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Resumen 

El zooplancton, componente animal del plancton, está compuesto por organismos heterótrofos 

que viven en estado de flotación en las masas de agua, a merced de la corriente. Estos 

organismos pueden clasificarse de acuerdo a diversos criterios, como es su tipo de ciclo vital. 

Por un lado, nos encontramos aquellos organismos que pasan toda su vida viviendo en estado de 

flotación y formando parte del plancton, los denominados organismos holoplanctónicos. Por 

otro lado, están aquellos que, tras un periodo de vida planctónica, mayormente en estado 

larvario, pasarían a convertirse en necton o nadadores activos o a formar parte de la fauna 

bentónica, como organismos móviles o como organismos sésiles adheridos a algún sustrato, 

estos serían los organismos meroplanctónicos. Otro tipo de clasificación se realiza en torno a su 

tamaño, que oscila desde las pocas micras (nanoplancton o microplancton), hasta varios 

centímetros o incluso metros (macroplancton o megaplancton), siendo el mesozooplankton la 

fracción intermedia. Dicha fracción engloba a todos aquellos organismos comprendidos entre 

las 200 micras y los 2 centímetros, incluyendo los copépodos, grupo mayoritario del 

zooplancton, así como a la mayoría de larvas meroplanctónicas. Debido a su composición, el 

mesozooplancton es de gran relevancia en la literatura científica, siendo ampliamente 

muestreado en programas de monitoreo y series temporales. 

El zooplancton es una parte esencial de las redes tróficas marinas, siendo productores 

secundarios que se alimentan de fitoplancton (componente vegetal del plancton y productores 

primarios), haciendo de enlace trófico con organismos de niveles superiores como son los peces 

pelágicos. Entre otras importantes funciones de estos organismos estaría su participación en la 

recirculación del nitrógeno mediante su excreción y también en la bomba de carbono, ayudando 

al transporte de este elemento a las profundidades de los océanos mediante sus migraciones 

verticales. La composición y abundancia del zooplancton afecta directamente al reclutamiento 

de peces que dependen de ellos como fuente de alimento, las cuales pueden tener relevancia 

pesquera, siendo importantes recursos económicos y alimentarios para el ser humano, y cuyo 

estado actual, tras décadas de sobreexplotación, requiere de una cuidadosa atención, 

comprensión y manejo. 

Actualmente, se está dando una situación en la el cambio climático producido por el hombre 

tiene profundas implicaciones en los ecosistemas marinos, así como en los sistemas sociales y 

económicos que son sustentados por los mismos. A día de hoy, prácticamente la mitad de las 

áreas marinas se encuentran afectadas por la acción de diferentes factores, cuyo origen común 

son las acciones antropogénicas. Los organismos zooplanctónicos, debido a sus características, 

se constituyen como buenos centinelas de dicho cambio climático. Son organismos 

poiquilotermos altamente sensibles a cambios de temperatura, que afecta a su fisiología, 
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además, gracias a sus rápidos ciclos vitales, son capaces de responder en escalas de tiempo 

cortas a las variaciones de aquellos factores ambientales que les afectan. Asimismo, debido a 

que por norma general estos organismos no son explotados de forma comercial, sus patrones de 

cambio a largo plazo no son confundidos con tendencias de explotación. Comprender como la 

composición y abundancia del zooplancton varía en función de la acción de factores extrínsecos 

sigue siendo una tarea compleja, pero de gran interés, ya que permitiría comprender sus 

propiedades ecológicas y ayudar a predecir los efectos potenciales del cambio climático. 

La temperatura del agua, la salinidad y la concentración de clorofila a (como indicador de 

abundancia de fitoplancton), se encuentran entre las variables ambientales que más afectan al 

zooplancton y que, además, son medidas de forma rutinaria en los programas de monitoreo. La 

temperatura, entre otros efectos, ejerce un fuerte control en el ciclo estacional del zooplancton, 

actuando como punto de señalización temporal para los procesos recurrentes producidos en 

dicha escala temporal; la salinidad afecta a la distribución de las diferentes especies debido a las 

tolerancias fisiológicas de las mismas a los cambios de esta variable; la clorofila a se encuentra 

contenida en el fitoplancton, principal fuente de alimento de aquellas especies herbívoras o de 

alimentación omnívora que dependen de esta fuente de alimento para su supervivencia. Por otro 

lado, además de estas variables medidas in situ, se encuentran las teleconexiones o índices 

climáticos, que son “anomalías a gran escala, tanto espacial como temporal, que afectan a la 

variabilidad de la circulación atmosférica”. Existen múltiples de estos índices, pero en el 

océano Atlántico los de mayor importancia son los de la “NAO” (North Atlantic Oscillation 

Index), la “EA” (Eastern Atlantic pattern) y la “AMO” (Atlantic Multidecadal Oscillation). Los 

registros de variabilidad de estos índices, muestran una alternancia entre fases que ha podido ser 

relacionada con cambios en la abundancia de organismos zooplanctónicos, además de 

interaccionar con las variables ambientales modificando sus patrones y, a su vez, afectando a los 

ecosistemas marinos.  

Existen diferentes tipos de variación que determinan la abundancia y estructura de la comunidad 

zooplanctonica. Un ejemplo son las variaciones temporales, la estacional o ciclo que ocurre a lo 

largo de un año, es de gran importancia debido a la cantidad de cambios bióticos y abióticos 

involucrados. Por otro lado, se encuentra el gradiente espacial, donde la distribución de 

zooplancton puede mostrar variaciones en función de las diferentes zonas climáticas englobadas 

dentro de un gradiente latitudinal. Además, gradientes como el costero-oceánico, también ha 

sido relacionado con cambios en la estructura de la comunidad, con especial influencia de las 

intrusiones de aguas oceánicas en ecosistemas de plataforma. Los ecosistemas situados a 

diferentes latitudes están sujetos a distintos ciclos anuales de temperatura y longitud diurna, 

mostrando patrones estacionales característicos, desde el ecuador a los polos. La acción de 

factores que actúan en escalas mucho menores también puede causar cambios en los 
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ecosistemas marinos costeros y de la plataforma continental, como es la descarga de sistemas 

fluviales o el afloramiento costero. Además, también existen factores de estrés ambiental de 

origen antropogénico, como el vertido de aguas residuales, susceptibles de modificar los ciclos 

normales del zooplancton. 

Existe la posibilidad de que se produzcan cambios en los anteriormente mencionados patrones 

estacionales del zooplancton, o lo que sería lo mismo, alteraciones en su fenología (momento de 

la ocurrencia de los fenómenos biológicos de ritmo periódico). Estas alteraciones causadas 

principalmente por la influencia de factores ambientales, pueden tener repercusiones como el 

posible desacople entre presas (zooplancton) y depredadores, afectando negativamente mediante 

un control de abajo hacia arriba, o lo que sería lo mismo, organismos de niveles inferiores 

afectando a la productividad de los organismos de niveles superiores. A escalas mayores de la 

anual, las variaciones interanuales en la abundancia de zooplancton, pueden producirse en 

respuesta a los cambios naturales de las variables abióticas, causando patrones de cambio en los 

organismos que pueden ser progresivos o bruscos. Cambios progresivos producen tendencias de 

cambio gradual o ajuste de la comunidad de zooplancton al seguir esta poco a poco la 

variabilidad ambiental. Los cambios bruscos, pueden producir fenómenos denominados cambio 

de régimen, causando una alteración de la composición y abundancia de la comunidad, evento 

producido al cruzarse un límite de tolerancia de los organismos o al cruzar un umbral ambiental 

que lo desencadene. 

Todos los estudios que se realizan sobre los distintos modos de variabilidad del zooplancton, 

con mención especial de aquellos de gran escala temporal, son posibles gracias a la existencia 

de programas de monitoreo a largo plazo. Estos programas, mediante la recolección periódica y 

sistemática de muestras, acumulan extensas bases de datos que permiten seguir la variabilidad 

temporal del zooplancton y evaluar si los factores ambientales, que potencialmente pueden 

causar un efecto en las comunidades biológicas, explican los cambios observados. Existen 

diferentes estrategias de monitoreo continuado de zooplancton marino, por un lado, estarían 

aquellos programas de muestreo que cubren un área extensa, como es el “Continuous Plankton 

Recorder” o CPR, aparato arrastrado por buques mercantes en rutas comerciales, en activo 

desde 1931 y que cuenta con cuarenta zonas de acción en el Atlántico Norte. Por otro lado, 

están los puntos de monitoreo espacialmente fijos en aguas costeras o de plataforma continental, 

donde, además de muestras biológicas, se realizan mediciones periódicas de variables 

ambientales. Actualmente existen sesenta y dos puntos de muestreo con estas características en 

el Atlántico Norte, cubriendo un amplio rango de ambientes hidrográficos. Las series 

temporales de zooplancton obtenidas de estos programas de monitoreo contienen información 

muy extensa, pero aun así actualmente siguen estando poco utilizadas para la realización de 
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estudios comparativos y, en los pocos casos que han sido utilizadas, solo se han evaluado las 

dinámicas temporales de unas pocas especies. 

La Provincia de Plataformas del Atlántico Noreste, clasificación realizada de acuerdo a 

diferencias entre los patrones temporales del zooplancton y de las variables observadas en áreas 

contrastantes, se extiende desde el norte de la Península Ibérica hasta el Canal de las Islas 

Faroe-Shetland y la Fosa Noruega, y posee programas de monitoreo fijo dispuestos a lo largo de 

un amplio gradiente latitudinal. 

De acuerdo a lo anteriormente mencionado, queda claro que los organismos zooplanctónicos 

tienen la capacidad de actuar como buenos centinelas del cambio climático, por lo que el 

conocimiento de sus respuestas ante factores ambientales y en diferentes escalas de variación, 

puede ser muy útil para predecir los posibles cambios ecosistémicos en el futuro y las 

potenciales respuestas al cambio climático en el que actualmente se encuentra el planeta. A 

partir de los estudios realizados hasta la fecha, existe una comprensión limitada de los patrones 

de cambio de la comunidad zooplanctonica en áreas extensas y del efecto de sus variables 

ambientales. Esto se ha debido principalmente al empleo de periodos de tiempo diferentes o al 

uso de una cobertura espacial y/o taxonómica limitada. Por lo tanto, muchas cuestiones 

permanecen sin resolver en cuanto a la coherencia de patrones temporales dentro de gradientes 

latitudinales, entre diferentes taxones dentro de la comunidad de zooplancton y del efecto que 

ejercen las variables ambientales, todo ello hablando dentro del contexto geográfico de la 

Provincia de Plataformas del Atlántico Noreste. Debido a esto, series temporales de abundancia 

de zooplancton, así como de valores de variables ambientales procedentes de cuatro sitios de 

monitoreo situados a lo largo de un gradiente latitudinal dentro de la Provincia de Plataformas 

del Atlántico Noreste (desde el golfo de Bizkaia con los sitios denominados U35 y B35, 

pasando por el Canal de la Mancha, con el sitio L4 y hasta el Mar del Norte, con el sitio SH) y 

para el periodo de tiempo 1999 – 2013, fueron empleados para la realización de diferentes 

análisis comparativos. Dos de estos sitios, los situados en la misma latitud dentro del Golfo de 

Bizkaia (B35 y U35), encontrándose bajo un efecto de influencia antropogénica y estado trófico 

diferente. Es importante recalcar, que, con el objetivo de tener un punto de vista holístico de las 

dinámicas de población, los análisis realizados en el presente trabajo se llevaron a cabo tanto al 

nivel de taxones individuales como de comunidad. 
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La presente tesis partió de la siguiente hipótesis principal: 

 

“La estructura de la comunidad del zooplancton, la abundancia de sus componentes y 

sus patrones estacionales e interanuales de variabilidad, dentro de la Provincia de Plataformas 

del Atlántico Noreste, presentan diferencias causadas por la latitud y/o estado trófico”   

 

Siendo los cinco objetivos específicos de la presente tesis los siguientes: 

 

1. Extraer y comparar la magnitud de las variaciones del mesozooplancton a escala 

interanual, estacional y residual, y sus patrones interanual y estacional durante el 

periodo 1999 – 2013 en cuatro sitios de monitoreo que difieren en latitud y estado 

trófico, dentro de la Provincia de Plataformas del Atlántico Noreste. 

 

2. Evaluar y comparar el papel de los factores ambientales en el ciclo estacional de la 

comunidad de mesozooplancton durante el periodo 1999 – 2013 en los cuatro sitios de 

monitoreo. 

 

3. Evaluar y comparar los cambios en la fenología de los taxones zooplanctónicos, además 

de la influencia de los factores ambientales durante el periodo 1999 – 2013 en los cuatro 

sitios de monitoreo. 

 

4. Comprobar la existencia de cambios graduales o bruscos de la comunidad de 

mesozooplancton durante el periodo 1999 – 2013 en los cuatro sitios de monitoreo y 

evaluar la influencia de las variables ambientales en dichos cambios. 

 

5. Describir y comparar la estructura de la comunidad del mesozooplancton durante el 

periodo 1999 – 2013 en los cuatro sitios de monitoreo y determinar los principales 

factores responsables de las diferencias observadas. 
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En el primer capítulo, se han analizado las diferentes escalas y los distintos patrones de 

variabilidad, en función de la localización latitudinal y el estado trófico. Para ello se utilizó un 

modelo multiplicativo que descompone las series temporales en tres componentes: un 

componente estacional, un componente interanual y un componente residual, referido a eventos 

puntuales. Los resultados mostraron que el sitio con mayor componente de variabilidad 

estacional fue el situado más al norte, SH. El sitio con mayor componente de variabilidad 

interanual fue U35, asociado a un evento atípico de altas abundancias durante el año 2012. Los 

dos sitios que presentaron mayor componente de variabilidad residual fueron B35 y U35, hecho 

relacionado con una frecuencia de muestreo inferior a los sitios de SH y L4 (mensual frente a 

semanal) y también asociado al estrés natural y el producido por las acciones antropogénicas 

que existe en estos sitios. La variabilidad interanual de los taxones no fue coherente entre los 

distintos sitios de estudio, sugiriendo un mayor efecto de las variables ambientales locales que 

de los factores a gran escala. Sin embargo, la mayoría de los taxones si presentaron coherencia 

en su ciclo estacional entre los sitios de estudio, siendo el retraso del máximo anual la 

característica mas común. Las diferencias entre los taxones de primavera-verano fueron 

principalmente relacionadas con la biomasa de fitoplancton, a su vez relacionado con 

diferencias latitudinales y el enriquecimiento en nutrientes de origen antrópico. El retraso 

temporal del enfriamiento del agua, correlacionado positivamente con la latitud, dio cuenta de 

las diferencias observadas entre sitios para aquellos taxones que aumentan en abundancia 

durante la segunda mitad del año. 

En el segundo capítulo se investigó la estacionalidad del zooplancton y los factores 

ambientales que la controlan mediante el uso de métodos multivariantes (análisis de 

redundancia o RDA). Para ello se dividió la comunidad en dos grupos, (i) grupos o taxones 

mayoritarios, que aglutinan varias especies y géneros y (ii) especies y géneros más relevantes de 

copépodos y cladóceros. También se utilizaron las variables ambientales: WT, Chl a y Sal, 

además de los índices climáticos EA, AMO y NAO. La temperatura fue la variable que mejor 

explicó los cambios estacionales observados en la comunidad para los cuatro sitios de estudio. 

Sin embargo, diferencias debidas al estado trófico y a la latitud fueron observadas en la 

estacionalidad de la comunidad de zooplancton, principalmente en los patrones mostrados por 

los taxones que alcanzan su máxima abundancia durante los meses de primavera-verano. Por 

otro lado, el patrón estacional de fitoplancton fue relacionado con el de aquellos taxones que 

alcanzan su máximo durante los meses de otoño e invierno. El porcentaje de variabilidad 

explicada por los factores ambientales aumentó con la latitud y el estado trófico, probablemente 

debido a un incremento en la covariación de la temperatura y la clorofila a, además de por un 

incremento en la regularidad de sur a norte del patrón estacional entre años. También se produjo 

un aumento en la regularidad de la clorofila a con el estado trófico. Cladóceros y larvas de 
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cirrípedo en B35 y U35, así como larvas de equinodermo en L4 y SH fueron los taxones con la 

mayor contribución al patrón de la comunidad de zooplancton, el cual mostró un retraso 

estacional con la latitud y con el estado trófico. 

En el tercer capítulo se evaluó, para los diferentes taxones de la comunidad de zooplancton, los 

cambios en su fenología, la cual se ha sugerido como cambiante debido al calentamiento global, 

durante el periodo 1999 – 2013 y en los cuatro lugares de monitoreo de este estudio. Además, se 

evaluó la influencia en estos cambios de índices climáticos (NAO, EA y AMO) y variables 

ambientales a nivel local (temperatura del agua, salinidad y clorofila a). En general, la 

variabilidad en la fenología del zooplancton fue mayor en los sitios situados mas al sur y mas 

cercanos a la costa (B35 y U35) que en los situados mas al norte y alejados de la costa (L4 y 

SH). Muy pocos taxones de zooplancton presentaron tendencias lineales significativas de 

cambio, pero mayormente se observaron tendencias opuestas en los cambios fenológicos entre 

los sitios situados más al sur (tendencia a ocurrir más tarde a lo largo del periodo de estudio) y 

los sitios situados mas al norte (tendencia a ocurrir antes a lo largo del periodo de estudio). En 

cada sitio, se encontraron grupos de taxones (cuya composición difirió entre sitios) con patrones 

interanuales de cambio fenológico similares, siendo los máximos anuales de dichos taxones 

coincidentes en la misma estación del año. Los índices climáticos (principalmente EA y AMO 

en B35 y U35, EA y NAO en SH) o la temperatura del agua (en L4) mostraron correlaciones 

significativas con las variaciones fenológicas de la mayoría de las agrupaciones de taxones 

sincrónicos, estando en muchos casos, además, correlacionadas con la disponibilidad de 

biomasa de fitoplancton. En el caso en que una única especie dominó su género en todos los 

sitios de estudio (p.ej. Acartia clausi), se observaron tendencias interanuales opuestas en la 

variación de su fenología entre los sitios situados más al sur y los sitios situados más al norte. 

En el cuarto capítulo hemos modelado las posibles tendencias y cambios de tendencia 

mostradas por la comunidad zooplanctonica en los cuatro sitios de estudio durante el periodo 

1999 – 2013. Para ello, compendiamos el estado de la comunidad de zooplancton mediante el 

uso de análisis multivariantes (componentes principales) y posteriormente modelamos las 

variaciones temporales del zooplancton a través de modelos generales aditivos mixtos (General 

Additive Mixed Models (GAMMs)), incluyendo como covariables en los mismos la 

temperatura del agua, la salinidad y la clorofila a. El primer componente principal capturó las 

dinámicas de aquellos taxones de zooplancton cuyo máximo de abundancia ocurre durante el 

periodo principal de crecimiento, esto es de primavera a verano. El segundo componente 

principal capturó las dinámicas de aquellos taxones cuyo máximo ocurre durante el final del año 

(verano – otoño) en contraposición con las de los taxones de desarrollo más temprano. Se 

detectaron tendencias graduales de cambio en L4 para el colectivo de especies cuyo máximo 

ocurre durante el periodo principal de crecimiento, mientras que para los otros tres sitios se 
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encontraron tendencias graduales de cambio entre los taxones tardíos y tempranos La tendencia 

de cambio estuvo restringida al periodo 1999 – 2005 en SH, probablemente en relación a un 

cambio de régimen iniciado previamente a nuestro periodo de estudio. Dentro de los taxones 

seleccionados para su modelado individual, tendencias de incremento y disminución fueron 

observadas, pero ningún taxón mostró el mismo patrón en los cuatro sitios de estudio. Es 

remarcable el caso de Acartia, que mostró tendencias opuestas entre el sitio situado más al norte 

(disminución en SH) y los sitios situados más al sur (aumento en B35 y U35), pero no mostró 

tendencia en el sitio intermedio de L4. La selección de variables ambientes por los modelos 

indicó que la dinámica del zooplancton fue principalmente modulada por la temperatura del 

agua, a pesar de que los cambios producidos por esta variable difirieron entre sitios. La 

interacción entre la temperatura y el mes fue seleccionada como la mayor causa de cambio en la 

estructura de la comunidad en la mayoría de los casos, con la excepción de U35, y en la 

abundancia de los taxones seleccionados en L4. La salinidad y la clorofila a, de forma 

independiente o mediante interacción, mostraron un papel mas variable dependiendo del sitio, y 

fueron principalmente seleccionadas para explicar los cambios del zooplancton en B35 y SH, 

respectivamente. La práctica ausencia de variables ambientales seleccionadas por los modelos 

en U35 se atribuyó a la baja coherencia de los patrones ambientales estacionales observados en 

este sitio. 

En el quinto capítulo se estudió la estructura de la comunidad zooplanctonica presente en cada 

uno de los sitios de estudio durante el periodo 1999 – 2013, determinando, además, los factores 

ambientales que la afectan. Para ello se utilizaron análisis multivariantes (RDAs), además de 

modelos regresivos ortogonales polinómicos, con el objetivo de describir la relación entre la 

abundancia de cada taxón y la temperatura. Para ello, en este trabajo se analizaron por separado 

la comunidad de zooplancton a nivel de grupos taxonómicos amplios y la comunidad 

constituida por cladóceros y copépodos a nivel de género. Para los grupos taxonómicos amplios, 

la latitud fue el factor que mejor explicó las diferencias entre los diferentes sitios, diferencias a 

las cuales el meroplancton contribuyó en mayor medida que el holoplancton. Dichas diferencias 

latitudinales fueron puestas principalmente de manifiesto en la abundancia de doliolidos (más 

abundantes en los sitios situados a baja latitud) y briozoos y larvas de poliquetos (más 

abundantes en el sitio situado a mayor latitud). Los doliolidos, además, fueron los mejores 

indicadores de las diferencias latitudinales dependientes de la temperatura. La interacción entre 

la latitud y la distancia de la costa o la interacción entre salinidad y biomasa de fitoplancton, 

explicaron una parte más pequeña de la variabilidad observada. Las mayores diferencias para las 

comunidades de cladóceros y copépodos reflejaron la influencia oceánica, apareciendo 

Corycaeus y Oncaea mayormente asociados a L4, como indicadores de intrusiones de masas de 

agua oceánicas, y el copépodo nerítico Acartia como dominante en SH, U35 y B35. Los 
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cladóceros Podon y Evadne, mostraron una disminución de sur a norte, mostrando diferencias 

latitudinales mas relacionadas con la salinidad que con la temperatura. A pesar de que la 

consistencia en la identificación de especies limitó la resolución taxonómica de este trabajo, en 

el caso del género Acartia (casi exclusivamente Acartia clausi en todos los sitios), se observó 

una relación común con la temperatura, consecuente con un nicho térmico fijo. 
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Thesis structure 

The present work is organized in eight parts. The first part is a general introduction where we 

introduce relevant aspects of the zooplankton, time series and the state of the art. It is accompanied 

by the main hypothesis of the present work and five individual objectives. The second part is the 

study area, sampling methodology and data pretreatment of this thesis, which is common for 

all the chapters, so with the aim of not repeating this information it only appears once. 

Following, the next five parts are different chapters where different objectives are covered. In the 

first chapter, we aimed to analyze the different patterns of variability of zooplankton (seasonal, 

interannual and residual). In the second chapter, we assessed the environmental factors effect on 

the zooplankton seasonal cycle. In the third chapter, we appraised the patterns in zooplankton 

phenology. In the fourth chapter, we explored the interannual changes produced in the 

zooplankton community. In the fifth chapter, we inspected the structural differences of the 

zooplankton community and the influence of the environmental factors. 

Finally, the eighth part of the present thesis, consists on the general conclusions of this work. 

 

 

 

 

 

 

 

 



A. Fanjul 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General introduction 

3 

 

General introduction 

Zooplankton definition and classification 

Zooplankton is the animal component of the plankton which, according to their mode of nutrition, 

are an assemblage of all phagotrophic organisms (Lenz, 2000). The term zooplankton derives 

from the ancient Greek words “zoon” and “planao”, meaning, respectively, animal and errant, 

drifter or wanderer. This term envelopes those organisms floating and drifting in the water, which 

do not hold sufficient locomotion abilities to bear water masses currents and turbulence. 

Notwithstanding, almost all zooplankton species have developed some means to move or, at least, 

move their vertical position within the water column (Lenz, 2000). 

Zooplankton can be classified as a function of their life cycle. Zooplankton species that spend 

their whole life in the pelagic realm as plankton, are known as holoplankton, whilst those that 

only float and drift in the sea during a certain part of their life cycle being part of the plankton are 

known as meroplankton. Among the latter, we can distinguish between those species that switch 

from plankton to nekton (active swimmers) during their juvenile stage, and those that migrate 

from the pelagic zone to the benthos. Marine zooplankton are an abundant and diverse group 

which includes around seven thousand described species from up to fifteen different phyla 

(Bucklin et al., 2010), which, if we include meroplanktonic organisms this number grows up to 

several ten-thousands species (Lenz, 2000). 

Another classification could be done according to the organism size (Omori and Ikeda, 1992). 

The size of the zooplankters ranges widely, the smallest ones belonging to the nanoplankton (2 – 

20 µm), with heterotrophic flagellates and ciliates (Rassoulzadegan and Sheldon, 1986). 

Pluricellular zooplankton would start at the microplankton (20 – 200 µm) fraction, with small 

crustaceans (i.e. copepod nauplii; Beers et al., 1980), together with large protozoans. On the other 

side of the spectrum we find the largest zooplankters, which belong to the macro (2 – 20 cm) and 

megaplankton fraction (> 20 cm), with organisms such as jellyfish, ctenophores, cephalopods, 

amphipods and tunicates, such as pyrosomes (Craig et al., 2009). Right in the middle of this size-

based classification we find the mesozooplankton fraction (0.2 – 20 mm; Figure 1). This fraction 

is the only size class that covers two orders of magnitude, which is caused by the size spectrum 

of the organisms captured by a mesh size of 200 – 330 µm (Lenz, 2000). Within the range of this 

size class we find also the size range of copepodites and adult copepods, which comprise the most 

numerous zooplankton group, covering also the size range of most meroplanktonic larvae as well. 

Mesozooplankton is of great relevance in scientific literature, as it is one of the most extensively 

sampled in monitoring programs and zooplankton time series (Kamburska and Fonda-Umani, 

2009; Eloire et al., 2010). 
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Figure 1. Example of the mesozooplankton community, showing different organisms: copepods 

(A), cirripede nauplius larvae (B), cladoceran (C), appendicularian head (D), decapod larvae (E), 

fish egg (F). Photograph by Ibon Uriarte. 

Zooplankton role in pelagic systems 

Zooplankton are an essential part of the ocean food webs, contributing to their functioning due to 

their role as secondary producers that link primary production (phytoplankton) with higher trophic 

level consumers (Dam, 2013). Zooplankton organisms are great in abundance and they play 

important ecosystem roles, such as their participation in the nitrogen cycle, which is released and 

recirculated by them through excretion, supporting bacterial and phytoplankton production 

(Smith and Whitledge, 1977) and, thus, helping the proper functioning of the food web. 

Zooplankton also takes part on the carbon biological pump, which is a global process where the 

oceans behave as a sink for atmospheric CO2. Zooplankton organisms help to move large 

quantities of carbon from the ocean’s surface to deeper layers. They acquire it by feeding on 

phytoplankton, which are CO2 fixing organisms through photosynthesis, then, by moving 

vertically in the water column, going down, which is a predation avoiding strategy (Richardson, 

2008). 
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Furthermore, the temporal variability in composition and abundance of zooplankton can affect 

larval survival and recruitment success of fish, which depend on the presence of suitable 

zooplankton prey during their spawning and development, that is to say, on a good match between 

prey and predator (e.g. match-mismatch hypothesis; Cushing, 1990). Environmental changes can 

cause mismatches in the occurrence of prey and predator and this can affect commercially 

important fisheries (Beaugrand et al., 2010) because of inadequate larval fish foraging (Chick and 

Avyle, 1999). Fisheries, after decades of mishandling and overexploitation (63% of the stock 

worldwide requires rebuilding; Worm et al., 2009) require better understanding of how the 

ecosystems that sustain them work in terms of their response to environmental variables and to 

trophic interactions. 

Zooplankton response to environmental changes 

Human actions have been proved to be inducing a global climate change. It has profound 

implications for marine ecosystems and also on the social and economic systems that depend upon 

them (Hoegh-Guldberg and Bruno, 2010). The world has run out of unaffected and pristine areas 

due to human actions, and the percentage of those which are strongly affected by multiple drivers 

are more than forty percent (Halpern et al., 2008). There are several reasons that make 

zooplankton excellent sentinels of the mentioned climate change. They are poikilothermic 

organisms highly sensitive to temperature, as it greatly affects their physiology. They also have 

short lives and fast life cycles, which makes them tightly coupled to climate (Hays et al., 2005). 

Most zooplankton organisms are usually not commercially exploited, meaning that their long-

term patterns of change would be caused by trophic interactions and climate variations and not 

confounded with exploitation trends (Richardson, 2008). 

Understanding how zooplankton abundance and composition vary in time and space and 

identifying which are the drivers of change is an issue of great interest. Untangling the role of the 

extrinsic factors is still one of the biggest challenges when trying to understand the ecological 

properties of pelagic ecosystems and their potential responses to a changing environment (Pepin 

et al., 2015), which can help predict the ecological effects of environmental change (Stenseth et 

al., 2002). 

Main drivers of zooplankton dynamics 

Water temperature, salinity and chlorophyll a concentration, the latter as a proxy of phytoplankton 

biomass, are among the main environmental variables affecting zooplankton and they are 

routinely measured in zooplankton monitoring programmes. Many studies have suggested that 

water temperature plays a key role in zooplankton spatio-temporal changes (Reygondeau and 

Beaugrand, 2011; Rombouts et al., 2010). It has been shown to be a major driver of the seasonal 

cycle of zooplankton, since it affects the rates of egg development, feeding, production, 



A. Fanjul 

6 

 

respiration and other metabolic processes (Ambler et al., 1985; Ikeda, 1985; Peters and Downing, 

1984) and may act as a timing cue for different seasonally recurrent processes (Mackas et al., 

2012). 

Salinity is an environmental constraint and it has been shown to play an important role in some 

regime shifts of marine ecosystems (Weijerman et al., 2005). Salinity-induced stratification can 

alter the exchange of nutrients and suspended particulate matter affecting zooplankton 

distribution (Cross et al., 2015). It seems to be a limiting factor for the presence and penetration 

of shelf/coastal zooplankton into estuarine waters and estuarine zooplankton into shelf waters, i.e. 

cladocerans abundance decreased as a function of salinity in the estuary of Bilbao (Bay of Biscay) 

(Uriarte and Villate, 2004; Villate et al., 2017). Salinity has been shown to affect the speed of 

growth and biological functions of different zooplankton taxa e.g. house renewal of 

appendicularians (Flores-Coto et al., 2010) or oxygen consumption rates copepods (Gaudy and 

Thibault-Botha, 2007). 

Zooplankton are primary consumers of phytoplankton. Grazer zooplankters, such as 

appendicularians, highly depend on phytoplankton biomass as food source (Alldredge, 1981; 

Tomita et al., 2003), and so do many species of copepods and cladocerans (Tirelli and Mayzaud, 

2005; Xiong et al., 2012; Tiselius et al., 2013). Phytoplankton biomass has been found to be a 

factor triggering the release of meroplanktonic larvae, which greatly depend on phytoplankton for 

their survival (Starr et al., 1991; Highfield et al., 2010). Therefore, phytoplankton availability can 

ultimately affect their recruitment. 

In addition to local environmental conditions, there are large scale processes that affect marine 

ecosystems, in general, and zooplankton in particular, such as atmospheric teleconnections. These 

are “spatially and temporally large-scale anomalies that influence the variability of the 

atmospheric circulation” (https://www.ncdc.noaa.gov/teleconnections). There are different 

teleconnection patterns that affect the North Atlantic, which can be potential drivers of changes 

in marine ecosystems and zooplankton communities. The he North Atlantic Oscillation (NAO) 

index, the Atlantic Multidecadal Oscillation (AMO) index and the East Atlantic pattern (EA) have 

been suggested to have a relevant effect on marine ecosystems in the Northeast Atlantic. 

Piontkovski et al. (2006) found a relationship between the positive phase of the NAO index and 

increased zooplankton abundance across the mid-Atlantic, and the opposite for negative NAO 

years. Similarly, Beaugrand and Reid (2003) found an increase of the calanoid copepod Calanus 

helgolandicus during positive phases of the NAO index in the Northeast Atlantic. Fromentin and 

Planque (1996) found an indirect effect of the NAO index (through west wind stress intensity and 

temperature) on Calanus finmarchicus abundance in the Eastern Atlantic and the North Sea,  

associated effects on west wind stress and spring primary production, and also to C. helgolandicus 
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with a less clear relationship. Cotton et al. (2005) explored beyond the positive relationship 

between the NAO and zooplankton, looking for bottom-up control in the distribution of higher 

trophic level organisms, such as basking sharks, in southwestern Britain, where zooplankton 

density and the NAO were partially related to. 

Kane (2011) found that increasing stocks of up to eleven zooplankton taxa in the Middle Atlantic 

Bight, were associated with the AMO index and rising surface temperatures. Beaugrand et al. 

(2009) found a relationship between this index and changes in the distribution of calanoid 

copepods in the Northeast Atlantic. In the estuary of Bilbao (Bay of Biscay), AMO index made a 

significant contribution to explain zooplankton variability (Uriarte et al., 2016). Furthermore, 

zooplankton community composition in northeast US seems to be significantly affected by the 

AMO (Morse et al., 2017). 

The phase of the EA pattern can have a significant impact on the NAO structure, including 

changes to the location and strength of its centers of action, affecting the position and intensity of 

its temperature anomaly (Moore and Renfrew, 2012), affecting also the predictability of the 

climate on certain parts of Europe (Woollings, 2010). Furthermore, NAO and EA interactions 

have been related to climate patterns over Iberian Peninsula (Sanchez-López et al., 2016). 

Concretely, in the southeastern Bay of Biscay the positive phase of the EA index appeared to be 

related to southwesterly winds and downwelling (Borja et al., 2008). Thus, variations in this index 

may cause alterations in the patterns of environmental variables such as temperature, 

precipitation, or even affect the upwelling/downwelling process, which could cause a direct effect 

on zooplankton (Llope et al., 2006). 

