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Abstract

5G promises high-bandwidth, low latency, always-on and massive connec-

tivity by expanding the possibilities and capabilities of mobile networks.

The network revolution of 5G will be achievable with the introduction of new

technologies, both in the access to and in the core of mobile networks, such

as the flexible and scalable assignment of network resources. To this end,

the digital transformation of networks, enabled by cloud architectures and

technologies, and the advanced radio capabilities will make the networks

agile and broader.

At the same time, the prominence of the video traffic in the world’s mobile

data turns efficiency of video delivery into a core application to be man-

aged and optimized by network operators. Here, when it comes to media

consumption and production, user habits and expectations are changing

profoundly. First, media services need to cope with a vast volume of un-

tagged media. It is fundamental to make media catalogue relevant, interest

and personalized to expand audience capture. To this end, a deeper media

tagging to discover underlying media relations is essential. Second, media

services produce an increasing demand, in terms of data rates and num-

ber of simultaneous users connected, struggling to get more stable and

accurate quality requirements. Therefore, the quality of experience plays a

crucial role in maximizing audience retention. In this regard, guaranteeing

a quality of service is crucial.

However, the networks work on a best-effort basis with a neutral position

in terms of traffic delivery. This means that solutions which achieve a dy-

namic and efficient media delivery will make the difference. Going beyond,

media delivery will turn into a critical area to be explored, catalysed by the



sensor explosion in vertical sectors such as IoT, Connected Cars, Health and

Industry 4.0.

Beyond 4K or UHD resolutions, media users will experience a smooth and

more attractive media consumption dynamically adapted to a user interest

and mobility context. Essentially, the challenge is to take quality of expe-

rience on video delivery to a new level. 5G networks will meet quality of

experience needs of next generation media services, as they produce a core

traffic to be managed and optimized. Furthermore, they can be comple-

mented with solutions from different corners of the media delivery workflow

such as media servers, media players and the networking infrastructure. All

of them can afford solutions to enhance the quality experience and shield

from service degradation or outages.

Media services must be adapted differently to variations in radio network

performance. HTTP adaptive streaming media delivery technologies meet

those multimedia services demands by supporting a wide display ecosys-

tem, different user preferences, languages and changeable mobility sit-

uations with a content delivery networks ready design. HTTP adaptive

streaming enables media players to switch dynamically between different

media qualities by tracking quick and sudden variations in the network con-

ditions during the media playback. Moreover, HTTP adaptive streaming

is a pull-based HTTP protocol that easily traverses middleboxes, such as

firewalls and network address translation devices.

However, in dense client cells this client-driven approach could damage

the overall quality of experience producing re-buffering times and potential

image freezes along with quality fluctuations. This is caused by multiple

media players sharing the available bandwidth where each one optimizes

its individual quality based on instant decisions.

The telecommunication industry’s proposal to empower the network edge

in a more coordinated manner is based on multi-access edge computing

technology. It turns a base station into a service catalyser, which dynam-

ically improves network performance and user experience for a specific

service. Operators can expose their edge radio access network through an



application program interface to authorized third parties to provide them

with radio network information in real-time. Edge computing supplies new

features, such as awareness of the radio status and close to zero delays, to

monitor and to dynamically tune the traffic in a transparent manner. Fur-

thermore, the decentralization of specific network functions to the edge of

the network brings agility, adaptability and context awareness.

Beyond this, dynamically switching in real-time from one content delivery

network to another is a relevant scenario. This switching decision must fit

to a well-balanced trade-off between the quality of experience and the costs.

This approach can become a reality by using video delivery analytics from

the edge components, which tend to be proprietary solutions.

Concerning the network backhaul and core, the telecommunication indus-

try envisions self-organising networks. Here, a centralized and autonomous

network management system steers network operations towards deep and

persistent dynamics. To this end, machine learning algorithms are applied.

Machine learning techniques can engine a system of service demand predic-

tion. This forecast can be exploited by other machine learning algorithms

to evaluate the optimal network setup to serve a predicted traffic demand,

using virtualisation to provision network resources. This is achieved while

optimising performance, use of available network and virtual machine

resources, overall energy requirements and operational costs.

The benefits from the 5G network in satisfying next generation media ser-

vice needs are evident. However, 5G ships new parameters and technologies

which can play a significant role in enhancing the quality of media services.

They provide new challenges to deliver media services in 5G environments.

First, the massive client connections volume where the 5G network han-

dles a huge pool of devices spontaneously connected to media services.

Second, the dense client cells where the media players strive to deliver

the best performance when massive media sessions come from a specific

area. Third, the edge video analytics by exploiting the interfaces of network

components to dynamically and automatically optimize the media delivery.

Fourth, the self-organising network ability of 5G, where scalable network



management systems on the network stack exploit the transformation of

network functions into software and virtual entities to mutate the network.

To meet each of these challenges, this research proposes a four-tier com-

plementary solution based on media delivery mechanisms for enhanced

quality of experience of media services in 5G environments.

First, concerning quality of experience for audience capturing, media

servers can improve the experience of a social media service through the

media analysis of large volume catalogues produced by the users of social

networks. Here, media servers dynamically orchestrate an elastic cloud

of spontaneous workers populated with client devices to perform delay-

tolerant media analysis.

Second, a client-side bitrate adaptation decision mechanism to make a

dense client cell scenario steady, fair and efficient for all media players

when quick and unforeseen changes in network conditions occur.

Third, when a client-side decision mechanism is not sufficient for guaran-

teeing the best performance since each client is unaware of the presence of

the others, an in-network aware adaptation mechanism will provide adapta-

tion decisions, in a distributed and zero latency manner, based on accurate,

granular and geo-binned metrics. Furthermore, it will be able to switch to a

healthy content delivery network in a transparent manner.

Fourth, a manager to dynamically allocate and set up the network to pro-

vide a cost-effective network topology that satisfies quality of experience

operational constraints.

To implement, deploy, test, and evaluate the proposed solutions, we used a

real long term evolution (LTE) infrastructure, based on the OpenAirInter-

face framework with an evolved packet core, an eNodeB, a set of LTE user

equipments running Gstreamer media players acting as a dense cell, and an

OpenStack-based software defined network operated by OpenDaylight. This

experimental infrastructure is further enhanced with a multi-access edge

computing proxy, able to parse and process MPEG-DASH media streams,



and a Docker container for machine learning components. The implemen-

tation of the media delivery solutions allows media services and mobile

network operators to efficiently influence media players and efficiently

manage network resources to maintain a target level of user satisfaction.

Each explored tier shows different abilities in enabling media services and

network operators to engage, balance and ensure the quality of experience

for 5G mobile networks based on novel media delivery techniques.

First, a mobile as an infrastructure provider platform, named Social at Work,

creates an elastic cloud of massive and spontaneous connected resources

running delay-tolerant tasks. The results of the experiment confirm the ben-

efits when the number of devices is high and the tasks are independent and

can be queued.

Second, a bitrate adaptation mechanism on the client-side, named LAMB-

DASH, has been implemented with a low complexity design. Testing of

LAMB-DASH for live and on-demand streams conclude its ability to provide

a steady, consistent and unbiased quality of experience, with a low devia-

tion of the estimated mean opinion score across all the media players in a

dense client cell.

Third, the multi-access edge computing system, named MEC4FAIR, ex-

ploits zero-latency and geo-based video analytics granted by novel 5G

multi-access edge computing architecture systems. The results show that it

achieves a more coordinated delivery of media services with higher average

bitrates.

Fourth, a network resource allocator provisions an efficient network topol-

ogy and cardinality in order to shield quality of experience of a traffic

demand forecast for media services. The accuracy of the results is bet-

ter as the demands in bandwidth are higher. So, the wider the media service

demand, the more confident this approach becomes.





Resumen

5G promete expandir las capacidades futuras de las redes móviles medi-

ante un alto ancho de banda, una baja latencia y la capacidad de proveer

conectividad de forma masiva y en un régimen perpetuo, sin fallos. Esta rev-

olución en las redes supondrá la introducción de nuevas tecnologías para

la asignación de forma escalable y flexible de recursos de red, tanto en la

infraestructura de acceso como en el núcleo de la red móvil.

En este contexto, el inmenso volumen que constituye el tráfico de datos

de vídeo, convierte la eficiencia con la que comunican los servicios multi-

media en un aspecto crítico para los sistemas de gestión y optimización de

operadores de red. Sin embargo, la red, adoptando una posición neutral

de funcionamiento, no ayuda a fortalecer los parámetros que inciden en la

calidad de experiencia. Este hecho se ve magnificado por la previsible crit-

icidad de las comunicaciones multimedia alentado por la masiva llegada

de sensores provenientes de otros sectores como Internet de las cosas, el

vehículo conectado, salud o industria 4.0. En consecuencia, las soluciones

diseñadas para realizar un envío de tráfico multimedia de forma dinámica

y eficiente cobran un especial interés.

Aquí, los hábitos del usuario y sus expectativas cuando consume o produce

contenidos multimedia han cambiado radicalmente. En primer lugar, los

servicios multimedia gestionan un nutrido catálogo de contenidos sin eti-

quetar, del cual se necesita mejorar su relevancia para suscitar el interés que

le permita llegar a la audiencia objetivo y captar un mayor público. En se-

gundo lugar, la popularización de determinados servicios o contenidos trae

consigo una mayor demanda que supone un número elevado de sesiones

simultáneas tratando de obtener una calidad de la experiencia estable y



óptima. De este modo, garantizar la calidad de experiencia se vuelve un

aspecto fundamental para mantener la audiencia.

Las redes 5G atesorarán las cotas exigidas de calidad de experiencia nece-

sarias por la siguiente generación de servicios multimedia, dada su enorme

presencia en la red. Para tal propósito, la trasformación digital de las redes,

mediante arquitecturas y tecnologías cloud, y los avances en la capacidades

radio resultarán en unas redes más agiles y robustas. Lejos de delegar toda

responsabilidad de unas comunicaciones multimedia estables y eficientes

a las redes 5G, los servidores multimedia y los reproductores de contenidos

también pueden complementar a la infraestructura de red. Cada uno de

ellos puede aportar soluciones para mejorar la calidad de la experiencia o

prevenir degradaciones o cortes del servicio. Más allá de resoluciones 4K

o UHD, los usuarios de servicios multimedia esperan una experiencia de

reproducción multimedia fluida que se adapte de forma dinámica a los in-

tereses del usuario y a su contexto de movilidad. Por ello, el reto es llevar la

calidad de experiencia a un nuevo nivel.

Los servicios multimedia deben ser adaptados a las diferentes variaciones

de las condiciones radio de la red. Nuevas tecnologías de envío multimedia

sobre HTTP tienen un diseño que dota de estas capacidades de adaptación

en movilidad a la vez que añade el soporte a un amplio ecosistema de

dispositivos, preferencias lingüísticas e infraestructuras de distribución

multimedia. Estas tecnologías permiten que el reproductor multimedia

escoja dinámicamente entre diferentes calidades durante la reproducción

para mitigar cambios repentinos en las condiciones de conectividad.

Sin embargo, en situaciones de alta densidad de usuarios accediendo a

contenidos multimedia en un celda a través de una misma antena puede

producir efectos que dañen la calidad de la experiencia, desde situaciones

de parones a cambios constantes de calidad. Esto se debe a la presencia

de múltiples reproductores tratando de optimizar de forma autónoma el

uso de ancho de banda y su calidad, basándose únicamente en decisiones

instantáneas.



La apuesta del sector de telecomunicaciones es capacitar las infraestruc-

turas radio con sistemas que permitan a terceros mejorar o expandir sus

servicios de un modo más coordinado. Esta solución convierte una estación

base en un servicio donde mejorar dinámicamente la calidad de experiencia

de un servicio específico. Los operadores de red pueden exponer las inter-

faces a sus infraestructuras radio y autorizar a aplicaciones de terceros el

acceso a información de red en tiempo real. Esto trae consigo nuevas posi-

bilidades para monitorizar el rendimiento de la red, procesar estadísticas y

ajustar parámetros operativos del envío de datos. Todo ello sin latencia y

de forma transparente a los servicios conmutados. Además, la descentral-

ización de estos servicios a las infraestructuras radio incorporan agilidad y

adaptabilidad a un contexto concreto.

En la misma línea de mejorar el envío de servicios multimedia, la capacidad

de cambiar dinámicamente y en tiempo real de un proveedor de servicios

de distribución de contenidos a otro es un escenario que cobra cada vez

más importancia. La materialización de tal solución es factible a través de

la utilización de analítica de datos de envío multimedia. Sin embargo, estas

soluciones tienen a ser soluciones propietarias que requieren la integración

de librerías en el servicio y la interpretación humana de los resultados.

Si nos centramos en el núcleo de la red, la industria de telecomunicaciones

persigue la autonomía de la red para operar del modo más conveniente.

En este caso, sistemas de gestión centralizados y autónomos configuran la

red conforme a cambios persistentes y profundos en el tráfico. Para ello,

algoritmos y técnicas de aprendizaje automático son aplicables para, por

ejemplo, predecir la demanda de un determinado servicio. El pronóstico

puede ser utilizado a su vez por otro algoritmo que evalúe la topología de

red más adecuada para absorber dicha demanda bajo unas cotas de cali-

dad de servicio, uso energético y costes operativos. La topología resultante

puede ser provista a través de un sistema de virtualizado de redes.

Los beneficios de las redes 5G para satisfacer las necesidades de la sigu-

iente generación de servicios multimedia es evidente. Sin embargo, 5G

incorpora nuevos parámetros y tecnologías que pueden ser explotados en



pro de la calidad del servicio multimedia. Ellos proveen a su vez nuevos

retos en entornos 5G. Conviene por tanto tener presente las característi-

cas propias del envío de experiencias multimedia en redes 5G al suponer

a la vez un reto y una oportunidad a la hora de abordar el diseño e imple-

mentación de nuevas soluciones. En primer lugar, la conexión masiva de

clientes, donde la red 5G provee servicios multimedia a una gran cantidad

de usuarios que espontáneamente acceden a los mismos. En segundo lu-

gar, la alta densidad de clientes en celdas de redes 5G favorece la lucha de

los diferentes dispositivos en un área por los recursos de red disponibles.

En tercer lugar, los interfaces de los elementos radio de la red posibilitan el

análisis de métricas de red para optimizar de forma dinámica, automática,

distribuida y sin latencia el envío de datos multimedia. Por último, la habili-

dad de auto-gestión de redes 5G para implementar la escalabilidad de la red

a través de sistemas de gestión que muten la topología de la red gracias a la

transformación de los nodos de una red en entidades software virtualizadas.

Para mejorar la calidad de la experiencia de servicios multimedia en en-

tornos 5G la investigación llevada a cabo en esta tesis ha diseñado un

sistema múltiple, basado en cuatro mecanismos.

Primero, con vistas a mejorar la captura de la audiencia, los servidores

multimedia deben mejorar la experiencia del usuario de una red social

con contenidos mejor etiquetados. Para ello, el análisis multimedia del

vasto catálogo de contenidos producidos y compartidos por los usuarios

es vital. Para ello, los servidores multimedia deben ser capaces de coordi-

nar una granja de recursos de computación espontáneamente conectados

a sus sistemas. De tal modo que el servidos asigne dinámicamente tar-

eas de procesado multimedia que puedan demorarse en función de las

capacidades de cada dispositivo de los usuarios.

Segundo, para alcanzar una experiencia del servicio homogénea para todos

los clientes que comparten una celda, es necesario un mecanismo que, alo-

jado en el reproductor multimedia, permita elegir una calidad multimedia

apropiada para cambios repentinos y inesperados en las condiciones de la

red.



Tercero, cuando las decisiones tomadas de forma autónoma en cada cliente

no son suficientes para garantizar una experiencia fluida, estable y uni-

forme en todos los clientes, dado el desconocimiento de la presencia de

los demás, un mecanismo para coordinar la selección de la calidad para

adaptarse a las condiciones de red es necesario. En este caso resulta nece-

sario apoyar dicho mecanismo en la propia red y sus métricas. Además,

dicho mecanismo podría explotar no sólo métricas a nivel de enlace (radio)

sino a nivel de red, para determinar situaciones desfavorables en cuanto al

rendimiento de los proveedores de infraestructuras de distribución multi-

media, para cambiar a otro proveedor de forma transparente al servidor y

al cliente del servicio.

Cuarto, un mecanismo que otorgue al sistema de gestión de la red de la ca-

pacidad de provisionar de forma dinámica nuevos recursos y elementos de

red configurados para formar una topología que satisfaga necesidades del

cliente de calidad del servicio a la vez que se mantengan controlados los

costes operativos del operador de red.

Cada mecanismo explota diferentes habilidades para permitir a los ser-

vicios multimedia y operadores de red, atraer, equilibrar y asegurar una

calidad de experiencia sobre redes 5G basándose en nuevas técnicas de

envío multimedia. Destacar que para implementar, desplegar, probar y

evaluar las contribuciones fruto de las actividades de investigación, se ha

empleado una infraestructura real Long Term Evolution (LTE). Sobre dicha

infraestructura los resultados obtenidos para cada mecanismo se resumen

a continuación.

El primer mecanismo, llamado SaW, crea una granja elástica de recursos de

computación que ejecutan tareas de análisis multimedia que no requieren

un tiempo de ejecución concreto. Los resultados de los experimentos con-

firman la competitividad de este enfoque respecto a granjas de servidores

especialmente cuando el número de dispositivos conectados al servidor

es grande y cuando las tareas a repartir son independientes, atómicas y

pueden ser encoladas.



El segundo mecanismo, llamado LAMB-DASH, para la selección de la cali-

dad en el reproductor multimedia, ha sido diseñado e implementado para

incurrir en una baja complejidad de procesamiento. Las pruebas realizadas

para flujos bajo demanda y en vivo concluyen su habilidad para mejorar la

estabilidad, consistencia y uniformidad de la calidad de experiencia en los

clientes que comparten una celda de red. Para ello, se ha logrado una baja

desviación de la calidad de experiencia desde su valor medio.

El tercer mecanismo, un sistema 5G para la parte radio de la red, llamado

MEC4FAIR, explota las capacidades de nula latencia y procesamiento de

datos en un contexto geo-localizado para dotar al servicio multimedia de la

capacidad de analizar métricas del envío de los diferentes flujos. Los resulta-

dos muestran cómo habilita al servicio a coordinar a los diferentes clientes

en la celda para mejorar la calidad del servicio.

El cuarto mecanismo sirve para provisionar recursos de red y configurar

una topología capaz de conmutar una demanda estimada y garantizar unas

cotas de calidad del servicio. En este caso, los resultados arrojan una mayor

precisión cuando la demanda de un servicio es mayor.
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CHAPTER

1
Scope of the research

1.1 Motivation

5G promises to expand the possibilities and capabilities of mobile networks. This tech-

nology revolution will be achievable only with the introduction of new technologies,

both in the access to and in the core of mobile networks, such as the flexible and scal-

able assignment of network resources. The scalable management framework will enable

a reduction of the network management Operational Expenses (OPEX) by at least 20%

compared to today.

5G shall provide an answer to new rates of: volume, both on the downlink and

the uplink while taking benefit of advances in video compression and transmission

solutions, and low-cost storage and caching; mobility, to deliver the best network con-

nectivity of media services anywhere, regardless of from the user’s location or nomadic

movement; density, to deliver a steady and stringent network connectivity of media ser-

vices anywhere, regardless of from the users’ physical concurrency; security, to provide

efficient access control of cached video content; and quality, to provide appropriate

performance parameters (latency, bandwidth, security, connectivity...) to the business

and operational requirements of the media service.

According to Cisco reports and forecasts, over three-quarters (78%) of the world’s

mobile data traffic will be video by 2021. This turns efficiency of video delivery into a
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core application to manage and optimize. Media services and traffic represent the most

engaging and crowded data consumption of Internet users in the entertainment sector

nowadays.

User habits and expectations when it comes to media consumption and production

are changing profoundly. Media services need to cope with an increasing demand in

terms of data rates, number of simultaneous users connected and/or more steady and

accurate quality requirements. High quality and high-resolution audio-visual services

are important drivers for increased downlink data rates where 5G promises to provide

cost-effective media delivery. At the same time, user generated content as well as the use

of cellular technology for professional and semi-professional media production are key

drivers for increased uplink data rates. 5G will enable this viable and immensely grow-

ing area of cellular and IP-based live media production as a business to grow further,

supporting new business models, such as production in the cloud.

The benefits gained from the 5G network in satisfying next generation media service

needs are evident. However, additional aspects from 5G such as new parameters and

possibilities, key to the quality of the media service, can be exploited. 5G ships new pa-

rameters and technologies which can play a significant role in enhancing the quality

of the media services. This research work is focused on some of these major changes.

First, the massive client connections volume where the 5G network handles a huge pool

of devices spontaneously connected to media services. Second, the dense client cells

where the media players strive to deliver the best performance when massive media

sessions originate from a specific area. Third, the edge video analytics by exploiting

network components interfaces to dynamically and automatically optimize the media

delivery based on accurate, granular and geo-binned metrics, in a distributed and zero

latency manner. Fourth, the self-organising network ability of 5G, where scalable net-

work management systems on the network stack exploit the transformation of network

functions into software and virtual entities in order to mutate the network.

In the following paragraphs the motivation for each of them is explained.

First, the quality of the media service is an essential aspect in maximizing user loy-

alty, engagement and offering a compelling service. Service providers aim to engage the

audience, eager for contents, by boosting the media relevance. Therefore, it is necessary

to improve the matching of user interests with the huge content database and reveal
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hidden connections between items through deeper tagging. In other words, the service

is enhanced by improving the media content indexing.

The social media paradigm has led to a significant rise in the volume of user gen-

erated content managed by social networks with millions of users accessing services,

each of them often using multiple devices at the same time. To enhance media rele-

vance, a deeper automatic tagging system is needed. Media tags enable better matching

of user interests with the content database and reveals underlying connections be-

tween items, such as applying face detection mechanisms or content-based indexing to

find related videos. Image analysis algorithms empower automatic retrieval of salient

features, but they also involve computing-intensive functions. Therefore, the process-

ing requirements grow substantially when all the media items comprising the social

network database need to be analysed. The OPEX of the required infrastructure to auto-

matically tag media uploaded to a media service and apply new tagging campaigns over

the full catalogue to expand the detected features or taxonomy, could be unaffordable

for social media services.

Second, once the audience has been captured, the objective of the media service is

to increase audience retention, where the Quality of Experience (QoE) plays a signifi-

cant role. The goal of media services is to deliver a smooth and high-quality playback,

with low video start times and high bitrates while reducing buffering.

The media delivery standard to satisfy the previously mentioned goals and univer-

sally adopted by media services is HTTP-based Adaptive Streaming (HAS). HAS responds

to demands from multimedia services supporting heterogeneous display setups, differ-

ent user preferences and languages and changeable mobility situations with a Content

Delivery Network (CDN)-ready design. HAS is a pull-based protocol [Begen et al.11]

that easily traverses middleboxes, such as firewalls and NAT devices. At the same time,

it keeps minimal state information on the server side, making servers more scalable

than conventional push-based streaming servers. Last but not least, concerning existing

HTTP caching infrastructures, HAS allows distributed CDNs to enhance the scalabil-

ity of media delivery, where an individual segment of any content is cacheable as a

standard Web object.

HAS solutions provide a manifest file detailing a playlist of segments with the avail-

able media representations for different resolutions, languages, views and bitrates. The
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essence of this approach is the transformation of the traditional push-mode to a pull-

mode. This way, the service delegates the responsibility of operating the service in a

proper and efficient manner to the players. The aim of the bitrate selection algorithm is

to maximize the quality of the playback according to the bandwidth availability con-

straints. To this end, the players autonomously take real-time decisions to request a

specific segment tied to a nominal bitrate.

This client-driven approach, where control is distributed over the various clients and

each client strives to optimize its individual quality, brings up some issues that can dam-

age the QoE. The issues span initial buffering delay, temporal interruptions or pauses,

and visible video resolution switches during a video transmission [Seufert et al.15].

Furthermore, a client-side decision algorithm might not be sufficient for guaran-

teeing the best performance since each client is unaware of the presence of others

in a dense client cells. This client-side decision approach is missing the in-network

knowledge.

Third, from the network perspective, the quality of the network experience is an im-

portant element in customer satisfaction and retention. A key requirement of 5G will be

to create a network that is highly optimised to make maximum use of available radio

spectrum and bandwidth for Quality of Service (QoS). The goal is to provide the best

possible QoS in order to get a live, fluent and continuous multimedia experience.

5G Multi-access Edge Computing (MEC) is a foundational network architecture

concept integrated into the mobile network infrastructure in 5G. European Telecom-

munications Standards Institute (ETSI) envisions a video analytics use case where the

5G MEC technology guides the video server to apply the optimal bitrate to a particular

video stream or user based on the radio conditions [ETSI18]. The idea is to use Radio Ac-

cess Network (RAN) analytics to determine/estimate the throughput likely to be available

at the radio downlink interface for a user, and then use packet headers to convey that

information to the video server, so that it can adapt the stream accordingly. This way

the streaming service achieves a noticeable performance improvement when operators

communicate RAN conditions to the video server in this way.

However, the integration into a real mobile Software Defined Radio (SDR) network

and validation performed on a real, rather than simulated setup, to check the feasibil-

ity and performance of an active component of the video delivery chain at the mobile
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edge to get fair QoE in dense client cells and enforce CDN provision, has not yet been

performed.

Fourth, going deeper into 5G systems, 5G must deal with fast, heterogeneous, multi-

tier networks, which are also dynamic in nature. A digital transformation, enabled by

cloud architectures and technologies, is taking place in 5G networks, disrupting the

way in which the network works. Turning networking functions into software entities

with common interfaces that can be remotely and dynamically operated is a signifi-

cant breakthrough towards agile network management. This change allows the next

step to be taken, based on the virtualization of those software-based network func-

tions such as common 5G base technologies, thereby enabling innovation and network

transformation. Unlike previous mobile network technologies that attempted to pro-

vide a "one size fits all" infrastructure, 5G mobile networks are designed to provide

optimized setup for a variety of heterogeneous services and types of end users. Hence,

Network Function Virtualization (NFV) [Foundation13] and Software Defined Networks

(SDN) [Foundation12] are two key enabler technologies of 5G. NFV leads to cost effi-

ciency, improvements in time-to-market and innovation in agile network infrastructure

and applications. SDN enables network administrators to manage network services

through the abstraction of lower-level functionality. This is achieved by decoupling

the system that makes decisions about where traffic is sent (the control plane) from

the underlying systems that forward traffic to the selected destination (the data plane).

Implementation of SDN results in infrastructure savings, operational savings and flex-

ibility [Kim and Feamster13]. On top of SDN technologies, it is possible to develop

systems to autonomously improve network agility and flexibility to efficiently support

the evolving demands of users. For example, 5G optimization tools can provide elements

of control-path selection and manage prioritization for different traffic types depend-

ing on their importance in a cost-effective way [Xu et al.13], and the paths are directly

related with the topology of the network.

Today, the selection of the most efficient topology to assure an operational QoS

and QoE of an incoming traffic demand of a media service has not yet been performed

[Bizanis and Kuipers16]. There is not a reliable solution that addresses the problems

for flexible creation by scaling an elastic network up/down or in/out in an automated

manner [Szabo et al.15].
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Figure 1.1 includes all the previously explained corners coming into play in a com-

mon communication schema. This diagram also includes media service actors and

some media delivery aspects to improve the QoE. On the one hand, media servers man-

age huge volumes of untagged contents that need to be inter-related in order to suggest

relevant or interesting contents to users. However, the processing capacity to analyse all

the contents to improve the content connection could not be affordable. Likewise, the

need to monetize content storage and delivery could place the analysis out of scope.

A solution to create a pool of workers from the spontaneously connected clients, ben-

efiting from idle hardware computing resources in the background when consuming

streaming videos would make users’ assets improve the service. Contents are tagged

to capture audience making catalogue navigation, browsing and search easier. Fur-

thermore, the audience retention also needs to be enhanced. In this regard, different

actors come into play, first media servers and clients employ HAS streaming technolo-

gies shipping several bitrates to fit into heterogeneous display sizes and networking

conditions. Then, the network needs to deal with the dynamic demands and different

sets of Key Performance Indicators (KPIs) required from specific services for an opti-

mal QoE. In respect of the mobility trends, the media delivery focus is placed at the

network edge. The autonomous optimization of the QoE of independent players turns

the utilization of a shared radio link into a competition for available bandwidth. In this

scenario, a network element with RAN-awareness could control the bitrate selection of

media players. Last but not least, media services can be delivered using multiple CDN

providers. The URL of cached media segments is included in the MDP, this way the me-

dia server can switch to a specific CDN for a specific region or country. However, the

performance of CDNs is not stable and can degrade QoE and produce service outages.

Media services need to shield themselves from these situations to prevent QoE impacts.

Accordingly, Figure 1.1 shows all the interconnected media actors, such as media server,

database, network, CDNs and clients’ devices accessing though different network inter-

faces. It also represents the environmental or technological conditions to be exploited.

Finally, the icons on the right side show other homes and users on the move, sharing a

multi-user experience.

Eventually, to fully understand the scope of our research and its challenges, the fol-

lowing list summarises the considered contextual factors regarding the demographic

trends in media consumption habits of users together with technological alternatives

9
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and business models. This is reinforced and aligned with the accumulated experience

from first level telco operators, such as Telefónica I+D (http://www.tid.es/) and Or-

ange (https://www.orange.fr/), widely participating in standardisation bodies such

as ETSI and 5G Public Private Partnership (5GPPP), technology providers, such as Nokia

(https://networks.nokia.com/), IBM (https://www.research.ibm.com/labs/)

and Interoute (https://www.interoute.com/), universities, such as UPM (Univer-

sidad Politécnica de Madrid http://www.upm.es/), TUB (University of Berlin http:

//www.tu-berlin.de) and University of Trento (http://www.unitn.it/en), and re-

search institutes like WIT (Waterford Institute Technology https://www.wit.ie/),

Fhaunhofer Fokus (urlhttps://www.fokus.fraunhofer.de) and Vicomtech (Visual Inter-

action & Communication Technologies http://www.vicomtech.org/) working in the

project CogNet [EC15]:

1. Multimedia consumption is gradually shifting from traditional TV to streaming

video on mobile devices. Furthermore, according to demographic studies, the

trend shows a sharp increase in streamed video viewing, particularly among

younger generations [Ericsson15].

2. The combination of the increasing number of video streaming users heavily

dominating the traffic over the Internet, the demanded high quality from the

cutting edge displays of their devices and the required support for mobility is

driving the evolution of media services. Fuelled by improved cameras with stun-

ning picture quality [Saad et al.15] and the breakthroughs in display technology

[Kathirgamanathan et al.15], the traffic for videos delivered over the Internet will

reach 80% of the total Internet traffic by the end of 2019, according to the report

issued by the world IT leader Cisco [Inc17b]. Meantime, reaching heterogeneous

devices gains relevance thanks to the growth of mobile devices as an entry point

to these services [Inc17a].

3. Nowadays video streaming services work on top of unmanaged delivery networks,

where quality is not guaranteed, on a best-effort basis [Sodagar11].

4. The QoE degradation is tight in dense client cells, when considering a cellular

network, the RAN, a Wi-Fi hotspot and the network edge. There, it becomes com-

plex to provide video services to several users competing independently for the
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available bandwidth when trying to maximize the used bitrate. This autonomous

optimization makes the connection conditions highly changeable leading to

continuous fluctuations of the target bitrate, artefacts, interruptions and dis-

proportional shares of available bandwidth [Akhshabi et al.12]. Here, there is a

trade-off between keeping a lower constant rate and dynamically adapting its rate

with the risk of upsetting user experience.

5. The explosion in multimedia services brings about a higher consumption of net-

working resources needing sustained bandwidth and latency demands. This

high-performance regime makes the capacity of the networks more critical to

the user experience. Subsequently, usually the video services are usually em-

ployed to demonstrate distinctive advances and new features from a telco operator

[Hagos16].

6. Service Level Agreement (SLA) is transforming the operational features of net-

working functions from reliability to agility. Traditionally telecoms equipment

is expected to provide 99.999% availability [Liu et al.16a], however with many

modern IT services requiring different levels of guaranteed bandwidth, latency

and priority over other traffic, SLAs have become more important and more

differentiated depending on the nature of the service.

7. International consortiums such as, the European Telecommunications Standards

Institute (ETSI), and the International Telecoms Union (ITU) are driving the digital

transformation of 4G networks towards 5G. Commoditization and virtualiza-

tion of wireless networks will change the economics of mobile networks to help

MNOs move from proprietary hardware vendors to virtualized software platforms

through the abstraction of the execution environment. SDN is an architecture

designed to enable more agile and cost-effective networks. SDN allows a dynamic

reconfiguration of the network by taking a new approach to the network architec-

ture. SDN permits the centralization of network management for different entities

within a cellular network.

8. Scalability and granularity issues, such as the increased number of clients and

size of the infrastructure, of 5G management systems are met by capillary SDR sys-

11
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tems. On top of this, the MEC concept has evolved to draw on NFV technologies

to allow VNFs to run as a distributed edge platform.

1.2 Hypothesis

The research developed in this PhD focuses on four scenarios where the common goal

is to improve the QoE in 5G networks:

1. the engagement of users in social media services by deeper tagging resulting from

downloading media analysis tasks from the service to the clients;

2. the fair and efficient utilization of a shared radio links in dense client cells when

competing independently for the available bitrate;

3. the distributed control of the media sessions by the network edge exploiting

network performance awareness and

4. the adaptation of the network topology to forecasted demands of media services

where new topology guarantees a minimum QoS.

These scenarios supply some favourable conditions, specific environments, required

features or applicable technologies which must be described to fully understand the

research context.

According to the scenario depicted in Figure 1.1, a set of hypotheses has been

compiled to serve as the basis of the PhD research. In this regard, hypotheses pivot

around the media delivery chain. Here, four different corners such as media service,

network core/backhaul, network edge and media players are considered. The working

hypothesis is constructed as a statement of the following expectations:

• Media Service.

– Needs to improve media engagement by means of better and deeper media

tagging. The service aims to retrieve underlying connections in the contents

that let recommendation systems improve their relevance and audience

engagement.

12



1. SCOPE OF THE RESEARCH

– Does not have enough computing resources to perform current and future

analysis functions for the full catalogue of contents.

– Can deal with the privacy and security concerns of outsourcing media analy-

sis.

– The analysis functions to be applied are:

* Atomic. The data input and the function to be applied can be encapsu-

lated for delivery. The volume of data representing each task is low and

the retrieval of image dataset is costless, by employing keyframes of the

encoded video, for example.

* Lightweight. The function to be applied takes a short time compared

to the average media catalogue duration when executed on a suitable

device.

* Autonomous. The analysis task does not depend on other contents of

the full content, it can be applied to just one frame.

* Delay-tolerant. The order of results is irrelevant and the time to com-

plete a full batch of analysis tasks has no impact.

* Partial. Not necessary to complete the full batch of tasks to all the images

set to be exploited.

– When Media Service providers require highly-demanding but delay-tolerant

computing resources to improve their services, such as generating auto-

matic tagging of the content. To this end, the service will make use of the

client-devices as an infrastructure to distribute the processing tasks among

all clients and reduce the workload in the service provider’s cloud server.

• Media Server.

– Schedules a queue with asynchronous media analysis tasks.

– Has a timeout to send a task back to the queue.

– Has a temporal black list to avoid dispatching tasks to unresponsive clients

or to avoid over-utilization of a device’s resources.

– Is able to attach data to existing media streaming sessions.
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– Can assess the task to be done to match a target level of computing capacity

from the devices connected and idle.

– Provides a manifest of media contents including representations for a wide

range of bitrates.

– Employs multiple CDNs to serve the segments of the contents and defines

the CDN endpoint in the manifest as a base URL for the segments of the

content.

– Uses technologies employing media encoding and streaming standards.

– Expands the request-response transaction model into an asynchronous

workflow dispatching to connected clients along the served media session.

To this end, Media Server creates a queue to complete big volumes of image

analysis tasks. To pop tasks from the queue, Media Server matches the task

volume with the device computing profile.

• Media Database.

– Stores all the contents available to be distributed across the CDNs.

– Includes metadata employed by the media service to recommend other

contents.

– Includes new metadata coming from new features. Those processed em-

ploys and without a consistent result are marked in order to get off the queue

of pending to be processed.

• CDN.

– Caches requested contents from the database.

– Provides media on a best-effort basis. CDN can be congested and conse-

quently the service performance would be degraded. In the worst case

scenario the service could suffer outages.

• Core Network.

14



1. SCOPE OF THE RESEARCH

– Follows SDN and Virtualization paradigms from 5G to develop systems to

autonomously improve network agility and flexibility to efficiently support

the evolving demands of users.

– The management systems have interfaces to get a representation from the

topology deployed, i.e. YANG model by means of NETCONF protocol [Ietf10].

– The network management systems such as OpenDaylight [Foundation17c]

and OSM [TID17] allow an agile (seamless, costless and automatic) transition

of the Network topology to another one which better deals with incoming

traffic demands in terms of KPIs in a cost-effective way. Combining SDN

and NFV concepts, the controller changes the network topology instan-

tiating or removing VNFs to forward the incoming traffic in an efficient

manner, removing the unused parts of a network to release these resources

[Ismail et al.13].

– Machine Learning algorithms are applied to develop a system of service de-

mand prediction and provisioning which allows the network to resize and

resource itself by using virtualisation to serve predicted demand accord-

ing to parameters such as location, time and specific service demand from

specific users or user groups.

• SDR RAN.

– Brings wider possibilities towards distributed mechanisms of traffic coordi-

nation in a radio link.

– Meets the scalability issues, thanks to the capillary nature of SDR systems.

– Exposes edge API to authorized third parties to provide them with radio net-

work information in real-time. This technology enables operators to better

adapt traffic to the prevailing radio conditions, optimize service quality and

improve network efficiency.

– Authorized third parties can enforce their own service in real-time using ap-

plications hosted on the MEC servers, which are in the edge close to the end

users and delivered through multiple CDNs.
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– MEC turns a base station into a service catalyzer, which dynamically im-

proves network performance and user experience for a specific service by

exploiting media streaming analytics.

• Media Player.

– Is able to asynchronously respond to assigned media analysis tasks.

– Is able to process tasks attached to an ongoing media streaming session.

– Can profile the computing capacity from the device and send the score to

the server.

– Tries to dynamically obtain the best QoE possible with the information com-

ing from the MPD and the network performance measurements performed

on the client side along the MPD and segments download.

– Uses technologies employing media encoding and streaming standards.

– When several Media Players share the same radio link to access to contents

from the Media Service and they compete for available network resources to

improve their QoE.

• Users.

– Are actively watching/consuming a media content. The display is on.

– With similar interests are likely interested in the same contents.

– Connected in the social media service are likely interested in same contents.

– Consent in the conditions and terms of media service to share spare process-

ing resources to execute data processing and compilation tasks in order to

improve the service.

– QoE depends on content relevance/interest, average bitrate, frequency of

quality switches, frequency and duration of freezes.

