time (and space) are contingent on the choice of appropriate predictors

(Peterson, 2011; Rödder et al., 2009). This includes the choice of the baseline

climate dataset and the strategy for variable selection (Peterson & Nakazawa,

2008; Pliscoff et al., 2014; Baker et al., 2016).

1.5.1 Baseline Climate Data

An important barrier for SDM development is climate data retrieval and prepara-

tion. Gridded datasets of baseline climate are built from historical observations.

The numerous climate databases available are scattered across many differ-

ent repositories with various file formats, variable naming conventions, etc.,

sometimes requiring relatively complex, time-consuming data downloads and

error-prone processing steps prior to SDM development. This is also a major

barrier for research reproducibility and data exchange.

As a result, there is an increasing demand of climate products to produce

models at an adequate spatial resolution and varying geographical extents –up

to global–. The recent development of new high-resolution bioclimatic datasets

has broadened the scope of SDMs, including its application in climate change

impact studies (Peterson et al., 2002; Hijmans & Graham, 2006). In this context,

some authors have highlighted the need for high-resolution data, given the

inability of coarse resolution climate models (see Section 2) to represent local

refugia (Randin et al., 2009; Franklin et al., 2013). One of the most popular

global bioclimatic products is the WorldClim dataset (Hijmans et al., 2005),

which is widely used because it is easily available and offers high resolution data

worldwide. Other new global products of similar characteristics have recently

appeared in the literature (e.g., the new data set by Climond Kriticos et al.,

2012), which is based partly on WorldClim data), indicating the high demand of

this type of products for SDM applications. However, these global datasets have

not been rigorously tested in smaller regions, and their use in regional studies
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may pose problems due to their poor representation of local climate features

(Bedia et al., 2013). Moreover, this problem may be aggravated when predicting

potential distributions in the future as a consequence of the uncertainty derived

from the future altered climate scenarios (see Sections 1.7 and 2.3). Faced with

this problem The Regional Baseline Climate of the Basque Country (RCBC)

was developed as an alternative to existing public products.

In the following, the main characteristics of the baseline climate datasets used

in this Thesis are introduced. The interested reader is referred to the published

documentation of these datasets for further details on their construction.

RCBC

The Regional Climate of the Basque Country (RCBC) was generated in the

frame of the ADAPTACLIMA project (http://www.adaptaclima.eu/). This

gridded dataset is based on AEMET (Spanish Meteorology Agency) stations

distributed across the Basque Country and surrounding areas. After a process

of data quality control within the period 1950–2007, a subset of stations was

selected for the period 1971-2000, based on the available percentage of data, the

homogeneity of the series and the spatial distribution of the station network.

As a result, almost all the stations selected have more than the 50% of the data

and the number of stations with at least a 75% of the data is constant through

the whole period.

Regarding interpolation and regression of station data, the methodology

for building the high resolution climate grid of Cantabria (UC, Gutiérrez

et al., 2010) was followed. The performance of different techniques was tested,

namely thin-plate splines, angular distance weighting and kriging (Krige, 1951),

obtaining best results with the latter one, which has been widely used in

climate research (Atkinson & Lloyd, 1998; Biau et al., 1999; Haylock et al.,

2008). For precipitation, a two-step interpolation process was conducted: first,

precipitation occurrence was interpolated using indicator kriging (Juang & Lee,

1998); then, the amount of precipitation was interpolated using ordinary kriging,
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assigning values of 0 to all ‘dry’ points. Thus, the frequency distribution of

precipitation for both occurrence and amount was optimally fit. The final

1 km-resolution grid was obtained by regression-kriging (Hengl et al., 2007),

introducing a set of basic covariates describing terrain chacteristics including,

elevation, distance to coastline, and topographic blocking effects (Bedia et al.,

2013).

WorldClim

WorldClim (WC, Hijmans et al., 2005) is a global temperature and precipitation

dataset available at different spatial resolutions, from 10 arc minutes (≈ 20 km)

to 30 arc seconds (≈ 1 km), obtained by applying a thin-plate spline smoothing

interpolation algorithm to a large number of weather stations throughout the

world, covering most of Earth for approximately 50 years (1950–2000). A

set of standard bioclimatic variables (Hijmans et al., 2005) for modeling is

freely available for download from the internet (http://www.worldclim.org),

—including future Climate Change projections— therefore, WorldClim has been

widely used in SDM studies (e.g. Barredo et al., 2015; Mellert et al., 2015;

Curtis & Bradley, 2016),

E-OBS

The E-OBS dataset (Haylock et al., 2008, v14) is a European daily high-

resolution (0.25° ≈ 30km) gridded dataset for precipitation, mean, maxi-

mum and minimum temperature for the period 1950-2012, developed in the

frame of EU-ENSEMBLES project (van der Linden & Mitchell, 2009, http:

//www.ensembles-eu.org) with the aim of using it for validation of Re-

gional Climate Models and for climate change studies. It was constructed

through interpolation of The European Climate Assessment & Dataset (ECA&D,

http://eca.knmi.nl/) station data, the most complete collection of station data

over Europe. The E-OBS dataset was obtained applying a three stage process:

monthly mean values of temperature and precipitation were first interpolated

http://www.ensembles-eu.org
http://www.ensembles-eu.org
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to a rotated pole 0.1° grid using three dimensional thin plate splines; daily

anomalies (departure from the monthly mean) were interpolated on the same

grid and combined with the monthly mean grid (interpolation was performed

applying the kriging method); Finally, the 0.1° grid values were used to compute

area-average values at the E-OBS grid resolution.

1.5.2 Strategy for Variable Selection

The are three basic properties in a set of explanatory variables or predictors

that need to be considered, these are (1) proximality, (2) multicolinearity and

(3) dimensionality:

Proximality is the degree in which a set of variables can define the physiological

limits of a species population. Proximal variables are expected to bring the

model closer to the real requirements of the species, thus allowing more robust

predictions (Rödder et al., 2009; Petitpierre et al., 2016).

Multicollinearity is the high correlation between two or more variables and

can affect model performance negatively if these correlation varies between

the environmental subset used for calibration and the projection environment

(Dormann et al., 2008).

Dimensionality is the number of variables relative to the available observations.

Building SDMs with too many predictors leads to over–parameterization, po-

tentially reducing model transferability (Warren & Seifert, 2011).

Obtaining proximal predictors is a difficult task, given that involves previous

knowledge of the species ecological requirements and the availability of the

corresponding spatial data objects. Moreover, proximality could be confounded

with highly correlated variables.

Regarding multicollinearity and dimensionality, there are different strategies

for variable selection aimed at reducing both properties (Petitpierre et al., 2016),
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such as removing highly correlated variables, using statistical algorithms to

select the most relevant variables (e.g. stepwise selection) or using the first

principal components (PCs) of the whole set of variables (see Chapter 6).

The stepwise procedure automates the selection of significant explanatory

variables through three alternative approaches: forward selection, backward

selection and forward–backward selection. In forward selection, the model

initially contains no variables, and variables are added sequentially until a final

model is obtained. In backward selection, all variables are included in the initial

model, and these are then removed sequentially until a final model is produced.

Forward–backward selection is a variation on forward selection, in which each

forward step is followed by a backward step to remove variables in the model

that are no longer significantly related to the response (Pearce & Ferrier, 2000).

Principal Component Analysis (PCA) can be used to reduce the number of

variables (dimensionality) by selecting the first components. Collinearity is

also reduced, because components are orthogonal (see e.g. Townsend Peterson

et al., 2007; Zhang & Zhang, 2012).

1.6 Model Evaluation

Models are evaluated based in the level of agreement between observed

presences/absences and the predicted values for the occurrence data used to

built SDMs (Model performance assessment in Fig. 1.1). This is known as

model accuracy, performance or goodness.

In this Section, different procedures to evaluate and compare the models

are described. First, we will discuss the different numerical indexes that are

used to assess the predictive goodness of the models, reviewing their use in

previous ecological studies and their advantages and limitations. Second, other

alternative evaluation techniques —not generally applied in ecological studies—

are described.
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1.6.1 Model Performance Assessment

Common numerical indices

There is no single index or metric for SDM performance assessment, since

different metrics provide information on different aspects of the relationship

between predicted and observed values; The situation is more complex in the

case of probabilistic predictions (see e.g. Jolliffe & Stephenson, 2003).

Regarding deterministic binary predictions, there are two error sources:

false positives (FP, or error type I), which occur when the model predicts a

positive case (presence) when in fact one negative is observed (absence), and,

on the other hand, false negatives (FN, or error type II), when the model misses

the prediction of a positive case by predicting a negative one.

These values are typically arranged in a table (Fig. 1.2), together with

the other two cases left (i.e. the positive and the true negatives, TP and TN

respectively), in what is known as the confusion matrix (Fielding & Bell, 1997).

From this table, a series of measures of the goodness and/or error of prediction

are calculated, for instance:

Table 1.2: Confusion matrix. Error types I and II (i.e. false positives and false negatives

respectively) are written in red. Well classified cases (i.e. true positives and true negatives)

are written in green.

PREDICTED

positive negative

OBSERVED
positive TP FN

negative FP TN

Sensitivity or the True Positive Rate (TPR), is the proportion of positives that

are correctly predicted as such:

TPR =
TP

TP + FP
(1.10)
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Specificity or the True Negative Rate (TNR), is the proportion of negatives

that are correctly predicted as such:

TNR =
TN

TN + FN
(1.11)

False Discovery Rate (FDR) is the proportion of incorrectly predicted positives:

FDR =
FP

FP + TP
(1.12)

False Omission Rate (FOR) is the proportion of incorrectly predicted negatives:

FOR =
FN

FN + TN
(1.13)

Regarding probabilistic predictions, a graph called the ROC (Receiver

Operating Characteristics, Hanley & McNeil, 1982) curve is widely used, which

is constructed by plotting the values of sensitivity(u) versus 1−specificity(u) of

a deterministic prediction given for a probability threshold u. Probability values

below/above u are considered positive/negative (presence/absence). Therefore

the ROC curve describes the predictive ability of the system for the entire range

of probabilities, that is quantitatively assessed by the area it encloses, this is

the AUC (area under the curve).

The AUC provides an overall measure of the system and ranges from 1 (per-

fect prediction) to 0 (random prediction). Previous ecological studies have

shown that the AUC is independent of the prevalence (Manel et al., 2001; Al-

louche et al., 2006), and is an appropriate measure when the aim is to compare

the performance of different SDMs (Fielding & Bell, 1997; Allouche et al., 2006).

In addition, a deterministic prediction is often necessary. In this case, it

is necessary to define a probability threshold (cut value) for the separation of

positive and negative cases. However, the AUC does not give any information

about the threshold to be used, which often depends on the particular objectives
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of each case, depending on whether the objective is to minimize FN or FP errors,

or other conditions imposed by the user (Fielding & Bell, 1997; Freeman &

Moisen, 2008). A typical practice is to use prevalence (proportion of presences

vs absences) as cut value. Alternatively, an optimized probability threshold

(OPT) can be computed, for instance, the threshold that maximizes the True

Skill Statistic (TSS, see below).

From the defined probability thresholds, the corresponding confusion ma-

trixes are constructed to calculate further evaluation statistics, such as the

previously defined Sensitivity and Specificity or the commonly used Cohen’s

Kappa (κ) and True Skill Statistic (TSS):

Cohen’s Kappa (κ) measures the level of agreement between the deterministic

prediction and the observed value, relative to what would be a prediction

obtained by chance. κ is defined as:

κ =
Pr(a)− Pr(e)

1− Pr(e)
(1.14)

where Pr(a) is the proportion of correctly classified events and Pr(e) is the

hypothetical probability of success due to chance. Pr(e) is defined as follows:

Pr(e) =
1

N
[(TP + TN)× (TP + FP ) + (TN + FN)× (TN + FP )] (1.15)

where N is the total number of observations. The maximum value (κ = 1)

occurs when the coincidence between predicted and observed values is perfect,

whereas normally a perfect agreement does not occur, it is expected to be larger

than simply by chance, so 1 > κ ≥ 0.

True Skill Statistic is similar to the Cohen’s Kappa, and gives a measure of the

goodness of the classifier to separate positive (presence) events from negative

ones (absences). TSS is defined as follows:

TSS =
TP

TP + FN
− FP

FP + TN
(1.16)
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Both statistics have the advantage of correcting the precision of the models

by which they are expected to be due to chance (Fielding & Bell, 1997; Manel

et al., 2001). However, TSS has the additional advantage of being independent

of the prevalence, whereas κ can sometimes distort the performance measure

due to its unimodal response to the prevalence (Allouche et al., 2006).

Reliability Diagrams

The AUC does not report on other important aspects of a predictive system

(see e.g. Lobo et al., 2008, for a critical review of this index). For instance, high

AUC values (closer to 1) indicate good model discrimination, although this does

not necessarily correspond to a high numerical accuracy of the predictions (Bedia

et al., 2011). Reliability diagrams (also known as calibration plots) provide

additional information regarding the level of agreement between predicted and

observed probabilities of occurrence. This information is displayed in the form

of a plot such that the better the agreement, the closer the line is to the diagonal

for the whole range of probability values (see e.g. Bedia et al., 2011; Vaughan

& Ormerod, 2005, for a wider explanation in the context of SDM assessment).

Boyce Index

The Boyce Index (B) is a presence–only measure that provides information

on how observed presences are distributed across the gradient of predicted

presences and how this differs from the random expectation in the study area.

It is analogous to the Spearman correlation and varies between -1 and 1, with

zero meaning no different from random (see Hirzel et al., 2006; Petitpierre et al.,

2016).

1.6.2 Validation Procedure

The validation is a fundamental process in evaluating the effectiveness of any

predictive model. In the case of SDMs, the ideal validation is to contrast
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the skill of the constructed model with an independent set of occurrence data

collected in the field. However, field data are often scarce and valuable, and

collecting new information is expensive in time and effort, or simply not feasible.

There are, fortunately, other possibilities that allow robust estimates of SDM

performance. Resampling techniques (e.g. bootstrapping, cross-validation, etc.)

are simple to implement and effective, allowing the optimization of the available

occurrence data and a realistic performance assessment.

Cross-Validation

Cross-validation techniques (Steyerberg et al., 2010) consists in leaving part of

the data outside model calibration to replace truly independent data for model

evaluation (see Fig. 1.1), as it is commonplace in ecological studies (e.g. Manel

et al., 1999).

In particular, we used a 10-fold cross validation approach to perform all the

analysis in this Thesis, given that it is equally efficient in the error estimation

as other techniques computationally more demanding like for instance leave-

one-out cross validation (Kohavi, 1995).

1.7 Illustrative Example: Reference Climate

This Thesis emerged from the ADAPTACLIMA (www.adaptaclima.eu)

and K-EGOKITZEN (http://www.neiker.net/neiker/k-egokitzen/)

projects, where the impact of climate change to different forest species habi-

tats was studied. In this framework, the RCBC baseline climate dataset was

developed (see Section 1.5), in view of the need of an appropriate dataset for

regional studies in the Basque Country (Northern Iberian Peninsula).

In this section, an example of Species Distribution Modeling application is

illustrated, where the RCBC and the WC bioclimatic datasets are compared in

a region of complex orography.

Figure 1.3 compares mean climatologies of the minimum temperature of

www.adaptaclima.eu
http://www.neiker.net/neiker/k-egokitzen/
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coldest month, maximum temperature of warmest month and the annual

precipitation (variables named BIO6, BIO5, BIO12 respectively) among datasets

(RCBC and WC) for the reference period 1971-2000. The spatial pattern of

temperature (BIO5 and BIO6 in Fig. 1.3) is similar across datasets and

strongly controlled by the topography, however, considering RCBC as the

reference dataset, maximum temperature (BIO5) of WC is negatively biased

and minimum temperature (BIO6) is positively biased. Precipitation (BIO12) is

seriously underestimated by WC and the spatial pattern is not well reproduced.

In order to see the influence of the dataset used for building SDMs, in this

section two tree species are modeled in the Basque Country, using different

baseline climate datasets (RCBC and WC) and four SDM techniques.

We modeled the European beech (Fagus sylvatica) whose distribution re-

sponds to a high relation with climate conditions, and the Pyrenean oak

(Quercus pyrenaica) which has a wider distribution (Fig. 1.4). Presence data

(see Fig. 1.1) of each species was generated by sampling 1000 locations (points)

from The 3rd Spanish National Forest Inventory (IFN3, http://www.mapama.

gob.es/es/biodiversidad/temas/inventarios-nacionales/).

Same number of pseudo–absences (prevalence = 0.5) were randomly sampled

from the background areas were presence data is missing (i.e. the RS method

was applied), keeping an exclusion buffer of 5 km around presences in order to

decrease the false absence ratio (see Section 1.6).

In order to reduce dimensionality of the set of predictors, from the 19

standard bioclimatic variables (BIO1-BIO19, see e.g. Hijmans & Graham,

2006), we considered the temperature based BIO1, BIO5 and BIO6 and the

precipitation based BIO12, BIO18 and BIO19, for both baseline climate datasets

(RCBC and WC).

GLM , MARS, RF and MAXENT modeling techniques were applied for

each climate dataset and species, to analyze the discrepancies and the predictive

skill in all cases by evaluating the resulting models in the light of their AUC

(area under the ROC curve). We performed a k-fold cross–validation of the

http://www.mapama.gob.es/es/biodiversidad/temas/inventarios-nacionales/
http://www.mapama.gob.es/es/biodiversidad/temas/inventarios-nacionales/
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Figure 1.4: Presence data for Fagus sylvatica (left) and Quercus pyrenaica (right).

models, with k=10 strated randomly splitted subsets of presence/absence.

Built SDMs were projected into reference climate, this is, into the same

dataset, period and variables used as predictors for model calibration, thus

obtaining the reference suitability maps, i.e. the probabilities (ranged from

0 to 1) of the species habitat suitability in reference climate. We used a

threshold of 0.5 (the prevalence value) in order to transform probability maps

to presence/absence deterministic maps of the predicted species distributions.

Model performance in terms of AUC was higher for Fagus sylvatica than

for Quercus pyrenaica (Fig. 1.5), indicating that the distribution of the first

is better explained by the climate variables used as predictors. Both species

were modeled with higher accuracy by the non-linear techniques (MARS, RF

and MAXENT). Regarding climate datasets, WC achieved higher AUCs for

all modeling techniques, specially for Quercus pyrenaica, while the scores of

RCBC and WC were very similar for Fagus sylvatica.

On the contrary, predicted probabilities (suitability maps) were dissimilar

among datasets for both species as depicted by Figure 1.6, where the multi-

model mean projections (ensemble mean of all SDMs) and the map of the

bias are shown. Given that projected probabilities are ranged from 0 to 1,

opposite SDM projections would produce a bias map of value 1 for all grid cells.

Therefore, the proportion of the bias relative to the bias of hypothetical opposite

suitabilities, is given by the mean bias of the projection domain as shown in

Equation 1.17, where px,i and py,i are the suitability scores (or probabilities)
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RCBC and W: WC), tree species (blue: Fagus sylvatica and red: Quercus pyrenaica) and

SDMs (x axis; GLM, MARS, RF and MAXENT). The legend is displayed in the bottom right

corner.
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Figure 1.6: Reference suitability maps of the SDM ensemble mean, corresponding to different

baseline climate datasets (RCBC and WC) and tree species (Fagus sylvatica and Quercus

pyrenaica). The absolute bias between both datasets is also shown (bias) for each tree species.

for dataset X and Y in grid cell i. Percentages of the resulting bias in present

conditions were 8.9 % and 11.3 % for Fagus sylvatica and Quercus pyrenaica

respectively.

B(px, py) =

n∑
i=1
|px,i − py,i|

n
× 100, (1.17)

Figure 1.7 shows the deterministic maps of predicted presence/absence

resulting from applying the probability threshold of 0.5 as cut value to classify

the maps of Figure 1.6. Here, significant differences can be noted between

datasets for both species (e.g. the coast of Gipuzkoa for Fagus sylvatica and
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Figure 1.7: Reference deterministic maps of predicted presence (green areas) and absence

(white areas) of the SDM ensemble mean, corresponding to different baseline climate datasets

(RCBC and WC) and tree species (Fagus sylvatica and Quercus pyrenaica).

the western half for Quercus pyrenaica).

This example of species distribution modeling application continues in

Section 2.3.
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CHAPTER 2

Future Projections of Species Distributions

A popular application of SDMs is the future projection of species distri-

butions in order to assess key topics in environmental conservation such as

monitoring biological responses to climate change (Hamann & Wang, 2006),

species invasions (Jeschke & Strayer, 2008), natural reserve planning (Araújo

et al., 2004) or disease transmission (Drake & Beier, 2014) among others.

These projections are being increasingly used by the vulnerability, impacts and

adaptation (VIA) community, so communicating limitations, credibility and

uncertainty in a comprehensive form is crucial for informing decision making

processes (Gould et al., 2014; Urban, 2015; Zhang et al., 2015).

These projections are obtained using the climate data provided by global

and regional climate change projections. This information is periodically gen-

erated by the climate modeling community as an international effort framed

under the initiatives of the Intergovernmental Panel on Climate Change (IPCC)

considering a cascade of uncertainties: 1) different socio-economic and demo-

graphic future pathways and their translation into concentrations of atmospheric

greenhouse gas concentrations (emission scenarios), 2) global projections of

35
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future climate obtained using global climate models forced by the different

emission scenarios (Global Climate Models, GCMs), 3) regional future projec-

tions, obtained using regional models forced with the global climate projections

(Regional Climate Models, RCMs). The resulting ensemble of regional climate

change projections constitute the basis to obtain actionable information at the

scale needed to analyze local impacts on human and natural systems (Wilby &

Dessai, 2010). For instance, as we show below, SDM projections are typically

obtained considering the mean of the ensemble of climate projections, apply-

ing change factors (also called the delta rule) to modify the baseline climate

according to the changing climate conditions.