Global vs. local impacts on zooplankton 

However, the relationship between environmental drivers and plankton appears to be difficult to 

generalize (Beaugrand et al., 2000) because zooplankton can show a multifactor effect, driven by 

variables acting at different ecosystem levels and with different timing (Medellín-Mora et al., 

2016). One of the questions of interest for which there is little understanding yet is the relative 

importance of macroscale processes as opposed to local environmental factors on the distribution 

and abundance of zooplankton and, therefore, whether synchronous variations in zooplankton 

over large spatial areas are widespread in the marine environment (Pepin et al., 2015). Also, 

zooplankton abundance and composition is highly variable at different spatial and temporal scales 

because the environmental factors to which they respond operate across a wide range of spatial 

and temporal scales (Haury et al., 1978; Villate et al., 2016). Therefore, the relative importance 

of environmental drivers is expected to vary as a function of the spatial and temporal scale of 

variation considered.  
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We can identify different types of spatial gradients across which zooplankton abundance and 

community structure can vary. Differences in zooplankton distribution can be found across 

latitudinal gradients spanning different climate zones (Xu et al., 2016). Inshore-offshore gradients 

in zooplankton community structure across shelf waters have also been documented, with oceanic 

water intrusions onto the shelf being very influential (Pepin et al., 2015) and, in general, regional 

hydrography may also play a primary role in shaping the zooplankton community (Gluchowska 

et al., 2017). Moreover, zooplankton community differences can also be observed related to 

differences in salinity and/or the level of nutrient enrichment and pollution of estuarine and 

nearshore coastal waters (Uriarte and Villate, 2004; David et al., 2016). 

Temporal scales of zooplankton variability in response to environmental changes 

Regarding temporal variations of zooplankton, the seasonal cycle is a scale of key importance 

because of the large physical and biotic variations involved (Mackas et al., 2012). Ecosystems 

located at different latitudes are subject to different seasonal cycles of temperature and daylength 

and these, in turn, greatly affect the seasonal cycles of plankton. Accordingly, different types of 

seasonal cycles have been observed for oceanic zooplankton from different latitudes. In terms of 

total zooplankton, at lower latitudes, where conditions only change slightly during the year, 

temperature being quite stable and daylength close to twelve hours regardless of the season, no 

clear seasonal pattern is observed, as zooplankton dynamics may respond to other factors, such 

as small changes in solar radiation shifting the inter-Tropical Convergence Zone and associated 

meteorological and oceanographic changes (McClanahan, 1988). At intermediate latitudes, where 

variations in the daylength and temperature are moderate, since from summer to winter daylength 

shortens and temperature decreases noticeably, zooplankton usually shows a bimodal cycle, with 

a spring bloom and a secondary peak in autumn. At higher latitudes, the differences in temperature 

and daylength between seasons are even more marked, causing zooplankton to show a large-

amplitude single summer peak (Heinrich, 1962). It is important to note, that apart from these main 

drivers of zooplankton change, their seasonal cycles can be altered by other variables acting at 

medium or small scales. In shallow shelf seas local natural processes, such as river discharge and 

coastal upwelling, plus anthropogenic stressors, such as wastewater inputs and other human 

activities, substantially modify the standard plankton cycles (Cloern, 1996; Jamet et al., 2001; 

D'Alcalà et al., 2004). 

The seasonal cycle of zooplankton taxa may show interannual variability (Richardson, 2008; Ji et 

al., 2010) or, in other words, alterations in its phenology (i.e. the timing of annually recurring life 

cycle events). This can be assessed through the use of phenological indices (i.e. Edwards and 

Richardson, 2004), being very relevant as this could cause the above-mentioned predator-prey 

mismatches, with the possibility of causing cascade type of effects up the trophic chain. These 

changes may be caused by changes in key environmental factors, such as water temperature. In 
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many regions zooplankton that peak early in the year have been claimed to occur “earlier when 

warmer”, whereas late summer and autumn taxa have been reported to occur “later when 

warmer”, acting water temperature as a timing cue for zooplankton (Mackas et al., 2012). It has 

been observed that in marginal seas of the Northeast Atlantic the between-site similarity in year-

to-year zooplankton phenology variations decreases in a scale of a thousand kilometres or less 

(Mackas et al., 2012). Phytoplankton biomass is another factor which could be of great 

importance controlling zooplankton phenology, as Falk-Petersen et al. (1999) described in the 

marginal ice zone of the Barents Sea, where they found that the occurrence of new cohorts of 

copepods coincided with the onset of the phytoplankton bloom, suggesting that spawning relies 

on stored energy. 

In addition to interannual variations in phenology, interannual variations in the abundance of 

zooplankton taxa can have a strong impact on the abundances of higher trophic level consumers. 

In marine ecosystems of the North Atlantic synchrony between the interannual patterns of weather 

and abundances of organisms from different trophic levels have been reported (Aebischer et al., 

1990).  

Zooplankton abundance over long periods of time can be affected by natural changes in abiotic 

conditions, like intensity of winter winds seemed to indirectly increase zooplankton abundance 

(Brodeur and Ware, 1992; Sugimoto and Tadokoro, 2003). Anthropogenic activities in coastal 

and estuarine areas, such as agriculture, industrial activities and sewage outfalls, could also affect 

the numbers of zooplankton taxa. Agriculture, appeared to be a positive factor for zooplankton 

abundance, while industry and sewage discharge affected negatively by inducing environmental 

stress (Vecchione, 1989). Additionally to the previously mentioned factors, interactions between 

taxa, such as the competition which C. finmarchicus faces against Calanus glacialis when moving 

northwards (Kwasniewski et al., 2012) and predation, like chaetognaths and euphausiids 

predating on copepods off Northumberland coast (Roff et al., 1988) could also negatively affect 

the interannual abundances of zooplankton taxa. 

A possible response of zooplankton taxa is to track the underlying gradual unidirectional changes 

of their environmental drivers, showing temporal trends of change (Molinero et al., 2013; 

Reygondeau et al., 2015). Apart from environmental drivers, trophic interactions as bottom-up 

processes, where there is a positive correlation between the biomass of predators and the 

abundance of zooplankton preys and vice versa, could play a role too in shaping these trends 

(Kane, 2007). Another possible response pattern to unidirectional changes, are abrupt deviations 

from the temporal trend i.e. a regime shift. The definition of a regime shift should include at least 

the following terms: “sudden, high-amplitude, infrequent events, which are detectable in multiple 

aspects of the physical and biological components and on large spatial scales” (Lees et al., 2006). 
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These events have recently attracted a lot of interest and are often related to long term climate 

dynamics (Ayón et al., 2004), which cause major changes in the Earth's biophysical systems all 

around the globe (Reid et al., 2016). Regime shifts and long-term trends could potentially end 

with irreversible changes in species composition and community functioning (Clare et al., 2017; 

Spencer et al., 2012). Beaugrand et al. (2002) found a relationship between the NAO index 

(governing climatic factors such as the state of wind and temperature) and the interannual 

variations of plankton abundance in the English Channel for the 1960 – 1999 period.  Beaugrand 

and Ibañez (2004), using data of the 1958 – 1999 period, described a regime shift in the North 

Sea plankton ecosystem, which resulted from the conjunction of both local and regional hydro-

climatic forcing and a change in the location of an oceanic biogeographical boundary in the 

Northeast Atlantic Ocean. Möllmannn et al. (2008), found that climate-induced changes in 

hydrography in the Central Baltic Sea caused an ecosystem regime shift, where the dominance of 

the copepod Pseudocalanus acuspes was replaced by Acartia spp. due to reduced salinity and 

increased temperature during the 1974 – 2005 period. Alvarez-Fernandez et al. (2012) used CPR 

data for the 1970 – 2008 perio  d and found three zooplankton regime changes in the North Sea. 

Verheye and Richardson (1998) found, for the 1951 – 1996 (with a 20-year hiatus) period, a 

significant increase of crustacean zooplankton abundance, accompanied by a shift in the 

community size structure, which could be related to a long-term intensification of coastal 

upwelling and a reduction in predating pelagic fish. 

Zooplankton time series: a powerful tool to analyse variability scales 

All these studies on the different modes of zooplankton variability, particularly the large temporal 

scale ones, have been possible thanks mainly to the existence of long-term monitoring programs. 

These programs, by obtaining long data sets over long periods of time, help to track temporal 

variability in natural biological assemblages and assess whether the potential environmental 

drivers can explain the observed patterns (Magurran et al., 2012). There are different types of 

long-term monitoring strategies. On the one hand, we have those that cover an extensive sampling 

area, for which the sampling points are not fixed in time, such as the continuous plankton recorder 

(CPR). The CPR monitoring has been active for 86 years now (since 1931), operated by the Sir 

Alister Hardy Foundation for Ocean Science (SAHFOS). There are 40 CPR standard areas in the 

North Atlantic and the resulting time series have been used widely in long term series comparisons 

(Beaugrand et al., 2002; Beaugrand and Ibañez, 2004; Hátún et al., 2009; Alvarez Fernandez et 

al., 2012; Edwards et al., 2013). On the other hand, in contrast to sampling strategies such as the 

CPR, zooplankton are being regularly monitored at multiple fixed sites in shelf waters around the 

world (Mackas and Beaugrand, 2010; O’Brien et al., 2013), where in addition to biological 

samples, basic environmental variables are measured periodically. There are sixty-two 

zooplankton monitoring sites in the North Atlantic (ICES Zooplankton status report 2010/2011), 
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covering a broad range of hydrographic environments. The zooplankton time-series from these 

fixed monitoring stations thus contain a large amount of information, but they are still largely 

underused for comparisons between sites (Mackas et al., 2012; Bresnan et al., 2015), and a lot of 

these between-site comparative studies have only dealt with the temporal dynamics of a few 

species (Bonnet et al., 2007; Castellani et al., 2016), lacking a more holistic view of the 

zooplankton community dynamics.  

The extent of the differences in the temporal patterns of zooplankton at contrasting areas has been 

one of the features used to build ecological classifications of pelagic ecosystems on a geographical 

basis. For example, Longhurst (1998) distinguished 4 marine biomes and 57 provinces. The 

Northeast Atlantic Shelves Province (NECS) extends from northern Spain to the Faroe-Shetland 

Channel and the Norwegian Trench, and is one of the biogeographical provinces for which there 

are several zooplankton fixed monitoring sites extending over a relatively large latitudinal 

gradient. 

Considerations for planning the present study 

From the above premises, it is clear that zooplankton may be good sentinels of ecosystem change, 

so, knowledge about how zooplankton respond to environmental drivers at different scales of 

variation could be very helpful to predict future marine ecosystem changes, which could be a 

response to the ongoing global change. From the studies conducted so far there is limited 

understanding of the patterns of change of zooplankton community over broad areas and their 

environmental drivers, mainly because the time windows of data analyses in the different studies 

have been different and most studies have had a limited spatial coverage (some have had limited 

taxonomic coverage too), but climate and other environmental changes are not homogeneous in 

time and space. Therefore, many questions, particularly regarding the coherence of temporal 

patterns of variation across large spatial gradients or across different taxa within the zooplankton 

community, as well as the relative importance of different environmental drivers (local versus 

macroscale) at different scales of variation remain unclear. The present study aimed to contribute 

to resolve these questions by assessing spatio-temporal patterns of variation of mesozooplankton 

community composition and abundance and the influence of environmental factors in these 

variations across the Northeast Atlantic Shelves Province (NECS), defined by Longhurst (1998). 

To that purpose, time-series of zooplankton and environmental factors from four fixed monitoring 

sites located along a longitudinal gradient in the NECS province from the Bay of Biscay to the 

North Sea for the 1999 – 2013 period have been used. The two Bay of Biscay sites are located at 

the same latitude but differ in the level of anthropogenic influence and trophic status. It is 

important to highlight that data analyses have been conducted both at the level of individual taxa 

and at the whole community level, thus providing also a more holistic view of the community 

dynamics. 
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Hypothesis and objectives 

The main hypothesis of this thesis was:  

“Zooplankton taxa abundance and community structure and their seasonal and interannual 

patterns of variability in coastal waters of the Northeast Atlantic Shelves Province show 

differences related to latitude and/or trophic status.” 

 

The specific objectives set in this thesis were the following: 

1. To extract and compare the magnitude of mesozooplankton variability at interannual, 

seasonal and residual scales, and their interannual and seasonal patterns during the 1999 

– 2013 period at four monitoring sites within NECS that differ in latitude and trophic 

status. 

 

2. To assess and compare the influence of environmental factors in the mesozooplankton 

community seasonal cycles during the 1999 – 2013 period at the four monitoring sites. 

 

3. To assess and compare mesozooplankton taxa phenology changes and the influence of 

environmental drivers during the 1999 – 2013 period at the four monitoring sites.  

 

4. To test for interannual trends and shifts in mesozooplankton community and 

representative taxa abundance at the four monitoring sites, during the 1999 – 2013 period 

and assess the influence of environmental factors in the observed patterns.  

 

5. To describe and compare mesozooplankton community structure and determine the main 

factors responsible for the observed differences during the period 1999 – 2013 at the four 

monitoring sites. 
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Study area and sampling methodology 

The time series of zooplankton (> 200 µm) abundance, water temperature (WT), salinity (Sal) and 

chlorophyll a concentration (Chl a) used in this study, spanned a 15-year period (1999 – 2013). 

They were obtained from the ongoing monitoring programmes carried out at the Bilbao 35 (B35) 

and Urdaibai 35 (U35) sites by the Zooplankton Ecology Research Group of the University of the 

Basque Country (UPV/EHU), at Plymouth L4 (L4) by researchers from the Plymouth Marine 

Laboratory (UK) and at Stonehaven (SH) site by researchers from Marine Scotland Science, UK 

(Figure 2). B35 and U35 are located close to each other on the Basque coast, inner Bay of Biscay, 

at the southern limit of the NECS (Longhurst, 1998), but they differ substantially in their trophic 

status (Iriarte et al., 2010). L4 is located off the southwest coast of England, in the western English 

Channel, at an intermediate latitude, and SH is off the eastern Scottish coast, in the northwest 

North Sea, near the northern limit of the same geographical province. 

 

Figure 2. Map showing the location of the sampling sites. 
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The SH site (56° 57.8′ N, 02° 06.2′ W), with a mean depth of ca. 48 m, is located 5 km offshore 

from Stonehaven, where the impact of freshwater inputs of the rivers Dee and Don (outflowing 

at Aberdeen, 15 miles north) is reduced (Bresnan et al., 2015). This is a dynamic site, well-mixed 

for most of the year due to strong tidal currents, and a weak thermal stratification is usually 

restricted to neap tides in the summer months. In this site sampling is carried out weekly, weather 

permitting. Water temperature was measured using a digital reversing thermometer fitted to the 

Niskin sampling bottle, salinity was measured using a CTD and chlorophyll a (Chl a) was 

determined fluorometrically as described in Bresnan et al. (2015). In the present study surface 

values were used for the latter three parameters. Zooplankton samples were taken by vertical hauls 

from 45 m to the surface using 200 µm mesh Bongo nets (40 cm diameter but 30 cm during 

January, February and March 1999) and preserved in 4% borax buffered formaldehyde. Larger 

zooplankton were identified and counted from the whole sample. Subsamples (of variable volume 

depending on density of animals, but a minimum of 2.5% of the whole sample) were taken for 

the identification and counting of smaller zooplankton, so that at least 100 individuals were 

counted. More details on the methodology used for data acquisition can be found in Bresnan et 

al. (2015). 

L4 is located about 13 km southwest of Plymouth (50°15′ N, 4°13′ W), and 6.5 km away from the 

nearest land (Litt et al., 2010). This is a transitionally mixed site (Southward et al., 2004) with a 

mean depth of 54 m. It receives periodic freshwater inputs from the rivers Plym and Tamar 

outflowing at Plymouth and it is influenced by oceanic water during periods of strong south west 

winds (Rees et al., 2009). Sampling at this site carried out weekly (weather permitting). Water 

temperature was initially measured using a thermometer placed inside a stainless-steel bucket and 

with a CTD since 2000. More details on the methodology used for data acquisition can be found 

in Atkinson et al., (2015). Chl a was determined by using reversed-phase HPLC and surface 

values for water temperature, salinity and Chl a have been used. Two replicate vertical net hauls 

(WP2 net, 200 µm mesh size, 0.57 m diameter) from 50 m to the surface were used to collect 

zooplankton samples. These samples were stored in 5% formalin. Subsamples were taken with a 

stempel pipette for identifying and counting smaller organisms, whilst larger and rarer organisms 

were counted in subsamples, often one-half to one-eighth, taken with a Folsom splitter. 

B35 (43° 20.9' N, 3° 1.6' W) is a coastal site (< 1 km offshore) influenced by the plume of the 

estuary of Bilbao (high nutrient enrichment and pollution; Ferrer et al., 2009). It is partially mixed 

and has a mean depth of 13 m. U35 (43° 24.2' N, 2° 41.7' W) is a shallower (mean depth of 4.5 m), 

well-mixed coastal (< 1 km offshore) site, that bears the influence of the Urdaibai estuary, but 

because of high tidal flushing, the estuarine influence is much lower than at B35. It also is under 

much lower human pressure than the estuary of Bilbao. At the two sites, samplings were 

performed monthly. Water temperature and salinity were measured using portable multiparameter 
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meters and Chl a was determined spectrophotometrically according to the monochromatic method 

with acidification (Lorenzen, 1967). Water temperature, salinity and Chl a data used in this study 

correspond to subsurface measurements at B35 (around 4 m depth) and U35 (around 2 m depth). 

Zooplankton were sampled by horizontal tows at mid-depth, below the halocline (when present), 

of a 200 µm mesh size ring net (mouth diameter 0.25 m) equipped with a flowmeter and preserved 

in 4% borax buffered formalin seawater solution. For the systematic and quantitative analysis, the 

original zooplankton samples were diluted in filtered sea water to a volume of 50 – 500 mL, 

depending on organism density, and sub-sampled into aliquots after gentle mixing to distribute 

organisms randomly. Subsamples were analysed in Bogorov-type counting chambers under an 

inverted microscope (40× – 400× magnification). One or more subsamples were analysed from 

each sample until 100 individuals of the most abundant taxonomic category and more than 30 

individuals of the following most abundant one, or at least more than 30 individuals of the three 

most abundant categories were counted (Olivar et al., 2010). 

For the present study period, on the basis of Chl a criterion (Molvær et al., 1997; Smith et al., 

1999), B35 and U35 may be classified as mesotrophic and oligotrophic, respectively, the trophic 

status of L4 and SH being more similar to that of U35 than to that of B35. Chl a values and other 

relevant features of these sites are summarized on Table 1. 

 

Table 1. Main characteristics of the study sites and summary of their sampling features. 

Characteristic  B35 U35 L4 SH 

Distance offshore (km)  < 1 < 1 6.5 5 
Water depth (m) mean 13.0 4.5 54.0 48.0 

Stratification/mixing 
 

Partially 

mixed 
Mixed 

Transitionally 

mixed/stratified 

in summer 

Mixed/weak 

stratification 

in summer 

Salinity 
mean 

(range) 
34.8 

(32.9-35.5) 

35.0 

(30.3-35.6) 
35.0 

(34.0-35.4) 

34.5 

(33.8-34.9) 

Temperature (°C) 
mean 

(range) 

16.0 

(11.3-23.7) 
16.2 

(10.8-24.9) 
12.6 

(7.6-19.9) 
9.5 

(4.5-13.9) 

Chlorophyll a (µg L-1) 
mean 

(range) 

2.19 

(0.08-31.33) 
0.82 

(0.04-7.91) 
1.24 

(0.23-6.29) 
1.29 

(0.09-5.96) 
Samplings/month  1 1 4 4 
Tows/timepoint  1 1 2 2 
Reference of sampling 

and analytical methods 
 (Aravena et 

al., 2009) 
(Chapter 1, 

this work) 
(Atkinson et al., 

2015) 
(Bresnan et al., 

2015) 
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Data pretreatment 

As B35 and U35 were sampled monthly, usually during, or close to, the last week of the month, 

whereas L4 and SH were generally sampled weekly, the mean of all values for each month were 

calculated for L4 and SH. Missing values (<5%) in the monthly data sets were filled by data 

interpolation using the mean values of the previous month and the following month. To ensure 

data consistency in zooplankton series, taxonomic homogenization was undertaken. 

In the present study total zooplankton and selected zooplankton taxa (Figure 3) belonging to (i) 

the herein termed zooplankton Group level (ZG), a broad level consisting of six holoplankton 

categories (copepods, cladocerans, appendicularians, chaetognaths, siphonophores and doliolids) 

and nine meroplankton categories (cirripede larvae, decapod larvae, gastropod larvae, bivalve 

larvae, polychaete larvae, fish eggs and larvae, bryozoan larvae, echinoderm larvae and 

hydromedusae, in which some  very much less abundant holoplanktonic forms, such as Liriope 

tetraphylla), were included and (ii) the copepod and cladoceran genera level (CCGen), consisting 

of genera or genera-assemblages (exceptionally family) of cladocerans and copepods: Evadne and 

Podon genera for the cladocerans and Acartia, Centropages, Temora, Oithona, Oncaea, 

Corycaeus (former genus that represents mainly the present genus Ditrichocorycaeus at the four 

sites) genera, the “PCPC-calanus” genera assemblage (this includes Paracalanus, Clausocalanus, 

Pseudocalanus and Ctenocalanus), and the family Calanidae for the copepods. 

Some of the above genera include recently separated new genera that were not originally 

considered in the series, such as the genera Mesocalanus and Calanoides within Calanidae, the 

genus Monothula within Oncaea, the genus Ditrichocorycaeus within Corycaeus, the genus 

Pseudevadne within Evadne and the genus Pleopis within Podon. Holoplanktonic gastropods 

such as Limacina retroversa and Gymnosomata and holoplanktonic polychaetes such as 

Tomopteris helgolandica were included in the gastropod larvae and polychaete larvae categories 

respectively, because they were not always distinguished from meroplanktonic species in routine 

identifications. 

Detailed information of the components identified and their contribution to the total in each 

selected taxon are shown in Annexes, tables A.1., A.2. and A.3., for holoplankton groups, 

meroplankton groups and cladoceran-copepod genera, respectively. 
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Figure 3. Example photographs of the main zooplankton taxa which we focused on in the present 

study. They are classified in three different groups: Crustacean holoplankton (copepods and 

cladocerans); Other holoplankton (taxa other than cladocerans and copepods), and meroplankton. 

Photographs by Ziortza Barroeta. 
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Chapter 1. Analyzing the different 

scales of zooplankton variability 
 

 

 

 
Zooplankton abundance series (1999 – 2013) from the coastal sites of Bilbao 35 (B35), Urdaibai 

35 (U35), Plymouth L4 (L4) and Stonehaven (SH), in the Northeast Atlantic were compared to 

assess differences in the magnitude of seasonal, interannual and residual scales of variability, and 

in patterns of seasonal and interannual variation in relation to latitudinal location and trophic 

status. Results showed highest seasonal variability at SH in coherence with its northernmost 

location, highest interannual variability at U35 associated to an atypical event identified in 2012 

in the Bay of Biscay, and highest residual variability at U35 and B35 likely related to lower 

sampling frequency and higher natural and anthropogenic stress. Interannual zooplankton 

variations were not coherent across sites, suggesting the dominance of local influences over large 

scale environmental drivers. For most taxa the seasonal pattern showed coherent differences 

across sites, the northward delay of the annual peak being the most common feature. The between-

site seasonal differences in spring-summer zooplankton taxa were related mainly to 

phytoplankton biomass, in turn, related to differences in latitude or anthropogenic nutrient 

enrichment. The northward delay in water cooling likely accounted for between-site seasonal 

differences in taxa that increase in the second half of the year. 

 

 

 

 

 

 

 

 

 

 

Fanjul, A., Villate, F., Uriarte, I., Iriarte, A., Atkinson, A., & Cook, K. (2017). Zooplankton 

variability at four monitoring sites of the Northeast Atlantic Shelves differing in latitude and 

trophic status. Journal of Plankton Research, 39(6), 891-909. 
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1.1. Introduction 

The abundance of zooplankton may be highly variable at time scales that span from minutes to 

decades in response to environmental drivers and stressors operating across a wide range of 

temporal scales (Haury et al., 1978). Relevant time scales of variance, ranging from days to years 

involve changes in growth, production, mortality and community function (Marine Zooplankton 

Colloquium 1, 1989). The seasonal cycle is a key scale because of the large physical and biotic 

variations (Mackas and Beaugrand, 2010; Mackas et al., 2012), and the importance of 

phenological timing for predator-prey interactions (Sydeman and Bograd, 2009). For example, 

fish larvae survival and recruitment success is highly dependent on the availability of suitable 

zooplankton prey in synchrony with their seasonal spawning and development, according to the 

match-mismatch hypothesis (Cushing, 1990), and there is the potential for differential phenology 

shifts of predator and prey in response to environmental changes (Edwards and Richardson, 2004; 

Durant et al., 2007). 

 

In addition to phenological shifts, interannual variations in overall abundance of zooplankton are 

driven by year-to-year variations of the physical and nutritional environments, which also help to 

modulate the recruitment of fish populations (Liu et al., 2014). Therefore it is important to 

determine the extent to which the seasonal and interannual variations differ from site to site in 

order to build an ecological classification of pelagic ecosystems on a geographical basis 

(Longhurst, 1998). At a large spatial scale, latitude-dependent differences in light and temperature 

are the main factors responsible for the largest changes in the plankton annual cycles. The general 

patterns for oceanic zooplankton are (i) a large amplitude single summer peak at high-latitudes, 

(ii) bimodal cycles with a spring bloom and a secondary peak in autumn at middle latitudes, and 

(iii) no clear seasonal patterns in low latitude tropical waters (Heinrich, 1962). In shallow shelf 

seas, however, local natural (e.g. river discharge, coastal upwelling) and anthropogenic 

(wastewater inputs) stressors may substantially modify the standard plankton cycles (e.g. Cloern, 

1996; Jamet et al., 2001; Ribera d´Alcalà et al., 2004). 

 

In the ICES area a large number of time series are available which have been obtained using 

comparable methodology (O´Brien et al., 2013), but there have been few attempts to synthesise 

across multiple time series (Valdes et al., 2007; Bode et al., 2012; Mackas et al., 2012; Castellani 

et al., 2016). Policy directives such as the Marine Strategy Framework Directive need to assess 

baseline envelopes of variability and its causes, and provide a broad scale geographical context 

for this variability. 

 

Many zooplankton time series of the ICES area are from sites located within the Northeast 
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Atlantic Shelves Province (NECS), a biogeographical unit established by Longhurst (1998) for 

the continental shelves of western Europe that extends from northern Spain to the Faroe-Shetland 

Channel and the Norwegian Trench. However, this is a wide area that includes the North Sea, the 

Baltic Sea, the outer shelves off Britain, and the Bay of Biscay. In fact, Longhurst himself 

recognized that this Province can be subdivided in a way which is more sensitive to ecological 

differences. The classical biogeographic divisions established for the Eastern North Atlantic are 

also suitable to look at ecological differences within the studied area. For instance, the northern 

part of the North Sea is included in the Eastern Atlantic boreal region, while the English Channel 

and the Bay of Biscay belong to the Eastern Atlantic warm temperate region (Briggs and Bowen, 

2012). 

 

In this study we have selected four of these ICES sites covering most of the latitudinal gradient 

in NECS, from the northern North Sea (1 site) to the southern Bay of Biscay (2 sites) with the 

western English Channel as an equidistant central part (1 site). From the 2 sites of the 

southernmost zone, one of them differs from the rest of sites in the trophic status (established on 

the basis of chlorophyll a concentration criteria (see Molvær et al., 1997; Smith et al., 1999). The 

aim was to assess between-site differences in (i) the magnitude of the temporal components of 

zooplankton variability (i.e. interannual, seasonal and residual components, sensu Cloern and 

Jassby, 2010), and (ii) the patterns of interannual and seasonal variation. We have tried to 

contribute to define zooplankton scales and patterns of variability within the NECS in relation to 

differences in latitude, local features and anthropogenic nutrient enrichment. 

 

1.2. Methods 

1.2.1. Data treatment 

Several zooplankton taxa were selected for the analysis: non-crustacean holoplankton 

(appendicularians, chaetognaths, siphonophores and doliolids), cladocerans and copepods 

(Evadne, Podon, Acartia, Centropages, Temora, Oithona, Oncaea, Corycaeus, the Calanidae 

family and the PCPC-calanus assemblage) and meroplankton (cirripede larvae, decapod larvae, 

gastropod larvae, bivalve larvae, polychaete larvae, fish eggs and larvae, bryozoan larvae, 

echinoderm larvae and hydromedusae). Then, the scales and patterns of variability for 

temperature, Chl a, total zooplankton and selected zooplankton taxa were extracted for each site 

by using the following multiplicative model described by Cloern and Jassby (2010): 

cij = C yi mj ij 

where cij is the value in year i (i=1…, N) and month j (j=1…, 12); C is the long-term mean of the 

series; yi is the annual effect in the ith year; mj is the seasonal (monthly) effect in the jth month; 
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and εij is the residual. This method decomposes time series into (i) an annual component, herein 

named “interannual variability”, where trends, shifts and events can be detected, (ii) a seasonal 

component or “seasonal variability”, where a standard seasonal pattern can be identified, and (iii) 

a residual component, or “residual variability”, associated to the event scale, which includes the 

variability that cannot be attributed to the average seasonal pattern or to fluctuations in the annual 

mean. In plankton time series, residual variability may reflect sampling uncertainty associated to 

low frequency temporal variability within months but it may also be affected by the year to year 

stability of the seasonal pattern both in terms of magnitude and phenological variations (Cloern 

and Jassby, 2010). 

 

To assess the possible effect of this high frequency temporal variability on the residual variability, 

monthly anomalies on the time series were calculated as the difference between each single value 

and the series mean and divided by the standard deviation. These anomalies were calculated for 

five selected taxa that were abundant and showed a clear temporal segregation in the timing of 

the standard annual maximum at all sites (i.e. copepods, cirripede larvae, appendicularians, 

chaetognaths and siphonophores), as well as for total zooplankton abundance, Chl a concentration 

and water temperature. To show and compare seasonal variability between years, year vs. month 

diagrams of the anomalies were produced for each of the above-mentioned variables at each of 

the four study sites. 

 

To make the calculations of interannual and seasonal variability of all selected taxa possible, the 

data gap for Centropages in 1999 at L4 was filled by assuming the same abundance data as in 

2000, and the lack of data for doliolids in some years at SH was solved by adding in such years a 

value of 0.01 in the month of the annual maximum obtained from the years with presence of 

doliolids. In addition, an unusually high value of fish eggs at L4 in March 2000 was considered 

erroneous, and replaced by the mean value of the month obtained from the rest of years of the 

series. 

 

Paired t-tests were performed to determine differences between sites in the interannual, seasonal 

and residual components of variability of zooplankton taxa, and differences between the three 

components of variability within each site. Spearman rank correlation analyses were performed 

to test the relationships between the year-to-year variations of total zooplankton abundance, Chl 

a concentration, water temperature and zooplankton taxa abundance at each site, and the between-

site relationships of the year-to-year variations of each zooplankton taxa. Both types of analyses 

were performed using SPSS Statistics for Windows, Version 23.0 (IBM Corp., Armonk, NY). 
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Resemblance analyses were carried out by means of the Bray Curtis similarity index (Bray and 

Curtis, 1957), using the group average method, to measure the dissimilarity between all the 

selected zooplankton taxa, according to their patterns of variability at the four monitoring sites 

jointly. Dissimilarity was tested both for the interannual and the seasonal variability using the 

PRIMER v6 software package (Clarke and Warwick, 2001), and results were displayed in 

dendrograms. 

1.3. Results 

1.3.1. Scales of variability 

Values of interannual, seasonal and residual variability for zooplankton taxa at the four sites are 

depicted as box plots in Figure 1. Interannual variability was the lowest and residual variability 

the highest at all sites, although the difference between seasonal and interannual variability at 

U35, and between residual and seasonal variability at SH were not significant (Table 1). The 

lowest interannual, seasonal and residual variability were obtained at L4, the highest interannual 

and residual variability at U35 and the highest seasonal variability at SH. Interannual variability 

was higher at U35 than at B35, L4 and SH, seasonal variability was higher at SH than at L4, and 

residual variability was higher at U35 and B35 than at L4 and SH (Table 2). Due to the fact that 

a single value was used as monthly estimate for B35 and U35 while within month values (usually 

4) were considered replicates and averaged for L4 and SH, a reduction by a factor of 2 of the 

within-month standard deviation could be expected at L4 and SH. 

 

 
Figure 1. Box plot of data from interannual, seasonal and residual components of zooplankton 

taxa variability for Bilbao 35 (B35), Urdaibai 35 (U35), Plymouth L4 (L4) and Stonehaven (SH). 

Box represents the interquartile (IQ) range which contains the 50% of the records. Line across the 

box indicates the median. Whiskers extend to the highest and lowest values which are no greater 

than 1.5 times the IQ range. Circles indicate outliers with values between 1.5 and 3 times the IQ 

range. Note that the residual variability at L4 and SH is reduced by within month averaging (see 

methods). 
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Table 1. p-values obtained from paired t-tests for differences between the interannual (I), seasonal 

(S) and residual (R) components of zooplankton taxa at Bilbao 35 (B35), Urdaibai 35 (U35), 

Plymouth L4 (L4) and Stonehaven (SH). In bold statistically significant differences (p < 0.05). 

 B35 U35 L4 SH 

     I     S     I     S     I     S     I     S 

S 0.002   --- 0.919   --- 0.044   --- 0.006   --- 

R < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001 0.210 

          

 

 

 

Table 2. p-values obtained from paired t-tests for differences between sites (Bilbao 35: B35, 

Urdaibai 35: U35, Plymouth L4: L4 and Stonehaven: SH) in the interannual, seasonal and residual 

components of zooplankton taxa. In bold statistically significant differences (p < 0.05). 

 Interannual Seasonal Residual 

    U35    L4    SH    U35    L4    SH    U35    L4    SH 

B35 < 0.001 0.248 0.798 0.855 0.202 0.061 0.743 < 0.001 < 0.001 

U35   --- < 0.001 0.023   --- 0.078 0.060   --- < 0.001 < 0.001 

L4   ---   --- 0.220   ---   --- 0.002   ---   --- 0.399 

           

 

 

 

Figure 2 shows that the between-year differences in the timing of the annual maximum were 

much lower for all taxa at SH, where the range of months within which the annual maximum 

occurred was of two months for siphonophores (September – October), three for chaetognaths 

(July – September) and cirripede larvae (March – May), four for appendicularians (May – august) 

and five for copepods (May – September). For the same taxa the range of months within which 

the annual maximum occurred varied from two (cirripede larvae: March – April) to eight 

(copepods: March – October) months at L4, from five (chaetognaths: late May – September) to 

eight (appendicularians and siphonophores: late March – October) at U35, and from six 

(chaetognaths: late May – October) to nine (copepods: late February – October) at B35. 
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Figure 2. Year vs. month variations of abundance (expressed as anomalies) for copepods, 

cirripede larvae, appendicularians, chaetognaths and siphonophores at Bilbao 35 (B35), Urdaibai 

35 (U35), Plymouth L4 (L4) and Stonehaven (SH). 

 

As shown in Figure 3, the between-year differences in the timing of the annual maximum of total 

zooplankton abundance was also lowest at SH, with a range of five months (May – September), 

whereas the range was of six months at U35 (March – August), seven at L4 (March – September) 

and eight at B35 (February – September). The period within which Chl a showed annual 

maximum was of six months at SH and L4 (April – September), seven at B35 (late February – 

August) and nine at U35 (late February – October). The range for water temperature annual 

maxima was of two months at SH (August – September) and U35 (late July – August), and of 

three months at L4 (July – September) and B35 (late July – September). 
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Figure 3. Year vs. month variations of total zooplankton abundance, chlorophyll a concentration 

and water temperature (expressed as anomalies) at Bilbao 35 (B35), Urdaibai 35 (U35), Plymouth 

L4 (L4) and Stonehaven (SH). 