The expectations of the working hypotheses involve different stakeholders:

1. the media service gets an elastic cloud of computing resources spontaneously

connected to the media service in order to perform batch image analysis (1.2a

top);
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Automatic selection of better CDN performance 
for an area

Transparent Network QoE Boosting & Enforcing

Spontaneous farm of extra computing resources
for media tagging

(a)

Improved
recommendation
Faster browsing

Reliable, Stable and Higher QoE on
the move

Fair, Stable and Higher QoE in dense 
environments

(b)

Demand Prediction and Improvement of
Topology Efficiency

Third party APIs with Zero latency and Geo-
based Service for QoE Boosting & Enforcing

(c)

Figure 1.2: Diagram of the hypothesis of the perception of (a) the media service, (b) the
users and (c) the mobile network operator for an enhanced experience.
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2. the media service becomes audience engaged for longer times;

3. the media service employs the healthier CDN for media delivery in each area

transparently (1.2a bottom-left);

4. the media service gets better QoE for the clients transparently without any modifi-

cation in the server side and communication overheads (1.2a bottom-right);

5. the users get more interesting and relevant contents from the media service (1.2b

left);

6. the users get a steady QoE when they are on the move (1.2b center);

7. the users get an unbiased and homogeneous QoE compared to other surrounding

users in dense client cells like concerts or sports events (1.2b right);

8. the mobile network operator deploys a well fitted network where topology op-

timises performance and the use of available network and VM resources while

minimising overall energy requirements and costs (1.2c left);

9. the mobile network operator gets a new revenue flow by opening the SDR APIs to

boost or enforce media services in real-time via applications hosted on the MEC

servers (1.2c right).

1.3 Objectives

The main objective of this work is to improve the QoE of media services in 5G networks

and environments by means of advanced media delivery architectures, solutions and

algorithms. Furthermore, the main objective is decomposed into four individual objec-

tives to overcome the orchestration of media delivery resources to enhance or enforce

QoE:

1. Create an HTML-based standard and interoperable architecture to dispatch me-

dia processing transactions to spontaneous connected media players along media

streaming sessions, matching resource profile and media task volume.
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2. Provide technologies to enable the adaptation of selected content bitrate in dense

client cells with the aim of improving the efficiency of radio link bandwidth

utilization and the QoE fairness across all the media players.

3. Integrate a media service application to transparently boost and enforce media

delivery applications in SDR solutions.

4. Empower network management systems using Machine Learning algorithms to

allow the network to resize and provision itself, to serve a predicted media service

demand.

According to this objective breakdown, it is necessary to address and provide solu-

tions to overcome the four main challenges of media delivery for media services in 5G

environments (see Figure 1.3):

• Massive client connections: ever increasing volume of connected users in 5G can

be exploited to dynamically build a processing infrastructure composed by thin

devices to complement a cloud server. To this end, the media service enrols spon-

taneous connected users’ device as computing resources of an elastic cloud to

perform media analysis tasks in the background during the media session.

• Dense client cells: density of users in 5G cells will introduce highly dynamic net-

work conditions. Ensuring a steady and consistent QoE in dense client cells is

complex, therefore, media players need to get a more accurate assessment of the

effective bandwidth and awareness of the concurrency level in order to manage

the efficiency and fairness radio-link utilization trade-off. This way, media players

will leave behind autonomous bitrate adaptation in a best-effort basis.

• Edge video analytics: the 5G MEC architecture exploits network edge awareness

of connectivity performance to guide the media player in choosing the optimal

bitrate to be used given the radio conditions. Thus, using RAN analytics at SDR

components to estimate the throughput likely to be available at the radio downlink

interface for a media player and influence transparently in their bitrate adaptation

decisions minimizing impact on the QoE.
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•Fair & performance media delivery
by the network Edge for Steady & 
Enforced QoE

•Exploiting RAN awareness statistics
•Transparent and Zero latency
•CDN switching when performance 

degradation or outage
•Integration with real SDR stack

•Optimal topology for media 
delivery to enforce QoE

•Forecasted traffic demands
•Integration with SDN & VNF 

technologies

•Fair & Efficient media delivery in the
radio link for Steady & 
Homogeneous QoE

•Exploiting client-side heuristics
•Accurate bandwidth assesment
•Applicability to any content
•No a priori knowledge for fast

response to network dynamics

•Content analysis distribution to 
empower engaging QoE

•Delay-tolerat Elastic Cloud 
•Farm of Spontaneous connected

Workers
•Hardware device Profiling
•Match task resources Assessment
•Asynchronous dispatching

Massive
client 

connections

Massive
client 

connections

Dense client
cells

Dense client
cells

Edge video 
analytics

Edge video 
analytics

Self-
organising
networks

Self-
organising
networks

5G

Figure 1.3: Main challenges to be addressed in order to achieve the main objectives.

• Self-organising network: application of Machine Learning technologies over 5G

technologies, such as SDN and VNFs, to forecast traffic demands and identify

alternatives to automatically taking preventive actions to network degradation

conditions such as congestion at both a network wide level to avoid overall QoE

impact.

1.4 Contributions

The main contribution of this Ph.D. research is founded on the advances in media

delivery technologies to provide an enhanced QoE of media services to different stake-

holders including media services, media players and MNOs. These advances, based on

standard solutions, enable context-sensitive, standard-compliant, fair-sensitive, CDN-

aware and self-organising media delivery in new dynamic, agile, dense and capillary 5G

environments.

More specifically, the main contribution can be translated into four specific out-

comes. Figure 1.4 illustrates the four contributions of the research in a wider context
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Technology
Enabler

Technology
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Target
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Research
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TAGGING 
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Task and resources assessment to avoid impact on 
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Task and resources assessment to avoid impact on 
foreground QoE

Endorse delay-tolerant image analysis tasksEndorse delay-tolerant image analysis tasks

Queue to manage scalability and spontaneous 
connectivity presence

Queue to manage scalability and spontaneous 
connectivity presence

DENSE CLIENT 
CELLS

DENSE CLIENT 
CELLS

CLIENT-SIDE 
BITRATE 

ADAPTATION

CLIENT-SIDE 
BITRATE 

ADAPTATION

QoE probing on media playersQoE probing on media players

Synchronization of HTTP requests slotsSynchronization of HTTP requests slots

Low complexity network performance model based on 
heuristics

Low complexity network performance model based on 
heuristics

EDGE VIDEO 
ANALYTICS

EDGE VIDEO 
ANALYTICS

MEC FOR FAIR 
QoE AND 

RELIABLE CDN

MEC FOR FAIR 
QoE AND 

RELIABLE CDN

Probe SDR RAN status reportProbe SDR RAN status report

Probe CDN performance statisticsProbe CDN performance statistics

Proxy to parse & crop MPDProxy to parse & crop MPD

SELF-ORGANISING 
NETWORKS

SELF-ORGANISING 
NETWORKS

NETWORK 
RESOURCE 

ALLOCATOR

NETWORK 
RESOURCE 

ALLOCATOR

Forecast traffic demands of media servicesForecast traffic demands of media services

Predict network performance for unforeseen topologies
based on already exercised topologies

Predict network performance for unforeseen topologies
based on already exercised topologies

Proactively and dynamically provision the network, 
while keeping network operation inside QoE range
Proactively and dynamically provision the network, 
while keeping network operation inside QoE range

Figure 1.4: Diagram of the contributions of the research.

to address the creation, delivery and management challenges of multi-device media

services.

1.4.1 Elastic Cloud of Tagging Resources

Media processing demands for different application domains have increased monotoni-

cally as the amount of information has exploded with advances on devices and network

capacities. Cloud platforms are the solution for Big Data but they involve a significant

cost.

This thesis has targeted Web-based social media content services, such as YouTube

[Youtube17] or Vimeo [Vimeo17], as a dominant source of traffic for incoming 5G net-

works. In the case of social media services, they need to improve service monetization

by means of higher user engagement. To this end, deeper media tagging is required. At

the same time, the vast number of devices connected to the service means a significant

amount of computing assets valid for delay-tolerant and independent tagging tasks.

The common behaviour of the users of these services provides a convenient environ-

ment for the deployment of automatic tagging systems. On the one hand, a steady and

continuous communication channel along the video consumption and on the other,
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users are aware that media services are bandwidth demanding. Moreover, introduced

communication and processing overheads should have a residual impact on battery life

or expenses [Chen et al.13, Zhang et al.16].

This thesis has designed and implemented a solution to distribute delay-tolerant

processing tasks to spontaneous connected computing resources for creating an elas-

tic cloud infrastructure. Moreover, it saves the service provider tagging infrastructure

costs, while matching the tasks’ volume to computing resources to avoid an impact on

foreground QoE.

The results show that the solution is able to exploit high user availability den-

sity from 5G networks based on the HTML stack. Furthermore, this work includes

a performance-cost model to support service providers to determine suitable scenarios

for this approach compared to the utilization of cloud computing servers.

Publication related to Contribution 1.4.1:

• M. Zorrilla, J. Flórez, A. Lafuente, A. Martin, J. Montalbán, I.G. Olaizola and I.

Tamayo, "SaW: Video Analysis in Social Media with Web-based Mobile Grid Com-

puting," IEEE Transactions on Mobile Computing (TMC), vol. PP, no. 99, pp. 1-1.

doi: 10.1109/TMC.2017.2766623 in Section 3.2

1.4.2 Client-side Bitrate Adaptation

The capacity of 5G cells will be significantly multiplied. Here, it becomes complex to

provide video services to several users competing independently for the available band-

width when trying to maximize the used bitrate. The issues span initial buffering delay,

temporal interruptions or pauses, and visible video resolution switches during a video

transmission [Seufert et al.15]. However, a service provider wants to provide a biased,

consistent and uniform service experience removing circumstantial conditions that

would turn experience unfair, heterogeneous and unstable.

When considering a cellular network, this thesis has targeted the potential QoE

degradation in dense client cells, when considering a cellular network, the Radio Access

Network (RAN), a Wi-Fi hotspot and the network edge.

This thesis has identified, designed, implemented and integrated in real media

players a bitrate adaptation algorithm in setups in which multiple players share a con-

nection link making real-time bitrate decisions to conduct a more steady and unbiased

22



1. SCOPE OF THE RESEARCH

media delivery. The design pivots around two key features. First within its flexibility

to produce a fast response, valid for any kind of incoming content characteristics or

connectivity status, meaning that the algorithm does not require a priori knowledge.

Second, within its simplicity, with a low-complexity heuristic model, based on measure-

ments and estimations from a current stream state. Hence, the mechanism’s goal is

efficient and fair QoE in dense client cells.

The results show that the solution is able to perform a live characterization of

network performance including the concurrent traffic demands while the algorithm

requires a reduced background computation on the client side. The solution is valid for

balancing QoE and radio link utilization across the devices sharing a radio link in two

different scenarios, since the clients tend to use the same representation bitrate. On

the one hand, a scenario with clients synchronized to a common clock joining the live

stream at once and on the other, an on-demand-like scenario where clients randomly

request a stream. The scenario with a synchronized connectivity status assessment

produces a more accurate and stable characterization.

Publication related to Contribution 1.4.2:

• A. Martin, R. Viola, J. Gorostegui, M. Zorrilla, J. Flórez and J. Montalbán, "LAMB-

DASH: a DASH-HEVC adaptive streaming algorithm in a sharing bandwidth

environment for heterogeneous contents and dynamic connections in practice,"

Springer Journal of Real-Time Image Processing, Oct. 2017. doi: 10.1007/s11554-

017-0728-x in Section 4.2

1.4.3 MEC for Fair QoE and Reliable CDN

When a client-side decision algorithm is not sufficient in dense client cells for guaran-

teeing the best performance given that each client is unaware of the presence of others,

the network must support the media service QoE.

5G architecture envisions MEC systems as a RAN-aware system that exploits radio

link reports existing in the LTE stack. This thesis has targeted 5G systems to empower

the network edge with MEC systems. MEC systems can provide RAN awareness in

real-time for providing a bitrate adaptation in a distributed and transparent manner.

This thesis has identified, designed, implemented and integrated on a real SDR

testbed an MEC system turning media delivery analytics into actionable data to shield
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itself from content delivery degradation and outages in a zero-latency and fully capillary

way. The RAN-aware system steers stable and unbiased network resources utilization,

avoiding situations where media players trend towards radio-link capacity exhaustion,

before they reach full utilization, and dynamically switching in real-time CDN. Thus,

the goal is to get geo-based fair and reliable QoE in dense client cells.

The results show that the solution is capable of performing real-time updates in the

manifest with the suitable qualities and CDN endpoints. This MEC system exploits L2

(link), L3 (network) and L7 (application) metrics to support switching decisions on HAS

quality and CDN provider. Furthermore, the solution is integrated and validated on a

real mobile LTE SDR network under two different scenarios. The solution plays a more

significant role improving efficiency, in terms of network utilization and quality experi-

enced in the stochastic scenario, where clients randomly join an on-demand stream.

However, the synchronous scenario, with clients joining a live stream at discrete and

synchronous times, obtains better scores than the stochastic one.

Publication related to Contribution 1.4.3:

• A. Martin, R. Viola, M. Zorrilla, J. Flórez and J. Montalbán, "MEC for Fair, Reli-

able and Efficient Media Streaming in SDR Mobile Networks," submitted to IEEE

Transactions on Network and Service Management (May 2018). in Section 5.2

1.4.4 Network Resource Allocator

Machine learning techniques can make possible to develop systems to autonomously

improve network agility and flexibility to efficiently support the evolving demands of

users.

This thesis has targeted 5G agility to efficiently and dynamically respond to a vari-

able pool of users producing a dynamic traffic demand with latency and bandwidth

KPI constraints that must be addressed. It is favourable for the application of machine

learning algorithms which are ideal for feeding SDN technologies with insights.

This thesis has identified, designed, implemented and integrated on a simulation

testbed a real-time and autonomous Network Resource Allocator system to distribute

the predicted traffic demand. This self-organising network management tool employs

Machine Learning, SDN and NFV technologies to dynamically provision the network

in a proactive way, while keeping the network operation within business ranges. This
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means the system is able to scale the network topologies and assure the QoE, required

for media services.

The results show an operational Machine Learning tool able to empower a SDN con-

troller with abilities to forecast a service demand and to instantiate an efficient network

topology accordingly in an automated manner. The Network Resource Allocator has

been tested and validated for Netflix like, UStream like, and Skype like media services.

Moreover, the results conclude that the accuracy of the results is better when the car-

dinality of the network is bigger and the demands in bandwidth are higher, while the

fidelity drops for tiny setups and audiences. So, the more complex the infrastructure

and wider is the media service demand, the more confident the approach becomes.

Publications related to Contribution 1.4.4:

• A. Martin, J. Egaña, J. Flórez, M. Quartulli, J. Montalbán, R. Viola and M. Zor-

rilla, "Network Resource Allocation system for QoE-aware delivery of media ser-

vices in 5G Networks," IEEE Transactions on Broadcasting (TBC), 2018. doi:

10.1109/TBC.2018.2828608 in Section 6.2

• T.S. Buda, A. Martin et al., "Can machine learning aid in delivering new

use cases and scenarios in 5G?," NOMS 2016 - 2016 IEEE/IFIP Network Op-

erations and Management Symposium, Istanbul, 2016, pp. 1279-1284. doi:

10.1109/NOMS.2016.7503003 in Annex A.3

• L. Xu, H. Assem, I.G.B. Yahia, T.S. Buda, A. Martin et al., "CogNet: A network

management architecture featuring cognitive capabilities," 2016 European Confer-

ence on Networks and Communications (EuCNC), Athens, 2016, pp. 325-329. doi:

10.1109/EuCNC.2016.7561056 in Annex A.5

• M. Tolan, J. Tynan, A. Martin, F. Mogollon, "Dynamic Policy Based Actuation for

Autonomic Management of Telecoms Networks," IEEE European Conference on

Networks and Communications (EuCNC), 2017. in Annex A.2

1.5 Document structure

This thesis has been structured as follows. Part I presents an introduction to the research

scope, focusing on the motivation for the research, the main objectives, the hypothesis,
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the methodology and the main contributions of the Ph.D. work.

Part II overviews literature related to mobile cloud computing, self-organising net-

works and bitrate adaptation solutions, including client-side and network-supporting

strategies, for the application domain of media delivery.

In Part III the research results are described in four main chapters:

• Chapter 3 describes the contributions to distribute media analysis tasks to an elas-

tic cloud of spontaneous computing resources (Contribution 1.4.1). The goal is to

enable more engaging contents in the media service.

• Chapter 4 describes the contributions to create a client-side mechanism that dis-

tributes media content in a steady and efficient manner in radio-links with dense

client cells (Contribution 1.4.2). The goal is to avoid unfair QoE amongst the

media players.

• Chapter 5 describes the contributions to create a network edge solution that dis-

tributes media content in a reliable and efficient manner in radio-links with dense

client cells (Contribution 1.4.3). The goal is to shield the media service from

outages and degradations and unfair QoE amongst the media players.

• Chapter 6 describes the contributions to create a self-organising network that au-

tomatically scales to distribute forecast traffic demands (Contribution 1.4.4). The

goal is to satisfy operational QoE for the incoming media service demands.

In Part IV the main conclusions of the research can be found, including a discussion

that enables future work.

Finally, Part V provides other publications of the author and his Curriculum Vitae as

an appendix, while Part VI contains the bibliography.
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CHAPTER

2
Related Work

2.1 Overview

As explained in Section 1, media delivery driven to fair, enhanced and enforced QoE in

5G environments can be addressed from four different tiers. The research activities in

this thesis have been compiled around them:

1. the media service provider and its capacity to create a cloud of resources, detailed

in section 3.2.2;

2. the media player to avoid eager behaviours and to get a steady and fair radio link

utilization, detailed in section 4.2.2;

3. the network edge to exploit radio statistics to shield itself against service degrada-

tion and outages, detailed in section 5.2.2;

4. and the network core to arrange the necessary amount of resources and appropri-

ate setup for the incoming traffic demand, detailed in section 6.2.2.

These four-tier mechanisms enable media services and network operators to en-

gage, balance and ensure the quality of experience for 5G mobile networks. They exploit

novel media delivery techniques in the four research areas as depicted in Figure 2.1.
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Target 
Contribution

Research
Topic

Research
Umbrella

QoE-DRIVEN 
MEDIA DELIVERY 

IN 5G 
ENVIRONMENTS 

MOBILE 
COMPUTING

ELASTIC CLOUD OF 
TAGGING RESOURCES

BITRATE 
ADAPTATION

CLIENT-SIDE BITRATE 
ADAPTATION

EDGE VIDEO 
ANALYTICS

MEC FOR FAIR QoE AND 
RELIABLE CDN

SELF-ORGANISING 
NETWORKS

NETWORK RESOURCE 
ALLOCATOR

Figure 2.1: Main areas targeted by the research.

This chapter gathers the state of the art of mobile computing, bitrate adaptation, edge

video analytics and self-organising networks, including activities, technology initiatives,

market solutions and standardization groups which provide the basis of the research

areas compiled in this document.

In order to provide a more holistic perspective the Table 2.1 comprises all the related

work under the classification criteria.

2.2 Mobile Computing

The variety, volume and velocity of media contents being uploaded to media services

have need of continuous and deeper tagging analysis. The goal is to enhance the con-

tent visibility and match user preferences to engage audience. At the same time, the

mobile devices capabilities, in terms of CPU and GPU processing accompanied by em-

powered web stacks to leverage the full hardware capabilities, place mobile computing

at the focus of distributed and massive computing infrastructures. The combination of
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heavy processing needs and the availability of resources that can be unified to produce

a synergetic condition favourable for media services.

Nowadays, the high potential of the abundant and frequently idle client hardware

boosts the opportunistic and delay-tolerant [Conti and Kumar10] use of client resources

on the grid. In this volunteer computing, SETI@home is the most popular example.

This [of California99] approach has been the pioneer of big data grid infrastructures

benefiting from the Internet-connected computers of volunteers.

Mobile Cloud Computing (MCC) [Huang et al.13] includes mobile devices as clients

of the virtualised services, usually following the classical client-server asymmetric

model, which involves a one-way communication direction produced by requests

from mobile clients to cloud services. Nevertheless, symmetric MCC models have also

been proposed [Neumann et al.11], where a crowd of mobile devices populate a cloud

offloading the tasks to be performed by the service infrastructure.

The main drawbacks of these solutions are based on the heterogeneous computing

on a variety of modern CPUs, GPUs, DSPs, and other microprocessor designs. The trend

towards heterogeneous computing and highly parallel architectures has created a strong

need for software development infrastructure in the form of parallel programming lan-

guages and subroutine libraries supporting heterogeneous computing on hardware

platforms produced by multiple vendors [Stone et al.10].

The rapidly increasing use of the Web as a software platform [Anttonen et al.11] with

truly interactive applications is boosted by emerging standards such as HTML5 and We-

bGL. They are removing limitations and transforming the Web into a real application

platform middleware to address the interoperability problem.

The cross-entry point is bridged by WebGL and WebCL. WebGL allows commu-

nication between JavaScript applications and the OpenGL software libraries, which

access the host’s graphics processor. Thereby, it enables use of the hardware’s full ca-

pabilities not only to perform advanced 3D objects and effects rendering but also for

general purpose algorithms, such as image processing. WebCL is designed to enable

Web applications with high performance and general purpose parallel processing on

multi-core/many-core platforms with heterogeneous processing elements. It provides

ease of development, application portability, platform independence, and efficient ac-

cess through a standards-compliant solution [Jeon et al.12]. Thus, WebGL excels in
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graphics applications while WebCL fares better when more flexibility is required in ex-

ecution platform selection, load balancing, data formats, control flow, and memory

access patterns [Aho et al.12].

Once the technology stack is able to grant the architectural blocks to distribute com-

puting tasks, privacy must be analyzed. Social acquaintance is a valid policy in order to

decentralize privacy, when social media processing is decentralized [Mohaisen et al.14].

Recent blockchain technology has demonstrated that trusted and auditable com-

puting is possible using a decentralized network of peers accompanied by a public

ledger [Zyskind et al.15]. Emerging smart contract systems over decentralized sys-

tems allow mutually distrustful parties to transact safely without trusted third parties

[Kosba et al.16]. This report [Spectrum17b] provides a decision tree to replace a tra-

ditional database with a blockchain technology. Ethereum [Ethereum17] is the most

representative technology for blockchains. It uses transactions that are miniprograms,

called smart contracts, which can be written with an unlimited amount of complex-

ity. Ethereum is utilized to build a decentralized platform that runs smart contracts,

applications that run exactly as programmed without any possibility of downtime, cen-

sorship, fraud or third-party interference. Miners can run more complex programs, like

the software for a social media network [Spectrum17a]. In practice, this means that any-

one can embed a software program into a transaction and know that it will remain there,

unaltered and accessible for the life span of the blockchain.

Concerning the online digital advertising industry, a key source of income for media

services, publishers face falling revenue, users feel increasingly violated, and advertisers’

ability to assess effectiveness is diminished. The solution is a decentralized, transparent

digital ad exchange based on blockchains. Here, a ledger system that measures user

attention to reward publishers accordingly. Basic Attention Token (BAT) [BAT17] is a

token based on user attention, which simply means a person’s focused mental engage-

ment. The BAT can be exchanged between publishers, advertisers, and users. So, BAT is

a technology for blockhain-based digital advertising. It all happens on the Ethereum

blockchain.

Recently, the opportunistic cloud of unaware computing resources gained relevance

and was linked to crypto-currencies and blockchains. According to Kaspersky reports

[Lab17], the number of attacked users in the first eight months of 2017 reached 1.65

million. The media services and content websites, such as CBS, Showtime or The Pirate
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Bay contained JavaScript that secretly commandeered viewers’ web browsers to mine

cryptocurrency [MIT17].

2.3 Bitrate Adaptation

The bitrate adaptation algorithm inside a HAS media player allows the client to in-

dependently choose its playback quality. From the Mobile Network Operator (MNO)

perspective, multiple bitrate streams are operated by adjusting the play-out rate to stay

within the actual network throughput and device capability. Thus, adaptive encoding of-

fers benefits to allow operators to plan the capacity of their delivery networks to match

the average, rather than the peak, usage demands. This way, MNOs save considerable

Capital Expenditure (CAPEX) maintaining an uninterrupted user experience by means

of client-based switching decisions.

However, multiple clients competing for bandwidth across a bottleneck link can

cause instability in the selected representation, link under-utilization, and dispropor-

tional shares of available bandwidth [Chen et al.16b]. Therefore, recent research in

adaptive streaming is focusing on the development of client-side adaptation algo-

rithms. The client monitors some key indicators to make the decision of switching to

a representation bitrate that better fits the current state and maximizes the playback

quality.

On the one hand, connection-based algorithms choose the representation bitrate

considering server-client connection status (most common indicators are bandwidth

and latency). Here, the heuristic-based algorithms take direct measurements and use

decision rules based on the observations. These allow the most appropriate level to be

dynamically requested, based on the current network conditions in multi-client scenar-

ios [Petrangeli et al.15]. To track quick changes on networking conditions, the algorithm

[Liu et al.11] explores step-wise increases and aggressive decreases in the adaptation

algorithm in single-user scenarios. Some heuristic-based algorithms are Festive (Fair,

Efficient, Stable, adaptIVE) [Jiang et al.14], Panda (Probe and Adapt) [Li et al.14b] and

Lolypop (Low-Latency Prediction-Based Adaptation) [Miller et al.16]. On the other

hand, the optimization-based algorithms perform mathematical modelling. They need

a big dataset and a long learning time [Claeys et al.14b].
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Content-based algorithms characterize the content, using Structural Similarity

(SSIM), the human perception of the image, to adapt the representation bitrate ac-

cordingly [Chiariotti et al.16]. This content-based algorithm suffers from high imple-

mentation complexity and large overheads requiring reduced power consumption and

prolonged battery life [Chen et al.16a, Zorrilla et al.17].

More complex solutions [Li et al.14c] explore both, the status of the connection-

player and the features of the video content. However, the issue related to processing

overheads persists.

Whatever the adopted solutions, the aim of each algorithm is to enhance the qual-

ity of the playback. A consolidated way to evaluate the QoE is the Mean Opinion Score

(MOS), with five incrementing quality levels (from 1 to 5) [ITU]. This type of testing

leads to long evaluation times. Therefore, for practical reasons, many objective models

for evaluating an estimated MOS (eMOS) have been studied to profile the subjective

human perception of the quality.

The work [Vriendt et al.13] investigates the most common models to verify the fit

of each model. The models shown are: bitrate model, PSNR or SSIM based model,

chunk-MOS based model and quality model. It concludes that the chunk-MOS model

is the optimal one. Moreover, the works [Claeys et al.14a, Mok et al.11] conclude a QL

model which limits the eMOS evaluation to a set of objective metrics from the con-

nection heuristics, such as quality switches, frequency and duration of freezes. These

parameters are the key metrics of HAS services. Work from [Claeys et al.14a] concludes

that the operational range of the eMOS is [0; 5.84], in contrast to the discrete scale from

1 to 5 of the theoretical MOS [ITU].

Study Group 12 (SG12) of the ITU-T is currently working on the standardization

of a new QoE assessment method, known as video Mean Opinion Score (vMOS)

[Lentisco et al.17b]. Its goal is to provide a unified and user-centric standard that en-

ables quantification of the quality of video streaming services over different networks,

screens or scenarios, without a specific focus on mobile broadcast services.

2.4 Edge Video Analytics

5G will foster the media innovation ecosystem by opening interfaces to adapt the net-

work capabilities to media application needs in real time. Thus, 5G will boost the

34



2. RELATED WORK

efficiency of media services and their businesses.

Specifically, the network must participate in coordinating media players to accu-

rately estimate available bandwidth and shield itself from CDN performance degra-

dation and outages. In this regard, it is important to design a scalable solution which

captures metrics with zero latency, processes them and prevents QoE degradation

situations in real-time. The solution must be transparent in different levels, from the

media delivery protocol perspective, to be universally adopted, and from the networking

perspective, to avoid overheads with extra messaging.

Scientific approaches to make data actionable in a coordinated way, with a net-

work centric perspective, often consider SDN-enabled wireless networks [f. Lai et al.15].

Some schemes include in-network proxies [Petrangeli et al.15], a proxy manager

and a resource controller at the eNodeB level [Rubin et al.15, Chang et al.15] to pro-

vide the clients with target quality suggestions. Other works [Vleeschauwer et al.13,

Essaili et al.15] automatically and fairly adapt the video quality to react to congestion

and data flow throughput starvation by overwriting client-side decisions.

The relevance of metrics in making decisions to enhance media services is evident.

Media services using CDNs can enforce reliability by avoiding overloaded CDNs through

the use of content delivery analytics. There are platforms to monitor client experience

and benchmark the performance of every CDN and service. Focused on IP Video per-

formance, Cedexis [Cedexis17] and Conviva [Conviva17] platforms sustain networking

decisions in a centralized manner, via a cloud system highly coupled with the service

provider and the player which has an agent to gather continuous quality telemetry,

adding signalling overheads.

Operators can expose their RAN edge Application Programming Interface (API) to

authorized third parties to provide them with radio network information in real-time.

Hence, MEC opens the door for authorized third parties, such as content providers (CP),

to develop their own applications hosted on the MEC servers. Here, ETSI envisions MEC

as a system to exploit RAN awareness video analytics, and therefore MEC improves the

user experience by managing the media delivery closer to video viewing screens.

Moreover, dynamically switching in real time from one CDN to another, fitting to

a well-balanced trade-off between QoE and costs, is a relevant scenario. This can be-

come a reality by using content delivery analytics from the MEC components, which

tend to be proprietary solutions, creating open real-time analytic data of throughput
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and ping speeds to caches to measure the speed and availability of different delivery

paths over the Internet. To this end, a MEC system can collect and process geo-based

analytic data in real-time to select a more reliable CDN by measuring the performance

and availability of different delivery paths over the Internet.

MEC paradigm is the core of the systems in improving MPEG-DASH performance

[Li et al.16]. This approach brings new features, such as close to zero delays and aware-

ness of the radio status. Here, an HTTP proxy removes or adds back representations

from the media presentation description (MPD) manifest according to Channel Qual-

ity Indicators (CQI) reports avoiding signalling overheads. Following the MEC vision, a

hybrid edge and client adaption solution for HAS media services is applied to cellular

links with shared bandwidth [Yan et al.17]. This work goes a step further by consider-

ing the cumulative viewing experience to tune the QoE continuum and fairness model,

and two theoretical moving patterns. An alternative approach [Chen and Liu16] tar-

gets continuity of the viewing experience and efficient resource allocation. This hybrid

MEC and client-side mechanism, orchestrates time slots to make HTTP requests, dif-

ferent for each media player and serving rates. A further MEC component prioritizes

or drops different HTTP transactions tailored to H.264 Scalable Video Coding (SVC)

streams [Fajardo et al.15]. So this work employs L2 (CQI reports) and L7 (H.264/SVC

hierarchical dependencies) to achieve QoE-driven fair scheduling of radio resources.

The integration of MEC systems into SDR technologies is explored in [Wang et al.17]

by employing an OpenAirInterface (OAI) SDR system to integrate on the eNodeB a MAC

packet scheduler (L2).

2.5 Self-organising Networks

5G will deliver a 1000-fold gain in capacity per geographical area, a 10 to 100 times scale

in connected devices, a 10 to 100-fold increase in the individual end-user data rate ex-

perience that is capable of extremely low end-to-end latency, under 1ms, promising 10

times lower energy consumption, and granting ubiquitous access even in low density

remote areas. To this end, 5G must deal with fast, heterogeneous, multi-tier networks,

which are also dynamic in nature.

The main advances of 5G focus on two directions [5GPPP16]. First, the radio access

network (RAN), by means of additional spectrum bands and higher spectral efficiency,
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to achieve higher capacity [Chávez-Santiago et al.15]. Second, the SDN solutions, to

empower the core and the edge of the network [Nguyen et al.16].

SDN [Foundation12] and NFV [Foundation13] are two key enabler technologies

of 5G. These technologies catalyse the transformation of operative switching and for-

warding into programmable and configurable functions. SDN and NFV technologies

lead to an agile network infrastructure enabling decisions about how to forward traffic

[Kim and Feamster13].

SDN and NFV technologies-based solutions are proliferating and explored as com-

mon 5G base technologies as the standardization phase progresses. By combining

SDN and NFV concepts the network management systems employ interfaces, virtual-

ization frameworks and solutions such as OpenFlow [Foundation17e], OpenVSwitch

[Foundation17d], OpenStack [OpenStack17], OpenDaylight [Foundation17c], OSM

[TID17], OpNFV [SDxCentral17] to implement the ETSI 5G stack.

Machine learning algorithms applied to Self-Organising Networks (SON) attempt

to address a fully autonomous and flexible network with robust and intelligent

mechanisms. The explored techniques applied to the SON field are summarized

in [Klaine et al.17]. These solutions span self-configuration, self-optimization and

self-healing functions to add the required intelligence. Self-configuration deals with

operational parameters. Self-optimization can be applied to backhaul optimization,

including caching, load balancing, capacity and energy efficiency, and antenna pa-

rameter optimization, applied to interference management and handover. Whereas

self-healing targets faults and failures. Figure 2.2 shows the most common algorithms

in the literature of cellular SON.

The network manager and telco operator needs tools to improve QoS in a 5G envi-

ronment. More specifically, tools to support the selection of the most efficient topology

and setup to deliver the best QoS at the best cost. The SDN and NFV paradigms boost

network adaptability and provide elasticity functions to make networks easily scalable.

However, this brings up the need for mechanisms to manage the network due to the in-

crease of the network complexity. Here, machine learning is applicable on self-managing

networks by means of its ability to learn from historical data, make predictions, dynam-

ically adapt to new situations while learning from new data [Mohri et al.12] and take

decisions. Going further, in the network management area, machine learning could

forecast resource demand and react appropriately. Combining machine learning, SDN
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Fig. 2. Block diagram showing the most common algorithms in the literature of cellular SON and how they are classified.

!

!

!

!
!

!

"

" "

"

"
"

#

!

!

$%&%'

Fig. 3. Example of k-NN algorithm, for k = 7. In this case, the algorithm
will decide that the unlabeled example should be classified as class A, since
there are more neighbors from class A than class B closer to the unlabeled
example.

can also be configured. The most common method used is

the backpropagation method, but there are many others [53],

such as Bayesian learning [26], [44], RL and random learning

[33], [54]. Although NNs are not restricted to classification

problems and can be used in nonlinear regression problems as

well, most NNs are used as classifiers. For information about

NNs in regression, please see [53].

In the context of cellular systems, NNs are applied spe-

cially in the self-optimization and self-healing scenarios, in

terms of resource optimization [31]–[33], [55]–[58], mobility

management [27], [28], [44], [59]–[63], HO optimization [35],

[36], [64], [65], and cell outage management [41]. For more

information about neural networks, how they work, basic

properties and learning methods readers should go to [26],

[53], [66].

4) Support Vector Machine (SVM): another supervised

learning technique commonly found in SON is the Support

Vector Machine (SVM). The idea behind a SVM classifier is

to map a set of inputs into a higher dimensional feature space.
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Fig. 4. Most basic design of a neural network, consisting of 3 layers, where
(A) denotes the input layer, (B) the hidden layer and (C) the output layer. The
inputs are denoted as X1,...,m and outputs as Y1,...,n, where m denotes the
total number of input features and n the total number of possible classes an
input can be assigned to. Also, the variable link weights are depicted as Θ(j),
which correspond to the matrix of weights controlling the function mapping
between layer j to layer j+1 and the activation function of each neuron as

a
(j)
i

, where i is the neuron number and j is the layer number.

This is done through some linear or non-linear mapping and

its objective is to maximize the distance between different

classes. Since the goal of SVM is to find the hyperplane that

produces the largest margin between different classes, SVM

can also be known as a large margin classifier.

As the name implies, the SVM technique uses a subset of

the training data as support vectors and they are crucial to the

correct operation of this algorithm. In theoretical terms, the

support vectors are the training samples that are closest to the

decision surface and hence are the most difficult to classify. By

finding the largest margin between these most difficult points,

the algorithm can maximize the distance between classes and

also guarantee that the decision region obtained for each class

is the best one possible [43]. Figure 5 shows an example of an

SVM classifier using linear mapping. For non-linear mapping,

SVM can use different types of kernels, such as polynomial or

Gaussian kernels. For a more thorough review of SVM, please

refer to [26], [43], [53], [67].
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Figure 2.2: Overview of most common machine learning algorithms in the literature of
cellular SON. Source: Survey by Klaine et al. [Klaine et al.17, Fig. 2].

and NFV concepts, a centralized view of the network can be exploited to automatically

identify networking issues. Thus, enabling the controller to change the network topol-

ogy by instantiating or removing VNFs to forward the incoming traffic in an efficient way,

and removing the unused parts of a network to release these resources [Ismail et al.13].

With regard to media networking, the main volume of traffic delivered by current

and next generation networks, in [Caglar and Gokhale14] the author optimizes the re-

source utilization and achieves a target QoS by finding correlations in the historical data

and predicts future resource usage. However, the system is not automated.

On top of SDN technologies, it is possible to develop systems to autonomously im-

prove network agility and flexibility to efficiently support the evolving demands of users.

Machine learning technologies must be considered to meet the network resources

allocation that dynamically meets changing demands, while achieving SLA network

operation enforcement, and to keep the networking operation inside business ranges

[Buda et al.16].

Media services are consuming more and more network resources. In order to op-

timise the use of the network assets, the network must allocate them on-demand as

required by the delivered media service. An SDN controller could change the network

topology through instantiating or removing Virtual Network Functions (VNF) to for-

ward the incoming traffic in an efficient way, removing the unused parts of a network to

release these resources [Ismail et al.13]. Failure to estimate the resource utilization of

applications running on top of a virtualized infrastructure might lead to a severe per-

formance degradation of those applications. So far, studies have shown that servers in
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many existing data centres are often severely underutilized due to overprovisioning to

avoid degradations [Armbrust et al.09]. This overloading can also have an impact on

such degradations. In [Xiao et al.13], authors describe the trade-off between overload

avoidance and cost-effective computing. This can be avoided by gathering insights into

the source of performance degradations, detecting and anticipating these in advance

through machine learning, and applying the corrective measures to avoid them.
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Table 2.1: Related Work on QoE and media delivery.
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CHAPTER

3
Elastic Cloud of Tagging

Resources

3.1 Context

Most of the posts of social media networks are photos or videos. With huge volumes

of contents uploaded to social networks, browse and search is traditionally based on

text-driven technology. Hence, the captions and tags have a key role to discover the

right contents.

Social services aim to engage audience, eager for contents, by boosting media rele-

vance. To this end, a more precise automatic tagging enables better matching of user

interests. Image analysis helps to better describe contents aiming better search re-

sults, but they also involve computing-intensive functions. Therefore, the processing

requirements grow substantially when all the media items comprising the social net-

work database are analysed. Thus, it is needed to build a scalable system to understand

content.

At the same time, a vast number of devices are concurrently consuming media ser-

vices. These client devices have often idle computing resources while playing media

content in foreground. The long duration of sessions, when consuming video media

services, decreases the volatility of connected devices. Hence, the sessions are long
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and steady. This context is perfect to dispatch lightweight tasks to connected devices

while any impact on the foreground experience is avoided and the communication

overhead is reduced. So, client devices can contribute with part of their resources to per-

form atomic tasks, such as creating automatic tagging by image analysis mechanisms to

enhance the media experience and save cloud resources.