In Section 2.1 we analyze each of these components, with special emphasis on

the underlying uncertainties which need to be considered in impact studies. In

Section 2.1.4 we describe the ENSEMBLES regional projections dataset, which

is used in this Thesis. Then, we describe the standard methodology followed by

the niche modeling community to use these results in the framework of species

distribution models to obtain future projections of species distributions (Section

2.2.2). Finally, in Section 2.3, the different concepts introduced in this chapter

are illustrated using the case study introduced in Section 1.7.

2.1 Future Climate Projections

Future climate projections are plausible descriptions of the future climate

as simulated by both global and regional climate models (GCMs and RCMs,

respectively) from different scenarios of greenhouse gas emission, which define

the radiative forcing of the climate system for the next decades (e.g. for the

21st century).

2.1.1 Emission Scenarios

Climate change emission scenarios are plausible estimations of future pathways

for the emission of greenhouse gases resulting from different estimations of future



2.1. FUTURE CLIMATE PROJECTIONS 37

socioeconomic and demographic change, including population levels, economic

activity, patterns of technological change, etc. (IPCC, 2000; Nakićenović, 2000).

The IPCC is the leading international body for the assessment of climate change.

It was established by the United Nations Environment Programme (UNEP)

and the World Meteorological Organization (WMO) in 1988 to provide the

world with a clear scientific view on the current state of knowledge in climate

change and its potential environmental and socio-economic impacts. The IPCC-

SRES (Special Report on Emissions Scenarios) scenarios were constructed

building on different storylines characterizing plausible future development

pathways, determined by driving forces such as demographic growth, socio-

economic development, and technological change, and focusing on the production

of greenhouse gases (IPCC, 2000, Fig. 2.1). Figure 2.1 shows a schematic

illustration of the IPCC-SRES emission scenarios, including the evolution of

carbon dioxide concentrations under three illustrative scenarios commonly

considered to represent the range of uncertainty due to the scenario (B1, A1B

and A2). Besides these future scenarios, there is also a historical (or control) one,

considering the historical gas emissions estimated for the 20 century (scenario

20C3M hereafter). This scenario is used to reproduce and validate historical

climate conditions with the climate models.

As we show in the next section, the SRES-IPCC scenarios have been

used by the different global Climate Model Intercomparisson Projects (CMIP)

to produce climate change projections according to the different scenarios.

These projections provide detailed information about the future evolution of key

climate variables for environmental studies (e.g. temperature and precipitation).

These scenarios were revised in the last IPCC Assessment Report (IPCC-

AR5), including a new methodology building on representative emissions (and

greenhouse gas concentrations) as given by the Representative Concentra-

tion Pathways (RCPs, Moss et al., 2010) (see more details at http://sedac.

ipcc-data.org/ddc/ar5_scenario_process/RCPs.html). These new

scenarios have fed the new generation of CMIP global change projections

http://sedac.ipcc-data.org/ddc/ar5_scenario_process/RCPs.html
http://sedac.ipcc-data.org/ddc/ar5_scenario_process/RCPs.html
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SRES spread

Figure 2.1: (top) Schematic illustration of SRES-IPCC scenarios. Four qualitative

storylines yield four sets of scenario families: A1, A2, B1, and B2. The A1 family

is characterized by alternative developments of energy technologies: A1FI (fossil fuel

intensive), A1B (balanced), and A1T (predominantly non-fossil fuel). The B1 scenario

family describes a convergent world with rapid changes in economic structures toward

a service and information economy, with reductions in material intensity, and the

introduction of clean and resource-efficient technologies. The A2 family describes

“business as usual” conditions. (bottom) Evolution of carbon dioxide concentrations

along the 21st century as given by three illustrative scenarios B1 (optimistic), A1B

(intermediate) and B2 (pessimistic). Source: Adapted from IPCC (2000).

(CMIP5), used in the latest IPCC-AR5 report. However, in this Thesis we

consider products derived from IPCC-SRES, in particular the projections devel-

oped in the framework of the ENSEMBLES regional climate change initiative,

building on CMIP3 models (IPCC-AR4). These projections have undergone an

exhaustive quality control and assessment process by the different Vulnerability,
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Impacts and Adaptation (VIA) communities (e.g. detection of ill-performing

models). Therefore, they constitute a consolidated reliable dataset suitable for

climate change applications.

2.1.2 Global Climate Models (GCMs)

The primary source of information for projecting future climate are the simula-

tions produced using Global Climate Models (GCMs), which simulate the global

dynamics of the components of the climate system (i.e. the atmosphere, the

oceans, the land surface, and the cryosphere, as well as the interactions between

them) for different future emission scenarios (Räisänen, 2007). For instance, the

dynamics of the atmosphere is primarily governed by three fundamental physical

principles: conservation of mass, conservation of momentum and conservation

of energy, represented by a system of equations. These equations are solved

using sophisticated mathematical methods, which iterative evolve the state

of the system starting from an initial condition. This process is carried out

numerically (using supercomputers), considering 3D discretized grids covering

the globe and the different levels of the atmosphere with a prescribed resolution.

Besides the dynamical equations which are numerically solved, other terms need

to be approximated from the system’s variables (or parametrized), in order to

keep the system stable and balanced, considering small-scale process occurring

at resolutions not resolved by the model. These parametrizations are most

often empirically calibrated and therefore, they constitute one of the major

sources of uncertainty of GCM simulations. An schematic illustration of this

modeling process is shown in Figure 2.2.

A second source of uncertainty in climate change projections is structural

model uncertainty, arising from the fact that not all relevant processes are

well represented in the different GCMs. Multi-model ensembles are commonly

used as a pragmatic approach to characterize model uncertainty. This idea is

using several GCMs (with different dynamical cores and parameterizations)

to simulate the future climate conditions under the different forcing scenarios,
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Figure 2.2: A schematic image of a Global Climate Model (GCM) dividing the

planet into a 3-dimensional grid to solve the basic equations, calculating winds,

heat transfer, radiation, relative humidity, etc. within each grid and evaluat-

ing interactions with neighboring points. Image source: NOAA 200th Celebra-

tion http://celebrating200years.noaa.gov/breakthroughs/climate_

model/modeling_schematic.html.

thus producing and ensemble of projections which are considered equiprobable

and are used to assess all these uncertainties in future climate projections. This

is the approach followed by the CMIP international initiative, where several

participating models (nearly 30 in the latest generation, CMIP5) are run in the

same experimental conditions and driven by the same scenarios (4 in CMIP5),

thus producing an enormous amount of information (120 members of the

ensemble) characterizing the projected future climate for several scenarios. This

poses several data access and computation problems for impact studies, which

need to run their models/assessments for each specific member and evaluate

their outputs afterwards in order to properly characterize the uncertainty. In

http://celebrating200years.noaa.gov/breakthroughs/climate_model/modeling_schematic.html
http://celebrating200years.noaa.gov/breakthroughs/climate_model/modeling_schematic.html
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practise, this may involve taking a selection of models based on performance

evaluations and/or problem expertise.

Table 2.1 shows a summary of the GCMs used in the ENSEMBLES project,

an European initiative contributing to CMIP, which is the dataset considered

in this Thesis (in particular, the models used to drive regional climate change

projections, as described in the next section, are boldfaced). The data were

obtained from the CERA-database of the World Data Center for Climate

(http://cera-www.dkrz.de/CERA/). The stream 1 (S1) models were used for

the Fourth Assessment Report of the International Panel of Climate Change

(IPCC-AR4), whereas the stream 2 (S2) models were special simulations devel-

oped within the ENSEMBLES project.

Table 2.1: Summary of the GCMs from the two streams (Str) of the ENSEMBLES

project. Stream 1 corresponds to the IPCC-AR4 model versions (S1), whereas S2

indicates new versions developed within the ENSEMBLES project.

GCM name Acronym Str Institution Information

BCCR-BCM2 BCM2 S1 Bjerknes Institute of Climate Res. Drange (2006)

CNCM-CM3 CNCM3 S1 Centre National de Recher. Mét. Royer (2006)

ECHO-G EGMAM S1 Freie Universität Berlin Niehörster (2008)

IPSL-CM4 IPCM4 S1 Institute Pierre Simon Laplace Dufresne (2007)

METO-HC-HadGEM HADGEM S1 Hadley Centre Johns (2008)

METO-HC-HadCM3 HADCM3 S1 Hadley Centre Johns (2009a)

MPI-ECHAM5 MPEH5 S1 Max Planck Institut Roeckner (2007)

CNCM-CM33 CNCM3 S2 Centre National de Recher. Mét. Royer (2008)

ECHO-G2 EGMAM2 S2 Freie Universität Berlin Huebener & Koerper (2008)

IPSL-CM4v2 IPCM4V2 S2 Institute Pierre Simon Laplace Dufresne (2009)

METO-HC-HadCM3C HADCM3C S2 Hadley Centre Johns (2009a)

METO-HC-HadGEM2 HADGEM2 S2 Hadley Centre Johns (2009b)

MPI-ECHAM5C MPEH5C S2 Max Planck Institut Roeckner (2008)

The typical resolution of these global simulations is 150-300 kms, mainly

constrained by the high computational cost required to undertake these simu-

lations —increasing the model resolution by a factor 2 implies increasing the

computational requirements by a factor 16.— Therefore, although each new gen-
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eration of CMIP projections improve the resolution (typically a factor 2) aligned

with the advances of high performance computing, they are still too coarse for

impact studies in different sectors. Therefore, some sort of regionalization is

needed in order to cope with local characteristics and to provide actionable

information for impact studies, e.g. for the niche modeling community.

2.1.3 Regional Climate Models (RCMs)

Several factors prevent from the direct application of GCM outputs to local

climate studies. In particular, their coarse horizontal resolution (hundreds of

kilometers) is unable to represent local climate features. In order to bridge

the gap between the large-scale variables provided by the GCMs and the

local surface variables of interest, for instance the typical bioclimatic variables

used in niche modeling (see Section 1.5), different downscaling (also known as

regionalization) techniques have been developed in the last decades. Dynamical

downscaling methods are based on Regional Climate Models (RCMs), which

simulate regional features of the climate at a higher resolution over a limited

area, driven at the boundaries by the GCM outputs (see Fig. 2.3, and Giorgi &

Mearns, 1999). RCMs are physically consistent and provide a large number of

variables describing the state of the atmosphere. The resulting regional/local

scenarios are regarded as plausible descriptions of the future climate that reflect

the influence of local topography and/or land-sea effects, and their interactions

with changing synoptic-scale weather patterns under rising concentrations of

greenhouse gases (Wilby & Dessai, 2010).

RCM projections cannot be directly used in impact studies, since they may

contain significant biases (Christensen et al., 2008b) inherited from the driving

GCMs and also resulting from different physics and parametrizations involved

in the formulation of the models. Thus, a bias adjustment/calibration process

is necessary before using these data in real applications. This process requires

the availability of historical data over the variables of interest, in order to

calibrate the model outputs in a particular region. However, although several
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Figure 2.3: Schematic representation of the dynamical downscaling approach, based

on a Regional Climate Model (RCM) embedded in a GCM grid. Image source: F.

Giorgi, WMO Bulletin 52(2), April 2008.

bias adjustment methods have been recently proposed and have quickly became

very popular (Déqué et al., 2007), to date there is no completely satisfactory

bias-correction method (Christensen et al., 2008; Maraun, 2012). The common

approach followed by the niche modeling community is change factors (also

called the delta method, described in Section 2.2.1), which is suitable when only

climatological values (e.g. the mean for a 30-years period) are needed.

2.1.4 The ENSEMBLES Regional Climate Projections Dataset

The regional climate change projections used in this Thesis were obtained from

the ENSEMBLES project (van der Linden & Mitchell, 2009; Déqué et al., 2012).

ENSEMBLES is the latest in a series of EU-funded projects dealing with re-

gional projection (dynamical downscaling) of large-scale climate simulations over

Europe. An ensemble of state-of-the-art European Regional Climate Models

(RCMs) was applied to produce regional projections from global climate change

scenarios over Europe at 25km resolution. To this aim, the RCMs were forced

with different boundary conditions, corresponding to the different historical and

future scenarios (a detailed description of the experiments and results achieved
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in this project is published in a special issue of Climate Research, Christensen

et al., 2010).

Table 2.2: Summary of the ENSEMBLES RCMs. All ENSEMBLES simulations are

publicly available through the DMI repository, in http://ensemblesrt3.dmi.dk.

Institution Model Reference

C4I RCA3.0 Kjellström et al. (2005)

CNRM RM4.5 Radu et al. (2008)

DMI HIRHAM5 Christensen et al. (2006)

ETHZ CLM Jaeger et al. (2008)

KNMI RACMO2 van Meijgaard et al. (2008)

MetoHC HadRM31 Collins et al. (2006)

ICTP RegCM3 Pal et al. (2007)

Met.NO HIRHAM Haugen & Haakensatd (2005)

MPI-M REMO Jacob et al. (2001)

SMHI RCA3.0 Kjellström et al. (2005)

UCLM PROMES Sanchez et al. (2004)

First, the RCMs were driven by different GCMs from the phase 3 of the

Coupled Model Intercomparison Project (CMIP3, see Meehl et al., 2007) dur-

ing the same period (1961-2000), but considering the control twenty century

greenhouse gas emission scenario 20C3M. In this scenario the GCMs perform a

continuous run encompassing a historical period (approx. 1900-2001), consid-

ering the observed concentrations. Then, the RCMs were driven by the same

GCMs in the transient period 2011-2050 (some models were ran until 2100),

considering future climate conditions from the A1B SRES scenario. Table 2.3

shows the ENSEMBLES GCM/RCM combination matrix with four different

GCMs in columns and ten ENSEMBLES RCMs arranged by rows (denoted

with acronyms presented in Table 2.2). For each RCM, the red color indicates

the “default” GCM used in the simulations (which in most cases correspond

to the in-house GCM). The asterisk indicates those runs ending in 2050; the

http://ensemblesrt3.dmi.dk
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remaining combinations run until 2100.

The results from the historical scenario allow analysing the performance (e.g.

the bias or the trends) of the different coupling of RCM-GCM, for a particular

region of interest. Thus, each user may decide discarding those RCMs with poor

performance (see, e.g. Herrera et al., 2010; Turco et al., 2013, for a comparison

of RCMs in Iberia). Note that there is no day-to-day correspondence in these

simulations and, hence, they are only expected to reproduce average climate

conditions in climatic periods (typically 30 years) and inter-annual trends.

Finally, the simulations in future scenarios provide the basis to obtain regional

projections for a particular region of interest, after filtering the available data

according to the previous validation results. For instance, Figure 2.4 shows

the projected changes of total annual precipitation [%] (left) and annual mean

temperature [K] (right) for 2071-2100 compared to 1971-2000, for A1B scenario

(w.r.t. to 20C3M) as given by the ensemble mean of the ENSEMBLES regional

projections dataset (Table 2.3). Besides the average information, this figure

shows also the uncertainty obtained from the whole ensemble. Thus, hatched

areas indicate regions with robust and/or statistical significant change, as given

by the standard deviation of the ensemble. This image shows the change factors

(or deltas) which could be used to obtain future climate information (e.g. adding

them to the baseline climate).

This data set has been rarely used in SDM applications, presumably because

several post-processing steps are necessary to make the data suitable for the

modeling process (including the calculation of the bioclimate variables). Niche

applications tend to consider special purpose datasets (such as WorldClim),

with suitable variables and formats for this community. However, ENSEMBLES

(and the follow-on EURO-CORDEX) constitute the state-of-the-art regional

climate change projections in Europe and, therefore, this is in principle the

most convenient dataset to be used for climate change applications. In this

Thesis, we have developed tools to facilitate this task (see Chapter 7).



46 2. FUTURE PROJECTIONS OF SPECIES DISTRIBUTIONS

Table 2.3: The ENSEMBLES GCM/RCM combination matrix with four different

GCMs in columns and ten ENSEMBLES RCMs aranged by rows (denoted with

acronyms presented in Table 2.2). For each RCM, the red color indicates the “default”

GCM. The asterisk indicates those runs ending in 2050; the remaining combinations

run until 2100.

GCM HadCM3Q16 HadCM3Q0 ECHAM5-r3 ARPEGE BCM

RCM

HadRM31 X X

REMO X

RM4.5 X

HIRHAM5 X X X

CLM X*

RACMO2 X

RegCM3 X

RCA3.0 X X

PROMES X*

HIRHAM X* X*

RCA3.0 X X*

Figure 2.4: Projected changes of total annual precipitation [%] (left) and annual mean

temperature [K] (right) for 2071-2100 compared to 1971-2000, for A1B scenario (w.r.t.

to 20C3M). Hatched areas indicate regions with robust and/or statistical significant

change. Image source: Adapted from Jacob et al. (2014).
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2.2 Application for SDM Projections

2.2.1 The “delta” Method

The outputs of the GCMs (and/or coupled RCMs) cannot be used directly for

impact studies given that they may contain important biases (e.g. Brands et al.,

2011). These biases can result from different physics and parameterizations

involved in the formulation of the models. Thus, a validation/calibration

process is needed before using this data in real applications. This process

usually requires the availability of historical data (baseline climatologies, 1.5)

to calibrate the model outputs in a particular region of interest.

Alternatively, the “delta” method is often applied in climate research (e.g.,

Winkler et al., 1997; Zahn & von Storch, 2010) in order to extract the climate

change signal (“delta”) from model simulations. An advantage of this approach

is that as climate change signal is computed relative to the control run of each

model, the problem of the different climate model biases are alleviated to a great

extent (e.g., Räisänen, 2007). The delta method operates by calculating the

difference (“delta”) between the GCM/RCM values for a variable of interest in

a future period (e.g. 2071-2100) and in a control period (e.g. 1971-2000). Then,

the “delta” values are added to the reference/historical climate values. The main

objections against this method lie in the assumption of model bias stationarity,

which cannot be guaranteed, particularly in the latest decades of the transient

period, when model outputs need to be considered with caution (Maraun,

2012). However, it is a suitable method when working with relatively large

time periods —for which climatological features are averaged—, as is the case

of species distribution modeling. Thus, in this Thesis we applied the “delta”

method for building the future climate projections.

2.2.2 Model Extrapolation and Transferability

Predicting into new regions or/and alternative climate scenarios raises im-

portant difficulties, such as extrapolating beyond the range of environmental



48 2. FUTURE PROJECTIONS OF SPECIES DISTRIBUTIONS

conditions over which the model was calibrated. The ability of and SDM (given

a set of presences, (pseudo-)absences and predictors) to predict or project the

potential distribution of a species population into a non-sampled environment

(e.g. future climate change projections or distinct geographic areas) is known

as extrapolation capability or transferability.

Future distributions are projected under the assumption that current envi-

ronmental range will be retained under climate change (Thuiller et al., 2005).

Thus, independently from the scenario and the GCM/RCM used, the SDM

should be able to correctly reproduce the occupied range in the future. With

this respect, over-predictions (underfitting) and over-parameterizations (overfit-

ting) greatly affect models and could explain why two SDMs calibrated in the

same species data could produce different projections in the future (Thuiller

et al., 2004).

In addition to the extrapolation capability of the modeling algorithm itself,

the transferability of an SDM could be significantly affected by other method-

ological limitations, such as the availability and choice of appropriate predictor

variables (Dormann et al., 2008; Petitpierre et al., 2016).

2.2.3 Uncertainty of Future Projections

In light of current global change, Species Distribution Models (SDMs) constitute

an important tool to assist decision-making in environmental conservation

and planning. Nevertheless, a wide range of uncertainties around the SDM

projections directly affect their potential value and limitations, remaining their

quantification as an ongoing challenge. A common technique to tackle different

sources of uncertainty is based on producing ensembles encompassing the whole

range of variability by considering the results derived from multiple SDMs,

RCM/GCMs, baseline climate datasets, etc. (see, e.g. Araújo & New, 2007;

Buisson et al., 2010; Bagchi et al., 2013; Baker et al., 2015).

In particular, the relative contribution of SDMs (GLMs, MARS, MAXENT,

etc.) to the total variability of the ensemble projections has shown to be the
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largest (Buisson et al., 2010; Fronzek et al., 2011; Garcia et al., 2012), since

results vary significantly depending on the technique used (GLMs, RF, MARS,

etc.) and the model configuration (see, e.g. Araújo et al., 2005; Beaumont et al.,

2008; Fronzek et al., 2011). In this sense, the SDM ensemble approach has also

limitations, since it assumes that all SDMs are equally transferable to climate

change conditions, thus posing the risk of diluting insightful model signals

with noise and error from less useful or defective SDMs forming the ensemble

(Thuiller et al., 2004; Peterson et al., 2011). However, there is not an objective

basis to perform a selection of various alternatives, since a proper validation

of future SDM outputs is inherently impossible. Therefore, the provision of

new methodologies assessing SDM transferability and helping to narrow the

uncertainty range of future ensemble forecasts is of paramount importance.

2.2.4 Available Tools

The popularity of the open-source R language (R Core Team, 2015) and its

statistical modeling and spatial analysis support has favored the development of

specific, well-established and actively maintained packages for SDM construction

and analysis, such as sdm (Naimi & Araujo, 2016), biomod2 (Thuiller et al.,

2016), dismo (Hijmans et al., 2017) and SDMTools (VanDerWal et al., 2014),

some of them also implementing pseudo–absence data generation and ensemble

building utilities. For instance, both sdm and biomod2 implement methods for

building ensemble projections based on model performance in the calibration

phase —e.g. by discarding or weighting the obtained results—. However, they

are not oriented towards the analysis of components that add variability to the

projected distributions in non-sampled environmental spaces (e.g. under climate

change conditions) that can not be properly evaluated during model calibration,

thus it is necessary further development of methods and tools for addressing the

problem of SDM transferability and uncertainty in a straightforward manner.