 

1.3.2. Interannual variations 

1.3.2.1. Total zooplankton, Chlorophyll a and temperature 

The annual mean values and the interannual variability (dimensionless) of total zooplankton 

abundance, Chl a concentration and temperature are shown in Figure 4. Zooplankton abundance 

fluctuated between 972 and 5097 ind. m-3 (all sites pooled), except in 2012 at B35 and U35, where 

values of 9116 and 12866 ind. m-3 where obtained respectively. Annual mean values of Chl a at 

U35, L4 and SH were similar and ranged between 0.49 and 1.81 µg L-1, whereas at B35 they were 

higher than at the other sites (p < 0.001), with a maximum value of 4.76 µg L-1 in 2000 and a 

decrease over the study period. The warmest and the coldest years in the series differed between 

sites, although in all of them the warmest ones were recorded from 2003 to 2007 (2003 at SH, 

2003 and 2006 with similar values at U35, 2006 at B35 and 2007 at L4) and the coldest ones in 

the second half of the series (2007 at B35 and U35, 2010 at L4 and 2013 at SH). 
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Figure 4. Annual mean raw values (left) and dimensionless year-to-year variability values (right) 

of total zooplankton abundance, chlorophyll a concentration and water temperature in Bilbao 35 

(white circle, dotted black line), Urdaibai 35 (white circle, black line), Plymouth L4 (dark grey 

circle and line) and Stonehaven (black circle, light grey line). 

 

Zooplankton abundance and Chl a were not correlated between sites, whereas water temperature 

correlated between B35 and U35 (p< 0.001), and between L4 and SH (p= 0.001). Within sites 

zooplankton abundance, Chl a concentration and water temperature were not correlated, except 

for the negative correlation (p= 0.026) between zooplankton and Chl a at B35 and the positive 

correlation (p= 0.024) between Chl a and temperature at L4. 

 

1.3.2.2. Zooplankton taxa 

There were no defined clusters of zooplankton taxa according to their interannual variations 

(Figure 5), and most zooplankton taxa showed irregular fluctuations unsynchronised between 

sites (Figure 6). The most noteworthy feature of the interannual variations of zooplankton taxa 

was the prominent peak of some holoplankton (i.e. copepods, PCPC-calanus, Oithona, Acartia, 

and appendicularians) and meroplankton (i.e. bivalve larvae and echinoderm larvae) taxa in 2012 
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at U35, and to a lesser extent at B35. The number of taxa that reached the highest abundance of 

the series in 2012 was 11 and 9 at U35 and B35, respectively, while only 4 taxa at L4 (in 2009 

and 2011) and 5 at SH (in 2008) were found to reach the highest abundance in a same year of the 

series. 

 

 
 

Figure 5. Group-averaged clustering from Bray-Curtis similarities of interannual variations of 

zooplankton taxa (pooled for the four sites: Bilbao 35, Urdaibai 35, Plymouth L4 and 

Stonehaven). Acar: Acartia, Appe: appendicularians, Biva: bivalve larvae, Bryo: bryozoans, Cala: 

Calanidae, Cent: Centropages, Chae: chaetognaths, Cirr: cirripede larvae, Clad: cladocerans, 

Cope: copepods, Cory: Corycaeus, Deca: decapod larvae, Doli: doliolids, Echi: echinoderm 

larvae, Evad: Evadne, Fish: fish eggs and larvae, Gast: gastropod larvae, Hydr: hydromedusae, 

Oith: Oithona, Onca: Oncaea, PCPC: PCPC-calanus, Podo: Podon, Poly: polychaete larvae, Siph: 

siphonophores, Temo: Temora. 
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Figure 6. Interannual dimensionless variability of zooplankton taxa at Bilbao 35 (B35), Urdaibai 

35 (U35), Plymouth L4 (L4) and Stonehaven (SH) from 1999 to 2013. Thickest bubbles indicate 

highest values. 

 

None of the taxa showed interannual synchrony between the four sites. The number of taxa that 

correlated (p< 0.05) between sites was highest between B35 and U35, with 8 taxa (cladocerans, 

siphonophores, doliolids, bivalve larvae, bryozoan larvae, decapod larvae, Evadne and 

Corycaeus), and was lowest between B35 and SH and between U35 and L4, where only gastropod 

larvae and chaetognaths correlated, respectively. Between B35 and L4 only cladocerans, 

appendicularians and bivalve larvae (this last one negatively) showed significant correlation; 

between U35 and SH cirripede larvae and bryozoan larvae (this last one also negatively); and 

between L4 and SH cladocerans, bivalve larvae and echinoderm larvae. A few significant 

correlations were also found between interannual variations of zooplankton taxa and 

environmental variables, i.e. water temperature and Chl a, and such correlations were unrelated 

between sites.  
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1.3.3. Seasonal patterns 

1.3.3.1. Total zooplankton, Chlorophyll a and temperature 

The monthly mean values and the seasonal variability (dimensionless) of total zooplankton 

abundance, Chl a concentration and temperature are shown in Figure 7. At U35 the zooplankton 

maximum was in early spring (10494 ind. m-3 in late March), but the dimensionless values 

evidenced a bimodal cycle with a secondary peak in late summer. At B35 three peaks were 

observed in early spring (late March), early summer (maximum of 9657 ind. m-3 in late June) and 

early autumn (late September). At L4 a clear bimodal pattern with two similar peaks in spring 

(maximum of 5519 ind. m-3 in April) and summer (August) were observed. At SH, the seasonal 

pattern was unimodal, with a maximum of 5237 ind. m-3 in summer (July – August), although the 

stair-step shape suggests two consecutive periods for zooplankton increase in spring and summer.  

 

 
Figure 7. Monthly mean raw values (left) and dimensionless seasonal variability values (right) 

of total zooplankton abundance, chlorophyll a concentration and water temperature in Bilbao 35 

(white circle, dotted black line), Urdaibai 35 (white circle, black line), Plymouth L4 (dark grey 

circle and line) and Stonehaven (black circle, light grey line). Dotted lines separate seasons. 
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Chl a concentration showed two peaks at B35 (a small one in early spring and the largest in 

summer), U35 (the major one in early spring and a secondary one in late summer) and L4 (in 

April and August with similar magnitudes). At SH, an extended single peak in late spring (May 

– June) was observed, but the stair-step shape of the decrease in August suggests masking of a 

secondary peak in summer. The monthly mean maximum Chl a was highest at B35 (4.95 µg L-1) 

and lowest at U35, showing a small increase from U35 (1.94 µg L-1) to L4 (2.26 µg L-1), and to 

SH (2.70 µg L-1). 

  

Monthly mean values of water temperature ranged from around 12.4 ºC in January – February to 

around 21.0 ºC in August at B35 and U35, from 8.9 ºC in March to 15.6 ºC in August at L4, and 

from 6.0 ºC in March to 13.1 ºC in September at SH. The standard dimensionless variability 

evidenced that both warming and cooling occur earliest at B35 and U35 and latest at SH. 

 

1.3.3.2. Zooplankton taxa 

The clustering of zooplankton taxa (Figure 8) according to their patterns of seasonal variability 

(Figure 9) revealed five taxa assemblages with similarity levels between 60% and 80%. 

Similarity was highest between cladocerans, Evadne, Podon, appendicularians and Acartia, which 

showed a seasonal progression of annual maxima northwards, from U35 in late March, to L4 in 

May – July and to SH in July – August. At B35 they peaked in late May – late June, except Acartia 

(in late March). A delay of the annual maxima was also observed from spring – early summer at 

U35 and B35 to summer – late summer in echinoderm larvae, gastropod larvae and Centropages. 

Calanidae, Temora, decapod larvae, PCPC-calanus, copepods and Oithona were characterised in 

most cases by bimodal patterns, (or trimodal patterns at B35), in which the first peak was delayed 

from U35 and B35 (late February – April) to SH (May), while the last one generally occurred 

earlier at L4 and SH (July – September) than at U35 and B35 (late August – late October). The 

last peak was the annual maximum for a larger number of taxa at SH (Calanidae, Temora, decapod 

larvae, copepods and Oithona) and B35 (Temora, decapod larvae, PCPC-calanus and Oithona) 

than at U35 (Temora, PCPC-calanus), where the first peak was clearly the highest one for 

copepods and Oithona. For PCPC-calanus the importance of the first peak decreased from SH to 

B35. The annual maximum of polychaete larvae was delayed from U35 and B35 (late February) 

to L4 (June) and to SH (July). Siphonophores showed bimodal cycles at B35 and U35, with 

maxima in May, but unimodal cycles at L4 and SH, with maxima in September. Hydromedusae 

showed bimodal cycles at B35, U35 and SH, with maxima in April, but unimodal cycles at L4 

with the maximum in July. Bryozoan larvae and fish eggs and larvae showed annual maxima or 

higher abundance earlier at L4 and SH (March – April) than at U35 and B35 (late April – late 

June), and cirripede larvae reached annual maxima in late March – April at SH, L4 and U35, but 

markedly later (late June) at B35. Doliolids, Oncaea, chaetognaths and Corycaeus reached annual 
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maxima in the second half of the year at all sites, with the exception of Oncaea at SH. Doliolids 

and chaetognaths showed a marked seasonality with maxima in August – September at all sites, 

while Oncaea peaked from late September to November (except at SH) and Corycaeus peaked in 

late August at U35 and B35 and in October at L4 and SH.  

 

 
Figure 8. Group-averaged clustering from Bray-Curtis similarities of seasonal patterns of 

zooplankton taxa (pooled for the four sites: Bilbao 35, Urdaibai 35, Plymouth L4 and 

Stonehaven). Taxa abbreviations as in Figure 5. 
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Figure 9. Seasonal dimensionless variability of zooplankton taxa at Bilbao 35 (B35), Urdaibai 35 

(U35), Plymouth L4 (L4) and Stonehaven (SH) during the 1999 – 2013 period. Thickest bubbles 

indicate highest values. Dotted lines separate seasons. 

 

Figure 10 shows the number of taxa that showed their annual maximum of abundance in a given 

month of the year. This distribution was skewed towards spring at U35 and L4 and towards 

autumn at B35 and SH, with maxima in early spring at U35, early summer at B35, midsummer at 

L4 and late summer at SH. The extent of the period within which holoplankton groups peaked 

along the year showed a clear reduction from U35 (6 months, from March to August) to L4 (5 

months, from May to September) and to SH (3 months, from July to September), and it was 

longest (7 months, from March to September) at B35. Overall, meroplankton groups peaked 

earlier than holoplankton groups at all sites. The largest difference was observed at SH, with most 

meroplankton groups peaking in April – June and most holoplankton groups in August – 

September, and the smallest difference at U35 and B35, with most meroplankton and 

holoplankton groups peaking in the same season. Most cladoceran-copepod genera peaked in 

spring at U35 and in summer at SH, while at L4 the number of genera peaking in spring and 

summer was similar, and at B35 most of them peaked in summer – early autumn. 
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Figure 10. Histogram of the number of taxa that showed the standard annual maximum in each 

month at Bilbao 35 (B35), Urdaibai 35 (U35), Plymouth L4 (L4) and Stonehaven (SH). These are 

cumulative bars representing the number of holoplankton groups (black bars), meroplankton 

groups (white bars) and copepod-cladoceran genera (grey bars). Arrows indicate the period within 

which annual maxima of holoplankton groups (black line), meroplankton groups (pointed line) 

and copepod-cladoceran genera (grey bars) occur. 
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1.4. Discussion 

1.4.1. Scales of variability 

The dominance of the seasonal component over the interannual, and of the residual component 

over the former two, that we found for zooplankton taxa abundance at all sites under study, seems 

to be the most common feature for coastal plankton variability (e.g. Cloern and Jassby, 2010; 

Zingone et al., 2010; Bode et al., 2013). However, the magnitude of the scales of zooplankton 

variability showed no clear relationship with latitude or trophic status. Latitude appears as a key 

driver of the seasonal variability of phytoplankton biomass when a wide latitudinal range and 

many cases are considered (Cloern and Jassby, 2010). However, in our study only the fact that 

the highest seasonal variability of zooplankton taxa was obtained at the northernmost site (SH) 

fits this assumption. The higher values of the residual component at B35 and U35 might be due 

to some extent to the use of single measurements as estimators of monthly mean values, instead 

of the weekly values used for L4 and SH, but also to the combined effect of natural and 

anthropogenic local factors acting at time scales shorter than the seasonal cycle and high 

frequency temporal changes like those related to unusual events in single years or year-to-year 

shifts in phenology (Cloern and Jassby, 2010). The nutrient-rich estuarine plume at B35 and the 

strong tidal mixing and transport at U35 have a marked influence on phytoplankton biomass and 

dissolved oxygen dynamics at these sites (Villate et al., 2008; Iriarte et al., 2010; Villate et al., 

2013; Iriarte et al., 2015), and might enhance residual zooplankton variability as compared to 

further offshore and deeper sites such as L4 and SH, which can be expected to be less affected by 

disturbances occurring close to the coast. Strong high frequency events like the unusual increase 

of some taxa in 2012 at U35, and to a lesser extent at B35, and the high variability in the timing 

of taxa annual maxima between years at B35, and to a lesser extent at U35, when compared to L4 

and SH, very likely also contributed to increase the residual variability from L4 and SH to U35 

and B35. 

 

1.4.2. Interannual variations 

Our results did not evidence the effect of strong atmospheric forcing that can lead to synchronous 

population fluctuations across wide areas (Goberville et al., 2014; Kang and Ohman, 2014), since 

neither total zooplankton nor any taxa abundance correlated between all sites. The highest 

synchrony was observed between B35 and U35, likely due to their geographic proximity, as this 

enhances the probability of being affected by the same mesoscale shelf water oceanographic 

structures. The idea that the year-to-year changes in zooplankton might be primarily driven by a 

combination of forces that differ locally is reinforced by the few cases of synchrony between 

zooplankton taxa and temperature or phytoplankton biomass observed. Results also strengthen 

the hypothesis of meaningful differences within the NECS province established by Longhurst 
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(1998), which is also supported by other biogeographical classifications that locate our sites in a 

variety of units. For instance, the marine ecoregions defined for coastal and shelf areas by 

Spalding et al. (2016) separate the sites of the Bay of Biscay (Lusitanian province) from those 

located in the English Channel and North Sea (Northern European Seas province). In addition, 

although all the study sites are within the north European shelf latitudinally parallel to the North 

Atlantic Drift ecoregion of the Westerly winds’ biome (Sutton et al., 2017), the SH site is near to 

the Northwest Atlantic Subarctic ecoregion of the Polar biome, whereas U35 and B35 are in the 

boundary with the Central North Atlantic ecoregion of the Trade wind biome. At SH water moves 

generally southerly and it is a mix of coastal and oceanic Atlantic waters, with an increase of the 

latter in late summer – early autumn; and L4 is affected by oceanic waters coming in with the 

dominant southwesterly winds (Falkenhaugh et al., 2013). In the narrow Basque shelf, the Eastern 

North Atlantic Central water is the main water mass and influences coastal water (U35 and B35) 

(Valencia et al., 2004). 

 

The unusually high abundance of total zooplankton at U35 and B35 in 2012, mainly as a result of 

the marked increase of Acartia, PCPC-calanus, Oithona, appendicularians and bivalve larvae, 

corroborated the importance of local or region-specific physical processes driven by meteo-

climatic conditions in modifying the range of interannual fluctuations of zooplankton abundance 

(Buttay et al., 2015). 2012 has been reported as a peculiar year in the southern Bay of Biscay, 

with atypical positive values of the upwelling index for February and March (Rodriguez et al., 

2015) and exceptional changes in specific phytoplankton species related to climate anomalies 

(Díaz et al., 2013). 

 

The concurrent increase of zooplankton abundance and decrease of phytoplankton biomass at the 

anthropogenically enriched site of B35 excludes the bottom-up control as a plausible cause of 

zooplankton increase, in contrast to findings for other systems (Steinberg et al., 2012). 

Environmental changes associated to the rehabilitation of the estuary of Bilbao might have had 

opposite effects on zooplankton and phytoplankton, since the phytoplankton biomass decline in 

the system during the period of study occurred concomitant to the decrease in anthropogenic 

nutrient loadings (Villate et al., 2013) as observed elsewhere too (Mozetič et al., 2010; Zingone 

et al., 2010). 

 

1.4.3. Seasonal patterns 

Seasonal patterns of many taxa and total zooplankton abundance, as well as phytoplankton 

biomass, seemed to be related to latitude. This was mainly evidenced by the clear delay of the 

early peak, and to a lesser extent by the advancement of the late peak, from the southernmost site 

(U35) to the northernmost one (SH), in agreement with the principle that spring processes tend to 
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occur earlier and autumn processes later in the year with increasing temperature (Mackas and 

Beaugrand, 2010). However, taxa with a coincident seasonal pattern at all latitudes and taxa with 

a delay in the seasonal distribution at the southernmost sites were also found. 

 

Coincident seasonal distributions at the three latitudes, such as those of cirripede larvae, 

chaetognaths and doliolids, could be attributable to an environmental stimulus that does not 

change within the latitude range we studied. No information on the species composition of 

cirripede larvae is available in our zooplankton series, but latitudinal differences in barnacle 

species distribution is supported by studies covering areas from Scotland to Portugal (Crisp et al., 

1981; O’Riordan et al., 2004). The coincidence of a major early spawning peak of cirripedes at 

all sites, regardless of compositional differences, seems to be the result of a common response to 

the timing of phytoplankton increase from winter to spring (Starr et al., 1991; Highfield et al., 

2010). Similarly, the coincidence of the seasonal distribution of chaetognaths, despite the 

dominance of different species such as Parasagitta friderici at U35 and B35, Parasagitta setosa 

at L4 and Parasagitta elegans at SH, could be attributable to them sharing the same diet, which 

consists mainly of small copepods (Falkenhaug, 1991; Gibbons and Stuart, 1994; Tönnesson and 

Tiselius, 2005) that peak in the warmest period. The coincidence of doliolid maxima at all sites 

in late summer agrees with the fact that doliolid development occurs at high temperature and is 

favoured by the stratification of the water column (Menard et al., 1997). 

 

The delay of the annual maxima of bryozoan larvae and ichthyoplankton at the southernmost sites 

may be related to compositional differences associated to different environmental preferences. 

No information was available about bryozoan species composition, but the differences in fish 

species distribution between sites are well known and support the observed differences in 

ichthyoplankton seasonality. The most abundant fish larvae off the east coast of Scotland are those 

of sandeel, which are almost restricted to the first half of the year and usually peak in March, 

whereas in the western English Channel the larvae of whiting and a mixture of clupeids (mainly 

sprat and sardine) are more abundant, peaking from March to June (Edwards et al., 2011). In the 

inner Bay of Biscay fish larvae reach annual maxima around June and sardine and anchovy larvae 

are the most abundant ones, the anchovy ones being clearly associated to warmer conditions 

(d’Elbée et al., 2009). 

 

The northward delay of the annual maxima across sites in cladocerans and their genera Podon 

and Evadne (mainly Evadne nordmanni), the copepod Acartia (almost exclusively Acartia 

clausi), and appendicularians was linked to the timing of the spring phytoplankton peak, but it 

may also reflect specific temperature optima. This was evident mainly for A. clausi, which peaked 
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in late March, at temperatures near the annual minimum (12.4 ºC) at the southernmost sites, and 

later in the year, near the annual maximum (13 ºC), at the northernmost site. 

 

Among taxa with bimodal cycles, or bimodal cycles that become unimodal at the northernmost 

site, latitudinal differences in timing and magnitude of peaks were related to compositional 

differences in some cases. For Temora, Temora longicornis was responsible for the first annual 

peak at all sites, whereas Temora stylifera was responsible for the second one at U35 and B35. 

Similarly, PCPC-calanus is dominated by the spring peaking species Pseudocalanus elongatus at 

SH (Bresnan et al., 2015) and by Paracalanus parvus at U35 and B35, where this species is 

responsible for the much higher value of the second annual peak. At L4, both species are similar 

in abundance, but P. elongatus peaks in spring and P. parvus in autumn (Eloire et al., 2010). 

Oithona similis, accounted for the early peak of the Oithona genus at U35 and the only peak of 

this genus at SH, whereas O. nana was not recorded at SH and L4 (Castellani et al., 2016), but it 

was the main responsible for the second peak of Oithona at U35 and B35. In contrast, Oncaea 

and Corycaeus showed bimodal cycles at SH and unimodal ones at U35. In agreement with 

previous reports by Eloire et al. (2010), our results showed a skewed distribution of Corycaeus 

and Oncaea towards autumn and winter at L4 and SH, which may be related to the later cooling 

of water as compared to U35 and B35. 

 

A plot showing how many taxa had their annual maximum of abundance in each month of the 

year evidenced that the largest number of taxa had their peak abundances in early spring at the 

southernmost site (U35) but summer at the intermediate and northernmost sites (L4 and SH). This 

may be a response to differences in phytoplankton availability during spring – summer, since the 

availability decreases strongly in summer at U35 but it remains rather high at L4 and SH. At this 

last site, the occurrence of most meroplankton groups’ maxima in spring and the later 

concentration of the annual maxima of all holoplankton groups and most cladoceran-copepod 

genera in the 3-month summer period coincide with changes in phytoplankton availability (higher 

in spring than in summer), but also with the succession of the late spring diatom bloom by the 

annual maximum of dinoflagellates in summer at SH (Bresnan et al., 2015). The wider seasonal 

distribution of the annual maxima for meroplankton groups than for holoplankton groups at all 

sites also suggests that the spawning behaviour of different benthic populations does not only 

depend on phytoplankton abundance, but also on phytoplankton composition or physical factors 

such as temperature (Starr et al., 1992; Starr et al., 1993; Highfield et al., 2010). 

 

The effect of the trophic status was mainly evidenced by the delay in the annual maximum of 

many taxa and the transformation of the bimodal cycles of total zooplankton and some taxa at the 

oligotrophic site into trimodal cycles at the mesotrophic site. Because no significant differences 
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in temperature occur between U35 and B35, the modification of the phytoplankton biomass cycle 

and composition at the mesotrophic site by man-made eutrophication (Garmendia et al., 2013) 

seems the main factor responsible for such differences. At U35, Chl a showed the classical 

summer drop related to nutrient-limitation, as in other nearby continental shelf areas of the 

southern Bay of Biscay (Stenseth et al., 2006), whereas at B35 summer Chl a values exceeded 

those of spring. The seasonal delay of most holoplankton taxa at B35 revealed that the same 

species were able to reach higher densities later than at U35 due to the maintenance of high 

phytoplankton biomass until autumn. In Oithona, however, seasonal differences were mainly 

related to between-site differences in species dominance. The spring species O. similis, which 

may be limited by high (>20 °C) temperatures (Castellani et al., 2016), dominated at U35, whereas 

the summer – autumn species O. nana, which is associated to high temperature and Chl a, and to 

eutrophicated/polluted conditions (Arfi et al., 1981; Villate, 1991; Jamet et al., 2001), dominated 

at B35. In spite of their vicinity, the between-site differences in the seasonal patterns of 

phytoplankton and zooplankton at U35 and B35 were larger than those reported by Bresnan et al. 

(2015) between SH and Loch Ewe. The latter are also located around the same latitude but Loch 

Ewe is in the west Scottish coast and is more influenced by river discharges. In this case, although 

both phytoplankton and zooplankton showed earlier increases at Loch Ewe than at Stonehaven, 

the seasonal maxima occurred only 1 month earlier in spring at the former site for phytoplankton 

and in the same month in summer at both sites for zooplankton (Bresnan et al., 2015). 

 

The comparison of our results with those obtained at L4 and sites of the Cantabrian coast (Valdes 

et al., 2007; Bode et al., 2012) near U35 and B35 in previous decades corroborates seasonal 

differences from the English Channel to the southern Bay of Biscay, but it also suggests that 

phenological changes could be occurring in some taxa. This is the case of Centropages (almost 

exclusively C. typicus at L4, U35 and B35), which in our study was found to have the standard 

annual maximum in August at L4 and in late June at U35 and B35, but in other studies where 

previous decades were considered, maxima were observed in September at L4 and July at the 

coastal site of Santander (around 100 Km from B35 and U35) (Bonnet et al., 2007). C. typicus is 

a typical temperate neritic-coastal species of the North Atlantic which responds to temperature 

increases and changes in the structure and timing of occurrence of phytoplankton (Beaugrand et 

al., 2007). The seasonal advance experienced by this species may be related to the warming of 

the northwest European shelf region (Smith et al., 2010). Similarly, the timing of the annual 

maximum in September observed in this study for Calanidae (mainly C. helgolandicus) at SH can 

be interpreted in the context of the replacement in the dominance of Calanus finmarchicus 

(subarctic spring peaking Calanidae) by C. helgolandicus (temperate species) in the North Sea 

from the late 80s as a result of warming, since temperature has been identified as the main 

environmental variable that has influenced the abundance of both species (Beaugrand et al., 2002, 
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2009; Bonnet et al., 2005; Helaouët and Beaugrand, 2007). However, the differences in the 

seasonal pattern of C. helgolandicus at U35 and B35 suggest a response of population dynamics 

to the trophic status that was not observed for C. typicus. Expanding our study in the future to 

include more updated information would be of much interest to follow the evolution of these and 

other zooplankton components in contrasting areas within the NECS province, and to be able to 

detect significant local effects. 

 

1.5. Conclusions 

The present study showed that in the four coastal sites of the Northeast Atlantic Shelves Province 

of the ICES area, during the 1999 – 2013 period, the magnitude of zooplankton interannual, 

seasonal and residual components of variability did not show clear relationship with the latitudinal 

gradient, and the interannual zooplankton variations were not coherent across sites, this 

suggesting the dominance of local forces over wider scale climatic drivers. Seasonal patterns, 

however, differed across sites in such a way that allowed to identify north-south trends. The most 

recurrent one was the delay of the early seasonal peak of many spring – summer taxa northwards, 

together with the earlier occurrence of the late peak in taxa showing bimodal cycles during the 

spring – summer period. In addition, taxa with coincident seasonal patterns at all sites, taxa 

peaking earlier with increasing latitude over the first half of the year or taxa peaking later with 

increasing latitude over the second half were also observed. Phenological differences in 

zooplankton from sites at the same latitude but with different trophic status allowed us to 

distinguish the effect of climatic variability from the effect of man-induced perturbations, which 

is one of the priorities stated by the Marine Strategy Framework Directive (MSFD). In addition, 

envelopes of zooplankton variability that can be used as reference baselines to detect anomalous 

years have been defined, and helped to establish that 2012 was an anomalous year in our southern 

Bay of Biscay sites. 
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Chapter 2. Zooplankton seasonality 

and the influence of environmental factors 
 

 

 

 

Zooplankton seasonality and its environmental drivers were studied at four coastal sites within 

the Northeast Atlantic Shelves Province (Bilbao35 (B35) and Urdaibai35 (U35) in the Bay of 

Biscay, Plymouth L4 (L4) in the English Channel and Stonehaven (SH) in the North Sea) using 

time series spanning 1999 – 2013. Seasonal community patterns were extracted at the level of 

broad zooplankton groups and copepod and cladoceran genera using redundancy analysis. 

Temperature was generally the environmental factor that explained most of the taxa seasonal 

variations at the four sites. However, between-site differences related to latitude and trophic status 

(i.e. from oligotrophic to mesotrophic) were observed in the seasonality of zooplankton 

community, mainly in the pattern of taxa that peaked in spring – summer as opposed to late 

autumn – winter zooplankton, which were linked primarily to differences in the seasonal pattern 

of phytoplankton. The percentage of taxa variations explained by environmental factors increased 

with latitude and trophic status likely related to the increase in the co-variation of temperature and 

chlorophyll a, as well as in the increase in regularity of the seasonal patterns of both temperature 

and chlorophyll a from south to north, and of chlorophyll a with trophic status. Cladocerans and 

cirripede larvae at B35 and U35, echinoderm larvae at L4 and decapod larvae at SH made the 

highest contribution to shape the main mode of seasonal pattern of zooplankton community, 

which showed a seasonal delay with latitude, as well as with the increase in trophic status. 
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2.1 Introduction 

Zooplankton comprise a key component of marine pelagic ecosystems, forming a major link 

between primary producers and upper trophic level consumers (Dam, 2013). In the marine 

environment the seasonal cycle of zooplankton abundance and composition, together with those 

of key environmental variables, are among the strongest contributors to total temporal variance 

(Mackas et al., 2012). Furthermore, the seasonality of zooplankton may have profound 

implications for the coupling or decoupling of trophic interactions (e.g. match-mismatch 

hypothesis, Cushing, 1990). Seasonal variations of zooplankton have been reported in the 

literature (e.g. Colebrook, 1984; Longhurst, 1998), but better knowledge of zooplankton 

seasonality is needed to understand how climate change impacts on phenology shifts (Ji et al., 

2010), particularly in coastal areas where there is greater variability (Ribera d’Alcalà et al., 2004). 

In addition to describing temporal patterns of variation, knowledge of the influence of 

environmental factors in marine plankton is also essential to understand ecological properties of 

pelagic ecosystems and their potential responses to a changing environment (Pepin et al., 2015). 

  

Given the relevance for the entire food web dynamics, zooplankton seasonality is also important 

in the definition of marine eco-geographical units (Longhurst, 1998). Longhurst (1998) divided 

the sea into biomes, each one containing one or several provinces. The Northeast Atlantic Shelves 

Province (NECS) extends from Cape Finisterre (NW Spain) to the edge of the Faroe Shetland 

channel in the north and as far east as the Baltic Sea, and is one of the largest continental shelf 

regions. Seasonal patterns of zooplankton have been studied in different areas within the NECS, 

e.g. North Sea (e.g. Greve et al., 2004; Van Ginderdeuren et al., 2014; Bresnan et al., 2015), 

English Channel (e.g. Eloire et al., 2010; Highfield et al., 2010) and Bay of Biscay (e.g. Huskin 

et al., 2006; Stenseth et al., 2006; Valdes et al., 2007). However, fewer attempts have been made 

to compare zooplankton community seasonal dynamics and their drivers between these different 

shelf areas. For example, using CPR data Beaugrand et al. (2000) compared zooplankton 

seasonality between the English Channel and the Bay of Biscay and Mackas et al. (2012) made 

comparisons between the North Sea (using a combination of CPR data and Helgoland Roads time-

series data) and the English Channel (using Plymouth L4 time series data). However, to the best 

of our knowledge, comparative studies on coastal zooplankton community seasonal dynamics and 

their environmental drivers from these three areas (North Sea, English Channel and Bay of 

Biscay) using the same methodology for data analysis have not been conducted so far. Moreover, 

most studies of zooplankton seasonality have dealt with the seasonal timing of the abundance or 

biomass of individual taxa. The seasonal variation of individual zooplankton taxa, at four study 

sites in the NECS, located in the Bay of Biscay, the English Channel and the North Sea, have 

been examined by our group in a previous work (Chapter 1, this work), identifying different types 



Chapter 2: Environmental factors and seasonality 

59 

 

of seasonal patterns within the main components of zooplankton communities. However, a need 

to extend the analysis studying the influence of environmental drivers on the seasonal patterns at 

the community level was identified. Multivariate ordination methods are very useful for this 

purpose, as they help to understand the drivers of seasonality based on a more holistic and 

synthetic approach (Walker and Jackson, 2011). 

 

The aim of the present work was to compare zooplankton community seasonal patterns and their 

environmental drivers at four coastal sites in the NECS, located in the Bay of Biscay (Urdaibai 

35 and Bilbao 35), the English Channel (Plymouth L4) and the North Sea (Stonehaven), for which 

comparable time-series exist, thus covering almost the entire latitudinal range within this 

province. In addition, the two sites located in the Bay of Biscay are at the same latitude but differ 

in their trophic status (Iriarte et al., 2010). Therefore, time-series from these four sites allowed us 

to explore the influence of latitude and anthropogenic nutrient enrichment on the seasonal 

dynamics of zooplankton community in the NECS. This is in line with the objectives of policy 

directives such as the Marine Strategy Framework Directive that seek to better understand the 

dynamics of coastal communities over broad geographical areas, identifying the effect of human 

activities. 

 

2.2 Methods 

2.2.1 Data preparation 

Zooplankton data were grouped and analysed at: (i) the herein termed Zooplankton Group level 

(ZG), which included six holoplankton categories (copepods, cladocerans, appendicularians, 

chaetognaths, siphonophores and doliolids) and nine meroplankton categories (cirripede larvae, 

decapod larvae, gastropod larvae, bivalve larvae, polychaete larvae, fish eggs and larvae, 

bryozoan larvae, echinoderm larvae and hydromedusae) and (ii) the Copepod and Cladoceran 

Genera level (CCGen), consisting of genera or genera-assemblages (exceptionally family) of 

cladocerans and copepods: Evadne and Podon genera for the cladocerans and Acartia, 

Centropages, Temora, Oithona, Oncaea, Corycaeus genera, the “PCPC-calanus” genera 

assemblage (this includes Paracalanus, Clausocalanus, Pseudocalanus and Ctenocalanus), and 

the family Calanidae for the copepods. Zooplankton was expressed in units of density (individuals 

m-3) and prior to Redundancy Analyses (RDA), the zooplankton density data were transformed 

using log (x + 1) (ter Braak and Šmilauer, 2002). 
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2.2.2 Statistical analyses 

Multivariate ordination methods were used to model the relationship between zooplankton 

community structure and explanatory variables using Canoco v. 4.55 (ter Braak and Šmilauer, 

2002). Depending on whether the relationships between taxa and environmental variables are 

unimodal or linear, the use of Canonical Correspondence Analysis (CCA) or Redundancy 

Analysis (RDA), respectively, is advised (ter Braak and Šmilauer, 2002). To elucidate this, as a 

first step, Detrended Correspondence Analyses were performed, as recommended by ter Braak 

and Šmilauer (2002). Since the length of the longest gradient was in all cases < 2, we opted for 

conducting RDAs. Separate RDA analyses were performed for each of the four sites (B35, U35, 

L4 and SH) and each of the two taxonomic levels (ZG and CCGen) tested. 

 

In order to extract the seasonal pattern of the zooplankton community, as well as the contribution 

of the different taxa to this seasonal variability, partial RDAs in which months were used as 

categorical explanatory variables and years as categorical covariables (thereby removing the 

effect of years) were performed. 

 

In order to test the relationship between zooplankton community seasonal variations and 

environmental variables, preliminary partial RDAs were carried out using as explanatory 

variables the relevant water environment variables routinely monitored at all sites, namely, water 

temperature (WT), Chl a and salinity (Sal). Values of these variables are surface ones at L4 and 

SH and, although zooplankton samples were collected from surface down to 45 or 50 m, they are 

a valid proxy of the environmental variability that drives the seasonal variations of zooplankton. 

In order to obtain the final models, these partial RDAs were re-done, but using as explanatory 

variables only those that, in the preliminary partial RDAs, significantly explained some of the 

zooplankton data variation (conditional effects, with forward selection of variables). The rest of 

environmental factors (i.e. the non-significant ones) were included as supplementary variables, 

thus not influencing the analyses. 