An elastic cloud of resources for delay-tolerant media tagging could take benefit of

massive client connections in 5G networks. To create such a system, some aspects must

be overcome. First, the system must deal with a farm of spontaneous workers, available

only while consuming media contents. Then, a mechanism to perform asynchronous

tasks dispatching is needed. Finally, to avoid any impact on the foreground experi-

ence it is essential to match the task computing demand with the hardware processing

capacity.

Drawing inspiration from volunteer computing initiatives for big data, Section 3.2

proposes a solution where thin devices can complement a cloud service for delay-

tolerant computing tasks. The proposed system, named SaW, is a pure Web-based

distributed solution which exploits both CPU and GPU resources of the client devices in

an interoperable manner. To this end, a proof-of-concept implementation of SaW using

WebGL and WebCL technologies is provided, to evaluate the SaW approach, supported

by experimental results and an analysis of the performance based on a cost model for

hardware-accelerated processing distribution.

3.2 SaW: Video Analysis in Social Media with Web-based

Mobile Grid Computing

• Title: SaW: Video Analysis in Social Media with Web-based Mobile Grid Comput-

ing

• Authors: Mikel Zorrilla, Julián Flórez, Alberto Lafuente, Angel Martin, Jon Montal-

bán, Igor G. Olaizola and Iñigo Tamayo

• Journal: Transactions on Mobile Computing

• Publisher: IEEE

• Year: 2017

• DOI: http://dx.doi.org/10.1109/TMC.2017.2766623
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Abstract. The burgeoning capabilities of Web browsers to exploit full-featured de-

vices can turn the huge pool of social connected users into a powerful network of

processing assets. HTML5 and JavaScript stacks support the deployment of social client-

side processing infrastructure, while WebGL and WebCL fill the gap to gain full GPU and

multi-CPU performance. Mobile Grid and Mobile Cloud Computing solutions leverage

smart devices to relieve the processing tasks to be performed by the service infrastruc-

ture. Motivated to gain cost-efficiency, a social network service provider can outsource

the video analysis to elements of a mobile grid as an infrastructure to complement an

elastic cloud service. As long as users access to videos, batch image analysis tasks are

dispatched from the server, executed in the background of the client-side hardware,

and finally, results are consolidated by the server. This paper presents SaW (Social at

Work) to provide a pure Web-based solution as a mobile grid to complement a cloud

media service for image analysis on videos.

Keywords: Distributed computing, image analysis, multimedia databases, multime-

dia systems, social media, web-based architecture

3.2.1 Introduction

The social media paradigm has led to a significant rise in the volume of user gener-

ated content managed by social networks with millions of users accessing services,

each of them often using multiple devices at the same time. Service providers aim to

engage audience, eager for contents, by boosting the media relevance. To this end, a

deeper automatic tagging enables better matching of user interests with the content

database and reveals underlying connections between items, such as applying face

detection mechanisms or content-based indexing to find related videos. Image analy-

sis algorithms empower automatic retrieval of salience features but they also involve

computing-intensive functions. Therefore, the processing requirements grow substan-

tially when all the media items comprising the social network database are analysed.

Here, on the one hand big data challenges arise when social services have continuously

increasing databases, while on the other hand more and more processing resources are

required to analyse all the content.

Grid and Cloud technologies provide High Performance Computing systems that

aim to satisfy these requirements. However, as pointed in [Neumann et al.11], other
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under-explored alternatives could enhance the trade-off between infrastructure cost,

elapsed time and energy saving. It would depend on the number of available processing

nodes, the inherent characteristics of the tasks to be performed in parallel and the data

volume.

To deal with the aforementioned context, this paper introduces a new concept of So-

cial at Work: SaW. It aims to complement a Web-based social media service with all the

client devices, mostly mobiles, that usually have underexploited resources while access-

ing the service. SaW proposes a Mobile as an Infrastructure Provider (MaaIP) model,

going beyond the Infrastructure as a Service (IaaS) model, and creating a system related

to Mobile Grid Computing [Ahuja and Myers06] concept with the available CPU and

GPU resources of the different client devices to complement a virtualised cloud server,

which provides the social media service.

Inspired by the Mobile Grid Computing and the Mobile Cloud Computing (MCC)

[Huang et al.13] research fields over a social network mainly based on video content,

SaW aims to bring together the huge pool of users permanently connected to media

services in social networks and the ever increasing processing capabilities of most of

their devices. As a consequence, service providers will embrace the community assets

building a device centric grid to improve the social service by means of media analysis.

Thus, SaW concept enables service provider to recruit spare CPU/GPU cycles of client

devices into an active gear of the social platform, saving cloud resources to the server

when the connected clients can perform those tasks.

In order to achieve a SaW system some issues must be addressed, such as turning

a Web client into a runtime application framework. The gap between native applica-

tions and Web-apps is shrinking by empowered Web engines. Moreover, Web stack can

deploy a communication layer to distribute background analysis tasks. The remain-

ing aspect is to manage a volume of spontaneous workers, tracking the status of the

tasks, while dealing with the uncertainty of resource availability and heterogeneous

processing capabilities.

First, the current device ecosystem is highly heterogeneous, with different operat-

ing systems and programming languages, resulting in complex software cross-platform

development. In this context, SaW proposes a pure Web-based approach since Web

technologies overcome the interoperability barriers. HTML5 is continuously empower-

ing the browser turning the Web into a real application platform middleware able to
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access hardware resources of the appliances through JavaScript [Anttonen et al.11]. Ad-

ditionally, HTML5 introduced a number of features to enable offline Web applications,

such the application cache and local storage. Compared to other mobile cross-platform

native development frameworks such as Xamarin [Xamarin17], Web Apps based on

Web-stack are bridging the gap between a typical mobile Web experience and a ded-

icated custom app on any device. At the same time, they inherit same-origin and

permission security policies of the browser. In terms of development and updates, one

codebase can serve many platforms, as long as it does responsive design, while they

are versionless and backwards compatible. This means saving on developments costs.

Going further, the frameworks to develop hybrid applications built with Web technolo-

gies and packaged as native apps, such as PhoneGap [PhoneGap17] or Apache Cordova

[Foundation17a] could benefit from the SaW solution, running specific native features

where HTML5 is not able yet. Anyway, most social media services do not need specific

features unavailable from the browser.

Second, in order to exploit native GPU and multi-CPU potential of a device, WebGL

and WebCL bindings to OpenGL and OpenCL run hardware-accelerated, parallel and

cross-platform programs. So, they endow Web applications with parallel computing ca-

pabilities, accelerating Web applications for intensive image processing [Jeon et al.12].

Then, Ajax (Asynchronous JavaScript and XML) [Garrett et al.05] and Websockets

[Fette and Melnikov11] are employed as a vehicle for establishing and maintaining

mainstream communication between server and clients, transforming the classical syn-

chronous request-response model into a full bidirectional one. This feature enables

the server to send asynchronously updates to the client-side browser and to deliver

background data.

Finally, the possibility to perform image processing tasks in parallel, such as fea-

ture extraction, segmentation, clustering and classification, eases to leap scalability.

Due to the video stream nature, composed by individual frames, they can be easily split

into independent tasks ready to be distributed. Beyond, the intrinsic presence of key

frames in video coding, makes easier navigation and selection of representative images.

Servers can dispatch the tasks to users’ devices where they are run in the background.

These background Web browser applications must balance the mechanism to leverage

all available computing resources while provide the best possible user experience.
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Thus, the validation of the approach can be explained in terms of the net benefit ob-

tained in the server by delegating part of the tasks. The equation includes two relevant

keys, which are based on certain parameters that are dependent on the technological

state-of-the-art and the users’ social media consumption habits: (1) the amount of work

that can be distributed to the client devices, which depends on the number of available

clients, their capabilities, and the fraction of resources they can dedicate to background

tasks without disturbing the user experience, and (2) the extra work created in the server

to manage the task scheduling, which should be residual.

As a summary, this paper presents SaW, a pure Web-based, interoperable distributed

solution, which is deployed on top of the user appliances of a social media community,

including the hardware-accelerated features for suitable devices. Thereby, the service

provider leverages the huge processing ability of the social community. This allows the

service provider to perform independent background hardware-accelerated image pro-

cessing tasks, which are embedded to the different social media services accessed by the

users. Operational thresholds where this approach is able to compete with traditional

computing alternatives need to be defined. In order to do so, existing and validated cost

models for parallel computing are shaped to the parameters of the SaW design, such as

heterogeneity of devices or their sporadic availability.

3.2.1.1 Contributions

In this work, we introduce the concept of Mobile as an Infrastructure Provider (MaaIP),

aimed to extend the resources of a cloud service by using mobile clients as a grid

complement.

The MaaIP concept is demonstrated through the design of SaW, a system for the

analysis of video content collection in media driven social services. In this context,

cost-efficiency benefits can be found for SaW since the following favourable conditions

are met: the service provider needs to perform a large volume of atomic tasks and there

is a crowd of potentially under-exploited devices with a continuous session.

The work presented in this paper extends a previous evaluation model to include

GPU usage. Finally, we provide a proof-of-concept implementation of SaW using WebGL

and WebCL technologies.
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3.2.1.2 Paper structure

This paper starts with the related work in Section 3.2.2, exploring the different Internet-

based computing models and analysing their existing mechanisms for the interoper-

ability, task distribution, support for parallel processing and different data structures.

Section 3.2.3 presents the main contribution of the paper with the definition of the

SaW concept. It describes the contributions of SaW to the aforementioned related

work, presents a suitable scenario for SaW on a social media service, defines the design

objectives of the SaW architecture, and presents a pure Web-based architectural design.

It follows with the evaluation of the SaW approach in Section 3.2.4. Subsection

3.2.4.1 describes the experimental results in terms of scalability over a proof-of-concept

implementation of SaW using WebGL and WebCL, subsection 3.2.4.2 presents a perfor-

mance analysis, extending the already published model in [Zorrilla et al.13] in terms

of GPU, and in subsection 3.2.4.3 some remarks regarding the validation of the SaW

hypothesis are presented. Finally, Section 3.2.5 presents the conclusions.

3.2.2 Related work

This section presents the related work, providing a definition of the Internet-based com-

puting models and focusing on the different topics addressed by distributed computing:

the interoperability, the task distribution managing, the parallel processing capabilities

and the different data structures.

3.2.2.1 Computing Models

This section describes the main involved concepts in terms of Internet-based comput-

ing, where shared resources, data and information are provided to computers to reach a

common goal.

Grid Computing

Grid Computing [Foster et al.01] has been an important paradigm in distributed

systems for the last two decades. Basically, a grid is a network system where com-

puting tasks are distributed to use non-dedicated computing resources, which may

include servers or client computers. The high potential of the nowadays abun-

dant and frequently idle client hardware boosts the opportunistic and delay-tolerant

[Conti and Kumar10] use of client resources in the grid. In this volunteer computing
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SETI@home is the most popular example. SETI@home [of California99] approach has

been the pioneer of big data grid infrastructures taking benefit of Internet-connected

computers of volunteers. SETI@home has spread the collaborative network model to

other unselfish research in areas such as astronomy, climate, astrophysics, mathemat-

ics, genetics, molecular biology and cryptography where volunteers and donors share

the computing time from personal devices.

Mobile Grid Computing

Grid Computing is characterised by the heterogeneity of the resources in both

amount and nature, by the sporadic availability, churn and unreliability of the devices,

and by their anonymity and lack of trust. These issues are more relevant in Mobile

Grid Computing (MGC) [Ahuja and Myers06], where computing resources include mo-

bile devices with wireless communications, and therefore prone to disconnections and

other eventualities.

Cloud Computing

More recently, Cloud Computing [Armbrust et al.10], a new paradigm of distributed

computing where virtualised computing resources are provided on-demand, has expe-

rienced a dramatic growth. Nowadays the cloud is a cost-saving opportunity for many

enterprises [Liu13] and many cloud vendors [Williams et al.13]. Amazon is a popular

cloud service provider with solutions like Amazon Simple Storage Service S3 and the

Elastic Cloud Computing EC2 as an interface to them. Eucalyptus [Nurmi et al.09] is an

open source cloud implementation on top of Amazon EC2.

Being not tied to a specific hardware model, Cloud Computing enables an improved

time-to-market for services achieving: a reduced infrastructure deployment time thanks

to an increased service availability and reliability; rapid creation of additional service

instances; and cloud interoperability, which lets professionals deploy a service on mul-

tiple clouds. Thus, cloud computing provides theoretically unlimited scalability and

optimised service performance.

Since the costs of cloud solutions are a key factor, new models are required to fit

better with specific applications, infrastructure environments and business contexts.

These new models are classified in three, according to the different virtualisation lay-

ers: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). An example of how client devices can be integrated into cloud services is
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STACEE [Neumann et al.11], which proposes a peer-to-peer (P2P) cloud storage where

different devices can contribute with storage to the cloud.

Mobile Cloud Computing

In Mobile Cloud Computing (MCC) [Huang et al.13] computing resources include

mobile devices as clients of the virtualised services, usually following the classical client-

server asymmetric model, which involves a one way communication direction produced

by requests from mobile clients to cloud services. MCC addresses the resource scarcity

problem of mobile devices by offloading computation and/or data from mobile de-

vices into the cloud, such as in [Zhang et al.17], which provides an energy-efficient

offloading in mobile cloud for video-based applications. In the converging progress

of mobile computing and cloud computing, the cloudlet is an important complement

to the client-cloud hierarchy [Pang et al.15]. Since the main purpose of cloudlets is to

enable resource-intensive and interactive mobile applications by providing powerful

computing resources to mobile devices with lower latency, it can be considered as an

extension of cloud computing infrastructure. This vision is sustained by the limited

resources on mobile devices. Nevertheless symmetric MCC models have been also pro-

posed [Neumann et al.11], where a crowd of mobile devices populate a cloud offloading

the tasks to be performed by the service infrastructure. This pushes a user-centric strat-

egy to MCC solution shifting to new models: Mobile as a Service Consumer (MaaSC),

Mobile as a Service Provider (MaaSP), and Mobile as a Service Broker (MaaSB).

MaaSC model is inherited from the traditional client-server design where mobile

devices are mere service consumers. Here, mobile devices outsource their computa-

tion and storage functions onto the cloud. MaaSP switches the role of the device from a

service consumer to a service provider. Last but not least, MaaSB can be considered as

an extension of MaaSP, where the device gateways other handhelds or sensing nodes.

Moreover, the proxy mobile device can also provide security and privacy protections to

the data.

MaaSC is the most common MCC service model. Most of the MaaSC solutions, such

as CloneCloud, MAUI, ThinkAir, Dropbox, GoogleDrive provide computation task of-

floading service for mobile devices, keeping the mobile device thin. However, with the

recent advances, the features of handheld device are getting closer to regular laptops

catalysing new opportunities for MaaSP deployments, like in STACEE.
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3.2.2.2 Interoperability

The interoperability in heterogeneous networks implies two abstraction levels. On the

one hand, it requires the deployment of solutions over specific architectures and oper-

ating systems. On the other hand, it also requires the provision of interfaces for remote

operation and orchestration over a distributed system.

Despite the wide support of SETI@home, HTCondor or Eucaliptus to different ar-

chitectures and operating systems, including GNU/Linux, Windows and some of the

Mac OS platforms, the main drawbacks of these solutions lay on the heterogeneous

computing on a variety of modern CPUs, GPUs, DSPs, and other microprocessor de-

signs. The trend towards heterogeneous computing and highly parallel architectures

has created a strong need for software development infrastructure in the form of parallel

programming languages and subroutine libraries supporting heterogeneous comput-

ing on hardware platforms produced by multiple vendors [Stone et al.10]. In response

to this completely new landscape, OpenCL [Khronos12] is a new industry standard

adopted by Intel, AMD, Nvidia, Altera, Samsung, Qualcomm and ARM holdings.

Service interoperability between different cloud providers requires standard in-

terfaces and formats for managing virtual appliances. Nowadays, due to the lack

of standard way for cloud managing, each provider publishes its own APIs. In

order to establish a universal connection, some proposals have been released

[Moreno-Vozmediano et al.13]:

• OCCI [OGF17] defines a protocol and API specification for remotely managing of

cloud computing infrastructures,

• CIMI [DMTF17] targets to set an interface and a logical model for managing

resources within a cloud, and

• CDMI [SNIA17] establishes an interface for manipulating data elements from the

cloud.

OpenNebula [Project17] and Eucalyptus have made important contributions in the

deployment of interoperable cloud platforms. OpenNebula implements the OCCI and

CDMI specifications to enable interoperability among heterogeneous cloud platforms,

whereas Eucalyptus incorporates different well-known interfaces using Amazon Web

Services (AWS) [Amazon17] as a de facto standard.
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The rapidly increasing use of the Web as a software platform [Anttonen et al.11] with

truly interactive applications is boosted by emerging standards such as HTML5 and

WebGL that are removing limitations, and transforming the Web into a real application

platform middleware to address the interoperability problem. HTML5 applications can

be packed for the different execution environments providing interoperability with mi-

nor changes through independent OSs. That is why HTML5 is being strongly promoted

by the standardisation bodies and a sector of the market to achieve a HTML5 market-

place instead of the available proprietary ones, such as Android Market, iOS App Store,

etc. All the previously described technologies put aside new breakthroughs that turn

the Web into a real interoperable application framework over the heterogeneous mobile

platforms.

In this line, the ComputePool component of the Nebula cloud provides computa-

tion resources through a set of volunteer compute nodes [Chandra et al.13]. Compute

nodes within a ComputePool are scheduled by a ComputePool master that coordinates

their execution. The task is executed on a compute node inside a Google Chrome Web

browser-based native client sandbox. Thus it provides a secure way to access local user

device computational resources inheriting Web security policies to avoid compromising

users’ local data.

3.2.2.3 Task Distribution

In our application area, social media analysis, the batch processing to be executed can

be easily split into independent tasks ready to be distributed. This way, servers can

dispatch the work to different processing nodes.

Focusing on generic purpose massively collaborative computation with Web tech-

nologies, MapReduce [Catak and Balaban13] has a noticeable position. It has been

employed by Google to generate its search engine’s index of the World Wide Web. In

[Lin et al.10] another solution is proposed to overcome server-side task dispatching

over a set of nodes, based on open source Apache Hadoop [Foundation05] frameworks.

The work proposed in [De Francisci Morales et al.11] highlights the ubiquitous nature

of the image matching problems analysing some image processing algorithms specifi-

cally implemented for MapReduce technology. Another image processing projects hold

by this technology are: HIPI [of Virginia Computer Graphics Lab12] [Sweeney et al.11]
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that provides an API for performing image processing tasks in a distributed comput-

ing environment; and many more [Gum12] [Kalooga12]. Current research goes further

aggregating client-side nodes to work together with the server ones. In this direction,

JSMapReduce [Langhans et al.13] is an implementation of MapReduce which exploits

the computing power available in the computers of the users of a Web platform by giv-

ing tasks to the JavaScript engines of any Web browser. JSMapReduce provides simple

and unique frontend for Web developers that only have to focus in JavaScript code.

MapReduce defines a programming model for processing large data sets with a par-

allel, distributed algorithm on a cluster. An alternative to transform the Web browser

into a distributed computer middleware [Cushing et al.13] can be also created on top of

Node.js [Tilkov and Vinoski10]. It provides more freedom to meet new requirements, to

keep full code control and to ease third parties integration.

Nebula [Chandra et al.13], which uses volunteer edge resources for both compu-

tation and data storage, assigns tasks based on application-specific computation

requirements and data location. Nebula also implements numerous services and opti-

misations to address these challenges, including location-aware data and computation

placement, replication, and recovery. Nebula considers network bandwidth along with

resources computation capabilities in the volunteer platform. Consequently, resource

management decisions optimise computation time as well as data movement costs. In

particular, computational resources can be selected based on their locality and prox-

imity to the input data, whereas data might be staged closer to efficient computational

resources. In addition, Nebula implements replication and task re-execution to provide

fault tolerance.

Finally, concerning who launches the requests for task distributions, two approaches

are possible: a push model where the service delegates a set of tasks over a set of avail-

able resources, and a pull model where idle computing nodes request for new jobs to be

performed.

3.2.2.4 Parallel Processing

The definition of smaller tasks could bring finer granularity easing efficient process-

ing strategies based on parallel execution in some scenarios. Hence, independent job
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scheduling can produce significantly better performance. Here, the social media na-

ture brings some computational benefits. First, media can be easily decomposed in

independent frames or clips. Second, the possibility to perform tasks in parallel of the

multimedia processing algorithms such as segmentation, clustering and classification

eases to leap the scalability dimension. Third, the multimedia processing work fits with

continuous advances on parallel processing of multimedia data over GPU architectures.

With the emerging hardware acceleration technologies to exploit GPU and multi-

core architectures, the parallel programming languages and the hardware comput-

ing platforms are getting closer. The most representative languages that aim to

enable dramatic increases in computing performance by harnessing the power of

the GPU are [Yang et al.11]: CUDA [Nvidia07] for NVIDIA devices provides a gen-

eral purpose scalable parallel programming model for writing highly parallel algo-

rithms; OpenMP [OpenMP13] has established a method and language extension for

programming shared-memory parallel computers. OpenMP, combined with MPI

[Mathematics and Science96] specification for message passing operations, is currently

the de-facto standard for developing high-performance computing applications on

distributed memory architecture. The underlying mechanism consists of partitioning

loop iterations according to the performance weighting of multi-core nodes in a cluster.

Another mainstream options are pthreads, Cilk, Ct/RapidMind/ArBB, TBB and Boost

threads [Jarp et al.12]. These solutions remove barriers by providing abstraction layers

for thread block managing, shared memory handling and synchronisation scaling.

MaaSP solutions must meet heterogeneity of browser ecosystem (Chrome, Firefox,

Opera, Safari, Edge, IE). The SaW system targets all of them being able to exploit un-

derlying hardware. The cross-entry point is bridged by WebGL and WebCL. In essence,

WebGL allows communication between JavaScript applications and the OpenGL soft-

ware libraries, which access the host’s graphics processor. Thereby, it enables use of

the hardware’s full capabilities not only to perform advanced 3D objects and effects

rendering but also for general purpose algorithms, such as image processing. WebCL

is designed to enable Web applications with high performance and general purpose

parallel processing on multi-core/many-core platforms with heterogeneous processing

elements. It provides ease of development, application portability, platform indepen-

dence, and efficient access through a standards-compliant solution [Jeon et al.12]. Thus,

WebGL excels in graphics applications while WebCL fares better when more flexibility is
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required in execution platform selection, load balancing, data formats, control flow, or

memory access patterns [Aho et al.12].

An implementation example is CrowdCL [MacWilliam and Cecka13]. It presents an

open source framework for volunteer computing with OpenCL applications on the Web.

3.2.2.5 Data Structures

The scale and diversity of big data problems has inspired many innovations in recent

years. Different alternatives to Relational Database Management Systems (RDBMS)

have emerged to fit different big data applications.

Not only Structured Query Language (NoSQL) systems, are rapidly gaining popu-

larity and market traction overcoming limitations of relational databases [Tan et al.13].

The NoSQL databases were designed to offer high performance, in terms of speed

and size, with a trade-off of full ACID (Atomic, Consistent, Isolated, Durable) features

[Han et al.11]. These storing systems include commercial solutions such as Amazon

DynamoDB, Google BigTable, and Yahoo PNUTS, as well as open source ones such as:

Cassandra, used by Twitter, Facebook and some other corporations; HBase, as part of

the Hadoop project; and MongoDB. All of them focus on scalability and elasticity on

commodity hardware. Such platforms are particularly attractive for applications that

perform relatively simple operations (create, read, update, and delete). They combine

low-latency features with scaling capabilities to large sizes querying engine schedules

and optimizing its execution.

NoSQL data stores offer various forms of data structures such as document, graph,

row-column, and key-value pair enabling programmers to model the data closer to the

format as used in their application.

3.2.3 SaW: Social at Work

Influenced by the underlying concepts and technologies, SaW system deploys an op-

portunistic and delay-tolerant distributed computing platform queuing media analysis

tasks over a set of trusted devices. As said before, cloud services imply a cost-saving

opportunity to service providers, but depending the requirements of the service, it

could still be highly demanding. This kind of services usually have a huge pool of users

56



3. ELASTIC CLOUD OF TAGGING RESOURCES

permanently connected to it. Moreover, second screen and multi-device media experi-

ences are becoming very popular [NAPTE14] [Nielsen14b] [Nielsen14a]. In the social

media scenarios considered in this paper, users access them usually from mobile de-

vices, which have increasing processing capabilities that are usually under-exploited.

This pushes service providers to go deeper in the cost-saving opportunity using the mo-

biles as an infrastructure, replacing partially cloud resources. Regarding the computing

model, SaW extends the cloud computing Infrastructure as a Service (IaaS) concept to

the MCC paradigm, coining a new term of Mobile as an Infrastructure Provider (MaaIP)

working together with a cloud service. MaaIP uses client mobiles as a grid infrastructure

that allows to extend the cloud resources and complement the cloud service. In SaW,

requests match a two-way communication pattern, since servers request clients to hire

resources from mobile devices while clients access the main service. However, the dif-

ferent scenarios to be performed on top of the SaW system do not require a symmetric

model.

To address the heterogeneity of infrastructure, and sharing Nebula design, SaW sys-

tem does not require to download or install any software in the client-side thanks to

a fully Web-browser based execution stack. SaW goes beyond Nebula’s ComputeTool

performance by emphasising the Web stack that foster hardware-accelerated parallel

programming for GPU and multi-CPU over the Web browser.

Regarding task distribution, in order to address the design objectives of elasticity,

performance and security, SaW server-side schedules the queued tasks meeting compu-

tation requirements and processing availability of the client devices. This asynchronous

execution model ensures control to avoid duplicities for a same task, but it does not

provide support for intertask communication. Moreover, to exploit parallel processing

capabilities in client devices, SaW brings hardware-accelerated performance through

the JavaScript engine, WebGL and WebCL, leveraging full GPU and multi-CPU potential.

Finally, related to the data structures, SaW takes advantage of the document-oriented

NoSQL technologies for media repositories fitting into one-to-many relationships of a

social service.

3.2.3.1 SaW Use Case

Service providers aim to engage audience, eager for contents, by boosting the media

relevance. Therefore, it is necessary to improve the matching of user interests with
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the huge content database, and reveal hidden connections between items through a

deeper tagging. In other words, the service is enhanced by improving the media content

indexing.

The target scenario of SaW is a Web-based social media content service, such as

YouTube [Youtube17] or Vimeo [Vimeo17]. This target scenario brings beneficial fea-

tures to the SaW system. First, this scenario provides a continuous communication

channel, since users are typically consuming video content for some minutes without

interruption, with an active application that provides the content through an adequate

bandwidth. Users are aware that media-driven services are bandwidth demanding

so they will try to select a high speed network or an appropriate coverage of mobile

network. On second place, even though the intrinsic bandwidth requirements of the

foreground service, the SaW approach introduces a residual bandwidth overhead com-

paring with the video itself. SaW will add an extra frame with a processing code to the

connection, but it will be residual comparing to the data volume of a progressive down-

load or streaming of a video. On third place, users do not usually perform any other task

on the device while consuming video content. This often ends to an under-exploited

device with still spare computing resources when compared with more demanding

applications [Chen et al.13] [Zhang et al.17].

In the SaW context, video streaming services, the background computation is not

significant when compared to the foreground service in terms of computing resources

devoted to video stream networking, decoding and visualization [Zhang et al.16]. More-

over, from the energy consumption perspective, the background computation on

smartphones reveals negligible compared to the energy consumption of displays in

multimedia applications [Chen et al.13].

Finally, the use of an additional screen (e.g., a smartphone) accessing related content

while consuming the mainstream video on a first screen (e.g., a TV set) [Zorrilla et al.15a]

boosts a very favourable scenario for the SaW approach, since a single user provides

multiple devices at the same time connected to a single service that could end to more

exploitable resources.

3.2.3.2 SaW Design Objectives

SaW targets a MaaIP model where a mobile device provides a computing component

within a cloud resource system. This concept holds a key driving force moving the pro-
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visioning of processing core assets to harvesting huge amounts of available devices.

Nevertheless, MaaIP, as an extension of MaaSP and Mobile Grid Computing, opens

some challenges such as elasticity, performance, security and privacy, that are design

objectives for the SaW architecture proposed in this article.

Elasticity

In terms of service elasticity, it is mandatory to gain cloud ability to automatically

scale services and infrastructures for cost reduction when infrastructure and platform

sizes are adapted to service demands. This needs of rapid and dynamic provisioning

mechanisms to provide efficient service virtualisation. This factor is even more critical

in SaW, when mobiles devices come into action as an available infrastructure which is

unstable, sporadic, and with specific features such as limited battery autonomy. This

means dealing with uncertainty of the resource availability managed by a notification

mechanism providing presence awareness and performance information. This aspect

turns task independence into a major condition. SaW assures elasticity through Per-

formance Evaluation and Performance Filtering modules (see Section 3.2.3.3). These

modules profile the capabilities of the client devices in terms of CPU and GPU, but

also regarding other features such as the level of battery. This profile is captured by the

elasticity parameter, as described in Section 3.2.4.2.

Performance

In big data a residual inefficiency is multiplied by the dataset dimension with severe

impact on the global system. This means that scheduling and dispatching mecha-

nisms must be implemented to orchestrate all the elements keeping efficiency for data

transmission overhead related to work delivery. Furthermore, it is important to match

processing needs with device capabilities and minimise re-execution of uncompleted

tasks. Thus, the Web client must perform a benchmarking test in order to assess the

processing capabilities and the hardware assets disposal of the user’s device. Section

3.2.4.2 presents a performance modeling that demonstrates the cost-saving of the MaaIP

approach.

Security and Privacy keys

Security and privacy are major concerns for cloud infrastructures even when data

is hosted on a corporative data center. However, it turns into a severe issue once the

data leaves the corporative firewall. The media managed in social networks consists

of images, audio and video elements shared with friends. Such information is highly
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privacy-sensitive, and malicious attackers may access a target user’s obtaining private

information. Additional issues comes when dealing with security and privacy of the

node provider, the owner of the device. However, to meet both dimensions, content and

device owner, a combination of policies should be applied over the data transmission

and storage.

SaW takes into consideration the security aspects regarding confidentiality and in-

tegrity. Those are assured by the well-known standard mechanisms of authentication,

authorisation, encryption and auditory. As mentioned above, in SaW a client has to

commit the hiring of its device resources in order to access the social media service.

Thus, reciprocity conditions concerning privacy and security should be observed by the

registered client and the server.

It is mandatory to verify social identity of the computation node to check its rights

and permissions. The use of a centralised mechanism eases handling frequent user

access privilege updates (such as invitation or revocation of access rights) in large dy-

namic systems like social networks. For this purpose, SaW considers three types of

media scopes with different set up implications: public, widening the media analysis

to any available device; shared with friends, limiting the trusted area to the devices

inside the social acquaintance circle; private sharing, constrained to a specific list of

computing nodes from the cloud to manipulate data.

Once the trustworthy handshake has been done, the data must be encrypted to

prevent man-in-the-middle attacks. SaW deploys a temporal token based solution to

limit access permissions and encrypts the data flows, with TLS protocols, for the Web

communication layer.

Concerning the security threats, a push design lets SaW to prevent search over the

database and DoS attacks. Note that in a pull model, an attacker, a malicious compu-

tation node, could get a promiscuous mode by notifying a permanent idle status to

retrieve a set of processing tasks and associated data (crawling for later search) or to

capture all the queued tasks (turning the uniformly distributed dispatching manage-

ment into a burst one for a DoS attack). To prevent this behavior, in the push model of

SaW, the cloud broker employs the queue of batch jobs to delegate them. This way, it

is difficult for the nodes to search a specific data or claim a particular task. Moreover,

server authentication could be addressed using a Synchronised Token Pattern (CSRF

Token) that prevents against Cross-Site Request Forgery (CSFR) attacks [Barth et al.08].
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Concerning the potential security threats introduced by WebGL and WebCL, the

Khronos Working Group is continuously addressing raised issues [Khronos17] and

adopted by the browsers continuously.

3.2.3.3 SaW Architecture

The deployed SaW solution works over a client-server architecture (see Figure 3.1). It im-

proves the architecture presented on [Zorrilla et al.13] towards a hardware accelerated

approach, considering all the new aspects introduced by usage of GPU resources within

SaW concept. On the server-side there is a SaW Scalable Cloud Server (SSCS) which

manages server resources in order to provide a consistent, scalable and a single service

front-end to the clients. It deals with balancing the load through the different available

servers. The SaW client-side is completely Web browser oriented. Hence, emerging

technologies such as HTML5, JavaScript, WebGL or WebCL play a crucial role by provid-

ing interoperability to cope with hardware and software heterogeneity. Algorithms 1

and 2 provide an example of SaW with the client device benchmarking process and the

SSCS workflow respectively.

SaW Scalable
Cloud Server

(SSCS)

Mobile as an Infrastructure Provider (MaaIP)

Figure 3.1: General SaW system architecture diagram

SSCS executes two concurrent tasks in Algorithm 2. First, by EnrollThread, SSCS

continuously performs a recruitment loop which orders the new devices connected

to the social media service to self-assess their performance scores. Thus, SSCS enrolls

the devices in the appropriate queue based on the reported type following Algorithm 1,

which is executed in client devices remotely and provides, as an outcome, a normalised
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device type i according to the classification in Table 3.2. Second, by TaskDistribution,

SSCS matches the queued image processing tasks to suitable devices in terms of work-

load and elasticity factors. To this end, the image size and algorithm complexity are

considered. This decision program of SSCS is shown in Algorithm 2.

Algorithm 1 Device benchmark example

procedure BENCHMARK(di d ) . assessed at each device
Input: di d . device ID from social media session

b̂d . estimated bandwidth for device
F̂cd . estimated CPU processing capability
F̂g d . estimated GPU processing capability
i ← getDeviceType(b̂d , F̂cd , F̂g d )
report i . send normalised device type to the SSCS following the classi-

fication in Table 3.2

All the computing and data transmission overhead in the client-side cannot affect

the experience of the consumed content. Hence, on a first step, the SaW system has to

create a device capabilities profile. To this end, the server adds in the first response to

the client a benchmarking test in order to assess the processing capabilities and hard-

ware assets of the client device (Benchmark function from Algorithm 2). The score is

sent to the SSCS task distribution manager, which decides the complexity of the back-

ground image analysis tasks that fit into that client following the global task distribution

strategies.

On a second step, once the SSCS has set specific tasks to be run on a suitable client

device, a data transfer is initiated from the server with the image frame and the image

processing JavaScript script or scripts (Dispatch function from Algorithm 2). These are

classified by complexity and invoke different technologies such as WebGL or WebCL to

exploit the GPU and/or multi-core assets of the device. The client applies the scripts

over the images as a background process, avoiding any user experience damage through

elasticity factor considerations. The computed results are sent back to the SSCS and it

harvests, formats and stores all the incoming image computing outcome to be mined

later by the service provider. While a user is enjoying a social service similar to YouTube

or Vimeo, SaW allows the service to deliver independent image analysis tasks queued

to the different clients until each session finishes. In case the server does not receive a

result in an elapsed maximum time from a specific client (waitTTL call from Algorithm
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Algorithm 2 SSCS workflow example

procedure ENROLLTHREAD( ) . SSCS recruitment loop
Data: qD .N queues by type of available devices

for each newSession di d do . new connection
i ← Benchmark(di d ) . get type from the device
queue(qDi , di d ) . queue device based on type

function TRANSFER(Σ j ,Ωk , di d , i ) . send task to a device of type i
Input: Σ j . image to be processed
Input: Ωk . programmed image processing algorithm
Input: di d . device ID from social media session
Input: i . normalised device type
Data: qDi . queue with available devices of type i

deliverTask (Σ j ,Ωk ) to di d . deliver task to resource
waitTTL(i ) .wait estimated TTL for device type i
if error then

return error_msg . error

if timeout then
dequeue(qDi , di d ) . remove unresponsive device
return error_msg . timeout

return ok . ok

function TASKDISTRIBUTION(Ωk ) . Tasks dispatching loop
Input: Ωk . programmed image processing algorithm
Data: qΣ . images queue
Data: qD .N queues with available devices based on type

while !empty(qΣ) do .more images in the queue qΣ
Σ j ← dequeue(qΣ) . next image to be processed
z ← getTargetDevice(Σ j ,Ωk ) . target device type under elasticity

factors
for i = N to z do . start from more powerful devices N, stop at

target devices z
if !empty(qDi ) then

di d ← dequeue(qDi )
Transfer(Σ j ,Ωk , di d , i ) . assign task to resource
if !ok then

queue(qΣ, Σ j ) . re-queue image

return completed . completed

procedure MAINLOOP( ) . SSCS main loop
EnrollThread() . recruitment loop
while !empty(qΩ) do .more algorithms in the queue qΩ

Ωk ← dequeue(qΩ) . next batch processing
TaskDistribution(Ωk ) . tasks dispatching loop
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2), it considers that device is not available anymore and queues it to another one. Fig-

ure 3.2 depicts a more detailed client-server SaW architecture and the communication

between them.

Communication Layer

Main   
Service

Performance 
Evaluation
Manager

Data Transference Manager

JS Injection Manager
GPU

Processing
Libraries

Image Processing 
Manager

CLIENT WEB
BROWSER

CPU
Processing
Libraries

Communication Layer

Data Transference Manager

Performance 
Filtering
Manager

Task Distribution Manager

Data Manager
Image 

Processing 
Scripts

Images

SaW Scalable Cloud 
Server (SSCS)

Processing 
Results

Figure 3.2: SaW Client-server block diagram and its communication

Client Web Browser SaW Architecture

The SaW approach is designed to run the client-side application over a standard

Web browser composed by the following modules (see Figure 3.2):

Main Service: This is the main social media application of the service provider

and gates what the user wants to consume. Note that a client using the Main Service

has committed to join SaW by allowing service providers to gain idle resources in the

user’s device to add background activities while preserving a good Quality of Experience

(QoE).

Communication Layer: This module enables the communication between the

client and the server with widely supported Web communication protocols: Websocket

and AJAX. The WebSocket Protocol enables two-way communication between a client

and the server. Here the security model used is origin-based that is widely used by Web

browsers. The protocol consists of an opening handshake followed by basic message

framing, layered over TCP. The goal of this technology is to provide a mechanism for

browser-based services that need two-way communication with servers that does not

rely on opening multiple HTTP connections [Fette and Melnikov11]. Even if the imple-

mentation of the WebSocket protocol is widely implemented and on the roadmap of all

the Web browsers, nowadays there are some restrictions to use Websockets over some
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devices, such as mobiles. Anyway, a less efficient polling approach with Ajax is a feasible

alternative to WebSocket. Ajax is a group of interrelated Web development techniques

used on the client-side to create asynchronous Web applications. With Ajax, Web appli-

cations can send data to, and retrieve data from, a server asynchronously keeping visual

fluidity and behavior of the foreground Web application [Garrett et al.05].

Performance Evaluation Manager: This module launches a performance test at the

beginning of the application runtime in order to profile the capabilities of the device in

terms of CPU, GPU, and the available bandwidth (see Algorithm 1). Then, according

to the benchmark results, a normalised device type estimation is sent to the SSCS and

it settles the complexity threshold for image processing that this device can deal with

considering all the discovered aspects. This evaluation test is not repeated during an

active session but it could be performed again to tune the background tasks to a new

context, specially if the main service is very changeable from a processing requirement

perspective.