Therefore, is this Thesis we have developed a tool focusing on this issues (see

Chapter 7).
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2.3 Illustrative Example: Future projections

This Section is the continuation of the illustrative example shown in Section

1.7, where built SDMs —for each species and baseline climate datasets— are

here projected to future climate conditions, considering future period 2011-2041

and the outputs from the MPI regional climate model (RCM). We applied

the “delta” method, as illustrated by Figure 2.5, to alleviate the bias linked

to the RCM (see Section 2.2.1). The extracted “deltas” where added to each

baseline climate in order to obtain future climate projections of the same set of

predictors considered in the calibration phase (Section 1.7).

RCM A1B
Future scenario

(2011-2040)

RCM A1B
Future scenario

(2041-2070)

RCM A1B
Future scenario

(2071-2100)

RCM Historical
Control period
(1971-2000)

Delta= A1B− Historical

Baseline climate
(1971-2000)

Future climate projections= Delta+Baseline

Figure 2.5: Conceptual diagram of the application of the “delta” method.

As a result, future suitability maps were obtained for each species and

baseline climate dataset (Figs. 2.6 and 2.7). Predictions of the habitat suitability

derived from each dataset were quite different according to the bias percentages

obtained, that increased in future conditions (15.8 % and 21.4 % for Fagus

sylvatica and Quercus pyrenaica respectively). Therefore, the baseline climate

dataset constitutes an added source of uncertainty in SDM future projections

that can not be assessed by relying on the model performance shown in the
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Figure 2.6: Future suitability maps of the SDM ensemble mean, corresponding to different

baseline climate datasets (RCBC and WC) and tree species (Fagus sylvatica and Quercus

pyrenaica). The absolute bias between both datasets is also shown (bias) for each tree species.



52 2. FUTURE PROJECTIONS OF SPECIES DISTRIBUTIONS

Figure 2.7: Future deterministic maps of predicted presence (green areas) and absence

(white areas) of the SDM ensemble mean, corresponding to different baseline climate datasets

(RCBC and WC) and tree species (Fagus sylvatica and Quercus pyrenaica).

model calibration phase (Fig. 1.5). In fact, despite reproducing better the

climatic features of the region, RCBC showed lower performance values.

SDMs built from RCBC predicted greater habitat loss in the Basque Country.

In this sense, using WC does not warn about the threat of habitat loss as a

consequence of climate change to the same extent. This example stresses the

importance of using quality climate data in regional studies.



CHAPTER 3

Objectives and Outline

Species Distribution Models (SDMs) are data-driven techniques widely used

by the ecological niche modeling community to model and predict the distri-

bution of biological entities in the geographical space (see Chapter 1). SDMs

are based on empirical links established between absence/presence locations

and the characteristics of their environment, including historical climate infor-

mation typically in the form of bioclimatic variables (Guisan & Zimmermann,

2000; Elith & et al, 2006). A popular application of these models is the fu-

ture projection of species distributions —from future climate projections, see

Chapter 2— in order to assess key topics in environmental conservation such

as monitoring biological responses to climate change (Hamann & Wang, 2006),

species invasions (Jeschke & Strayer, 2008) or disease transmission (Drake &

Beier, 2014) among others. These projections are being increasingly used by

the vulnerability, impacts and adaptation (VIA) community, so communicating

limitations, credibility and uncertainty in a comprehensive form is crucial for

informing decision making processes (Gould et al., 2014; Urban, 2015; Zhang

et al., 2015).

53
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A number of sensitivity studies have been already performed considering

ensembles of Species Distribution Models (SDM) formed by sampling different

sources of uncertainty, such as the choice of multiple SDMs, the baseline

climate datasets, the future emission scenarios and/or the global/regional

(GCMs/RCMs) climate projections (see e.g. Araújo & New, 2007; Garcia et al.,

2012; Baker et al., 2016, and references therein). In particular, it has been

shown that SDMs have a large contribution to the total variability of the

projections, since results vary significantly depending both on the technique

used (GLMs, RF, MARS, etc.) and on the particular configuration (Buisson

et al., 2010; Fronzek et al., 2011; Garcia et al., 2012). For instance, a particular

SDM built with different sets of predictors could project different probability

distributions (Porfirio et al., 2014; Pliscoff et al., 2014).

Part of this uncertainty could be the result of diluting insightful SDM

signals with noise from non–transferable (e.g. over-parameterized) SDMs with

deficient extrapolation capabilities (Thuiller et al., 2004; Peterson et al., 2011).

In addition, poor model configurations (e.g. the use of inadequate predictors

Petitpierre et al., 2016) could reduce significantly model transferability to

different regions and/or changing climate conditions. Thus, in order to provide

plausible actionable information to the VIA community it is necessary to narrow

the uncertainty which can be attributed to methodological problems, including

the above mentioned ones.

With this regard, the lack of reliable absence information poses several

methodological problems for SDMs (Varela et al., 2009). The generation of

pseudo–absence data (in addition to the available presence one) has been proved

to be an useful alternative to calibrate SDMs (Chefaoui & Lobo, 2008; Wisz

& Guisan, 2009; Václav́ık & Meentemeyer, 2009); therefore, this approach is

widely applied in SDM studies (see Section 1.4). For this purpose, different

methodologies for pseudo–absence data generation have been proposed (e.g.

Hengl et al., 2009; Wisz & Guisan, 2009; Stokland et al., 2011; Barbet-Massin

et al., 2012; Senay et al., 2013; Iturbide et al., 2015) attending to their perfor-
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mance in a sampled environment (using present climate information) that is

typically assessed by measuring the accuracy that results from applying different

cross-validation approaches in the calibration phase (see Section 1.6). However,

similar accuracy scores can be obtained for dissimilar predicted distributions

(Lobo et al., 2010). In this context, if true-absences are missing, the accuracy

measures can only indicate how well models discriminate data considered in

the training process, but reveals little about their real predictive capability

(Václav́ık & Meentemeyer, 2009). Furthermore, well performing SDMs may fail

in extrapolating out-of-sample future climatic values and therefore, may not

properly predict future species distributions (Fronzek et al., 2011). However, the

sensitivity of different SDMs to the sample of pseudo–absences when projecting

on a non-sampled environment (e.g. under climate change conditions) has been

neglected until now.

In this context, the following main objectives will be addressed through the

Results of this Thesis:

1. To compare and assess the limitations of standard methods for pseudo–

absence data generation in terms of model performance, considering a

representative set of SDMs. Research will be also conducted for the

development of new methods, focusing on new alternatives for the imple-

mentation of the background extent restriction.

2. To analyze pseudo–absence sampling as a determinant factor to charac-

terize model stability and transferability in climate change conditions.

This will be done by assessing the uncertainty in future ensembles of

SDM projections (suitability maps) due to this factor. The interrelation-

ship between predictors and pseudo–absences in this context will be also

analyzed.

3. To develop an open-source modeling framework implementing the state-

of-the-art SDM techniques, incorporating tools for pseudo–absence data

generation and uncertainty analysis, envisaged to yield optimal future
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estimates of habitat suitability. Special attention will be paid to the

transparent connection with standard climate data repositories, thus

helping to bridge the gap between the niche and the climate modeling

communities. This package will be develop in R language.



Part II

Results
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CHAPTER 4

Pseudo-absence Data Generation Methods

4.1 Introduction

Species distribution models (SDMs) most often require explicit absence

information to adequately model the environmental space on which species

can potentially inhabit. In the so called background pseudo–absences approach,

absence locations are simulated in order to obtain a complete sample of the

environment. Whilst the commonest approach is random sampling of the

entire study region (Section 1.4), in its multiple variants, its performance may

not be optimal. Moreover, the method of generation of pseudo–absences is

known to have a significant influence on the results obtained. In this chapter

we compare five pseudo–absence data generation methods (see Section 1.4),

ranging from the classical random sampling of the whole region (RS) and the

target group method (TG), to more sophisticated three–step techniques (TS),

which limits the extent and the environmental range of the background from

which pseudo–absences are sampled.

59



60 4. THE METHOD FOR PSEUDO–ABSENCE DATA GENERATION

Regarding background extent restriction, Senay et al. (2013) proposed a

variable importance change criterion based on principal component analysis,

however, this strategy did not appropriately fit to the case studies presented

in this Thesis. Therefore, here we propose a new criterion for optimizing

background extent selection based on the theoretical properties of model per-

formance as a function of distance to presence locations (Van der Wal & Shoo,

2009).

From an ecological perspective, the uncertainty associated to the presence

of a biological entity is a combined effect of separate factors (biotic, abiotic and

movement factors), that in turn depend on the environment of a specific site. In

this context, the three–step method pursues the estimation of the fundamental

distribution (regions of favorable abiotic factors) by the introduction of pseudo–

absences within the niche space corresponding to areas of non-presence (outside

the realized niche) and where movement factors are likely favorable (accessible

geographic areas) but not so the abiotic factors (Peterson et al., 2011). On

the opposite, random sampling would produce predictions closer to a realized

distribution, since it only excludes the presence locations for pseudo–absence

data generation.

Here we consider 11 phylogenetic groups of Oak (Quercus sp.) described in

Europe. We evaluate the influence of different pseudo–absence types on model

performance (area under the ROC curve), calibration (reliability diagrams) and

the resulting suitability maps, using a cross–validation approach (see Section

1.6).

The main results of this Chapter have been published in: Iturbide Iturbide, M., J. Bedia,

S. Herrera, O. del Hierro, M. Pinto, and J. M. Gutiérrez, 2015: A framework for species

distribution modelling with improved pseudo–absence generation. Ecological Modelling, 312,

166–174, 10.1016/j.ecolmodel.2015.05.018
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4.2 Methods and Materials

4.2.1 Presence Data and Study Domain

We consider genetically differenced groups of Quercus sp in Europe from the

GD2 database. Each group corresponds to a different chloroplast haplotype,

determined by PCR analysis on more than 2600 populations of Oaks in Europe

(see Petit et al., 2002c,b,a). We considered 11 out of the total 42 Oak haplotypes,

attending to the minimum population size needed to build the models (n > 30)

while attending to the best possible representation of all European Quercus

linages, excluding only one (linage F) out of five (Petit et al., 2002b, Table 4.1).

The study area was divided in 11 parts (in correspondence to each haplotype

distribution) by defining a bounding box around the presence points (Fig. 4.1).

Table 4.1: Haplotypes considered ordered by decreasing sample size (n), and the lineages

they belong to, according to the Quercus sp Europe database (Ehrenmann et al., 2016). Only

one linage (F) out of five was not included in the analyses due to insufficient sample size of all

its haplotypes.

Haplotype Linage n

H7 A 734

H10 B 651

H1 C 490

H12 B 466

H11 B 283

H5 A 250

H17 E 67

H4 A 53

H6 A 41

H15 E 36

H27 D 31
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4.2.2 Climate Data

We used the climatic variables of the WorldClim dataset (Hijmans et al., 2005)

at 10 km resolution as explanatory variables to build the SDMs. The chosen

resolution is adequate to the aims of this study, given the ‘false precision’

provided by the downscaled WorldClim climate surfaces of 1 Km, as highlighted

in previous niche modeling studies (Bedia et al., 2013). After a pairwise cross-

correlation analysis of the bioclimatic variables (following Bedia et al., 2013),

we retained a subset of uncorrelated predictors (BIO2, BIO03, BIO08, BIO13,

BIO14 and BIO15, see Table 1.1) rescaled in the range [0,1].

4.2.3 SDM Development, Evaluation and Projection

SDMs were built using three different popular techniques, namely maximum

entropy (MAXENT, Phillips et al., 2006), generalized linear models (GLMs,

Guisan & Zimmermann, 2000) and multivariate adaptive regression splines

(MARS Friedman, 1991). Constrained by data availability, we resorted the

use of a 10-fold cross validation approach to measure the area under the ROC

curve (AUC) as the most widely used metric for model performance assessment.

Models were also evaluated by calculating reliability diagrams.

For all methods tested we kept the number of pseudo–absences equal to

the number of presences in all cases (prevalence = 0.5, Hengl et al., 2009;

Mateo et al., 2010a; Hanspach et al., 2011; Senay et al., 2013). Additionally,

a exclusion buffer of 10 km around the occurrence points was set in order to

avoid cells containing both presence and pseudo–absence data (Chefaoui &

Lobo, 2008). All steps involved in pseudo–absence generation according to the

different methods tested are indicated in the diagram of Figure 4.2.
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4.2.4 Pseudo-absence Data

Random Selection (RS)

Pseudo–absences were sampled at random in the whole background, excepting

the grid points within the exclusion buffer.

Random Selection with Environmental Profiling (RSEP)

The RSEP method is aimed at defining the environmental range of the back-

ground from which pseudo–absences are sampled. Environmentally unsuitable

areas are defined using a presence–only profiling algorithm. To this aim, we

run one–class support vector machines (OCSVM, Scholkopf & Smola, 2001)

for each Oak group (see e.g. Drake et al., 2006; Bedia et al., 2011, for spe-

cific details on the use of support vector machines in SDM studies). OCSVM

has been indicated as the most adequate algorithm for this purpose as it can

handle high dimensional data and complex non–linear relationships between

predictors (Senay et al., 2013).

Three–step Selection (TS)

The TS method adds an additional step to the RSEP method to define the

environmental range, and also the extent of the background from which pseudo–

absences are sampled (Fig. 4.2). Thus, the first step is the definition of the

environmentally unsuitable areas as is done in the RSEP method.

Regarding the limitation of the background extent, we applied a model

performance criterion based on the findings of Van der Wal & Shoo (2009), that

evaluated the relationship between the geographic extent from which pseudo–

absences are taken and model performance, and found that the AUC rapidly

increased as background size expanded from 10 to 100 km while subsequent

expansions resulted in only minor increases in AUC. We found a similar behavior

for all the groups of presence data considered in this Thesis, and concluded that

the AUC vs. distance curve can be optimally fit to a non-linear asymptotic
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model. We tested the Michaelis-Menten model

v(x) =
ax

Km+ x
, (4.1)

the exponential of 2 parameters

v(x) = a(1− e−bx) (4.2)

and exponential of 3 parameters

v(x) = a− be−cx, (4.3)

where v and x represent the AUC and the background extent respectively. a

is the asymptotic AUC value achieved by the system and a− b is the intercept.

Km is the Michaelis constant (i.e. the extent at which the AUC is half of a),

and c is the coefficient of the point where the curve is most pronounced (Fig.

4.3).
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Figure 4.3: Relation of the AUC to the background extent for phylogeny H7. The black

curve correspond to the fitted Michaelis-Menten model. a represents the maximum AUC

achieved by the system. The highlighted point corresponds to the smallest background extent

greater than a (i.e., the threshold extent). This relationship is similar to that described in

Figure 2 in Van der Wal & Shoo (2009). All Oak groups in the study exhibited the same type

of curve.
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As a result, in this Thesis we propose a generalizable method to find the

threshold extent that minimizes the distance to presences, without penalizing

model performance, which constitutes the major novelty in comparison with

previous published methodologies for pseudo–absence data generation.

Therefore, in the second step, random pseudo–absences are generated for

different spatial extents within the unsuitability background zones defined in

the first step. In order to consider all possible extents, we set different maximum

distance thresholds to each presence location, considering a sequence from 20

km (twice the exclusion buffer) to the length of half diagonal of the bounding

box that encloses the background of each Oak phylogeny (i.e. the maximum

possible distance between any pair of points within the area).

Finally, in the third step alternative SDMs are built for all possible pseudo–

absence configurations generated in step 2. Resulting AUCs and the different

background extents tested are fitted to the curve of equations 4.1, 4.2 and 4.3 to

extract the theoretical asymptotic AUC value (a). Then, the minimum thresh-

old extent x at which AUCx > a is chosen (Fig. 4.3), and the corresponding

fitted SDM is retained to produce the suitability maps for the entire study area.

Three–step with k-means Selection (TSKM)

The difference of TSKM with regard to TS is that, the pseudo–absences are

taken from the spatial sub–units defined by a clustering on the background

extent in Step 2 (Senay et al., 2013). Instead of using a random selection

on the unsuitable areas after Step 1, a k-means clustering is applied on the

environmental and geographical space (k being equal to the number of presence

points) and the coordinate values of each cluster centroid are retained, thus

obtaining a regular distribution of dissimilar points for the study area which

constitutes a representative sample of the unsuitable environment. Step 3 is

then done as in the TS method. The resulting background extents for the TS

and TSKM methods are listed in Table 4.2.
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Table 4.2: Threshold distances to presences (kilometres) defining the background extents

from which pseudo–absences are sampled. Each data in the column dmax correspond to the

length of the half diagonal of the bounding box that encloses the study area (Fig. 4.1), i.e.:

the maximum possible distance between a pair of points within the study area.

dTS dTSKM dmax

H7 230 290 2090

H10 500 670 2100

H1 580 800 2070

H12 620 620 2130

H11 390 560 1800

H5 190 240 2170

H17 690 830 2360

H4 150 380 1440

H6 1000 1050 2950

H15 360 80 2420

H27 30 70 450

Target Group Selection (TG)

In order to select a target group for each phylogenetic Oak group we searched

for presence records of species not belonging to the Fagaceae family in the

database of The Global Biodiversity Information Facility (GBIF, http://

data.gbif.org). To ensure a sufficiently high number of presence points,

we focused on species with a widespread distribution in Europe as target group

candidates.

For each candidate and Oak group, we computed the cross type of the

Ripley’s K function (Dixon, 2006) to analyze the spatial behavior of the

point pattern. From the estimated Cross K-functions, those showing spatial

dissociation of the TG candidate with regard to the Oak group were chosen (see

Grantham, 2012, for wider explanation regarding point pattern analysis and

Rypley’s K function interpretation), resulting in the following target groups:

Ulex europaeus for groups H3 and H11; Picea glauca for groups H1, H2, H4,

http://data.gbif.org
http://data.gbif.org


4.3. RESULTS AND DISCUSSION 69

H5, H6 and H8; Pinus nigra for groups H7 and H10; Pinus strobus for group

H9. TG locations were then randomly sampled to match the number of Oak

localities in order to obtain balanced datasets for model training.

4.2.5 Implementation and Tools

Bioclimatic variables and MAXENT models were calculated by means of the R

package dismo (1.0-12, Hijmans et al., 2017). We used the MARS algorithm

implementation of the R package earth (v4.4.0, Milborrow, 2015). Several raster

data operations and representation were done using the raster package (v2.3-40,

Hijmans, 2015).

4.3 Results and Discussion

4.3.1 TG Method

TG attained the highest AUCs for almost all the phylogenetic groups (Table

4.3, Fig. 4.4), but in turn it yielded poorly calibrated models (Fig. 4.5), with a

strong under-estimation of high probability values. We argue that these results

are due to the spatially clustered distribution of targeted group presences used

as pseudo–absences, leading to spatially autocorrelated background samples

resulting in inflated AUC values (González et al., 2011), and also to an over-

estimated suitability for a large proportion of non-sampled areas (Figs. 4.7

and 4.6), as compared to the other methods. Phillips et al. (2009) and Mateo

et al. (2010a) recommended the TG pseudo–absence as the best method for

discrimination, resulting in models with the best predictive performance. We

find the same result, with TG attaining the highest AUC values, although

this comes at the cost of a poor model calibration, and therefore we do not

recommend this technique if reliable suitability maps are to be obtained. This

stresses the importance of well-distributed presence/absence data across the

environmental and geographical space of the study area in order to obtain

reliable models (Lobo & Tognelli, 2011).



70 4. THE METHOD FOR PSEUDO–ABSENCE DATA GENERATION

Table 4.3: Multimodel mean AUC values, according to the four pseudo–absence generation

methods tested, for each of the Oak groups analyzed. Values for TG method are underlined

when they are the best of all methods. Values in bold are the maximum AUC values excluding

the TG method.

RS RSEP TS TSKM TG

H7 0.771 0.834 0.832 0.830 0.981

H10 0.772 0.854 0.851 0.856 0.970

H1 0.764 0.822 0.823 0.820 0.976

H12 0.781 0.839 0.864 0.852 0.971

H11 0.760 0.815 0.842 0.846 0.985

H5 0.786 0.830 0.829 0.828 0.977

H17 0.798 0.847 0.878 0.897 0.935

H4 0.720 0.873 0.835 0.824 0.962

H6 0.802 0.847 0.862 0.859 0.939

H15 0.762 0.668 0.748 0.707 0.941

H27 0.726 0.843 0.741 0.677 0.712

4.3.2 RSEP, TS and TSKM Methods

RSEP and three–step methods (TS and TSKM) attained similar results. As

expected, we did not find any significant differences in their AUCs (Fig. 4.4,

Table 4.3) since both TS and TSKM define a threshold extent based on the

asymptotic AUC value V m (Fig. 4.3), close to the expected value of the

maximum distance threshold used by the RSEP method. With this regard,

TS and TSKM methods are preferable than RSEP, since using the theoretical

AUC value given by V m ensures the selection of a good model, while RSEP

method may result in a sub-optimal model if the last point in the X-axis lies

significantly below the V m value by chance (Fig. 4.3).

The suitability plots (Fig. 4.6) show a similar behaviour, clearly different

from RS and TG. Thus, we conclude that the relevant step that affects SDM

results is the environmental profiling of the background, which constitutes the

common characteristic of the RSEP and three–step methods. As a result, RSEP
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Figure 4.4: AUC box–plots of the 11 oak groups modeled with the five pseudo–absence

generation methods for each modeling technique. Oak groups were modeled with higher

accuracy by MAXENT and MARS. The average AUC values improved for all modeling

techniques when using a different method from RS.

was equally effective while entailing a more straightforward implementation.