 

In all RDAs Monte Carlo tests were performed with 499 permutations under reduced model (ter 

Braak and Šmilauer, 2002). The permutations were unrestricted and the blocks defined by the 

covariables. 

  

In order to test more specifically the relationship between environmental factors and the seasonal 

patterns represented along the two main ordination axes obtained in RDAs, Spearman’s rank-

order correlations were carried out between the sample scores and environmental variables, 

separately for each ordination axis. Additionally, in order to test for differences between the sites 
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in the seasonal patterns obtained for each of the two main axes, between-site Spearman rank-order 

correlations of the month scores along each axis were carried out. 

 

Finally, between-year correlation analyses were performed for temperature, Chl a and total 

zooplankton abundance (Pearson correlation for the former and Spearman rank-order correlation 

for the two latter) to assess differences between sites in the degree of year-to-year regularity of 

the annual cycles of those variables. These differences were determined from the frequency 

distribution of the correlation values for each variable at each site. These correlations were thus 

performed to examine how well correlated were the seasonal patterns of different years within the 

time series for each variable, and can be taken as indicators of the regularity or recurrence of the 

seasonal cycle over the time series at each site. A lower regularity would mean that the seasonal 

cycle shows more variations between the different years. All correlations were carried out using 

SPSS Statistics for Windows, Version 23.0 (IBM Corp., Armonk, NY). The use of the parametric 

Pearson test or the nonparametric Spearman rank-order test was decided after testing for normality 

(Shapiro-Wilk test) and homoscedasticity (Levene test). 

 

2.3 Results 

2.3.1 Seasonal patterns of zooplankton community and taxa contribution 

The result of multivariate ordination analysis is the ordination of data along axes. The first and 

second axes represent the main (dominant) and second main (less dominant) modes of variability 

(in the present case, seasonal variability of zooplankton community), respectively. The RDA 

month scores along axis 1 revealed differences in the main seasonal mode of zooplankton 

variation from U35 to L4 and to SH, which were more evident for CCGen than for ZG (Figure 

1). 

 

 
Figure 1. Month scores on axis 1 obtained from RDAs using months as explanatory variables and 

years as covariables for (a) Zooplankton Groups and (b) Copepod and Cladoceran Genera. 
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For ZG the main differences were found between U35 and both L4 and SH. The community which 

was most different from that of late autumn – winter occurred in spring (March – May) at U35, 

and in summer (July – August) at L4 and SH. For CCGen, the differences between the patterns 

of the three sites were much clearer: the most differentiated community from that of late autumn 

– winter was found in early spring (March – April) at U35 and in summer (July – August) at SH, 

whilst at L4 similar levels of differentiation were found in spring (May) and summer (August). 

Accordingly, month scores along axis 1 from U35 showed no correlation with those obtained for 

L4 or SH for any of the taxonomic levels tested (Table 1). 

 

Table 1. Between-site correlation (Spearman rank correlation coefficients with p-values in 

parentheses) of the month scores on axis 1 for Zooplankton groups (ZG) and Copepod and 

Cladoceran genera (CCGen). 

  U35 L4 SH 

ZG 

B35 0.734 (0.007) 0.867 (<0.001) 0.832 (0.001) 

U35 - 0.559 (0.059) 0.538 (0.071) 

L4 - - 0.986 (<0.001) 

     

CCGen 

B35 0.755 (0.005) 0.748 (0.005) 0.475 (0.118) 

U35 - 0.329 (0.297) -0.007 (0.983) 

L4 - - 0.874 (<0.001) 

     
 

For both levels of zooplankton grouping U35 and SH showed the strongest contrast in timing of 

maximum scores from spring (U35) to late summer (SH). In addition, the rather similar magnitude 

of the two peaks obtained for CCGen at L4 depicts an intermediate situation between those at 

U35 and SH. At the mesotrophic B35 site the major differences from the late autumn – winter 

community were found in early summer (June) for both taxonomic levels tested, but the 

distribution of the month scores showed two more subtle secondary peaks in early spring (March) 

and early autumn (September) for CCGen. Month scores along axis 1 from B35 showed weaker 

correlation with those from U35 than with those from L4 and SH for ZG, but no correlation with 

those from SH was observed for CCGen (Table 1).  

  

Regarding the contribution of zooplankton taxa to the main mode of seasonal variation (axis 1) 

in each site (Figure 2), it is clear that cladocerans made a high contribution to the seasonal pattern 

of ZG at B35, U35 and L4, but a lower one at SH. They showed peaks in spring – early summer 

at B35, U35 and L4, but in late summer at SH (Figure 1S shown as Supplementary material). 

Cirripede larvae also made a high contribution at the lowest latitude sites (B35 and U35), but their 

contribution ranked lower at L4 and SH. Cirripedes showed maxima in spring at U35, L4 and SH, 

and in summer at B35 (Figure 1S shown as Supplementary material). In contrast, decapod larvae 

were the group that contributed most at the highest latitude site (SH), where they showed a well-

defined seasonal pattern with maxima in summer (Figure 1S), but their contribution decreased 

with decreasing latitude, particularly at U35 and B35, where they showed rather similar 
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abundances in spring and summer. Another meroplankton group, the echinoderm larvae, was the 

taxon with the highest contribution at L4, where they peaked in July (Figure 1S), but their 

relevance decreased at the other sites, particularly at the lowest latitude (B35 and U35), where 

they peaked earlier in the year. Appendicularians ranked high at all latitudes in oligotrophic sites 

(U35, L4 and SH), where they showed a latitudinal delay in their maximum densities from late 

winter to early summer, but not at the mesotrophic site (B35), where they peaked in late spring 

(Figure 1S).  

 

Regarding the main mode of variability (axis 1) for CCGen, Podon and Evadne were among the 

three taxa with the highest contribution at B35, U35 and L4, but not at SH (Figure 2b). The 

occurrence of the annual maximum densities of the latter two genera showed a delay from late 

winter to summer from U35 to L4 and to SH, whereas peaks were observed in spring at B35 

(Figure 2S shown as Supplementary material). Acartia showed the highest contribution at SH 

and U35, where they peaked in summer and early spring respectively, and Temora showed high 

contributions only at SH and L4, where they reached similar abundance peaks in spring and 

summer (Figure 2S).  
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Figure 2. Taxa scores on axis 1 obtained from RDAs using months as explanatory variables and 

years as covariables for (a) zooplankton groups and (b) copepod and cladoceran genera. Acar: 

Acartia, Appe: appendicularians, Biva: bivalve larvae, Bryo: bryozoans, Cala: Calanidae, Cent: 

Centropages, Chae: chaetognaths, Cirr: cirripede larvae, Clad: cladocerans, Cope: copepods, 

Cory: Corycaeus, Deca: decapod larvae, Doli: doliolids, Echi: echinoderm larvae, Evad: Evadne, 

Fish: fish eggs and larvae, Gast: gastropod larvae, Hydr: hydromedusae, Oith: Oithona, Onca: 

Oncaea, PCPC: PCPC-calanus, Podo: Podon, Poly: polychaete larvae, Siph: siphonophores, 

Temo: Temora. 

 

The scores of months along axis 2 showed that the second seasonal mode of zooplankton variation 

had a higher between-site similarity for ZG than for CCGen (Figure 3). The ZG responsible for 

this mode of variability showed the largest differences between late winter – early spring 

(February – April) and late summer – early autumn (August – October). L4 was an exception to 

this, where this second period extended through the entire second half of the year. Significant 

correlations of the month scores along axis 2 between all stations were found (Table 2). For 

CCGen the distribution of month scores was rather similar at all sites in the second half of the 
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year (peaks in September-October) but not in the first half. Month scores along axis 2 only showed 

significant correlations between U35 and B35 and between L4 and SH (Table 2). 

 

Table 2. Between-site correlation (Spearman rank correlation coefficients with p-values in 

parentheses) of the month scores on axis 2 for Zooplankton groups (ZG) and Copepod and 

Cladoceran genera (CCGen). 

  U35 L4 SH 

ZG 

B35 0.916 (<0.001) 0.874(<0.001) 0.902 (<0.001) 

U35 - 0.720 (0.008) 0.741 (0.006) 

L4 - - 0.916 (<0.001) 

     

CCGen 

B35 0.615 (0.033) 0.510 (0.090) 0.063 (0.846) 

U35 - 0.364 (0.245) 0.315 (0.319) 

L4 - - 0.755 (0.005) 

     
 

 
Figure 3. Month scores on axis 2 obtained from RDAs using months as explanatory variables and 

years as covariables for (a) Zooplankton Groups and (b) Copepod and Cladoceran Genera. 

 

As shown in Figure 4a, for ZG, doliolids at the lowest latitude sites (B35 and U35) and 

siphonophores at L4 and SH contributed most to this secondary seasonal pattern, together with 

chaetognaths at all sites. In contrast to the abovementioned groups, cirripede larvae and fish eggs 

and larvae, together with polychaete larvae at U35, also showed high contributions at all sites. 

Chaetognaths and doliolids at all sites and siphonophores at L4 and SH were groups characterized 

by peaks in late summer – early autumn, whilst cirripede larvae and fish eggs and larvae showed 

early annual peaks (February – April) at all latitudes in oligotrophic sites (SH, L4 and U35) and 

polychaete larvae had winter maxima at U35 (Figure 1S). For copepod and cladoceran genera 

there were clear between-site differences in the contribution ranking of genera, but Oncaea, 

Corycaeus and PCPC-calanus at all sites, Temora at the lowest latitude sites (B35 and U35), 

Centropages at L4 and Calanidae at SH showed high contributions. Maximum densities in 

Oncaea and Corycaeus or high densities in PCPC-calanus were generally observed late in the 

year. The annual peak of Temora was later at B35 and U35 than at L4 and SH; that of Centropages 
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was later at L4 than at the other sites, and that of Calanidae at SH than at the other sites (Figure 

2S). 

 

 

Figure 4. Taxa scores on axis 2 obtained from RDAs using months as explanatory variables and 

years as covariables for (a) zooplankton groups and (b) copepod and cladoceran genera. 

Abbreviations as in Figure 2. 

 

2.3.2 Relationship between environmental factors and zooplankton seasonality 

Results of the partial RDAs of zooplankton data with environmental variables as explanatory 

variables showed that there was a clear increase from U35 to L4 and to SH in the percentage of 

seasonal variation of zooplankton data explained by environmental variables at both taxonomic 

levels tested (Figure 5). It was also higher at the mesotrophic B35 site both for ZG and CCGen 

than at the oligotrophic U35 site. 
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Figure 5. Percentage of total zooplankton variance explained by environmental factors at the 

level of Zooplankton Groups (black bars) and Copepod and Cladoceran Genera (grey bars). 

 

Examination of the conditional effects of environmental variables on the seasonal zooplankton 

taxa variations (Table 3) showed that WT and Chl a were selected by the model for both 

taxonomic levels tested at all sites, but the largest percentage of variation was explained by WT 

at B35, U35 and L4, and by Chl a at SH. The percentage of variation explained both by WT and 

Chl a increased from south to north from U35 to SH. At the mesotrophic B35 site, WT explained 

a higher percentage of variance than at U35. 

 

Table 3. Conditional effects of environmental variables for Zooplankton groups (ZG) and 

Copepod and Cladoceran genera (CCGen). Variables with significant effects in bold. Sal: salinity, 

WT: water temperature, Chl a: concentration of chlorophyll a. 

 ZG  CCGen 

 Variable LambdaA F p  Variable LambdaA F p 

B35 

WT 0.17 36.58 0.001  WT 0.14 29.25 0.001 

Chl a  0.01 2.90 0.023  Chl a  0.01 2.43 0.041 

Sal 0.00 0.62 0.710  Sal 0.01 1.83 0.096 

          

U35 

WT 0.06 13.06 0.001  WT 0.07 13.40 0.001 

Chl a 0.04 6.48 0.002  Chl a  0.02 4.86 0.004 

Sal 0.00 1.34 0.185  Sal 0.01 1.09 0.318 

          

L4 

WT 0.23 59.09 0.001  WT 0.18 42.66 0.001 

Chl a 0.08 23.22 0.001  Chl a  0.09 23.81 0.001 

Sal 0.01 2.84 0.033  Sal 0.00 1.63 0.169 

          

SH 

Chl a 0.31 79.61 0.001  Chl a 0.28 71.77 0.001 

WT 0.17 59.95 0.001  WT 0.18 62.33 0.001 

Sal 0.00 0.74 0.610  Sal 0.00 0.62 0.649 
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However, the relationship between environmental variables and each of the seasonal patterns 

represented by ordination along axis 1 and axis 2, respectively, was examined through the analysis 

of the correlations between environmental variables and sample scores along each ordination axis 

(Tables 4 and 5). This analysis showed that Chl a was the factor with the highest correlation with 

the main mode of zooplankton community seasonal variability (sample scores along axis 1) at all 

stations and taxonomic levels tested (exception was at L4 where very similar correlation 

coefficients were obtained for Chl a and WT). This is in accordance with the fact that the seasonal 

pattern of Chl a (Figure 6) showed quite a good agreement with that of monthly scores along axis 

1 (Figure 2). Conversely, WT was the environmental variable that showed the highest correlation 

with the second seasonal mode of zooplankton community variability (axis 2) and in most cases 

no significant correlation with Chl a was observed (Table 4). 

 

 

Figure 6. Seasonal variation of monthly means of water temperature, Chl a and salinity at B35 

(dashed), U35 (black), L4 (dark grey) and SH (light grey). 
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Table 4. Correlations between environmental factors and sample scores on axis 1 of Zooplankton 

groups (ZG) and Copepod and Cladoceran genera (CCGen). Significant correlation coefficients 

in bold (** p< 0.01; * p< 0.05). Sal: salinity, WT: water temperature, Chl a: concentration of 

chlorophyll a. 

 ZG  CCGen 

 B35  U35  L4  SH  B35  U35  L4  SH 

Sal 0.041  0.070  -0.164*   0.247**   -0.011  -0.066  -0.160*  0.333** 

WT -0.567**  -0.313**  -0.606**  0.533**  0.390**  -0.124  -0.521**  0.661** 

Chl a -0.585**  -0.359**  -0.600**  0.839**  0.537**  0.265**  -0.582**  0.774** 

                 

 

Table 5. Correlations between environmental factors and sample scores on axis 2 of Zooplankton 

groups (ZG) and Copepod and Cladoceran genera (CCGen). Significant correlation coefficients 

in bold (** p< 0.01; * p< 0.05). Sal: salinity, WT: water temperature, Chl a: concentration of 

chlorophyll a. 

 ZG  CCGen 

 B35  U35  L4  SH  B35  U35  L4  SH 

Sal 0.101  -0.065  -0.018  0.566**  0.122   0.080   0.184*  -0.079  

WT 0.529**  0.609**  -0.672**  0.734**  0.614**  -0.525**  0.445**  -0.131  

Chl a -0.055  -0.087  -0.010   -0.159*  0.059  -0.206**  0.101   -0.017  

                 

 

As shown in Figures 7 and 8, at B35 most zooplankton groups, and many copepod genera were 

strongly related to WT. In general, the number of zooplankton groups with high correlation with 

WT decreased with latitude from U35 to SH, and the relation of copepod and cladoceran genera 

with WT or Chl a also decreased with latitude from U35 to SH. At U35 a group of genera related 

to WT (Corycaeus, Oncaea, Centropages, Temora) was clearly distinguished from a group of 

genera related to Chl a (Evadne, Podon, Acartia). At SH, however, most genera showed similar 

relationships with WT and Chl a. In general, chaetognaths, doliolids and siphonophores were 

the zooplankton groups with the highest relationship with WT, and cirripede larvae and 

appendicularians the most highly related ones to Chl a at all sites. 
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Figure 7. RDA biplot of Zooplankton Group taxa (thin black arrows) and environmental variables 

(thick black arrows for variables with significant conditional effects and grey arrows for variables 

with non-significant conditional effects). In parentheses the percentage of taxa-environment 

relationship explained by each axis. Taxa and environmental variable abbreviations as in Figure 

2 and Table 3, respectively. 
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Figure 8. RDA biplot of Copepod and Cladoceran Genera (thin black arrows) and environmental 

variables (thick black arrows for variables with significant conditional effects and grey arrows for 

variables with non-significant conditional effects). In parentheses the percentage of taxa-

environment relationship explained by each axis. Taxa and environmental variable abbreviations 

as in Figure 2 and Table 3, respectively. 

 

 

2.3.3 Year-to-year regularity in the seasonal patterns of water temperature, chlorophyll a 

and total zooplankton density 

Figure 9 shows that the between-year correlation increased from B35 and U35 to L4 and to SH 

for WT, Chl a and total zooplankton abundance. This can be taken as an indication of an increase 

in the regularity of the annual cycle from U35 to L4 and to SH. Higher regularity would mean 

that the seasonal cycle varies less between years. Regularity was also higher at B35 than at U35 

for Chl a and total zooplankton abundance. 
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Figure 9. Histograms of between-year correlations of annual cycles of temperature, chlorophyll 

a and total zooplankton abundance. The vertical dotted line shows the mean value of the 

distribution. 

 

Zooplankton abundance and Chl a were not correlated between sites, whereas water temperature 

correlated between B35 and U35 (p< 0.001), and between L4 and SH (p= 0.001). Within sites 

zooplankton abundance, Chl a concentration and water temperature were not correlated, except 

for the negative correlation (p= 0.026) between zooplankton and Chl a at B35 and the positive 

correlation (p= 0.024) between Chl a and temperature at L4. 
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2.4 Discussion 

2.4.1 Seasonal patterns of zooplankton community 

In general, our data evidenced differences between sites in the seasonal pattern that were chiefly 

related to the main mode of community variability (axis 1), which represented the pattern driven 

by taxa that peaked in the central part of the year (spring – summer) as opposed to late autumn – 

early winter zooplankton. On the contrary, no marked between-site differences were observed 

related to the second main mode of seasonal variability (axis 2) for ZG or for taxa that peaked 

latest in the second half of the year for CCGen. Within the oligotrophic sites a delay with latitude 

was apparent, since, in the southern Bay of Biscay (U35) the seasonal pattern represented by the 

main mode of variability of ZG was mainly accounted for by taxa that peaked in spring, whilst at 

the western English Channel (L4) and North Sea (SH) sites it was mainly accounted for by taxa 

that peaked in summer. Between-site differences along the gradient from south to north were 

clearer at the CCGen level than at the ZG level, likely due to the fact that genera reflect better a 

seasonal succession of species that is masked at the group level. For instance, Acartia is almost 

exclusively Acartia clausi at all four sites, Temora is dominated by Temora longicornis at SH and 

L4 and by Temora stylifera at U35 and B35, and PCPC-calanus is dominated by Pseudocalanus 

elongatus at SH, Paracalanus parvus at B35 and U35 and the two species in similar densities at 

L4 (Chapter 1, this work). The difference in the seasonal pattern of the zooplankton community 

we observed between U35 and L4 agrees well with that reported by Beaugrand et al. (2000) who 

studied an area from the Northeastern English Channel down to the southern Bay of Biscay. 

Similarly, Bot et al. (1996) observed a seasonal delay in the maxima of copepods from south to 

north in Northwest European shelves. This south to north gradient in the seasonal timing agrees 

with the general view that, for spring and summer zooplankton, the development, reproduction, 

and onset/termination of seasonal dormancy all shift earlier in the year where the environment is 

warmer (Mackas and Beaugrand, 2010; Beaugrand et al., 2014). 

 

2.4.2 Environmental drivers of zooplankton community seasonality 

Water temperature generally explained the highest zooplankton taxa seasonal variability, as 

shown by RDA analyses. This agrees with the role of temperature as a primary structuring factor 

of the seasonality of zooplankton (Mackas et al., 2012), since it controls their rates of egg 

development, feeding, production, respiration and other metabolic processes (Peters and 

Downing, 1984; Ambler et al., 1985; Ikeda, 1985) and, indirectly, it can also control their food 

availability (Mackas et al., 2012). Despite the key role of temperature, the correlations between 

environmental factors and sample scores on axis 1 and axis 2 performed separately, showed 

clearly that the sample scores on axis 1, unlike those on axis 2, were generally more strongly 

related to Chl a concentration than to temperature. Therefore, since axis 1 best represented the 
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between-site differences in the seasonal variation of the zooplankton community, we can say that 

it was mainly the timing of phytoplankton availability which could account for the major between-

site seasonal variations of zooplankton community. The facts that (i) the phytoplankton spring 

bloom is delayed from U35 to L4 and to SH, and (ii) delays in phytoplankton blooms with latitude 

may be a general pattern within the latitudinal range at which our stations are located in the east 

Atlantic shelf waters (Martinez et al., 2011; Racault et al., 2012), support the view that the main 

differences in the seasonal zooplankton community seasonal pattern between U35, L4 and SH 

may be the consequence of a latitudinal effect driven by latitudinal differences in the availability 

of phytoplankton throughout the spring-summer period. 

 

In addition to differences between the oligotrophic sites, our data also showed a delay in the 

timing of the peak in the zooplankton seasonal pattern conformed by month scores along axis 1 

from the oligotrophic U35 to the mesotrophic B35. These differences in zooplankton community 

seasonal pattern may be related to differences between these two sites in the level of 

anthropogenic nutrient enrichment and in hydrographical features. The presence of an estuarine 

plume at B35 (Ferrer et al., 2009) results in higher nutrient concentrations at B35 than at U35 

(Iriarte et al., 1997; Villate et al., 2013). It also causes B35 to have a more estuarine/enclosed 

coastal ecosystem type of phytoplankton seasonal cycle (sensu Cebrián and Valiela, 1999), with 

high phytoplankton biomass in spring, but higher ones in summer. In contrast U35, where tidal 

flushing is high, is characterized by the typical temperate shelf water bimodal seasonal pattern 

found in the southern Bay of Biscay (Stenseth et al., 2006) with spring (main) and autumn 

(secondary) peaks, and low summer phytoplankton biomass (Iriarte et al., 2010; Villate et al., 

2017). Another important finding was that for the oligotrophic sites (U35, L4, and SH), the 

proportion of zooplankton taxa variations explained by environmental factors increased from U35 

to L4 and to SH. There was a higher seasonal covariation of water temperature and Chl a at SH, 

and this can contribute to a more similar correlation of most zooplankton taxa with these two 

factors. Conversely, as stated above, as we move from SH towards L4 and U35 the spring 

phytoplankton bloom occurs earlier in the year, and therefore, the effect of temperature and 

phytoplankton biomass becomes less additive. Another very influential factor can be the increase 

in the year-to-year regularity of the seasonal patterns of temperature and Chl a from U35 to SH. 

This causes the variation pattern of seasonal zooplankton also to be most similar between years 

at the northernmost site. An increase in the proportion of zooplankton community seasonal 

variations explained by environmental factors from the oligotrophic U35 to the mesotrophic B35 

was also observed. In this case, the higher covariation between water temperature and Chl a could 

also be the most plausible explanation. In fact, the conditional effect of Chl a was low or not 

significant at B35, despite the marginal effect being significant (data not shown). It could also be 

affected by a higher regularity in the seasonal pattern of Chl a concentration. Differences in the 
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regularity and predictability of the seasonal pattern of zooplankton can have important 

implications for predator-prey interactions (Atkinson et al., 2015). A more regular, predictable 

seasonal pattern of zooplankton that we have observed northwards or under mesotrophic 

conditions (understanding by more regular that the seasonal cycle varies less from year to year) 

can increase the trophic match probability between fish larvae and their zooplankton prey (Ji et 

al., 2010, Mackas et al., 2012), and therefore, enhance the feeding success probability of the 

former, according to the match-mismatch hypothesis (Cushing, 1990; Fortier et al., 1995). 

 

Our analysis focused on the role of environmental factors on the seasonal distribution of 

zooplankton, but predation controls can also be important. For instance, work at L4 on phenology 

of successive planktonic trophic levels reveals high inter-annual variability in timings of both 

predators and prey (Atkinson et al., 2015). The effects of temperature and food availability on 

zooplankton seasonality are also influenced strongly by simultaneous and strong top-down effects 

that modify the timing and amplitude of abundance peaks (Maud et al., 2015). 

 

2.4.3 Contribution of individual taxa to shape seasonal zooplankton community patterns 

and the relationship between individual taxa and environmental drivers 

The differences in the main mode of seasonal variability pattern were accompanied by differences 

in the zooplankton taxa that contributed most to shape each pattern. At the southern Bay of Biscay 

sites, cladocerans made the highest contribution. Cladocerans can consume components of the 

microbial food web (Katechakis and Stibor, 2004), but they feed mainly on phytoplankton (Brown 

et al., 1997). In accordance, the timing of their seasonal peak differed from U35 to B35 (maxima 

in early spring and early summer, respectively) in relation to differences in the seasonal pattern 

of Chl a. At the English Channel and North Sea sites, meroplankton groups, i.e. echinoderm larvae 

and decapod larvae respectively, contributed most to shape the seasonal pattern. During the 

present study period, echinoderm larvae have been shown to peak in July at L4, and decapod 

larvae in August at SH. Other works have also shown both echinoderm and decapod larvae 

maxima in summer in the northern North Sea (Lindley and Kirby, 2007) and western English 

Channel (Highfield et al., 2010). It is noteworthy that both of these meroplankton groups are 

known to have increased their abundances in the North Sea especially since the mid-1980s, likely 

due to seawater warming (Kirby et al., 2008). Meroplankton was also important at U35 and B35, 

since cirripede larvae, a group that peaked in early spring at U35 but in early summer at B35, 

ranked high in the contribution to the main mode of seasonal variability at these sites. The 

relevance of meroplankton groups at all sites underscores the influence of benthic communities 

on the seasonality of pelagic ones, and provides support for the idea that benthic-pelagic coupling 

has a prominent role in coastal environments (Griffith et al., 2017). 
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The second main mode of variability of ZG showed a high degree of coincidence between sites 

because it was mainly accounted for by taxa that peaked later in the year at all sites and correlated 

strongly with WT (i.e. chaetognaths at all sites, doliolids at B35 and U35 and siphonophores at 

L4 and SH), in contrast to taxa that showed highest densities earlier in the year and correlated 

mainly with Chl a (i.e. cirripede larvae and appendicularians at most sites). Highfield et al. (2010) 

also found cirripede larvae to be related to the timing of Chl a at L4 and so did Korn and Kulikova 

(1995) in Avacha Inlet (eastern Kamchatka coast in North Pacific). Pelagic cirripede nauplius 

larvae are filter-feeders that feed on phytoplankton (Moyse, 1963) and Chl a concentration greatly 

influences the release of larvae by barnacles (Starr et al., 1991). This seasonal relation of cirripede 

larvae with phytoplankton biomass is a standard pattern that responds to seasonal averages for 

multiannual periods, but timing leads or lags for individual years have been reported at L4 

(Atkinson et al., 2015). Within appendicularians the availability of food (phytoplankton) has been 

found to be the most limiting factor for Oikopleura dioica in coastal waters (Tomita et al., 2003). 

We have no information on the species composition of appendicularians at SH, but at L4 (López-

Urrutia et al., 2005), U35 and B35 (Chapter 1, this work) Oikopleura was the dominant genus 

and O. dioica the most abundant one among the Oikopleura identified to species level. Among 

the zooplankton groups that best correlated with temperature, however, we have two groups of 

predators, the siphonophores and the chaetognaths. Within the siphonophores, Muggiaea spp. 

were most abundant at the four stations (see Chapter 1), and they are known to reproduce rapidly 

when temperature and prey densities are elevated (Blackett et al., 2014). In fact, peak periods of 

siphonophores coincided with high copepod densities or followed copepod peaks at our four study 

sites. Regarding chaetognaths, despite the dominance of different species at the different sites we 

studied (Parasagitta friderici, Parasagitta setosa, Parasagitta elegans), peak chaetognath 

densities were observed in late summer at all stations, at the time of highest densities of small 

copepods, i.e. their main prey (Falkenhaug, 1991; Tönnesson and Tiselius, 2005). The annual 

development of chaetognaths at the Abra Bay, where B35 is located, was found to be associated 

to the abundance of copepod nauplii for juvenile stages and postnaupliar cyclopoids and small 

calanoids for largest individuals (Villate, 1991). The high correlation of doliolids with 

temperature, however, may not be related to the timing of maximum food availability; instead, it 

may be linked to more stratified conditions being favourable for them (Menard et al., 1997).  

 

At the finer taxonomic level among the copepods and cladocerans, various copepod genera 

appeared well correlated with temperature (Corycaeus, Oncaea, Temora, Centropages), but only 

Corycaeus (Ditrichocorycaeus) seemed to be consistently correlated with temperature across sites 

(less well correlated at SH). This may be because a single common species, D. anglicus, 

dominates this genus at B35, U35 and L4, a species considered to be a temperate warm water 
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indicator (Bonnet and Frid, 2004), whereas larger differences in species composition between 

sites were observed within Temora and Centropages genera, for instance.  

 

2.4.4 Coherence of coastal zooplankton seasonality within marine biogeographic units 

In general, our results reinforce the view that coastal zooplankton community seasonal dynamics 

within the Northeast Atlantic Shelves Province (Longhurst, 1998) show geographical variations 

(Beaugrand et al., 2000; McGinty et al., 2011). Furthermore, the sites under study are located in 

two different provinces, i.e. the Northern European Seas province (SH and L4) and the Lusitanian 

province (U35 and B35) according to the classification by Spalding et al. (2007) and in three 

different Large Marine Ecosystems (LMEs) according to the classification by Sherman et al. 

(2004): the Iberian Coastal (U35 and B35), the Celtic-Biscay shelf (L4) and the North Sea (SH). 

However, the seasonal pattern of zooplankton community at U35 is a bimodal cycle similar to 

that described by Beaugrand et al. (2000) for the southern part of the Celtic Sea and the oceanic 

region of the Bay of Biscay, although the spring peak occurs earlier in the year at U35. Moreover, 

the seasonal variability of zooplankton abundance at U35 does not seem to conform to those 

observed at other coastal sites located on the north-western Iberian Peninsula (e.g. Vigo and A 

Coruña stations), where zooplankton maxima occur in summer/early autumn due to the influence 

of upwelling processes (Bode et al., 2013). Upwelling events show decreasing intensity easterly 

along the Cantabrian shelf, and the weakness of upwelling processes in the Basque coast 

(innermost Cantabrian shelf) precludes breaking of the stratification up to the surface layers 

(Valencia and Franco, 2004). This fact explains the decline of phytoplankton and zooplankton 

after the spring maxima at coastal sites that are poorly fertilized by river inputs, as is the case of 

U35. Therefore, a lack of homogeneity in terms of zooplankton community seasonality within the 

Iberian Coast LME is also evident. The division of the marine environment into coherent 

biogeographic units entails much complexity because of the many influencing variables 

(topographical, hydrographical, climatic, ecological etc.), and it is an even harder task for the 

more variable coastal areas where local processes usually interfere more with broader scale 

drivers to affect ecological phenomena. The present work provides helpful information to better 

delineate the boundaries between meaningful biogeographic units in the marine environment and 

baseline phenological data that can be useful to detect significant departures over time. 
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2.5 Conclusions 

The use of multivariate ordination methods has allowed us to examine the seasonality of 

zooplankton at the community level, thus obtaining a more synthetic view than when dealing with 

seasonal patterns of individual taxa. The main mode of seasonal variability was due mainly to 

taxa that peaked in the central part of the year (spring – summer) and reached minima in late 

autumn – winter, and it was the mode of variability that showed the largest between-site 

differences. These differences consisted mainly in a seasonal delay (from spring to summer) with 

latitude as well as with the trophic status in the occurrence of the community that contrasted most 

with the late autumn – winter community. These delays, in turn, were primarily related to 

between-site differences in the seasonal pattern of phytoplankton biomass. Meroplankton taxa 

played a key role in shaping this main seasonal mode of variability of the zooplankton community, 

which highlights the influence of benthic dynamics on the pelagic ones. Furthermore, between-

site differences were observed also in the percentage variance of zooplankton explained by Chl 

a, temperature and salinity, and in the regularity of the seasonal cycle of total zooplankton density, 

which increased with latitude and trophic status. This may be related to a higher co-variation of 

water temperature and chlorophyll a with the increase in latitude and trophic status, as well as to 

the increase in the regularity of the seasonal patterns of both temperature and chlorophyll a from 

south to north, and of chlorophyll a with trophic status. It is hypothesized that differences in the 

regularity, and therefore predictability, of the seasonal cycle of zooplankton can have profound 

implications for the trophic interactions with their predators (e.g. match-mismatch hypothesis). 

The present data have reinforced the view that within biogeographical units such as the Northeast 

Atlantic Province coastal zooplankton seasonality is not uniform, suggesting that in coastal 

ecosystems local processes interfere more with large scale ones than in oceanic waters. 
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Chapter 3. Patterns and environmental 

drivers of zooplankton phenology changes 
 

 

 

 

Zooplankton have been suggested to be changing their phenology as a response to global 

warming. In this work we aimed to explore mesozooplankton phenological (timing of seasonal 

peak) variations during the 1999 – 2013 period from four coastal sites in the south-eastern Bay of 

Biscay (B35 and U35), the English Channel (L4) and northern North Sea (SH) and assess the 

influence of climatic indices and environmental factors such as water temperature, salinity and 

chlorophyll a. Overall, zooplankton phenological variability was higher at the southern, nearshore 

sites (B35 and U35) than at the northern more offshore sites (L4 and SH). Very few zooplankton 

taxa showed significant progressive advance or delay in the seasonal timing throughout the entire 

period of study, but overall opposite tendencies in phenology changes were detected between the 

southern sites (later occurrences with time) and the northernmost sites (earlier occurrences with 

time). At each site, taxa clusters (composition differing between sites) with similar interannual 

phenology patterns were found, which were generally composed of taxa that peaked in the same 

season. Climatic indices (mainly EA and AMO at B35 and U35; EA and NAO at SH) or water 

temperature (L4) showed a significant correlation with the phenological variations of most of the 

clusters of synchronous taxa, but in many cases, these appeared to be correlated also with 

phytoplankton biomass availability. In the case of the genus Acartia, which was dominated by the 

species Acartia clausi at all four sites, opposite tendencies of interannual variation of the seasonal 

timing at the southernmost and northernmost sites were observed. 

 

 

 

 

 

Fanjul, A., Iriarte, A., Villate, F., Uriarte, I., Atkinson, A., & Cook, K. (2018). Patterns and 

environmental drivers of zooplankton phenology changes. 
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3.1. Introduction 

Zooplankton constitute the main connection for energy transfer from primary producers to upper 

trophic level consumers in marine ecosystems (Richardson, 2008). The study of changes in their 

phenology (timing of annually recurring life cycle events) is of prime interest, since these changes 

can cause a decoupling in prey and predator interactions (match-mismatch hypothesis, Cushing, 

1990). Zooplankton phenological changes can, therefore, affect the productivity of higher trophic 

level organisms, including commercially important fish (Beaugrand et al., 2010), although the 

adverse ecosystem effects of trophic mismatch may vary with system type (Atkinson et al., 2015). 

The study of changes in the phenology of zooplankton is nowadays receiving much attention 

(Thackeray et al., 2012; Usov et al., 2013; Marques et al., 2014; Atkinson et al., 2015; Post, 2017) 

because it is one of the potential consequences of global climate change (IPCC, 2015). It is 

acknowledged that, in general, in a warming climate spring processes tend to occur earlier and 

autumn processes shift later (Richardson, 2008; Atkinson et al., 2015).  