Data Transference Manager: This module works hand in hand with the Commu-

nication Layer, dealing with the data transference between the client and the SSCS.

HTML5 Web Storage facilities are used to create and maintain the incoming data. On

the one hand, the client receives a new image for each image processing task and one

or various scripts to be applied for that image. These are stored locally and once the

processing is over, this module fits the format of the results to transfer them to the SSCS.

It is important to highlight that SaW runs entirely in the memory of a Web browser.

JS Injection Manager: It takes charge of handling the scripts received from the

server. This module injects and deletes the scripts on runtime without interfering on

the user experience and prepares them to execute the background tasks in an optimal

way. It also manages the libraries to be used on each case to take advantage of the GPU

and CPU resources of an appliance depending the performance ranking. This module

will have available some CPU Processing Libraries oriented to exploit CPU resources en-

abling multi-core tasks through WebCL, and some GPU Processing Libraries in order to

foster hardware acceleration by the GPU of the client device using WebGL and WebCL

technologies.

Image Processing Manager: This core layer provides the Web application an API to

perform the management of the image processing scripts on the client side. It runs im-
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age analysis tasks in the background on top of the JS Injection Manager and using the

CPU and GPU processing libraries.

SaW Scalable Cloud Server Architecture

The SSCS has different modules to manage all the SaW service infrastructure on the

server side. These elements are presented on Figure 3.2 and briefly explained below:

Communication Layer: It manages the communication between the SSCS and the

client. With the same functionality mentioned in the client side, this module is deployed

on top of WebSocket and AJAX protocols.

Data Transference Manager: It is supported by the Communication Layer and it is

the responsible for exchanging the data with the client (e.g. the images and the scripts

for each processing task).

Task Distribution Manager: This block has the global view of the SSCS to categorise

and dispatch all the image analysis tasks that the service provider wants to perform

through the client device community. It splits and queues the processing jobs by con-

necting an image with some specific scripts and estimating the complexity of each

computing work. It collaborates with the Performance Filtering Manager module and

requests and exchanges data with the Data Manager module.

Data Manager: This block manages all the data involved in the SSCS interrelated

from different data-bases containing the Images to be processed, the Image Processing

Scripts (some of them to be run over CPU architectures and others over GPU ones), and

the Processing Results obtained by the clients.

Performance Filtering Manager: This element receives the performance assess-

ment from the clients and analyses the capabilities of the devices to inform the Task

Distribution Manager module, who assigns a specific task to that device gaining specific

hardware (GPU or CPU) acceleration according to its assets disposal (see Algorithm 2).

3.2.4 Evaluation

In this Section a proof-of-concept implementation of SaW architecture is described,

providing experimental evaluation results and an analysis of the performance based on

a previous model. The evaluation is focused in two different aspects:

• The scalability of the SaW approach, with a specific comparison between the

involved Web technologies: WebGL and WebCL.
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• The performance behaviour of the system when considering different types of

client devices, according to the target SaW scenarios. This includes a model of the

computational cost that considers CPU, GPU and communication resources, as

well as some performance figures obtained for different scenarios with realistic

combination of device types.

3.2.4.1 WebGL and WebCL scalability comparison

This subsection presents the experimental results of using WebGL and WebCL technolo-

gies in order to explore the scalability of current Web browsers to exploit GPU resources.

A proof-of-concept implementation of the SaW testbed has been developed to distribute

a queue of 100 tasks over a different number of clients with identical capabilities. Using

homogeneous devices enables to measure the scalability without loss of generality. The

heterogeneity of the devices is addressed in next subsection.

For that purpose, a SSCS implementation has been built with a combination of

Node.js and MongoDB to obtain a low latency server and to be able to deal with high

concurrency requests. Both technologies provide event-driven systems that enables

a non-blocking I/O model that makes it lightweight and efficient in high concurrency

environments with a NoSQL data structure. Three different instances of the server have

been deployed in order to avoid bottlenecks and provide sufficient resources for the

different clients.

In the client side, according to the proposed architectural design, our implemen-

tation works over Web standards to cover a wide set of devices and follows a modular

design. These modules enable a real-time communication with the server and are able

to inject JavaScript libraries in runtime for the background tasks.

As clients, we used a different number of identical PCs with the following capabili-

ties: Windows 8.1 Intel(R) Core(TM) i5-3330 CPU @ 3.00GHz with Intel(R) HD Graphics

2500. To test WebGL, Firefox 42.0 Web browser has been used, that enables WebGL by

default [CanIUse17]. Currently, there is no native support for WebCL in Web browsers.

Thus, an experimental extension [NokiaResearch17] has been used on top of a portable

Firefox 22.0 Web browser.

The server creates a queue of 100 tasks with an image and an associated algorithm

for each image. The sever dispatches the tasks to the available clients. Since all the
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clients have the same capabilities, the tasks are homogeneously distributed through all

of them.

The performed algorithm computes the DITEC method (Trace transform based

method for color image domain identification) [Olaizola et al.14] by means of algebraic

operations such as matrix dot products that can be highly parallelised at different states

(per frame, per angle during the Radon Transform operation, etc.).

We have evaluated two different SaW implementations with the aforementioned

workload, the first one using WebGL and the second one using WebCL. In the performed

experiments the workload has been distributed among a number of workers going from

1 to 20. The same queue of tasks has been also performed on a single PC with the same

capabilities using OpenGL and OpenCL instead of doing it from the Web browser. The

results obtained are shown in Table 3.1.

Comparing the values described in Table 3.1, obtained over the same PCs, of us-

ing a local server with OpenGL and OpenCL, with a single worker in the distributed

approach with WebGL and WebCL respectively, it can be said that the local approach

obtains better results. The reasons are mainly two: (1) the latency introduced by the

delivery time of the image, the script and the results between the SSCS and the client in

the distributed approach, and (2) the performance gap of the bindings of WebGL and

WebCL to exploit the hardware resources in comparison with OpenGL and OpenCL.

From the obtained values in Table 3.1 regarding the distributed approach with dif-

ferent number of clients, it can be inferred that (1) the speedup is very high for both

implementations, which denotes that the parallelisable fraction of the workload is very

big, as expected for the described SaW use case; (2) WebCL implementation performs

better than WebGL, and (3) the speedup obtained for the WebCL version is not as high

as the one obtained for WebGL.

Using Amdahl’s Law [Amdahl67] we have calculated the parallelisable fractions of

the workload for both WebGL and WebCL versions, which have resulted 98.87% and

94.36% respectively. To obtain these values, we have excluded the measures obtained

with one single worker, since it does not reflect the task scheduling effects of managing

different workers and consolidating the results. As shown in Figure 3.3, Amdahl’s Law

interpolates real measures with reasonable fidelity for the range [2, 20] of workers. Ac-

cordingly, we have used this approximations to predict results for 50 and 100 workers
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Table 3.1: Computational cost in terms of time for the same workload for a local sever
(OpenGL & OpenCL) and for a number of distributed workers from 1 to 20 (WebGL &
WebCL)

LOCAL SERVER
Number of Computational time Computational time

workers in ms with OpenGL in ms with OpenCL
1 132,570 61,780

DISTRIBUTED APPROACH
Number of Computational time Computational time

workers in ms with WebGL in ms with WebCL
1 275,295 111,300
2 161,820 73,765
5 63,260 34,290

10 34,476 19,740
20 17,825 11,120

(see Figure 3.3). As appreciated in the Figure, WebCL would outperform WebGL until

near 100 workers.

3.2.4.2 Performance Modeling with heterogeneous devices

In this subsection we present a performance evaluation model of the SaW approach

based on the model published in [Zorrilla et al.13] taking into account different type of

devices. More specifically, here we take into consideration both CPU and GPU resources,

while in [Zorrilla et al.13] only CPU resources were contemplated.

The performance of SaW can be analysed by following the Bulk Synchronous Par-

allel (BSP) model [Valiant90]. The BSP model is a generalisation of the classical PRAM

model [Fortune and Wyllie78] for shared memory.

As presented in [Zorrilla et al.13], we will consider 3 different kind of devices as pro-

cessing units for the distributed approach: smartphones, tablets and PCs. Table 3.2

shows different connectivity and processing power values for each one of the device

types based on market surveys [TomsHardware11] [LegitReviews12]. The table includes

information about a server in order to give a comparative estimation of the computa-

tional cost. According to market surveys [Analytics17], 50% of the PCs and 30% of tablets

have a GPU available, while it decreases until 10% in the case of the smartphones.

Equation 3.1 extends the Equation 6 of [Zorrilla et al.13], which considers the total

computational cost (CT ) as the time to perform a workload unit distributing it across all

the different type of devices in parallel.
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Figure 3.3: Computational cost in terms of time for a different number of workers in terms
of processing units in the distributed approach for WebGL and WebCL. The real measured
values, presented in table 3.1, are shown for a range of workers from 1 to 20, while predicted
values, following Amdahl’s Law, are shown for a range of workers from 1 to 100.

Table 3.2: Estimated processing and communication properties for different type of devices
(i )

ID Device Connect. Bandwidth
b̂i

CPU
GFlops
F̂ci

GPU
GFlops
F̂g i

(m) Mobile
phone

UMTS 3Mbit/s 0.05 0.2

(t) Tablet Wifi 8Mbit/s 0.08 0.32
(p) PC DSL 20Mbit/s 2.5 10
(s) Server SATA 6Gbit/s ps x82.8 –

CT =
(

n∑
i=1

1

Cci
+

n∑
i=1

1

Cg i

)−1

(3.1)

The equation divides the partial computation time cost for each type of device to

perform their part of the workload (Ci ) in two:

• Cci : the partial computation time cost for each type of device that only have CPU

processing capabilities to perform their part of workload.
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• Cg i : the partial computation time cost for each type of device that have GPU and

CPU processing capabilities to perform their part of the workload.

• n: the number of different type of devices. Note that according to the informa-

tion of Table 3.2, n will be 3 since the table defines three type of devices for the

distributed approach: smartphones, tablets and PCs.

Equations 3.2 and 3.3 represent Cci and Cg i respectively, extending the equation 7

of [Zorrilla et al.13] and assuming sufficient resources in the server side,

Cci = Wi

fpci · F̂ci ·pci
+ gi

fbi · b̂i ·pt i
+m̂ ·pci (3.2)

Cg i = Wi

fpg i · F̂g i ·pg i + fpci · F̂ci ·pci
+ gi

fbi · b̂i ·pt i
+m̂ ·pg i (3.3)

where:

• Wi is the computational workload in terms of the computation time assigned for

device type i , to be distributed among all the different available processing units

of device type i .

• gi is the communication workload in terms of number of bytes of information to

be transmitted from the server to the devices of type i .

• m̂ is the estimated cost in terms of computation time to establish a new task to a

processing unit and its management.

• b̂i is the average estimated bandwidth for device type i (see Table 3.2).

• F̂ci , F̂g i are the average estimated processing capability in terms of CPU, GPU

flops, respectively, for device type i (see Table 3.2).

• pci is the number of different processing units of device type i with only CPU

capability.
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• pg i is the number of different processing units of device type i with both GPU

and CPU capabilities. Note that following the assumption that all the devices with

GPU capability will also have CPU capabilities, in Equation 3.3 pci and pg i will be

the same number of processing units.

• pt i is the number of messages exchanged between the processing units of type i

and the server.

• fbi is the elasticity factor introduced to determine the percentage of the band-

width to be used from the available bandwidth for device type i .

• fpci , fpg i are the elasticity factor introduced to determine the percentage of the

CPU, GPU, respectively, to be used from the available HW resources of device type

i .

As presented in [Zorrilla et al.13], the same model can be used for a multi-core server

approach in order to give a comparative estimation with the distributed approach. Equa-

tion 3.4 shows the cost of a multi-core server in terms of time (Cs) with ps processing

units sharing a single memory:

Cs = W

fps · F̂s ·ps
+ g

fbs · b̂s
ps

+m̂ ·ps (3.4)

In order to compare a distributed computing approach with a dedicated local server,

different CT and Cs have been calculated applying the aforementioned model. The elas-

ticity factor has been set to 0.15 both for bandwidth ( fb) and for CPU processing power

( fpc ) for the background activities of the distributed approach. However, the elasticity

factor for GPU processing has been set to 0.3 for mobiles and tablets ( fpg m and fpg t ),

and 0.5 for PCs ( fpg p ), since using the GPU will have a lower impact on the user experi-

ence than adding background tasks to the CPU. Finally, we considered that the local

server is exclusively dedicated to these tasks ( fps= fbs=1).

Figure 3.4 shows the performance behaviour for operational values of model param-

eters. A lineal increment of processing units is compared for specific values of W , g and

m̂. In order to understand the graph that serves to compare the cost for heterogeneous

population of computing assets, it is important to highlight that the maximum number
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of computing units for each device type is different, providing a collection of hetero-

geneous devices with all the curves inside the same picture. This collection deals with

the heterogeneity of the device types from the performance capacity perspective, and

focuses on the full distributed cost model with all the parameters coming into play. For

example, Figure 3.4 shows that all device types have the same cost at 80% of the com-

puting nodes, but this cost is given by 14400 mobiles with CPU, while the same cost is

obtained with 1600 mobiles with GPU and CPU available.
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Figure 3.4: Computational cost estimation for different volumes of device types for a con-
stant work load (W ) communication cost (g ) and task management cost (m̂: m̂di str i buted

for the client devices and m̂ser ver for the server). The table presents the load balance be-
tween the different devices in the distributed approach to have the same computational
cost at 80% of the X axis.
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As it can be observed in Figure 3.4, while the total distributed cost decreases for

more devices, the local server starts to increase after reaching a minimum with 58 work-

ers. This reflects that the data communication bus on the server side is a bottleneck

while, in the distributed solution, the servers should theoretically have enough band-

width to provide the required bandwidth for each device. This trend becomes more

evident as the communication cost (g ) increases. This, and other parameters from the

cost model, can be simulated and evaluated by the reader using the following numerical

computation program [Zorrilla17] with Octave [Eaton17].

From the cost model, the efficient management of all the created tasks becomes

a critical factor as well when m̂ is increased. The distributed approach has to man-

age thousands of devices while the local server goes from 1 to 100 workers so the

management cost has a bigger impact in the SaW-based distributed solution.

In the case the global workload (W ) increases, maintaining the same communi-

cation cost, a bigger gap between the number of workers in the local server and the

volume of devices in the distributed approach is needed to push the distributed solution

performance ahead. To sum up, with a enough size of user’s devices partially dedicated

to social service improvement it is possible for a SaW system to lead traditional server

based performance. Moreover, the elasticity factor, which has been set in a conserva-

tive way, can be increased considerably in many scenarios without damaging the user

experience.

3.2.4.3 Remarks

In this section some remarks are reflected regarding the validation of the SaW hypoth-

esis that has been introduced in Section 3.2.1. Recall first that the SaW approach is

oriented to complement a cloud server, and not intended to beat it in computational

performance. In this regard, the delay-tolerant nature of the tasks to be distributed to

the clients, such as in a video tagging scenario, plays in favour of the SaW approach.

As an example, consider a task that will require a time t to be executed in the server,

and, upon the results obtained in Section 3.2.4.1, assume for the workload a parallelis-

able fraction of about 99%. This means that the server has to spend about 1% of t for

the distribution overhead, represented for the third term in Equations 3.2 and 3.3. In
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other words, the server would be able to manage the distribution of about 100 of these

tasks in the computational time of t .

Continuing with the same example, assume now that the server is dedicated exclu-

sively to task distribution, and that the SaW ecosystem is composed only of smartphones

with about 1/50 of the processing power of the server according to Table 3.2. Note also

that to preserve QoE, the smartphones will work with an elasticity factor, say it 0.15 to

be conservative, which leads to a processing capability for each smartphone of 3/1000

of the server power capacity. For a set of 100 smartphones, the server will take a pro-

cessing time of t to distribute the queue of 100 tasks, and will obtain all the results back

in a time lapse of hundreds of t from the smartphones. This concludes that the server

consumes only resources for time t , equivalent to perform a single task, and will asyn-

chronously obtain the results for 100 tasks instead. However, the time period will be of

hundreds of t .

Nevertheless, note that the example above reflects a worst-case scenario, according

to the current use cases and user habits already mentioned. In a more realistic scenario,

like the ones presented in the former subsection, the SaW approach would elastically

distribute the workload among the different devices according their features (such as

smartphones, tablets and PCs with CPU and/or GPU processing capabilities).

To summarise, the exchange of “time-for-resources” or, from the service provider

perspective, “time-for-money” explained through the above example is in the core of

the SaW approach, since delay-tolerance and elasticity provides sufficient freedom de-

grees in usual scenarios. Finally, the technological evolution also plays in favour of the

approach. The performance gap between the different type of devices has been contin-

uously reduced in the past and still continues. Besides, improvements in the bindings

of Web browsers to support WebGL and WebCL can also be expected, which will result

in a more efficient use of the hardware resources.

3.2.5 Conclusions

In this paper we have introduced the concept of Social at Work, SaW, which aims to

complement a Web-based social media service with all the idle devices, mostly mobiles,

that usually have underexploited resources while accessing the service. SaW proposes a

Mobile as an Infrastructure Provider (MaaIP) model, creating a system related to Mobile
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Grid Computing concept with the available CPU and GPU resources of the different

client devices, to complement a virtualised cloud server providing the social media

service.

Aimed to achieve enhanced and automatic media tagging over social media datasets,

SaW fosters background dispatching of media analysis over connected clients, provid-

ing a high elasticity and dealing with the availability of the resources related to the

spontaneous presence of users. Then, SaW copes with hardware-accelerated image pro-

cessing tasks execution in background, according to the capabilities of each device. The

computing tasks are embedded in the foreground social content without draining the

users’ bandwidth or affecting to the perceived Quality of Experience. In harmony with

the presented scenario, delay-tolerant background tasks enable the SaW approach to

exchange “time-for-resources” or “time-for-money”. This means that mobile devices,

instead of being as resource intensive as servers, can dedicate the sufficient time to per-

form the task, preserving the QoE according to their capabilities, and saving cloud costs

to service providers.

SaW deploys a powerful pure Web platform for video analysis by means of exploiting

high user availability density, and the explained capability to run scripts in background

threads of Web browsers. Therefore, the SaW concept targets a device community as a

processing grid removing the need for install client applications, adding a delivering

computing layer to the stack of the HTML5-based main service instead.

In order to evaluate the approach, we have developed a proof-of-concept imple-

mentation of SaW, including versions for existing WebGL and WebCL technologies.

Results of the experiments show the high speedup obtained by parallelisation, which

confirm the scalability of the approach exploiting GPU resources from Web browsers

with both WebGL and WebCL technologies. The scheduling elasticity in the server side

has been designed to take advantage from the delay-tolerant target scenarios, with a

heterogeneous community of client devices characterised by the assorted availability of

resources.

This paper has extended a previous performance model that was focused only in

CPU resources, to consider both CPU and GPU capabilities. The model allows to predict

the performance of a distributed system including diverse client devices, which have

been illustrated through a set of example configurations, in comparison with a local
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server solution. The maximum benefit is obtained for higher delay-tolerant computa-

tional load, with independent tasks able to be distributed to idle devices, being able to

compensate the task scheduling management and consolidation overload of the server.

The technological evolution, with a clear trend to reduce the performance gap between

laptops and mobile devices, as well as to improve the efficient exploitation of hardware

resources from a Web browser, favours the SaW approach.

As a summary, SaW deploys a social distributed computing infrastructure on top

of pure Web-based technologies, building a grid of resources to perform background

media analysis tasks leveraging hardware-acceleration for a social media service.
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CHAPTER

4
Client-side Bitrate Adaptation

4.1 Context

HAS solutions enables dynamic and efficient adaptation from media players to specific

display features and changeable connectivity performance, by publishing segments

with the different media that can be played. Thus, the players autonomously take the

real-time decisions to request a specific segment tied to a nominal bitrate according to

the connectivity performance to maximize the quality of the playback.

This client-driven approach, where control is distributed over the various clients

and each client strives to optimize its individual quality, has some issues that can dam-

age the QoE. The issues span initial buffering delay, temporal interruptions or pauses,

and visible video resolution switches during a video transmission. This QoE degrada-

tion is even tighter in dense client environments, when considering a cellular network,

the radio access network (RAN), a Wi-fi hotspot, and the network edge. Therefore, it

becomes complex to provide video services to several users competing independently

for the available bandwidth when trying to maximize the used bitrate.

Traffic shaping of HAS streams, when considering fairness, efficiency and quality,

can reduce the number of stalls and quality switches for clients sharing a bottleneck

link [Quinlan et al.15].
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A client-side bitrate adaptation mechanism must deal with dynamics from dense

client environments to coordinate QoE for dense client cells in 5G networks. To create

such a system, some aspects must be overcome. First, exploit client-side heuristics to

assess the available bandwidth accurately. Then, a mechanism for bitrate adaptation

without a priori knowledge is needed. Thus, the algorithm can be applied to any con-

tent and its response is fast, tracking sudden changes in network dynamics. Finally, it is

necessary to distribute radio resources fairly to get a steady, homogeneous and efficient

radio link utilization.

To meet this scenario, Section 4.2 describes a heuristic based bitrate decision al-

gorithm, called LAMB-DASH. Compared to literature alternatives the algorithm does

not require a priori knowledge, so it produces a fast response, valid for any kind of

incoming content characteristics or connectivity status. Furthermore, is based on a

lightweight processing model, based on measurements and estimations from a current

stream state. LAMB-DASH goals to improve the Quality Level (QL) chunk Mean Opinion

Score (c-MOS). This QoE model limits the quality evaluation to a set of objective met-

rics from the connection heuristics, such as quality switches, frequency and duration of

freezes. These parameters are the key metrics of HAS services.

To validate the results from LAMB-DASH, it has been implemented and deployed

in a real, not simulated, setup where several clients compete for the available network

resources.

4.2 LAMB-DASH: A DASH-HEVC adaptive streaming algo-

rithm in a sharing bandwidth environment for heteroge-

neous contents and dynamic connections in practice

• Title: LAMB-DASH: A DASH-HEVC adaptive streaming algorithm in a sharing

bandwidth environment for heterogeneous contents and dynamic connections

in practice

• Authors: Angel Martin, Roberto Viola, Josu Gorostegui, Mikel Zorrilla, Julian Flo-

rez and Jon Montalbán

• Journal: Journal Real-Time Image Processing

• Publisher: Springer
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• Year: 2017

• DOI: http://dx.doi.org/10.1007/s11554-017-0728-x

Abstract. HTTP Adaptive Streaming (HAS) offers media players the possibility to

dynamically select the most appropriate bitrate according to the connectivity perfor-

mance. A best effort strategy to take instant decisions could dramatically damage the

overall Quality of Experience (QoE) with re-buffering times and potential image freezes

along with quality fluctuations. This is more critical in environments where multiple

clients share the available bandwidth. Here clients compete for the best connectivity.

To address this issue we propose LAMB-DASH, an online algorithm that, based on the

historical probability of the playout session, improves the Quality Level (QL) chunk

Mean Opinion Score (c-MOS). LAMB-DASH is designed for heterogeneous contents

and changeable connectivity performance. It removes the need to access a probability

distribution to specific parameters and conditions in advance. This way, LAMB-DASH

focuses on the fast response and on the reduced computing overhead to provide a uni-

versal bitrate selection criteria. This paper validates the proposed solution in a real

environment which considers live and on-demand Dynamic Adaptive Streaming over

HTTP (DASH) and High Efficiency Video Coding (HEVC) services implemented on top

of Gstreamer clients.

Keywords: Adaptive Streaming, DASH, HEVC, QoE, dense client environments

4.2.1 Introduction

The combination of increasing video streaming users heavily dominating the traffic

over the Internet, the demanded high quality from the cutting edge displays of their

devices and the required support for mobility is driving the evolution of media ser-

vices. Fueled by improved cameras with stunning picture quality [Saad et al.15] and the

breakthroughs in display technology [Kathirgamanathan et al.15], the traffic for videos

delivered over the Internet will reach 80% of the total Internet traffic by the end of 2019,

according to the report issued by the world IT leader Cisco [Inc17b]. Meantime, reach-

ing heterogeneous devices gains relevance thanks to the growth of mobile devices as an

entry point to these services [Inc17a].

From an industry perspective, solutions for video distribution need to allow video

traffic to cross delivery networks and middleboxes without the need for a specific setup.
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Moreover, video streaming services must work on top of unmanaged delivery networks,

where quality is not guaranteed, on a best-effort basis [Sodagar11]. Furthermore, they

have to facilitate the development of new business models and personalized advertising

[Maillé and Schwartz16].

All the described requirements have led to the creation of new efficient video

streaming techniques over Hypertext Transmission Protocol (HTTP). HAS responds to

demands from multimedia services supporting heterogeneous display setups, differ-

ent user preferences and languages and changeable mobility situations with a Content

Delivery Network (CDN)-ready design. It benefits from the ubiquitous connectivity be-

cause practically any connected device supports HTTP. HAS is a pull-based protocol

[Begen et al.11] that easily traverses middleboxes, such as firewalls and NAT devices. At

the same time, it keeps minimal state information on the server side, making servers

more scalable than conventional push-based streaming servers. Last but not least,

concerning existing HTTP caching infrastructures, the protocol stack of HAS is not dif-

ferent compared with any other HTTP application. This allows distributed CDNs to

enhance the scalability of content distribution, where individual segment of any content

is cacheable as a regular Web object.

HAS solutions provide a manifest file detailing a playlist of segments with the differ-

ent media that can be played. The essence of this approach is the transformation of the

traditional push-mode to a pull-mode. This way, the service delegates the responsibility

of operating the service in a proper and efficient manner to the players. To this end, the

players autonomously take the real-time decisions to request a specific segment tied to

a nominal bitrate. The aim of the bitrate selection algorithm is to maximize the quality

of the playback.

This client-driven approach, where control is distributed over the various clients and

each client strives to optimize its individual quality, has some issues that can damage

the QoE. The issues span initial buffering delay, temporal interruptions or pauses, and

visible video resolution switches during a video transmission [Seufert et al.15]. This QoE

degradation is even tighter in dense client environments, when considering a cellular

network, the Radio Access Network (RAN), a Wi-Fi hotspot and the network edge. There,

it becomes complex to provide video services to several users competing independently

for the available bandwidth when trying to maximize the used bitrate.
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Rate control is a core tool for video coding. Most of existing rate control algorithms

are based on the bitrate (R) - quantization (Q) model [Wan et al.11], which characterizes

the relationship between R and Q. The Q parameter is the critical factor for rate control

as Q directly reflects on the resulting Quality. Moreover, the R - Q model is usually gov-

erned by the λ Lagrange multiplier to achieve the target bitrates accurately [Li et al.14a].

Likewise, our implemented LAMB-DASH algorithm deals with the selection of the

decoded bitrate online for DASH streams to improve the QoE.

In order to get higher QoE, this paper targets an adaptation algorithm embedded in

multiple players sharing a connection link which makes real-time bitrate decisions to

conduct a more efficient and fair video transmission. To this end, we propose a bit rate

decision algorithm to get a low-complexity adaptation mechanism that improves the

QL c-MOS by controlling the bitrate selection criteria of a player, based on the historical

probability of the playout session.

The novelty of LAMB-DASH lies, firstly within its flexibility to produce a fast re-

sponse, valid for any kind of incoming content characteristics or connectivity status,

meaning that the algorithm does not require a priori knowledge. Secondly, within its de-

sign, with a low-complexity heuristic model, based on measurements and estimations

from a current stream state. And lastly, within the implementation of the algorithm

and its deployment in a real, not simulated, setup in a scenario where several clients

compete for the available network resources.

The paper is structured as follows. First, section 4.2.2 contains a review of the related

work in terms of Adaptive Streaming over HTTP, the quality decision algorithms, the QoE

models and how LAMB-DASH goes beyond this. Then, in section 4.2.3, we introduce

LAMB-DASH, including the target scenario for this research work, problem statement

and the notation employed, the decision algorithm and the shortcuts adopted in order

to implement it in a practical manner. After describing our approach, we describe the

implementation using MPEG-DASH [Sodagar11] and HEVC formats [Sullivan et al.12]

in section 4.2.4. To assess the outcomes, section 4.2.5 on validation describes the set

of experiments carried out and the results achieved compared with the ones from the

literature. Finally, we present our conclusions in section 4.2.6.
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4.2.2 Related Work

4.2.2.1 Adaptive Streaming over HTTP

HAS imitates traditional streaming via short downloads using a HTTP client, which

downloads small video chunks. In an adaptive streaming system, the video content

is stored in the server by encoding it in several representations and splitting the re-

sulting streams into many temporal segments. The duration of the segments typically

ranges from 2 to 15 seconds depending on the latency constraints of the streaming ser-

vice. Each representation is characterized by a specific codec, language, resolution,

bandwidth, view and framerate.

The client requests segments in chronological order to restore the original content,

the chosen representation for each segment can vary in order to adapt the stream to

the capabilities of the connection and the player. The bitrate adaptation algorithm in-

side the client player allows the client to independently choose its playback quality and

prevents the need for intelligent components inside the network. The decision is condi-

tioned by the particular decision logic implemented in the client, since it can be based

on several adaptation algorithms. This mechanism is depicted in Figure 4.1.

Figure 4.1: Adaptive streaming optimization depending on network performance, device
features and user preferences.
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4.2.2.2 Bitrate decision algorithms

Streaming services have to rely on the experience that derives from the network sta-

bility, efficient utilization, and fairness. Recent research in adaptive streaming, such

as Low-Latency Prediction-Based Adaptation (Lolypop) by Miller et al. [Miller et al.16]

and Chiariotti et al. [Chiariotti et al.16], is focusing on the development of client-side

adaptation algorithms. To this end, the client monitors some key indicators in or-

der to perform the decision that better fits with the current state and maximizes the

playback quality. Key indicators are not unique, since many factors can be taken into

account; in this sense, according to the ones chosen, the algorithms are grouped into

connection-based and content-based.

Connection-based algorithms are focused on choosing the bitrate taking into ac-

count server-client connection status and the streaming session. Some common

indicators are connection bandwidth and latency. Algorithms in this category are Fair, Ef-

ficient, Stable, adaptIVE (Festive) [Jiang et al.14], Probe and Adapt (Panda) [Li et al.14b]

and Lolypop [Miller et al.16].

The aim of content-based algorithms is to characterize the content in order to adapt

the representation bitrate with the scene, i.e. a high-motion scene is more complex

than a static one, and then the representations can be improved by choosing a higher

level of representations. Typical values to process in this case are Peak Signal-to-Noise

Ratio (PSNR) or Structural Similarity (SSIM). The SSIM parameter is usually preferred

because the PSNR is a purely mathematical value, while SSIM tends to adapt to the

human perception of the image. Content-based algorithms are not as common as the

connection-based ones, an example of an SSIM based algorithm is provided by Chiar-

iotti et al. [Chiariotti et al.16]. Unfortunately, the existing research in content-based

selection of bitrate suffers from high implementation complexity and large overhead.

More complex solutions are being explored in order address both aspects, the status

of the connection-player and the feature of the video content. An attempt at integrat-

ing the knowledge of the quality into the Panda algorithm is explained by Zhi Li et al.

[Li et al.14c]. However, the issue related to heavy model processing persists.

Another way to classify the adaptation logic is to divide them according to the de-

cision rules of the algorithm. In this sense there are two categories, heuristic-based

and optimization-based. The algorithms that belong to the first group are more com-

mon in the literature and are based on direct measurements and decision rules based
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on the observations. The latter are based on mathematical modelling. Optimization-

based algorithms are more precise and potentially generate a higher quality playback

than the heuristic-based ones, but they require a big dataset and a long processing

time. Going deeper, non-exhaustive mathematical modelling in order to get reasonable

trade-off between learning speed and accuracy may even lead to suboptimal solu-

tions. In [Claeys et al.14b] it is compared with a simplified state characterization (to

gain efficiency) and more complete controllers (more complex and slower) of the repre-

sentation selection. It concludes that the modelling is usually not fully representative

in practice. Among the already cited algorithms, Panda is an example of a heuristic-

based solution, while the SSIM based algorithm by Chiariotti et al. [Chiariotti et al.16]

is optimization-based.

The bitrate decision gets more complex in the scenarios where several clients com-

pete for the available bandwidth and in which different video flows traverse the same

path in the network. This competition leads to instability in the bitrate decisions,

causing frequent oscillations among different bitrate representations, bandwidth under-

utilization and unfairness between players [Chen et al.16b]. Here, rate adaptation

heuristics, based on the current network conditions captured at the video player, are

the most appropriate parameters to dynamically request the appropriate bitrate repre-

sentation [Petrangeli et al.15]. This work continues evaluating the algorithm through

simulations, under highly variable bandwidth conditions and several multi-client sce-

narios.

4.2.2.3 QoE models

With regard to quality, QoE is adopted in order to address human perception. The com-

mon way to evaluate QoE consists of submitting the content to a highly diversified

audience and reporting their subjective evaluations on a precise evaluation scale. A

commonly used scale is the MOS which consists of five increasing levels of quality (from

1 to 5) [ITU]. The disadvantage of this type of testing is that it results in long evaluation

times. Subsequently, and for practical reasons, many objective models for MOS esti-

mation have been studied in order to profile the subjective human perception of the

quality.
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De Vriendt et al. [Vriendt et al.13] investigate the most common models in order to

verify the fit of each model. In particular the models shown are: bitrate model, PSNR

or SSIM based model, chunk-MOS based model and quality model. It concludes that

chunk-MOS model is the optimal one. From here onwards this paper uses this quality

model which is a particular configuration of the chunk quality model. Moreover, thanks

to the work of Claeys et al. [Claeys et al.14a] the required parameters are limited to a

number of objective metrics.

4.2.2.4 Overview and Outlook

Related work solves many of the problems in bitrate decision for improved QoE. Most

of the algorithms perform characterization of the content and the network condi-

tions resulting in tailored-specific models. The analysis of the performance is done

from experiments based on simulations which range from client decisions to net-

work profiling, while others just consider one HTTP client accessing the content

[Seufert et al.15, Miller et al.16, Chiariotti et al.16, Li et al.14c, Toni et al.15]. However,

in highly dynamic network scenarios arise some issues that are important to tackle. They

often need high computing overhead that does not fit with the constrained processing

capacities of the mobile devices and the required real-time response.

4.2.3 LAMB-DASH for adaptive streaming

4.2.3.1 Highly dynamic network scenario

LAMB-DASH is a client-driven approach, where control is distributed over the various

clients and each client strives to optimize its individual quality. This situation happens

in the provision of media services around a location where an event takes place, which

requires the network having to cope with a high peak in multimedia consumption (e.g.,

a sports event or a concert in a stadium, with users accessing video contents across the

network).

In HAS, a video is temporally split into segments which are encoded at different

quality rates. Therefore, it allows the clients to independently choose the playback qual-

ity, removing the need for intelligent components inside the network to manage the

session. The client can then autonomously decide, based on user preferences, display

features, the current buffer filling and network conditions, the quality representation to
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be requested. This way, control is distributed over the various clients. Thus, adaptive

streaming offers a fluent and uninterrupted user experience by means of client-based

switching decisions to get continuous viewing.

This autonomous optimization makes the connection conditions highly change-

able, especially when considering dense client environments such as a cellular network,

the RAN, a Wi-Fi hotspot and the network edge. Several clients or sessions for which

the video stream flows traverse the same path in the network therefore compete for

the available bandwidth. This competition leads to instability in bitrate selection al-

gorithms, causing oscillations among available quality representations, bandwidth

under-utilization and disproportional shares of available bandwidth between players

[Chen et al.16b].

This scenario, where different clients influence each other as they compete for

shared network resources, is more challenging for bitrate selection algorithms. Further-

more, this scenario offers a more realistic stochastic traffic environment, rather than

the synthetic background noise widely employed in many of the simulations carried out

in other research works [Seufert et al.15, Miller et al.16, Chiariotti et al.16, Li et al.14c,

Toni et al.15].

4.2.3.2 Adaptive Streaming model

First, we will introduce the notation used throughout the paper. We consider a video

content that is encoded at M representations bitrates and split into N segments of

fixed duration τ, such that the total duration is T = N*τ. The indexes i∈{0,1,...,N-1} and

j∈{0,1,...,M-1} identify a particular segment and a particular representation respectively.

Each representation j is associated to a particular bitrate R j .

According to the notation from Miller et al. [Miller et al.16], time related variables

are continuous with starting time t=0. tr
i , tc

i and tp
i denote request time for the segment

i, its downloaded time and its playback deadline respectively. Consequently, the playout

buffer level at time t, denoted β(t), is defined: β(t)=max(tp
i |tc

i ≤t)+τ-t. The buffer level

should always be positive, otherwise some frames are skipped and it causes a conse-

quent degradation of the playback quality. On the contrary, if the buffer level reaches the

buffer size, some frames are dropped because there is no more space for storing them.
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Figure 4.2: Illustration of notation used. Source: Lolypop by Miller et al. [Miller et al.16, Fig.
3.1].

The buffer size is denoted by B, then 0≤β(t)≤B ∀t∈[0,N*τ]. This notation is visually

represented in Figure 5.3.

The LAMB-DASH algorithm is based on heuristic rules selecting the bitrate by

addressing the current stream state:

• buffer level in seconds, β(t),

• available bandwidth in Mbps, denoted as ρ(t),

• and the frequency of the representation switches, Ω(t), which is defined as the

ratio between the number of switches to higher bitrates and the number of down-

loaded segments.

Due to the fact that numerous switches affect the QoE, a configuration parameter,

Ω∗, is used in order to limit the frequency switches, i.e. Ω(t)≤Ω∗ ∀t∈[0,N*τ].

The decision for the representation j of the next segment i is performed during its

request, then the values of all the above variables need to be known at request time tr
i .

The QoE is affected by two factors, the switching frequency and the skipped frames.

Therefore the probability of being downloaded before its deadline playback is evaluated

for each representation, Pi j . Thus, it is important to note that a configuration parame-

ter must be imposed in order to limit the probability of skipped segments, Σ∗, such that

each representation whose probability of being downloaded out of time is too high is

avoided.
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4.2.3.3 Online bitrate selection algorithm

The final outcome of LAMB-DASH is to improve the video quality by selecting the rep-

resentation bitrate that better fits with the status of the network and the player. The

inputs of the algorithm are the network bandwidth, the playout buffer level, the segment

duration and the configuration parameters Σ∗ and Ω∗. The output is the representa-

tion index of the next segment. The decision program of LAMB-DASH is described in

Algorithm 3.