Analogously, since the background extent restriction does not impair final results,

three–step methods are also recommendable as the effect of non informative

pseudo–absences from far regions could be significant in other case studies,

especially when a wider study area is considered. In this sense, several authors

argue that pseudo–absences from far regions should be avoided (Van der Wal

& Shoo, 2009; Anderson & Raza, 2010). Moreover, Jiménez-Valverde et al.

(2008) and Lobo et al. (2010) suggested that pseudo–absences should be located

near the external boundary of the suitable environment to adequately represent

the potential distribution of a species. At this respect, we consider that the

three–step method proposed in this study satisfies this requirement while avoids

misleading models with reduced AUCs. Finally, since the TSKM method does

not improve SDM results in relation to TS, the introduction of the k-means

clustering in Step 2 of TSKM can be skipped in favour of a simple random

selection within the background extent.
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Figure 4.5: Calibration plots of the multimodel predictions. Points connected by lines

are the mean obtained from the different Oak groups and the grey area correspond to the

range between maximum and minimum values. Values below the diagonal indicate over-

estimated probabilities and values above it under-estimated predictions. The smallest Oak

groups H4(n=53), H6(n=41), H15(n=36) and H27(n=31), are excluded in the calibration

plots, because their low sample size systematically yields poorly calibrated models that mask

observable differences between methods.

4.3.3 RS Method vs. RSEP, TS and TSKM Methods

The RS method produced well calibrated SDMs, excepting in the zones of

higher environmental suitability, where the latter was over-estimated for all

Oak groups (Fig. 4.5). This is due to the fact that many pseudo–absences

are distributed around presences inside the potentially suitable environment,

resulting in a lower rate of observed presences against absences in the zones

predicted as most suitable, and is arguably one major disadvantage of the RS

method with regard to methods applying environmental profiling as a previous

step (RSEP, TS and TSKM). Furthermore, RS yielded the worst discrimination

results, with the lowest AUC values for all algorithms tested (Fig. 4.4) and for

most Oak groups (Table 4.3).

The use of a profiling technique as an intermediate step, characteristic of

the three-step methods (TS and TSKM), has been criticized by some authors

for producing artificially high probabilities of occurrence (Wisz & Guisan, 2009;

Stokland et al., 2011) and wider predicted suitability areas. In ecological terms,

the variability in the predicted probabilities is related to the ability of the

SDMs to represent realized vs. potential species distributions, lying spatially
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Figure 4.6: Suitability plots. Percentage of area predicted into each interval of probability

of occurrence for the Oak groups producing well calibrated models (see Figure 4.5). These

graphics give quantitative information on the suitability maps for a better interpretation of

the results obtained. The first plot (H7) correspond to the suitability maps shown in Figure

4.7. Compared to RS, the RSEP, TS and TSKM methods produce incremented areas of high

and low suitability and reduced mid suitable areas. The TG method predicts large areas of

high suitability.

wider predicted distributions closer to the fundamental niche of the target

species (Chefaoui & Lobo, 2008). However, since the potential distribution

of the species is uncertain, we see no reason to penalize the model based on

the extent of the area predicted as suitable (see e.g. Jiménez-Valverde, 2012).

Furthermore, our results indicate that the predicted potential areas are not

significantly shrink/widened with the use of either profiling/RS techniques

(they are though in case of TG method, Fig. 4.7). In fact, the most remarkable

difference between both is a higher resolution of the profiling-based models

as compared to RS for most Oak groups, as depicted by the suitability plots

(Fig. 4.6). This means that ambiguous probabilities (around 0.5) are less likely

to occur when RSEP or three–step methods are introduced, in favor of more

informative predicted probabilities closer either to 1 or to 0, as opposed to

the traditional RS approach. (see e.g. Bedia et al., 2011, for a more detailed
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explanation of model resolution in the context of SDMs). This is particularly

important in order to reduce uncertainties when binary presence/absence maps

are required for decision making and/or management plans.

Furthermore, the lack of records from suitable regions may simply derive

from an inadequate sampling (Anderson, 2003; Hanspach et al., 2011). In

fact, presence data is quite often environmentally biased (Bierman et al., 2010)

resulting in presence data that does not represent the whole environmental

range of the realized niche. In these cases, the RS method introduces false

absences (within both the realized and fundamental niches) introducing a major

source of uncertainty (Lobo et al., 2010) and resulting in over-constrained areas

of high suitability (Fig. 4.6). In this sense, as long as RSEP, TS and TSKM

methods sample pseudo–absences within a previously profiled unsuitable area,

the risk of introducing false pseudo–absences is minimized, even in the case of

relatively biased species collections. On the other hand, in case of error in the

initial presence data (e.g. false positives), then profiling techniques may bear

the risk of further reinforcing this bias rather than correcting it, although this

particular situation should be further investigated.

4.3.4 Sensitivity of Model Performance to the Pseudo–absence Generation

Method

Our results show that the method of pseudo–absence generation strongly con-

ditions output SDMs. Whilst the choice of the SDM algorithm is generally

recognized as the principal factor of uncertainty (see e.g. Buisson et al., 2010;

Fronzek et al., 2011), in this case study we demonstrate that pseudo–absence

sampling design is even more important, leading to a larger variation of model

AUC (Fig. 4.4, Table 4.3) than the modeling algorithms tested or the initial

presence dataset choice, even though MAXENT and MARS performed better

than GLMs (Fig. 4.4), indicating that algorithm selection is also an important

factor (Phillips et al., 2009; Bedia et al., 2011; Senay et al., 2013). Our results

also suggest that MARS performance was more sensitive to the pseudo–absence
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Figure 4.7: Multimodel suitability maps according to the five pseudo–absence generation

methods tested for Oak group H7. Maps for the rest Oak groups show the same pattern on

the prediction change between methods as is shown in Figure 4.6. Suitability is here expressed

as a probability of occurrence given the environmental conditions, in the range [0,1].



76 4. THE METHOD FOR PSEUDO–ABSENCE DATA GENERATION

configuration than MAXENT (Fig. 4.4), although a more intensive testing

beyond the scope of this study is required to ascertain the sensitivity of different

algorithms to the pseudo–absence generation scheme (Chapter 5).

4.3.5 Sample Size Effect on Results

As sample sizes are heterogeneous across Oak groups, this allowed us to indirectly

evaluate the influence of the sample size in the performance. Caution has to be

given to interpreting inflated AUC values due to small number of records (Wisz

et al., 2008). For instance, Hanspach et al. (2011) excluded species with less

than 50 records to allow reliable modeling. In this study, the calibration analysis

shows that group H4 (53 presence records) and smaller groups (Table 4.1), did

not produce reliable models for any of the pseudo–absence generation methods

compared (not shown), even though AUC values were generally high (Table 4.3).

In addition, the poor performance of the models for the smallest Oak groups

(H15 and H27) is also reflected in the relationship of AUC and background

extent, resulting in poor model fits in the TS and TSKM methods (equation

4.1) and yielding small threshold extents and lower AUCs (Tables 4.2 and 4.3).



CHAPTER 5

On the Impact of Pseudo–absences in Future

Climate-Driven Projections

5.1 Introduction

Climate change projection ensembles from SDMs are strongly conditioned by

different sources of uncertainty that decrease their potential informative value.

In addition to the variability derived from alternative climate change scenarios,

methodological aspects involved in SDM applications have the potential to

affect model transferability and increase the variability of the projected future

distributions, contributing significantly to the overall uncertainty. An important

source of uncertainty often neglected in climate change studies comes from

the use of background data (a.k.a. pseudo–absences) for model calibration.

In this Chapter, we study the sensitivity to the pseudo–absence sample as a

determinant factor for SDM stability and transferability.

The goal of this work is to assess the impact of pseudo–absences in SDM

applications for climate change studies. For this purpose, we explore the range

77
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of uncertainty in SDM future projections derived from ten realizations of pseudo–

absence data, using the distribution of a Quercus robur L. phylogeny in Europe

as case study, and considering several pseudo–absence generation methods,

SDM techniques and regional future climate projections (RCMs).

5.2 Methods and Materials

5.2.1 Presence/pseudo–absence Data

Here we use the distribution of a Quercus robur phylogeny (GD2 database,

Ehrenmann et al., 2016), consisting in oak occurrence data that corresponds

to chloroplast haplotype H7 (n = 359) and belongs to genetic linage A (Fig.

5.1). The main reason for the choice of this particular haplotype was its wide

distribution and the greater number of samples available, thus improving model

robustness. More details on the oak genetic lineages can be found in Petit et al.

(2002c,b,a).

For analysis purposes, we divided the study area according to the climatic

regions defined in the EU-funded PRUDENCE project (Christensen & Chris-

tensen, 2007). With respect to the distribution of phylogeny H7, in this study

we defined as “peripheral” regions MD, IP, BI and SC (Fig. 5.1).

From the pseudo–absence generation methods evaluated in Chapter 4, here

were considered the simplest (RS method) and the most elaborated (TS method),

in order to encompass the full range of complexity at this respect and to analyze

a possible influence on the results.

Based on the recommendations provided by Barbet-Massin et al. (2012), we

considered the cases of using the same number of pseudo–absences as presences

(n = 359) and three times more pseudo–absences than presences (n = 1077).

Additionally, in order to further analyze the effect of prevalence (proportion of

The main results of these Chapter were submitted to Global and Planetary Change in

May 2017 and were under review when the Thesis was printed.
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presences vs. absences) on the results we also considered n = 718 and n = 1795

(two and five times the number of presences respectively). In order to minimize

the false absence ratio, pseudo–absences were generated setting an exclusion

buffer of 25 Km (i.e. one grid cell) around the occurrence points (Chefaoui &

Lobo, 2008).

Although Barbet-Massin et al. (2012) recommended a minimum of ten

realizations of pseudo–absences, this has rarely been performed in previous

studies. In this work, we computed ten realizations for each of the two generation

methods and each prevalence setting, and used them independently to train

each of the three different SDMs.

5.2.2 Climate Data

Observational data for the reference period 1971-2000 was obtained from the

E-OBS gridded observational dataset (Haylock et al., 2008, v14), providing

historical information of daily temperature and precipitation for Europe over

a regular 0.22 grid. Using E-OBS data, we calculated a set of 19 standard

bioclimatic variables (see e.g. Hijmans & Graham, 2006).

After a pairwise cross-correlation analysis of the resulting bioclimatic vari-

ables (following Bedia et al., 2013), we discarded variables highly cross-correlated

(r > 0.9).Then, we performed a stepwise (forward and backward) variable selec-

tion procedure using GLM, and retained a subset of variables that are relevant

for all pseudo–absence realizations (see Chapter 6 for a more detailed descrip-

tion), these are: BIO1, BIO4, BIO5, BIO9, BIO15, BIO18 and BIO19 (Table

1.1).

Climate projections were obtained from the Regional Climate Model (RCM)

simulations of the project ENSEMBLES (van der Linden & Mitchell, 2009,

http://www.ensembles-eu.org) over the same 0.22 grid, under the his-

torical emissions scenario (20C3M, period 1971− 2000) and the A1B transient

emissions scenario (period 2001− 2100). We considered seven future climate

scenarios generated by a subset of RCM-GCM couplings (Table 5.1), discarding

http://www.ensembles-eu.org
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Figure 5.1: Distribution of phylogeny H7 (n=359) (Quercus robur) in Europe, and climatic

regions defined in PRUDENCE: (MD) Mediterranean; (IP) Iberian Peninsula; (BI) British

Isles; (SC) Scandinavia; (EA) Eastern Europe; (ME) Mid-Europe; (AL) Alps; (FR) France.

Taking as reference the distribution of phylogeny H7, in this paper we consider as peripheral

regions MD, IP, BI and SC.

those that have been shown to have large biases for particular GCM couplings

(Turco et al., 2013).

We calculated the future projected bioclimatic variables applying the “delta”

method to the climatologies of max/min temperatures and precipitation (see,

e.g., Räisänen, 2007; Zahn & von Storch, 2010, for a description and application

of delta method). According to this, the historical simulation (1971− 2000) was

subtracted from the future period climatology (2071− 2100) for each member

to obtain the change signals (“deltas”, see Section 2.2.1). The “deltas” were

then added to the baseline (E-OBS) climatology at a grid-box level, obtained



5.2. METHODS AND MATERIALS 81

as the difference/ratio of the temperature/precipitation values in the future

period. We then calculated the future bioclimatic variables from the resulting

future temperature/precipitation climatologies.

Table 5.1: Regional climate models from the ENSEMBLES project used in this study. See

Tables 2.2 and 2.3.

Acronym RCM Driving GCM Reference

CNRM ALADIN ARPEGE Radu et al. (2008)

DMI HIRHAM ARPEGE Christensen et al. (2008b)

ETHZ CLM HadCM3Q0 Jaeger et al. (2008)

HC HadRM3Q0 HadCM3Q0 Haugen & Haakensatd (2005)

ICTP RegCM3 ECHAM5-r3 Pal et al. (2007)

MPI M-REMO ECHAM5-r3 Jacob (2001)

SMHI-BCM RCA BCM Samuelsson et al. (2011)

5.2.3 SDM Development, Evaluation and Projection

SDMs were built using generalized linear models (GLMs, Guisan et al., 2002),

multivariate adaptive regression splines (MARS, Friedman, 1991) and random

forest (RF, Breiman, 2001). For all prevalence settings, model fitting was done

with equal weighting of presences vs pseudo–absences (i.e. the total weight of

all presences is the same as the total weight of all pseudo–absences, see section

5.2.5).

Constrained by data availability, we resorted to a 10-fold cross-validation

approach (Steyerberg et al., 2010) in order to assess model performance. We

calculated four metrics used in previous studies as suitable criteria for addressing

the best formula of pseudo–absence data generation (Barbet-Massin et al., 2012)

and model transferability (Petitpierre et al., 2016). These are 1) AUC (area

under the receiver operating characteristic curve), 2) TSS (true skill statistic),

3) Sensitivity and 4) the Boyce Index (Fig. 5.2). The latter two, rely solely on
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predicted vs. observed presences (see Section 1.6 for details about the different

accuracy measures).

Finally, models fitted with each pseudo–absence realization (10 levels) were

projected into reference (1971-2000) and future (2071-2100) conditions to obtain

probability maps of the potential distribution (i.e. suitability maps ranging

from 0 to 1) for each particular SDM (3 levels) and regional climate projection

(RCM, 7 levels). This was done for each method (TS and RS) and prevalence

considered, resulting in a total of 10× 2× 3× 7 = 420 members, representing

probability maps of the future potential distribution for each prevalence setting

(4 levels) and pseudo–absence generation method (2 levels).

5.2.4 Uncertainty Derived from Pseudo–absence Data

The uncertainty was analyzed by computing the range among projected suit-

ability probabilities in every grid cell (location), and calculating the variance

explained by the pseudo–absence realization in front of the SDM and the RCM.

On the one hand, the range was obtained as the maximum–minimum difference

of the ten pseudo–absence realizations (hereafter referred to as sensitivity range),

for each SDM and climate projection combination (Figs. 5.3 and 5.4).

The relative contribution of each component to the total ensemble spread

(variability) was assessed using a simple analysis of variance approach, where

the total variance (V ) can be decomposed as the summation of the variance

explained by the realization (P ), the RCM (R) and the combination of the

previous two (PR):

V = P +R+ PR. (5.1)

Following the notation in Déqué et al. (2012) and San-Mart́ın et al. (2016),

let i be the index of the pseudo–absence realization (i = 1, ..., 10), j the index

of the RCM (j = 1, ..., 7), and Xij is the response (e.g., predicted distribution

for the particular realization and climate projection). Then,
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P =
1

10

10∑
i=1

(Xi − X̄)2 and R =
1

7

7∑
i=1

(Xj − X̄)2 (5.2)

are the terms resulting from the realization alone (P ), and RCM alone (R), and

PR =
1

10

10∑
i=1

1

7

7∑
i=1

(Xij −Xi −Xj + X̄)2 (5.3)

is the interaction term of the realization with the RCM (PR).

We also computed the variance resulting from the pseudo–absence realization

relative to the variability explained by the SDMs (j = 1, ..., 3). In order to

illustrate thoroughgoing information on the spread in the projected potential

distributions, variance percentage maps are shown together with the maps of

the mean (X̄ in Equations 5.2 and 5.3) and the standard deviation (square root

of V in Equation 5.1)(Figs. 5.5 and 5.6).

Finally, in order to summarize the results, the spatial mean of the variance

percentage was computed for each PRUDENCE region (Fig. 5.7).

5.2.5 Implementation and Tools

All the analysis performed in this study were undertaken using the open

source R software for statistical computing (R Core Team, 2015). Climate

data was loaded and handled using the package loadeR (v0.1-0, https://

github.com/SantanderMetGroup/loadeR/wiki). Bioclimatic variables

were calculated using the R package dismo (v1.0-15, Hijmans et al., 2017).

In connection to pseudo–absence sample size, Barbet-Massin et al. (2012)

recommended using 1000 pseudo–absences with equal weight to presences when

10 realizations are computed for GLM fitting. In the case of RF and MARS,

less pseudo–absences are recommended, since by the time of the correspondent

analysis, the weighting option for these two algorithms was not available in the

particular R implementations used. In this case, we used the MARS algorithm

implementation of a newer version of the R package earth (v4.4.4, Milborrow,

2015) and the RF algorithm implementation of the R package ranger (v0.6.0,

https://github.com/SantanderMetGroup/loadeR/wiki
https://github.com/SantanderMetGroup/loadeR/wiki
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Wright, 2016), both including a suitable weighting option. This allowed to

perform a fair model fitting with all tested SDMs for the different prevalence

settings considered, without penalizing the resulting probability distributions.

5.3 Results

5.3.1 Model Performance

RF achieved the best performance scores, followed by MARS, being GLM the

technique showing lowest performance (Fig. 5.2). Regarding the method for

pseudo–absence generation, in agreement with previous studies (e.g. Senay et al.,

2013; Iturbide et al., 2015) and the results obtained in Chapter 4, TS achieved

higher scores of model performance, except for some SDMs for sensitivity and

the Boyce index (e.g. sensitivity by RF or Boyce index by GLM). Although

RS shows lower performance, it is the most widely used method due to its

simplicity (Iturbide et al., 2015), and provides more easily interpretable results,

avoiding possible effects derived from intermediate steps in the generation of

pseudo absences. Therefore, hereinafter, we will mainly describe and illustrate

results corresponding to the RS method, although results obtained for the TS

method are also commented.

Figure 5.2 shows that different prevalence settings yield a similar perfor-

mance. However, the sensitivity ranges of the resulting projections were higher

when less pseudo–absences were used (n = 359, not shown), as the non-sampled

background is wider and thus, the variability among realizations is larger. This

results in projections with higher uncertainty (i.e. higher sensitivity range and

standard deviation). Therefore, in the following we mainly illustrate the results

obtained when using 1077 pseudo–absences with equal weight of presences vs.

pseudo–absences for all tested SDMs. Note that if models are not fitted with

equal weighting, increasing the number of pseudo–absences decreases the uncer-

tainty at the expense of obtaining lower probability values in the projections

(see Chapter 6).
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Figure 5.2: Model performance scores obtained for each SDM (GLM, RF and MARS)

for different prevalence settings: Same number of pseudo–absences as presences (x1) and

three times more pseudo–absences than presences (x3). Each chart correspond to a different

accuracy measure (AUC, TSS, Sensitivity and the Boyce index) and shows the results for the

two different pseudo–absence generation method (RS and TS).

5.3.2 Sensitivity Range

Figure 5.3 shows maps of the mean suitability and the sensitivity range resulting

from the 10 pseudo–absence realizations, for the reference period and future

climate projection given by an illustrative regional climate projection, the MPI

model (similar results were obtained for the rest of RCMs). These maps show a

small sensitivity range for GLM, in both reference and future climates, while the

sensitivity is large for RF, but decreasing in the future. On the contrary, MARS

exhibits a remarkable increase of uncertainty from reference to future period

affecting a large part of the study area, specially Iberia, with range values over

0.5 indicating that predictions switch from absence to presence, or the other

way round. Therefore, MARS yielded contradictory predictions regarding the

future presence/absence at regional scales, due solely to the pseudo–absence

sampling randomness in a certain background. Thus, the uncertainty analysis

performed in the historical period cannot be extrapolated into the future.

In order to analyze in detail results obtained in the Iberian Peninsula (IP

PRUDENCE region, Fig. 5.1), Figure 5.4 shows the future projected individual
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suitability for each realization. There are not significant departures from the

overall mean in GLM and RF (low sensitivity range), which project a reduced

area of potential distribution in the region, according to the habitat shift towards

the North-East predicted at European scale (mean maps in Fig. 5.3). Contrarily,

the majority prediction of MARS points towards a suitability increment in the

southern half of the IP region, with the exception of two realizations (number

2 and 3 in Fig. 5.4), which could be considered more similar to the projections

obtained by RF and GLM than to the rest of realizations of MARS. This

suggests that the more plausible predictions of MARS among 10 realizations

are also the less likely ones. This poses some concerns about the commonplace

procedure of combining members and models to construct ensembles, either

with an equal probability approach or applying model-weighting according to

their performance in reference climate (Buisson et al., 2010; Zhang et al., 2015).