 

Marine planktonic communities are believed to be quite sensitive to climatic changes (Edwards 

and Richardson, 2008) and phenological advances in zooplankton taxa associated to warming 

have been reported both for freshwater (Adrian et al., 2006; Thackery et al., 2012) and marine 

(Greve et al., 2001, 2005; Edwards and Richardson, 2004; Molinero et al., 2005; Conversi et al., 

2009; Mackas et al., 2012; Usov et al., 2013; Atkinson et al., 2015; Reygondeau et al., 2015) 

ecosystems. These works, which cover different time-periods, have shown slightly different 

results, though. For example, Edwards and Richardson (2004) found that zooplankton taxa from 

the central North Sea that peak from May to August had almost all significantly advanced in their 

seasonality in response to warming from 1958 to 2002. Atkinson et al. (2015) only observed a 

weak tendency for earlier occurrences of spring zooplankton taxa and later ones for autumn taxa 

during warm years in the western English Channel during the period 1988 – 2012. Usov et al. 

(2013) concluded that in the White Sea the cold water Calanus glacialis showed an advance in 

its reproduction from 1961 to 2010 due to warming and the associated longer phytoplankton 

bloom, but warm water copepods had not changed their seasonality significantly.  

 

It is noteworthy that, despite the relevance of the topic, there are still too few comparative cross-

regional studies (e.g. Mackas et al., 2012), thus lacking a comprehensive view of zooplankton 

phenological changes. As a consequence, there are many key questions that have not been fully 

resolved yet. In this regard, it would be interesting to know if zooplankton are giving the same 

(synchronized) or different phenological responses across regions and which are the factors (e.g. 

latitude) that are responsible for the differential response (if this was the case). Likewise, it would 

be essential to know if most zooplankton taxa or just a few very sensitive taxa are the ones 
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responding to climatic variations through phenological adjustments, and if there is consistency 

between sites. Another critical question would be if zooplankton phenological variations are 

governed by the same factors across regions and if the phenological response to a given 

environmental factor is the same at different sites.  

 

The present study aims to contribute to answering to these questions by assessing the phenological 

changes of zooplankton and their driving forces across Northeast Atlantic shelf waters. For this 

purpose, zooplankton time series from four ICES monitoring sites (O’Brien et al., 2013) located 

along a latitudinal gradient (Stonehaven (North Sea), Plymouth L4 (Western English Channel) 

and Urdaibai 35 and Bilbao 35 (Bay of Biscay) have been analyzed using the same time-window 

(1999 – 2013) and taxonomic resolution level. 

 

3.2. Methods 

3.2.1. Data preparation 

For the analysis of the relationships between environmental variables (water temperature, 

chlorophyll a and salinity), climatic indices (NAO, EA and AMO) and phenological indices, both 

annual and seasonal (winter: January, February and March; spring: April, May and June; summer: 

July, August and September; autumn: October, November and December) means were used for 

the former. 

 

3.2.2. Data analysis 

3.2.2.1. Interannual trends in environmental variables and relationships between them 

Annual mean values for each of the environmental variables (Chl a, WT, Sal and the indices 

AMO, NAO and EA) were calculated and tested for interannual trends using Spearman rank 

correlation analyses. Principal components analysis (PCA) was performed to identify correlations 

between environmental variables using prcomp function in R (v.2.3 – 4). Environmental variables 

were centred and scaled. Plots were created using factoextra package. 

 

3.2.2.2. Phenological index 

The timing of the seasonal peak also known as “central tendency” or “ T index”, which has been 

widely utilized for zooplankton (Chivers et al., 2017; McGinty et al., 2011; Conversi et al., 2009; 

Edwards & Richardson, 2004), was used as phenological index. This index was calculated for 

every taxa and environmental variable using the following equation: 
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where T is the day of the year of the seasonal peak, i is the sampling month, Di is the day of the 

year of sampling (1–365) and Xi is the abundance at the corresponding month. For further 

analysis, T anomalies for each taxon were calculated as the T value of each year minus the mean 

value for the fifteen-year study period. At L4 and SH, the seasonal cycles of Corycaeus and 

Oncaea were frequently prolonged over to the following year (see Chapter 1). For those months 

in the following year, to obtain D, a value of 365 was added to the sampling day of the year, and 

those months were then removed from the calculations of sampling days of the subsequent year. 

 

3.2.2.3. Differences between sites in T index anomalies 

Analyses of similarity were carried out with the ANOSIM function (499 permutations; vegan 

(v.2.3 – 4) R package) to test whether differences in T index anomalies of zooplankton taxa 

between sites (B35, U35, L4 and SH) were statistically significant. In addition, we tested if there 

were differences between north (N; L4 and SH) and south (S; B35 and U35) sites. 

 

3.2.2.4. Linear trends of T index 

Spearman's rank correlation analyses between T index anomalies and years were used to test for 

significant linear trends in the T index of zooplankton taxa and environmental variables. 

 

3.2.2.5. Coherence between the T index patterns of different zooplankton taxa at each site 

For each cluster of the zooplankton taxa with similar interannual patterns in their T index 

anomalies, identified from the resemblance analysis, β diversity matrices were calculated using 

their T anomalies. ADONIS (bio-env method of vegan (v.2.3 – 4) R package; 499 permutations), 

which is a variance analysis using distance matrices, was used to test which environmental 

variables were significantly correlated to the T index anomalies of zooplankton taxa from each 

cluster. The combination of variables that explained the largest percentage of the T index 

variability was then selected. 

 

Additionally, Spearman rank correlation analyses were performed between individual taxa T 

indices and environmental variables. 

 

 

 

T =
Σⅈ=1

ⅈ=12 𝐷𝑖 ⋅ 𝑋𝑖

Σⅈ=1
ⅈ=12 𝑋𝑖

 



A. Fanjul 

89 

 

3.3. Results 

3.3.1. Interannual variations of environmental variables 

Interannual patterns of environmental variables plus their annual standard deviation are plotted in 

Figures 1 and 2. LOESS fitting to those values was plotted in order to show the path of variation 

between years. No linear trend of increase in water temperature was observed at any of the sites 

under study. At B35 mean annual Chl a showed a trend of decrease (r= 0.732; p= 0.002) due 

particularly to the decrease in summer Chl a (r= 0.721; p= 0.002). At both, B35 and U35 an 

increase in salinity was detected, in summer at B35 (r= 0.657; p= 0.008) and in winter (r= 0.665; 

p= 0.007) and with mean annual values (r= 0.518; p= 0.048) at U35. At SH Chl a showed 

significant trend of increase in autumn (r= 0.564; p= 0.028) and winter (r= 0.614; p= 0.015). At 

L4 the environmental factors tested showed no significant linear trends of variation. 

 

 
Figure 1. Annual mean ± standard deviation of water temperature, chlorophyll a and salinity. 

LOESS (thick red line) was fitted to the annual mean values to show the path of interannual 

change. 
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Figure 2. Annual mean ± standard deviation of NAO, EA and AMO indices. LOESS (thick red 

line) was fitted to the mean annual values to show the path of interannual change. 

 

3.3.2. Magnitude of the interannual variability of zooplankton T index between sites 

The magnitude of the interannual variability of the T index was compared between sites for broad 

taxonomic groups of non-copepods and non-cladoceran holoplankton and meroplankton and the 

main cladoceran and copepod genera (Figure 3). Overall, interannual variability decreased with 

latitude from B35 and U35 (the highest variability being at U35) to SH for broad taxonomic 

groups of non-copepods and non-cladoceran holoplankton and meroplankton. For the main 

copepod and cladoceran genera between site differences were not so clear, especially for 

cladocerans which comprise only a few genera.  
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Figure 3. Standard deviation of the T index (mean ± standard deviation) for each of the following 

zooplankton taxa groups: non-copepod and non-cladoceran holoplankton (Holo); main 

cladoceran genera (Clad); main copepod genera (Cope) and meroplankton (Mero) at each of the 

sites under study. 

 

3.3.3. Patterns of interannual variation of zooplankton T index and their environmental 

drivers 

According to the ANOSIM test (Table 1) there were no significant differences in zooplankton 

taxa T index anomalies between the two southernmost sites (U35 and B35) nor between the two 

northernmost sites (L4 and SH). However, there were significant differences (p= 0.001) between 

the southernmost sites (U35 – B35) and the northernmost ones (L4 – SH) and also between U35 

and L4 (p= 0.024) and U35 and SH (p= 0.02). 
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Table 1. ANOSIM test results for differences between sites in zooplankton T index. 

Sites Test statistic p 

All sites 0,009 0,294 

B35 vs U35 -0,180 0,965 

B35 vs L4 0,018 0,252 

B35 vs SH 0,024 0,196 

U35 vs L4 0,059 0,024 

U35 vs SH 0,062 0,020 

L4 vs SH 0,010 0,387 

B35 & U35 vs L4 & SH 0,083 0,001 

 

Only few taxa showed a significant unidirectional (linear) trend of variation in their T index. At 

B35 chaetognaths (r= 0.686, p= 0.005)) and decapod larvae (r= 0.643, p= 0.01) showed a 

significant increase in the T index along the study period. Both taxa peaked in summer and their 

T index was negatively correlated to summer Chl a (r= -0.554, p= 0.032 for chaetognaths; r= -

0.761, p= 0.001 for decapod larvae). At U35, the seasonal peak of two spring taxa showed a 

significant tendency for a delay during the study period, i.e. Podon (r= 0.55, p= 0.034) and 

appendicularians (r= 0.621, p= 0.013). Salinity was the environmental variable correlated with 

both taxa T index (salinity T index for Podon (r= 0.750, p= 0.001) and summer salinity for 

appendicularians (r= 0.789, p< 0.001)). Only one taxon T anomaly evidenced a significant 

negative correlation with year, and this was Evadne (r= -0.543, p= 0.037) at SH. This cladocerans 

peaked during the summer and their T index was positively correlated to the timing of the seasonal 

peak of Chl a (r= 0.639, p= 0.01). At L4 site no taxa T index showed a significant unidirectional 

trend of variation during the study period. 

 

The coherence in the interannual patterns of zooplankton taxa T index from the same site is shown 

in Figure 4. The threshold distance to select the clusters or taxa groups varied between sites and 

depended on the observed distance values between taxa (higher at B35 and U35 and lower at L4 

and SH). The highest coherence between zooplankton taxa T index was observed at SH and the 

lowest one at U35. 
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Figure 4. Dendrograms based on Euclidean distance similarities of zooplankton taxa T index 

anomalies at each of the sites under study (SH, L4, U35 and B35). Clusters of taxa with highest 

similarity are indicated (SH (i); SH (ii); L4 (i); L4 (ii); L4 (iii); U35 and B35). Chae 

(chaetognaths), Appe (appendicularians), Doli (doliolids), Siph (siphonophores), Acar (Acartia 

sp.), Cala (Calanidae), PCPC (PCPC-calanus), Cory (Corycaeus sp.), Onca (Oncaea sp.), Temo 

(Temora sp.), Cent (Centropages sp.), Evad (Evadne sp.), Podo (Podon sp.), Cirr (cirripede 

larvae), Echi (echinoderm larvae), Fish (fish egg and larvae), Deca (decapod larvae), Bryo 

(bryozoan larvae), Medu (hydromedusae), Gast (gastropod larvae), Biva (bivalve larvae). 

 

The combinations of environmental variables with the highest correlation (Spearman’s rank) with 

the T index of zooplankton taxa from each of the clusters selected according to their similarity 

have been shown in Table 3 and the results from the PCA showing relationships between the 

environmental factors can be found in Figure 5. The patterns of year-to-year variation in the T 

index of zooplankton taxa (individual taxa and group average patterns) from each cluster and the 

environmental factors that best correlated (see Table 3) have been depicted in Figures 6, 7, 8 and 

9. 
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Table 3. Combinations of environmental variables with the highest correlation with the T index 

of zooplankton taxa from each of the clusters selected according to their similarity. (Wi = winter, 

Sp = spring, Su = summer, T = T index anomaly). 

Group Variables Correlation factor 

B35 Sp EA 0.051 

U35 Wi AMO, Su Sal, T AMO 0.509 

L4 (i) Wi Chl a, Su WT 0.381 

L4 (ii) Wi WT, Sp WT, Su Chl a 0.304 

L4 (iii) Wi EA, Su Sal 0.072 

SH (i) Sp EA, Su EA, NAO 0.486 

SH (ii) Sp Chl a, Sp EA, Sp Sal, Su Sal 0.506 

 

 

 

Figure 5. PCA of environmental variables at SH (A), L4 (B), U35 (C) and B35 (D). The darker 

the arrow and name of a variable plus the longer the vector, the higher the contribution to an axis. 

Also, small angles between variables denote close relationship. The variables used were the 

climatic indices EA, NAO and AMO, and the environmental variables measured in situ: salinity 

(SAL), water temperature (TEMP for the annual mean and WT for seasonal means) and 

Chlorophyll a (CHLA). T stands for T index anomaly, W for winter, SU for summer, SP for 

spring; when no season is specified the value corresponds to the annual mean. 
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The B35 taxa cluster was comprised of appendicularians, bivalve larvae, hydromedusae, 

gastropod larvae, cirripede larvae, decapod larvae, Centropages, Temora, PCPC-calanus, 

Oithona, chaetognaths and fish eggs and larvae (Figure 4). All these were summer taxa, except 

for hydromedusae, which were abundant during summer, but reached their annual maxima in 

spring and PCPC-calanus, Oithona and Temora that peaked in early autumn (see Chapter 1, this 

work). The average interannual pattern of T index did not show a significant unidirectional trend 

of variation, but the overall tendency for most of the period was of an increase with a decrease 

towards the end of the study period (Figure 6). The environmental factor that was selected as 

explanatory variable was spring EA index (Table 3) and spring EA index was negatively 

correlated with summer salinity (Figure 5). 

 

 

Figure 6. Interannual pattern of T index anomalies for individual taxa (symbols) and for the 

average pattern (continuous black line) of the zooplankton taxa cluster identified with the 

similarity analysis at B35 and the environmental variable that best correlated with it, i.e. spring 

EA (Sp EA). The asterisk (*) stands for reversed axis values, used because of the negative 

correlation with the group average zooplankton T index anomalies. Taxa code: Chae 

(chaetognaths), Fish (fish eggs and larvae), Biva (bivalve larvae), Deca (decapod larvae), Cirr 

(cirripede larvae), Gast (gastropod larvae), Appe (appendicularians), Cent (Centropages), Hydr 

(hydromedusae), PCPC (PCPC-calanus), Temo (Temora) and Oith (Oithona). 

 

The U35 taxa cluster was comprised of cirripede larvae, appendicularians, Evadne, Podon, 

Oncaea, Acartia, Centropages and PCPC-calanus (Figure 4). Centropages and PCPC-calanus 

peaked during summer, Oncaea in autumn, and the rest were early spring taxa (see Chapter 1). 

As for the rest of clusters that were identified, the average interannual pattern of T index for this 

taxa cluster did not show a significant unidirectional trend of variation. As for the B35 cluster 

pattern, the overall tendency for most of the period was of an increase, with a decrease towards 

the end of the study period (Figure 7). The combination of environmental factors that best 

correlated with the T index of these taxa were winter AMO, summer salinity and T index of AMO 
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(Table 3). Salinities of different seasons were highly correlated and spring salinity was negatively 

correlated (p= 0.023) with spring chlorophyll a concentration (Figure 5). 

 

 

Figure 7. Interannual pattern of T index anomalies for individual taxa (symbols) and continuous 

for the average pattern (black line) of the zooplankton taxa cluster identified with the similarity 

analysis at U35 and the environmental variables that best correlated with it. Winter AMO (Wi 

AMO), summer salinity (Su Sal) and the AMO T index anomaly. The asterisk (*) stands for 

reversed axis values, used for environmental variables with negative correlation with the group 

average zooplankton T index anomalies. Taxa code: Cent (Centropages), Appe 

(appendicularians), PCPC (PCPC-calanus), Acar (Acartia), Cirr (cirripede larvae), Podo (Podon), 

Evad (Evadne) and Onca (Oncaea). 

 

The three clusters distinguished at L4 (Figure 8) included the following taxa: (i) cirripede larvae, 

fish eggs and larvae and Oithona, which were all spring peaking taxa (see Chapter 1); (ii) 

Calanidae, Podon, PCPC-calanus, gastropod larvae, echinoderm larvae and decapod larvae, all of 

them summer peaking taxa, except for PCPC-calanus that showed two peaks, but the larger one 

in spring (see Chapter 1); and (iii) appendicularians, Corycaeus, polychaete larvae and 

siphonophores. These latter taxa cluster was rather heterogeneous with taxa peaking in spring 

(polychaete larvae and appendicularians), summer (siphonophores) and autumn (Corycaeus; see 

Chapter 1). No significant unidirectional patterns for any of the three clusters were observed and 

the patterns were less clear than for the taxa clusters identified at the rest of sites, smallest changes 

been observed for L4 (ii) cluster (Figure 8). Water temperature in summer or winter-spring and 

chlorophyll a in summer or winter appeared as the main environmental factors correlated with the 

T index of taxa that belonged to L4 (i) and L4 (ii) clusters (Table 3). For L4 (iii) cluster the 

combination of variables selected was winter EA and summer salinity (Table 3). 
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Figure 8. Interannual patterns of T index anomalies for individual taxa (symbols) and for the 

average pattern (continuous black line) of each of the three zooplankton taxa clusters identified 

with the similarity analysis at L4 (L4 (i) (top panel), L4 (ii) (middle panel) and L4 (iii) (bottom 

panel)) and the environmental variables that best correlated with them. Top panel: summer WT 

(Su WT) and winter chlorophyll a (Wi Chl a). Middle panel: winter water temperature (Wi WT), 

spring water temperature (Sp WT) and summer chlorophyll a (Su Chl a). Bottom panel: winter 

EA (Wi EA) and summer salinidad (Su Sal). The asterisk (*) stands for reversed axis values, used 

for environmental variables with negative correlation with the group average zooplankton T index 

anomalies. Taxa code: Cirr (cirripede larvae), Oith (Oithona), Fish (fish eggs and larvae), Deca 

(decapod larvae), Cala (Calanidae), PCPC (PCPC-calanus), Podo (Podon), Echi (echinoderm 

larvae), Gast (gastropod larvae), Siph (siphonophores), Appe (appendicularians), Cory 

(Corycaeus) and Poly (polychaete larvae). 

 

At SH the two zooplankton taxa clusters with the highest similarity in their T indices (Figure 9) 

were constituted by (i) Evadne, Acartia, Podon, Temora and Centropages, all summer taxa; and 

(ii) fish eggs and larvae, bryozoan larvae, cirripede larvae, echinoderm larvae, PCPC-calanus and 
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bivalve larvae, which peak in spring, and polychaete larvae, decapod larvae. chaetognaths, 

Oithona and appendicularians, which peak in summer (see Chapter 1). Although, as for the rest 

of clusters, the average patterns of the T index of each of these clusters did not show significant 

linear trends of variation, there was an overall tendency for a decline (advance in timing), except 

for the last three years in which an increase was observed in both SH cluster patterns, in contrast 

to the B35 and U35 cluster patterns. Year-to-year changes were more marked for the SH (i) than 

for the SH (ii) cluster (Figure 9). For the SH (i) taxa cluster spring and summer EA indices and 

the mean annual NAO index (which was, in turn, well correlated with winter NAO index (Figure 

5)) was the combination of environmental factors with the highest correlation with their T index 

(Table 3). For the SH (ii) cluster spring chlorophyll a, spring EA index, spring salinity and 

summer salinity was the combination of explanatory variables selected (Table 3). Summer EA 

index, in turn was well correlated with mean annual chlorophyll a concentration and spring 

chlorophyll a concentration at SH (Figure 5). 

 

 

Figure 9. Interannual patterns of T index anomalies for individual taxa (symbols) and for the 

average pattern (continuous black line) of each of the two zooplankton taxa clusters identified 

with the similarity analysis at SH (SH (i) (top panel) and SH (ii) (bottom panel)) and the 

environmental variables that best correlated with them. Top panel: mean annual NAO (Average 

NAO), spring EA (Sp EA) and summer EA (Su EA). Bottom panel: spring salinity (Sp Sal), 

summer salinity (Su Sal), spring chlorophyll a (Sp Chl a) and spring EA (Sp EA). The asterisk 
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(*) stands for reversed axis values, used for environmental variables with negative correlation 

with the group average zooplankton T index. Taxa code: Acar (Acartia), Cent (Centropages), 

Evad (Evadne), Podo (Podon), Temo (Temora), Bryo (Bryozoan larvae), Echi (echinoderm 

larvae), Poly (polychaete larvae). Chae (chaetognaths), Deca (decapod larvae), Fish (fish eggs 

and larvae), Cirr (cirripede larvae), Oith (Oithona), PCPC (PCPC-calanus), Biva (bivalve larvae) 

and Appe (appendicularians). 

 

Significant positive correlations were observed between the average T index values of the L4 (i) 

and SH (i) clusters, as well as between those of the B35 and U35 clusters, but the best correlation 

was found between the average T index values of the B35 and SH (ii) taxa clusters and it was 

negative (Table 4), further evidencing the north-south differences. 

 

Table 4. Results of Spearman’s rank correlation tests between the average patterns of T index 

variations of the zooplankton taxa clusters. 

    SH (i) SH (ii) L4 (i) L4 (ii) L4 (iii) U35 

SH (ii) 
r 0,286      

p 0,302      

L4 (i) 
r 0,546 0,139     

p 0,035 0,621     

L4 (ii) 
r 0,029 -0,043 -0,054    

p 0,919 0,879 0,850    

L4 (iii) 
r 0,121 -0,182 0,100 -0,407   

p 0,666 0,516 0,723 0,132   

U35 
r -0,025 -0,421 -0,193 -0,300 0,279  

p 0,930 0,118 0,491 0,277 0,315  

B35 
r -0,314 -0,654 -0,339 -0,018 -0,143 0,579 

p 0,254 0,008 0,216 0,950 0,612 0,024 

 

3.3.4. Magnitude of interannual variation of zooplankton T index by sites and seasons 

Although linear regression fits of T index versus year were non-significant (p> 0.05) for most 

taxa, regression equations were used to obtain rough estimates of change in T index during the 

study period, i.e. from 1999 to 2013. Changes in the seasonal timing ranged from -45 days (lead) 

to +67 days (lag). These estimates also showed that most zooplankton taxa tended to advance the 

timing of their seasonal peak (T index) at the northern sites (17 taxa out of 23 at SH and 14 out 

of 23 at L4), whereas at the southern sites, for most taxa (14 taxa out of 23 at U35 and 16 taxa out 

of 23 at B35), the seasonal peak tended to occur later along the study period (Figure 10). These 

differences between north and south were clearest for taxa that peaked earlier. Copepods, on 

average, showed a delay in their T index of 21 days at B35 and U35, and an advance of 9 days at 

L4 and SH, being the only group of taxa that showed statistically significant differences between 

sites (Kruskal Wallis test, p= 0.007) in the magnitude of seasonal change from 1999 to 2013. 

Overall, largest changes in the T index were observed for taxa from U35 (mean change of 33 and 
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23 days in taxa that delayed and advanced their seasonal timings, respectively) and smallest ones 

for taxa from SH (mean change of 9 and 17 days in taxa that delayed and advanced their seasonal 

timings, respectively). Within each site there were not statistically significant differences (p> 

0.05) in T index between zooplankton groups (copepods, cladocerans, other holozooplankton and 

meroplankton), in the year (springtime T index value) and for copepods. 

 

 

Figure 10. Change in the T index from 1999 to 2013 for copepod and cladoceran genera and other 

holoplankton and meroplankton groups at each of the sites under study. 
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At U35, and to a less extent at B35, the major T index delays were observed in taxa that peaked 

earliest in the year, in spring, whereas the major advances were for summer taxa. This 

phonological behaviour was more evident for copepod and cladoceran genera at U35 but for other 

holoplanktonic and meroplanktonic groups at B35. In contrast with the southern sites of U35 and 

B35, summer taxa showed most evident delays at L4, whereas no clear differences in the delay 

or advance of taxa were observed at SH between seasons. 

 

3.4. Discussion 

In The magnitude of the year-to-year variability of the phenological T index (as shown by values 

of standard deviation) was, on average, higher at the southeastern Bay of Biscay sites (B35 and 

U35, highest at the latter site) than at the English Channel (L4) and North Sea (SH) sites (lowest 

at the latter site). The reason behind these differences between sites is likely the increase in the 

year-to-year regularity of environmental factors such as water temperature and chlorophyll a 

concentration from U35 and B35 to L4 and SH (See Chapter 2). This increase in regularity may 

be partly a latitudinal effect, but it is likely related also to differences in depth and distance 

offshore. Both B35 and U35 are shallow nearshore sites and are more affected by anthropogenic 

perturbations and short-lived high frequency hydrological events occurring at the land-ocean 

interface, which promote a higher residual variability of plankton abundance (Cloern and Jassby, 

2010) than at deeper and further offshore sites such as L4 and SH (Chapter 1, this work). Also, 

phenological variability was on average higher at U35 than at B35, at least at the coarse 

zooplankton taxonomic level, and this may be related to a lower year-to-year variability of the 

seasonal pattern of chlorophyll a at the mesotrophic B35 site (Chapter 2, this work) and also to 

the fact that, owing largely to the influence of an estuarine plume that prevents summer depletion 

of nutrients and phytoplankton biomass, the seasonal patterns of many zooplankton taxa tend to 

be unimodal at B35, in contrast to being bimodal at U35, following the bimodal pattern of 

chlorophyll a concentration (spring (primary) and autumn (secondary) peaks) at this latter site 

(Villate et al., 2017). This north vs south and B35 vs U35 differences were clearer at the broad 

taxonomic group level for both holoplankton and meroplankton than at the copepod and 

cladoceran genera level. 

 

Advances in zooplankton seasonal timing as a response to warming during the last decades have 

been reported from freshwater (Adrian et al., 2006; Thackeray et al., 2012) and marine 

ecosystems (Edwards and Richardson, 2004; Molinero et al., 2005; Conversi et al., 2009; 

Atkinson et al., 2015; Reygondeau et al., 2015). But in some of these studies few taxa showed 

statistically significant linear trends in seasonal timing (Conversi et al., 2009; Atkinson et al., 

2015), as was the case in the present study, in which almost no zooplankton taxa showed 
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significant linear trends of phenological advance. In agreement, during the present study period 

(1999 – 2013) no significant trend in water temperature increase was observed at any of the sites 

under study. In fact, during this time period globally there has been a reduction in radiative forcing 

and a cooling due to natural internal climate variability, as compared to the period 1952 to 2012 

(IPCC, 2015). Therefore, given the non-homogeneous pace of climate change (IPCC, 2015), the 

time-window of analysis appears critical for the observation of trends in phenology variation. 

However, even though very few zooplankton taxa showed significant unidirectional trends of 

phenological variation during our study period, many of them exhibited measurable variations, 

thus showing that most zooplankton can give a fast response in terms of seasonal adjustments to 

year-to-year environmental changes (Richardson 2008; Rice and Stewart, 2016). 

 

There were no significant differences in the magnitude of phenological change between copepod 

genera, cladoceran genera, broad taxonomic groups of other holoplankton and meroplankton 

within each site. In contrast to these findings, Edwards and Richardson (2004) observed that 

during the 1958 – 2002 period in the North Sea meroplankton had larger advances in their 

seasonal timing than copepods and non-copepod holoplankton. Also, although spring taxa showed 

lowest within-site variability in phenological change, in the present study they were the ones that 

showed highest between-site differences in phenological index changes. Accordingly, Morse et 

al. (2017) found that the abundance response of spring zooplankton communities was less similar 

than for fall communities among ecoregions from the Northeast continental shelf Large Marine 

Ecosystem. However, due to the lack of significant unidirectional trends in T index for most 

zooplankton taxa, the values of change in the timing of the seasonal peak (from the beginning to 

the end of the study period) obtained in the present work have to be considered as rough estimates 

and, therefore, they should be taken with some caution. In spite of this, the values of changes in 

T index have been useful to obtain a general view of zooplankton phenology patterns of variation, 

showing that zooplankton phenology has had opposite overall tendencies from the southern sites 

to the northern ones during the 1999 – 2013 period, most taxa seasonal peaks tending to occur 

earlier at L4 and SH (predominantly at SH) and later at B35 and U35, this differences being most 

evident for zooplankton taxa with springtime mean T index values. 

 

Analyzing the specific year-to-year pattern of T index variation of each zooplankton taxa, it was 

clear that at each site there were groups of taxa that had a common or very similar pattern of 

phenological variation and, predominantly, these groups were constituted by taxa that peaked in 

the same season (mostly spring or summer peaking taxa clusters), likely as a result of seasonally 

heterogeneous interannual variations in environmental factors (Straile et al., 2015). These 

zooplankton taxa clusters with maximum coherence amongst them were used to analyze the main 

environmental drivers of the specific patterns of interannual variations in the T index, which were 
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shown to vary between sites and between zooplankton taxa clusters at each site. Associations 

between environmental factors and phenological indices have been reported to differ among 

zooplankton taxonomic groups and across regions by other authors too (McGinty et al., 2011). 

 

Spring EA index was the variable that best explained the T index variability for the B35 cluster 

(mostly summer or early autumn peaking taxa). It is claimed that large-scale climate indices can 

do better than individual local weather variables when predicting ecological processes (Hallett et 

al., 2004), because they integrate various spatial and temporal features of different weather 

components (Stenseth and Mysterud 2005). Our observations showed that higher positive spring 

EA index values were linked to earlier peaks of many summer/early autumn peaking zooplankton 

taxa at B35. The EA pattern is often interpreted as a southward shifted NAO pattern and positive 

values are associated with above-average surface temperatures in Europe in all months 

(http://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml). In addition, spring EA index was 

negatively correlated with summer salinity. This would agree with the fact that positive phases of 

EA pattern are linked to southwesterly winds and downwelling in the Bay of Biscay (Borja et al., 

2008). Upwelling on the Iberian Basque coast can be considered to be weak as compared to 

regions located further to the west on the Iberian coast (Valencia et al., 2004), however, it may 

still cause a noticeable dispersion of plankton off the coast (Llope et al., 2006). Therefore, less 

intense upwelling or more intense downwelling could help retain zooplankton at B35 in spring, 

causing an advance in the T index. 

 

Winter AMO index and salinity (the model selected summer salinity, but this was highly 

correlated with winter and spring salinities) were two of the variables that best correlated with the 

T index for the U35 taxa cluster. The AMO index is correlated to air temperature and rainfall over 

much of the Northern Hemisphere. U35 is located at the mouth of the estuary of Urdaibai and the 

relationship between AMO and salinity could be because in estuarine ecosystems the AMO index 

is mainly associated to changes in river flow and estuarine mixing dynamics (Nye et al., 2014). 

Higher winter, spring and summer salinities were associated with delays in the seasonal timing of 

the U35 cluster that grouped mainly spring peaking taxa but also some early summer and early 

autumn taxa. This could be related to the fact that spring salinity was negatively correlated (p = 

0.023) with spring chlorophyll a concentration at U35 and it would agree with the paradigm that 

lower food availability can cause phenological shifts (Greve et al., 2001). The AMO index has 

also been shown to be associated with changes in wind and current regimes (Delworth et al., 

2007; Häkkinen et al., 2011) and passive dispersal of marine plankton can be affected, resulting 

in changes in spatial distribution. In previous studies AMO was found to make a significant 

contribution to explain zooplankton variability in the estuary of Bilbao, in the Bay of Biscay 

(Uriarte et al., 2016). It was also shown to be a significant driver of zooplankton community 
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composition in Northeast United States continental shelf waters (Morse et al., 2017). In other 

areas in the Atlantic some zooplankton taxa abundances were found to be positively correlated to 

surface water temperature and the AMO index (Kane, 2011) and so were northward geographical 

shifts of Northeast Atlantic calanoid copepods (Beaugrand et al., 2009). 

 

At L4 a cluster of mostly summer peaking zooplankton taxa (L4 (ii)), that included meroplankton 

taxa (gastropod, echinoderm and decapod larva) as well as copepods such as Calanidae and 

PCPC-calanus and the cladoceran Podon, was related to the combination of winter and spring 

water temperatures, together with summer chlorophyll a concentration. This finding conforms to 

the general view that warming in preceding months enhances advances in the seasonal timing of 

zooplankton (Greve et al., 2001) and agrees with previous findings for L4 zooplankton (Atkinson 

et al., 2015). Many vital processes such as the development, reproduction, and onset/termination 

of seasonal dormancy all depend on temperature and shift earlier in the year when the environment 

is warmer (Greve et al., 2001; Mackas and Beaugrand, 2010; Beaugrand et al., 2014). Our 

findings also agree with the paradigm that enhanced primary production contributes to leads in 

zooplankton phenology (Greve et al., 2001), although other authors have suggested no effect or 

at least no prominent role of the timing and magnitude of the phytoplankton bloom on 

zooplankton phenology for a wide range of regions including L4 (Mackas et al., 2012; Atkinson 

et al., 2015). For the other two L4 taxa clusters (i and iii) the relationships with environmental 

factors (positive correlation to winter chlorophyll a and summer water temperature in the case of 

L4 (i) and winter EA index and summer salinity in the case of L4 (iii)) were not easily explainable. 

In a previous work with the L4 time-series, spanning a longer time period (1988 – 2012), it was 

concluded that there was a weak tendency for earlier timings of spring taxa and later timings of 

autumn taxa during warm years, but with many exceptions (Atkinson et al., 2015). Other factors, 

such as mortality through predation, which have not been addressed in the present work, have 

been shown to significantly affect temporal variations in zooplankton abundance at L4 (Irigoien 

and Harris, 2003; Hirst et al., 2007; Atkinson et al., 2015; Cornwell et al., 2018) and under intense 

predation zooplankton dynamics can be decoupled from environmental abiotic conditions (Casini 

et al., 2009). 

 

At SH most zooplankton taxa showed small interannual variations in the timing of the seasonal 

maximum (SH (ii) cluster), but relevant summer copepod (Acartia, Temora, Centropages) and 

cladoceran (Podon, Evadne) genera showed larger variations with an overall (though non-

significant) tendency for an advance during the study period, in contrast to the overall delay 

observed for B35 and U35 taxa clusters. For the SH (i) taxa cluster spring and summer EA indices 

together with the mean annual NAO index (which was, in turn, well correlated with winter NAO 

index) appeared to be the combination of environmental factors that best correlated with their T 
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index. Thus, the NAO index had a higher influence at SH than at other sites, which agrees with 

the fact that the NAO index is strongly weighted in the North Sea (Harris et al., 2014). Molinero 

et al. (2005) also found significant correlation between the phenology of copepod species and 

NAO index in the Mediterranean Sea, where the NAO has a strong effect but with inverse 

conditions to those of the North Sea (Visbeck et al., 2001), In the south of the Bay of Biscay, 

where B35 and U35 are located, environmental conditions respond to the NAO in the same way 

that in the Mediterranean region but weakly (Aravena et al., 2009). At SH summer EA index was, 

in turn, positively correlated with mean annual chlorophyll a concentration (p= 0.038), which was 

mainly driven by variations in spring chlorophyll a concentration. Higher spring chlorophyll a 

concentration at SH could thus be associated to an advance in the timing of the annual maximum 

of the above-mentioned summer zooplankton taxa, in agreement with findings for other areas (see 

Greve et al., 2001), but other effects associated to changes in water circulation cannot be 

excluded. It is noteworthy that there was a significant trend of increase in chlorophyll a 

concentration at SH over the study period, whilst these copepods and cladocerans, in general, 

tended to show a phenological advance, in contrast to the overall delay observed at B35 and U35 

sites. The best example was Evadne, which showed a statistically significant trend of phenological 

advance. These cladocerans are grazers and chlorophyll a has been suggested as one of the most 

important factors affecting their distribution and abundance (Xiong et al., 2012). Our study has 

therefore shown that the phenology of Evadne (mostly comprised of Evadne nordmani) at SH is 

particularly sensitive to environmental changes. This agrees with findings by Edwards and 

Richardson (2004) who also reported advances in the timing of the seasonal peak of this genus in 

the North Sea during the 1958 – 2002 period, although they showed a clear correlation with the 

increase in the sea surface temperature that occurred during that period. 