Algorithm 3 LAMB-DASH algorithm

Σ∗,Ω∗, τ . configuration parameters
tr

i , tr
i−1 . current and previous request time

ρ(tr
i ) .measured bandwidth at request time

β(tr
i−1) . buffer level at previous request time

Ω(tr
i ) . current value of relative quality transitions

j∗−1 . representation of the last segment
if i = 0 then

β(tr
0) = 0

j∗ = max(j | R j < ρ(tr
0))

else
β(tr

i ) = β(tr
i−1) + τ - (tr

i + tr
i−1)

for j = 0 to N-1 do
Pi j = function(β(tr

i ), ρ(tr
i ), R j )

j1 = max(j | 1 - Pi j ≤ Σ∗)
if Ω(tr

i ) ≤Ω∗ then
j∗ = j1

else
j∗ = min(j∗−1,j1)

return j∗

The algorithm estimates the probabilities of each segment being correctly down-

loaded before its playback deadline. Since such probabilities are not available in the

initial phase, the first segment is selected by estimating the initial bandwidth while

downloading the Media Presentation Description (MPD) manifest. Here, the maximum

bitrate that fits with the gauged bandwidth is selected. The selection of the maximum

bitrate is an aggressive approach, but it helps to improve the overall perceived qual-

ity especially in cases of short duration video sequences, where a single segment has a

high impact. On the contrary, a potential negative feature of such a decision is to allow
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higher initial delay, because the client could need a higher buffering time in the initial

phase [Rainer and Timmerer14].

From the second segment on, the algorithm has a characterization of the network

bandwidth and it can evaluate the probabilities of correctly playing each representation.

A segment i is correctly playable at representation j if its download finishes earlier than

its playback deadline. The maximum admissible download time is equal to the buffer

level, then the minimum download bitrate consists of the ratio between the segment

size si j = R j *τ and the buffer level. Here, R j is the nominal bitrate of a representation j.

Therefore, the probability of being correctly played can be written as:

Pi j = P [tc
i -tr

i ≤β(tr
i )] = P

[R j ∗τ
β(tr

i )
≤ ρ̄i

]
(4.1)

The right expression is found by multiplying by R j *τ and dividing by β(ti r )*(tc
i -t r

i ).

The value ρ̄i =
R j∗τ
tc
i -tr

i
is the actual average bitrate that the client will experience when

downloading the segment i. However, this value is unknown until the download is com-

pleted. In order to solve this problem, the current measured value of the bitrate is used

as a prediction for the future value of the bitrate; this strategy of approximation is taken

from the alternatives explored in [Miller et al.16], as this results in a better performance.

A relative prediction error is estimated by:

εi = ρ̂i − ρ̄i

ρ̄i
(4.2)

where ρ̂i and ρ̄i represent the estimation and the real value of the average bitrate

respectively. We can find ρ̄i from the above equation and substitute it in the preceding

one.

Pi j = P
[R j ∗τ
β(t r

i )
≤ ρ̂i

1+εi

]
(4.3)

εi is still an unknown value, but it is characterized by sampling instant measure-

ments of bitrate and correlating the corresponding values of εi and their distribution.

The notation can be simplified by noting that εi only depends on the network which is a

stochastic environment, affected by the concurrent players competing for the available

bandwidth. It follows that it is independent from the segment, then we simply use ε

instead of εi .
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Before explaining how to evaluate ε, it is important to note that the LAMB-DASH

algorithm is based on estimating a Cumulative Distribution Function (CDF) of the rela-

tive error probability. This estimated CDF is achieved by means of two steps executed

along the playback:

1. Acquire available bitrate samples and evaluate the Empirical Cumulative Distri-

bution Function (ECDF) of the relative error probability ε.

2. Calculate the estimated CDF from the ECDF.

LAMB-DASH uses a heuristic approach, removing the need to perform a long pro-

cessing stage to find an optimal CDF, which fits with the measured values. Thus,

LAMB-DASH offers some design decisions from the implementation perspective:

• LAMB-DASH does not need a priori knowledge of the network condition.

• The evaluation of the ECDF is continuously executed using a few measurements

taken during the stream session, while downloading the segments instead of at

the start time. This way, no bandwidth overhead is introduced, since LAMB-DASH

takes measurements from the data received from the stream.

• It is not necessary to fit a known reference CDF for all the session, but rather a

piecewise linear approximation with a complexity O(n), which provides an es-

timated CDF from the ECDF. This design saves heavy processing from the L2

distance minimization in Lolypop, with a complexity O(n2) [Pardalos93].

• The ECDF and the estimated CDF are periodically updated, as updated measures

are loaded continuously. This mechanism makes the algorithm resilient to radical

environment changes.

• Instead of having a significant initial computational overhead, it introduces a low

computational overhead for the measurements during the stream session.

The differences across the CDF, ECDF and estimated CDF, are shown in the example

in Figure 4.3. The goal is to characterize an unknown CDF curve to choose the appro-

priate bitrate representation accordingly. The ECDF is a step function sampling the

92



4. CLIENT-SIDE BITRATE ADAPTATION

target CDF, which is assessed from samples of network performance measures. In or-

der to approximate the CDF from the ECDF, there are two options. First, that employed

by Lolypop, to minimize the distance of the ECDF curve to a set of known CDF curves.

Second, that implemented in LAMB-DASH, to make a piecewise linear approximation

of the ECDF. The ECDF is the function evaluated in the first step of both Lolypop and

LAMB-DASH. While the selected CDF is the function that Lolypop evaluates at starting

time and keeps unaltered during the session. This does not take part of the LAMB-DASH

algorithm, which employs an estimated CDF that is periodically evaluated and updated.

This approach makes LAMB-DASH able to provide a universal bitrate selection criteria

for heterogeneous contents and changeable connectivity performance with a reduced

computing overhead. This is achieved by means of removing the previous characteriza-

tion stage to optimize the model to specific network conditions and content features in

advance.

Figure 4.3: Example of CDF, ECDF (F̂ε(x)) and estimated CDF (Fε(x)).
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In order to explain the LAMB-DASH approach, it should be noted that the full range

of values for ε is [-1;+∞), therefore, two cases should be distinguished:

• a negative value for ε, i.e. ε∈[-1;0), means that the predicted bandwidth was an

underestimation;

• a positive value for ε, i.e. ε∈[0;+∞), means it was an overestimation.

Since they correspond to different situations, for each sub-range we construct a distri-

bution function. In the following explanation we consider the case of overestimated

values, in the same way as with the underestimation cases, by changing the measured

values with their modulus.

We consider executing U measurements, i.e. we have U samples, during which we

observe V distinct values for epsilon, ε0, ε1, ..., εV −1 which have respectively q0, q1, ...,

qV −1 occurrences. The sum of the occurrences is of course equal to U, the number

of samples, i.e.
∑V −1

n=0 qn =U . Then, for each εn we can define its probability: Pn = qn
U .

ECDF is then defined:

F̂ε(x) = 1

U

V −1∑
n=0

qn ∗1εn≤x =
V −1∑
n=0

Pn ∗1εn≤x (4.4)

where 1εn≤x is the unit step function which takes a value equal to one ∀n∈[0,V-

1]:εn≤x.

Using the ECDF in (4), LAMB-DASH then constructs the estimated CDF though a

piecewise linear approximation:

Fε(x) = P (ε≤ x) =

=
V −1∑
n=0

Pn ∗1εn≤x +Pk
x −εk−1

εk −εk−1

∣∣∣
k=min(m|εm>x)

(4.5)

By joining the expressions (4.3) and (4.5), we find that the probability of the segment

i being played without error at representation j is given by:
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Pi j = P
[R j ∗τ
β(t r

i )
≤ ρ̂i

1+ε
]
= P

[
ε≤ ρ̂i ∗β(t r

i )

R j ∗τ
−1

]
=

= F
( ρ̂i ∗β(t r

i )

R j ∗τ
−1

) (4.6)

4.2.4 Implementation

4.2.4.1 DASH/HEVC services

In order to verify the proposed algorithm, we have deployed it in an environment where

the adaptation logic in the clients will take action. To make the media content available

to the clients, we use an Apache Server serving MPEG-DASH manifest and segments

files (ISO / IEC 23009-1:2012). This way, they will be requested though HTTP GET.

In order to create the test sequences, we employ raw videos which are encoded

in HEVC format (ISO / IEC 23008-2:2015). They are multiplexed in ISO MPEG4 files

(ISO / IEC 14496-12 - MPEG-4 Part 12) and split into segments. The HEVC encod-

ing and parsing capacity is already provided by Gstreamer1 (x265enc and 265parse).

However, the current implementation (v1.12) does not support the configuration to

introduce periodic or on-demand key frames and header information, as required to

generate playable segments without inter-dependencies. Key frames are essential for

HAS segments because they do not refer to other frames, i.e. it is always possible to start

decoding from a key frame. In terms of header information, i.e. Sequence Parameter

Set (SPS) and Picture Parameter Set (PPS), some fields are mandatory for playing the

stream, as they provide basic parameters like the frame size. This way, the solution pro-

vided by Gstreamer only creates HAS contents to be played when starting from the first

segment, because it is the only one that contains a key frame and header information.

For the on-demand streaming mode, such limitation has no effect because the playback

has to start from the beginning. On the contrary, in live streaming mode, the stream

should start from the segment containing the current time. Thus, if the segment does

not contain a key frame and headers, it is not possible to play it. This issue has been

fixed by forcing the encoder to create a stream containing several key frames (at least

1Gstreamer website: https://gstreamer.freedesktop.org
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one at the beginning of each segment) and sending header information each time that

a key frame is encoded.

The encoded stream has to be multiplexed and split, but the official release of

Gstreamer does not provide such operations at the moment (v1.12). It is possible thanks

to the work of Thiago Santos who provides a multiplexer called mp4dashmux2 and a

file sink called dashsink3 (v1.5). Both plugins are published under LGPL license condi-

tions. The two plugins are highly related because they need to exchange information

with each other, in order to properly create a manifest and segments. In the original

release, they were not spanning all the possibilities considered in our experiments, and

then two main improvements have been required:

• Extend support for HEVC because they are only meant for H.264/AVC.

• Add support for live streaming mode templates, as it is only able to generate

on-demand streams.

Firstly, the encoded data is managed by mp4dashmux whose role is to recognize

key frames and header information, previously inserted in the stream, and to use

them to create consistent segments of a fixed duration. When the segment is ready,

mp4dashmux sends a key unit event to dashsink. Then, dashsink writes the segment in

the Apache server folder. Each time dashsink writes a segment, it returns a key unit event

to mp4dashmux asking for a new one. The last function to be performed by dashsink is

to recognize the content in the segments and periodically update the manifest.

On the client side, the main components for DASH playout are:

• The MPD parser, which receives and parses the XML-based media presentation

description (MPD).

• The segment handler, which requests the segments for the selected representa-

tion, based on the decisions taken by the adaptation logic, and downloads them

via an HTTP client.

2Git repository for mp4dashmux plugin: https://cgit.freedesktop.org/~thiagoss/

gst-plugins-good/?h=dashsink
3Git repository for dashsink plugin: https://cgit.freedesktop.org/~thiagoss/

gst-plugins-bad/?h=dashsink
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• The adaptation logic, which decides the media representation that shall be

selected for a given content, based on the network parameters, display char-

acteristics and user preferences, in order to maximize the QoE.

The proposed online algorithm has been implemented in a Gstreamer client. Co-

incidentally, Gstreamer does not provide support for MPEG-DASH playback because

there are no plugins that correctly parse on-demand and live manifests. Thiago San-

tos provides a plugin called dashdemux4 (v1.9), which parses the manifest, provided

by the source, and requests the segments for filling the buffer. The decision algorithm

has been implemented inside dashdemux. To this end, we introduced a measurement

process. This process runs in background and lets the algorithm discover the current

state of the available bandwidth. Then the algorithm evaluates the distribution of the

relative prediction error ε. Such measurement process is arranged to take samples every

200ms. This sampling ratio keeps the processing overhead low to avoid affecting the

playout experience of the client device. The algorithm has to decide the next bitrate

representation to immediately download a new segment, once the last downloaded

segment starts playing. The algorithm is executed in order to evaluate the probability

for each representation. Then, the algorithm chooses the bitrate representation that

suits the measured bandwidth, the buffer level and the configuration parameters Σ∗

and Ω∗, as already explained in Algorithm 3. Afterwards, in the dashdemux element,

the playout buffer of the pipeline gets more seconds to reflect the new stored segment.

As the segment is decoded and played, the buffer is drained by the following plugin in

the pipeline of the player.

4.2.4.2 QoE model

From the work of De Vriendt et al. [Vriendt et al.13], we express our results in terms of

MOS by means of this QL model. Our results are validated by following the conclusions

of Claeys et al. [Claeys et al.14a], with a QL model, and Mok et al. [Mok et al.11], lim-

iting the MOS evaluation to a set of objective metrics from the connection heuristics.

The employed set of objective metrics perfectly fits the HAS environment, including

4Git repository for dashdemux plugin: https://cgit.freedesktop.org/~thiagoss/

gst-plugins-bad/?h=dashsink
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quality switches, frequency and duration of freezes. The final equation, as seen in

[Claeys et al.14a, eq. (6)], is the following:

eMOS = max(5.67∗µ−6.72∗σ−4.95∗φ+0.17,0) (4.7)

In the equation, µ and σ are the normalized mean value and standard deviation

of the QL assigned to the representations, respectively. So, they are inherently related

to the quality switches. The values are calculated through the formulas presented in

[Claeys et al.14a]:

µ=
∑N

i=1
Qi
M

N
(4.8)

σ=
√∑N

i=1

(Qi
M −µ)2

N −1
(4.9)

N and M represent the number of segments and the representations; while Qi is the

QL chosen for the segment i.

φ is the value that takes into account freeze events, since it compiles both duration

and quantity, the resulting formula is presented in [Claeys et al.14a, eq. (5)]:

φ= 7∗max
( ln(F f r eq )

6 +1,0
)+ (min(Fav g ,15)

15

)
8

(4.10)

F f r eq and Fav g represent the frequency of freezes events and the average duration.

Work from [Claeys et al.14a] concludes that the operational range of the estimated

MOS is [0; 5.84], in contrast to the discrete scale from 1 to 5 of the theoretical MOS.

4.2.5 Validation

The total amount of time is set to 9 minutes and 50 seconds because it is the duration of

the chosen video test (Big Buck Bunny). Its raw version is provided by Xiph.Org Founda-

tion5. The chosen duration for each segment is fixed to 5 seconds, granting a balanced

live delay and window time for successful segment download trade-off.

5Xiph.Org Foundation Video Test Media website: http://media.xiph.org/video/derf
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The generated representations are useful for testing our algorithm on the client side.

The considered networks and devices are translated into six representations for the gen-

erated content6, as presented in Table 6.1. Here, the Group Of Pictures (GOP) size sets

the number of frames between key frames.

Table 4.1: Set of MPEG-DASH representations employed in the experiments.

profile bitrate resolution GOP size framerate

3G 420kbps 288P 72frames 15fps

HDSPA 1000kbps 360P 90frames 30fps

LTE 1400kbps 432P 90frames 30fps

LO-Wi-Fi 2000kbps 480P 90frames 30fps

MID-Wi-Fi 2600kbps 576P 90frames 30fps

HI-Wi-Fi 3400kbps 720P 90frames 30fps

The algorithm is tested by setting the internal parameters Σ∗ andΩ∗ to 0.5 and 0.1

respectively. This means an error probability of less than 50% and a switching rate of less

than 1
10 . Such values are chosen according to the results of Miller et al. [Miller et al.16],

where such configuration provides the higher representation bitrate among all the

different tests carried out.

The testbed is configured as in Figure 6.3. This way, the testbed can be easily setup

and the networking conditions better controlled, thus avoiding interferences from other

clients or networks typically present on cellular and Wi-Fi infrastructures. The down-

load bandwidth limitation of 25Mbps would theoretically produce bottlenecks when

10 players try to access to highest bitrate option (3.4Mbps) listed in Table to specific

network conditions and content features in advance.

In this environment, two different scenarios are presented:

• Scenario 1: the clients are synchronized to a common clock joining the live stream

at once. This means clients are concurrently sharing common resources, as they

are measuring the same available bandwidth value at once. This is shown on the

left-hand panel;

6Encoding.com guide for HLS services: https://www.encoding.com/http-live-streaming-hls
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Figure 4.4: The network topology of the testbed. Local indicates that the bitrate is effectively
unbounded and the link delay is 0 ms.

• Scenario 2: the clients are randomly joining the live stream. This means clients

are measuring different bandwidth values, since they do not download at the

same time, then they experience network bandwidth fluctuations. This is on the

right-hand panel.

In scenario 1, the clock employed is based on Network Time Protocol (NTP). The

clients employ the ability of Gstreamer to become synchronized to a NTP clock in order

to synchronize the bootstrapping of the playout. The clock is no longer synchronized to

follow the playback time afterwards.

Figure 4.5 and 5.6 show the behavior of the proposed algorithm executed on 10 com-

peting clients that are sharing a wired network with an available bandwidth limited to

25Mbps.

Under the described conditions, the available bandwidth graphs show that, in the

first scenario (Figure 4.5a), the clients tend to measure 2.5Mbps, which is the effective

amount of bandwidth per client. Few peaks rise over 5Mbps due to extra available band-

width when some clients are not accurately synchronized in their requests. In the second

scenario (Figure 4.5b), the measured values span a range from 2.5 to 25Mbps. This goes

from a fair utilization of the shared bandwidth to an unfair utilization, with players

taking the total amount of bandwidth of the channel, as simultaneity is stochastic.

The above observation becomes more evident when comparing the measured avail-

able bandwidths and the selected representation bitrates, in terms of average value

and deviation per client (Figure 4.5c and 4.5d). Again, it is clear, from the figures, that
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(a) (b)

(c) (d)

Figure 4.5: Ten clients sharing a 25Mbps down-link: scenario 1 for synchronous clients
startup on a and c plots, and scenario 2 for stochastic clients startup on b and d plots. Plots
a and b represent the available bandwidth over the execution time. Plots c and d com-
pare the mean value and deviation of available measured bandwidths and the selected
representation bitrates.
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(a) (b)

(c) (d)

Figure 4.6: Ten clients sharing a 25Mb/s down-link: scenario 1 for synchronous clients
startup on a and c plots, and scenario 2 for stochastic clients startup on b and d plots. Plots
a and b show the playout buffer lengths. Plots c and d display the selected representation
bitrates.
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the second scenario is more variable because higher values for deviation are present.

Moreover, in the first scenario (Figure 4.5c), clients tend to have an average selected

representation bitrate that is proportional to the measured one. Here, there is an offset

in favor of the measured one. On the contrary, the second scenario (Figure 4.5d) shows

that a variable measured bitrate provides a worse behavior, as the average value of the

selected representation bitrate does not follow the measured one.

Despite this different behavior, the curves of the playout buffer graphs (Figure 4.6a

and 4.6b) and the selected representation bitrate (Figure 5.6a and 5.6b) look similar. In

both scenarios the playout buffer level leans towards 5 seconds, which is the maximum

amount of data queued. In our tests the buffer size has been defined to accommodate

the duration of the segments. Therefore, sometimes the buffer level dramatically falls

down and affects the playback with freezes. Such events occur when clients demands a

bandwidth higher than the effective one. They switch to a representation with a higher

bitrate which needs a higher download time causing buffer emptying.

Table 4.2: Number of switches (SN b), number of freezes (FN b) and average freeze duration
(Fav g ) evaluated for each scenario and client.

Test 1 Test 2
SN b FN b Fav g [ms] SN b FN b Fav g [ms]

client 1 27 3 57.1 26 2 55.7
client 2 23 3 59.2 26 3 53.8
client 3 22 3 79.5 29 3 55.7
client 4 23 3 49.0 28 3 59.4
client 5 29 3 69.5 27 2 52.5
client 6 25 3 68.4 29 3 61.4
client 7 30 2 52.4 27 3 51.5
client 8 22 2 52.5 28 3 46.1
client 9 23 3 57.5 27 2 41.0

client 10 24 3 56.4 30 2 52.6

With regard to the representation bitrate graphs (Figure 5.6a and 5.6b), the two

scenarios encompass all the possible levels, as their choices span from the lowest repre-

sentation bitrate, 420kbps, to the highest one, 3.4Mbps. We observe that the selection is

effectively influenced by the estimated bandwidth and buffer level. In scenario 1, with a

more stable bandwidth experienced, the algorithm reacts to buffer empty in a conserva-

tive mode by switching to a representation with lower bitrate. The aim is to get buffer
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refill and avoid freezes. On the contrary, in scenario 2, with a stochastic measured band-

width, a high peak in the measured bandwidth drives the algorithm towards greedy

behavior. This means the algorithm switches to a higher bitrate in order to improve the

quality. Such adaptability, at buffer and bandwidth level, is brought about by the live

measurements allowing the algorithm to discover state changes. It means that the algo-

rithm can be exploited in heterogeneous environments by tuning the conservative and

greedy ratios using the internal parameters Σ∗ andΩ∗.

Coincidentally, Table 4.2 points out the stability of scenario 1, in terms of segment

quality switches, because the clients tend to change less than in scenario 2. The average

value in the first case is 24.8, while in the second it is 27.8 for a total duration of 118 seg-

ments. Again, the result is definitively reasonable due to a less variable measurement of

the available bandwidth.

Table 4.2 also shows the quantity and average duration of freezes. The behavior of

the two cases is similar in terms of switches, since all the clients experience no more

than 3 freezes with an average duration around 53ms.

Table 4.3: Average bitrate (Rav g ) and eMOS evaluated for each scenario and client.

Test 1 Test 2
Rav g [Mbps] eMOS Rav g [Mbps] eMOS

client 1 2.24 2.77 1.97 2.57
client 2 1.71 1.94 1.93 2.01
client 3 1.81 2.14 1.87 2.11
client 4 1.80 2.02 1.86 2.09
client 5 2.17 2.63 1.83 2.36
client 6 1.89 2.12 1.80 1.99
client 7 2.23 2.74 1.75 1.87
client 8 1.86 2.24 1.90 2.15
client 9 1.72 1.94 1.82 2.12

client 10 1.81 1.99 1.88 2.38

The numerical results of the quality evaluation are presented in Table 5.6. As already

explained, the evaluation has been done following the MOS model, because it gives us

a human-like evaluation. MOS is evaluated for each scenario and client according to

expression (7). In the scenario 1, the range for MOS spans from 1.94 (client 2) to 2.77

(client 1) with an average value of 2.25. While, in the scenario 2, MOS spans from 1.87

(client 7) to 2.57 (client 1) with an average value of 2.17. Such values correspond to a
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variation of +3.7%, +7.7% and +4.1% respectively for the minimum, maximum and av-

erage value in favor of the scenario 1. Therefore this means that a situation where the

bandwidth is equally distributed is favorable, since it provides the best overall quality.

In order to complete the evaluation, we also include the average bitrate in Table

5.6. We can observe from the resulting values how the algorithm is able to guarantee

fairness in representation bitrate among the clients. In scenario 1, the average bitrate

spans from 1.71 (client 2) to 2.24Mbps (client 1), then the difference is 0.53Mbps cor-

responding to +31% from the lowest to the highest. In scenario 2, the average bitrate

ranges from 1.75 (client 7) to 1.97Mbps (client 1). Here, the difference is 0.22Mbps corre-

sponding to +12.6%. So scenario 2 is not the best in terms of overall quality, but is fairer,

because the variation between the lowest and highest average bitrates is smaller than

scenario 1. The higher variability of the measured bandwidth during the playout time

and among the clients provides fairness in representation selection. This is because, in

scenario 2, the algorithm tends to under-utilize the network due to more frequent con-

flicts (Figure 4.5b) caused by erratic bandwidth assessment when autonomous clients

compete for the available bandwidth. This lower average bitrate makes the operational

range narrower.

Finally, it should be noted that scenario 1 represents a very singular case where the

quality is improved by simply synchronizing all the clients for the initial HTTP requests.

The strategy of employing a common clock for all the clients to constrain the discrete

times to perform the first request is simple and obtains an improvement in quality (4%)

and average bitrate (3.4%). This strategy results in a more accurate and stable character-

ization of the connectivity status (Figure 4.5a). The results of scenario 2 evaluate the

performance of the algorithm when this synchronization is not possible.

4.2.6 Conclusion and Future work

In this work, we have presented a bitrate adaptation algorithm, named LAMB-DASH,

whose aim is to maximize the video quality by means of a client-driven selection. LAMB-

DASH allows the client to take the network conditions during the bitrate adaptation

process into account, while still maintaining the ability to react to sudden bandwidth

fluctuations in the local network.
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LAMB-DASH is ahead of the existing solutions in two different aspects. First, it can

be universally applied to different content types and changeable networking conditions.

To this end, LAMB-DASH performs live assessment instead of preliminary processing

for network featuring. Second, when considering the computational overhead over

the video streaming playout, the required background computation is reduced when

compared to heavier and less flexible alternative computing and optimizing models.

The algorithm has been implemented and validated on top of a GStreamer client

and tested in a setup where multiple clients share the same path in the network there-

fore competing for the available bandwidth. Two different scenarios have been explored.

Scenario 1 runs clients synchronized to a common clock joining the live stream at once.

Scenario 2 arranges clients randomly joining the live stream. Here, they experience

stochastic network bandwidth fluctuations.

The results of on both scenarios show that the algorithm achieves fairness, since

the clients tend to the same representation bitrate. However, scenario 2 offers less qual-

ity that scenario 1, in which the average efficiency in terms of network utilization and

quality experienced is higher. In scenario 1, a synchronized connectivity status assess-

ment produces a more accurate and stable characterization. The strategy of employing

a common clock for all the clients, to constrain the discrete times to perform the first

request, is affordable and reliable with an out of band clock, maintaining the integrity

of the DASH protocol.

Future work to LAMB-DASH algorithm will provide dynamic solutions while down-

loading a segment, in case of detection of sudden changes of network conditions,

featuring a multi-pass reactive approach.
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CHAPTER

5
MEC for Fair QoE and Reliable

CDN

5.1 Context

The objective of the media services is to increase audience engagement and retention,

where the QoE plays a significant role. Thus, the goal of the network for media services

is to deliver a smooth and high-quality playback, with low video start times and high

bitrates while reducing buffering.

Agile networks based on SDN technologies lacks scalability, as the number of clients

and size of the infrastructure increase. Here, capillary Software-Defined Radio (SDR)

systems, where the entire radio function is running on a general-propose processor,

meet the scalability issues. Under this technology umbrella MEC is a foundational net-

work architecture concept integrated on the mobile network infrastructure bringing

new opportunities to improve the performance of HAS streams. MEC turns a base sta-

tion into a service catalyser, which dynamically improves network performance and

user experience for a specific service. Thus, a media service can exploit media delivery

analytics from the MEC components to measure the speed and availability of different

delivery paths over the Internet.
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A solution for fair QoE in dense client environments and reliable CDN provision

must take benefit of MEC position for exploiting edge video analytics in 5G networks.

To create such a system, some aspects must be overcome. First, capture RAN awareness

statistics. Then, a mechanism to control bitrate adaptation in a transparent manner

with zero latency is needed. Moreover, the mechanisms can be applied to steer the CDN

switching in response to performance degradation or provision outage. Finally, to check

that the system can be operated, it is necessary to integrate with a real SDR setup which

achieves a fair, steady and enforced QoE.

The solution described in Section 5.2 provides a novel solution based on a hybrid

MEC and client adaptation for fair and efficient media streaming delivery in a mobile

SDR network. The solution extends the role of the MEC component for QoE improve-

ment by means of media delivery optimization. Our approach empowers the MEC

with abilities to perform real-time updates in the manifest with the available qualities

and CDN endpoints. Hence, our RAN-aware mechanism is transparent to the service

provider and to media players enabling DRM/encryption support.

MEC system goals to improve the Quality Level (QL) chunk Mean Opinion Score

(c-MOS). The employed QoE model limits the quality evaluation to a set of objective met-

rics from the connection heuristics, such as quality switches, frequency and duration of

freezes. These parameters are the key metrics of HAS services.

To validate the results, the system has been integrated and validated into a real mo-

bile SDR network performed on a real setup, not simulated, checking the feasibility and

performance of an active component of the video delivery chain at the mobile edge.

This includes a real Long-Term Evolution (LTE) RAN infrastructure of an operational

Mobile Network stack, the radio base station (eNodeB) and the Evolved Packet Core

(EPC).

5.2 Hybrid MEC and Client Adaptation for Fair and Effi-

cient Media Streaming in SDR Mobile Networks

• Title: MEC for Fair, Reliable and Efficient Media Streaming in SDR Mobile Net-

works
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talbán

• Journal: IEEE Transactions on Network and Service Management

• Publisher: IEEE
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Abstract: Radio access links, shared by users in wireless and mobile access networks,

may turn into bottlenecks in cases of congestion, causing user experience to degrade.

HTTP Adaptive Streaming (HAS) technology offers media players the possibility to dy-

namically select the most appropriate bitrate according to the connectivity performance.

High dynamics of network performance in dense client cells can drive this client-driven

approach to continuous re-buffering time and potential image freezes along with qual-

ity fluctuations damaging the overall Quality of Experience (QoE). Efficient and fair

bandwidth utilization represents a core problem of current and future Packet Core and

Radio Access Network (RAN) infrastructures. To address this issue we propose a hybrid

Multi-access Edge Computing (MEC) and client-side quality adaptation mechanism.

The MEC system limits transparently and dynamically the highest available quality for

each player and the client-side mechanism governs individual player adaptation. This

hybrid approach is designed for changeable connectivity performance to enhance the

bitrate selection criteria of multiple clients sharing the available bandwidth in a com-

mon radio link. This paper presents a mechanism to improve the Quality Level (QL)

chunk Mean Opinion Score (c-MOS) in a dense client cell. Furthermore, our solution

is deployed and tested on top of a Software-defined Radio (SDR) 5G infrastructure. To

this end, live and on-demand Dynamic Adaptive Streaming over HTTP (MPEG-DASH)

streams are delivered, representing low-latency and ultra-broadband services. Results

show that the hybrid system makes the media players tend to a common and high

quality representation bitrate.

Keywords: content delivery network, fairness, multi-access edge computing, quality

of experience, radio access network, software-defined radio.

5.2.1 Introduction

The evolution of mobile communication is leading an overall process towards agile net-

working with higher performance to meet increasing traffic demands. The volume of
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video traffic over the Internet will reach 80% of the total Internet traffic by the end of

2019 [Inc17b]. Meantime, the growth of mobile devices as the entry point to services

[Inc17a] is prominent. The change of Internet traffic in this sense makes the capacity of

the networks even more critical to user experience.

Media services must be adapted differently to variations in radio network informa-

tion. HTTP Adaptive Streaming (HAS) meets those multimedia services demands by

supporting heterogeneous display setups, different user preferences and languages and

changeable mobility situations with a Content Delivery Networks (CDN) ready design

[Maillé and Schwartz16]. Moreover, HAS is a pull-based HTTP protocol [Begen et al.11]

that easily traverses middleboxes, such as firewalls and Network Address Translation

(NAT) devices. HAS enables players to switch dynamically between different media

qualities tracking the variations in the network conditions during the media playback.

Here, there is a trade-off between instantly offering the best video quality that will ex-

ploit the available connectivity resources, and minimizing quality fluctuations due to

the risk of upsetting the user experience.

This client-driven approach, where control is distributed over the various media

players and each one strives to optimize its individual quality, makes network edge

and the Radio Access Network (RAN) highly dynamic. This makes dense client cells

during live events (sport matches, concerts, etc) especially challenging. A media Con-

tent Provider (CP) will find it complex to ensure a level of quality to end-users that

are massively accessing through the same access point and competing for the avail-

able bandwidth independently [Akhshabi et al.12]. Here, some issues, such as, initial

buffering delay, temporal interruptions or pauses, and video resolution changes dur-

ing a video transmission can damage the Quality of Experience (QoE), which is highly

correlated to these features [Seufert et al.15].

Traffic shaping of HAS streams, when considering fairness, efficiency and quality,

can reduce the number of stalls and quality switches for clients sharing a bottleneck link

[Quinlan et al.15]. The telecommunication industry proposal is based on Multi-access

Edge Computing (MEC) [ETSI17a]. MEC is a network architecture concept integrated

on the mobile network infrastructure. MEC provides new opportunities to improve the

performance of HAS, by moving Information Technology (IT) and cloud computing

capabilities to the edge of the mobile network, closer to the user. Therefore, MEC can

boost the delivery of content and applications to end users in 4G and 5G contexts.
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Operators can expose their RAN Application Program Interface (API) to authorized

third parties to provide them with radio network information in real-time. This technol-

ogy enables operators to better adapt traffic to the prevailing radio conditions, optimize

service quality and improve network efficiency. MEC turns a base station into a service

catalyzer, which dynamically improves network performance and user experience for a

specific service. The target features span ultra-low latency and round trip time (RTT),

optimized bitrates, extra physical security and efficient caching. The decentralization

of specific network functions to the edge of the network brings agility and adaptability,

and context awareness. Hence, MEC opens the door for authorized third parties, such

as CPs, to develop their own applications hosted on the MEC servers.

5G networks promise high-bandwidth, low latency, always-on, massive connectiv-

ity. International consortiums such as, the European Telecommunications Standards

Institute (ETSI), and the International Telecoms Union (ITU) are the driving force be-

hind the design of standard frameworks. The MEC concept has evolved to draw on

Network Functions Virtualization (NFV) technologies to allow Virtual Network Func-

tions (VNFs) to run on this distributed MEC platform. Furthermore, commoditization

and virtualization of wireless networks are changing the economics of mobile networks

to help Mobile Network Operators (MNOs) move from proprietary hardware vendors to

virtualized software platforms through the abstraction of the execution environment.

Software Defined Networking (SDN) is an architecture designed to enable more agile

and cost-effective networks. SDN allows the dynamic reconfiguration of the network

by taking a new approach to the network architecture. SDN enables centralization of

network management for different entities within a cellular network. However, issues of

scalability, as the number of clients and size of the infrastructure increase, are raised.

Here, capillary Software-defined Radio (SDR) systems, where the entire radio function is

running on a general-propose processor, meet the scalability issues. SDR systems bring

wider possibilities to distributed mechanisms of traffic coordination in a radio link.

This inserts MEC into a broader, more strategic discussion about network architecture

evolution and distributed cloud in 5G.

The use case defined by ETSI for video analytics [ETSI17a] envisions MEC technol-

ogy to guide the video server. There, the MEC system chooses the optimal bitrate given

the radio conditions for a particular video stream or user. The idea is to use a RAN an-

alytics application to determine/estimate the throughput likely to be available at the
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radio downlink interface for a user, and then use packet headers to convey that infor-

mation to the video server, so that it can adapt the stream accordingly. This way the

streaming service achieves a noticeable performance improvement when operators

communicate RAN conditions to the video server in this way.

5.2.1.1 Contribution

This paper provides a novel solution based on a hybrid MEC and client adaptation for

fair and efficient media streaming delivery in a mobile SDR network. This solution has

been achieved by providing three relevant contributions:

• A novel MEC component (MEC4FAIR) to perform real-time updates in the mani-

fest with the available qualities. This vision empowers the role of MEC from ETSI

for transparent QoE improvement.

• A combination of MEC4FAIR with a client-side algorithm as a novel hybrid MEC

and client adaptation solution.

• Integration into a real mobile SDR network and validation performed on a real

setup, not simulated, checking the feasibility and performance of an active com-

ponent of the video delivery chain at the mobile edge.

This paper goes beyond the related work for fair and efficient utilization of a shared

link among mobile users concurrently consuming media streaming services in the

following aspects:

• Setup a real Long-Term Evolution (LTE) RAN infrastructure of an operational Mo-

bile Network stack including the radio base station (eNodeB) and the Evolved

Packet Core (EPC) [Liu et al.16b].

• The capillary of the MEC architecture makes the system highly scalable with a low

response time.

• The exploitation of L2 (link), L3 (network) and L7 (application) information to

support switching decisions on HAS quality.

• RAN-aware mechanism transparent to the service provider and to media players

enabling DRM/encryption support.
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• The fast convergence of the quality decision algorithm on the client-side.

5.2.1.2 Paper Structure

The paper is structured as follows. First, section 5.2.2 contains a review of the related

work in terms of quality selection for media streaming services. Then, in section 5.2.3,

we introduce a novel MEC component called MEC4FAIR to filter the quality representa-

tion on the HAS manifest as the main focus of the article and integrate it with a client

adaptation algorithm as a hybrid solution. Section 5.2.4 describes the implemented

testbed using an SDR platform, while section 5.2.5 presents the results of the validation

experiments on the aforementioned testbed. Finally, we assert our conclusions and

future work in section 5.2.6.

5.2.2 Related Work

5.2.2.1 Client-side adaptation

The QoE of streaming services relies on the experience derived from network stability,

efficient utilization, and fairness. However, multiple clients (or sessions) competing

for bandwidth across a bottleneck link can cause instability in the selected repre-

sentation, link under-utilization, and disproportional shares of available bandwidth

[Chen et al.16b]. Therefore, recent research in adaptive streaming is focusing on the

development of such client-side adaptation algorithms. The client monitors some key

indicators in order to make the decision of switching to a representation bitrate that

better fits the current state and maximizes the playback quality.

Connection-based algorithms choose the representation bitrate taking into account

server-client connection status (most common indicators are bandwidth and latency).

Here, the heuristic-based algorithms take direct measurements and use decision rules

based on the observations. These allow the most appropriate level to be dynami-

cally requested, based on the current network conditions in multi-client scenarios

[Petrangeli et al.15]. In order to track quick changes on networking conditions, the

algorithm [Liu et al.11] explores step-wise increases and aggressive decreases of the

adaptation algorithm in single-user scenarios. Whereas, the optimization-based algo-

rithms perform mathematical modelling. They potentially generate a higher quality
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playback than the heuristic-based ones, but they need a big dataset and a long learn-

ing time [Claeys et al.14b]. Some heuristic-based algorithms are Festive (Fair, Efficient,

Stable, adaptIVE) [Jiang et al.14], Panda (Probe and Adapt) [Li et al.14b] Lolypop (Low-

Latency Prediction-Based Adaptation) [Miller et al.16].

Content-based algorithms characterize the content, using Structural Similarity

(SSIM), the human perception of the image, to adapt the representation bitrate ac-

cordingly [Chiariotti et al.16]. This content-based algorithm suffers from high imple-

mentation complexity and large overhead needing reduced power consumption and

prolonged battery life [Chen et al.16a, Zorrilla et al.17].

More complex solutions [Li et al.14c] explore both, the status of the connection-

player and the features of the video content. However, the issue related to processing

overheads persists as the heuristic-based algorithms does not need previous characteri-

zation or training, gaining advantage when applied to previously unseen contexts and

heterogeneous environments.

5.2.2.2 QoE models

Whatever the adopted solutions, the aim of each algorithm is to enhance the quality of

the playback. A consolidated way to evaluate the QoE is the Mean Opinion Score (MOS),

with five quality increasing levels (from 1 to 5) [ITU]. This type of testing leads to long

evaluation times. Therefore, for practical reasons, many objective models for evaluating

an estimated MOS (eMOS) have been studied in order to profile the subjective human

perception of the quality.

The work [Vriendt et al.13] investigates the most common models in order to ver-

ify the fit of each model. In particular the models shown are: bitrate model, PSNR or

SSIM based model, chunk-MOS based model and quality model. It concludes that

chunk-MOS model is the optimal one. From here onwards this paper uses this quality

model which is a specific configuration of the chunk-MOS based model.

Moreover, the works [Claeys et al.14a, Mok et al.11] conclude a QL model which lim-

its the eMOS evaluation to a set of objective metrics from the connection heuristics,

such as quality switches, frequency and duration of freezes. These parameters are the

key metrics of HAS services.
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Hence, the work [Claeys et al.14a] combine different parameters in the following

equation:

eMOS = max(5.67∗µ−6.72∗σ−4.95∗φ+0.17,0) (5.1)

The parameter µ means of the normalized mean value of the quality level assigned

to the selected representation:

µ=
∑N

i=1
Qi
M

N
(5.2)

where N and M represents the number of segments and the representations; while

Qi is the quality level chosen for the segment i.