5.3.3 Future Projections Uncertainty Due to Pseudo-absences

Figure 5.5 illustrates the analysis of variance applied to the set of projections

that correspond to each SDM and pseudo–absence realization (3 SDMs × 10

realizations) for an example RCM (MPI). The mean suitability map and the

standard deviation are shown in the top two panels, while the ones in the bottom

are the variance percentage maps showing the contribution of each component

to the total variance (realization, SDM and realization & SDM) of the observed

deviation. Here we see that the contribution due to the pseudo–absences is

considerable —specially in the peripheral areas— since the pseudo–absence

realization alone explains up to a 30 % of the variability in wide areas and even

a 50 % in some locations (Fig. 5.5). The percentage of the variance is higher

for the combination of the two components (realization & SDM) meaning that

the contribution of the pseudo–absence realization varies depending on the

SDM. Therefore, the variance explained by the SDMs alone is under the 30

% in many areas. This indicates that a significant fraction of the uncertainty

attributed to the SDM in different climate change studies may be due to the
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pseudo–absence sample. For instance, a three-member ensemble based on the

first realization (see Fig. 5.4) would yield much larger uncertainty than based

on the second one. Studies based on a single realization of pseudo–absences,

or in the mean of a number of realizations, have the potential to mask results

from bad performing SDMs, thus diluting the useful information.

Regarding the variability of the realization with respect to the climate

projection (7 RCMs × 10 realizations), Figure 5.6 shows the results obtained

for each SDM. The contribution of the RCM clearly differs among SDMs (in

connection to what we see in Figure 5.5), being dominant for GLM projections

and subordinated to the realization contribution at the peripheral regions for

MARS projections (results for RF at this respect are intermediate between

GLM and MARS). The areas most influenced by the pseudo–absence realization

in GLM projections are those with minimum spread (s.d. ∈ [0 − 0.1]), while

this is not a general rule for MARS (e.g. regions IP and MD). Moreover, the

contribution of the RCM alone is around the 80 % in wide areas that are not

peripheral and have a considerable spread (e.g. region FR). Therefore, to a

greater or lesser degree the realization contributes considerably to the MARS

projections spread in the major part of the study domain, particularly in the

peripheral areas of the current Quercus haplotype distribution.

The same overall conclusions hold when applying the TS method for pseudo–

absence data generation, even being the spread coming from the realization

bigger in some cases. This is depicted in Figure 5.7, that shows the spatial mean

of the variance fraction by regions, for both pseudo–absence generation methods

and all prevalence settings. This Figure summarizes the information by only

showing the contribution of the RCM alone, as the percentage of variance that

is explained by the realization is the complementary of the percentage observed

therein. Here we can see that the previously described differences among SDMs

are maintained across all PRUDENCE regions, prevalence settings and pseudo–

absence generation methods, and that even considering the best case scenario,

MARS still shows a considerable uncertainty as compared to GLM. In addition,
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it is also confirmed that results for RF are in between the other two (except

regions BI and ME) and they are less affected by the prevalence setting in most

of the cases.
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Figure 5.7: Box plot of the variance percentage explained by the climate projections (y axis)

relative to the pseudo–absence realizations, for each PRUDENCE region (x axis, ordered from

peripheral to central), each pseudo absence generation method (RS and TS) and each SDM

(GLM, RF and MARS). The spread of the boxes correspond to four different prevalences

(same number of pseudo–absences as presences and 2, 3 and 5 times the number of presences).

5.4 Discussion

The results obtained in this study reveal a varying sensitivity to the pseudo–

absence sample in future projections obtained with different SDMs, being MARS

the most sensitive among the tested ones, and GLM the most stable, with the

lowest uncertainty derived from different pseudo–absence realizations. Moreover,

MARS projections showed unrealistic probability distributions at a regional

level (an example has been shown for the Iberian Peninsula), depending on the

particular pseudo–absence realization. The contribution of the pseudo–absence

realization to the uncertainty was high also in the rest of peripheral areas
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(excepting the British Isles), specially for MARS, indicating poor transferability

(predictive ability) and pointing to an overfitting problem. This is consistent

with previous studies in which the stability and reliability of MARS projections

have been reported to be dramatically affected by presence sample size (Mateo

et al., 2010b).

Note that these results cannot be explained according to the performance of

each particular SDM in reference climate conditions, since MARS outperformed

GLM, in agreement with previous analysis on multiple-model comparison

which indicate that more complex models tend to be more accurate (Elith &

et al, 2006). This gives further evidence on the previous finding that model

performance gives no indication about the transferability to a non-sampled

environment (Fronzek et al., 2011), in this case to future climate conditions. In

particular, AUC has been criticized as a measure for evaluating models based on

pseudo–absence data, arguing that it can not be meaningfully interpreted and

that leads naturally to the selection of complex models (Golicher et al., 2012).

The present paper contributes to this discussion and warns about the blind use

of ensembles combining models of different complexities, where the members

could be differently affected by the particular realization of the pseudo–absence

sample.

MARS used around twice the number of parameters used by GLM in

most of the cases. In essence, SDMs combine response curves across multiple

predictor variables to model the environmental space. A more complex model

can fit more complex niche shapes. However, if the model is overly complex

(overparametrized), it is likely to make predictions that fit too closely to known

occurrences (overfitting) leading to a poor predictive ability for unsampled cells

(Peterson et al., 2011). Therefore, in the framework of future niche modeling,

we defend that parsimonious models (i.e., with less parameters) are better than

complex ones, specially when pseudo–absence data is used (Wisz & Guisan,

2009), given that pseudo–absences are an approximation of real absences and

so are occurrences with respect to a non-biased distribution of presences. Thus,
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if model fitting is also approximated, the inherent bias and false absence rate

in the training data is relieved. However, there are still situations where even

parsimonious methods yield uncertain results; for example, when a low number

of pseudo–absences is used. Therefore, this aspect constitutes a relevant source

of uncertainty that should be accounted in SDM applications to climate change

studies. In addition, even in the case that non-biased presences and enough

reliable absence information were available for modeling, the extrapolation

capability of SDMs that are prone to overfitting would be still limited, given

that part of the projection environment is out of the sampled range in the

calibration phase (Varela et al., 2009; Peterson et al., 2011)

In the same vein, Petitpierre et al. (2016) used an independent dataset

to evaluate model transferability by measuring the Sensitivity and the Boyce

index in the invaded ranges of multiple species, and found that parsimonious

models built with less predictors (less parameters) are more transferable to

other geographic areas, and that excellent performance in the native range does

not necessarily imply good transferability.

A proper validation of SDM future projections is unfeasible by definition.

However, here we exposed the sensitivity to the pseudo–absence realization as a

model stability and transferability dependent characteristic. In this sense, part

of the uncertainty in ensemble forecasts that include non-stable SDMs could be

the result of diluting insightful SDM signals with noise from inadequate (e.g.

over-parameterized) SDMs (Thuiller et al., 2004; Peterson et al., 2011).

Applying the TS method for pseudo–absence data generation reduces the

environmental range available for sampling and, thus, limits the environmental

variability among each set of randomly generated pseudo–absences. In this

sense, less variability among projections could be expected. On the other

hand, sampling pseudo–absences in a narrower environmental range widens

the non-sampled range, leading to a low predictive ability in case of overfitting

(Wisz & Guisan, 2009), specially for complex SDMs. This explains the higher

contribution of the pseudo–absence realization to the uncertainty in the case of
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the TS method. Nevertheless, the method for pseudo–absence data generation

is considered as a study aim dependent choice (Lobo et al., 2010) that conditions

model predictions in the gradient between potential and realized distributions

of biological entities (Chefaoui & Lobo, 2008).
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CHAPTER 6

On the Impact of Predictors in Future

Climate-Driven Projections

6.1 Introduction

The possibility of building predictive models that are able to extrapolate

across space or time are contingent on the choice of appropriate predictors

(Peterson, 2011; Rödder et al., 2009), as depicted by previous studies addressing

the implications of using different sets of predictors on SDM transferability.

For instance, Petitpierre et al. (2016) tested how the strategy used to choose

predictor variables impacts the extrapolation capability of SDMs, by using

an independent set of distribution data in the extrapolation range, allowing

the measurement of model accuracy in the native and also the invaded range.

Similarly, Peterson & Nakazawa (2008) studied the implications of different

environmental datasets in developing general, predictive and extrapolative

ecological niche models, suggesting that some environmental datasets may be

97
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less useful, in agreement with the results obtained in the illustrative example

provided in the introduction of this Thesis (Sections 1.7 and 2.3).

On the other hand, Pliscoff et al. (2014) pointed that, despite the generally

high predictive performance achieved under all different sets of predictor, they

can have statistically significant effects on the spatial patterns of the predictions,

that are transferred to the projections of climate change on species distributions

and estimates of habitat shifts (Fordham et al., 2011; Braunisch et al., 2013;

Wenger et al., 2013). In this sense, Baker et al. (2015) considered future

projections derived from different baseline climates to account for the uncertainty

explained by the baseline climate data in contrast to other well known sources

of uncertainty (e.g. future climate projections) and concluded that constitutes

an important source of uncertainty in future ensemble forecasts. However, as

far as we know, the interrelationship between predictors and pseudo–absences

has been neglected in SDM applications to climate change studies.

This chapter extends the work presented in Chapter 5 in order to further

analyze the contribution of pseudo–absences to the uncertainty in future SDM

projections, with a focus on the interrelationship of the pseudo–absence sample

and the set of explanatory variables used to build the models, which consti-

tute two important methodological aspects affecting uncertainty and SDM

transferability.

6.2 Methods and Materials

The methods and data used are the same as those in the foregoing chapter

(see Section 5.2), Additionally, we analyze the dissimilarity among the obtained

future suitability maps for different sets of predictors and SDMs, by means of

niche distance matrices derived from computing the niche overlap between each

pair combination of the projected probabilities.

Niche overlap measures the similarity of the environmental ranges occupied

by each constructed model via operating the difference between two vectors of

probability distributions (p), where px,i and py,i are the normalized suitability
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scores for biological entity or model X and Y in grid cell i. We considered

the Schoener’s statistic D for niche overlap (Warren et al., 2008; Broennimann

et al., 2012), defined as

D(px, py) = 1− 1

2

n∑
i=1

|px,i − py,i|, (6.1)

D ranges from 0 to 1, thus 1−D gives the niche dissimilarity between two

models (Fig. 6.4).

6.2.1 Strategies for Variable Selection

After a pairwise cross-correlation analysis of the 19 standard bioclimatic vari-

ables (see Section 1.5) following Bedia et al. (2013), we discarded variables

highly cross-correlated (> 0.9, Fig. 6.1). Then, different strategies for variable

selection were applied over the resulting set of predictors. These strategies are

described in Table 6.1.

The set of predictors corresponding to the stepwise selection procedure is

the same as in Chapter 5. The relevant variables for each pseudo–absence

realization are indicated in Table 6.2.

6.3 Results and Discussion

Given that similar results were obtained for different pseudo–absence gener-

ation methods regarding the contribution of pseudo–absences to the uncertainty

(Chapter 5), and that the RS method provides more interpretable results,

hereafter, we only show the results obtained for the RS method. In addition

we also show results for the non-weighted modeling scheme of presences vs

pseudo–absences, in order to show how does the weighting scheme affect the

resulting suitability maps.

6.3.1 Model Performance and Niche Dissimilarities

Accuracy measures were similar among weighting schemes, but differed among

predictor sets (Fig. 6.2) —more than among prevalence settings—, being V 2pcs
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Figure 6.1: Pearson correlation of the 19 standard set of bioclimatic variables. The first

eleven variables derive from temperature data and the rest from precipitation data. Highly

correlated (> 0.9) variables are written in red and the subset of uncorrelated variables (< 0.7)

corresponding to strategy V uncor are written in blue (see Table 6.1).
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Table 6.1: Abbreviation and description of each strategy used to select predictors from

the standard set of the 19 bioclimatic variables. These strategies are aimed at reducing

dimensionality and collinearity of the set of predictors used to build the models, except for

V all, which actually is equivalent to not applying any strategy.

V all The entire set of bioclimatic variables (BIO1 to BIO19).

V uncor After a pairwise cross-correlation analysis of the resulting bioclimatic

variables (following Bedia et al., 2013), we retained a subset of 6 uncor-

related predictors (< 0.7), these are BIO2, BIO4, BIO9, BIO15, BIO18

and BIO19.

V sw After discarding highly correlated variables (> 0.9: BIO6, BIO7, BIO10,

BIO11, BIO13, BIO16, BIO17) we performed a stepwise glm and re-

tained a subset of variables that are relevant for all the realizations of

pseudo–absences. These are BIO1, BIO4, BIO5, BIO9, BIO15, BIO18,

BIO19 (see Table 6.2).

V 6pcs After discarding highly correlated variables (r > 0.9), the first 6 compo-

nents of a principal component analysis (PCA) —relatively calculated

to the climate projections— were retained.

V 2pcs Same as V 6pcs but only retaining the first two components.

the one producing the worst performing models in terms of AUC and TSS. On

the other hand, strategy V 2pcs attained better Sensitivity and Boyce index

scores, excepting for GLM, specially regarding the Boyce index, that showed

even negative scores (out of graph in Fig. 6.2) when weighted pseudo–absences

were modeled, proving not to be an appropriate set of predictors for GLM, the

most parsimonious modeling technique among tested SDMs. In order to see

how this particular result is reflected by the projected distribution probabilities

(suitability maps), Figure 6.3 show the suitability maps for GLM (built with

three times more pseudo–absences than presences) and each predictor set. Here

we see that V 2pcs produced highly suitable areas in regions where the other sets

of predictors produced low or even none suitablity (e.g. Scandinavia, Iberian

Peninsula). This points to an over-prediction problem of model transferability

due to an excessive simplicity (under-parametereization) of the built model (see
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Table 6.2: Significant variables (indicated with symbol *) resulting from the stepwise

analysis performed for each pseudo–absence realization. The first column (r) enumerates each

realization. The rest of columns correspond to the bioclimatic variables with correlation <

0.9 (BIO = B).

r B1 B2 B3 B4 B5 B8 B9 B12 B14 B15 B18 B19

1 * * * * * * * * * * *

2 * * * * * * * * *

3 * * * * * * * * *

4 * * * * * * * * *

5 * * * * * * * * * *

6 * * * * * * * *

7 * * * * * * * * *

8 * * * * * * * * *

9 * * * * * * * * * *

10 * * * * * * * * * *

Section 2.2.2).

Niche dissimilarities among predicted probabilities corroborate that the

suitability maps produced by GLM when using the set of predictors V 2pcs,

clearly differ from the rest of predictions, since present up to a 50% of non-

overlapping niche with respect to the rest projections for the non-weighted

scheme, and more than a 30% regarding other GLM projections for the weighted

scheme. This is depicted in Figure 6.4, which shows the hierarchical clustering

of the 1−D metric.

Regarding the rest of strategies for variable selection, these are grouped

according to the particular SDM, meaning that predictions differ more among

SDMs (0.25 < 1−D < 0.5 in Fig. 6.4) than among predictor sets. Still, there

is a considerable percentage (between 10% and 20%) of non-overlapping niches

among different sets of predictors for a particular SDM (0.1 < 1 − D < 0.2

in Fig. 6.4). Additionally, it should be noted that, when using strategy V all,

GLM projected probabilities more similar to those projected by RF under

the weighed modeling scheme, while attaining the highest accuracy values as
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Figure 6.3: Future suitability maps projected by GLM when using three times more pseudo–

absences than presences, for different sets of predictors (rows) and weighting schemes (columns).

These maps show the mean of the 10 pseudo–absence realizations.
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compared to the rest of predictor sets (Fig. 6.2) for both weighting schemes. In

fact, V all showed high model performance for all cases, together with the rest

of predictor sets, excepting V 2pcs, whose outputs could be discarded at the

model calibration and evaluation phase due to model performance problems.

These results confirm that, despite the general high model performance,

different sets of predictors produce different suitability maps, thus constituting

an important source of uncertainty in future ensemble forecasts (Fordham et al.,

2011; Braunisch et al., 2013; Wenger et al., 2013).

As expected, predictions corresponding to the non-weighted scheme show

lower probabilities of suitability (e.g. Fig. 6.3) as the proportion of pseudo–

absences vs presences increases. On the other hand, model performance is

not affected by the weighting scheme (Fig. 6.2). Therefore, modeling should

be performed by equal weighting of presences and (pseudo–)absences when

possible.

6.3.2 Uncertainty of Future Projections Due to Pseudo–absences

Figure 6.5 is analogous to Figure 5.7 in Chapter 5, and shows the results of the

variance analysis (described in Section 5.2) performed for each set of predictors

—including the set analyzed in the previous chapter (V sw)—. Here, the pattern

of the variance proportion explained by each component (pseudo–absence

realization and future climate projection) across all PRUDENCE regions and

SDMs is very similar for all sets of predictors. Thus, the results of Chapter 5 are

here reinforced, given that the contribution of the pseudo–absence realization

to the total variability of the future SDM projections is higher for the most

complex SDMs —specially in peripheral regions—, regardless of the strategy

considered to build the set of predictors for modeling.

Nevertheless, the variability in future SDM projections due to different

pseudo–absence sampling realizations increased for all tested SDMs when

no strategy for reducing collinearity and dimensionality was applied (V all)

to the initial set of 19 bioclimatic variables (Fig. 6.5). Therefore, the use of
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inappropriate predictors could potentiate the uncertainty derived from the use of

pseudo–absences in future ensemble forecasts of species distributions. Contrarily,

using strategy V 6pcs reduced the variability in MARS and RF projections as

compared to the rest of strategies, even though model performance shown by

V 6pcs was generally the lowest (excluding V 2pcs, Fig. 6.2). Therefore, model

performance is not determinant for selecting appropriate predictors regarding

SDM transferability. On the other hand, they are still valuable, since in this

case study, reflected an over-prediction problem of GLM for strategy V 2pcs

due to underfitting (Thuiller et al., 2004).
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Figure 6.5: Box plots of the variance percentage explained by the climate projections (y

axis) relative to the pseudo–absence realizations, for each PRUDENCE region (x axis, ordered

from peripheral to central) and each SDM (GLM, RF and MARS). The spread of the boxes

correspond to four different prevalences (same number of pseudo–absences as presences and 2,

3 and 5 times the number of presences). Each chart corresponds to a different set of predictors

(V all, V uncor, V sw and V 6pcs). The box plot corresponding to V sw is the same as the one

shown in Chapter 5 (Fig. 5.7).
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CHAPTER 7

The R Package MOPA for Species

Distribution MOdelling with

Pseudo–Absences

7.1 Introduction

SDMs have become a valuable tool as a means of estimating distribution

shifts due to climate variations, a problem of current interest in environmental

conservation studies (see e.g.: Araújo et al., 2004; Hamann & Wang, 2006;

Jeschke & Strayer, 2008). As a result, there is an increasing demand of climate

products, requiring historical climate databases (see Section 1.5) and future

climate projections (see Section 2.1). Despite the increased use of future SDM

projections as a support tool for decision-making in biological conservation,

the communication of the inherent uncertainties of these products remains

as an ongoing challenge (see, e.g. Araújo et al., 2005; Beaumont et al., 2008;

Fronzek et al., 2011). There are important sources of uncertainty that are
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rarely quantified, yet crucial, in order to assess the credibility of the future

distributions, such as the varying errors of the different modeling algorithms used

to characterize the ecological niche (Bedia et al., 2011), the SDM extrapolation

ability outside the training period/spatial extent (transferability in time/space;

e.g. Fronzek et al., 2011), uncertainties regarding the training data (Mateo et al.,

2010b; Bedia et al., 2013), the assumptions underlying the different emission

scenarios (Nakićenović, 2000), the global/regional climate model (GCM/RCM)

biases (Turco et al., 2013) and others (see e.g.: Falloon et al., 2014, for an

overview). Among them, two have been highlighted in this Thesis, namely

the SDM choice (see e.g. Buisson et al., 2010; Fronzek et al., 2011; Garcia

et al., 2012, who find that different statistical methods can differ wildly in

their projected distributions, being not all of them equally plausible), and the

approach used for pseudo–absence data generation.

In this context, the R package mopa (MOdeling with Pseudo-Absences) has

been built and developed as part of the work of this Thesis, providing tools

—based in the open-source R language (R Core Team, 2015)—, for pseudo–

absence data generation and species distribution modeling, with a focus on the

above aspects related to SDM transferability and uncertainty. All methods and

techniques described in previous chapters are implemented in mopa, which packs

specific functions that allow to flexibly explore and combine different ensemble

configurations of the projected probability distributions and perform a variance

partitioning approach that allows to quantitatively assess the contribution of

different factors to the overall spread of the SDM projections.

In this Chapter, we show the package functionality through a case-study

that reproduces part of the analysis performed in Chapter 5, but considering

a distinct Quercus robur phylogeny (H11), that in turn has a differentiated

geographical distribution pattern (see Fig. 4.1). We use publicly available data

that are included in the package to guarantee the reproducibility of the R code

shown in the following sections.
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7.1.1 MOPA Within the “SDM ecosystem” in R

mopa is oriented towards the analysis of components that add variability to

the projected distributions in non-sampled environmental spaces (e.g. under

climate change conditions or new geographical areas), thus directly addressing

the problem of SDM transferability, that can not be properly evaluated during

model calibration. Besides, unlike previously existing packages (see Section

2.2.4), mopa allows pseudo–absence data generation as an independent step

prior to model fitting, thus providing a finer control to the user for the analysis

of several alternative methods and specific tuning options. In addition, the

novel Three-Step method for pseudo–absence data generation is implemented

(TS hereafter, Senay et al., 2013), that has been shown to improve model

transferability (Iturbide et al., 2015), providing a convenient interface that

allows a fine tuning of the technique with simple arguments. Furthermore,

mopa is also seamlessly integrated with standard R packages for spatial data

manipulation like raster (Hijmans, 2015) and sp (Pebesma & Bivand, 2005),

allowing their usage at any stage of the modeling process (e.g. for data

visualization and post-processing), and also a direct extensibility to other SDM

tools available in sdm, biomod2, etc., also handling the same spatial data

classes.