 

Overall, our data have shown that climate teleconnection patterns significantly correlate to coastal 

zooplankton phenology variations in the Northeast Atlantic, suggesting the importance of large-

scale atmospheric processes. However, in agreement with findings by Mackas et al. (2012), the 

between-location similarities of zooplankton phenology and climatic anomaly time series 

decrease with increasing site-to-site spatial separation. Thus, in the present study the resulting 

seasonal timings varied spatially, being overall tendencies almost opposite at the southernmost 

and northernmost sites, same zooplankton genera like Acartia, Podon or Centropages, tending 

(albeit in a non-statistically significantly) to advance their timing at SH and to retard at U35. 

However, Podon is mainly Podon intermedius at U35 and Podon leuckartii at SH and 

Centropages is mainly Centropages typicus at U35 and Centropages hamatus at SH, while in the 

case of Acartia, it is mainly composed of A. clausi at both sites (see Chapter 1). Therefore, it 

seems that the differential effect on zooplankton phenology could be the consequence of the 

different expression (in terms of temperature, precipitation and wind patterns) of basin-wide 
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climate teleconnection indices at regional scales in the North Atlantic (Mackas et al., 2012). 

Latitudinal differences in seasonality of species with fixed thermal niche, e.g. Acartia is a spring 

taxon at the lowest latitude U35 site and a summer one at the highest latitude SH (Chapter 1, this 

work), could also be influential, because of the seasonally heterogeneous interannual variations 

in climate and related factors (Straile et al., 2015). 
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Chapter 4. Modelling multi-annual 

zooplankton variations 
 

 

Changes in climate affect plankton, potentially altering the temporal trajectory of ocean 

ecosystems. Thus, identifying drivers of change and exploring their effects is of key importance. 

We modelled the temporal variation of zooplankton (1999 – 2013) at the coastal sites of 

Stonehaven (SH), Plymouth L4 (L4), Urdaibai35 (U35) and Bilbao35 (B35) in the North Atlantic 

to test for changes beyond the annual cycle throughout time. We summarized the state of 

zooplankton communities using principal component analysis and we modelled temporal 

variations of zooplankton using Generalized Additive Mixed Models (GAMMs), in which three 

environmental variables: water temperature, salinity and chlorophyll a were included as 

covariates. The first principal component reflected the dynamics of taxa with abundance maxima 

in the main growing period from spring to summer, while the second principal component 

reflected those of taxa that peak later in the year (summer – autumn) in opposition to taxa that 

peak earliest. Gradual changes (trends) were found for the zooplankton assemblage of the main 

growing period at L4 but for the later and earliest assemblages at the other three sites, being this 

trend restricted to the 1999 – 2005 period at SH, likely connected to a shift initiated previously. 

Regarding individual taxa, increasing and decreasing trends were observed in several taxa, but no 

individual taxon showed the same pattern of change at the four sites, Outstandingly, Acartia 

showed inverse trends at the northernmost (SH) and the southernmost (U35/B35) sites and no 

trend at the intermediate latitude site (L4). The selection of environmental variables by the models 

indicates that zooplankton dynamics were mainly shaped by temperature at all sites, although the 

patterns of change in zooplankton differed between sites. The interaction between temperature 

and month was always selected as the main driver of community trends in all cases, except at 

U35, and also of individual taxa variations at L4. Salinity and chlorophyll a, singly or in 

interaction, had a more variable role depending on the site, and they were mainly selected to 

account for zooplankton changes at B35 and SH, respectively. The almost absence of selected 

environmental variables in the models for U35 was attributed to the lower coherence of 

environmental seasonal patterns at this site. 

 

Fanjul, A., Spencer, M., Villate, F., Uriarte, I., Iriarte, A., Atkinson, A., and Cook, K. (2018). 

Modelling multi-annual zooplankton variations. 
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4.1. Introduction 

Human interaction with the natural world is causing rapid changes in biodiversity (McGill et al., 

2015), and climate change is becoming more evident than ever, with warming oceans leading to 

profound changes in marine communities (Beaugrand et al., 2002). Long-term monitoring 

programs are required to help to track temporal variability in natural biological assemblages and 

assess whether potential drivers can explain the observed patterns (Magurran et al., 2012), as 

predicting the impacts of environmental change requires that we identify the drivers of ecological 

variation. Regime shifts, the definition of which should include at least the following: “sudden, 

high-amplitude, infrequent events, which are detectable in multiple aspects of the physical and 

biological components and on large spatial scales” (Lees et al., 2006), have recently attracted a 

lot of interest. Such shifts have been observed for example in the 1980s in studies of long-term 

climate dynamics and they represent major changes in the Earth's biophysical systems all around 

the globe (Reid et al., 2016). Regarding long-term biota dynamics (Clare et al., 2017; Spencer et 

al., 2012), these shifts could potentially result in irreversible changes in species composition and 

community functioning (Clare et al., 2017). Another plausible response of these communities is 

to track underlying gradual changes in environmental factors causing gradual trends of change in 

the biotic component (Molinero et al., 2013; Reygondeau et al., 2015). 

 

The abundance of zooplankton may be highly variable at different time scales (Haury et al., 1978) 

in response to environmental drivers (Villate et al., 2016). Several studies have tried to untangle 

how long-term interannual variations in the mesozooplankton community are linked to patterns 

of environmental descriptors in the Northeast Atlantic (Beaugrand et al., 2000; Beaugrand and 

Ibanez, 2004; Aravena et al., 2009; Hátún et al., 2009; Rombouts et al., 2010; Eloire et al., 2010). 

In order to understand these variations, a logical approach is to focus on the factors that are 

expected to exert the greatest ecological impact. Untangling the roles of extrinsic factors is one 

of the biggest challenges faced by those tasked with predicting the ecological impacts of 

environmental change (Stenseth et al., 2002). Water temperature has been found to be the most 

important factor driving both spatial and temporal changes in plankton (Beaugrand et al., 2002; 

Rombouts et al., 2010; Reygondeau and Beaugrand, 2011). Salinity has been related to regime 

shifts of marine ecosystems (Weijerman et al., 2005). Also, salinity-induced stratification alters 

the exchange of nutrients and suspended particulate matter. Changes in salinity through advective 

processes, in combination with changes in temperature, alter the density and the stratification of 

the water column, thus affecting zooplankton populations distribution (Cross et al., 2015). 

Chlorophyll a, as a measure of phytoplankton biomass, plays a major role for some marine species 

as it represents the main food source for zooplankton grazers (Kleppel and Pieper, 1984), and 

filter feeders, affecting their recruitment (Highfield et al., 2010). 
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The aims of the present study were 1) to assess multiannual patterns of variation in 

mesozooplankton series from four different coastal sites of the Northeast Atlantic during the 1999 

– 2013 period and 2) to determine if these multiannual patterns were related to underlying 

variations of three major environmental drivers: water temperature, salinity and chlorophyll a 

concentration. 

 

4.2. Methods 

4.2.1. Data analysis 

Year Principal component analyses (PCAs) were performed on the abundance series of the 

selected zooplankton taxa for each site: non-crustacean holoplankton (appendicularians, 

chaetognaths, siphonophores and doliolids), cladocerans and copepods (Evadne, Podon, Acartia, 

Centropages, Temora, Oithona, Oncaea, Corycaeus, the Calanidae family and the PCPC-calanus 

assemblage) and meroplankton (cirripede larvae, decapod larvae, gastropod larvae, bivalve 

larvae, polychaete larvae, fish eggs and larvae, bryozoan larvae, echinoderm larvae and 

hydromedusae). 

 

Abundance data were log-transformed (log(x+1)). Data were then centered and scaled (mean 0 

and standard deviation 1). Therefore, the principal components (PCs) were calculated from the 

correlation matrix of these transformed data. PCs are low-dimensional representations of how the 

zooplankton community has changed along the time series at each site. Only PCs 1 and 2 were 

considered for this analysis. 

 

With the purpose of detecting trends or shifts in the main modes of zooplankton community 

changes extracted by the PCs (PCs 1 and 2) and in the abundance of the taxa selected by their 

contribution to such community changes, Generalized Additive Mixed Models (GAMMs; Wood 

2006, section 6.6) were fitted. Their advantage over other methods such as Rodionov’s regime 

shift detection algorithm (RSD; Rodionov, 2004), is that they are not limited by assumptions such 

as time series stationarity except at change points. Furthermore, GAMMs do not assume that 

trends must be linear, and allow more than one change point in contrast to Spencer et al. (2012). 

They also make it easy to include seasonality and the effects of environmental variables. Our 

approach is based on Orr et al. (2015) and Clare et al. (2017). 

 

Time (year of the time series + the corresponding fraction of 1/12 for each one of the months, i.e. 

January 1999 = 1999 + 0, February 1999 = 1999 + 0.08333, March 1999 = 1999 + 0.16666, etc.) 

was used as a smoothed covariate. The initial model took the form: 
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𝑦𝑖,𝑗 = 𝛽0,𝑗 +  𝑓1,𝑗𝑠(𝑡𝑖𝑚𝑒𝑖)  +  𝑓2,𝑗(𝑚𝑜𝑛𝑡ℎ𝑖) +  𝜀𝑖,𝑗             

 

where 𝒚𝒊,𝒋 is the value of the jth principal component (𝒋 = 1,2) at time i, 𝜷𝟎,𝒋 is the intercept, 

𝒇𝟏,𝒋𝒔(𝒕𝒊𝒎𝒆𝒊) is the smoothed time function, 𝒇𝟐,𝒋(𝒎𝒐𝒏𝒕𝒉𝒊) is the month in which sampling was 

conducted and  𝜺𝒊,𝒋 is a residual error. We used a first-order continuous-time autoregressive 

(CAR(1)) model for the error term (Pinheiro and Bates, 2000, section 5.3). GAMMs were fitted 

using the mgcv package (Wood, 2017) in R (version 3.2.2; R Core Team, 2017), with the default 

maximum likelihood (ML) estimation method. We used graphical analyses of residuals to check 

model assumptions. Simultaneous 95% confidence intervals on the first and second derivatives 

of the smoothed time effect were estimated by a Monte Carlo method, as described in Clare et al. 

(2017). Time periods where these confidence intervals do not contain zero indicate temporal 

trends (for the first derivative) or changes in temporal trend (for the second derivative), which 

may be of more interest. 

 

The environmental variables to be included in the model for the two main modes of zooplankton 

community variations and for the abundance of selected taxa were water temperature (Temp), 

salinity (Sal) and chlorophyll a (Chl a), which were standardized (expressed in terms of standard 

deviations from their monthly means) to remove seasonality. In order to determine whether any 

of those was a driver of community or individual taxa dynamics, the initial models were modified 

to include the latter as (non-smoothed) covariates. The selected environmental variables were 

added into the initial model, along with all two-way interactions among fixed effects: 

 

𝑦𝑖,𝑗 = 𝛽0,𝑗 +  𝑓1,𝑗𝑠(𝑡𝑖𝑚𝑒𝑖) + (𝑓2,𝑗(𝑚𝑜𝑛𝑡ℎ𝑖) +  𝑓3,𝑗(𝑆𝑎𝑙𝑖) + 𝑓4,𝑗(𝑇𝑒𝑚𝑝) + 𝑓5,𝑗(𝐶ℎ𝑙𝑎𝑖))
2

+  𝜀𝑖,𝑗 

 

where 𝒇𝟑,𝒋(𝑺𝒂𝒍𝒊) is standardised salinity, 𝒇𝟒,𝒋(𝑻𝒆𝒎𝒑𝒊) is standardised water temperature and 

𝒇𝟓,𝒋(𝑪𝒉𝒍𝒂𝒊) is standardised chlorophyll a. Approximate p-values were obtained from Wald-like 

tests implemented in the anova.gam() function (Wood, 2017). Non-significant effects were 

removed from the models. Terms which themselves were not statistically significant (p> 0.05) 

but took part in a significant interaction with another term, were retained in the final model. 

Confidence intervals for first and second derivatives of the time effect were obtained as above. 

The presence of significant second derivatives in the initial model that were absent in the final 

model may indicate that environmental variables could account for changes in temporal trend. 

GAMMs were fitted for the two principal components of the zooplankton community abundance 

and some selected and relevant zooplankton taxa. 
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In order to visualize the change over time of the environmental variables and the log-transformed 

(log (x+1)) abundance of taxa, locally weighted polynomial regression (LOESS) fits were applied. 

The non-parametric Spearman’s rank correlation coefficient method (rho) was used to test for 

trends. Plots with LOESS fit and Spearman’s rho tests were both coded using R (version 3.2.2; R 

Core Team, 2017). 

 

4.3. Results 

4.3.1. Environmental variables 

Significant trends in the variation of the environmental variables (Figure 1) during the study 

period were only found in three cases: the decreasing trend for chlorophyll a at B35 (p= 0.0185), 

and the increasing trends for salinity at U35 (p<0.001) and at B35 (p<0.001). 

 

Figure 1. Temporal variation in water temperature (ºC), chlorophyll a (µg L-1) and salinity at SH, 

L4, U35 and B35 sites. Bold line is the LOESS smoother (bold line). 

 

However, the linear regressions performed between environmental variables and year 

(independently for each season; Figure 2) revealed decreasing trends, although non-significant 

ones, for temperature in the warmest summer months at all sites. This decrease was most evident, 

and almost reached statistical significance (p= 0.07), at L4 and least evident at SH. Non-

significant temperature increases were mainly observed in autumn at L4, in winter at U35 and in 

spring at B35. The decrease of chlorophyll a throughout the study period at B35 was very strong 

in summer for the annual maxima (p< 0.001). There is a chlorophyll a decrease, although non-

significant, in winter and spring at B35, spring and autumn at U35 and spring at L4. In contrast, 
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chlorophyll a increased significantly in winter (p= 0.015) and autumn (p= 0.028), and non-

significantly in spring, at SH. Salinity values increased throughout time at B35 and U35 in most 

months, with significant trends for winter (p= 0.003) at U35 and for winter (p= 0.047) and summer 

(p= 0.013) at B35. 

 

 
Figure 2. Linear regression models of water temperature, chlorophyll a and salinity vs. year for 

each season at the SH, L4, U35 and B35 sites. Thick lines stand for significant 

increasing/decreasing trends along the study period. 

 

4.3.2. Zooplankton community 

The percentage of variation captured by the two first components of the zooplankton taxa 

abundances PCA was: 42.93% for PC1 and 13.25% for PC2 at SH, 35.63% for PC1 and 15.05% 

for PC2 at L4, 23.54% for PC1 and 14.35% for PC2 at U35 and, 33.3% for PC1 and 12.8% for 

PC2 at B35. Taxa loaded on PC1 (Table 1A) mostly showed positive loading values, with only 

three exceptions with negative but very close to zero loadings (Oncaea at SH and L4 and 

Corycaeus at SH). Taxa with highest positive loadings were Temora, decapod larvae, Acartia, 

Centropages and appendicularians at SH, echinoderm larvae, Podon, Temora, Calanidae, Acartia, 

appendicularians and Evadne at L4, appendicularians, gastropod larvae, Acartia and cirripede 

larvae at U35 and PCPC-calanus, bivalve larvae, siphonophores, cirripede larvae, Centropages, 
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appendicularians, Podon and decapod larvae at B35. The annual maxima of these taxa occurred 

in summer (July – August) at SH, from spring to summer (May – August) at L4, mainly in early 

spring (March) at U35 and mainly in early summer (June) at B35.  

 

Table 1. Taxa loadings (positive and negative values separated by the dashed line) on the PC1 

and PC2 of the zooplankton abundance at SH, L4, U35 and B35 sites from 1999 to 2013, with 

indication of the month of the annual maximum abundance (Month max.). Taxa: ACAR (Acartia), 

APPE (Appendicularians), BIVA (Bivalve larvae), BRYO (Bryozoan larvae), CALA (Calanus), 

CENT (Centropages), CHAE (Chaetognaths), CIRRI (Cirripede larvae), CORY (Corycaeus), 

DECA (Decapod larvae), DOLI (Doliolids), ECHI (Echinoderm larvae), EVAD (Evadne), GAST 

(Gastropod larvae), MEDU (hydromedusae), OITH (Oithona), ONCA (Oncaea), PCPC-calanus 

(Pseudo–Cteno–Para–Clausocalanus), FISH (Fish eggs and larvae), PODO (Podon), POLY 

(Polychaete larvae), SIPH (Siphonophores), TEMO (Temora). 

A) PC1 
SH 

  

L4 

  

U35 

  

B35 
Taxon PC loading Month Max Taxon PC loading Month Max Taxon PC loading Month Max Taxon PC loading Month Max 
TEMO 0,28395 AUG ECHI 0,29065 JUL APPE 0,31676 MAR PCPC 0,26937 SEP 
DECA 0,28158 AUG PODO 0,29009 JUL GAST 0,30402 JUN BIVA 0,26702 JUL 
ACAR 0,27675 JUL TEMO 0,28764 AUG ACAR 0,29242 MAR SIPH 0,26397 MAY 
CENT 0,26743 JUL CALA 0,27780 AUG CIRR 0,29182 MAR CIRR 0,25951 JUN 
APPE 0,26577 JUL ACAR 0,27487 MAY EVAD 0,26841 MAR CENT 0,25781 JUN 
POLY 0,25869 JUL APPE 0,26834 JUN PCPC 0,25776 JUL APPE 0,25749 JUN 
BIVA 0,24774 JUN EVAD 0,26801 MAY PODO 0,25317 MAR PODO 0,25680 JUN 
ECHI 0,24448 JUN DECA 0,25186 JUL OITH 0,24550 MAR DECA 0,25208 JUN 
EVAD 0,23374 AUG POLY 0,24237 JUN CENT 0,23902 JUN GAST 0,24544 JUN 
CALA 0,23183 SEP GAST 0,24031 AUG BIVA 0,23553 MAR FISH 0,22680 JUN 
OITH 0,22240 JUL CENT 0,21245 AUG SIPH 0,22913 MAY EVAD 0,22660 MAY 
PODO 0,22136 AUG OITH 0,20657 APR MEDU 0,22656 APR MEDU 0,21413 APR 
CIRR 0,20837 APR MEDU 0,20501 JUL ECHI 0,16108 MAY ACAR 0,18962 MAR 
CHAE 0,20527 SEP CIRR 0,19476 APR BRYO 0,15712 JUN CHAE 0,18150 AUG 
GAST 0,19945 SEP SIPH 0,15165 SEP TEMO 0,14624 SEP TEMO 0,17302 SEP 
BRYO 0,19070 APR CHAE 0,14076 SEP CALA 0,13743 APR DOLI 0,17128 SEP 
PCPC 0,16707 MAY PCPC 0,13713 APR FISH 0,13573 MAY ONCA 0,16855 SEP 

MEDU 0,14213 APR FISH 0,13186 JUN DOLI 0,12955 AUG OITH 0,16761 SEP 
FISH 0,11674 APR BIVA 0,07734 SEP CHAE 0,12063 AUG ECHI 0,14740 MAY 
SIPH 0,03959 SEP CORY 0,06145 OCT DECA 0,11058 FEB CALA 0,13656 JUN 
DOLI 0,03565 SEP DOLI 0,05716 SEP CORY 0,05707 AUG BRYO 0,10644 MAY 
ONCA -0,00409 MAR BRYO 0,05008 MAR ONCA 0,03030 OCT CORY 0,09735 AUG 
CORY -0,01193 OCT ONCA -0,09916 NOV POLY 0,01441 MAR POLY 0,04618 FEB 

          

 

     
B) PC2 

SH 

  

L4 

  

U35 

  

B35 
Taxon PC loading Month Max Taxon PC loading Month Max Taxon PC loading Month Max Taxon PC loading Month Max 
CIRR 0,29641 APR FISH 0,24113 JUN ACAR 0,24380 MAR ACAR 0,33264 MAR 
FISH 0,29415 APR CIRR 0,23110 APR BRYO 0,18544 JUN EVAD 0,20470 MAY 
APPE 0,16426 JUL OITH 0,20039 APR PODO 0,18385 MAR BRYO 0,18812 MAY 
EVAD 0,14031 AUG DECA 0,19635 JUL EVAD 0,17816 MAR APPE 0,17044 JUN 
PODO 0,13317 AUG BRYO 0,15554 MAR CIRR 0,15294 MAR FISH 0,16376 JUN 
BRYO 0,12877 APR APPE 0,12898 JUN POLY 0,13842 MAR CIRR 0,14951 JUN 
POLY 0,08220 JUL CALA 0,09676 AUG APPE 0,12576 MAR CALA 0,12953 JUN 
ACAR 0,02920 JUL POLY 0,08445 JUN FISH 0,10902 MAY GAST 0,11891 JUN 
DECA 0,01237 AUG EVAD 0,06968 MAY ECHI 0,07802 MAY ECHI 0,10903 MAY 
CENT 0,01128 JUL PODO 0,03652 JUL DECA 0,03955 FEB PODO 0,10890 JUN 
OITH -0,02860 JUL PCPC 0,03475 APR CENT 0,00490 JUN CENT 0,08390 JUN 
ECHI -0,04560 JUN TEMO -0,00113 AUG GAST 0,00449 JUN POLY 0,05933 FEB 
TEMO -0,04808 AUG ACAR -0,01088 MAY CALA -0,00389 APR BIVA -0,00466 JUL 
BIVA -0,08116 JUN ECHI -0,07969 JUL OITH -0,06418 MAR MEDU -0,03234 APR 
PCPC -0,12069 MAY DOLI -0,16171 SEP BIVA -0,07081 MAR SIPH -0,04260 MAY 

MEDU -0,13037 APR CENT -0,16833 AUG SIPH -0,10846 MAY DECA -0,05729 JUN 
CALA -0,14384 SEP GAST -0,18810 AUG MEDU -0,11695 APR OITH -0,09457 SEP 
DOLI -0,19703 SEP MEDU -0,19372 JUL PCPC -0,23910 JUL PCPC -0,12411 SEP 
ONCA -0,25221 MAR ONCA -0,25665 NOV CHAE -0,33256 AUG TEMO -0,33007 SEP 
GAST -0,28204 SEP BIVA -0,31986 SEP TEMO -0,33963 SEP DOLI -0,33011 SEP 
CHAE -0,31001 SEP CHAE -0,37457 SEP DOLI -0,35255 AUG CHAE -0,35683 AUG 
CORY -0,42498 OCT CORY -0,38767 OCT CORY -0,37063 AUG CORY -0,36197 AUG 
SIPH -0,46261 SEP SIPH -0,39037 SEP ONCA -0,42816 OCT ONCA -0,40228 SEP 
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At all sites and for PC1, both the initial model (i.e. smoothed time and month) and the final model 

(including the selected environmental variables as covariates) fitted linear time effects. The 

significant interactions with environmental variables (Table 2A) were with chlorophyll a at SH, 

with water temperature in interaction with month at L4 and with salinity at B35, while no 

covariate was retained at U35. Only at L4 and for the entire study period, the first derivative of 

the smoothed time effect was significantly different from zero (Figure 3C, bold line). Among the 

top taxa with highest positive loadings, echinoderm larvae and appendicularians increased in 

abundance during the study period and Podon, Temora and Acartia decreased (Figure 4). 

 

Table 2. Generalized additive mixed models (GAMMs) output showing variation in the principal 

components 1 (A) and 2 (B) of zooplankton taxa abundance at SH, L4, U35 and B35 sites, from 

1999 to 2013. Relationships between the PCs and standardized (standard deviations from the 

monthly mean) chlorophyll a (Chl a), water temperature (WT) and salinity (S), and also month, 

are shown. All possible two-way interactions were tested. Non-significant interactions and non-

significant main effects, when no interactions were involved, were removed. Significant p-values 

(< 0.05) are in bold. For smoothed time, d.f. stands for the effective degrees of freedom. Dashes 

indicate terms removed from the final model. 

A 
  SH   L4   U35   B35 

Source d.f. F p   d.f. F p   d.f. F p   d.f. F p 

(Smoothed) Time 1 0.39 0.533  1 5.815 0.017  1 2.76 0.098  1 0.626 0.43 

WT - - -  1 0.757 0.386  - - -  - - - 

S - - -  - - -  - - -  1 4.948 0.027 

Chl a 1 4.836 0.029  - - -  - - -  - - - 

Month 11 47.73 < 0.001  11 46.08 < 0.001  11 13.54 < 0.001  11 25.85 < 0.001 

WT*S - - -  - - -  - - -  - - - 

WT*Chl a - - -  - - -  - - -  - - - 

WT*Month - - -  11 1.901 0.043  - - -  - - - 

S*Chl a - - -  - - -  - - -  - - - 

S*Month - - -  - - -  - - -  - - - 

Chl a *Month - - -   - - -   - - -   - - - 

B 

  SH   L4   U35   B35 

Source d.f. F p   d.f. F p   d.f. F p   d.f. F p 

(Smoothed) Time 1.901 3.805 0.06  1 0.474  0.492   1 9.186 0.003  1 13.64 < 0.001 

WT 1 0.004 0.947  1 0.694 0.406  - - -  - - - 

S - - -  1 0.305 0.581  - - -  1 3.908 0.0498 

Chl a - - -  1 0.132 0.716  - - -  - - - 

Month 11 36.96 < 0.001  11 25.88 < 0.001  11 25.87 < 0.001  11 30.69 < 0.001 

WT*S - - -  - - -  - - -  - - - 

WT*Chl a - - -  - - -  - - -  - - - 

WT*Month 11 2.418 0.008  11 2.233 0.015  - - -  11 3.173 < 0.001 

S*Chl a - - -  1 5.078 0.026  - - -  - - - 

S*Month - - -  - - -  - - -  - - - 

Chl a*Month - - -   - - -   - - -   - - - 

 



Chapter 4: Multi-annual changes 

119 

 

 
Figure 3. Variation in the first principal component and the second principal component of taxa 

abundances over (smoothed) time for SH site (A, B, respectively), L4 site (C, D, respectively), 

U35 site (E, F, respectively) and B35 site (G, H, respectively). Lines with seasonal fluctuations 

are the observed values of the principal components, and lines without seasonal fluctuations are 

the smoothed time effects, which represent the relationships in the final models (including 

(smoothed) time, month and extrinsic drivers (water temperature, Chl a and salinity) that were 

significantly related (p< 0.05) to the principal components (including any significant 

interactions), as terms in the linear predictor matrix). Periods where the first derivative of the 

smoothed time effect was significantly different from zero are represented with a thick bold line. 
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Figure 4. Monthly taxa abundance (as Log of individuals/m3; empty circles) with a LOESS 

smoother (bold line) to visualize the variations along the study period at the L4 site. Selected taxa 

were those with the most positive loadings for the first principal component: ECHI (0.29065), 

PODO (0.29009), TEMO (0.28764), CALA (0.27780), ACAR (0.27487) and APPE (0. 26834). 

Taxa abbreviations as in Table 1. 

 

On the PC2 (Table 1B), the taxa with largest positive loadings had an early annual maximum 

during early spring at all the sites (April at SH and L4, March at U35 and B35), while the taxa 

with the most negative loadings, showed the latest annual maxima (September-October at SH and 

L4, and August – October at B35 and U35). The taxa with highest positive loading were cirripede 

larvae and fish eggs and larvae at SH and L4, and Acartia at U35 and B35. The taxa with highest 

negative loading included siphonophores, Corycaeus, chaetognaths and Oncaea at SH and L4, 

and Oncaea, Corycaeus, chaetognaths, doliolids and Temora at U35 and B35. 

 

At SH, the final model included the interaction between water temperature and month (Table 1B) 

and showed a decreasing trend (significantly negative first derivative) during the 1999 – 2005 

period (Figure 3B, bold line), which became non-significant since 2005 (non-significant second 
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derivative, i.e. no changes to the temporal trend). From 1999 to 2005, there was a clear increase 

in abundance for Corycaeus and chaetognaths, and a decrease for cirripede larvae (Figure 5).  

 

 

Figure 5. Monthly taxa abundance (as Log of individuals/m3; empty circles) with a LOESS 

smoother (bold line) to better visualize the variations along the study period at the SH site. 

Selected taxa were those with the most positive and most negative loadings for the second 

principal component: SIPH (-0.46261), CORY (-0.42498), CHAE (-0.310005), GAST (-

0.28204), FISH (0.29415) and CIRR (0.29641). Taxa abbreviations as in Table 1. 

 

At L4, the smoothed time effect was not significant for PC2, with the final model including a 

significant association with the interaction between water temperature and month and to a lesser 

extent also with the interaction between salinity and chlorophyll a. At U35 and B35, there was a 

significant trend for the entire study period (Figure 3F and 3H, bold line). The final model did 

not retain any environmental covariable at U35 but included a major effect of the interaction 

between water temperature and month and the weaker effect of salinity at B35 (Table 2B). At 

both sites the abundance of Oncaea, Corycaeus, Temora and chaetognaths decreased in the last 

years of the series, while Acartia increased (Figures 6 and 7). 
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Figure 6. Monthly taxa abundance (as Log of individuals/m3; empty circles) with a LOESS 

smoother (bold line) to visualize the variations along the study period at the U35 site. The taxa 

selected were those with the most positive and most negative loadings for the second principal 

component: ONCA (-0.42816), CORY (-0.37063), DOLI (-0.35255), TEMO (-0.33963), CHAE 

(-0.33256) and ACAR (0.24380). Taxa abbreviations as in Table 1. 
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Figure 7. Monthly taxa abundance (as Log of individuals/m3; empty circles) with a LOESS 

smoother (bold line) to visualize the variations along the study period at the B35 site. Selected 

taxa were those with the most positive and most negative loadings for the second principal 

component: ONCA (-0.40228), CORY (-0.36197), CHAE (-0.35683), DOLI (-0.33011), TEMO 

(-0.33007) and ACAR (0.33264). Taxa abbreviations as in Table 1. 

 

4.3.3. Zooplankton taxa 

None of the taxa to test the pattern of change in abundance in relation to environmental factors 

(i.e. Acartia, appendicularians, Podon, chaetognaths and Centropages) showed the same trend at 

all sites during the study period (Figure 8). Different taxa showed different significant trends: 

Acartia increased at B35 and U35 and decreased at SH. Chaetognaths decreased at B35 and 

increased at L4. Appendicularians also increased at L4, while Podon decreased and Centropages 

increased at B35. The relationships of environmental variables or between-variable interactions 

with taxa, abundance (Table 3) showed that, at SH, the decrease of Acartia could not be 

associated to any of the selected environmental variables. At L4 the increase of appendicularians 

and chaetognaths, and the decrease of Podon were all associated to the interaction between 

temperature and month. At U35, as for SH, the increase of Acartia could not be related to any 
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variable. At B35, Acartia and Centropages increase were associated to water temperature and the 

interaction between water temperature and salinity, respectively, and chaetognaths decrease to 

the interaction between salinity and month. 

 

Furthermore, significant relationships with environmental factors were also found for taxa that 

did not show significant trends of abundance variation during the study period. At SH, the 

abundance of appendicularians was mainly explained by the interaction between temperature and 

month and also chlorophyll a, the abundance of Podon by the interaction between chlorophyll a 

and month, and water temperature. At L4, the interaction between temperature and month 

explained the abundance changes of Acartia, as for the other taxa at this site. At U35, the 

abundance changes of Centropages and chaetognaths were associated to the interaction between 

temperature and month and to temperature, respectively. At B35, changes in the abundance of 

appendicularians were associated to chlorophyll a and those of Podon to water temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Generalized additive mixed models (GAMMs) output showing variation in the 

abundance of selected zooplankton taxa at SH, L4, U35 and B35 sites, from 1999 to 2013. 

Relationships between the abundance and standardized (standard deviations from the monthly 

mean) chlorophyll a (Chl a), water temperature (WT) and salinity (S), and also month, are shown. 

All possible two-way interactions were tested. Non-significant interactions and non-significant 

main effects, when no interaction involved, were removed. Significant p-values (< 0.05) are in 

bold. For smoothed time, d.f. stands for the effective degrees of freedom. Dashes indicate terms 

removed from the final model. 