The parameter σ means the standard deviation of the quality level assigned to the

selected representation, complementing the assessment of the quality switches:

σ=
√∑N

i=1

(Qi
M −µ)2

N −1
(5.3)

Finally, the parameter φ means the freezes impact, formulated by:

φ= 7∗max
( ln(F f r eq )

6 +1,0
)+ (min(Fav g ,15)

15

)
8

(5.4)

where the frequency of freezes is represented by F f r eq and their average duration by

Fav g .

Recently, the work [Lentisco et al.17a] investigates a new model for MOS, called

Ubiquitous-Mean Opinion Score for Video (U-vMOS), which makes initial buffering

more relevant than [Claeys et al.14a].

5.2.2.3 Network Management Function

As described in subsection 5.2.2.1, it becomes complex to provide video services to sev-

eral users autonomously competing for the available bandwidth. Therefore, a more

coordinated approach for the users in a local radio link is needed, while maintaining

scalability and response time to be able to capture metrics, process them and prevent

QoE degradation situations in real-time. The solution must be transparent in different

levels, from the media delivery protocol perspective, to be universally adopted, and
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from the networking efficiency, to avoid overheads with extra messaging. This means

that the network must participate.

Networks are migrating towards an agile, open and cost-effective traffic delivery sys-

tem to dynamically adapt the resources to the traffic demands. Here, ETSI and ITU are

defining a network architecture to provide greater flexibility to scale the actual perfor-

mance in a more dynamic way and with finer granularity. Under the SDN umbrella, the

NFV, VNF and SDR technologies enable the dynamic configuration, management and

optimization of mobile networks based on changing traffic demands. Going further,

MEC opens the MNO infrastructure to tune up a specific service or user through an ex-

posed API. This way, authorized third parties can boost or enforce their own service in

real-time through applications hosted on the MEC servers, which are on the edge close

to the end users.

Fog and Mist Computing architectures [Chiang and Zhang16] define computing,

storage, and networking resources provisioned in a cloud basis to host servers located

at the edge of the network. Fog Computing is often related to the context of the Internet

of Things (IoT), where host servers, routers, access points and computing assets are

co-located with sensors and actuators. On the contrary, MEC is mainly exercised in the

context of mobile networks, where host servers are integrated with the mobile network

infrastructure.

Cloud RAN (C-RAN) [Checko et al.15] is another approach to empower RAN. C-

RAN focuses on RAN functions commoditization and virtualization. In this case, RAN

functionality is implemented in centralized data centre resources, instead of being dis-

tributed in the base stations. Centralized RAN brings easier software upgrade and higher

performance by means of multi-cell coordination. However, this places RAN far from

the user position, where zero delays are needed for our media scenario.

MEC steers a more efficient use of the network by exploiting information from dif-

ferent levels, such as L2, L3 and L7. The key is to make data actionable in order to

setup stable and efficient resource utilization, avoiding situations where media play-

ers trend towards radio-link capacity exhaustion, before they reach full utilization. The

relevance of metrics in order to make decisions to enhance media services is evident.

There are platforms to monitor client experience and benchmark the performance of

every CDN and service. Focused on IP Video performance, Cedexis [Cedexis17] and

Conviva [Conviva17] platforms sustain networking decisions in a centralized manner,
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via a cloud system highly coupled with the service provider and the player who has an

agent to gather continuous quality telemetry, adding signalling overheads.

Scientific approaches to make data actionable in a coordinated way, with a network

centric perspective, often consider SDN-enabled wireless networks [f. Lai et al.15]. Here,

the centralized controller to manage the network is difficult to scale. Some schemes

include in-network proxies [Petrangeli et al.15], proxy manager and resource controller

at the eNodeB level [Rubin et al.15, Chang et al.15] to provide the clients with target

quality suggestions. However, the bandwidth allocation scheme distributes the chan-

nel quality reports, which may significantly increase the signalling overhead. Other

works [Vleeschauwer et al.13, Essaili et al.15] automatically and fairly adapt the video

quality to react to congestion and data flow throughput starvation by overwriting client-

side decisions. Therefore, they introduce limitations to track quick connectivity status

changes.

MEC paradigm is the core of systems to improve HAS performance [Li et al.16]. This

approach brings new features, such as close to zero delays and awareness of the radio

status. Here, an HTTP proxy removes or adds back representations from the Media Pre-

sentation Description (MPD) manifest according to Channel Quality Indicators (CQI)

reports avoiding signalling overheads. However, instead of prevention, it focuses on the

reaction mechanism to fix the identified congestion situations. Moreover, its step-wise

strategy, implemented by a scheme to gradually remove representations when conges-

tion persists, brings slow convergence ability. Following the MEC vision, hybrid edge

and client adaption solution for HAS media services is applied to cellular links with

shared bandwidth [Yan et al.17]. This work goes a step further by considering the cumu-

lative viewing experience, in order to tune the QoE continuum and fairness model, and

two theoretical moving patterns. Here, the memory factor is another flavour of a mecha-

nism that drives a slow convergence. An alternative approach [Chen and Liu16] targets

continuity of the viewing experience and efficient resource allocation. This hybrid MEC

and client-side mechanism, orchestrates time slots to make HTTP requests, different for

each media player and serving rates. The required queues make this approach complex

to scale for a big volume of User Equipment (UE). Further MEC component prioritizes

or drops different HTTP transactions tailored to H.264 Scalable Video Coding (SVC)

streams [Fajardo et al.15]. So this work employs L2 (CQI reports) and L7 (H.264/SVC

hierarchical dependencies) to achieve QoE-driven fair scheduling of radio resources.
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A common aspect, to all these scientific approaches, is that they are exercised and

validated through simulations over LTE configurations, ignoring key RAN aspects, such

as multiple frequency sub-carriers, time sub-frames structures and OFDM constellation

symbols which isolate radio utilization among a volume of UEs [ETSI10]. Beyond that,

they do not explore the integration of MEC systems into SDR technologies. The authors

in [Wang et al.17] employ an OpenAirInterface (OAI) SDR system for the testbed, by

means of a deep integration on the eNodeB operations building a MAC packet scheduler

(L2).

A common aspect, to all these scientific approaches, is that they are exercised and

validated through simulations over LTE configurations, ignoring key RAN aspects, such

as multiple frequency sub-carriers, time sub-frames structures and constellation sym-

bols which isolate radio utilization among a volume of UEs [ETSI10]. Beyond that, they

do not explore the integration of MEC systems into SDR technologies. The authors in

[Wang et al.17] employ an OpenAirInterface (OAI) SDR system for the testbed, by means

of a deep integration on the eNodeB operations building a MAC packet scheduler (L2).

Furthermore, other Content-based systems characterize the content, using Structural

Similarity (SSIM) needing a-priori knowledge [Kourtis et al.17].

5.2.3 Hybrid MEC and Client Adaptation

5.2.3.1 Hybrid system architecture

To achieve a fair and efficient utilization of a shared link among mobile users concur-

rently consuming media streaming services, this work proposes a novel MEC com-

ponent, called MEC4FAIR, to be deployed in the eNodeB. Going further, MEC4FAIR

is highly suitable to be used jointly with any client-side adaptation algorithm such

to achieve a hybrid client-side and MEC solution. The overall scenario of the hybrid

solution is depicted in Figure 5.1.

HAS media players execute an application layer (L7) adaptation by switching the

quality of the representation contained in the MPD. Thus, each player decision is

managed by a proper client-side algorithm aiming to prevent playback degradation.

MEC4FAIR extends the video adaptation by considering data link layer (L2) metrics.

MEC4FAIR exploits awareness of L2 cell statistics and CQI reports, probed in eNodeB, to
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Figure 5.1: General scenario of the proposed solution.

quickly and dynamically control the video representations which are available for deliv-

ery. MEC4FAIR service, located at the mobile edge, operates in a transparent manner to

service provider and clients. So the HAS principle is maintained, since the quality level

selection can still be performed locally and independently by each client, to answer to

quick network performance changes. Therefore, MEC4FAIR prevents QoE degradation

with a fast convergence to fair and stable radio link utilization.

MEC4FAIR includes the following features:

• Scalable, by means of distributed and capillary nature of the MEC architecture.

• Transparent, without adding out of band signalling, exploiting operational radio

reports.

• Encryption-friendly, compliant encrypted videos as MPEG-DASH Common En-

cryption Scheme (CENC) [ISO16] include encrypted segments, but the MPD is

unencrypted. So, the MPD can be parsed and processed.

It is important to highlight that the wired path of the communication is usually more

stable and has higher bandwidth than the wireless section. As a consequence its in-

fluence is relatively smaller when compared to the performance of wireless network.

Therefore, for the representation bitrate adaptation, we focus only on the wireless part

since it is the most restrictive and representative for dense client cells.
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Although our contribution addresses a solution for LTE networks, this work is exten-

sible to other wireless environments with an equivalent approach regarding the wireless

access point.

5.2.3.2 Hybrid solution workflow

The sequence diagram with the exchanged messages is depicted in Figure 5.2. First,

the MEC proxy server running MEC4FAIR detects HTTP GET request from the UE to

download MPD files from the media server. Then, it retrieves the original MPD file from

the media server. Once, the MEC proxy has the MPD, it appropriately filters the repre-

sentations set available in the MPD manifest before it is sent to the UE. To this end, the

MEC proxy assesses the effective maximum bitrate from the reports and divides it by

the number of concurrent users for a fair utilization of the radio channel. All the repre-

sentation bitrates exceeding the resulting fair value are dropped from the MPD. Such

operations are executed at the stream start and each time that the client asks for a MPD

manifest update. Then the UE selects a representation bitrate from the available ones

and requests a specific segment file to the CDN, through the MEC proxy.

5.2.3.3 MEC4FAIR rate adaptation

A client-side decision algorithm is not sufficient for guaranteeing the best performance

since each client is unaware of the presence of others. Client-side adaptation mech-

anisms take care of their internal state, then their decisions are just maximizing their

playback, in particular they measure L3 values and select an L7 throughput accordingly.

This client-side decision rule is missing the in-network knowledge. This measurement

can be inaccurate compared to L2 measurements especially at the edge of mobile net-

works in dense client cells. Here, an MEC server located close to the eNodeB can retrieve

L2 values for each client gaining an overall knowledge of the network. Hence, the MEC

server can produce real-time data for influencing the HAS streams and providing a joint

adaptation in a transparent way.

In order to better understand our MEC4FAIR solution, it is useful to overview some

LTE fundamentals, such as Modulation and Coding Scheme (MCS) and Resource Block

(RB). Table 5.1 shows the symbols that are used in the following discussion. Moreover,

Figure 5.3 visualizes the relation among the symbols presented into the table. Notice
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Figure 5.2: Sequence diagram of LAMB-DASH and MEC4FAIR for representation bitrate
and CDN decision of a media player at an UE.
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that some values are fixed by LTE standard while others depend on the connection state

between the eNodeB and the UE.

Table 5.1: List of LTE Symbols used in the paper

Symbol Description
RB Resource block
RE Resource element

NRB Number of resource blocks
NRE Number of resource elements
NRB

sc Number of subcarriers per resource block
Tsl ot Slot time
Nsl ot Number of slots

Nsl ot
s ymb Number of symbols per slot

Ns ymb
bi ttot

Total amount of bits per symbol

Ns ymb
bi ti n f

Information bits per symbol

CQI Channel Quality Indicator
MCS Modulation and Coding Scheme

Here, RB is the minimum temporal/frequency resource that eNodeB can allocate to

a specific UE. RE is the minimum resource necessary for transmitting a symbol. Slot is a

temporal subsection of an LTE frame, lasting one RB transmission time. CQI is an index

ranging 16 levels reported by the UE to the eNodeB to characterise the quality of the

communication channel (0 corresponds to unreliable communication, 15 corresponds

to highly favourable channel performance). Finally, MCS is the modulation and coding

scheme established by the eNodeB as a consequence of the CQI index. CQI mapping

into MCS is depicted in Table 5.2. From the table it is also evident that the useful bitrate,

i.e. the resulting bitrate by removing redundancy bits due to L2 coding, depends directly

on the chosen MCS. There, more complex modulations and higher codes are assigned

as CQI index increases.

As a consequence of the above LTE principles, the actual resources allocation mech-

anism operated by the eNodeB includes the following steps:

1. UE sends CQI to eNodeB

2. eNodeB decides MCS (function of CQI) and RB

3. eNodeB sends MCS and RB setup information to the UE

122



5. MEC FOR FAIR QOE AND RELIABLE CDN

Figure 5.3: LTE resource grid.

Table 5.2: Relation between CQI and MCS [ETSI10, Tab. 7.2.3-1]

CQI index modulation code rate x 1024
0 out of range
1 QPSK 78
2 QPSK 120
3 QPSK 193
4 QPSK 308
5 QPSK 449
6 QPSK 602
7 16QAM 378
8 16QAM 490
9 16QAM 616

10 64QAM 466
11 64QAM 567
12 64QAM 666
13 64QAM 772
14 64QAM 873
15 64QAM 948
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The values related to MCS and RB are then processed in order to evaluate the

maximum data bitrate, denoted as PeakDataRate:

PeakDat aRate =
NRE (NRB )∗N s ymb

bi t si n f
(MC S)

Nsl ot ∗Tsl ot
(5.5)

In the equation Nsl ot and Tsl ot are constants (2 and 0.5ms respectively) according to

the LTE standard. NRE and Ns ymb
bi t si n f

depends on the chosen RB allocation and the MCS.

NRE is calculated from the number of RB allocated (NRB ) by the following equation:

NRE = N RB
sc ∗N sl ot

s ymb ∗NRB ∗Nsl ot (5.6)

Except NRB , all the values are defined by the LTE standard. Thus, NRB
sc , Nsl ot

s ymb and

Nsl ot are 12, 7 and 2.

Ns ymb
bi t si n f

is calculated from the MCS by the following equation:

N s ymb
bi t si n f

= N s ymb
bi t stot

∗CodeRate = log2 M ∗CodeRate (5.7)

where M is the modulation cardinality which is 4 for QPSK, 16 for 16QAM and 64 for

64QAM. CodeRate is given in the Table 5.2.

The decision program of MEC4FAIR (UpdateMPD) is shown in Algorithm 4. Up-

dateMPD is executed each time a new MPD request is performed by any player. First,

GetFairBitrate function assesses the real bandwidth available. Then, CropMPD func-

tion removes, for each player, the representation bitrates that could compromise the

efficient and fair utilization of the radio link. The inputs of the GetFairBitrate function

are the chosen MCS and the number of RB for a specific UE, and the current number of

media playing sessions. The output is the highest representation to be used by a spe-

cific media player (Rpli
max). CropMPD function applies this representation threshold by

cropping the MPD served by the media server (MPDpr ox y ).

In this sense, MEC4FAIR is not just a simple pass-through proxy. It has the capability

to analyze the traffic, recognize HTTP requests for MPD files, understand their content

and adapt it in order to fit with the current network state. Thanks to such MPD filtering,

the decision rule of the client could be influenced (the decision rules inside the client

are not affected, the HAS principle has to be preserved).
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Algorithm 4 Generation of Fair MPD

procedure UPDATEMPD( ) . listen to MPD requests & update
MPD

for all MPD request do .MPD request from the UEs
MPDrequest() . to the media server
MCS ← eNodeB API
NRB ← eNodeB API
Npl ← eNodeB API . number of media players

Rpli
max = getFairBitrate(MCS, NRB , Npl ) . threshold

MPDser ver ← MPDresponse() . from the media server

MPDpr ox y = cropMPD(MPDser ver , Rpli
max ) . update

MPDresponse(MPDpr ox y ) .MPD response to the UE

function GETFAIRBITRATE(MCS, NRB , Npl ) . for each MPD re-
quest

Input: MCS .MCS chosen for transmitting to the UE
Input: NRB . number of RBs allocated for the UE
Input: Npl . number of players on the shared radio link
Input: R j . representations listed inside MPDser ver

Output: Rpli
max . higher representation allowed for player i

PeakDataRate = f
(
MC S, NRB

)
. overall, equation (5.5)

PeakDataRatepli = PeakDat aRate
Npl

∀ i=0,1...Npl -1 . player i

Rpli
max = max

(
Rj | Rj-1 ≤ PeakDataRatepli

) ∀ i=0,1...Npl -1
. higher representation considering eNodeB radio perfor-

mance & concurrency level

function CROPMPD(MPDser ver , Rpli
max ) . for each MPD re-

sponse
Input: MPDser ver . biased MPD returned by the server

Input: Rpli
max . higher representation allowed for player i

Output: MPDpr ox y . unbiased MPD generated by the proxy

MPDpr ox y = crop(MPDser ver , Rpli
max ) . remove representations

over Rpli
max
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On the client-side, such a solution is possible since the MPEG-DASH [Sodagar11]

specification guarantees the possibility to update the cached MPD inside the client. In

particular it could be done in two ways [Li et al.16]:

• minimumUpdatePeriod field from the MPD, scheduling an MPD update after a

number of setup seconds,

• EventStream signalling events in an MPD, mainly designed for advertising pur-

poses [ISO12, ETSI15].

It is worth to note that the first method is only possible when working with a live

playlist, i.e. when the content is played as it is generated, and then a playlist update is

necessary. Whereas, on-demand playlists are static, so a compliant client will never up-

date its cached MPD, in this case it is only possible to use the second one (EventStream).

5.2.3.4 CDN performance broker

Beyond this, dynamically switching in real-time from one CDN to another, can become

a reality by using content delivery analytics from the MEC components. Thus, for ser-

vices delivered over multiple CDN providers, MEC4FAIR approach would be also valid to

select in real-time an appropriate CDN for a RAN geo-position according to L3 metrics.

To this end, MEC4FAIR would get alternative CDNs to dynamically switch the base URL

from other media sessions in the same RAN or from a set of preferred CDN providers

from the media service. In case of detected performance degradation, the MEC4FAIR

system would replace the base URL field of all the managed sessions to another known

CDN endpoint, migrating all of them at once to avoid outages.

5.2.4 Testbed setup

To demonstrate the advantages of this hybrid approach in terms of QoE, we exploit

NITOS facilities [Makris et al.15]. NITOS provides heterogeneous testbeds in order to ex-

ecute experiments on a real wireless network. In our tests we use an indoor RF-isolated

LTE network deployed at the University of Thessaly’s campus building, which is provided

with UE, eNodeB and EPC nodes in both commercial and open source implementation.

In particular open source setup is based on Universal Software Radio Peripheral (USRP)
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devices which can be managed through OAI [Nikaein et al.14] software. The role of OAI

is to configure the USRP in order to provide an LTE-compliant network and to run the

LTE stack protocol on top of USRP devices. In our case, we are interested in using an

open source implementation of the eNodeB and EPC since it allows us to retrieve and

manage radio network measurements which are needed by the MEC4FAIR algorithm.

The experimental setup comprises:

• UE nodes. 10 Icarus nodes, that feature multiple wireless interfaces (Wi-Fi,

WiMAX, LTE), placed in a symmetrical fashion around the isolated environment

of NITOS indoor testbed forming a grid topology. The distance between the nodes

is fixed at 1.2 meters and the height level is identical for all of them as well. These

nodes execute DASH media players running LAMB-DASH, a client-side decision

algorithm resulting from a previous work [Martin et al.17], for video rate control.

• eNodeB node. 1 USRP SDR system at the outer edge of the isolated room. This

node performs eNodeB stack and retrieves radio performance reports.

• EPC node. 1 wired Icarus node close to the eNodeB. This node executes EPC stack.

• Generic nodes with Ethernet interface. 2 wired Icarus nodes that feature the

MEC4FAIR proxy and the Media Server.

In terms of the testbed setup, MEC is a part of the eNodeB run on an external

server that can be deployed between the radio base station and the mobile core. Thus,

MEC4FAIR is located at the LTE RAN between the UE and the eNodeB. The eNodeB

function consists of analyzing the link and continuously adapting the transmission by

changing the modulation and coding scheme so that it fits with the current state and

guarantees a reliable L2 data transfer. The eNodeB is connected to the EPC which man-

ages mobile related activities at a higher level such as authentication, encryption and

provides access to external IP networks. Then, all the traffic which passes through the

eNodeB is forced to be processed by the EPC before being transmitted on any other net-

work. Therefore, the eNodeB provides the LTE connection to the UEs which request the

content stored on the Media server. This setup is depicted in Figure 5.4.

All the packets to/from the LTE network have to pass through the EPC. The eNodeB

only provides L2 support. The main nodes and related function of the EPC are:
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INTERNET

Media Server

DASH Players
LAMB-DASH

EPC Gateway

MEC System
MEC4FAIR

eNodeB UEs

Figure 5.4: Hybrid MEC and client testbed.

• Home Subscriber Server (HSS): it is the subscriber database, it stores subscriber’s

IMSI (International Mobile Subscriber Identity) and provides supports for user

authentication and access authorization

• Mobility Management Entity (MME): it deals with the control plane. It allows

bearer activation for the communication after that the UE authentication is per-

formed, then it manages intra-cell and inter-cell communication such that it is

possible to track UE movements and guarantee continuity during the communi-

cation

• Serving Gateway (S-GW): it deals with the user plane, it manages all the traffic

that LTE users send or receive in order to adapt it to the wireless environment

• Packet Data Network Gateway (PDN-GW): it is the gateway for inter-network com-

munications, i.e. it allows intercommunication with external IP networks (called

Packet Data Network).

The eNodeB configuration of LTE parameters is compiled in Table 5.3, employing

the default setup from OAI. This configuration originates from a maximum theoretical

bitrate of 23.3 Mbps (CQI index 15 [Ghosh et al.10]). This setup is not able to deliver

media streams to 10 media players requesting premium quality (index 6 from Table 6.1

means 3.4Mbps per client). On the client-side LAMB-DASH performs L7 decision rules,

without further requirements, then Linux-based devices with commercial LTE dongle

are the UE nodes. Finally, we install an HTTP Apache Server on a generic node which
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Table 5.3: LTE configuration

NRB NRB
sc Nsl ot Nsl ot

s ymb Tsl ot

25 12 2 7 0.5 ms

acts as Media Server by serving MPEG-DASH manifest and segments files (ISO/IEC

23009-1:2012).

The test sequence employed in our experiments is Big Buck Bunny with a duration

of 9 min and 50 s. Its raw version is provided by Xiph.Org Foundation [Xiph.Org17].

Segment files are generated by encoding a test sequence in High Efficiency Video Cod-

ing (HEVC) format (ISO/IEC 23008-2:2015) [Sullivan et al.12] and multiplexing in ISO

MPEG4 files (ISO/IEC 14496-12 - MPEG-4 Part 12). The chosen duration for each seg-

ment is fixed to 5 seconds, granting a balanced live delay and window time for successful

segment download trade-off, resulting in 118 segments for each representation. More-

over, the test sequence is encoded into six different representations by considered

networks and devices features1. Each representation is characterized by a particular

video bitrate. The complete characterization of each representation is depicted in Ta-

ble 6.1. Here, the group of pictures (GOP) size sets the number of frames between key

frames.

Table 5.4: Set of MPEG-DASH representations for the tests.

index profile bitrate resolution GOP size framerate

1 low 420kbps 288P 72frames 15fps

2 mid-low 1000kbps 360P 90frames 30fps

3 mid 1400kbps 432P 90frames 30fps

4 mid-high 2000kbps 480P 90frames 30fps

5 high 2600kbps 576P 90frames 30fps

6 premium 3400kbps 720P 90frames 30fps

The bitrate adaptation mechanism at the client-side does not target a specific reso-

lution. The most used smartphone screen resolution is 1280x720 [Atlas18] which is the

highest bitrate provided by the media server. Thus, all the UEs aim highest available

representation bitrate and the tests focus on the dynamics of the network.

1Representations employed by Encoding commercial solution: https://www.encoding.com/

http-live-streaming-hls
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Furthermore, this paper also checks the feasibility and performance of an active

component of the video delivery chain at the mobile edge. A significant result of the

work described in this action is the implementation of the solution to perform the exper-

iments and the tests on a real, rather than simulated, setup. MEC4FAIR is implemented

and validated over SDR for network-assisted approach for adaptive HTTP streaming.

Hence, this action also provides the evidence of the performance of a theoretical ap-

proach to deliver superior video quality while enabling transmission rate savings at the

same time, in practice. Therefore, the complexity of integrating these mechanisms into

mobile SDR networks is also evaluated.

5.2.4.1 Candidate strategies

In the target dense client environment, two different scenarios are presented:

• Synchronous start-up. The clients are synchronized to a common clock joining

the live stream at once. This scenario resembles the start of a popular stream (e.g.

sports live event). This means clients are concurrently sharing common resources,

as they are measuring the same available bandwidth value at once.

• Stochastic start-up. The clients are randomly joining the stream. This scenario re-

sembles the consumption of a popular stream (e.g. TV series). This means clients

are measuring different bandwidth values, since they do not download at the

same time, then they experience network bandwidth fluctuations.

In the synchronous scenario, the clock employed is based on network time protocol

(NTP). The clients employ the ability to become synchronized to a NTP clock in order to

synchronize the bootstrapping of the playout. The clock is no longer synchronized to

follow the playback time afterwards.

The different candidates control quality switching smoothness and underperformed

quality trade-off. We compare the selected bitrate and resulting QoE of the media play-

ers in different contexts where LAMB-DASH and MEC4FAIR mechanisms show benefits

from a best-effort strategy, as will be shown in the next section. Best-effort strategy

means individual players taking instant decisions based on the overall available band-

width. The selection of the maximum available bitrate is an aggressive approach. It

helps to improve the overall perceived quality but could need higher initial delay or
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Table 5.5: Tested candidate strategies

Id Description
sync 10 synch. clients on best-effort regime

async 10 asynch. clients on best-effort regime
syncc 10 synch. clients with LAMB-DASH

asyncc 10 asynch. clients with LAMB-DASH
syncp 10 synch. clients with MEC4FAIR

asyncp 10 asynch. clients with MEC4FAIR
syncp

c 10 synch. clients with LAMB-DASH & MEC4FAIR
asyncp

c 10 asynch. clients with LAMB-DASH & MEC4FAIR

playout freeze, because the needed higher buffering time. With the set of experiments

done and compiled in the Table 5.5, this aims to identify the individual and combined

contribution of each component and the convenience of the previous scenarios with

regard the final result.

Going beyond, it is not possible to compare the real-time measurements of the can-

didate strategies with the related research, as most of the papers in this application

domain employ simulations. The simulations range from the defined model, for the me-

dia players dynamics, to the LTE testbed [Li et al.14b, Miller et al.16, Chiariotti et al.16,

Li et al.14c, Rubin et al.15, Essaili et al.15, Yan et al.17, Chen and Liu16].

5.2.5 Validation and Results

5.2.5.1 Performance metrics

We carried out a set of tests to validate the capability of the proposed MEC system to

manage the efficiency and fairness trade-off. Efficiency assesses the network resources

utilization. Thus, a higher average bitrate for all the media players sharing a radio link

means a higher efficiency. While fairness refers to a more unbiased and homogeneous

QoE across all the media players sharing a radio link. Hence, a lower eMOS deviation

enhances the fairness.

As employed in the evaluation of LAMB-DASH work [Martin et al.17], we express

our QoE results in terms of eMOS by means of the QL model.

Therefore, we evaluate our hybrid solution per client along the video sequence in

terms of:
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• number of quality switches (SN b)

• quantity (FN b) and average duration (Fav g ) of freezes

• average bitrate (Rav g )

• eMOS

Work from [Claeys et al.14a] concludes that the operational range of the eMOS is [0;

5.84].

5.2.5.2 Results

LAMB-DASH work [Martin et al.17] concluded a more fair radio link utilization on the

synchronous scenario, as the estimation of the available bandwidth is more accurate.

First of all, we analyze if this conclusion persists once MEC4FAIR comes into play. Fig-

ure 5.5 and 5.6 show the behaviour of the proposed hybrid solution executed on 10

competing clients that are sharing an eNodeB network.

(a) (b)

Figure 5.5: Ten clients sharing a radio link: scenario for synchronous clients start-up on a
plot, and scenario for stochastic clients start-up on b plot. Plots a and b show the limitations
applied by the MEC4FAIR proxy.

Under the described conditions, the stochastic scenario tends to unfair radio utiliza-

tion, the greedy behaviour from asynchronous players produces more variable radio

performance reports.
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(a) (b)

(c) (d)

Figure 5.6: Ten clients sharing a radio link: scenario for synchronous clients start-up on
a and c plots, and scenario for stochastic clients start-up on b and d plots. Plots a and b
display the histogram of the selected representation bitrate for each client. Plots c and d
show the playout buffer lengths.
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The LTE setup provides a maximum theoretical bitrate of 23.3 Mbps (for CQI in-

dex 15). Hence, the eNodeB is not able to deliver 10 media streams with the highest

bitrate (3.4Mbps). Accordingly, in Figures 5.5a and 5.5b, the quality 6 is always dropped

from the MPD. In order to limit the intention from asynchronous media players to get a

higher bitrate than the effective one the MEC4FAIR proxy has to crop more sharply and

frequently the representations available in the MPD (Figure 5.5b). In the synchronous

scenario (Figure 5.5a) the MEC4FAIR proxy is not modifying the MPD as frequently

as in stochastic scenario, because the simultaneous bandwidth estimation done by

LAMB-DASH is more accurate. This means MEC4FAIR will incorporate to stochastic

scenarios the environmental concurrence parameters that synchronous mechanisms

get independently.

Concerning the histogram of the selected representation bitrates, this is depicted for

each client. The dominant utilization of one or two representation bitrates is evident

in the synchronous scenario (Figure 5.6a). On the contrary, stochastic scenario (Fig-

ure 5.6b) behaves more stochastically with less concentrated representation selections.

This means more fluctuation between representations.

Figure 5.6c and 5.6d show the curves of the playout buffer level. In both scenarios

the level leans towards 5 seconds, which is the maximum amount of data queued. In

our tests the buffer size has been defined to accommodate the duration of the segments.

Therefore, everytime the buffer level falls to zero for a time over the duration of one

frame, this affects the playback with freezes. Such events occur when clients switch to a

representation with a higher bitrate which needs a higher download time causing buffer

emptying. As a consequence of buffer emptying, freezes affect the playback. We can see

that in the synchronous and the stochastic scenarios the buffer depletion behaviour

seems quite similar. Table 5.6 shows that in both scenarios all the clients experience no

more than 2 freezes, as the buffers get empty but not for enough time to be perceptible.

Going further, the buffer level for synchronous scenario (Figure 5.6c) seems to be more

steady, at some moments all the clients tend to have more than 50% of the buffer filled,

which hardly ever happens in the stochastic case (Figure 5.6d).

Coincidentally, Table 5.6 also points out the stability of both scenarios in terms

of segment quality switches. In the synchronous case the mean values of switches is

25.3 over a total of 118 played segments, while in the stochastic there is a small rise
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to 27.1. In the stochastic scenario, MEC4FAIR proxy compensates the higher variable

measurement of the available bandwidth exploiting RAN concurrency awareness.

The individual results for each client of the quality evaluation are presented in Ta-

ble 5.6. As previously explained, the evaluation has been done following the MOS

scale, because it gives us a human-like evaluation. The QoE parameter, eMOS, is eval-

uated for each scenario and client [Claeys et al.14a]. In both scenarios, the range for

eMOS spans similar values. Such values correspond to a variation of -3.7%, +25.9%

and +9.9% respectively for the minimum, maximum and average value in favour of the

synchronous scenario. Therefore this means that a situation where the bandwidth is

equally distributed is favourable, since it provides the best overall quality.

Table 5.6: Number of switches (SN b), number of freezes (FN b), average freeze duration
(Fav g ), average bitrate (Rav g ) and eMOS evaluated for each scenario and client.

Scenario Synch. syncp
c Scenario Stoch. asyncp

c

client SN b FN b Fav g Rav g eMOS SN b FN b Fav g Rav g eMOS

(ms) (Mbps) (ms) (Mbps)

1 22 0 0.0 1.56 3.22 35 1 136.0 1.77 2.47

2 32 1 65.0 0.94 1.04 27 0 0.0 1.64 3.07

3 26 0 0.0 2.09 4.08 26 0 0.0 1.37 2.71

4 22 2 86.5 2.04 2.48 29 0 0.0 1.71 3.24

5 26 1 68.0 1.53 2.33 23 0 0.0 1.44 2.79

6 27 0 0.0 1.82 3.66 25 1 41.0 1.39 1.77

7 23 2 146.0 1.27 1.16 25 1 56.0 1.66 2.22

8 21 0 0.0 1.51 3.05 24 2 49.0 1.62 1.84

9 25 1 124.0 1.81 2.73 29 0 0.0 1.48 2.91

10 29 0 0.0 1.50 2.99 28 0 44.0 1.08 1.28

The overall average and deviation values of Table 5.6 are shown in Table 5.7 (syncp
c

row) and Table 5.8 (asyncp
c row). Here, a lower deviation of eMOS (eMOSdev ) means

a more fair QoE across the media players. It is evident that the hybrid solution gets

a significant fair result in the synchronous scenario (0.11 for syncp
c ) compared to the

stochastic one (0.38 for asyncp
c ).

In order to complete the evaluation, in terms of fairness and efficiency, we also com-

pare the result of syncp
c with the other synchronous candidate strategies detailed in
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Table 5.5, compiled in Table 5.7. We can observe from the resulting values how the dif-

ferent components of the hybrid solution contribute to guarantee: efficiency of radio

link utilization represented from the the bitrate average (Rav g ); and fairness among

all the clients from the eMOS deviation (eMOSdev ). The best-effort approach (sync)

takes as much bandwidth as possible ignoring the balance required to enhance the QoE

(eMOSav g ) and fairness (eMOSdev ). We can see that the hybrid solution (syncp
c ) causes

the radio utilization rate to fall to -13.4% while the fairness rate is improved to +85.5%

in the best-effort strategy (sync).

Table 5.7: Bitrate average and deviation, and eMOS average and deviation, evaluated for all
the clients in the synchronous candidate strategies from Table 5.5.

candidate Id Rav g (Mbps) Rdev (Mbps) eMOSav g eMOSdev

syncp
c 1.61 0.03 2.67 0.11

syncc 1.70 0.03 2.21 0.25

syncp 1.75 0.02 3.34 0.10

sync 1.86 0.27 3.14 0.76

Table 5.8: Average and deviation of bitrate (Rav g ), and average and deviation of eMOS
evaluated for all the clients in the stochastic candidate strategies from Table 5.5.

candidate Id Rav g (Mbps) Rdev (Mbps) eMOSav g eMOSdev

asyncp
c 1.52 0.14 2.43 0.38

asyncc 1.65 0.18 2.02 0.67

asyncp 1.66 0.05 3.13 0.37

async 1.84 0.09 3.28 0.54

From Table 5.7, the use of LAMB-DASH algorithm (syncc and syncp
c ), in a real setup,

contribute to fairness from the best-effort test (sync). LAMB-DASH gets a better fair

behaviour since the deviation of the eMOS from the mean value is much more steady,

the deviation reduction is about +67.1%(syncc ) and +85.5%(syncp
c ).

The best results, from Table 5.7, are provided by using MEC4FAIR without LAMB-

DASH (syncp ) since it increases eMOS by +6.4% compared to best-effort case (sync),

while the average bitrate is reduced by -5.9%. The advantage in terms of fairness be-

comes more evident since syncp case shows lower variability than sync (they have an
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eMOS deviation of 0.10 and 0.76 respectively). Furthermore, the joint use of LAMB-

DASH and MEC4FAIR (syncp
c ) is better than just using LAMB-DASH (syncc ), as the eMOS

average and deviation are enhanced by +20.8% and +56.0%.

Furthermore, hybrid solution (syncp
c ) results compared to MEC4FAIR (syncp ) are not

significantly different in terms of fairness (0.11 and 0.10 respectively). LAMB-DASH still

makes the difference to get fairness in those RAN environments where MEC deploy-

ment is not feasible (no SDR eNodeB) or affordable (no contracted MEC service on an

MNO).

Finally, the synchronous scenario gets more fairness scores (eMOSdev ) than the

stochastic one, by means of comparing Table 5.7 to Table 5.8. Moreover, the application

of the hybrid solution to the stochastic scenario (asyncp
c ) also improves the results from

the best-effort strategy (async).

To sum up, the LAMB-DASH algorithm reacts to buffer emptying by switching to

a representation with a lower bitrate. The aim is to get buffer refill and avoid freezes.

MEC4FAIR prevents greedy behaviour in a conservative manner by cropping higher bi-

trate representations for concurrent media players sharing a radio link. LAMB-DASH

switches to a higher bitrate in order to improve the quality while MEC4FAIR restores

higher representation bitrates when concurrency gets lower. Such adaptability, at

buffer and bandwidth level, is brought about by live measurement allowing the algo-

rithms to discover state changes. It means that the hybrid solution can be exploited in

heterogeneous environments.

Finally, it should be noted that the MEC4FAIR proxy improved the quality by ex-

ploiting effective RAN utilization awareness, granting unsynchronized media players

a similar performance to synchronized ones for the initial HTTP requests, when this

synchronization is not possible.

5.2.6 Conclusions and Future Work

The objective of the media CPs is to increase audience engagement and retention, where

the QoE plays a significant role. Thus, the goal of the network for media services is to

deliver a smooth and high quality playback, with low video start times and high bitrates

while reducing buffering.
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Targeting this goal, we introduce in this paper a hybrid solution for fair and efficient

utilization of a radio link in the target scenario, dense client environments. MEC4FAIR,

a novel MEC component introduced by the paper, provides RAN awareness in real-time

for influencing the HAS streams and providing a joint adaptation in a transparent man-

ner. This entity also includes the reaction to CDN outages or performance degradation

by switching to an alternative CDN provider. On the client-side, LAMB-DASH main-

tains the ability of media players to react to sudden bandwidth fluctuations in the local

network.

This approach is ahead of the existing solutions in three key aspects. First, it is

transparent to media players and media server compliant with MPEG-DASH and CENC

encryption specifications. Second, it exploits MEC architecture by means of a proxy,

located at the mobile edge, to operate in a scalable manner, with zero latency and no

signal overheads. To this end, MEC4FAIR exploits awareness of L2 cell statistics and

CQI reports, probed in eNodeB, to quickly and dynamically control the video repre-

sentations. Last but not least, the validation is carried out on a real SDR infrastructure

including the RAN entities eNodeB and EPC.

The algorithm has been implemented and validated on a real SDR LTE setup where

multiple clients share the same path in the network, therefore competing for the avail-

able bandwidth. Two different scenarios have been explored. The synchronous scenario

runs clients synchronized to a common clock joining the live stream at once. The

stochastic scenario arranges clients randomly joining an on-demand stream. Here, they

experience stochastic network bandwidth fluctuations.