7.1.2 Integration of MOPA with Climate Services

An important barrier for SDM development is climate data retrieval and prepa-

ration. With this regard, the climate4R bundle has been recently developed,

a set of R packages specifically designed to ease climate data access, analysis

and processing in a straightforward manner, tailored to the needs of the im-

pacts and vulnerability assessment community. Further details and references

The main content of these Chapter was submitted to R Journal in May 2017 and was

under review when the Thesis was printed.
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to worked examples and tutorials can be found for instance in Cofino et al.

(2017) and Bedia et al. (2017). mopa is fully integrated within the climate4R

bundle, directly handling the climate data structures of the climate4R and

providing conversion features to other types of R data classes, in order to obtain

appropriate climate variables for modeling.

7.1.3 Package Installation

mopa is available trough a public GitHub Repository (https://github.com).

The recommended installation for most users is a direct install from the master

branch with the latest stable release. To this aim, the function install github

from the devtools R package (Wickham & Chang, 2016) is recommended.

> devtools::install_github("SantanderMetGroup/mopa")

7.2 Input Data Pre-processing

7.2.1 Climate Data

Predictor variables (in this case-study a number of bioclimatic variables, but

not necessarily so) are introduced in the analysis as collections of raster objects

of the classes rasterBrick or rasterStack, similarly as other SDM-oriented

packages. For instance, function biovars from package dismo uses precipitation

and temperature climatologies in the form of rasterBrick/Stack to calculate

a standard set of bioclimatic variables widely used in SDM applications (Busby,

1991). For instance, the built-in mopa dataset biostack contains a set of bio-

climatic variables (present and future) constructed with the function biovars

of package dismo. The precipitation and temperature climatologies have been

calculated from the E-OBS gridded observational dataset (Haylock et al., 2008),

and from 7 Regional Climate Model (RCM) simulations of the project ENSEM-

BLES (van der Linden & Mitchell, 2009, http://www.ensembles-eu.org).

Further details about the data sources are included in the help of the dataset:

https://github.com
http://www.ensembles-eu.org
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> library(mopa)
> data(biostack)
> help(biostack)

7.2.2 Species Distribution Data

Several impact studies indicate that species should be modeled by treating

sub-specific groups of organisms independently (e.g. distinct genetic linages,

see Section 1.3) due to their differing adaptive responses to changes in their

environment (Hernández et al., 2006; Beierkuhnlein et al., 2011; Serra-Varela

et al., 2015). Although this is not always possible, due to the rare availability

of information on the distribution of sub-specific groups for most of species,

mopa has been conceived with this idea in mind, being able to deal with

several sets of presences simultaneously. This adds flexibility to the modeling

process in order to carry out experiments considering different sub-collections of

presences, not only for sub-specific analyses (Iturbide et al., 2015), but also to

address the sensitivity of the modeled distributions to different characteristics

of the training sample (e.g. the sample size, Hernández et al., 2006; Mateo

et al., 2010b). Thus, the Oak phylo2 mopa dataset contains a named list of

length two, containing the geographical coordinates of presence localities for

two different Oak phylogenies (H01 and H11, Petit et al., 2002b). More details

about the source data are provided in the help file of the dataset.

> data(Oak_phylo2)
> help(Oak_phylo2)
> presences <- Oak_phylo2$H11

7.2.3 Geographic Background

The geographic background is often defined as the spatial extent of the area

considered in the SDM calibration stage. Here, we refer to the background as a

regular, geo-referenced grid with a specific size and resolution, in which both

the environmental variables and the presence localities are located, so its grid-

points are the sampling units. Function backgroundGrid provides a simple
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way of generating a backgroud using a raster-class object as reference. It

also includes an additional argument (spatial.subset) for spatial subsetting,

set by a raster::extent object or by one or several sets of bounding-box

coordinates, providing great flexibility and ease of use for the analysis of SDM

spatial aspects. For instance, it allows straightforward exploration of SDM

geographical transferability or performing cross-validation experiments based on

spatial folds (e.g.: Randin et al., 2006). As a result, when the object Oak phylo2

is passed to backgroundGrid, two different backgrounds are created by default,

each one spatially restricted by its phylogeny distribution (H11 and H01).

> bg <- backgroundGrid(raster = biostack$baseline$bio1)

A smaller domain than the previous one can be arbitrarily indicated by the

user by providing a specific spatial extent:

> bg.subdomain <- backgroundGrid(
raster = biostack$baseline$bio1,
spatial.subset = extent(c(-10, 35, 45, 65)))

Similarly, the user might be interested in a background strictly constrained by

the bounding box of the actual species localities, by just passing to spatial.subset

their coordinates:

> bg.species <- backgroundGrid(
raster = biostack$baseline$bio1,
spatial.subset = presences)

Thus, the user has flexibility to perform further modifications of the back-

ground, so it would be also possible to discard specific areas based on expert

knowledge (e.g. Serra-Varela et al., 2015). In this case study, we will retain the

full background (bg) for further analyses.

7.3 Pseudo-absence Generation

Pseudo-absence sampling in mopa is performed by the pseudoAbsences

function. It implements a wide range of methodologies described in the litera-

ture (see Iturbide et al., 2015, for an overview and comparison of methods) for
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maximum user flexibility, but at the same time its arguments have been kept as

simple as possible to ease its application (Table 7.1). Here, three methods are

described: random sampling, random sampling with environmental profiling and

the three-step method. Their main characteristics are next briefly described. A

more extended explanation can be found in (Iturbide et al., 2015) and reference

therein.

Table 7.1: Arguments of function pseudoAbsences controlling the parameter values

involved in pseudo–absence generation.

Argument Description

realizations Number of realizations of pseudo–absence generation

exclusion.buffer Minimum distance to be kept between presence data and pseudo–

absence data

prevalence Proportion of presences against absences

kmeans Performs a k-means clustering of the background to extract the

pseudo–absences instead of sampling at random

varstack RasterStack of variables for computing the k-means cluster-

ing

Random Sampling (RS). The RS method is the simplest and most frequent way

of generating pseudo–absences. In the next example three times more pseudo–

absences than presences are generated at random, keeping a 0.249◦ (' 30

km) exclusion buffer around known presence localities. Ten pseudo–absence

realizations are considered:

> pa_RS <- pseudoAbsences(xy = presences,
background = bg$xy,
realizations = 10, exclusion.buffer = 0.249,
prevalence = -0.5)

As an alternative to strict RS, a stratified random sampling approach can be

performed, based on homogeneous environmental conditions. To this aim, a

clustering of the environmental space is often applied (Senay et al., 2013):
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> pa_RS_kmeans <- pseudoAbsences(xy = presences,
background = bg$xy,
exclusion.buffer = 0.249,
prevalence = -0.5,
kmeans = TRUE, varstack = biostack$baseline)

Random Sampling with Environmental Profiling (RSEP). The RSEP method im-

poses restrictions on the environmental range of the background to be sampled

for pseudo–absences. In mopa this is done by performing an environmental

profiling of the background (function OCSVMprofiling) that, following Senay

et al. (2013), applies a one-class support vector machine algorithm (OCSVM,

implemented in package e1071, Meyer et al., 2017) returning a binary (pres-

ence/absence) classification of the background gridboxes based solely on the

presence information (bg.profiled$presence and bg.profiled$absence

in the example below). Only the predicted absence background is then retained

for pseudo–absence generation.

> bg.profiled <- OCSVMprofiling(xy = presences,
varstack = biostack$baseline,
background = bg$xy)

> pa_RSEP <- pseudoAbsences(xy = presences,
background = bg.profiled$absence,
realizations = 10, exclusion.buffer = 0.249,
prevalence = -0.5)

Three-step method (TS). TS is based on imposing restrictions to both the

environmental range and the spatial extent of the background from which

pseudo–absences are sampled. This method has been shown to outperform

other common approaches in terms of resulting SDM robustness (Iturbide et al.,

2015). The TS method adds an additional step to the RSEP method, consisting

on the partition of the background space (as yielded by RSEP) in multiple

bands using different radius from presence localities. In the example below,

multiple distance bands with an increasing radius of 30 km between each other

are created (argument by = 0.249, in degrees). The first one (with the shortest

radius from presence localities) is at 30 km from the closest presence point

(start = 0.249), and the largest one (the longest radius from presences) is set
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by default to half the length of the diagonal of the background bounding-box

(see Iturbide et al., 2015, for more details).

> bg.radius <- backgroundRadius(xy = presences,
background = bg.profiled$absence,
start = 0.249, by = 0.249, unit = "decimal degrees")

> pa_TS <- pseudoAbsences(xy = presences,
background = bg.radius,
realizations = 10, exclusion.buffer = 0.249,
prevalence = -0.5)

A spatial representation of the results yielded by the pseudo–absence meth-

ods described is next generated (Fig. 7.1):

> # Generates Fig. 8.1
> par(mfrow = c(2, 2), mar = c(2, 2, 2, 1.2))
> # Panel 1a (Presence data)
> plot(bg$xy, pch = 18, cex = 0.4, col = "gray", asp = 1)

> points(presences, pch = 18, cex = 0.6, col = "red")
> # Panel 1b (RS method)
> plot(bg$xy, pch = 18, cex = 0.4, col = "gray", asp = 1)

> points(pa_RS$species1$PA01[[1]], pch = 18,
col = "darkviolet", cex = .6)

> points(pa_RS_kmeans$species1$PA01[[1]], pch = 18,
col = "yellow", cex = .6)

> points(presences, pch = 18, cex = 0.6, col = "red")
> # Panel 1c (RSEP method)
> plot(bg.profiled$absence, pch = 18, cex = 0.4,

col = "gray", asp = 1)
> points(bg.profiled$presence, pch = 18, cex = 0.4,

col = "aquamarine")
> points(pa_RSEP$species1$PA01[[1]], pch = 18,

cex = 0.6, col = "darkviolet")
> points(presences, pch = 18, cex = 0.6, col = "red")

> # Panel 1d (TS method)
> plot(bg.radius[[1]]$km3120, col = "gray", asp = 1,

pch = 18, cex = 0.4)
> points(bg.profiled$presence, pch = 18, cex = 0.4,

col = "aquamarine")
> for (i in 1:10) {
l <- (11 - i) * 10
points(bg.radius[[1]][[l]],
col = gray.colors(10, start = .9,end = 0.1)[i],
pch = 18, cex = 0.4)
}

> points(pa_TS$species1$PA01[[50]], pch = 18, cex = 0.6,
col = "darkviolet")

> points(presences, pch = 18, cex = 0.6, col = "red")
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Figure 7.1: Pseudo-absence dataset maps, as generated by function pseudoAbsences.

(a) Known presence locations of the Oak phylogeny H11 (red points) and initial background

for pseudo–absence sampling (grey grid points). (b) pseudo–absences generated using the RS

method randomly (purple points) and with k-means clustering (yellow points). (c) Pseudo-

absences generated with the RSEP method (purple), where the turquoise area corresponds to

the discarded suitable background space as identified by the OCSVM profiling approach. (d)

TS approach. Environmentally stratified as RSEP (c), but also spatially stratified background,

the different strata (spatial extents) identified by the different gray-scale colors. Pseudo-

absences for one of the background extents (3120 km) are depicted as example (purple

points).
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Thus, mopa allows for the generation of a wide range of combinations of

environmental restriction criteria (using OCSVMprofiling) and spatial extent

constraints (using backgroundRadius, see Table 7.2), providing unrivalled

functionality for the development and inter-comparison of multiple pseudo–

absence setups for SDM refinement and ensemble prediction generation.

Table 7.2: Combinations of functions OCSVMprofiling and backgroundRadius for

background definition. These are used prior to pseudo–absence data generation with function

pseudoAbsences, that controls the different sampling methods.

OCSVMprofiling backgroundRadius Method

× × No restriction (RS method)

X ×
Environmental restriction (RSEP

method)

X X
Environmental and spatial restriction

(TS method)

× X
Spatial restriction (Particular case of

RS)

7.4 SDM Fitting and Prediction

7.4.1 Model Fitting

Once the pseudo–absence dataset(s) chosen by the user is(are) built, the

mopaTrain function performs SDM fitting. The function is a wrapper for

different statistical method implementations commonly used in SDM appli-

cations (see summary in Table 7.3). Moreover, mopaTrain adds extended

functionality for cross-validation for each set of presence/absence data and for

each different species contained in the presence dataset, as routinely done in

SDM applications (see e.g.: Verbyla & Litvaitis, 1989). In the next line of code,

the Oak H1 phylogeny is fitted using a generalized linear model (GLM, Guisan

et al., 2002) and multivariate adaptive regression splines (MARS, Friedman,
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1991), applying a 10-fold cross validation approach. Moreover, equal weighting

of presences and pseudo–absences is indicated with the argument weighting

= TRUE (see e.g.: Barbet-Massin et al., 2012).

> trainRS <- mopaTrain(y = pa_RS, x = biostack$baseline,
weighting = TRUE,
k = 10, algorithm = c("glm", "mars"))

Table 7.3: SDM techniques available in mopa through the function mopaTrain. The

corresponding algorithm argument values are also indicated.

SDM technique algorithm value pkg::function Reference

Generalized Linear Model "glm" stats::glm Part of R

Random Forest "rf" ranger::ranger Wright (2016)

Multivariate Adaptive Regression Splines "mars" earth::earth Milborrow (2015)

Maximum Entropy "maxent" dismo::maxent Hijmans et al. (2017)

Support Vector Machine "svm" e1071::best.svm Meyer et al. (2017)

Classification and regression tree (tree) "cart.tree" tree::tree Ripley (2016)

Classification and regression tree (rpart) "cart.rpart" rpart::rpart Therneau et al. (2017)

7.4.2 The Special Case of Model Fitting with TS Pseudo–absences

After the generation of TS pseudo–absences, multiple background extents

exist as a result of the different distances defined by backgroundRadius. It

has been noted that the background extent from which pseudo–absences are

sampled is an important factor affecting not only model performance, but

also biological meaning (Van der Wal & Shoo, 2009). With this regard, in

Chapter 4 we propose a selection criterion based on the response of model

performance as a function of distance radius, that is generalizable to different

SDM characteristics and spatial scales. The performance criterion chosen is

the Area Under the ROC Curve (AUC), one of the most widely used accuracy

measures of binary classification systems (Swets, 1988). Essentially, the method

performs a non-linear regression of the AUC obtained by each SDM extent

against their background radius, considering three possible asymptotic models

implemented in mopa (also described in Chapter 4):

1. Michaelis-Menten model: v(x) = ax
Km+x
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2. 2-parameter exponential model: v(x) = a(1− e−bx)

3. 3-parameter exponential model: v(x) = a− be−cx

, where v and x represent the AUC and the background extent respectively. a

is the asymptotic AUC value achieved by the system and a− b is the intercept.

Km is the Michaelis constant (i.e. the extent at which the AUC is half of a,

and c is the coefficient of the point where the curve is most pronounced. The

asymptotic model that better fits the AUC response to the different background

extents is automatically selected to extract the AUC asymptotical value. The

minimum extent at which the AUC lies above the asymptote is retained as the

optimal threshold radius, being the corresponding fitted SDM returned. The

asymptotic models are fitted internally by mopaTrain via the nls function

from package stats always the TS method is used (this is automatically detected

by the function). Optionally, a diagram displaying the results is also returned

by setting the argument diagrams=TRUE (Fig. 7.2).

> # Train TS model and generate Fig. 8.2
> trainTS <- mopaTrain(y = pa_TS, x = biostack$baseline,

weighting = TRUE,
k = 10, algorithm = c("glm", "mars"),
diagrams = TRUE)

7.4.3 Model Assessment

The object returned by mopaTrain is a list of several components generated in

the model calibration and evaluation process. Several performance measures are

included apart from the AUC, like the True Skill Statistic (TSS) and Cohen’s

Kappa obtained in the cross-validation, frequently used for the assessment in

SDMs (Allouche et al., 2006). These and other ocmponents of the SDM fitted

object can be accessed using extractFromModel. For, instance, to extract the

TSS:

> tss.RS <- extractFromModel(models = trainRS,
value = "tss")
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Figure 7.2: Asymptotic model fitting in SDMs using the TS approach for pseudo–absence

generation. The blue points are the AUC values (y-axis) obtained by the SDMs for different

background radius extents (x axis). Non-linear fits to the three asymptotic models considered

(Michaelis Menten, 2 and 3-parameter exponential). The vertical and horizontal lines indicate

the optimal radius and resulting AUC value of the final mopaTrain SDM output.
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However, and for maximum user flexibility, a matrix containing the observed

and predicted probability values for each calibration point is returned, allowing

other types of user-tailored model performance assessments.

> ObsPred.RS <- extractFromModel(models = trainRS,
value = "ObsPred")

The fitted models are stored in the "model" (or "fold.models") compo-

nent, required for subsequent model prediction.

> models.RS <- extractFromModel(models = trainRS,
value = "model")

Additionally, variable importance may be also estimated. One straight-

forward possibility is to pass the fitted models (e.g. models.RS) to function

varImp from package caret (Kuhn, 2011).

7.4.4 Model Predictions

SDM predictions are obtained by passing a new set of predictors (e.g.: future

bioclimatic variables) to the generated models. The model component corre-

sponds to the models fitted using all available data for model training, while

the SDM predictions for the k-cross-validation setup are generated from the

component fold.models –instead of model–. Thus, mopa allows handling

both the cross-fitted models for flexible model performance assessment and the

global model –fitted with all presences and pseudo–absences– for predicting

distributions, accomplished through the use of the function mopaPredict. In

the following example, models corresponding to the RS method are projected

to reference climate conditions (biostack$baseline) and to 7 future climate

projections (biostack$future):

> ensemble.present <- mopaPredict(models = models.RS,
newClim = biostack$baseline)

> ensemble.future <- mopaPredict(models = models.RS,
newClim = biostack$future)
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7.5 Exploring the Uncertainty in SDM Projections

Projections returned by mopaPredict are structured in a nested list. Each

depth or level in the list corresponds to a different component. These are:

presence data sets (SP), pseudo–absence realizations (PA), modeling algorithms

(SDM), baseline climate (baseClim), and the new climate (newClim) used to

project models (e.g. future climate projections). The function used to extract

components is extractFromPrediction. In the next example, projections

corresponding to the first pseudo–absence realization (object rcms run1) and

to the future climate projection from the MPI RCM (object runs rcm1) are

extracted:

> rcms_run1 <- extractFromPrediction(ensemble.future, "PA01")
> runs_rcm1 <- extractFromPrediction(ensemble.future, "MPI")

Then, the function is again applied to object runs rcm1 to extract the SDM

results for MPI and GLM. The resulting object is of S4-class raster*, thus

being straightforward to apply any of the plotting/analysis methods for spatial

objects. Here, we use spplot from sp for output visualization (Fig. 7.3).

> glm_runs_rcm1 <- extractFromPrediction(runs_rcm1, "glm")
> # Generates Fig. 8.3
> data(wrld)
> spplot(glm_runs_rcm1, layout = c(5, 2),

at = seq(0, 1, 0.1),
col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Thus, it is easy to explore the results by inspecting the different components

of the mopaPredict outputs. For instance, the raster package can be partic-

ularly useful this aim allowing for a wide variety of map algebra operations

through the function stackApply over user-defined subsets of SDM projections.

7.5.1 Partition of the Uncertainty into Components Using Variance Analysis

The relative contribution of each component to the total ensemble spread (i.e.

variability) is implemented in mopa using a simple variance approach described
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Figure 7.3: Future species distribution projections (2071-2100) according to the MPI RCM

projections, considering 10 different pseudo–absence realizations of the RS method, as stored

in the object glm runs rcm1.

in Chapter 5, through the function varianceAnalysis, following the method

in Déqué et al. (2012) and San-Mart́ın et al. (2016). For instance, in this

example, the total variance V can be decomposed as the summation of the

variance explained by the pseudo–absence realization P (component1 = "PA"),

the RCM R (component2 = "newClim") and the combination of both PR, so

V = P +R+ PR (see Section 5.2).

The following example shows the analysis performed for the pseudo–absence

realizations and the climate projections in GLM projections (fixed = "glm").

In order to illustrate thoroughgoing information on the spread in the projected

potential distributions, variance percentage maps are returned together with

the maps of the mean and standard deviation. Again, the results can be

conveniently visualized with function spplot (Figs. 7.4 and 7.5).

> var.glm <- varianceAnalysis(predictions = ensemble.future,
component1 = "PA", component2 = "newClim",
fixed = c("glm"))

> # Generates Fig. 8.4
> spplot(var.glm$mean,

at = seq(0,1,0.1),
col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

> # Generates Fig. 8.5
> spplot(var.glm$variance,

col.regions = rev(gray.colors(10, end = 1)),
at = seq(0, 100, 10),
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Figure 7.4: Mean and standard deviation of the SDM ensemble projections (GLM), formed

by 7 RCMs × 10 pseudo–absence realizations (RS method, object var.glm$mean).

Figure 7.5: Variance percentage explained by each component: pseudo–absence real-

ization (PA), RCM future climate projections (newClim) and their joint contribution

(PA.and.newClim), considering GLM projections (object var.glm$var).

sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Figures 7.4 and 7.5 depict the ensemble SDM projections and the variance

analysis results, applied to the set of projections that correspond to the 10

pseudo–absence realization and 7 climate projections (10 realizations x 7 RCMs).