Chapter 4: Multi-annual changes 

125 

 

  SH   L4   U35   B35 

    d.f. F p   d.f. F p   d.f. F p   d.f. F p 

Acartia (Smoothed) Time 1 4.270 0.040  1 1.128 0.290  1 14.76 

< 

0.001  1 6.812 0.009 

 WT - - -  1 0.882 0.349  - - -  1 4.984 0.027 

 S - - -  - - -  - - -  - - - 

 Chl a - - -  - - -  - - -  - - - 

 Month 11 33.99 
< 

0.001  11 15.54 
< 

0.001  11 13.46 
< 

0.001  11 11.06 
< 

0.001 

 WT*S - - -  - - -  - - -  - - - 

 WT*Chl a - - -  - - -  - - -  - - - 
 WT*Month - - -  11 1.888 0.045  - - -  - - - 

 S*Chl a - - -  - - -  - - -  - - - 
 S*Month - - -  - - -  - - -  - - - 

  Chl a*Month - - -   - - -   - - -   - - - 

Appendicularians (Smoothed) Time 1 0.645 0.423  1 30.56 

< 

0.001  1 0.703 0.403  1 2.680 0.103 
 WT 1 0.475 0.492  1 1.327 0.251  - - -  - - - 

 S - - -  - - -  - - -  - - - 

 Chl a 1 10.87 0.001  - - -  - - -  1 5.210 0.024 

 Month 11 24.04 

< 

0.001  11 14.20 

< 

0.001  11 8.298 

< 

0.001  11 5.881 

< 

0.001 

 WT*S - - -  - - -  - - -  - - - 

 WT*Chl a 1 5.065 0.026  - - -  - - -  - - - 

 WT*Month 11 3.642 

< 

0.001  11 3.437 

< 

0.001  - - -  - - - 

 S*Chl a - - -  - - -  - - -  - - - 

 S*Month - - -  - - -  - - -  - - - 

  Chl a*Month - - -   - - -   - - -   - - - 

Podon (Smoothed) Time 1.000 0.848 0.359  1 5.322 0.022  1 0.028 0.868  1 2.993 0.086 

 WT 1 2.134 0.146  1 3.275 0.072  - - -  1 5.555 0.020 

 S - - -  - - -  - - -  - - - 

 Chl a 1 1.207 0.274  - - -  - - -  - - - 

 Month 11 13.84 
< 

0.001  11 36.08 
< 

0.001  11 10.81 
< 

0.001  11 14.42 
< 

0.001 

 WT*S - - -  - - -  - - -     

 WT*Chl a - - -  - - -  - - -  - - - 

 WT*Month 11 2.239 0.015  11 2.411 0.009  - - -  - - - 

 S*Chl a - - -  - - -  - - -  - - - 

 S*Month - - -  - - -  - - -  - - - 

  Chl a*Month 11 3.116 

< 

0.001   - - -   - - -   - - - 

Chaetognaths (Smoothed) Time 1 0.049 0.826  1 4.690 0.032  1 0.173 0.678  1 7.542 0.006 

 WT - - -  1 0.871 0.352  1 4.081 0.045  - - - 
 S - - -  - - -  - - -  1 2.370 0.126 

 Chl a - - -  - - -  - - -  - - - 

 Month 11 15.68 
< 

0.001  11 8.425 
< 

0.001  11 5.110 
< 

0.001  11 13.75 
< 

0.001 

 WT*S - - -  - - -  - - -  - - - 

 WT*Chl a - - -  - - -  - - -  - - - 

 WT*Month - - -  11 1.865 0.048  - - -  - - - 

 S*Chl a - - -  - - -  - - -  - - - 

 S*Month - - -  - - -  - - -  11 2.066 0.026 

  Chl a*Month - - -   - - -   - - -   - - - 

Centropages (Smoothed) Time 1 0.101 0.751  1 2.586 0.110  1 1.090 0.298  1 3.658 0.057 

 WT - - -  1 0.858 0.355  1 2.390 0.124  1 0.100 0.753 

 S - - -  - - -  - - -  1 0.291 0.592 
 Chl a - - -  - - -  - - -  - - - 

 Month 11 20.22 

< 

0.001  11 13.63 

< 

0.001  11 6.490 

< 

0.001  11 5.436 

< 

0.001 

 WT*S - - -  - - -  - - -  1 4.845 0.029 

 WT*Chl a - - -  - - -  - - -  - - - 

 WT*Month - - -  11 1.889 0.045  11 2.387 0.009  - - - 

 S*Chl a - - -  - - -  - - -  - - - 

 S*Month - - -  - - -  - - -  - - - 

  Chl a*Month - - -   - - -   - - -   - - - 
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Figure 8. Variation in the abundance of selected taxa over (smoothed) time at the SH, L4, U35 

and B35 sites: ACAR (Acartia), APPE (appendicularians), PODO (Podon), CHAE 

(chaetognaths) and CENT (Centropages). Empty circles represent the abundance values obtained 

during the study period and the lines are the smoothed time effects. Periods where the first 

derivative of the smoothed time effect was significantly different from zero are represented with 

a thick bold line. 
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4.4. Discussion 

4.4.1. Zooplankton community 

Zooplankton community patterns of multiannual change identified by GAMMs were either 

random or gradual (trend) changes at the studied sites. Thus, no abrupt deviations from temporal 

trends, or shifts, in species composition and abundance were detected, this denoting no noticeable 

regime changes affecting the zooplankton of the European shelf area covered by our four 

monitoring sites for the period 1999 – 2013. Rapid shifts have been reported in synchrony during 

the late 1980s and early 1990s at different marine regions of the Northern hemisphere, and 

attributed mainly to common large-scale climate drivers which modify sea temperature regimes 

(Möllmann and Diekmann, 2012), but also to a major event of global scope and scale which 

involved natural and anthropogenic multiplier effects (Reid et al., 2016). In the North Sea, where 

the SH site is located, these substantial regime shifts affected all trophic levels of the pelagic 

system (Alheit et al., 2005; Weijerman et al., 2005), and a cold-biological regime until 1982 and 

a warm-biological dynamic regime since 1984 were distinguished in time-series until 1999 

(Beaugrand and Ibañez, 2004). The extension of the analysis of the North Sea plankton 

community to the 2000s, however, has allowed the detection of a later regime change around 

1998 that was evidenced by a shift with variable timing within the 1996 – 2003 period depending 

on the planktonic group and also on species within a taxonomic group (Alvarez-Fernandez et al., 

2012; Beaugrand et al., 2014). But this shift also preceded time-series analyzed in our study, 

which start in 1999 and cover the 2000s and early 2010s, and our results revealed trends in some 

components of the zooplankton community but not shifts since 2000. 

 

The trends observed in the present work differed between the sites under study in the zooplankton 

components responsible for the gradual change or in the duration of the trend. The zooplankton 

assemblages responsible for the trends differed mainly from L4 to the other three sites. At L4 the 

trend was detected for the zooplankton assemblage responsible for the first principal component 

that included taxa with annual maxima in spring (Podon, Acartia, appendicularians and Evadne) 

and summer (echinoderm larvae, Temora and Calanus), while at SH, U35 and B35 the trend was 

detected for zooplankton assemblages responsible for the second principal component, and 

included primarily common late summer – autumn taxa (Corycaeus, Oncaea, and chaetognaths) 

in opposition to earliest peaking ones (cirripede and fish larvae and eggs at SH and Acartia at 

U35 and B35). Morse et al, (2017), comparing long-term patterns of zooplankton variations 

among adjacent ecoregions of the western Atlantic, also found that the composition and response 

of spring zooplankton was more variable across ecoregions in contrast to an autumn community 

characterized by a more concise grouping of taxa with similar patterns of change across all 

ecoregions. 
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Final models for both the trend of the spring – summer assemblage at the L4 and the trends of 

late-summer – autumn assemblages at the other sites included the interaction between water 

temperature and month as the main explanatory variable, except at U35 where no variables were 

selected by the model. Previous studies at the L4 site have found an overall gradual warming of 

0.68 ºC per decade (Highfield et al., 2010; Smyth et al., 2010), but for the period analyzed (1999 

– 2013) water temperature did not show an increasing trend at any site, and the model actually 

stated that it was not temperature but the interaction between temperature and month the driving 

factor of gradual changes in zooplankton communities. This means that only the changes of 

temperature at given months of a specific season drove the observed zooplankton trends. The 

comparison of water temperature by seasons at each site reveals that temperature trends differ 

between seasons at all sites. The trends of the spring – summer assemblage at L4 and the summer 

– autumn assemblage at the other sites agreed with the decrease of temperature in spring – summer 

and the increase in autumn at L4, and with the predominant decrease of temperature in summer – 

autumn and the increase or lack of trend in spring at the other sites. Similar season-related 

relationships between zooplankton and temperature have been reported by Dippner et al. (2000) 

in the Central Baltic Sea, where the interannual variability of zooplankton species in spring was 

found to be controlled by the spring sea surface temperature. 

 

The gradual change in the spring – summer zooplankton community at L4 was mainly related to 

the increase in echinoderm larvae and appendicularians, and the decrease in three abundant 

crustacean zooplankters i.e. Podon, Temora and Acartia, which occurred at the same time water 

temperature decreased (although the trend for the latter was non-significant). Some of these 

results, however, are in conflict with the expected response to the decrease of temperature in 

spring – summer. For echinoderm larvae a positive effect of temperature on their abundance peak 

and development rates has been previously described (Edwards and Richardson, 2004; Kirby et 

al., 2007), but our results do not support a positive relation of echinoderm larvae with temperature 

over the period analyzed at this site, this suggesting that other factors not taken into account in 

the present study, like wind (Eloire et al., 2010), might be affecting their dynamics. The 

decreasing abundance of Temora and Acartia can be consistent with a temperature effect if the 

response of these taxa to temperature at L4 operates as in the Baltic Sea, where the reproduction 

of Temora and Acartia in spring is favored by higher water temperature (Dippner et al., 2000). 

This season-linked effect of temperature should be differentiated from that of the general 

warming, that is claimed to affect negatively Temora longicornis (99.88% of the total Temora at 

L4) in this area (Kane and Prezioso, 2008; Eloire et al., 2010), since our study is restricted to a 

set of years where a general warming was not detected. Relationships of zooplankton with 

environmental conditions have been found to be more evident when predation pressure decreases 



Chapter 4: Multi-annual changes 

129 

 

(Dippner et al., 2000). In this context, an unexpected relationship with temperature could be 

plausible if a top-down control is occurring. The significant increase of chaetognaths at L4 during 

the study period might support the hypothesis of a predation driven decrease of Temora and 

Acartia, because the enhancement of predators could explain the decrease in the abundance of co-

occurring prey taxa (Nicholas and Frid, 1999, Bonnet et al., 2010). Chaetognath species found at 

L4 prey selectively and primarily, with higher predation impact, on copepods (Oresland, 1987; 

Tönnesson and Tiselius, 2005), and show higher densities from June to October with a temporal 

coherence with the higher densities of Temora and Acartia from May to September (Chapter 1, 

this work). 

 

At SH there was a significant trend only for the 1999 – 2005 period that was mainly accounted 

for by the increase of late summer – early autumn taxa like chaetognaths, gastropod larvae and 

Corycaeus and the decrease of early spring taxa like cirripede larvae. As for L4, the final model 

selected temperature in interaction with month as the main driver of zooplankton changes. 

However, temperature did not increase nor decrease significantly at any season during the entire 

study period, but for the 1999 – 2005 period there was an overall significant increase (p= 0.05) 

that could presumably favor warm water taxa but could have a negative effect on cirripede larvae, 

whose larval size and survival decrease with increasing temperature (Anil and Kurian, 1996; 

Harms, 1986). The fact that this zooplankton changing trend stopped in 2005 suggests a 

relationship with the shifts in plankton ecosystems of the North Sea detected between 1996 and 

2003 by Beaugrand et al. (2014), and previously suggested by Weijerman et al. (2005). The 

former authors attribute the shifts of several planktonic groups in the North Sea between 1996 

and 2003 to a major discontinuity in the intensity of warming (Levitus et al., 2009; Raitsos et al., 

2010; Raid and Beaugrand, 2012) which agrees with the increasing trend of temperature observed 

at SH from 1999 to 2004 in our study. 

 

The trends obtained at both U35 and B35 showed great similarity and the main taxa responsible 

for the change were those peaking later in the year in opposition to those peaking earliest, as at 

SH. However, in contrast to findings for SH, at U35 and B35 the most representative taxon of the 

early spring assemblage was Acartia, which showed an increasing trend over the entire study 

period, and among the most influential taxa of the late assemblage were doliolids and Temora, in 

addition to chaetognaths, Oncaea and Corycaeus. which showed mostly decreasing trends. 

Although there were no variables selected by the model at U35, the temperature in interaction 

with month was included in the final model at B35, and the season-related behavior of temperature 

was similar in both sites. Although not significant, the common increase of spring temperature 

might be the cause of the increase of Acartia (mostly Acartia clausi), as was also observed at L4, 

and the common decrease of summer temperature the cause of the decrease of Temora (dominated 
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by Temora stylifera), Oncaea and Corycaeus (Ditrichocorycaeus anglicus). Temperature has a 

positive effect on A. clausi species growth rates (Leandro et al., 2006), while thermophilic 

opportunistic species such as Temora stylifera  and Ditrichocorycaeus anglicus (Di Capua and 

Mazzocchi, 2004; Valdés et al., 2007) might be negatively affected by the decrease of temperature 

in summer. It is important to note also, that T. stylifera is an omnivore copepod, but mainly 

opportunistic herbivore (Turner, 1984), that might have suffered the decrease of Chl a during 

summer, especially at B35 but to a lower extent also at U35. 

 

4.4.2. Zooplankton taxa 

None of the individual taxa showed the same pattern of change at the four sites under study, but 

most of them had a same trend at the two Bay of Biscay sites as stated above for Acartia, Temora 

and Corycaeus. This denotes, that such trends were driven to a larger extent by hydroclimatic 

forces acting at regional scale that affect similarly U35 and B35 sites, than by local anthropogenic 

changes which differed between sites during the study period. Also, in the case of Acartia, 

findings can be related to the dynamics of a single species i.e. A. clausi which was dominant in 

the genus Acartia at all sites. For A. Clausi opposite trends of change were observed, with 

significant increasing trends at both U35 and B35 and a significant decreasing trend at SH and a 

non-significant trend of decrease at L4. Although no environmental variables were selected by 

models at SH and U35, the findings that relate A. clausi dynamics to temperature at L4 and B35, 

in spite of the higher variations showed by salinity and chlorophyll a, suggest an overall major 

control of this species by temperature in relation to the other two environmental factors analyzed 

in this study. The relationship between Acartia and temperature derived from this study is in 

accordance with previous findings at L4, where its phenology was found to be particularly 

temperature-sensitive (Atkinson et al. 2015). In addition, A. clausi showed a common pattern of 

variation in abundance with temperature for the four sites (Chapter 5, this work) that determines 

an annual optimum for this species in early spring at the southernmost sites (U35 and B35) but in 

summer at the northernmost site (SH; Chapter 1, this work). This delay with latitude implies that 

A. clausi supra-annual variations may be primarily governed by temperature changes differing 

between seasons. This may lead to opposite trends at the same time at different regions of the 

North Atlantic. 

 

Appendicularians and Podon showed increasing and decreasing trends, respectively, directly 

related to the interaction between temperature and month at L4. At this site both taxa show the 

standard annual peak in late spring – early summer when temperature decreased, this suggesting 

an opposite response to temperature. Non-significant increases of appendicularians and decreases 

of Podon were also observed at B35, where both taxa have the standard annual peak at the same 

time in June, but in this case the increase of appendicularians was related to chlorophyll a and the 
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decrease of Podon to temperature. In addition, both temperature and chlorophyll a (alone, in 

interaction between them or in interaction with month) were selected by the models to explain the 

variations of appendicularians and Podon at SH. Similarly, the increasing trend of chaetognaths 

and the non-significant increase of Centropages at L4 were related to temperature in interaction 

with month, while the decreasing trend of chaetognaths and the increasing trend of Centropages 

at B35 were related to salinity in interaction with month and to the interaction between 

temperature and salinity, respectively. All this draws a complex picture of the relationships 

between these taxa and environmental factors, and prevents the selection of a single variable as 

major driver of a given taxa at all sites under study. 

 

At the L4 site, and for a longer period that overlaps the time-series we used until 2007, Eloire et 

al. (2010) already found a decreasing trend for Podon, which could not be related to any 

environmental parameter but was negatively correlated to the winter NAO index, and an increase 

of chaetognaths that could not be related to any environmental parameter either. Our results did 

not show a relationship between these taxa abundance trends and overall temperature, but they 

showed an association with the interaction of temperature with month, that is to say, they showed 

a season-dependent effect of temperature. Season-dependent effects of temperature on plankton 

series from the North Atlantic have been reported by other workers too in recent years (Feng et 

al., 2014).  

 

4.4.3. Environmental variables 

The interaction between temperature and month was selected as the only or main driver of 

zooplankton trends at community level in all cases, except at U35, and also of individual taxa 

trends at L4. Temperature, without interaction or in interaction with another variable, was also 

selected by the models in the case of some taxa trends at SH, B35 and U35. These results indicate 

that temperature was the major driver of zooplankton changes at all sites, although no clear trends 

of temperature were obtained at any of the studied sites. This corroborates the predominant role 

of temperature as driver of the most relevant multiannual changes in the zooplankton of different 

regions of the Northeastern Atlantic (e.g. Alheit et al., 2005; Weijerman et al., 2005; Beaugrand 

et al., 2014). In contrast, chlorophyll a, alone or in interaction with month or another variable, 

was only selected by the models at SH and B35, the two sites where this variable showed clear 

trends in some seasons. Similarly, salinity, alone or in interaction with month or another variable, 

was only selected by the models occasionally at L4, and in several cases at B35, where a signicant 

increasing trend of of salinity was found. This suggests that both chlorophyll a and salinity play 

secondary roles , and are more important at more local scales. 
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A remarkable result is the lack of retained environmental variables in the models that revealed 

zooplankton changes at community level and in most of the models for individual taxa at U35. 

This could be due to the higher year-to-year variability of the seasonal patterns of environmental 

variables, and the lower synchrony of the annual cycles of temperature and chlorophyll a at this 

site, in which the contribution of environmental variables to explain the observed zooplankton 

variability has been found to be the lowest of the four sites under study (Chapter 1, this work), 

However, the high coincidence in the trends at community level and individual taxa between the 

sites of U35 and B35 suggests that zooplankton changes mostly respond to the same 

environmental drivers at both sites. 
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Chapter 5. Interacting effects of 

latitude, temperature, salinity, depth and 

distance offshore in modulating 

zooplankton assemblages 
 

 

 

 

Interacting effects of environmental factors in modulating zooplankton assemblages across the 

NE Atlantic Shelves Province, from the Bay of Biscay (B35 and U35) to the English Channel 

(L4) and the North Sea (SH), were assessed mainly by redundancy analysis. For coarse 

zooplankton groups latitude explained the main between-site differences, and meroplankton 

contributed more than holoplankton. Latitudinal differences were best indicated by contrasting 

abundances of doliolids (most abundant at the lowest latitude sites) and bryozoan and polychaete 

larvae (most abundant at the highest latitude site). Doliolids were best indicators of temperature-

mediated latitudinal differences. The interaction between latitude and distance offshore or salinity 

and phytoplankton biomass explained a smaller percentage of the variability. The main 

differences in copepod and cladoceran genera reflected the oceanic influence, with Corycaeus 

and Oncaea more associated to L4, likely reflecting the higher influence of off-shelf water 

intrusions, and the neritic Acartia dominating at SH, U35 and B35. Podon and Evadne, which 

decreased from south to north, reflected latitude-related differences driven more by salinity than 

by temperature. While the consistency of identification limited our taxonomic resolution, 

instances where a single species (e.g. Acartia clausi) dominated showed common relationships 

with temperature, consistent with a common thermal niche. 
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5.1. Introduction 

Knowledge of the effect of environmental drivers on marine plankton is essential to be able to 

predict the response of pelagic ecosystems to environmental change (Pepin et al., 2015). Coastal 

plankton communities exhibit higher variability (Ribera d’Alcalà et al., 2004) than oceanic ones 

because, in addition to larger-scale oceanographic and atmospheric forcing effects, they are also 

subject to smaller-scale processes affected mainly by interactions between water circulation and 

bathymetry, benthic-pelagic interactions and terrestrial inputs of freshwater, nutrients and 

pollutants through rivers and estuarine plumes (Pepin et al., 2015). 

 

Zooplankton play key roles in food webs and biogeochemical cycles (Mackas and Beaugrand, 

2010) and the study of zooplankton communities of shelf ecosystems is crucial, because these are 

high productivity areas, supporting over half of the world’s marine fisheries (Caddy et al., 1998; 

Mossop, 2007). The composition of zooplankton communities varies with latitude, when 

spanning different climatic zones (Xu et al., 2016). Inshore-offshore gradients along shelf waters 

also show corresponding zooplankton community gradients, with water depth and intrusions of 

oceanic water onto the shelf being very influential (Tremblay and Roff, 1983; Blachowiak-

Samolyk et al., 2008; Pepin et al., 2015; Dvoretsky and Dvoretsky, 2015). Furthermore, there are 

also zooplankton community differences related to the level of nutrient enrichment and pollution 

of nearshore coastal waters (Uriarte and Villate, 2004). 

 

For the study of the effect of environmental factors on shelf zooplankton communities it is, 

therefore, desirable that comparisons between sites of different characteristics are made both 

within and across regions. Zooplankton are being regularly monitored at multiple fixed sites in 

shelf waters around the world (Mackas and Beaugrand, 2010; O’Brien et al., 2013). However, up 

to the present, these time-series from fixed sites have been greatly underutilized for comparative 

purposes (e.g. Bonnet et al., 2007; Castellani et al., 2016). This may be due to difficulties in 

accessing archived zooplankton data, to differences in sampling methodologies and taxonomic 

discrimination between time-series, and to difficulties in getting so many different institutions 

and researchers involved in collaborative work with common objectives and data analysis 

methodologies. 

 

Several of these monitoring sites are located in the eco-geographical unit of the Northeast Atlantic 

Shelves Province (NECS; Longhurst, 1998), where zooplankton show a lack of coherence 

between sites in their interannual variations and seasonal cycles, suggesting a higher influence of 

local factors over large-scale environmental drivers (Chapters 1 and 2, this work). The aim of the 

present study was to assess which are the main differences in the zooplankton community 
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structure and the environmental drivers that can account for these differences at four selected 

coastal sites in the NECS province. These sites are located in the Bay of Biscay (Bilbao 35 and 

Urdaibai 35), the English Channel (L4) and the North Sea (Stonehaven), and differ in latitude, 

water depth, distance offshore and phytoplankton biomass. Emphasis was placed in establishing 

the relative importance of large-scale (climate) versus smaller scale (local) environmental drivers. 

For this purpose, we used a multivariate ordination approach, which helps to summarize the 

variance of a wide range of zooplankton and environmental data. In order to better understand the 

effect of latitude, we also compared the relationships between the variations of zooplankton 

abundance and temperature at the different sites. 

 

5.2. Methods 

5.2.1. Data preparation 

Zooplankton data were grouped, as for chapter 2, in two categories: (i) the Zooplankton Group 

level (ZG), including six holoplankton (copepods, cladocerans, appendicularians, chaetognaths, 

siphonophores and doliolids) and nine meroplankton categories (cirripede larvae, decapod larvae, 

gastropod larvae, bivalve larvae, polychaete larvae, fish eggs and larvae, bryozoan larvae, 

echinoderm larvae and hydromedusae) and (ii) the Copepod and Cladoceran Genera level 

(CCGen), consisting of cladocerans (Evadne and Podon) and copepods (Acartia, Centropages, 

Temora, Oithona, Oncaea, Corycaeus, the PCPC-calanus assemblage and the Calanidae family). 

Zooplankton was expressed in units of density (individuals m-3) and prior to Redundancy 

Analyses (RDA), the zooplankton density data were transformed using log (x + 1) (ter Braak and 

Šmilauer, 2002). 

 

5.2.2. Statistical analyses 

In order to assess the taxa that contributed most to between-site differences in mesozooplankton 

community and the environmental variables that best explained these taxa variations, multivariate 

ordination analyses were performed using Canoco v. 4.55 (ter Braak and Šmilauer, 2002). First, 

Detrended Correspondence Analyses were performed to assess whether Canonical 

Correspondence Analysis (CCA) or Redundancy Analysis (RDA), recommended for unimodal 

and linear relationships between taxa and environmental variables, respectively (ter Braak and 

Šmilauer, 2002), should be used. Since the length of the longest gradient was in all cases < 2, 

RDAs were selected. To perform the RDAs relevant water environment variables routinely 

monitored at all sites, i.e. water temperature (WT), chlorophyll a (Chl a) and salinity (S), together 

with the NAO, EA and AMO climate indices, the GSNW index, and site-specific features such 

as latitude, water depth and distance offshore were used as explanatory variables. Separate 

redundancy analyses were conducted for the two taxonomic levels tested (ZG and CCGen), but 
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in both cases data pooled for the four sites were run. Since ordination along Axis 1 reflected 

mainly seasonal variations in mesozooplankton taxa for CCGen (spring – summer as opposed to 

winter), in order to better assess differences attributable to site-specific characteristics, partial 

RDAs were performed with month as covariable (thereby removing the effect of months) and 

sites as supplementary variables for both taxonomic levels tested. Monte Carlo tests were 

performed (499 permutations) under reduced model, with unrestricted permutations and blocks 

defined by the covariables (ter Braak and Šmilauer, 2002). 

 

Latitude may be considered itself a surrogate for some other underlying mechanisms that are 

typically not well understood (Iken et al., 2010). Although temperature (both annual mean and 

range of variation) is linked to latitude, the combined effect of latitude and temperature on species 

distribution and community changes is still unclear. For a more accurate analysis of the 

quantitative response of taxa to temperature in the latitudinal context models of the relationship 

between temperature and taxon abundance (log abundance +1) were obtained. For this purpose, 

polynomial orthogonal regression analyses (to control for multicollinearity) were performed on 

all taxa taking temperature up to grade 3 as the independent variable. Subsequent tests on 

significance and constraints of equality of effects among different sites were performed in order 

to get the most representative and parsimonious model. Models for each site, as well as common 

models for the four sites were tested for each taxon. 

 

5.3. Results 

5.3.1. Zooplankton community composition 

Figure 1 shows the percentage contribution of different taxa to total ZG and CCGen abundances. 

At every site copepods made up more than half of the total mesozooplankton abundance (52.3 – 

70.4%) and cirripede larvae where the second most abundant ZG (10 – 27.5%) at B35, U35 and 

L4, although at B35 copepods and cirripede larvae accounted for a markedly lower and higher 

percentage, respectively, than at U35 and L4. It is noteworthy that SH was characterized by a 

substantially lower contribution of cirripede larvae, and a higher contribution of polychaete and 

bryozoan larvae than the other sites. Within CCGen, Acartia contributed most to total abundance 

(26.9 – 38.8%), followed by PCPC-calanus (13.3 – 16.2%) at B35, U35 and SH. At L4, however, 

the contribution of Acartia was much lower (4.4%) and PCPC-calanus was the most abundant 

(22.3%) CCGen, followed by Oithona (11.4%) and Oncaea (10.4%) genera. SH showed the 

lowest cladoceran contribution and was the only site in which Podon was more abundant than 

Evadne. 
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Figure 1. Relative abundance (% of total zooplankton) of ZG (upper panel) and CCGen (lower 

panel) taxa at the four sampling sites under study. 

 

Information on the species composition and the relative contribution to the total abundance of 

each CCGen at each of the sites under study is available as supplementary material in tables 1S, 

2S and 3S. 

 

5.3.2. Differences in zooplankton community and environmental drivers 

Results of the RDA for ZG revealed that the environmental variables tested explained 18% of 

taxa variations, and the main mode of variation (axis 1) explained 57.1% of this taxa-environment 

relationship. Overall, latitude, depth, distance offshore and water temperature were the factors 

that best explained ZG variability (Table 1). Ordination along axis 1 (Figure 2A) evidenced 

differences between sites, where doliolids and cirripede larvae were the taxa with the highest 

relationship with B35 and U35, and bryozoans, polychaete and echinoderm larvae were more 

related to SH and L4. Variations of ZG taxa scores on axis 1 appeared to be related primarily to 

latitude, and to a lesser extent to distance offshore, bottom depth and water temperature (Table 

2). The second main mode of variation (axis 2) accounted for 31.5% of the taxa-environment 

relationship that could be explained by the environmental variables tested. The taxa that 

contributed most to this second mode of variation were fish eggs and larvae, siphonophores and 

hydromedusae, that showed highest abundances at L4 and lowest ones at U35 and SH, in contrast 

to gastropod larvae, that appeared to be more linked to SH and U35 (Figure 2A). Depth was the 

factor that best correlated with taxa scores on axis 2, followed by distance offshore, salinity and 

chlorophyll a (Table 2). 
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Table 1. Marginal effects of environmental variables for Zooplankton groups (ZG) and Copepod 

and Cladoceran genera (CCGen). Variables with significant effects in bold. 

ZG  CCGen 

Variable Lambda1 F p  Variable Lambda1 F p 

Latitude 0.10 111.69 0.002  Distance 0.13 138.40 0.002 
Depth 0.10 66.68 0.002  Latitude 0.11 124.85 0.002 
Distance 0.09 16.90 0.002  Depth 0.07 15.02 0.002 
WT 0.09 13.32 0.002  WT 0.07 13.35 0.002 
Sal 0.01 3.09 0.004  Sal 0.02 2.44 0.038 
Chl a 0.01 2.94 0.004  EA 0.00 

.0 

1.39 0.220 
AMO 0.00 1.74 0.062  Chl a 0.00 1.34 0.266 
EA 0.00 1.39 0.166  AMO 0.00 1.19 0.308 
GSNW 0.00 1.12 0.350  GSNW 0.00 0.99 0.406 
NAO 0.00 0.45 0.932  NAO 0.00 0.71 0.656 
         Distance: distance offshore, WT: water temperature, Sal: salinity, Chl a: concentration of chlorophyll a, 

AMO: Atlantic Multidecadal Oscillation index, EA: East Atlantic index, GSNW: Gulf Stream North Wall 

index, NAO: North Atlantic Oscillation index. 

 

 

Figure 2. RDA triplot for ZG (A) and CCGen (B). Taxa are shown by thin arrows, explanatory 

variables by thick arrows and sites by triangles. Acar: Acartia, Appe: appendicularians, Biva: 

bivalve larvae, Bryo: bryozoans, Cala: Calanidae, Cent: Centropages, Chae: chaetognaths, Cirr: 

cirripede larvae, Clad: cladocerans, Cope: copepods, Cory: Corycaeus, Deca: decapod larvae, 

Doli: doliolids, Echi: echinoderm larvae, Evad: Evadne, Fish: fish eggs and larvae, Gast: 

gastropod larvae, Hydr: hydromedusae, Oith: Oithona, Onca: Oncaea, PCPC: PCPC-calanus, 

Podo: Podon, Poly: polychaete larvae, Siph: siphonophores, Temo: Temora. 
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Table 2. Correlations between environmental factors and scores on axis 1 and axis 2 for 

Zooplankton groups (ZG) and Copepod and Cladoceran genera (CCGen). Significant correlation 

coefficients in bold. Abbreviations as in Table 1. 

 ZG  CCGen 

 Axis 1 Axis 2  Axis 1 Axis 2 

Latitude -0.840 (<0.001) -0.142 (<0.001)    0.332 (<0.001)  0.636 (<0.001) 

Distance -0.736 (<0.001)  0.329 (<0.001)    0.678 (<0.001)  0.382 (<0.001) 

Depth -0.669 (<0.001)  0.422 (<0.001)    0.633 (<0.001)  0.373 (<0.001) 

NAO  0.029 (0.436) -0.037 (0.328)  -0.014 (0.709)  0.026 (0.490) 

EA -0.007 (0.852) -0.072 (0.054)  -0.003 (0.941) -0.026 (0.484) 

AMO -0.028 (0.448)  0.052 (0.164)   0.048 (0.194) -0.045 (0.231) 

GSNW  0.028 (0.446)  0.009 (0.800)   0.025 (0.508)  0.000 (0.997) 

Salinity  0.231 (<0.001)  0.241 (<0.001)   0.134 (<0.001) -0.320 (<0.001) 

WT  0.581 (<0.001)  0.084 (0.024)  -0.175 (<0.001) -0.551 (<0.001) 

Chl a -0.048 (0.196)  0.226 (<0.001)   0.136 (<0.001) -0.013 (0.732) 

       

For CCGen the environmental variables tested explained 25% of taxa variations, and the main 

mode of variation (axis 1) explained 65.9% of this taxa-environment relationship (Figure 3B). 

Distance offshore and latitude, followed by depth and water temperature were the environmental 

factors that explained a largest proportion of CCGen variability (Table 1). Site scores on axis 1 

showed mainly differences between the CCGen at L4 and the rest of sites tested. The taxa that 

contributed most to these differences were Corycaeus and Oncaea, which were most related to 

L4, in contrast to Acartia, most abundant at the rest of sites. Distance offshore, together with 

bottom depth appeared as the main environmental factors related to these differences in CCGen 

between sites (Figure 3B; Table 2).  

 

Axis 2 accounted for 25.6% of the taxa-environment relationship tested for CCGen. According 

to correlation analyses, latitude and temperature were the factors that best correlated with this 

second axis, although distance offshore, bottom depth and salinity were also significant (Table 

2). Taxa with the highest contributions to axis 2 were Calanidae, Temora and Oithona, which 

were those that best correlated to distance offshore and depth, in opposition to Oncaea, 

Corycaeus, Podon and Evadne, which were the taxa that best correlated to salinity (Figure 3B).  

 

5.3.3. Relationships between taxa abundance and water temperature 

The models fitted for the relationship between the abundance of ZG and water temperature are 

shown in Figure 3. Among the taxa that showed a relationship with latitude in the RDA, doliolids 

evidenced a pattern of linear increase in abundance with increasing water temperature at the four 

sites under study and they showed the same or very similar quantitative (abundance) response to 

temperature at all sites. Thus, a global model could be fitted to log (abundance +1) data pooled 

for all sites. Cirripede larvae did not show the same relationship with water temperature along the 
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entire range of temperatures, instead, a second-degree polynomial curve could be fitted for all 

sites, which showed minima at intermediate temperatures around 15 °C. Bryozoan larvae showed 

no significant differences in abundance over a large range of water temperatures, but they also 

showed increases in abundance at temperatures below 10 ºC at SH and L4. Although global 

models for cirripede and bryozoan larvae abundances could be fitted for data pooled for the four 

sites, such models could not account for the between-site differences in abundance for a given 

water temperature. In the case of polychaete larvae, no significant response to temperature at any 

of the sites under study was found, and in the case of echinoderm larvae, no common model for 

the four sites under study was obtained. Second and third-degree polynomials could be fitted for 

the abundance of echinoderm larvae at SH and L4 respectively, but no significant responses to 

water temperature could be observed at B35 and U35. 

 

At the coinciding range of water temperatures, a larger number of ZG were more abundant at SH 

(bryozoan, polychaete, echinoderm, gastropod and bivalve larvae) and L4 (siphonophores, 

hydromedusae, copepods and fish eggs and larvae) than at the rest of sites. Only cirripede larvae 

showed a pattern of decreasing abundance with increasing latitude (most abundant at B35 or U35 

than at L4 and SH) at the range of water temperatures at which they were present at all sites, but 

their abundance was much higher at B35 than at U35. Appendicularians and cladocerans did not 

show differences in abundance between sites within the same range of temperatures, but 

appendicularian abundance was found to be independent of water temperature at all sites, while 

cladocerans showed a common pattern of variation with water temperature at all sites, with the 

optimum temperature lying between 17 and 20 °C. 
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Figure 3. Models of water temperature vs. log (taxon abundance + 1) for ZG. Water temperature 

(Temp) in ºC and abundance in individuals m-3. 
 

The models of the relationship between CCGen abundance and water temperature (Figure 4) 

showed that Corycaeus had the clearest warm water affinity and the log (abundance + 1) versus 

water temperature relationship could be fitted to linear models of common slope for the four sites 

under study. Oncaea also showed a clear increase of abundance with increasing temperature at 

the southernmost sites but it showed no relation to temperature at L4 and SH. However, both 

genera were much more abundant at L4 than at the other sites at any temperature. In fact, L4 was 
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the site where the largest number of CCGen were most abundant at a given temperature, i.e. 

PCPC-calanus and Oithona. The abundance of Oithona was not related to water temperature at 

any site and for PCPC-calanus different non-linear models were fitted at different latitudinal 

locations, showing two optima, one at about 7 °C and another one at >20 °C.  