The results of both scenarios show that the hybrid solution balances the efficiency

and fairness trade-off. Here, an enhanced efficiency means high average bitrate while

improved fairness means low deviation of eMOS across all the media players sharing

a radio link. The hybrid system makes the media players tend to a common and high

quality representation bitrate. Moreover, in the stochastic scenario, MEC4FAIR plays a

significant role to improve efficiency, in terms of network utilization and quality experi-

enced. Furthermore, the synchronous scenario introduces a more accurate and stable

characterization causing the hybrid solution to obtain better scores than the stochas-

tic one. Finally, from the comparison of individual components of the hybrid solution

to the best-effort strategy, MEC4FAIR performs better without LAMB-DASH. However,
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LAMB-DASH is easily plugged into media players making it convenient in those areas

where an MEC service cannot be deployed at the MNO infrastructure.

Future work on this hybrid solution will expand the MEC4FAIR proxy with L3 path

performance to decide the CDN base URL, from the ones available for delivery. There-

fore, MEC4FAIR prevents QoE degradation and service outages from unhealthy CDNs

as well as fair and stable radio link utilization.
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CHAPTER

6
Network Resource Allocator

6.1 Context

5G represents the next generation of communication networks and services. Reaching

formidable levels of complexity and traffic volume 5G networks brings a new set of chal-

lenges for managing the network. Thus, it will be necessary for the network to largely

manage itself and deal with organization, configuration, security, and optimization

issues.

The evolution of mobile communication has started an overall process towards agile

networking with higher performance to meet increasing traffic demands. The change of

Internet traffic on this wise makes the capacity of the networks more critical to the user

experience. To this end, 5G solutions will address network traffic and resource manage-

ment challenges. Consequently, novel techniques and strategies are required to address

these challenges in a smarter way.

Machine learning ability to learn from historical data, make predictions, dynamically

adapt to new situations learning from new data and conduct decisions [Mohri et al.12]

can yield insights, detect meaningful events and conditions and enable the manage-

ment system to respond correctly to them. Machine learning algorithms along with SDN

and NFV brings potential to forecast resource demand and to react appropriately. Com-

bining SDN, NFV and machine learning technologies, a centralized network controller
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could change the network topology instantiating or removing Virtual Network Func-

tions (VNF) to forward the incoming traffic in an efficient way, removing the unused

parts of a network to release these resources [Ismail et al.13].

Accurate service demand prediction and provisioning represents a challenge for

virtualised environments. This should allow the network to resize and provision itself,

using virtualization, to serve predicted demand according to parameters such as lo-

cation, time and specific service demand from specific users or user groups. Service

demand prediction has the potential to offer an effective solution to such issues, partic-

ularly considering the need to preempt and anticipate the amount of network resources

that need to be allocated.

A network resource allocator for self-organising networking must take benefit of

SDN and VNF technologies in 5G networks. To create such a system, some aspects must

be overcome. First, forecast the incoming traffic demands. Then, a mechanism to find

the optimal topology for media delivery while assuring a QoE for the incoming traffic

demands is needed. Finally, to check that the system can be operated, it is necessary to

integrate with representative SDN and VNF frameworks to proactively and dynamically

provision the network.

In this line, this section presents a solution for autonomic self-organising network

which is capable of achieving or balancing objectives such as high QoS, low energy

usage and operational efficiency.

First, Section 6.2 propose a solution where an scalable, real-time and autonomous

network management system makes demand prediction to foresee the amount of

network resources to be allocated to cope with the traffic demand, and dynamically pro-

visions the network in a proactive way, while keeping network operation inside business

ranges. This system is able to scale the network topologies and to address the levels of

resource optimization, required for media streaming services.

The implemented experiment in Section 6.2 shows the viability to integrate machine

learning methods in a SDN controller to forecast resource demand and to react appro-

priately, so that this one can learn to instantiate the most efficient network topology in

terms of KPIs. The learning can be done based on experience gathered in previous mea-

surements. Thus, the proposed Network Resource Allocator system is a reliable solution

that addresses the problems for flexible creation an elastic network in an automated

way.
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Second, Section A.3 presents a set of use cases and scenarios of 5G in which machine

learning can aid in addressing their management challenges. Specifically, 5G challenges

such as network resource allocation and network performance degradation would have

a big impact on QoE by steering the network performance.

Third, Section A.5 proposes an architecture of an autonomic self-organising network

to ensure QoS, improve operational efficiencies and reduce operational expenditure

of 5G networks. The state and consumption records on the hardware resources are

gathered in real-time from multiple functional blocks constituting the layered architec-

ture. The collected records are processed by the machine learning algorithms in (near)

real-time or periodically tailored to identify or forecast specific 5G issues. Based on the

output of the machine learning algorithms, the Policy Engine generates actions on net-

work topology that provides high QoS without using excessive resources. It brings a

cognitive solution to NFV management.

Finally, Section A.2 describes how the a solution to make self-organising in reconfig-

urable dynamic networks by using of policy based network management actuation for

correction and prevention, and how these policies can be reconfigured based on the

updated knowledge from machine learning algorithms.

6.2 Network Resource Allocation system for QoE-aware

delivery of media services in 5G Networks
• Title: Network Resource Allocation system for QoE-aware delivery of media ser-

vices in 5G Networks

• Authors: Angel Martin, Jon Egaña, Julian Florez, Igor Olaizola, Jon Montalbán,

Marco Quartulli, Roberto Viola and Mikel Zorrilla

• Journal: Transactions on Broadcasting

• Publisher: IEEE

• Year: 2018

• DOI: http://dx.doi.org/10.1109/TBC.2018.2828608

Abstract. The explosion in the variety and volume of video services makes band-

width and latency performance of networks more critical to the user experience. The

media industry’s response, HTTP-based Adaptive Streaming (HAS) technology, offers
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media players the possibility to dynamically select the most appropriate bitrate accord-

ing to the connectivity performance. Moving forward, the telecom industry’s move is

5G. 5G aims efficiency by dynamic network optimization to make maximum use of

the resources to get as high capacity and Quality of Service (QoS) as possible. These

networks will be based on Software Defined Networking (SDN) and Network Function

Virtualization (NFV) techniques, enabling self-management functions. Here, Machine

Learning is a key technology to reach this 5G vision. On top of Machine Learning, SDN

and NFV, this paper provides a Network Resource Allocator system as the main contribu-

tion which enables autonomous network management aware of Quality of Experience

(QoE). This system predicts demand to foresee the amount of network resources to be

allocated and the topology setup required to cope with the traffic demand. Further-

more, the system dynamically provisions the network topology in a proactive way, while

keeping the network operation within QoS ranges. To this end, the system processes

signals from multiple network nodes and end-to-end QoS and QoE metrics. This paper

evaluates the system for live and on-demand Dynamic Adaptive Streaming over HTTP

(DASH) and High Efficiency Video Coding (HEVC) services. From the experiment re-

sults, it is concluded that the system is able to scale the network topology and to address

the level of resource efficiency, required by media streaming services.

Keywords: 5G, cognitive network, internet TV, network topology, NFV, QoE, QoS,

SDN.

6.2.1 Introduction

Multimedia consumption is gradually shifting from traditional TV to streaming video on

connected devices, such as Smart TVs, mobile devices, etc. Furthermore, considering

the demographic studies, the trend shows a sharp increase in streamed video viewing,

particularly among younger generations [Ericsson15]. Thus, the traffic for videos deliv-

ered over the Internet will reach 82% of the total Internet traffic by 2021 with a million

minutes of video content crossing the network, according to the report issued by the

world IT leader Cisco [Inc17b]. Here Internet video includes web-based video monitor-

ing, short-form Internet video (YouTube), long-form Internet video (Hulu), live Internet

video, Internet video to TV (Netflix or Roku) where the Internet video-to-TV traffic means

the 26 percent. Meantime, reaching heterogeneous devices gains relevance thanks to
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the growth of mobile devices as the entry point to services [Inc17a]. The continuous evo-

lution of the media entertainment industry towards enhanced experiences pushes the

Ultra High Definition (UHD) technologies beyond 4K resolutions, High Dynamic Range

(HDR), Wider Colour Gamut (WCG) and Higher Frame Rate (HFR). The technical chal-

lenges combined with today’s consumers viewing habits, have shifted from watching

purely linear TV to watching media as part of a multi-screen and multi-tasking activity

[Domínguez et al.17, Zorrilla et al.15b]. Thus, the convergence of broadcast technolo-

gies and mobile networks is fueled by the change on usage patterns, the regulations

staking out and reshuffling traditional broadcasting bands to expand mobile networks,

and the proliferation of richer experiences requiring broader bandwidths.

Moreover, quality is a dominant factor that drives demand, customer satisfaction

and retention, turning the user experience and the ability to deliver media services

to any device key aspects. The user expectations on choice, quality, and convenience

will continue to increase for the foreseeable future. In order to meet these future

needs the 5G network may have a potential to substantially enhance the user expe-

rience and positively impact the audiovisual media value chain, including content

production, distribution, and delivery to the user environment. 5G can stimulate new

economically-viable services of high societal value like U-HDTV application, acting as

a vehicle towards a co-operative use of broadcast and broadband infrastructures and

enabling bandwidth intensive and low latency experiences. Some superior 5G features

are key to media services: faster access with higher user experience data rate and low

latency; reliable and dependable network with zero downtimes; and network agility

reducing operational time cycles from hours to minutes to deal with dynamics from

speed of mobility and connection density.

In the domain of optimization of media services delivery, SLA (Service Level

Agreement) enforcement will take a salient position in the value proposition of 5G

[Serrano et al.16]. SLA refers to the level of service guaranteed (often through contract)

to a user or service by the network operator. The SLA includes a number of QoS pa-

rameters. These metrics include bandwidth, latency, security, geographical coverage

qualifications, downtime due to error or faults, and priority that a user or service may

expect where contention exists. Users may pay a premium subscription to operators

to be guaranteed a higher SLA and certain services (emergency services, government

communications) may be required by law to be given a higher SLA than other services.
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SLA is transforming the operational features of networking functions from reliability

to agility. Traditionally telecoms equipment is expected to provide 99.999% availabil-

ity [Liu et al.16a]. However, with many modern IT services requiring different levels of

guaranteed bandwidth, latency and priority over other traffic, SLAs have become more

important and more differentiated depending on the nature of the service. The goal

is to provide the best possible QoE according to the SLA, and the appropriate device

features to overcome technical limitations in order to get a live, fluent and continuous

multimedia experience.

Here, HEVC and MPEG-DASH are key to the media industry. Encoding stan-

dards, such as HEVC, relieve the bandwidth usage by minimizing the employed bitrate

[Qian et al.17]. Accompanied by MPEG-DASH, multiple bitrate streams are operated by

adjusting the play-out rate to stay within the actual network throughput and device ca-

pability. Thus, adaptive encoding offers benefits to allow operators to plan the capacity

of their delivery networks to match the average, rather than the peak, usage demands.

This way, operators save considerable Capital Expenditure (CAPEX) maintaining an un-

interrupted user experience by means of client based switching decisions. MPEG-DASH

and HEVC technologies catalyse QoE solutions for each connection [Yu et al.17], how-

ever, from the point of view of the infrastructure and the network, a global optimization

for massive media services must be carried out.

The volume of video affects all parts of the IT infrastructure and the network, pos-

ing greater challenges due to the cost and bandwidth constraints. The answer to video

overload is simple, reduce the traffic or add more bandwidth. Hence, techniques like

bandwidth optimization, QoS, and path selection are vital for the network manager

[Xu et al.13]. Therefore, 5G optimization tools must provide elements for control-path

selection and managing the prioritisation of different traffic types depending on their

importance in a cost-effective manner. There, the paths are directly related with the

topology of the network.

5G has to deal with fast, heterogeneous, multi-tier networks, which are also dynamic

in nature. NFV [Foundation13] and SDN [Foundation12] are two key enabler technolo-

gies of 5G. NFV leads to cost efficiency, improvements in time-to-market and innovation

in agile network infrastructure and applications. SDN enables network administrators

to manage network services through the abstraction of lower-level functionality. This

is achieved by decoupling the system that makes decisions about where traffic is sent
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(the control plane) from the underlying systems that forward traffic to the selected des-

tination (the data plane). So, implementation of SDN results in infrastructure savings,

operational savings and flexibility [Kim and Feamster13]. Furthermore, on top of SDN

technologies, it is possible to develop systems to autonomously improve network agility

and flexibility to efficiently support the evolving demands of users.

Machine Learning is a good technology candidate to support the vision of the Self-

Organised Network (SON) [Klaine et al.17]. Its ability to learn from historical data,

make predictions, dynamically adapt to new situations by learning from new data

[Mohri et al.12] and make decisions offers a great potential in the network management

area, forecasting resource demand and reacting appropriately.

By combining SDN and NFV concepts, a centralized view of the network can be

exploited by Machine Learning aided systems to automatically identify networking is-

sues. Thus, enabling the controller to change the network topology instantiating or

removing Virtual Network Functions (VNF) to forward the incoming traffic in an effi-

cient way, thereby removing the unused parts of a network to release these resources

[Ismail et al.13].

The core contribution of this work is the design, implementation and deployment of

a Network Resource Allocator system. The system provides QoE-aware and autonomous

network management which, instead of building a network to meet an estimated maxi-

mum demand, dynamically provisions a network topology to accommodate changing

demands. This system encourages self-configuration, self-optimization and self-healing,

shifting from reactive to proactive by means of Machine Learning, SDN and NFV tech-

nologies. It includes the capability to scale the network topology and to address the

levels of resource optimization, required for media streaming services, in 5G. To this

end, the system processes signals from multiple network nodes and end-to-end QoS

and QoE metrics.

The work described in this paper verifies that it is possible to integrate Machine

Learning methods in an SDN controller to forecast resource demands and to react ap-

propriately. Hence, the system instantiates the most efficient network topology while

satisfying an SLA and operational costs. The learning is done based on experience

gathered in previous measurements. This area is known as smart traffic routing.

The rest of the paper is structured as follows. Section 6.2.2 reviews the related work

in terms of network solutions for QoS and QoE-sensitive media delivery. Section 6.2.3
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describes the main contribution of the article with the definition of a Network Resource

Allocator system, autonomously providing an efficient network topology for an existing

demand, meeting the SLA performance and operational costs. Section 6.2.4 presents an

implementation developed on top of MPEG-DASH and HEVC media services. Section

6.2.5 compiles the results from a set of validation experiments carried out. Finally, we

present our conclusions in Section 6.2.6.

6.2.2 Related Work

The increasing rates of video experiences and audience are causing the current Internet

architecture to reach saturation point. The Content-Centric Networking (CCN) archi-

tecture can be considered to resolve this issue in video transmissions. CCN is a new

architecture based on how content is named and stored within the network, rather than

where it is located, including the IP addresses of the hosts [Park et al.14]. There are new

protocols that can find and retrieve content and make network’s performance faster,

more resilient, and more secure. With regard to QoS evaluation of video streaming, this

work [Rhaiem et al.15] tests routing protocols for CCN-based MANET networks.

However, in order to deal with the imminent mobile broadcasting for digital video,

Internet of Things (IoT) and Machine to Machine (M2M) systems, a revolution on the

networks is required. Here, 5G promises a leap forward for the network features with

ever increasing rates of overall data capacity and user density, requiring low power

consumption and low data rates for very large numbers of connected devices and

ultra-reliable and low latency communications [ETSI17b].

The main advances of 5G focus in two directions [5GPPP16]. First, the radio access

network (RAN), by means of additional spectrum bands and higher spectral efficiency,

in order to achieve higher capacity [Chávez-Santiago et al.15]. Second, SDN solutions

to empower the core and the edge of the network [Nguyen et al.16].

These two lines respond to the need, of the network manager or telco operator, for

tools to improve QoS in a 5G environment, such as the:

• Optimization of traffic when passing across the network (e.g. Radio Access Net-

work (RAN) optimization, specific video optimization tools, management of

application traffic, congestion control).
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• Selection of the most efficient topology and setup to deliver the best QoS at

the best cost (e.g. policy-based or fully dynamic network selection; support for

different QoS layers with different cost and service level agreement levels).

For the deployment of the most appropriate network schema, the capacity of the

SDN controller to dynamically operate the network is capital. Concerning SDN, the strat-

egy from standardization bodies, such as the European Telecommunications Standards

Institute (ETSI), network operators and equipment vendors is to decouple hardware

from software and move network functions towards software. The key challenge is

to enable direct access and manipulation of the forwarding plane of network devices

(e.g. router, switch), by moving the network control out of the networking switches,

to logically centralized control software. A logically centralized network intelligence

can tune the network control directly without taking into account the underlying in-

frastructure, which is completely abstract for applications and network services. Thus,

networks turn into flexible, programmable platforms with intelligence to dynamically

meet performance requirements and react to or prevent degradation symptoms.

The SDN architectures use two interfaces. The Southbound API is employed to com-

municate the SDN Controller and the network switches and routers. The Northbound

API is defined to communicate the SDN Controller and the services and applications

running over the network. Hence, the Southbound API facilitates efficient control over

the network by enabling the SDN Controller to dynamically apply changes according to

real-time demands, while the Northbound API facilitates innovation and allows efficient

orchestration and automation of the network.

OpenFlow [Foundation17e], open standard, is the most well-known Southbound

interface. It deploys innovative protocols in production networks by means of a com-

munications interface defined between the control and forwarding layers of an SDN

architecture. On top of it, a set of representative Open Source projects such as Open-

Stack [OpenStack17], OpenMano [TID17] or OpNFV [SDxCentral17] deploy NFV and

MANO technology stacks. Some examples of VNFs are routers, base stations, core

mobile nodes, Evolved Packet Core (EPC), firewalls, intrusion prevention IPS, etc.

These technologies catalyse the transformation of operative switching and forward-

ing into programmable and configurable functions enabling autonomous network
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management. Network management in 5G aims to provide high performance con-

nectivity to an increasing number of users [Sun et al.15]. To this end, intelligent traffic

steering systems for packet forwarding while reducing operational expenditure are

being explored [Hernandez-Valencia et al.15].

From an ICT operator point of view, the service provisioning, in terms of networking

or computing resources, constitutes an important challenge which deeply conditions

CAPEX and Operational Expenditure (OPEX) values. This challenge relates to the prob-

lem of service demand prediction and resource provisioning which allows the network

to resize and provision itself, using virtualization, to serve the predicted demand ac-

cording to parameters such as location, time and specific service demand from specific

users or user groups.

In this context, the simplest and fastest approach is to draw upon over-provisioning

which consists of allocating an amount of resources larger than that required. This way

the possible demand increase is met avoiding any intervention as long as the upper limit

of resources allocated is not exceeded. This approach is operationally effective, but inef-

ficient in terms of resources and energy consumption, therefore it is not cost-effective.

It becomes clear how service demand prediction would be an essential solution to this

issue. Being able to foresee the amount of network resources to be allocated to cope

with the demand fluctuations constitutes a great benefit for a network operator.

In [Caglar and Gokhale14] it is stated that cloud service providers tend to maximize

their profit by overbooking their resources. It concludes that an arbitrary overbook-

ing ratio may degenerate into SLA violation and cost penalties especially for online

video streaming. To optimize the resource utilization and reduce the risk of SLA vio-

lations it introduces an Artificial Neural Network to find correlation in the historical

data and predict future resource usage. However, the system is not fully automated. In

[Serrano et al.16] a system is proposed where a user can define his/her Service Level

Object (SLO) related to a specific QoS metric to detail his/her expectation as well as the

penalty for any breach. The policies and configurations will be reconfigured according

to the updated SLA and a control program will be responsible for applying the recon-

figurations. In [Emeakaroha et al.10] an SLA enforcement strategy is presented, called

LoM2HiS (Low Metrics to High Level SLOs), for mapping low level metrics to high level

SLA predicates.
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Moving forward, this SDN paradigm boosts network adaptability and provides elas-

ticity functions to make the network easily scalable. However, this brings about the

need for mechanisms to manage the network due to the increased network complex-

ity. Machine Learning technologies must be considered in order to meet the network

resources allocation that dynamically meets changing demands, while achieving the

SLA network operation enforcement and keeping networking operation inside business

ranges [Buda et al.16].

Most of the works, related to demand prediction, employ neural network-based

algorithms [Sandhir and Mitchell08, Edwards et al.97]. Moreover, the use of Machine

Learning can be applied as a QoS performance optimizer in a number of ways. Firstly,

Machine Learning will be used to assess the current provision of network resources in

order to reduce resources when no longer needed. Furthermore, Machine Learning will

present suggestions to network operators about the structure of their networks.

In the context of self-configuration, self-optimization and self-healing, some works

deal with growth in traffic and provide better QoS and QoE [Klaine et al.17]. From the

perspective of self-configuration, in [Wainio and Seppänen16] a system to perform con-

gestion management by means of autonomous deployment of the backhaul’s network

topology is explored. The goal of this approach is to accommodate traffic demands from

a neighbourhood of Base Stations (BSs) of the RAN. The backhaul connects the BSs and

the rest of the network. Therefore, the backhaul update process is configured enabling

new routing paths while providing better latency, reliability and improves energy sav-

ing. Another work on topology management [Farzaneh and Moghaddam08] proposes

a backhaul solution to arrange the network topology in response to changes in traffic

demand.

An SDN controller could change the network topology instantiating or removing

VNF to forward the incoming traffic in an efficient way, removing the unused parts of a

network to release these resources [Ismail et al.13]. Today, this vision is not yet realized

[Bizanis and Kuipers16]. There is not a reliable solution that addresses the problems

for flexible creation by scaling up/down or in/out an elastic network in an automated

manner [Szabo et al.15].

In terms of QoS and QoE provisioning in the core and the edge of the network, an

automated topology management tool can address flexible QoS schemes, congestion
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control mechanisms, load balancing and management features. However, the main lim-

itation in the related work is that QoS and QoE provision are not specifically targeted

toward novel use cases of NFV and SDN. Furthermore, most of them are not realistic,

simulating operational setups. So, there is a lack of frameworks for SDN and NFV for full

automation of SLA management combining all the necessary blocks of cognitive man-

agement and proactive provisioning [Bendriss et al.17]. In fact, in [Bendriss et al.17] the

network management system only focuses on the cardinality of the size of the network

but not on the topology graph itself.

6.2.3 Network Resource Allocator system

The scope of the Network Resource Allocator is to apply an efficient network topology

setup for an SLA-enforced media delivery. To this end, the system considers the perfor-

mance records assessed on past exercised topologies, demand prediction and business

constraints, as shown in Figure 6.1. First, Figure 6.1 a) depicts the preliminary process to

populate the database of the system with real metrics, probed from specific topologies

for known media traffic demands, to create a ground truth with performance records.

Second, Figure 6.1 b) shows the ability to conclude and deploy an efficient topology,

already in the database or unseen, to prevent partial network under-performance for

a demand forecast in specific paths. The candidate topology results from the records

on the database, the predicted volume of demand, the resources availability and the

business constraints.

(a) 

probes  performance OK 

probes  performance NOK 

(b) 

1 

2 

3 

Figure 6.1: a) Assessment of QoS for different exercised topologies; b) Decision making
on efficient topology setup to fix potential SLA breaches on specific forwarding nodes and
media clients, the resources availability.
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To describe the approach of this work in more detail, subsection 6.2.3.1 introduces

the system, the individual logic blocks and the dataflow. Afterwards, subsection 6.2.3.2

explains the QoS and QoE metrics, that must be considered for media services, and

subsection 6.2.3.3 covers the Key Performance Indicators (KPIs) which come into play.

From this list, this work takes the ones more directly related to the SLAs, to forecast

potential violations and prevent them.

6.2.3.1 System components

The Network Resource Allocator provided in this manuscript processes data from multi-

ple network nodes and enables autonomic infrastructure management. This system

demonstrates the capability to scale the network topologies and to address the levels of

resource optimization required for 5G.

The overall Network Resource Allocator diagram is depicted in Figure 6.2 where the

QoS and QoE metrics from network nodes, media servers and players are probed in

real-time and stored in the metrics database to be processed by the machine learning

components. In the Algorithm 5 the implemented system workflow is defined. First, the

classifier processes the metrics to identify SLA breaches and notifies to the optimizer

any network issue raised. Then, the optimizer internally queries to the regressor the per-

formance of a set of topology candidates close to the current one (τ). To provide a result,

the regressor takes metrics from the database and returns the network performance

scores from records if present or make a prediction. Finally, the optimizer ranks all can-

didates and suggests to mutate network topology to respond a new volume of traffic

demand. As a result, the network resource allocator provisions new resources or frees

unused ones and sets up the new topology (τnew ) by means of the network controller.

Here, the involved sub-modules are listed:

• Network: set of network elements such as servers, routers or switches that form the

network infrastructure and operated through an SDN controller and end-to-end

media player metrics. The network includes probes to capture the performance

metrics in real-time and agents to send the values to the metrics database.

• Metrics DataBase: monitoring element which measures and stores some key

parameters related to the performance of the network.
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Figure 6.2: Network Resource Allocator workflow.

Algorithm 5 Network Resource Allocator

Input: τ . employed topology
Input: pSL A . target performance
Input: costmax .max expendable cost

while True do
[bw, l, j] ← ReadLastMetrics() . from the database
p ← (bw,l,j) . current network performance
if (Classifier(p,pSL A) == SLA breached) then . SLA breach

τnew ← Optimizer(τ,p,costmax ) . cost & real-time driven
τ← τnew . provision and deploy new topology

else
continue
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• Supervised Classifier – the Clustering module: a module to continuously detect

the status of a network which is being used for delivering massive media data

flows under conditions of varying traffic. The classifier acts as a network profile

classifier checking if the bandwidth, latency and jitter performance metrics (p =

(bw,l,j)) of the network are inside the operational range defined by the network

manager for a specific service. The network must ensure a operational bandwidth

(bw) over a nominal value for a high quality video (bwmi n) and a contained la-

tency (l) and jitter (j) under smooth parameters (lmax and jmax ). In order to avoid

instable transitions, when the network underperforms persistently, for a long time

(d) with any violation from thresholds (bw-bwmi n > 0; lmax-l > 0; jmax-j > 0), the

classifier triggers the actuation of the Network Resource Allocator to find a capa-

ble topology that ensures the SLAs. This process is described in Algorithm 6. The

classifier just clusters new data to identify valid or violated performance level. To

do so, the classifier ingests data from the metrics database, where the network

metrics for each temporal segment have been stored in real-time, and constantly

updates the classification model.

• Regressor – the Regression module: a module to forecast KPIs of a massive multi-

media delivery service over a previously unseen network topology. The regressor

is queried by the optimizer each time the classifier notifies to the optimizer an

SLA breach situation. The employed modified linear regression is presented in:

f (m)
τ (n) =β0 +βτ,m ·an

τ,m +ε (6.1)

for each node represented by n and the evaluated network performance metrics

(bw, l, j) represented by m. Thus, the equation 6.1 is used to predict the KPIs for

the unmeasured network configurations. Using least squares:

Y = Xβ+µ (6.2)

where µ∼ N (0,σ2), the regression function is trained using measurements from

past employed topologies. In this training, we get the values of β0 and βt ,m which

best fits to the training measurements. To generate a forecast the regressor finds
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the coefficients of the linear function (β0 and βt ,m) that allow the Network Re-

source Allocator predict a topology performance before it comes into play. The

regressor takes the metrics of the system and predicts some key features of the

model to be fed to the optimizer.

• Optimizer – the Optimization module: a module to help human operators to en-

force SLAs while keeping operating costs under control. It considers the output of

the machine-learning modules and assesses the performance of all the possible

and permitted network configurations. As synthesized in Algorithm 7, in order

to avoid disruptive changes on the topology, to avoid oscillations and to achieve

real-time performance, the optimizer generates a list of candidate topologies that

could be applied scaling up or down the current number of nodes of the network

topology [McKay and Wormald90]. To this end, the explored space of topology

graphs is governed by itmax . Each candidate from the list is then queried to the

regressor in order to get a performance forecast. With all the results, the optimizer

ranks them, to get the better topology to mutate. It then passes the optimum

arrangement for the minimum cost, service time and other performance mea-

sures in order to comply with the SLA the operator has to comply with. To meet

this challenge the algorithm used is Simulated Annealing. This is based upon

[Kirkpatrick et al.83] who proposed that it form the basis of an optimization tech-

nique for combinatorial problems. As previously stated, within the 5G context, we

are focusing on automatic network management. This requires the optimization

of a mathematical model representing the network’s performance. To solve this

issue, the present task focuses on developing optimization algorithms capable of

improving the performance of the networks.

The Network Resource Allocator dynamically deploys the concluded topology using

the SDN controller.

6.2.3.2 QoS and QoE metrics

The essential QoS metrics which come into play for live or on-demand experiences

are low latency and high bandwidth. These have a direct impact on the most relevant

aspects involved in the QoE when playing HAS media [Chen et al.15]:
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Algorithm 6 Classifier

Input: p . current network performance
Input: pSL A . network performance for target SLA
Input: δd . elapsed time between samples
Output: NetworkState . network ensures or breaches target SLA

dmax .max time breaching target SLA
if (p < pSL A) then . network underperforms SLA

d ← d+δd . accumulated violation time
else

d ← 0 . normal or transitory violation

if (d > dmax ) then . persistent violation
return SLA breached . fire network management actuation

else
return SLA ensured . network status normal

Algorithm 7 Optimizer

Input: τ . employed topology
Input: p . current network performance
Input: costmax .max expendable cost
Output: τbest . best network topology

itmax . number of processed topologies
τbest ← τ . current one is best costs-driven option
pbest ← p . current one performance
for i=1 → itmax do

τi ← Candidate(τ) . generate topology close to current one
pi ← Regressor(τi ) . query topology performance
if (pi ≥ pbest and Cost(τi ) ≤ Cost(τbest )) then

τbest ← τi . update best topology
pbest ← pi . update best performance

return τbest . return best topology
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• Initial Delay: the delay between the first client request and the start of the play-

back.

• Stalling Time: the sum of all playback interruptions.

• Number of quality switches: the total number of quality switches during the

playback.

• Inter switching times: the time between quality switches should be imperceptible.

These QoE metrics are intrinsically related to bandwidth and latency [Yu et al.17,

Orosz et al.14, Vega et al.18]. In fact, some works [Huang et al.18] simplify the QoE as-

sessment to the monitoring of the buffer level directly related to the bandwidth and

latency. The Network Resource Allocator for SLA enforcement computes them to fore-

cast optimal topology. To this end, it compares different SDN configurations and legacy

routing protocols in a guaranteed QoS video streaming scenario, using performance

metrics such as bandwidth and packet delay to output a configuration for an optimal

setup.

6.2.3.3 Network Management KPIs

The essential KPIs which come into play for live or on-demand experiences are the

same, low latency and high bandwidth. In addition to these, other KPIs to be considered

by the Network Resource Allocator are:

• Service scale: minimum size of the network to deliver the traffic volume with the

required latency and jitter for the media streaming service.

• Forwarding efficiency: the average throughput and the ratio compared to the

theoretical maximum.

• Latency: minimizing end to end delivery time.

• Packet jitter: maximum deviation of packet delivery from the average inter-arrival

time.
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The Network Resource Allocator scales up or tears down assets to dynamically adapt

to the network traffic rate. Each time the network traffic load is modified (increasing

or decreasing), the Network Resource Allocator block should be able to spot the traffic

trend and choose a suitable model to be applied in the virtual network infrastructure to

ensure the most efficient setup.

6.2.4 Implementation

This section describes the implementation details of the proposed Network Resource

Allocator. It covers all the aforementioned core processing components, as well as

previously mentioned common QoS and KPI metrics, in order to enforce the SLA perfor-

mance of the network when delivering media services. First, the core components of

the processing system are addressed. They deal with the traffic demands and apply a

topology in order to satisfy the SLA and make an efficient utilization of the resources

under the constraints of available network nodes. Second, the head-end setup is de-

picted, where the processing system is being exercised. Third, the media services are

addressed. They will inject dynamic traffic challenges on the network management.

Last but not least, the implementation requirements, key to creating agile networks for

a management system, are listed.

6.2.4.1 Network Resource Allocator

The different technologies executing the Network Resource Allocator modules are briefly

listed below:

• Supervised Classifier – the "Clustering" module: the metrics flow feeds the On-

line Classifier implementing a K-Means classifier in addition to an Apache Spark

(MLlib).

• Regressor – the "Regression" module: it performs online regression with Python

and Spark Streaming API.

• Optimizer – the "Optimization" module: the Optimizer module is a Python li-

brary for the global optimization of functions with or without constraints. The
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optimization engine is based on the Simulated Annealing metaheuristic algo-

rithm [Du and Swamy16]. Simulated Annealing is a probabilistic technique for

approximating the global optimum of a given function. Specifically, it is a meta-

heuristic to approximate global optimization in a large search space. It is often

used when the search space is discrete. For problems where finding an approx-

imate global optimum is more important than finding a precise local optimum

in a fixed amount of time, simulated annealing may be preferable to alternatives

such as gradient descent. In particular, the discrete capabilities of the Optimizer

will help us in the optimization of the topology of the network.

• Network: Mininet [Mininet17] deploys the network infrastructure as explained in

the subsection 6.2.4.2.

• Metrics DataBase: the data required to be persistent is stored in a MongoDB

database [MongoDB17].

6.2.4.2 Testbed

The key activity foreseen in relation to the Network Resource Allocator functionality

is the setup of a real experiment. Here, the configuration of an SDN and its managed

NFVs are automatically optimized based on the results obtained from the forecasting of

relevant metrics. This prediction is in turn based on a description of a current situation.

To this end, a set of components is needed:

• Media service: a next-gen standard compliant platform to provide multimedia

contents for massive consumption. A GStreamer [GStreamer17] server produces

streaming traffic and sends it to the network (e.g. Mininet). Here, an Iperf

[ESnet and Laboratory17] server is run on the same machine where the GStreamer

media server is located. The Iperf server is employed in order to generate uni-

formly distributed packets in the network, thus the injected packets are employed

to probe the network performance metrics.

• Service probing: a client-side data collection system involves capturing and shar-

ing QoS and QoE metrics and benchmarks. It is described in this previous paper

[Martin et al.17]. This can significantly impact in the volume and velocity (less

160



6. NETWORK RESOURCE ALLOCATOR

data to transfer means less time) of data transfers. A pool of GStreamer clients

consumes the streaming created by the GStreamer server in a steady and fair man-

ner across media players sharing the connection path. They stream video quality

metrics in the QoS metric collector.

• Network monitoring: a system for collecting data from network nodes. It per-

forms data pre-processing to boost data classification by identifying the most

significant and irregular data. The messages generated can significantly impact

the volume and velocity (less data to transfer means less time) of data transfers.

Iperf clients are instantiated in order to receive the traffic sent by Iperf server and

collect the network performance metrics into the QoS metric collector.

• QoS metrics collector: it collects metrics received by the GStreamer and Iperf

server/client and publishes them through a Kafka [Foundation17b] data stream

processing platform to enable Machine Learning processing in streaming mode,

which is required for a real-time actuation.

• Network Functions Virtualization: enabled by SDN, it plays an important role

to automatically reallocate resources. vSwitch [Foundation17d] on the Mininet

testbed routes incoming packets by analysing the flow table configured by the

controller.

• Application of Machine Learning algorithms: this virtualized system for predict-

ing service demand and network provisioning allows the network to resize and

resource itself. Here, the Network Resource Allocator core comes into play by

processing the metrics from a Kafka queue from the QoS metric collector.

• Smart network control and management: a controller provides infrastructures

with efficient and flexible provisioning in order to significantly improve end-to-

end operations and network efficiencies. An SDN Controller is deployed with

OpenDaylight [Foundation17c] which configures the Mininet network to forward

the data flows with the configuration provided by the Network Resource Allocator.

The testing setup and the technologies involved are depicted in Figure 6.3, imple-

menting the architecture described in this previous paper [Xu et al.16] and showing
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Figure 6.3: Testbed including technologies of logic components.

media services and probes in order to exercise the NFV-based network with the pro-

grammed traffic demands. The network nodes benchmarks and the media playout

metrics are monitored and captured. They are sent in real-time through the collector,

based on a Kafka data bus, to feed the Machine Learning algorithms. The Machine

Learning algorithms eventually provide an outperforming topology to be applied. The

smart network control and management takes this setup and deploys it by means of

OpenDayLight network binding.

6.2.4.3 Media services

The test sequence employed in our experiments is Bug Buck Bunny with a duration of 9

min and 50 s. Its raw version is provided by Xiph.Org Foundation [Xiph.Org17]. Segment

files are generated by encoding a test sequence in HEVC format (ISO/IEC 23008-2:2015)

and multiplexing in ISO MPEG4 files (ISO/IEC 14496-12 - MPEG-4 Part 12). The chosen
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Table 6.1: Set of MPEG-DASH representations for the tests.

index profile bitrate resolution GOP size framerate

1 low 420kbps 288P 72frames 15fps

2 mid-low 1000kbps 360P 90frames 30fps

3 mid 1400kbps 432P 90frames 30fps

4 mid-high 2000kbps 480P 90frames 30fps

5 high 2600kbps 576P 90frames 30fps

6 premium 3400kbps 720P 90frames 30fps

duration for each segment is fixed to 5 seconds, granting a balanced live delay and win-

dow time for successful segment download trade-off. Moreover, the test sequence is

encoded into six different representations to allow adaptation to the network dynam-

ics at the client-side. Each representation is characterized by a particular video bitrate.

The complete characterization of each representation is depicted in Table 6.1. Here, the

group of pictures (GOP) size sets the number of frames between key frames.

In order to generate representative results three video based services generate singu-

lar traffic patterns streaming the same content over the network. Thus, all the clients

access to one specific service in each run, downloading and/or uploading the content.

The considered standard compliant streaming services are:

• Downstream. On-demand video contents are requested and downloaded from

the server by the pool of connected clients (Youtube or Netflix like service).

• Upstream. Live video contents are uploaded to the server by the clients (UStream

like service).

• Full-Duplex. Live video contents are transmitted in both direction between clients

passing through the server (Skype like service).

6.2.4.4 Implementation requirements

The developed system offers some essential features when building a network man-

agement system to dynamically provision a network to meet changing traffic demands

ready as a tool for network management in 5G. These features are:
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• Scalability. First, it has been encapsulated on a Docker [Docker17] container in or-

der to deploy the complete execution environment. Second, the Docker machine

has been written in an Ansible [Hat17] script in order to facilitate the automatic

generation and deployment of different instances in different setups.

• High performance. The system utilizes technologies widely employed in Big Data

systems such as Spark and MongoDB to process data.

• Real-time processing. This is possible by means of Apache Kafka providing a

channel with data streams coming to the Network Resource Allocator.

• Autonomous actuation. This is achieved thanks to the integration of the system

with OpenDayLight APIs to deploy another topology setup.

6.2.5 Validation and Results

6.2.5.1 Validation

Network Resource Allocator takes measures from GStreamer players and network

probes, and predicts network KPIs such as path bandwidth, latency and jitter directly

related to QoE. Network Resource Allocator meets the network costs and the needs of

forwarded services (SLAs) for the three defined video streaming traffic patterns stated

in subsection 6.2.4.3. The business limits are considered by the Network Resource

Allocator as a range of network size cardinality.

To perform the experiment, we created different networks by varying the cardinality

of nodes (2, 4, 8, 16 and 32) with 3 different types of topologies (linear, star and tree).

This way, initially, 15 different configurations were generated. However, unseen car-

dinalities and topologies could be concluded by the Machine Learning algorithm to

efficiently cope with the new traffic demand under the SLA constraints. For each of

these networks, data were collected to characterize the performance of the GStreamer

service in each configuration created. Moreover, to simulate background network traf-

fic, Iperf was launched from the server to the last node on the network. In addition,

Iperf was used to continuously measure the free bandwidth (not used by GStreamer).