The mean suitability map and the standard deviation are shown in Figure 7.4,

while Figure 7.5 are the variance fraction maps (%), depicting the contribution

of each component (realization, RCM and realization & RCM) to the overall

variance. For instance, the results displayed in Fig. 7.5 unveil that the RCM

choice is by far the most important factor contributing to the ensemble spread,

while pseudo–absence realization has some impact in areas that are outside the

current domain of the Oak phylogeny H1 (e.g. Scandinavia).
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Similarly, the next lines perform the same analysis, but considering consid-

ering MARS instead of GLM as the statistical modelling technique (Figs. 7.6

and 7.7):

> var.mars <- varianceAnalysis(predictions = ensemble.future,
component1 = "PA", component2 = "newClim",
fixed = c("mars"))

> # Generates Fig. 8.6
> spplot(var.mars$mean,

at = seq(0,1,0.1),
col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

> # Generates Fig. 8.7
> spplot(var.mars$variance,

at = seq(0, 100, 10),
col.regions = rev(gray.colors(10, end = 1)),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Figure 7.6: Same as Fig. 7.4, but considering MARS instead of GLM as statistical modeling

technique for SDM production (object var.mars$mean).

Figure 7.7: Same as Fig. 7.5, but considering MARS instead of GLM as the statistical

modeling technique for SDM production (object var.mars$var).
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Unlike GLM, in the case of MARS the ensemble spread (Fig. 7.6) is greatly

affected by the pseudo–absence realization in a wide area of the study domain

(Fig. 7.7). The much higher sensitivity of MARS to the pseudo–absence

sample warns about its instability, while GLM reveals much better properties

in terms of model stability and transferability. These findings are possible after

variance analysis thanks to the utilities included in mopa, enabling a flexible

experimental setup with a simple user interface. Model transferability is thus

not apparent during the SDM calibration stage and is not coupled to model

performance (even with the application of the 10-fold cross validation approach),

so for instance TSS among realizations was 0.82 for GLM and 0.85 for MARS,

and the mean AUC, 0.91 and 0.92 respectively. The uncertainty analysis results

are extremely valuable for the construction of an ensemble of SDM projections

that minimizes the risk of including unuseful realizations, thus yielding more

plausible results.

In the same vein, the analysis of the SDM to the overall spread is achieved

by adding a new component argument to varianceAnalysis, while the RCM

projection (MPI model in this case) is kept as a fixed factor:

> MPI.var <- varianceAnalysis(ensemble.future,
component1 = "PA",
component2 = "SDM",
fixed = c("MPI"))

7.6 SDM Ensemble Building

Finally, the ensemble forecast is built. In this particular example, we

could discard those MARS projections that we consider are the result of bad

transferability, e.g. corresponding to the pseudo–absence realizations that

resulted in unrealistic predictions. Let us consider the simplified case where,

after a more detailed analysis of the results, we conclude that MARS projections

corresponding to pseudo–absence realization 8 along with GLM projections,

are valid forecasts, then, as shown in the next example, the definitive ensemble

is easily built with function extractFromPrediction and the utilities of the
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Figure 7.8: Future ensemble forecast (mean and standard deviation) of the suitability of

the oak phylogeny H11 under climate conditions given by 7 different RCMs.

raster package. Here we calculate and plot the ensemble mean and standard

deviation of the final SDM ensemble projections (Fig. 7.8):

> marsEns <- extractFromPrediction(ensemble.future,
value = "mars")

> marsEnsPA08 <- extractFromPrediction(marsEns,
value = "PA08")

> glmEns <- extractFromPrediction(ensemble.future,
value = "glm")

> ensemble.future.def <- stack(list(glmEns, marsEnsPA08))
> mean.ensemble <- stackApply(ensemble.future.def,

fun = mean,
indices = rep(1, nlayers(ensemble.future.def)))

> sd.ensemble <- stackApply(ensemble.future.def, fun = sd,
indices = rep(1, nlayers(ensemble.future.def)))

> forecast.future <- stack(mean.ensemble, sd.ensemble)
> names(forecast.future) <- c("ensemble mean",

"ensemble sd")
> # Generates Fig. 8.8
> spplot(forecast.future, at = seq(0,1,0.1),

col.regions = colorRampPalette(c("white", "red3")),
sp.layout= list(wrld, first = FALSE, lwd = 0.5))

Basically, this is a weighting exercise that favors GLM predictions in front

of those of MARS, beyond the performance shown in the calibration phase.

The current ensemble forecast is obtained the same way but considering

predictions made in reference climate, (Fig. 7.9). We suggest the raster package

for further analysis on, for instance, habitat shifts among reference and future



132 7. MOPA: SPECIES DISTRIBUTION MODELLING WITH PSEUDO-ABSENCES

Figure 7.9: Ensemble forecast (mean and standard deviation) of the suitability of oak

phylogeny H11 under reference climate conditions.

projections. Similarly, further typical manipulations can be done using other

packages. For instance, binary (deterministic) presence/absence maps can

be directly calculated with function cut from raster. We also suggest the

SDMTools package, providing a set of analytical tools for SDM outputs.

In this work, we generated a set of SDM projections considering multiple

combinations of climate change projections from a set of state-of-the-art RCMs,

two popular statistical modeling methods (GLM and MARS) and different

pseudo–absence realizations. The analyses undertaken with mopa enabled the

identification of stable and plausible future projections for building the final

ensemble. Moreover, through the illustrative case study used in this chapter, we

show that the results of Chapter 5 are consistent for other groups of presences.
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CHAPTER 8

Conclusions, Achievements and Future Work

8.1 Main Conclusions

This section aims to summarize the work done in order to achieve the three

main objectives of the Thesis (included below in italics; see Chapter 3) as well

as to briefly expose the most important achievements and conclusions which

have been obtained in relation to them.

• Objective 1: To compare and assess the limitations of standard methods

for pseudo–absence data generation in terms of model performance, con-

sidering a representative set of SDMs. Research will be also conducted

for the development of new methods, focusing on new alternatives for the

implementation of the background extent restriction.

Regarding the first objective, in Chapter 4 we evaluated the influence of

different pseudo–absence generation methods on model performance (area

135
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under the ROC curve), calibration (reliability diagrams) and the result-

ing suitability maps in reference climate. Five methods were compared,

ranging from the classical random sampling of the whole region (RS),

to the more elaborated three–step technique (TS), introducing a novel

methodology for background extent restriction that does not penalize

model performance.

As a result of this analysis we demonstrate that pseudo–absence sampling

design can lead to a larger variation of model AUC (Fig. 4.4) than

the choice of alternative SDMs, since the method for pseudo–absence

generation strongly affected output SDM performance regardless of the

modeling algorithm chosen and for all the Oak groups tested. The classical

random sampling method (RS) yielded the lowest overall performance,

while the target group (TG) approach attained high AUC values at the

cost of poorly calibrated models, resulting in unreliable suitability maps.

Methods that include environmental profiling in a previous step (RSEP,

TS and TSKM), clearly outperformed both RS and TG, yielding high

AUC values and better calibrated predictions, resulting in suitability maps

with a higher resolution of the predicted probabilities. This stresses the

importance of the pseudo–absence generation methods for the develop-

ment of accurate and reliable SDMs.

The modeling algorithm is also an important factor affecting performance

(Phillips et al., 2009; Bedia et al., 2011; Senay et al., 2013). In this case,

MAXENT and MARS performed better than GLM (Fig. 4.4). This agrees

with previous studies pointing that more complex models tend to be more

accurate (Elith & et al, 2006). Our results also suggest that MARS

performance was more sensitive to the pseudo–absence configuration (Fig.

4.4).
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• Ovjective 2: To analyze pseudo–absence sampling as a determinant factor

to characterize model stability and transferability in climate change condi-

tions. This will be done by assessing the uncertainty in future ensembles

of SDM projections (suitability maps) due to this factor. The interrela-

tionship between predictors and pseudo–absences in this context will be

also analyzed.

With respect to the second objective, in Chapters 5 and 6 we explore the

uncertainty in SDM future projections due to the sampling randomness in

the background, for which different strategies for variable selection were

considered (for building different sets of predictors). For this purpose, we

performed 10 realizations of randomly generated pseudo–absences for each

considered method (RS and TS) and sample size (prevalence). We tested

the sensitivity to the pseudo–absence sample of three SDMs (GLM, RF

and MARS) when projecting to future climate change conditions given by

seven regional climate models (RCMs) from the ENSEMBLES project.

MARS proved to be the most sensitive algorithm to the pseudo–absence

sample, whereas GLM was the most stable, being the uncertainty derived

from different pseudo–absence realizations the lowest. These results are

not related to the accuracy shown by each SDM in the calibration phase

and, thus, future SDM projections can not be evaluated relying solely

in the assessment of SDM performance. The contribution of the pseudo–

absence realization to the uncertainty was higher in peripheral regions,

specially for MARS, as a results of a limited extrapolation capability

(see Figure 6.5). Although these results are consistent among different

variable selection strategies, an increasing collinearity and dimensionality

of the predictors potentiates the uncertainty derived from the use of

pseudo–absences in future ensemble forecasts. On the other hand, using

a small number of predictors could lead to over-prediction, specially for
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parsimonious SDMs (e.g. GLM).

Therefore, the sampling of pseudo–absence data constitutes a relevant

source of uncertainty in SDM applications for climate change studies.

Modeling algorithms are not equally affected, being parsimonious meth-

ods preferable in this context, since complex methods (such as MARS)

are prone to yield wildly different future projections as a result of the

pseudo–absence realization, indicating poor model transferability due to

overfitting. Accounting for the pseudo–absence generation component of

uncertainty is crucial to avoid the introduction of unreliable SDM signals

confounding the final ensemble projections.

• Objective 3: To develop an open-source modeling framework implement-

ing the state-of-the-art SDM techniques, incorporating tools for pseudo–

absence data generation and uncertainty analysis, envisaged to yield opti-

mal future estimates of habitat suitability. Special attention will be paid to

the transparent connection with standard climate data repositories, thus

helping to bridge the gap between the niche and the climate modeling

communities. This package will be develop in R language.

Finally, with regard to the third objective, Chapter 7 introduces mopa,

the R package developed as part of the work of this Thesis. We illustrate

the functionalities of mopa by means of a case study that reproduces part

of the analysis performed in Chapter 5, but considering an Oak phylogeny

with other geographical distribution pattern (see Fig. 4.1).

The ability to quantitatively assess the individual contribution of each

component in the modeling and prediction chain to the overall spread

of the SDM outputs, as implemented in function varianceAnalysis,
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proved to be crucial in the evaluation of uncertainty and SDM transferabil-

ity. While previously existing R packages already provide functionalities

for SDM building and their assessment during the calibration stage, this

is not related with their transferabilty into future climate conditions, as it

has been shown through this Thesis, being therefore this feature specific

of mopa. Other characteristic aspects introduced by the package consist

of the novel methods for pseudo–absence generation, and the ability to

perform a fine-tuning of these methods prior to model fitting.

Therefore, the new package mopa provides tools for species distribution

modeling and for the straightforward design of relatively complex exper-

iments with multiple factors or components affecting SDM uncertainty

(pseudo–absence generation, climate projections, statistical technique,

etc.), allowing users to quantify the contribution of different factors to the

final uncertainty of the results, for optimal ensemble generation of future

projections from SDMs. Furthermore, mopa is seamlessly integrated with

other SDM-oriented packages as well as already standard geospatial data

classes in R, thus providing maximum flexibility and inter-operability with

a wide range of SDM-related tools. It is also integrated in the climate4R

bundle for an easy retrieval and post-processing of climate data, helping

to overcome complex, time-consuming data downloads and error-prone

processing steps prior to SDM development. Hence, mopa takes a step

forward in connecting the climate and niche modeling communities, which

is of paramount importance for SDM applications to climate change stud-

ies.

Overall, as shown throughout the Thesis, the generation of pseudo–absences

constitutes an extra source of uncertainty which can have a considerable impact

in the projected results. This is highly relevant given that, as reported in
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this Thesis (Fig. 1.2 in Section 1.4), the most popular approach in species

distribution modeling consists in using pseudo–absence data —generated by

sampling the background areas from which presence records have not been

collected—. There are different methods to this aim whose choice has an

important effect on model performance and results (Chapter 4). However, there

is not a consensus on the way in which pseudo–absences should be generated

(e.g. Hengl et al., 2009; Wisz & Guisan, 2009; Stokland et al., 2011; Senay

et al., 2013). Nevertheless, in addition to the uncertainty that involves the use

of alternative methods, we demonstrate that, independently from the method

used, the variability of future SDM projections (uncertainty) derived from

different realizations of pseudo–absences is significant, indicating transferability

problems in some cases (Chapters 5 and 6), specially when a complex SDM is

used (in this case MARS and to a lesser extent also RF). Therefore, we conclude

that parsimonious models (e.g. GLMs), are preferable in the context of species

distribution modeling under climate change conditions, although they generally

obtain lower performance scores in the model training/calibration phase. In

fact, as indicated in previous chapters, if true-absences are missing, the accuracy

measures can only indicate how well models discriminate data considered in

the model training process, but provides limited information about their real

predictive capability (Václav́ık & Meentemeyer, 2009). Therefore, exploring

different sources of uncertainty in future SDM projections is very important

in order to avoid diluting insightful SDM signals with noise from inadequate

(e.g. over-parameterized) SDMs (Thuiller et al., 2004; Peterson et al., 2011).

To this aim, we implemented specific tools in the R package mopa (Chapter

7), which is of public domain and facilitates climate data preparation for the

niche modeling community. Thus, the utilities in package mopa can help in

the SDM production chain since the early stage (climate data retrieval and

post-processing) to the ultimate phase in which a final set of SDM outputs

is retained for ensemble generation and map production. This constitutes an

important contribution, since SDMs have become a key tool for the vulnerability
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and impact assessment community to assess the impacts of climate change on

the biological systems, an issue of current concern worldwide.

8.2 Publications and Contributions

This Thesis builds from the following research papers:

• Iturbide, M., Bedia, J., Herrera, S., del Hierro, O., Pinto, M. & Gutiérrez,

J.M. (2015) A framework for species distribution modelling with improved

pseudo–absence generation. Ecological Modelling 312, 166–174.

• Iturbide, M., Bedia, J. & Gutiérrez, J.M. (2015) Background sampling

and transferability of species distribution models for climate change pro-

jections: Implications for the multimodel ensemble approach. Submitted

to Global and Planetary Change.

• Iturbide, M., Bedia, J. & Gutiérrez, J.M. (2017) Tackling uncertainties

to address the transferability of future species distribution models with

package mopa. Submitted to R journal.

As well as from the contributions to the following events and initiatives:

• Poster presentation at BES Annual Symposium, Forest and Global Change,

2011, Cambridge (UK)

• Poster presentation at Klimagune Workshop ”De Euskadi a Rı́o +20”,

2012 Bilbao (Spain)

• Poster presentation at Conference Adapting to Global Change in the

Mediterranean Hotspots. 2013, Seville (Spain).

• Oral presentation at 5th international EcoSummit 2016, 29 Aug - 1 Sep.

Montpellier (France).
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• Work developed in the framework of WG1 of the EPS COST Action

FP1202 (MaP-FGR, “Strengthening conservation: a key issue for adapta-

tion of marginal/peripheral populations of forest trees to climate change

in Europe”).

Additionally, in parallel to the development of this Thesis, I collaborated in a

number of initiatives dealing with climate data access and post-processing (bias

adjustment) and its applicability and contribution to seasonal prediction and

climate change projections. As a result I co-authored the following publications:

• Cofino, A., Bedia, J., Iturbide, M., Vega, M., Herrera, S., Fernández, J.,

Fŕıas, M., Manzanas, R. & Gutiérrez, J.M. (2017) The ECOMS User

Data Gateway: Towards seasonal forecast data provision and research

reproducibility in the era of Climate Services. Climate Services in press.

• Bedia, J., Golding, N., Casanueva, A., Iturbide, M., Buontempo, C.

& Gutiérrez, J.M. (2017) Seasonal predictions of Fire Weather Index:

Paving the way for their operational applicability in Mediterranean Europe.

Climate Services, DOI:10.1016/j.cliser.2017.04.001.

8.3 Future Work

In connection to climate data post-processing and the preparation of appro-

priate variables for species distribution modeling, some of the results obtained

during the realization of this Thesis have opened the door for the development

of new works, by further integrating package mopa in the climate4R R bun-

dle, in order to take full advantage of its functionalities in the preparation

of predictor variables for species distribution modeling. In particular, in this

Thesis we used the basic “delta” method (change factor) to produce the future

climate projections (see Chapter 2), however, there are alternative methods

for adjusting the bias of the GCM/RCM outputs. In this sense, and related

to the publications shown above, I have acquired some experience in this field
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and have contributed to the development of related tools. Therefore, the work

that follows this Thesis will consist in exploring alternative methods of bias

adjustment in the production of predictor and projection variables that repre-

sent climate variations in a reduced time scale (e.g. weekly values). As well as

analyzing the utilization of the resulting predictors in SDMs.
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CHAPTER 9

Resumen

De acuerdo con la normativa que regula los estudios de doctorado de la

Universidad del Páıs Vasco (UPV/EHU), se incluye a continuación un resumen

de los principales resultados y conclusiones de la Tesis Doctoral.

9.1 Introducción

Los Modelos de Distribución de Especies (SDMs según sus siglas en inglés),

son herramientas estad́ısticas utilizadas para la generación de predicciones

probabiĺısticas de la presencia de poblaciones de especies en el espacio geográfico

(Guisan & Zimmermann, 2000; Elith & et al, 2006). Los SDMs funcionan

mediante el establecimiento de una relación emṕırica entre las localizaciones de

presencia/ausencia conocidas (predictando) y las caracteŕısticas f́ısicas de su

entorno (predictores). Dada la amenaza que supone el cambio climático, una

aplicación popular de estos modelos es la proyección futura de las distribuciones

potenciales de las especies —a partir de proyecciones climáticas futuras, véase

el Caṕıtulo 2— con el fin de evaluar temas claves en la conservación del medio
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ambiente, como el seguimiento de las respuestas biológicas al Cambio climático

(Hamann & Wang, 2006), invasiones de especies (Jeschke & Strayer, 2008) o

transmisión de enfermedades (Drake & Beier, 2014) entre otros. Por lo tanto,

los SDMs se han convertido en una valiosa herramienta para la comunidad de

evaluación de vulnerabilidad e impactos. Sin embargo, hay fuentes importantes

de incertidumbre que afectan la credibilidad de las predicciones, como la

capacidad predictiva de los SDMs fuera del dominio espacial y/o temporal de

entrenamiento (conocida como transferibilidad o capacidad de extrapolación;

Fronzek et al., 2011), la incertidumbre asociada a los datos de entrenamiento

(Mateo et al., 2010b; Bedia et al., 2013), las suposiciones subyacentes a los

diferentes escenarios de emisiones (Nakićenović, 2000), los sesgos en los modelos

climáticos globales/regionales (GCM/RCM) (Turco et al., 2013) y otros (e.g.

Falloon et al., 2014, para una visión general). Entre ellos, en esta Tesis se

destacan dos, la elección del SDM (ver e.g. Buisson et al., 2010; Fronzek et al.,

2011; Garcia et al., 2012), y la utilización de datos de pseudo–ausencia.

9.2 Generación de Pseudo–Ausencias

Además de los datos de presencia de una especie, la mayoŕıa de los SDMs

requieren también datos de ausencia para modelizar la respuesta binaria de

presencia/ausencia (predictando) en función de las diferentes variables ambi-

entales (predictores). En la mayoŕıa de los casos no hay información expĺıcita

sobre la ausencia de las especies, de forma que la práctica más popular en la

modelización de distribución de especies consiste en el uso de datos de pseudo–

ausencia —generados mediante el muestreo de localidades donde no se han

recogido registros de presencia—. Existen diferentes métodos de muestreo cuya

elección tiene un efecto importante en el rendimiento y los resultados de los

modelos (Caṕıtulo 4, Iturbide et al., 2015). Sin embargo, no hay un consenso

sobre la manera en que se deben generar las pseudo–ausencias (e.g. Hengl

et al., 2009; Wisz & Guisan, 2009; Stokland et al., 2011; Senay et al., 2013).

El método más utilizado para generar pseudo–ausencias es la selección
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aleatoria considerando todo el área de estudio (método RS), sin embargo, esto

aumenta el riesgo de introducir falsas ausencias en el modelo en lugares que, aún

no habiendo registro de presencia, son en realidad adecuados para la especie, lo

cual lleva a subestimaciones del nicho potencial (Anderson & Raza, 2010). Esto

ocurre naturalmente debido a las interacciones bióticas y a las limitaciones de

dispersión que no permiten que la especie habite en ciertos lugares, y también

muy a menudo como resultado de sesgos en el muestreo de presencias. Frente a

este problema, una práctica común es establecer una área de exclusión desde

las localidades de presencia conocidas con el fin de minimizar la tasa de falsos

negativos (e.g. Mateo et al., 2010a; Bedia et al., 2013).

Otros enfoques más elaborados aplican una exclusión geográfica ponderada,

que mantiene las pseudo–ausencias fuera de las presencias usando mapas de

distancia, o emplean un algoritmo para hacer una clasificación previa del área

de estudio, de manera que las áreas clasidicadas como adecuadas se excluyen del

muestreo, de esta manera, las pseudo–ausencias se alejan en el espacio ambiental

(método RSEP, e.g. Zaniewski et al., 2002; Engler et al., 2004; Barbet-Massin

et al., 2012; Liu et al., 2013). Estas estrategias pretenden reducir el dominio

de muestreo a aquellas áreas en las que es menos probable que ocurran falsas

ausencias, mientras que el método del “grupo objetivo” (método TG) se ha

postulado como una solución para eliminar parte del sesgo en el conjunto de

datos de presencia, mediante el uso de localidades de presencia de otras especies

como datos sesgados de pseudo–ausencia (Phillips et al., 2009).