 

For the rest of studied CCGen taxa, the abundance versus water temperature relationships were 

similar at the four sites under study. Among them, Temora showed the most thermophilic 

behaviour, followed by Centropages, Podon and Evadne. Calanidae and Acartia had the lowest 

temperature optimum. For common ranges of temperature, Centropages was the only CCGen that 

showed a pattern of increase in abundance with latitude. Temora and Calanidae were much more 

abundant at SH and L4 than at B35 and U35. Podon was less abundant at U35 than at the other 

sites and Acartia was the only CCGen that showed lowest abundances at L4 as compared to the 

rest of sites for any given temperature. 
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Figure 4. Models of water temperature vs. log (taxon abundance + 1) for CCGen. Water 

temperature (Temp) in ºC and abundance in individuals m-3. 
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5.4. Discussion 

5.4.1. Zooplankton differences at coarse group level (ZG) 

The main between-site differences in ZG assemblages showed a gradient from the southernmost 

stations to the northernmost one, represented by a closer association of groups such as doliolids 

and cirripede larvae to B35 and U35 and bryozoan and polychaete larvae to SH. Mesoscale patchy 

spatial variations in doliolid abundance in shelf waters are often related to intrusions of nutrient-

rich water and associated phytoplankton biomass increases (Deibel and Paffenhoffer, 2009; Liao 

et al., 2013; Villate et al., 2014). However, in our study area, spanning a significant latitudinal 

and temperature range, between-site differences in the abundance of coastal doliolids appeared to 

be more related to temperature than to chlorophyll a concentration, since at the same temperature 

similarly high abundances were observed at both the mesotrophic and oligotrophic sites of the 

southern Bay of Biscay, and minimum values in the northern North Sea site. This agrees well 

with the finding by Deibel and Lowen (2012) that doliolids operate at a generation time fixed 

primarily by temperature and secondarily by food concentration. It is interesting to note, also, that 

the relationship between doliolid abundance and temperature is very similar at all sites, 

reinforcing the view that latitudinal differences in density are linked primarily to differences in 

temperature. 

 

The relationship with latitude did not seem to be temperature-mediated in the same way for the 

meroplankton taxa that contributed most to the main mode (axis 1) of zooplankton variability, 

because the water temperature versus abundance models for cirripede, bryozoan and polychaete 

larvae showed large between-site differences at a given temperature. The higher abundance of 

cirripede larvae at B35 and U35 may be related primarily to the fact that these sites are shallower 

and closer to shore than L4 and SH. Continental shelf benthos generally decreases in abundance 

with increasing depth (Rex et al., 2006; Nephin et al., 2014). In the case of barnacles, many of 

them form thick belts in intertidal rocky shores. Intertidal barnacle larvae tend to be more 

abundant in nearshore waters and they can become very rare or absent in areas >5 km offshore 

(Shanks and Shearman, 2009). However, our data showed that the highest differences in cirripede 

larvae abundance were between B35 and U35, this suggesting the influence of a factor linked to 

trophic condition, since chlorophyll a concentration was much lower at U35 than at B35. 

 

Bryozoan and polychaete larvae were the ZG that showed the highest association with high 

latitude/low temperature sites, the densities of both taxa being highest at SH and lowest at U35 

and B35 for most of the year. Furthermore, bryozoan larvae were most abundant in winter – early 

spring at L4 and SH and later in spring at B35 and U35 (Chapter 2, this work). Accordingly, 

bryozoan larvae were also found to peak in early spring in Galway Bay (Irish coast; Byrne, 1995) 
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and in winter in a fjord in high-Arctic Svalbard (Stübner et al., 2016). As for cirripedes, the large 

between-site differences in bryozoan and polychaete larvae densities at a given temperature 

suggest an additional site effect unrelated to temperature. Regarding bryozoans, low temperature 

seems to negatively affect the growth rate of bryozoans, with higher latitude bryozoans tending 

to grow relatively more slowly (Smith and Lawton, 2010). Trophic condition does not seem to be 

relevant to account for between site differences in bryozoan larvae abundance either. Most 

bryozoan larvae are suggested to have little or no dependence on phytoplankton as food (Stübner 

et al., 2016), and this would agree with bryozoan larvae maxima not coinciding with the main 

phytoplankton spring or summer maxima at any of the sites under study. In any case, the latitude-

related differences in bryozoan larvae observed in this study seem to be supported by the 

increasing contribution of bryozoan to benthic communities towards the Arctic region, where they 

are often the dominant component in hard substrate and phytal habitats (Bader and Schäfer, 2005) 

As for bryozoan larvae, polychaete larvae also showed decreasing densities from north to south. 

Accordingly, an increased abundance of benthic polychaetes from the southern to the northern 

North Sea was also reported by Quiroz-Martinez et al., (2011), although regional patterns of 

benthic polychaete distribution in continental shelves seem to be mainly related to bottom water 

stability, local distribution of sediment types and depth (Flint and Rabalais, 1980; Quiroz-

Martinez et al., 2011). The lack of a significant relationship between polychaete larvae abundance 

and temperature at any site means that no local thermal optima could be determined for them. 

However, highest levels of polychaete larvae occur at L4 once temperature reaches 13 – 14 °C 

(Highfield et al., 2010) and their annual maxima varies from winter at B35 and U35 to summer 

at SH (Chapter 2, this work). Taking data pooled for the four sites, the highest abundances were 

found at an intermediate range of temperatures (11 – 13 °C). 

 

Cladocerans were one of the taxa for which a common model of abundance with temperature for 

the four sites under study could be fitted. This model explained the between-site differences in 

abundance quite well. Cladocerans were also the ZG with the highest correlation with Chl a and 

salinity. They are filter-feeders feeding mainly on phytoplankton (Brown et al., 1997) and 

chlorophyll a concentration was suggested to be the most important factor determining the spatial 

distribution of cladocerans in shelf waters of the South China Sea (Xiong et al., 2012). 

Chlorophyll a- driven differences in cladoceran abundance can help to explain the lower density 

of cladocerans at the oligotrophic U35 site in relation to the mesotrophic B35. The positive 

relationship with salinity in the present study was due to SH showing somewhat lower salinity 

values and lowest cladoceran abundances. This relation has also been observed at local scales, 

since in estuaries of the Basque coast penetration of cladocerans in low salinity waters is also 

limited (Villate et al., 2017).  
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In addition to latitudinal differences, echinoderm larvae showed high correlation with depth and 

distance offshore, and this is because they were much more abundant at the deeper/more offshore 

sites (L4 and SH) than at the shallower sites close to the coast (U35 and B35). Lebour (1947) 

found that ophiopluteii of Ophiothrix fragilis were the commonest echinoderm larvae in the 

inshore waters of Plymouth in the 1940s. In agreement with this, in the L4 time series analysed 

in the present work, within the echinoderm larvae that have been identified to a coarse taxonomic 

level, ophiopluteii are the most abundant ones (Chapter 1, this work). These high echinoderm 

larval abundances are, in turn, in accordance with the occurrence of high-density aggregations in 

the seabed around the British Isles (particularly on the western side) of the ophiuroid species 

Ophiothrix fragilis and Ophiocomina nigra in areas of moderate to strong current (Aronson, 

1989). No information on the type of echinoderm larvae is available for SH and the benthic 

community at Stonehaven has been little studied. Although ophiopluteii were more abundant than 

echinopluteii at B35 and U35, in the Abra bay where B35 is located, the sea urchin Paracentrotus 

lividus was suggested to be the most abundant echinoderm in the 1980s, with maximum densities 

up to 20 individuals m-2 (Arteche-Irueta, 1987). Regarding ophiuroids, on the Basque coast 

Ophiotrix fragilis and Amphipholis squamata have been observed in intertidal areas and 

Ophioderma longicauda and Ophiocomina nigra in deeper areas (Ibañez Artica, 2018), but no 

such dense aggregates as in waters around the British Isles have been reported. The comparison 

of studies carried out at different sites of the Basque coast also corroborates the offshore-inshore 

decrease in the contribution of echinoderm larvae to the total zooplankton (Villate et al., 2004). 

 

Overall, despite their lower contribution to total zooplankton abundance, meroplankton 

contributed more than holoplankton to between-site differences in zooplankton structure. This 

seems to be due to the widespread expatriation of planktonic species, in contrast to the smaller 

spatial scale resolution of benthic habitat/communities, which are spatially constrained not only 

by water column features, but also by seafloor features, thus showing higher spatial heterogeneity 

than planktonic ones (Costello, 2009; Guarinello et al., 2010).  

 

5.4.2. Zooplankton differences at copepod and cladoceran genera level (CCGen) 

The main between-site differences in the CCGen assemblage explainable by the environmental 

factors under study were those between L4 and the rest of sites, and were mainly related to 

differences in water depth, distance offshore and salinity. The higher abundance of Corycaeus 

and Oncaea, and to a lesser extent also of Calanidae at L4, and the dominance of Acartia at B35, 

U35 and SH were the main features responsible for such differences. A likely explanation for the 

substantially higher abundance of Corycaeus and Oncaea at L4, even when compared to SH 

which is also a deeper and more offshore site than B35 and U35, is that L4 is affected by intrusions 

of saltier off-shelf water from the Atlantic that bring those taxa. In fact, Corycaeus anglicus 
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(Ditrichiocorycaeus anglicus) which is the dominant Corycaeus species at L4, is found to be a 

good indicator of Atlantic oceanic water inflow to the North Sea through the English Channel 

(Bonnet and Frid, 2004), and Oncaea has also been found to be representative of cross-shelf 

intrusions on the continental shelf of Northeastern Florida (Paffenhoffer et al., 1984). In contrast, 

Acartia clausi (the dominant Acartia at the four sites under study) is a neritic species (Wootton 

and Castellani, 2017). Therefore, CCGen ordination along axis 1 seemed to represent differences 

between sites associated to the neritic/oceanic nature of zooplankton taxa. Other studies have also 

highlighted the influence of inputs of oceanic water on the zooplankton species composition of 

shelf waters (Pedersen et al., 2000; Beare et al., 2002). 

 

Differences explained by the higher contribution of Calanidae, Oithona and Temora to the 

zooplankton at SH and L4, as opposed to the higher contribution of Podon and Evadne at L4, U35 

and B35 were related to water depth and salinity, respectively. Calanus helgolandicus, Oithona 

similis and Temora longicornis, the main Calanidae, Oithona and Temora species, respectively, 

at L4 and SH, are from intermediate or deep layers over the shelf (Vives, 1980; Villate, 1994) 

(although Halvorsen et al. (1999) reported T. longicornis as a surface species in shelf waters in 

northern Norway). Evadne nordmanii and Podon intermedius, the main Evadne and Podon 

species, respectively, at L4, B35 and U35 are mostly found at shallower depths than the former 

copepod species (Vives, 1980; Villate, 1994), but in this case, the between-site differences were 

mostly associated with salinity, as was the case for total cladocerans in the analysis of the ZG. 

Lowest Podon and Evadne abundances at SH were mainly due to the lower abundance of the 

species Podon intermedius and Evadne nordmanni, which was not balanced by the abundance of 

Podon leuckartii, the dominant Podon species at the highest latitude SH site. The distribution of 

this latter species, however, seems to be determined also by temperature, since P. leuckartii has 

a higher affinity for cold waters than P. intermedius (Onbé, 1999; Viñas et al. 2007) and has not 

been identified in the zooplankton of the western English Channel or Bay of Biscay sites under 

study. Furthermore, at SH, unlike at the rest of the sites in the present work, the cladoceran species 

Pleopis polyphemoides is present, which is a more euryhaline species than P. intermedius (Viñas 

et al. 2007). 

 

For some CCGen, the models of the relationship between taxon abundance and temperature 

showed a common pattern for the four sites under study, which accounted for the between-site 

differences in the seasonal pattern of those taxa. This was the case for Acartia (almost exclusively 

A. clausi at all four sites), which showed highest abundances at intermediate temperatures within 

the whole range of temperatures registered at the four sites, but whose maxima coincided with the 

highest summer temperatures at the northernmost SH site, and were closer to the lowest 

temperatures in early spring at the southernmost B35 and U35 site. This common temperature 
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optimum across a large latitudinal gradient is important, because it suggests the lack of 

temperature adjustment. Constancy of thermal niche is an important, but rarely-tested assumption 

in many species distribution models that are predicated on a fixed thermal niche (Beaugrand et 

al., 2014). Instead, the phenology of Acartia clausi was found to be particularly temperature-

sensitive at L4 (Atkinson et al., 2015). Therefore, adjustments in seasonal timing, to occur at more 

suitable seasonal temperatures, may be a mechanism by which this particular species maintains a 

fixed thermal niche.  

 

For some CCGen the models also showed a very similar shape of the temperature versus 

abundance curve at all four sites, but between-site differences in abundance for a given 

temperature. This may be attributed to between-site compositional differences at the species level. 

For example, the abundance of Temora was much higher at L4 and SH than at U35 and B35, and 

the abundance of Centropages was highest in the North Sea site, intermediate at the English 

Channel site and lowest at the Bay of Biscay sites. The dominant Temora at L4 and SH is Temora 

longicornis and the dominant Centropages at SH is Centropages hamatus, which are neritic 

boreal, cold-temperate species (Colebrook, 1964; Halsband-Lenk et al., 2002), whereas at U35 

and B35 the dominant species is T. stylifera and at L4, U35 and B35 it is C. typicus, which are 

southern, warm-temperate or intermediate latitude species, respectively (Colebrook, 1964; 

Halsband-Lenk et al., 2002). The higher abundance for a given temperature of T. longicornis and 

C. hamatus in boreal regions than of T. stylifera and C. typicus, respectively, in warm temperate 

regions, that has been observed in the present work, has also been reported elsewhere (Halsband-

Lenk et al., 2004). In the case of PCPC-calanus, very similar temperature versus abundance 

models could be fitted to data from U35 and B35 but no common model could be fitted for the 

four sites. PCPC-calanus abundance peaked both at low (i.e. around 7 °C at L4 and SH) and high 

temperatures (i.e. around 19 – 21 °C at L4, B35 and U35), and decreased at intermediate 

temperatures (i.e. 10 – 15 °C). However, peaks at low temperature correspond mainly to the cold-

water species Pseudocalanus elongatus that is the most abundant species within this group of 

genera at the highest latitude SH site, and peaks at high temperature corresponded to Paracalanus 

parvus, a neritic warm-water species that was the most abundant species at the lowest latitude 

B35 and U35 sites. The model at L4 reflected the similar relative abundance of P. parvus and P. 

elongatus at this intermediate latitude site. 

 

All this suggests that a predominant latitudinal mode of zooplankton variation, more in agreement 

with that observed for zooplankton groups (ZG), might have been obtained from the comparison 

of copepod and cladoceran assemblages, if species instead of genera could have been used. 

However, this was not possible in the present study because individuals of some genera were not 

distinguished to species level at all the four sites and/or throughout the entire time-series. 
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In addition, it has to be born in mind that temporal variations in zooplankton abundance can also 

be influenced by other factors, such as mortality through predation (Irigoien and Harris, 2003; 

Hirst et al., 2007; Cornwell, 2018), but unfortunately this is a variable that it is not routinely 

measured in zooplankton monitoring programmes. 

 

5.5. Conclusions 

At the level of coarse zooplankton groups (ZG), meroplankton contributed more than 

holoplankton to the between-site differences in zooplankton structure, which may be related to 

the higher degree of expatriation of plankton. At this taxonomic level, the main differences 

showed an association with the latitudinal gradient, but only some holoplanktonic ZG abundances 

evidenced temperature-mediated latitudinal differences, the warm water affinity doliolids being 

the best indicators of latitudinal differences based on temperature. Cladocerans were also a group 

for which the abundance vs. temperature model explained the between-site differences relatively 

well, although these were also affected by trophic condition, and their abundances did not show 

a clear-cut latitudinal gradient throughout the year. Bryozoan, polychaete, cirripede and 

echinoderm larvae abundances showed marked latitudinal differences, but these differences did 

not seem to be primarily linked to differences in temperature with latitude. Cirripede and 

echinoderm larvae, for example, were more affected by local features such as water depth, 

distance offshore and, in the case of cirripedes, also of phytoplankton availability. 

 

At the level of copepod and cladoceran genera (CCGen), local factors appeared to have a greater 

influence on between-site differences, where Corycaeus and Oncaea seemed to be the best 

indicators of off-shelf water intrusions from the Atlantic at L4. The family Calanidae and the 

genera Temora and Oithona were useful indicators of bathymetry differences and the cladoceran 

genera Podon and Evadne of salinity differences. When the genera were dominated by a single 

species (e.g. Acartia clausi), a fixed thermal niche was found, the species adjusting its seasonal 

timing at different latitudes, so as to occur at more suitable temperatures.  
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General conclusions 

• The magnitude of zooplankton interannual, seasonal and residual components of 

variability did not show clear patterns of variation in relation to latitude.  

• Interannual patterns of individual zooplankton taxa variations were not coherent across 

sites, suggesting the dominance of local forces over larger scale climatic drivers. 

• Seasonal patterns of individual zooplankton taxa showed north-south trends, being the 

most recurrent the northward delay of early occurring taxa (spring – summer), together 

with the earlier occurrence of the late peak in taxa showing bimodal cycles. Taxa with 

coincident seasonal patterns at all sites and taxa peaking earlier with increasing latitude 

over the first half of the year or taxa peaking later with increasing latitude over the 

second half were other observed types of trends. 

• The main mode of seasonal zooplankton community variability was due mainly to 

zooplankton taxa that peaked at the timing of the annual maximum of zooplankton at 

each site, and it was the mode that showed the largest between-site differences, that 

consisted in seasonal delays both with latitude and trophic status. These between-site 

differences were related primarily to the seasonal pattern of phytoplankton biomass. 

• Meroplankton made a large contribution to shape the main seasonal mode of variability, 

cirripede larvae at B35 and U35, echinoderm larvae at L4 and decapod larvae at SH. 

• Regularity of the seasonal cycle of zooplankton and the percentage of variance 

explained by chlorophyll a, temperature and salinity increased with latitude and trophic 

status. This may be related to the increased regularity and higher covariation of water 

temperature and chlorophyll a with the increase in latitude and trophic status.  

• Very few zooplankton taxa showed significant linear trends of interannual variation, 

but, in general, opposite tendencies in phenology changes were detected between the 

southernmost sites (later occurrences with time) and the northernmost site (earlier 

occurrences with time). 

• Clusters of taxa with similar interannual phenology patterns were found at every site, 

and they were generally composed of taxa that peaked in the same season. The 

phenological variations of these clusters showed a significant correlation with climatic 

indices (mainly EA and AMO at B35 and U35; EA and NAO at SH) or water 

temperature (L4). In many cases phenological variations appeared to be correlated also 

with phytoplankton biomass. 
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• Gradual changes of zooplankton communities throughout the study period were found 

for the assemblage occurring during the main growing period at the L4 site and for the 

assemblage occurring late in the year at the other three sites, restricted to the 1999 – 

2005 period at SH and probably related to a shift initiated previously. The interaction 

between temperature and month was always selected as the main driver of those 

changes, with the U35 exception, likely related to a lower coherence of environmental 

seasonal patterns. 

• None individual taxa showed the same pattern of change at the four sites, and the 

increasing or decreasing trends presented by some selected taxa were mainly related to 

the interaction of water temperature and month and Chl a at SH, the interaction of water 

temperature and month at L4. Salinity and Chl a, alone or in interaction, were mainly 

selected as explicative variables at U35 and B35. 

• Meroplankton contributed more than holoplankton to the between-site differences in 

zooplankton community structure, which may be related to the higher degree of 

expatriation of holoplankton. 

• At the coarse zooplankton level, between-site differences were mainly explained by 

latitude, but only some holoplanktonic group abundances evidenced temperature 

mediated latitudinal differences, doliolids being the best related to temperature. 

Meroplanktonic larvae, mainly those from cirripedes and echinoderms, were more 

affected by local features such as water depth, distance offshore and, in the case of 

cirripedes, also of phytoplankton availability. 

• For copepod and cladoceran genera, local factors appeared to have a greater influence 

on between-site differences than large scale factors such as latitude. Corycaeus and 

Oncaea seemed to be the best indicators of off-shelf water intrusions from the Atlantic 

at L4. The family Calanidae and the genera Temora and Oithona were useful indicators 

of bathymetry differences, and the cladoceran genera Podon and Evadne of salinity 

differences. 

• Acartia clausi, which was the species that dominated its genus at all four sites, showed 

opposite phenology tendencies at the southernmost and northernmost sites. Moreover, 

the relationship between the abundance of this species and temperature was consistent 

with a fixed thermal niche (adjustment of its seasonal timing at different latitudes, so as 

to occur at similar temperatures at all sites). A. clausi, also presented inverse multi-

annual trends of abundance from SH (decrease) to U35 and B35 (increase) sites. 
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Annexes 

Table A.1. Mean density ± standard error (individuals m-3) and composition of the holoplankton 

groups considered in this study at B35, U35, L4 and SH. The value in parentheses is the 

contribution in percentage of each identified category to the total. 

Taxa B35 U35 L4 SH 

Siphonophores 46.99 ± 6.74 

Muggiaea (71.0) 

Siphonophores (23.8) 

Muggiaea atlantica (3.4) 

Muggiaea kochii (1.4) 

Sphaeronectidae (0.4) 

13.72 ± 3.26 

Muggiaea (74.4) 

Siphonophores (20.9) 

Muggiaea kochii (2.8) 

Muggiaea atlantica (1.8) 

79.39 ± 10.89 

Muggiaea (47.2) 

Siphonophores (41.8) 

Muggiaea atlantica (10.3) 

Other species (0.6) 

8.87 ± 2.29 

Diphyidae (51.8) 

Muggiaea atlantica (47.9) 

Other species (0.3) 

Chaetognaths 21.69 ± 4.63 

Sagittidae (90.4) 

Parasagitta friderici (9.6) 

6.95 ± 1.63 

Sagittidae (94.8) 

Parasagitta friderici (5.2) 

40.38 ± 3.52 

Chaetognathes (86.6) 

Parasagitta setosa (11.9) 

Parasagitta elegans (1.5) 

20.54 ± 2.36 

Sagittidae (81.6) 

Parasagitta elegans (17.7) 

Other chaetognaths (0.7) 

Cladocerans 264.66 ± 39.61 

Evadne (58.0) 

Podon (35.3) 

Penilia avirostris (6.7) 

82.72 ± 17.52 

Evadne (61.2) 

Podon (25.7) 

Penilia avirostris (13.1) 

171.46 ± 28.33 

Evadne (74.6) 

Podon (25.4) 

Penilia avirostris (>0.01) 

37.19 ± 9.48 

Podon (54.1) 

Evadne (45.9) 

Copepods 2019.19 ± 174.23 

Acartia (51.4) 

PCPC-calanus (25.8) 

Oithona (10.2) 

Other copepods (4.0) 

Temora (2.7) 

Centropages (2.5) 

Oncaea (2.3) 

Calanidae (1.0) 

Corycaeidae (0.2) 

2205.03 ± 395.01 

Acartia (55.2) 

PCPC-calanus (23.1) 

Oithona (9.0) 

Other copepods (5.3) 

Oncaea (3.4) 

Centropages (1.7) 

Temora (1.8) 

Corycaeidae (0.3) 

Calanidae (0.2) 

2336.27 ± 110.17 

PCPC-calanus (33.1) 

Oithona (17.6) 

Oncaea (15.4) 

Temora (9.3) 

Other copepods (9.2) 

Acartia (6.5) 

Calanidae (3.8) 

Corycaeidae (3.7) 

Centropages (1.2) 

1356.88 ± 124.08 

Acartia (41.0) 

PCPC-calanus (19.9) 

Oithona (19.1) 

Temora (10.9) 

Calanidae (5.1) 

Centropages (2.8 

Other copepods (1.1) 

Oncaea (0.1) 

Corycaeidae (0.1) 

Appendicularians 197.43 ± 24.61 

Oikopleura (67.4) 

Oikopleura dioica (17.4) 

Fritillaria pellucida (4.4) 

Fritillaria (3.6) 

Fritillaria borealis (2.8) 

Oikopleura fusiformis (2.4) 

Oikopleura longicauda (1.9) 

Fritillaria haplostoma (0.02) 

80.69 ± 13.21 

Oikopleura (77.5) 

Oikopleura dioica (12.7) 

Oikopleura fusiformis (3.9) 

Fritillaria (2.6) 

Fritillaria pellucida (2.0) 

Fritillaria borealis (0.8) 

Oikopleura longicauda (0.5) 

114.34 ± 12.49 

Appendicularia 

134.75 ± 18.62 

Appendicularia 

Doliolids 29.74 ± 6.65 

Doliolum nationalis (67.0) 

Doliolum (33.0) 

13.80 ± 5.02 

Doliolum nationalis (61.0) 

Doliolum (39.0) 

4.07 ± 1.67 

Doliolidae 

0.05 ± 0.03 

Doliolidae 
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Table A.2. Mean density ± standard error (individuals m-3) and composition of the meroplankton 

groups considered in this study at B35, U35, L4 and SH. The value in parentheses is the 

contribution in percentage of each identified category to the total. 

Taxa B35 U35 L4 SH 

Hydromedusae 15.24 ± 1.94 

Obelia (37.0) 

Medusae (22.2) 

Hydromedusae (10.3) 

Lizzia blondina (9.8) 

Sarsia (8.8) 

Liriope tetraphylla (7.8) 

Anthomedusae (3.3) 

Hydractiniidae (0.9) 

8.10 ± 1.81 

Lizzia blondina (24.9) 

Obelia (23.1) 

Medusae (20.5) 

Sarsia (12.8) 

Hydromedusae (12.1) 

Liriope tetraphylla (6.2) 

41.73 ± 7.88 

Obelia (24.6) 

Hydromedusae (21.9) 

Lizzia blondina (19.4) 

Liriope tetraphylla (16.2) 

Solmaris corona (13.7) 

Aglantha digitale (2.5) 

Other medusae (1.6) 

2.91 ± 0.50 

Obelia (43.6) 

Hybocodon prolifer (14.7) 

Aglantha digitale (13.4) 

Rathkea octopunctata (10.4) 

Clytia hemisphaerica (5.0) 

Lizzia blondina (4.18) 

Other medusae (3.5) 

Sarsia (2.4) 

Corymorpha nutans (1.7) 

Leuckartiara octona (1.2) 

Bryozoan larvae 3.15 ± 0.58 

Cyphonaute 

4.28 ± 0.92 

Cyphonaute 

16.29 ± 1.51 

Cyphonaute 

43.31 ± 3.80 

Cyphonaute 

Gastropod larvae 74.10 ± 11.28 

Gastropod veliger 

254.11 ± 60.55 

Gastropod veliger 

63.57 ± 17.09 

Gastropod veliger (81.2) 

Limacina retroversa (18.5) 

Other gastropods (0.3) 

81.37 ± 28.64 

Limacina. retroversa (70.8) 

Gastropod veliger (23.3), 

Gymnosomata (5.6) 

Other gastropds (0.3) 

Bivalve larvae 52.37 ± 8.92 

Bivalve veliger 

45.72 ± 7.37 

Bivalve veliger 

54.50 ± 9.93 

Bivalve veliger 

86.67 ± 12.39 

Bivalve veliger 

Polychaete larvae 7.85 ± 1.29 

Spionidae larvae (68.6) 

Polychaete larvae (15.7) 

Magelonidae larvae (5.6) 

Sabellariidae larvae (4.0) 

Polynoidae larvae (3.2) 

Aphroditidae larvae (2.7) 

Other polychaetes (0.2) 

11.10 ± 1.61 

Spionidae larvae (90.5) 

Polychaete larvae (2.6) 

Sabellariidae larvae (4.6) 

Polynoidae larvae (1.2) 

Other polychaetes (1.0) 

20.96 ± 1.97 

Polychaete larvae (98.8) 

Tomopteris helgolandica (1.2) 

124.37 ± 33.04 

Polychaete larvae (99.4) 

Other polychaetes (0.6) 

Cirripede larvae 1061.93 ± 138.88 

Cirriped nauplius (95.7) and 

cypris (4.3) larvae 

314.41 ± 67.63 

Cirriped nauplius (68.1) and 

cypris (31.9) larvae 

356.89 ± 69.82 

Cirriped nauplius (93.4), cypris 

(6.6) and rhizocephalan (0.02) 

larvae 

55.55 ± 7.34 

Cirriped nauplius (58.5) and 

cypris (41.5) larvae 

Decapod larvae 26.06 ± 5.15 

Brachiura (36.4) 

Decapod (15.9) 

Caridea (15.3) 

Crangonidae (5.5) 

Hyppolitidae (4.2) 

Processa (4.0) 

Pisidia longicornis (4.0) 

Paguridea (3.4) 

Crangon crangon (2.9) 

Athanas (2.5) 

Other decapods (2.3) 

Porcellana (2.0) 

Porcessidae  (1.4) 

9.03 ± 1.78 

Brachiura (63.7) 

Decapod (11.5) 

Caridea (11.1) 

Crangonidae (6.8) 

Other decapods (3.6) 

Phyllocheras (1.1) 

Alpheidae (1.1) 

Porcellana (1.0) 

16.68 ± 1.11 

Decapod (55.9) 

Brachyura (30.6) 

Porcellanid (6.3) 

Other decapoda (1.9) 

Necora (1.8) 

Paguridae (1.7) 

Upogebia (1.7) 

9.29 ± 1.01 

Decapoda 

Echinoderm 

larvae 

4.80 ± 1.24 

Ophiopluteus (61.5) 

Echinopluteus (32.7) 

Auricularia (5.8) 

1.15 ± 0.34 

Ophiopluteus (45.9) 

Echinopluteus (33.3) 

Auricularia (11.7) 

Brachiolaria (6.1) 

Bipinnaria (2.9) 

106.26 ± 18.99 

Echinoderm larvae (63.3) 

Ophiopluteus (29.7) 

Echinopluteus (4.0) 

Auricularia (1.9) 

Other echinodermata (1.1) 

47.17 ± 7.63 

Echinodermata larvae 

Fish eggs and 

larvae 

17.00 ± 4.12 

Engraulis encrasicolus eggs and 

larvae (45.5) 

Fish eggs and larvae (36.0) 

Sardine eggs and larvae (18.5) 

2.40 ± 0.56 

Fish eggs and larvae (89.6) 

Sardine eggs and larvae (9.7) 

Engraulis encrasicolus eggs and 

larvae (0.7) 

6.74 ± 0.57 

Fish eggs and larvae (96.6) 

Clupeidae (sardine) eggs and 

larvae (3.4) 

0.79 ± 0.12 

Fish eggs and larvae (92.4) 

Ammodytidae larvae (7.5) 

Clupeidae (sardine) larvae (0.1) 
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Table A.3. Mean density ± standard error (individuals m-3) and composition of cladoceran and 

copepod genera considered in this study at B35, U35, L4 and SH. The value in parentheses is the 

contribution in percentage of each identified category to the total. 

Taxa B35 U35 L4 SH 

Evadne 153.49 ± 30.56 

Evadne nordmanii (75.9) 

Evadne spinifera (12.8) 

Evadne (10.6) 

Pseudoevadne tergestina (0.7) 

50.64 ± 13.10 

Evadne nordmanii (89.1) 

Evadne spinifera (9.6) 

Evadne (1.0) 

Pseudoevadne tergestina (0.3) 

127.98 ± 25.15 

Evadne 

17.06 ± 4.25 

Evadne nordmanni 

Podon 93.51 ± 18.35 

Podon (52.2) 

Podon intermedius (47.8) 

21.26 ± 6.14 

Podon (80.7) 

Podon intermedius (19.3) 

43.48 ± 6.31 

Podon 

20.14 ± 6.32 

Podon leuckartii (57.3) 

Podon intermedius (20.6) 

Pleopis polyphaemoides (16.0) 

Podon (6.1) 

Acartia 1036.97 ± 126.20 

Acartia clausi (96.0) 

Acartia tonsa (3.7) 

Other Acartia (0.1) 

1217.33 ± 325.22 

Acartia clausi (99.0) 

Other Acartia (0.4) 

152.48 ± 19.68 

Acartia clausi 

556.34 ± 82.28 

Acartia clausi (99.8) 

Acartia longiremis (0.2) 

Calanidae 20.02 ± 6.62 

Calanus (93.7) 

Eucalanus (3.7) 

Calanus helgolandicus (2.5) 

4.78 ± 0.96 

Calanus (83.2) 

Eucalanus (10.5) 

Calanus helgolandicus (6.4) 

89.48 ± 7.78 

Calanus helgolandicus (96.8) 

Calanus (3.0) 

Other Calanidae (0.1) 

69.02 ± 9.62 

Calanus (55.9) 

Calanus helgolandicus (31.5) 

Calanus finmarchicus (7.1) 

Calanoida (5.6) 

PCPC-calanus 520.24 ± 56.76 

Paracalanus parvus (48.1) 

P-calanus (33.6) 

Paracalanus (12.2) 

Clausocalanus (5.6) 

Other PCPC (0.5) 

509.06 ± 95.83 

Paracalanus parvus (43.6) 

P-calanus (37.6) 

Paracalanus (12.4) 

Clausocalanus (5.8) 

Other PCPC (0.5) 

774.23 ± 41.99 

Pseudocalanus elongatus (36.4) 

Paracalanus parvus (33.4) 

Other PCPC (26.0) 

Clausocalanus (3.6) 

Ctenocalanus vanus (0.6) 

269.46 ± 19.41 

Pseudocalanus elongatus (79.6) 

Paracalanus. parvus (20.3) 

Other PCPC (0.1) 

Centropages 50.50 ± 11.53 

Centropages typicus (62.9) 

Centropages (37.1) 

37.18 ± 10.70 

Centropages (71.3) 

Centropages typicus (28.7) 

29.00 ± 3.62 

Centropages typicus (98.9) 

Centropages hamatus (1.0) 

Centropages chierchiae (0.02) 

37.50 ± 5.30 

Centropages. hamatus (73.6) 

Centropages. typicus (26.4) 

Temora 55.10 ± 11.05 

Temora stylifera (67.1), Temora 

(16.6) 

Temora. longicornis (16.3) 

40.53 ± 9.85 

Temora stylifera (53.8) 

Temora longicornis (29.4) 

Temora (16.8) 

216.48 ± 30.04 

Temora longicornis (99.9) 

Temora stylifera (0.1) 

147.30 ± 16.36 

Temora longicornis 

Oithona 205.21 ± 26.39 

Oithona nana (52.2) 

Oithona. similis (37.5) 

Oithona. plumifera (6.5) 

Oithona (2.2) 

Oithona. davisae (1.6) 

199.18 ± 22.41 

Oithona similis (62.0) 

Oithona nana (29.9) 

Oithona plumifera (5.9) 

Oithona (1.6) 

Oithona davisae (0.3) 

411.22 ± 35.80 

Oithona 

259.21 ± 20.39 

Oithona 

Oncaea 47.74 ± 14.05 

Oncaea media (87.6) 

Oncaea (12.3) 

Monothula subtilis (0.1) 

74.87 ± 19.40 

Oncaea media (89.7) 

Oncaea (10.2) 

Monothul subtilis (0.1) 

361.05 ± 32.76 

Oncaea 

1.81 ± 0.23 

Oncaea 

Corycaeus 3.45 ± 0.57 

Ditrichocorycaeus anglicus 

5.99 ± 1.11 

Ditrichocorycaeus anglicus 

87.45 ± 8.65 

Ditrichocorycaeus anglicus 

1.25 ± 0.25 

Corycaeidae 
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Figure 1S. Seasonal variation of monthly mean densities of ZG at B35 (dashed), U35 (black), L4 

(dark grey) and SH (light grey). 
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Figure 2S. Seasonal variation of monthly mean densities of CCGen at B35 (dashed), U35 (black), 

L4 (dark grey) and SH (light grey). 

 