With this information, the network congestion was continuously monitored. Once the
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Figure 6.4: Assessed bandwidth for networks counting 32 nodes and 130 clients in different
topologies.

network was created and Iperf launched to create background traffic, the GStreamer ser-

vice was started. The GStreamer server was launched on the first network node serving

media to 130 clients in different topologies. The regime of incoming sessions was linear

with a new client connecting every 15 seconds. The service did not end until 15 seconds

after the last client connected. Therefore, when the last client was connected to the

server together with all the rest, they started to leave. Each GStreamer client collected

metrics on the latency, bit rate (bandwidth) and jitter of all packets received. The clients

were equally distributed across the three considered services, downstream, upstream

and balanced.

In these networks we measured the path bandwidth and latency (using Iperf3 and

media players’ probes) from media players to the server. Figure 6.4 plots the assessed

results for bandwidth representing a scatter matrix where each point is a measurement

of a different path as described in Figure 6.1 a).

As expected, the concurrency of the paths for linear topologies is similar with higher

performance as the clients are closer to the server. For a tree topology, less clients share

the full path, increasing the performance. And, for a star topology, the concurrency of

packets for different clients is lower minimizing the impact on the communication path.
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This way in the star scheme, depending on the position of the clients in respect to the

server, the performance is different.

In addition to the described experiment and these primary measures, the goal for

the Network Resource Allocator system is multiple. First, to be able to dynamically

forecast the network load status for each connection (hop) according to predicted in-

creasing and decreasing traffic demands with enough fidelity in advance (demands

changing every 15 seconds). This way the system identifies congestions, bottlenecks or

paths not satisfying the bandwidth and latency parameters for all the delivered streams.

Second, to find an efficient topology configuration that satisfies the bandwidth and la-

tency needs for all the paths. Last but not least, to mutate the network with the new

topology to properly satisfy the incoming media streaming demands.

6.2.5.2 Results

The primary goal of the presented method is to be able to forecast the performance of

the bandwidth and latency, establishing the thresholds for the target SLA, in order to ap-

ply the most efficient topology configuration. Thus, the results of the Network Resource

Allocator focus on the accuracy to find an efficient topology for the incoming demand

with uniform density distribution of media players.

When the data depicted in Figure 6.4 have been fully collected, we transform and

use them to build a Machine Learning regression model which operates by estimating

a power law curve for each configuration (cardinality and topology type). Here, only

the power law curves for topologies with 128 nodes are depicted learned from the band-

width for networks counting 2, 4, 8, 16 and 32 nodes in the different topologies. The

data and the fitted regression models for the bandwidth, in different topologies for a set

of cardinalities, are represented in the plots in Figure 6.5. The predicted values from the

regression in Figure 6.5 accurately represents the assessed values shown in Figure 6.4.

Furthermore, the fitted regression curves are also accurate, able to reliably represent the

data samples. Using these curves, the trained model can predict the characteristics of a

given unobserved path (e.g. in terms of bandwidth) in a specific network. The model

can also be used in a numeric optimization procedure to determine the characteristics

of the best network configuration with respect to the performance of a specific path or

set of paths.
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Figure 6.5: Prediction models for the bandwidth performance in different topologies (star,
linear and tree topologies) and cardinalities.

In Figure 6.6, the data for the bandwidth, in different topologies for a set of cardi-

nalities, are transformed to the logarithmic domain. Here, only the power law curves

for topologies with 4, 64 and 128 nodes are depicted learned from the bandwidth for

networks counting 2, 4, 8, 16 and 32 nodes in the different topologies. The prediction,

plotted in logarithmic scale, shows that the deviation from the model is visible, partic-

ularly in the case of low cardinality values. This means that as the more complex the

network, the better the scores this approach gets. The fidelity of the prediction mod-

els to provide representations for the achieved performance for the different paths in

different topologies and cardinalities is shown.

For the selection of the topology and cardinality configuration to meet the predicted

traffic demands, we have to introduce the network topology type, the cardinality and the

source and destination host IDs as inputs to a forecasting engine that operates based

on the learned model.

The analysis of the performance of the trained models is carried out by splitting the

experimental dataset into a training (50%) and a test (50%) set, and by computing error
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Figure 6.6: Prediction results, in logarithmic scales, for the bandwidth performance in
different topologies (star, linear and tree topologies) and cardinalities.

measures on the test samples with respect to the model forecasts.

In Figure 6.7 we display histograms of prediction errors for the three topology types

and for cardinalities 128 and 256. The mean absolute percentage error (MAPE) measures

of prediction accuracy of the bandwidth forecasting. The error distribution depends on

the type of the concluded topology and the target network performance. The structure

of the star histogram seems to be approximating a uniform probability density func-

tion. This might depend on the fact that in such a topology all paths are essentially

equivalent. Errors tend to be limited in size. The histograms show forecast results more

accurate for high bandwidth and coarser for low bandwidth availability. This way, for

higher bandwidth requirements the system results are more accurate.

The results in terms of latency are equivalent to the figures and graphs depicted for

bandwidth. Furthermore, the results for download, upload and peer media services are

similar without any singular or remarkable feature.

This predicted configuration is then used by an automatic controller. It is applied by

a self-management procedure capable of adapting in an agile manner to changing con-
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Figure 6.7: Prediction Error Histogram for cardinalities 128 (in gray) and 256 (in violet) in
different topologies ((a) linear, (b) star and (c) tree topologies).
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ditions, such as the appearance of bottlenecks or the need for more network switches

and nodes. So, once we have the network architecture, the OpenDayLight SDN con-

troller changes the actual Mininet network to this network. To this end, the controller

instantiates or removes NVF-based network functions and links.

To sum up, the proposed Network Resource Allocator approximates the most ef-

ficient network topology for a predicted demand assuring bandwidth and latency

performance KPIs which satisfy QoE and consequent SLA constraints. The accuracy

of the results is better as the cardinality of the network is bigger and the demands in

bandwidth are higher, while the fidelity drops for tiny setups and audiences. So, the

more complex the infrastructure and the wider the media service demand, the more

confident this approach gets. Furthermore, the Network Resource Allocator is able to

conclude unseen configurations (cardinality and topology type), and deploy them to

exercise the new network.

Furthermore, the results presented in this paper meet essential 5G requirements

of the network core and backhaul. While some significant 5G features are intrinsically

related to the new radio specification, the Network Resource Allocator is a cognitive tool

to empower network management based on SDN and NFV technologies, boosting au-

tonomous network agility in the context of media delivery services. The integration of

the Network Resource Allocator with representative network management technologies

and open source stacks to capture QoS metrics, to process data in real-time and provi-

sion it with the SDN controller reduces operational time cycles from hours to minutes.

The elapsed time from a new prediction demand coming to the system to the conclu-

sion of a better topology takes a time under 1 second, including the data processing by

the machine learning algorithms and the generation of visual graphs for network man-

agement monitoring and debugging. Then, the actuation in the network by the SDN

controller is under 1 minute but it is highly related to the number of changes to apply.

This feature is key when meeting environments where dynamics from user mobility and

connection densities move fast.

Moreover, the ability of the system to conclude a new network topology, according

to target SLA for stable throughput and latency performance, infrastructure costs and

soft transition policies, enforces dependability by preventing network from downtimes.

This manner, in order to ensure network reliability the network manager only needs to

tune the cost range for an expected demand.
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6.2.6 Conclusions and Future Work

The increasing rates of video experiences and audience are causing the current Internet

architecture reaching the saturation point. Furthermore, in order to deal with incoming

mobile terminal broadcasting, IoT and M2M systems, a revolution on the networks is

required. One of the goals of 5G is to provide the best possible QoS according to the

SLA, and the appropriate device features to overcome technical limitations in order to

get a live, fluent and continuous multimedia experience. The quality of the network

experience is an important element in customer satisfaction and retention.

5G networks will be highly based on software, enabling self-management functions.

Here, Machine Learning is a key technology to reach the vision of a 5G self-organising

network. We show that Machine Learning algorithms in addition to SDN technologies

can be used to predict path characteristics that directly determine network KPIs. At the

moment we have these predictions, we can change the network to obtain the best KPIs,

QoE, QoS and identify unused parts of a network for the service we want to forward in

our network.

This paper introduces an automated Network Resource Allocator system. The over-

all solution comprises a network operated by means of an SDN controller which is

autonomously and dynamically set up by the Network Resource Allocator. The Net-

work Resource Allocator is engined by Machine Learning algorithms to predict traffic

demands, translate them into specific operational thresholds, identify a topology to

deliver incoming traffic according to an SLA and operational costs and, eventually, to

deploy it through the SDN controller. To this end, the system processes signals from

multiple network nodes and end-to-end QoS and QoE metrics. The Network Resource

Allocator takes measurements from GStreamer players and network probes and predicts

network KPIs such as path bandwidth and latency directly related to QoE.

The experiment results of the Network Resource Allocator system conclude that the

more complex the infrastructure and the wider the media service demand, the more

confident this approach is. Furthermore, the experiment setup demonstrates that it

is possible to integrate machine learning methods in an SDN controller to forecast re-

source demand and to react appropriately, so that this one can learn to instantiate the

better network topology in terms of KPIs. The learning can be done based on experi-

ence gathered in previous measurements. The proposed Network Resource Allocator
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system is a reliable solution that addresses the problems for the flexible creation of an

elastic network in an automated manner. Thus, it enables the controller to change the

network topology instantiating or removing NFVs to forward the incoming traffic in an

efficient way, removing the unused parts of a network to release these resources.

The Network Resource Allocator has been tested and validated to enforce the net-

work with the needs of forwarded services for three defined video streaming traffic

patterns, Netflix, UStream and Skype like services.

In the future we plan to add HAS specific QoE metrics such as initial delay, stalling

time, number of quality switches and inter switching times by means of the eMOS scores

[Claeys et al.14a, Mok et al.11] coming from media players [Martin et al.17], as well as

to go deeper into the topology mutation considering the current topology. Depending

on the performance improvement and efficiency rates for the candidate topology, it

could be more convenient to keep the current one rather than apply a disruptive topol-

ogy. This policy would help to minimize the impact on the transition period from the

current topology to the one obtaining better performance and more efficient resource

utilization.
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7
Conclusions

This research work has presented four solutions to improve the QoE when accessing

to media services on top of novel delivery solutions and architectures for 5G networks.

Furthermore, the feasibility of all the contributions has been demonstrated implement-

ing and deploying them in operational and realistic setups, not simulating theoretical

performance. To this end, different corners have been considered to provide an en-

hanced media service experience, from the media servers, the delivery network and the

media players. Consequently, four main challenges have been addressed to improve

the QoE on media services: massive client connections, dense client cells, edge video

analytics and self-organising networks.

In respect of massive client connections, a system to exploit distributed tagging re-

sources is introduced, called SaW, which aims to complement a Web-based social media

service with an elastic cloud of spontaneous connected resources to run delay-tolerant

tasks under a Mobile as an Infrastructure Provider (MaaIP) model.

With the aim of achieving enhanced and automatic media tagging over social media

datasets, the SaW solution enables the following aspects:

• Foster background dispatching delay-tolerant background tasks of media analy-

sis over connected clients. SaW deploys a pure Web platform for video analysis,

adding a delivering computing layer to the stack of the HTML5-based main ser-

vice.
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• Provide high elasticity and address the availability of resources related to the spon-

taneous presence of users. By means of exploiting high user availability density,

the elasticity takes advantage of delay-tolerant target scenarios, with a heteroge-

neous community of client devices characterised by the assorted availability of

resources.

• Cope with the execution of hardware-accelerated image processing tasks in the

background, according to the capabilities of each device. The computing tasks

are embedded in the foreground social content without draining the bandwidth

or affecting the perceived QoE.

• Extend a previous performance model that was focused on CPU resources, by ag-

gregating GPU capabilities to determine suitable scenarios for this MaaIP model.

The model illustrates a comparison of distributed computing setups with a lo-

cal server solution. The maximum benefit is obtained for higher delay-tolerant

computational loads with independent tasks capable of being distributed to idle

devices, thus compensating the task scheduling management and consolidation

overload of the server.

A proof-of-concept implementation of the proposed architecture has also been

presented, to evaluate the proposed approach, including existing WebGL and WebCL

technologies. The results of the experiments confirm the benefits of the MaaIP ap-

proach when the number of devices is high, and the tasks are independent and can be

queued.

Regarding dense client cells, different mechanisms have been proposed as a solu-

tion to fair and efficient radio link utilization in dense client environments, such as

a bitrate adaptation algorithm, named LAMB-DASH. LAMB-DASH aims to maximize

the QoE through a client-driven selection. LAMB-DASH considers the network condi-

tions during the bitrate adaptation process, while still maintaining the ability to react to

sudden bandwidth fluctuations in the local network.

The LAMB-DASH bitrate adaptation mechanism:

• Performs a live assessment instead of preliminary processing for network featur-

ing.
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• Responds appropriately to different content types and changeable networking

conditions, meaning that the algorithm does not require a priori knowledge.

• Requires a reduced background computation, when compared to heavier and less

flexible alternative computing and optimizing models.

• Exercises a low-complexity heuristic model, based on measurements and estima-

tions from a current stream state.

• Balances QoE in scenarios where several clients compete for the available network

resources.

• Obtains a steady and unbiased radio link utilization across the devices sharing a

radio link.

The algorithm has been implemented and validated on top of a GStreamer client

and tested in a setup where multiple clients share the same path in the network, there-

fore competing for the available bandwidth. Two different scenarios have been explored.

Scenario 1 runs clients synchronized to a common clock joining the live stream at the

same time. Scenario 2 arranges clients joining the live stream randomly. Here, they

experience stochastic network bandwidth fluctuations.

The results of both scenarios show that the algorithm achieves fairness, since the

clients tend to have the same representation bitrate.

In terms of edge video analytics, this research proposes a reliable CDN and fair ra-

dio link utilization in network edges, by means of exploiting visual analytics on a MEC

system, using MEC4FAIR. MEC4FAIR is a novel solution on top of a mobile SDR network.

The MEC4FAIR system:

• Performs real-time updates in the manifest with the available qualities and CDN

endpoints. This vision empowers the role of MEC from ETSI for transparent QoE

improvement and dynamic CDN selection to shield from service degradation and

outages.

• Exploits L2 (link), L3 (network) and L7 (application) metrics to support switching

decisions on HAS quality and CDN provider.
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• Integrates into a real mobile SDR network and performs validation on a real

setup, including an eNodeB and an EPC, checking the performance of an active

component of the video delivery chain at the mobile edge.

The algorithm has been implemented and validated on a real SDR LTE setup where

multiple clients share the same path in the network, therefore competing for the avail-

able bandwidth. Two different scenarios have been explored. The synchronous scenario

runs clients synchronized to a common clock joining the live stream at the same time.

The stochastic scenario arranges clients joining randomly to an on-demand stream.

Here, they experience stochastic network bandwidth fluctuations.

The results of both scenarios show that MEC4FAIR achieves fairness and efficiency,

since the clients tend to have a common and high-quality representation bitrate.

Moreover, in the stochastic scenario, MEC4FAIR plays a significant role in improv-

ing efficiency, in terms of network utilization and quality experienced. Furthermore, the

synchronous scenario introduces a more accurate and stable characterization causing

the hybrid solution to obtain better scores than the stochastic one.

Finally, in terms of self-organising networks, this research proposes an automated

setup of network topology for a forecast demand as a solution to automate network

management in a scalable and real-time manner. A Network Resource Allocator sys-

tem is introduced to dynamically provision the network in a proactive way. It predicts

demand to foresee the amount of network resources to be allocated to cope with the

demand, while keeping the network operation within business ranges. To this end, the

system captures and processes performance signals from multiple network nodes and

end-to-end QoS metrics from all the media players.

Aimed at achieving an optimal network topology to grant a sufficient KPI level for

media service traffic, the Network Resource Allocator system:

• Integrates Machine Learning methods in a SDN controller to forecast resource

demand and to react appropriately, so that this one can learn to instantiate the

most efficient network topology in terms of KPIs.

• Learns KPI performance based on experience gathered in previous measurements.

Moreover, unseen cardinalities and topologies must be concluded by the machine

learning algorithm to efficiently cope with the new traffic demand under the SLA

constraints.
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• Works in an automated manner, thus enabling the network controller to change

the network topology instantiating or removing VNFs to forward the incoming

traffic in an efficient way and removing the unused parts of a network to release

these resources.

The Network Resource Allocator has been tested and validated to optimize the net-

work with the needs of forwarded services for three defined video streaming traffic

patterns, Netflix and ADAS-like services, UStream and Enhanced Navigation-like ser-

vices, and Skype and Car2Car-like services. Network Resource Allocator takes measures

from GStreamer players and network probes and predicts network KPIs such as path

bandwidth and latency directly related to QoS.

The results from the experiments carried out on the proposed Network Topology

Allocator conclude that it approximates the most efficient network topology for a pre-

dicted demand assuring bandwidth and latency performance KPIs which satisfy QoS

and consequent SLA constraints. Moreover, the accuracy of the results is better as the

cardinality of the network is bigger and the demands in bandwidth are higher, while the

fidelity drops for tiny setups and audiences. So, the more complex the infrastructure and

the wider the media service demand, the more confident the approach becomes. Go-

ing beyond, the Network Topology Allocator is able to conclude unseen configurations

(cardinality and topology type) and deploy them to exercise the new network.

In a nutshell, this research work provides progress beyond the state-of-the-art for

QoE-driven media delivery in 5G networks. Proposed architectures, techniques and

systems compiles presenting four main contributions on different aspects of the four

identified challenges. First, a platform to complement the media server with a solu-

tion to create an elastic cloud of tagging resources populated by massive client devices

spontaneously connected to a social media service. The goal of the media service is to

engage users with an enhanced browsing and search of the contents catalogue. Second,

a client-side bitrate adaptation mechanism brings fair and efficient radio link utiliza-

tion in dense client environments to have a steady, consistent and unbiased QoE across

all the media players sharing a common delivery path. Third, exploiting zero-latency

and geo-based video analytics granted by novel 5G MEC architecture systems, a MEC

system working on a real SDR setup is presented which achieves a more coordinated
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and fair delivery of media services in dense client environments while shielding the me-

dia players from performance degradation and outages of the employed CDN. Finally,

a network resource allocator provisions an efficient network topology and cardinality

to shield the QoE of a traffic demand forecast for media services. To this end, the sys-

tem is integrated on top of 5G SDN and VNF technologies to achieve agile, dynamic,

preventive and automated network operation.

7.1 Future Work

During the research activities, the literature review, the design of solutions, the imple-

mentation of operational ranges and the analysis of testing results, different candidate

aspects to complement or extend the research presented in this thesis were identified.

The main directions are compiled as follows:

• In the research line related to media delivery on social services the blockchain

and other distributed ledger technologies (DLTs) must be explored which enable

parties, who are geographically distant or have no trust in each other, to inter-

act and exchange value and information on a peer-to-peer basis with fewer to

non-existent central intermediaries.

• In dense client environments, we plan to carry out future work on providing dy-

namic solutions while downloading a segment, in case of detection of sudden

changes to network conditions, featuring a multi-pass reactive approach. Fur-

thermore, we will analyse how the proposed solution will work with Common

Media Application Format (CMAF) format 1. CMAF will consolidate all the in-

dustry existing formats for HAS into one. The CMAF specification defines the

usage of a subset of commonly used standardized media technologies and profiles.

These include ISOBMFF, MPEG-4 AVC, HEVC, AAC, VTT, and Common Encryp-

tion (CENC). This specification has been proposed in the Moving Picture Experts

Group (MPEG), where it is reviewed and updated by a wide range of representa-

tives from the industry, on track to become an international standard. However,

1MPEG website for CMAF: https://mpeg.chiariglione.org/standards/mpeg-a/

common-media-application-format
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the feature that is more interesting to study is the performance for low latency me-

dia delivery over HAS protocols. CMAF enables chunks including just one frame,

which will put completely different dynamics into play in the pull mode basis.

• In the area of MEC for video analytics we plan to perform experiments with repre-

sentative CDN vendors and expand the MEC system with prediction technologies,

including data fusion and aggregation in a distributed manner to forecast degra-

dation and outages issues with CDN providers, while fitting to a well-balanced

trade-off between the target QoE and the operational costs.

• Finally, regarding the system for network resource allocation, further work will

be done on two main aspects. On the one hand, the penalties to avoid the sys-

tem to transform the running topology into another completely different. These

penalties would establish constraints to apply new setups which do not impact

negatively on the network performance along the transition. On the other hand,

to explore network slices for different groups of users and applications with het-

erogeneous SLAs. Moreover, we plan to add HAS specific QoS metrics such as

initial delay, stalling time, number of quality switches and inter switching times.
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A
Other Publications

List of other publications:

A.1 Broadcast delivery system for broadband media con-

tent

Title: Broadcast delivery system for broadband media content

Authors: Josu Gorostegui, Angel Martin, Mikel Zorrilla, Iñaki Alvaro and Jon Montalban

Proceedings: Broadband Multimedia Systems and Broadcasting (BMSB2017)

Pages: 1-9

Publisher: IEEE

Year: 2017

DOI: http://dx.doi.org/10.1109/BMSB.2017.7986179

Abstract: The pace of technology adoption in the broadcast industry is moving for-

ward slower than in broadband media services because of different aspects. While the

broadband penetration rate is growing sharply, the required investment to embrace the

broadband content catalogue into the actual broadcast solutions is a major challenge.

Nowadays, broadband media services offers more content by means of Internet as the

main distribution system for media exchange. Due to the success of Over-the-top (OTT)
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services, there is no doubt that a global transition is about to come. Nonetheless, the

broadcast transition period and required investments are considerably higher than in

the broadband market. The principal aim of this paper is to assess the key points to take

into account to assure the compatibility of OTT content in a broadcast environment. This

paper dives into the implementation considerations to make broadband purpose video

processing frameworks ready for broadcast pipelines. Market solutions usually perform

transcoding for legacy compatibility needing a big processing capacity while losing fi-

delity during recompression. This approach will generate on the fly live content usable

in broadcast contexts and technical environments while saving storage, mantaining the

original encoded signal when possible. The approach is a reliable and cost-effective me-

dia delivery method optimized for live HTTP-based Adaptive Streaming media and real

time broadcast media delivery with muxing correction. In order to show completeness

and validate the presented aspects this paper describes the performed implementation.

For this purpose, professional tools of broadcast validation and reference broadband se-

quences have been used.

A.2 Dynamic Policy Based Actuation for Autonomic Man-

agement of Telecoms Networks

Title: Dynamic Policy Based Actuation for Autonomic Management of Telecoms Net-

works

Authors: Martin Tolan, Joe Tynan, Angel Martin, Felipe Mogollon

Proceedings: IEEE European Conference on Networks and Communications (EuCNC)

Publisher: IEEE

Year: 2017

Abstract: With the proliferation of IoT in society there is a demand for a suitable network

that is capable of supporting potentially trillions of wireless connected devices. Current

4G technologies is approaching the limits of what is possible with this generation of radio

technology and a suitable replacement is required in order to support the seamless intro-

duction of these devices and their support services. To address this it is planned that the

design of the 5G network should be able to accommodate the connection requirements of
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these devices. Some of the key requirements of 5G is its ability to create a network that is

highly optimized so as to make maximum use of the available spectrum and data trans-

mission rates to give as high capacity and QoS as possible, and because of the sheer size

of the network and number of devices connected, it will be necessary for the network to

largely manage itself and deal with organisation, configuration, security, and optimi-

sation issues. This paper will highlight one approach that is being taken by the CogNet

H2020 project to provide a type of autonomic management based on the output of Ma-

chine Learning that can not only identify current defects but also predict future failures.

This paper will also describe how the CogNet project makes self-healing in reconfigurable

dynamic networks by using of policy based network management actuation for correc-

tion and prevention, and how these policies can be reconfigured based on the updated

knowledge of the Machine Learning.

A.3 Can machine learning aid in delivering new use cases

and scenarios in 5G?

Title: Can machine learning aid in delivering new use cases and scenarios in 5G?

Authors: Teodora Sandra Buda, Haytham Assem, Lei Xu, Angel Martin et al.

Proceedings: Network Operations and Management Symposium (NOMS)

Pages: 1279-1284

Publisher: IEEE

Year: 2016

DOI: http://dx.doi.org/10.1109/NOMS.2016.7503003

Abstract: 5G represents the next generation of communication networks and services,

and will bring a new set of use cases and scenarios. These in turn will address a new set of

challenges from the network and service management perspective, such as network traffic

and resource management, big data management and energy efficiency. Consequently,

novel techniques and strategies are required to address these challenges in a smarter way.

In this paper, we present the limitations of the current network and service management

and describe in detail the challenges that 5G is expected to face from a management per-

spective. The main contribution of this paper is presenting a set of use cases and scenarios
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of 5G in which machine learning can aid in addressing their management challenges. It

is expected that machine learning can provide a higher and more intelligent level of mon-

itoring and management of networks and applications, improve operational efficiencies

and facilitate the requirements of the future 5G network.

A.4 CogNet: A network management architecture featur-

ing cognitive capabilities

Title: CogNet: A network management architecture featuring cognitive capabilities

Authors: Lei Xu, Haytham Assem, Imen Grida Ben Yahia, Teodora Sandra Buda, Angel

Martin et al.

Proceedings: European Conference on Networks and Communications (EuCNC)

Pages: 325-329

Publisher: IEEE

Year: 2016

DOI: http://dx.doi.org/10.1109/EuCNC.2016.7561056

Abstract: It is expected that the fifth generation mobile networks (5G) will support both

human-to-human and machine-to-machine communications, connecting up to trillions

of devices and reaching formidable levels of complexity and traffic volume. This brings a

new set of challenges for managing the network due to the diversity and the sheer size of

the network. It will be necessary for the network to largely manage itself and deal with

organisation, configuration, security, and optimisation issues. This paper proposes an

architecture of an autonomic self-managing network based on Network Function Virtu-

alization, which is capable of achieving or balancing objectives such as high QoS, low

energy usage and operational efficiency. The main novelty of the architecture is the Cogni-

tive Smart Engine introduced to enable Machine Learning, particularly (near) real-time

learning, in order to dynamically adapt resources to the immediate requirements of the

virtual network functions, while minimizing performance degradations to fulfill SLA re-

quirements. This architecture is built within the CogNet European Horizon 2020 project,

which refers to Cognitive Networks.
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A.5 Machine Learning for Autonomic Network Manage-

ment in a Connected Cars Scenario

Title: Machine Learning for Autonomic Network Management in a Connected Cars Sce-

nario

Authors: Gorka Velez, Marco Quartulli, Angel Martin, Oihana Otaegui, Haytham Assem

Proceedings: 10th International Workshop on Communication Technologies for Vehi-

cles

Pages: 111-120

Publisher: Springer

Year: 2016

DOI: http://dx.doi.org/10.1007/978-3-319-38921-9_12

Abstract: Current 4G networks are approaching the limits of what is possible with this

generation of radio technology. Future 5G networks will be highly based on software, with

the ultimate goal of being self-managed. Machine Learning is a key technology to reach

the vision of a 5G self-managing network. This new paradigm will significantly impact

on connected vehicles, fostering a new wave of possibilities. This paper presents a prelim-

inary approach towards Autonomic Network Management on a connected cars scenario.

The focus is on the machine learning part, which will allow forecasting resource demand

requirements, detecting errors, attacks and outlier events, and responding and taking

corrective actions.

A.6 Live HDR Video Broadcast Production

Title: Live HDR Video Broadcast Production

Authors: Igor Olaizola, Angel Martin and Josu Gorostegui

Book: High Dynamic Range Video: Concepts, Technologies and Applications

Pages: 155-170

Publisher: Academic Press

Year: 2016

DOI: http://dx.doi.org/10.1016/B978-0-12-809477-8.00008-X

Abstract: Among the multiple uses of HDR video, live events can get a big benefit from

189

http://dx.doi.org/10.1007/978-3-319-38921-9_12
http://dx.doi.org/10.1016/B978-0-12-809477-8.00008-X


QOE ON MEDIA DELIVERY IN 5G ENVIRONMENTS

HDR video, especially when it is recorded outdoors with uncontrolled light conditions.

HDR technology can provide a better adaptation of cameras to rapidly changing light

conditions such as scenes that combine bright sunny areas with dark shadows (football),

balls that fly with a very bright sky in the background (golf, football), extremely rapid

changes in light conditions (subjective cameras in Formula 1, concerts with flashing

lights), etc. All of these cases introduce two main technological challenges: the real-time

factor that does not allow any manual intervention nor a computationally demanding

image data processing step, and the fact that the end-to-end production pipeline has to

preserve all the dynamic range information.

A.7 User interface adaptation for multi-device Web-based

media applications

Title: User interface adaptation for multi-device Web-based media applications

Authors: Mikel Zorrilla, Iñigo Tamayo, Angel Martin and Ana Dominguez

Proceedings: International Symposium on Broadband Multimedia Systems and Broad-

casting (BMSB)

Pages: 1-7

Publisher: IEEE

Year: 2015

DOI: http://dx.doi.org/10.1109/BMSB.2015.7177251

Abstract: The quest to transform the television viewing experience into a digital media

service is happening thanks to the addition of companion screens to the TV. Multi-device

experiences become more intuitive and easier to use federating cooperative devices. They

also bring new creative opportunities to schedule and distribute interactive content syn-

chronised with the TV programme through any connected screen. The rise of HTML5

to develop responsive applications across multiple devices adds a significant amount of

improvement enabling universal delivery. A key challenge to harness the power of navi-

gation engaged with the story on the TV is the responsive design of a unique application

spanning all the available screens. This paper presents user tests in order to explore the
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relevant parameters to create responsive User Interfaces for Web-based multi-device ap-

plications driven by media content.

A.8 Reaching devices around an HbbTV television

Title: Reaching devices around an HbbTV television

Authors: Mikel Zorrilla, Angel Martin, Iñigo Tamayo, Sean O’Halpin and Dominique

Hazael-Massieux

Proceedings: International Symposium on Broadband Multimedia Systems and Broad-

casting (BMSB)

Pages: 1-7

Publisher: IEEE

Year: 2014

DOI: http://dx.doi.org/10.1109/BMSB.2014.6873499

Abstract: HbbTV takes advantage of the opportunity to expand the broadcast experi-

ence exploiting the common media content. However, the time to reach the audience in a

different way has come. Aware of the privileged position of the TV in the living room, man-

ufacturers and marketplace app developers have fostered their own bunch of solutions

to integrate the big TV display with the mobile ones, to consume broadband media but

ignoring the broadcast traction potential. One major challenge of all these approaches

is the resource discovery and association step, where different strategies have been em-

ployed. A TV content-centric approach opens new possibilities. First, the possibility to

enhance the offer services scheduled on a time basis according to the broadcast signalling.

Second, the awareness of a common media been played at the same temporal and spa-

tial environment can support the discovery and association of surrounding handheld

devices. This paper analyses the capacity of common visual and acoustic environmental

patterns to build enhanced discovery and association protocols, concluding a multi-step

combined solution as a suitable approach for broadcast-related second screen services.
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A.9 Cloud session maintenance to synchronise HbbTV ap-

plications and home network devices

Title: Cloud session maintenance to synchronise HbbTV applications and home net-

work devices

Authors: Mikel Zorrilla, Angel Martin, Iñigo Tamayo and Igor Olaizola

Proceedings: International Symposium on Broadband Multimedia Systems and Broad-

casting (BMSB)

Pages: 1-6

Publisher: IEEE

Year: 2013

DOI: http://dx.doi.org/10.1109/BMSB.2013.6621754

Abstract: Second screen services encourage TV audience to enjoy new forms of interaction

engaging users around TV content as a main thread. This paper describes a standard-

based solution for second screen services synchronised with the broadcast content. The

user perceives an enhanced broadcast experience enriched with multimedia, textual

and social Internet content through multiple devices. The presented end to end solu-

tion delegates to a server the cloud session maintenance in order to pair and synchronise

HbbTV applications and HTML5- based second screen ones overcoming existing het-

erogeneous network interfaces barriers of current technological alternatives. The server

decides dynamically the behaviour of the different applications regarding the user con-

text, according to his preferences, device features and number of simultaneous views. It

also manages the user interaction providing a full synchronised experience thanks to an

event-driven mechanism on top of Websockets and AJAX. The paper analyses the perfor-

mance of the proposed system evaluating the user interaction latency, the concurrency

volume of the server and the interdependence, concluding this solution as a suitable ap-

proach for broadcast-related second screen services.

A.10 Reference Model for Hybrid Broadcast Web3D TV

Title: Reference Model for Hybrid Broadcast Web3D TV

Authors: Igor García Olaizola, Josu Pérez, Mikel Zorrilla, Angel Martin, Maider Laka
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Proceedings: 3D Web Technology (Web3D)

Pages: 177-180

Publisher: ACM

Year: 2013

DOI: http://dx.doi.org/10.1145/2466533.2466560

Abstract: 3DTV can be considered as the biggest technical revolution in TV content cre-

ation since the black and white to color transition. However, the big commercial success

of current TV market has been produced around the Smart TV concept. Smart TVs con-

nect the TV set to the web and introduce the main home multimedia display in the app

world, social networks and content related interactive services. Now, this digital con-

vergence can become the driver for boosting the success of 3DTV industry. In fact, the

integration of stereoscopic TV production and Web3D seems to be the next natural step of

the hybrid broadband-broadcast services. We propose in this paper a general reference

model to allow the convergence of 3DTV and 3D Web by defining a general architecture

and some extensions of current Smart TV concepts as well as the related standards.

A.11 HTML5-based System for Interoperable 3D Digital

Home Applications

Title: HTML5-based System for Interoperable 3D Digital Home Applications

Authors: Mikel Zorrilla, Angel Martin, Jairo R. Sanchez, Iñigo Tamayo, Igor G. Olaizola

Proceedings: Digital Home (ICDH)

Pages: 206-214

Publisher: IEEE

Year: 2012

DOI: http://dx.doi.org/10.1109/ICDH.2012.21

Abstract: Digital home application market shifts just about every month. This means

risk for developers struggling to adapt their applications to several platforms and market-

places while changing how people experience and use their TVs, smartphones and tablets.

New ubiquitous and context-aware experiences through interactive 3D applications on
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these devices engage users to interact with complex 3D scenes in virtual applications. In-

teractive 3D applications are boosted by emerging standards such as HTML5 and WebGL

removing limitations, and transforming the Web into a horizontal application frame-

work to tackle interoperability over the heterogeneous digital home platforms. Developers

can apply their knowledge of web-based solutions to design digital home applications,

removing learning curve barriers related to platform-specific APIs. However, constraints

to render complex 3D environments are still present especially in home media devices.

This paper provides a state-of-the-art survey of current capabilities and limitations of the

digital home devices and describes a latency-driven system design based on hybrid remote

and local rendering architecture, enhancing the interactive experience of 3D graphics on

these thin devices. It supports interactive navigation of sophisticated 3D scenes while pro-

vides an interoperable solution that can be deployed over the wide digital home device

landscape.

A.12 End to end solution for interactive on demand 3d me-

dia on home network devices

Title: End to end solution for interactive on demand 3d media on home network de-

vices

Authors: Mikel Zorrilla, Angel Martin, Felipe Mogollon, Julen García, Igor G. Olaizola

Proceedings: Broadband Multimedia Systems and Broadcasting (BMSB)

Pages: 1-6

Publisher: IEEE

Year: 2012

DOI: http://dx.doi.org/10.1109/BMSB.2012.6264228

Abstract: Smart devices have deeply modified the user consumption expectations get-

ting used to rich interactive experiences around new media services. In this emerging

landscape, TV rises as the central media device integrating the home network ecosystem.

In the race to create more dynamic and customizable content, computer generated 3D

graphics get a prominent position combined with video and audio to provide immersive
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and realistic environments in advanced applications where the user interaction is cru-

cial. However, current home devices lack the required specific hardware to perform it. The

proposed 3DMaaS System faces this scenario by performing 3D cloud rendering through

streaming sessions with each client device, taking benefit of the Internet connectivity and

video streaming management capabilities that most of thin devices have. In order to deal

with the wide spectrum of device features, 3DMaaS provides a complete set of stream-

ing formats, including RTSP, HLS and MPEG-DASH, that also fits new trends in media

consumption brought by HTML5 and HbbTV. This paper presents latency performance

profiling over the different streaming protocols which have a direct influence on the user

interaction experience.
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Acronyms

ACID Atomic, Consistent, Isolated, Durable

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

AVC Advanced Video Coding

AWS Amazon Web Services

BAT Basic Attention Token

BS Base Station

CAPEX Capital Expenditure

CDF Cumulative Distribution Function

CDN Content Delivery Network

CENC Common Encryption Scheme

CMAF Common Media Application Format

cMOS chunk Mean Opinion Score

CP Content Providers

CQI Channel Quality Indicators

CRAN Cloud Radio Access Network
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CSRF Cross-Site Request Forgery

DASH Dynamic Adaptive Streaming over HTTP

DLT Distributed Ledger Technologies

DoS Denial of Service

ECDF Empirical Cumulative Distribution Function

eMOS estimated Mean Opinion Score

EPC Evolved Packet Core

ETSI European Telecommunications Standards Institute

GOP Group Of Pictures

HAS HTTP-based Adaptive Streaming

HDR High Dynamic Range

HEVC High Efficiency Video Coding

HFR Higher Frame Rate

HSS Home Subscriber Server

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IMSI International Mobile Subscriber Identity

IoT Internet of Things

IP Internet Protocol

IT Information Technology

ITU International Telecoms Union
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KPI Key Performance Indicator

LTE Long Term Evolution

M2M Machine to Machine

MaaIP Mobile as an Infrastructure Provider

MaaSB Mobile as a Service Broker

MaaSC Mobile as a Service Consumer

MaaSP Mobile as a Service Provider

MCC Mobile Cloud Computing

MCS Modulation and Coding Scheme

MEC Multi-access Edge Computing

MGC Mobile Grid Computing

MME Mobility Management Entity

MNO Mobile Network Operator

MOS Mean Opinion Score

MPD Media Presentation Description

MPEG Moving Picture Experts Group

NAT Network Address Translation

NFV Network Function Virtualization

NoSQL Not only Structured Query Language

NTP Network Time Protocol

OAI OpenAirInterface
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OPEX Operational Expenses

OTT Over The Top

P2P Peer-to-Peer

PaaS Platform as a Service

PDN-GW Packet Data Network Gateway

PPS Picture Parameter Set

QL Quality Level

QoE Quality of Experience

QoS Quality of Service

RAN Radio Access Network

RB Resource Block

RDBMS Relational Database Management Systems

RTT Round Trip Time

S-GW Serving Gateway

SaaS Service as a Service

SaW Social at Work

SDN Software Defined Network

SDR Software Defined Radio

SLA Service Level Agreement

SLO Service Level Object

SON Self-Organising Network
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SPS Sequence Parameter Set

SSCS SaW Scalable Cloud Server

SSIM Structural Similarity

SVC Scalable Video Coding

TTL Time To Live

UE User Equipment

UHD Ultra High Definition

USRP Universal Software Radio Peripheral

vMOS video Mean Opinion Score

VNF Virtual Network Function

WCG Wider Colour Gamut
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