Otra cuestión cŕıtica con respecto a los datos de pseudo–ausencia es la

extensión del área en la cual se muestrean. Una distribución restringida de

pseudo–ausencias alrededor de las localizaciones de presencia puede conducir

a modelos engañosos, mientras que el muestreo sin restricción puede inflar

artificialmente las estad́ısticas de evaluación del rendimiento del modelo (véase

la Sección 1.6), aśı como el peso de variables predictivas menos informativas

(Van der Wal & Shoo, 2009).
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9.3 Transferabilidad de los modelos y cambio climático

La capacidad predictiva por parte de los SDMs de la probabilidad de la

distribución potencial de una población de especies en regiones o periodos

diferentes a los utilizados para entrenar/calibrar el modelo, se conoce como

transferibilidad o capacidad de extrapolación de los SDMs (dado un conjunto

de presencias, (pseudo-) ausencias y predictores). Las distribuciones futuras se

proyectan bajo el supuesto de que el rango ambiental actual será retenido bajo

el Cambio Climático (Thuiller et al., 2005). Por lo tanto, independientemente

del escenario y el modelo climático considerado (GCM/RCM), los SDMs deben

ser capaces de reproducir correctamente el rango ocupado en el futuro. A este

respeto, las sobre-predicciones y sobre parametrizaciones de los modelos podŕıan

explicar por qué dos SDMs calibrados con los mismos datos pueden producir

diferentes proyecciones futuras (Thuiller et al., 2004). Además de la capacidad

de extrapolación del propio algoritmo de modelización, la transferibilidad de

un SDM podŕıa verse afectada de manera significativa debido a otras limita-

ciones metodológicas, como la disponibilidad y elección de variables predictoras

apropiadas (Dormann et al., 2008; Petitpierre et al., 2016).

Una técnica común para abordar la incertidumbre en las proyecciones futuras

de los SDMs se basa en la producción de conjuntos de proyecciones que derivan

de múltiples SDMs, GCMs/RCMs, climatoloǵıas de referencia, etc., con el fin

de abarcar un rango amplio de variabilidad de las proyecciones futuras (Araújo

& New, 2007; Buisson et al., 2010; Bagchi et al., 2013; Baker et al., 2015).

En particular, la contribución relativa de los SDMs a la variabilidad total

de los conjuntos de proyecciones, ha demostrado ser la mayor (Buisson et al.,

2010; Fronzek et al., 2011; Garcia et al., 2012), ya que los resultados vaŕıan

significativamente dependiendo de la técnica (GLMs, RF, MARS, etc.) y la

configuración del modelo (veáse e.g. Araújo et al., 2005; Beaumont et al., 2008;

Fronzek et al., 2011). En este sentido, el enfoque de “conjuntos de proyecciones”

tiene limitaciones, ya que asume que todos los SDMs son igualmente transferibles
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en condiciones del cambio climático, lo cual implica el riesgo de diluir las

predicciones informativas con el ruido y error producido por SDMs menos útiles

o defectuosos (Thuiller et al., 2004; Peterson et al., 2011). Sin embargo, no

existe un criterio objetivo para realizar una selección de SDMs apropiados,

ya que una validación adecuada de las proyecciones futuras de los SDMs es

inherentemente imposible. Por lo tanto, la provisión de nuevas metodoloǵıas

que evalúen la transferibilidad de los SDMs y que ayuden a reducir el rango de

incertidumbre en los conjuntos de predicciones futuras es de suma importancia.

A este respecto, la falta de información sobre los lugares de ausencia de una

población de especies plantea varios problemas metodológicos para los SDMs

(Varela et al., 2009). Las diferentes metodoloǵıas propuestas para la generación

de pseudo–ausencias (Sección 1.4) se han evaluado atendiendo al rendimiento

de los modelos resultantes en condiciones ambientales o climáticas de referencia

(Sección 1.6). Sin embargo, se pueden obtener valores similares de rendimiento

para predicciones de distribución potencial no similares (Lobo et al., 2010).

En este contexto, si faltan ausencias reales, las medidas de rendimiento de los

modelos sólo pueden indicar el éxito de discriminación de los datos considerados

en el proceso de entrenamiento o calibración, pero revelan poco acerca de

su capacidad predictiva real (Václav́ık & Meentemeyer, 2009). De hecho, los

SDMs que muestran un alto rendimiento en la fase de calibración pueden tener

una capacidad de extrapolación limitada, no pudiendo predecir correctamente

distribuciones futuras de las especies (Fronzek et al., 2011). Sin embargo, la

sensibilidad de diferentes SDMs a la muestra de pseudo–ausencias cuando se

utilizan para proyectar distribuciones potenciales en un ambiente no muestreado

(por ejemplo, bajo condiciones de Cambio Climático) ha sido ignorada hasta

ahora.

Los objetivos principales de esta Tesis se enmarcan en este contexto, y se

detallan en la siguiente sección.
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9.4 Objetivos

A continuación se enumeran los objetivos de esta Tesis tal y como se

presentan en el Caṕıtulo 3:

1. Comparar y evaluar las limitaciones de los métodos estándar para la

generación de datos de pseudo–ausencia en términos de rendimiento del

modelo, considerando un conjunto representativo de SDMs. También

se llevarán a cabo investigaciones para el desarrollo de nuevos métodos,

centrándose en nuevas alternativas para restringir la extensión del área

de muestreo de pseudo–ausencias.

2. Analizar el muestreo de pseudo–ausencias como un factor determinante

para caracterizar la estabilidad y transferibilidad de los modelos en condi-

ciones de cambio climático. Esto se llevará a cabo mediante la evaluación

de la incertidumbre en conjuntos de proyecciones futuras (mapas de idonei-

dad) debido a este factor. También se analizará la interrelación entre

predictores y pseudo–ausencias en este contexto.

3. Desarrollar un paquete de código abierto que implemente las técnicas

de SDM de vanguardia, incorporando herramientas para la generación

de datos de pseudo–ausencia y análisis de incertidumbre, dirigidos a

producir estimaciones óptimas de la idoneidad de hábitats futuros. Se

prestará especial atención a la conexión transparente con los repositorios

de datos climáticos estándar, ayudando aśı a superar la brecha entre el

las comunidades de modelización de nichos y del clima. Este paquete se

desarrollará en el lenguaje de programación R.

Para responder a estas cuestiones se han desarrollado los estudios que se

describen en los Caṕıtulos 4, 5, 6 y 7.

A continuación, los principales resultados y conclusiones se resumen breve-

mente en español.
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9.5 Resultados y Conclusiones

9.5.1 Objetivo 1

Con respecto al primer objetivo, en el caṕıtulo 4 se evaluó la influencia de

diferentes métodos de generación de pseudo–ausencia en el rendimiento de

los modelos (AUC: área bajo la curva ROC), la calibración (diagramas de

fiabilidad) y los mapas de idoneidad resultantes en condiciones climáticas de

referencia. Se compararon cinco métodos, desde el clásico muestreo aleatorio de

todo el área de estudio (RS), hasta la técnica más elaborada de tres pasos (TS),

introduciendo una metodoloǵıa novedosa para la restricción de la extensión del

área de muestreo que no penaliza el rendimiento del modelo.

Como resultado de este análisis demostramos que el diseño de muestreo de

pseudo–ausencias puede conducir a una mayor variación del AUC (Fig. 4.4) que

la elección de SDMs alternativos, ya que el método de generación de pseudo–

ausencias afectó fuertemente al rendimiento de los SDMs independientemente del

algoritmo de modelización elegido y para todos los grupos de roble considerados.

El método clásico de muestreo aleatorio (RS) produjo un rendimiento general

menor, mientras que el grupo objetivo (TG) alcanzó altos valores de AUC pero

produjo modelos mal calibrados, lo que resultó en mapas de idoneidad poco

fiables. Los métodos que incluyen la clasificación previa del área de muestreo

(RSEP, TS y TSKM), claramente superaron a RS y TG, produciendo valores de

AUC altos y predicciones mejor calibradas, resultando en mapas de idoneidad

con una mayor resolución de las probabilidades predichas. Esto subraya la

importancia de los métodos de generación de pseudo–ausencias para el desarrollo

de SDMs precisos y fiables.

El algoritmo de modelización es también un factor importante que afecta al

rendimiento (Phillips et al., 2009; Bedia et al., 2011; Senay et al., 2013). En

este caso, MAXENT y MARS mostraron un mejor ajuste que GLM (Fig. 4.4).

Esto concuerda con estudios previos que señalan que los modelos más complejos

tienden a ser más precisos (Elith & et al, 2006). Nuestros resultados también
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sugieren que el rendimiento de MARS fue más sensible a la configuración de las

pseudo–ausencias (Fig. 4.4).

9.5.2 Objetivo 2

Con respecto al segundo objetivo, en los Caṕıtulos 5 y 6 exploramos la incer-

tidumbre en las proyecciones futuras de los SDMs debido a la aleatoriedad del

muestreo de pseudo–ausencias en el área de estudio, para lo cual se consider-

aron diferentes estrategias de selección de variables (para la construcción de

diferentes conjuntos de predictores). Para ello, se generaron 10 realizaciones

aleatorias de pseudo–ausencias para cada método (RS y TS) y tamaño de mues-

tra (prevalencia) considerados. Hemos analizado la sensibilidad a la realización

de pseudo–ausencias de tres SDMs (GLM, RF y MARS) cuando se proyectaron

a condiciones futuras de cambio climático, dadas por siete modelos climáticos

regionales (RCMs) del proyecto ENSEMBLES.

MARS demostró ser el algoritmo más sensible a la muestra de pseudo–

ausencias, mientras que GLM fue el más estable, siendo la incertidumbre

derivada de diferentes realizaciones de pseudo–ausencias la más baja. Estos

resultados no están relacionados con el rendimiento mostrado por cada SDM

en la fase de calibración. Por lo tanto, las proyecciones futuras de los SDMs no

pueden ser evaluadas confiando únicamente en la evaluación del rendimiento de

los SDMs. La contribución de la realización de la muestra de pseudo–ausencias

a la incertidumbre fue mayor en las regiones periféricas, especialmente para

MARS, como resultado de una capacidad de extrapolación limitada (ver Fig.

6.5)). Aunque estos resultados son consistentes entre las diferentes estrategias

de selección de variables, una creciente colinealidad y dimensionalidad de los

predictores potencian la incertidumbre derivada del uso de pseudo–ausencias

en los conjuntos de proyecciones futuras. Por otra parte, el uso de un pequeño

número de predictores podŕıa conducir a la sobre-predicción, especialmente

para SDMs parsimoniosos (e.g. GLM).

Por lo tanto, el muestreo de los datos de pseudo–ausencia constituye una
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fuente relevante de incertidumbre en las aplicaciones de los SDMs para estudios

de cambio climático. Los algoritmos de modelización no se ven igualmente

afectados, siendo los métodos parsimoniosos preferibles en este contexto, ya que

los métodos complejos (como MARS) son propensos a producir proyecciones

futuras muy diferentes como resultado de la realización de la muestra de

pseudo–ausencias, lo que indica una pobre transferibilidad del modelo debido a

problemas de sobre-ajuste. Es crucial tener en cuenta el factor o componente de

generación de pseudo–ausencias en la incertidumbre para evitar la introducción

de señales de SDMs no fiables que confundan los conjuntos de proyecciones

finales.

9.5.3 Objetivo 3

Finalmente, con respecto al tercer objetivo, el Caṕıtulo 7 presenta el paquete

de R mopa, desarrollado como parte del trabajo de esta Tesis. Se ilustran las

funcionalidades de mopa mediante un estudio de caso que reproduce parte del

análisis realizado en el Caṕıtulo 5, pero considerando una filogenia de roble con

otro patrón de distribución geográfica (ver Fig. 4.1).

La capacidad de evaluar cuantitativamente la contribución individual de

cada componente en la cadena de predicción y modelización a la variabilidad

general de los resultados de los SDMs, tal y como se implementa en la función

VarianceAnalysis, resultó ser crucial en la evaluación de la incertidumbre

y la transferibilidad del SDM. Mientras que los paquetes de R existentes ya

proveen funcionalidades para la construcción de SDMs y su evaluación durante

la etapa de calibración, esto no está relacionado con su transferibilidad en

condiciones climáticas futuras, tal y como se demuestra a través de esta Tesis,

siendo esta caracteŕıstica espećıfica de mopa. Otros aspectos caracteŕısticos

que diferencian a mopa del resto de paquetes existentes, consisten en los nuevos

métodos para la generación de pseudo–ausencias, y la capacidad de diseñar y

afinar estos métodos antes de calibrar los SDMs.

Por lo tanto, el nuevo paquete mopa proporciona herramientas para la
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modelización de la distribución de especies y para el diseño directo de exper-

imentos relativamente complejos con múltiples factores o componentes que

afectan la incertidumbre del SDM (pseudo–ausencias, proyecciones climáticas,

etc.), permitiendo a los usuarios cuantificar la contribución de diferentes fac-

tores a la incertidumbre final de los resultados, para la generación óptima de

conjuntos de proyecciones futuras a partir de SDMs. Además, mopa se integra

perfectamente con otros paquetes de R, proporcionando aśı máxima flexibilidad

e interoperabilidad con una amplia gama de herramientas relacionadas con los

SDMs. También está integrado en el conjunto de paquetes climate4R para

una fácil obtención y post-procesado de datos climáticos, ayudando a superar

descargas de datos complejas y pasos de procesamiento propensos a errores

antes del desarrollo de los SDMs. Por lo tanto, mopa da un paso adelante en

la conexión de las comunidades de modelización del clima y de nichos, lo cual

es de suma importancia para las aplicaciones de los SDMs a estudios sobre

Cambio Climático.

9.5.4 Conclusiones Generales

Como se muestra a lo largo de la Tesis, la generación de pseudo–ausencias

constituye una fuente adicional de incertidumbre que puede tener un impacto

considerable en los resultados proyectados por parte de los SDMs. Esto es

muy relevante dado que, como se indica en esta Tesis, el enfoque más popular

en el modelización de distribución de especies consiste en el uso de datos de

pseudo–ausencia (Sección 1.4). Existen diferentes métodos para la generación

de pseudo–ausencias cuya elección tiene un efecto importante en el rendimiento

y los resultados de los modelos (Caṕıtulo 4), pero no hay un consenso sobre

la manera en que se deben generar (por ejemplo Hengl et al., 2009; Wisz &

Guisan, 2009; Stokland et al., 2011; Senay et al., 2013). Sin embargo, además

de la incertidumbre que conlleva el uso de métodos alternativos, demostramos

que, independientemente del método utilizado, la variabilidad (incertidumbre)

de las proyecciones futuras de los SDMs que derivan de diferentes realizaciones
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de pseudo–ausencias es significativa, indicando problemas de transferibilidad

en algunos casos (Caṕıtulos 5 y 6), especialmente cuando se utiliza un SDM

complejo (en este caso MARS y en menor medida también RF). Por lo tanto,

se concluye que los modelos parsimoniosos (como los GLMs), son preferibles

en el contexto de la modelización de distribución de especies en condiciones de

cambio climático, aunque generalmente obtengan valores de rendimiento más

bajos en la fase de calibración de los modelos. De hecho, como se indica en

caṕıtulos anteriores, si no hay información sobre ausencias reales, las medidas

de rendimiento sólo pueden indicar la capacidad de los modelos para discrim-

inar los datos considerados en el proceso de construcción del modelo, pero

proporcionan información limitada sobre su capacidad predictiva real (Václav́ık

& Meentemeyer, 2009). Por lo tanto, la exploración de diferentes fuentes de

incertidumbre en proyecciones futuras de SDMs es muy importante para evitar

la introducción de señales erróneas de SDMs no transferibles (Thuiller et al.,

2004; Peterson et al., 2011). Para ello, hemos implementado herramientas

espećıficas en el paquete de R mopa (Caṕıtulo 7), el cual es de dominio público

y facilita la preparación de datos climáticos para la comunidad de modelos de

nicho. Por lo tanto, las utilidades en el paquete mopa pueden ayudar en la

cadena de producción y poryección de SDMs, desde la fase inicial (preparación

de datos climáticos) hasta la fase final en la que se retiene un conjunto final de

resultados óptimos. Esto constituye una contribución importante, ya que los

SDMs se han convertido en una herramienta clave para que la comunidad de

evaluación de vulnerabilidad e impactos con respecto a los riesgos que supone

el Cambio Climático para los sistemas biológicos, un asunto de actualidad en

todo el mundo.

9.6 Publicaciones y Contribuciones

Esta Tesis se basa en los siguientes art́ıculos de investigación:

• Iturbide, M., Bedia, J., Herrera, S., del Hierro, O., Pinto, M. & Gutiérrez,
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J.M. (2015) A framework for species distribution modelling with improved

pseudo–absence generation. Ecological Modelling 312, 166–174.

• Iturbide, M., Bedia, J. & Gutiérrez, J.M. (2015) Background sampling

and transferability of species distribution models for climate change pro-

jections: Implications for the multimodel ensemble approach. Submitted

to Global and Planetary Change.

• Iturbide, M., Bedia, J. & Gutiérrez, J.M. (2017) Tackling uncertainties

to address the transferability of future species distribution models with

package mopa. Submitted to R journal.

Aśı como en las contribuciones a los siguientes eventos e iniciativas:

• Poster presentation at BES Annual Symposium, Forest and Global Change,

2011, Cambridge (UK)

• Poster presentation at Klimagune Workshop ”De Euskadi a Rı́o +20”,

2012 Bilbao (Spain)

• Poster presentation at Conference Adapting to Global Change in the

Mediterranean Hotspots. 2013, Seville (Spain).

• Oral presentation at 5th international EcoSummit 2016, 29 Aug - 1 Sep.

Montpellier (France).

• Work developed in the framework of WG1 of the EPS COST Action

FP1202 (MaP-FGR, “Strengthening conservation: a key issue for adapta-

tion of marginal/peripheral populations of forest trees to climate change

in Europe”).

Adicionalmente, paralelamente al desarrollo de esta Tesis, colaboré en varias

iniciativas relacionadas con el acceso y post-procesado (corrección de sesgo) de

datos climáticos y su aplicabilidad y contribución a la predicción estacional

y las proyecciones del cambio climático. Como resultado, soy coautora de las

siguientes publicaciones:
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• Cofino, A., Bedia, J., Iturbide, M., Vega, M., Herrera, S., Fernández, J.,

Fŕıas, M., Manzanas, R. & Gutiérrez, J.M. (2017) The ECOMS User

Data Gateway: Towards seasonal forecast data provision and research

reproducibility in the era of Climate Services. Climate Services in press.

• Bedia, J., Golding, N., Casanueva, A., Iturbide, M., Buontempo, C.

& Gutiérrez, J.M. (2017) Seasonal predictions of Fire Weather Index:

Paving the way for their operational applicability in Mediterranean Europe.

Climate Services, DOI:10.1016/j.cliser.2017.04.001.

9.7 Ĺıneas Futuras de Trabajo

En relación con el procesamiento de datos climáticos y la preparación de

variables apropiadas para la modelización de distribución de especies, algunos

de los resultados obtenidos durante la realización de esta Tesis han abierto

la puerta para el desarrollo de nuevos trabajos, aprovechando al máximo las

funcionalidades del conjunto de paquetes climate4R con el fin de construir vari-

ables predictoras para su uso en SDMs. En particular, en esta Tesis utilizamos

el ”método Delta” básico (factor de cambio) para producir las proyecciones

climáticas futuras (ver Caṕıtulo 2), sin embargo, existen métodos alternativos

para ajustar el sesgo de las salidas de los GCM/RCM. En este sentido, y en

relación con las publicaciones mostradas anteriormente, he adquirido cierta

experiencia en este campo y he contribuido al desarrollo de herramientas rela-

cionadas. Por lo tanto, el trabajo que sigue a esta Tesis consistirá en explorar

métodos alternativos de ajuste de sesgo en la producción de variables que

representen variaciones climáticas en una escala de tiempo reducida (por ejem-

plo, valores semanales). Aśı como analizar la utilización de los predictores

resultantes en los SDM.
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Araújo, M.B. & New, M. (2007) Ensemble forecasting of species distributions.

Trends in Ecology & Evolution 22, 42–47.
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Keuler, K., Kovats, S., Kröner, N., Kotlarski, S., Kriegsmann, A., Martin,

http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=ENSEMBLES2_FUBEMA2_20C3M_1_D
http://cera-www.dkrz.de/WDCC/ui/Entry.jsp?acronym=ENSEMBLES2_FUBEMA2_20C3M_1_D


BIBLIOGRAPHY 173

E., Meijgaard, E.v., Moseley, C., Pfeifer, S., Preuschmann, S., Radermacher,

C., Radtke, K., Rechid, D., Rounsevell, M., Samuelsson, P., Somot, S.,

Soussana, J.F., Teichmann, C., Valentini, R., Vautard, R., Weber, B. & Yiou,

P. (2014) EURO-CORDEX: new high-resolution climate change projections

for European impact research. Regional Environmental Change 14, 563–578.

Jacob, D., Van den Hurk, B., Andrae, U., Elgered, G., Fortelius, C., Graham,

L., Jackson, S., Karstens, U., Kopken, C., Lindau, R., Podzun, R., Rockel,

B., Rubel, F., Sass, B., Smith, R. & Yang, X. (2001) A comprehensive

model inter-comparison study investigating the water budget during the

BALTEX–PIDCAP period. Meteorology and Atmospheric Physics 77, 19–43.
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