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Abstract 

 

 

Statistical learning (SL) is involved in a wide range of basic and higher-order 

cognitive functions and is taken to be an important building block of virtually all current 

theories of information processing. In the last two decades, a large and continuously growing 

research community has therefore focused on the ability to extract embedded patterns of 

regularity in time and space. This work has mostly focused on transitional probabilities, in 

vision, audition, by newborns, children, adults, in normal developing and clinical 

populations. Here we appraise this research approach, we critically assess what it has 

achieved, what it has not, and why it is so. We then center on present SL research to examine 

whether it has adopted novel perspectives. These discussions lead us to outline possible 

blueprints for a novel research agenda.  

 

 

Keywords: Statistical learning, regularities, distributional properties, patterning, 

information processing, cognition, language, memory. 

 

Public Significance Statement: 

This review targets a fundamental theoretical construct in cognitive science, the learning of 

regularities in the environment. A critical analysis of past and present achievements of this 

field of research reveals possible novel experimental directions and theoretical perspectives.  
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1. Introduction 

Statistical learning (SL)—learning from the distributional properties of sensory input 

across time and space—has become a major theoretical construct in cognitive science. 

Providing the primary means by which organisms learn about the regularities in the 

environment, SL is involved in a wide range of basic and higher-order cognitive functions 

such as vision, audition, motor planning, event processing, reading, speech perception, 

language acquisition, semantic memory, and social cognition, to name a few. SL, therefore, is 

taken to be a necessary building block of virtually all current theories of information 

processing, and its importance in advancing theories throughout the cognitive and brain 

sciences cannot be overestimated (see Saffran & Kirkham, 2018, for review).  

Although the roots of SL can be traced back nearly a century (see Christiansen, 2019, 

for review), the recent impetus for SL research can be found in the published finding of 

Saffran and her colleagues (Saffran, Aslin, & Newport, 1996), showing that infants are 

sensitive to transitional probabilities (TPs) of syllables in a continuous speech stream. The 

paper made two critical points: first, that information regarding word boundaries could be 

detected in the input from differences in TPs within and between word boundaries. Second, 

that children can rapidly perceive and use this information to parse the continuous speech 

input. This paper sparked intense theoretical debates in the domain of language acquisition 

(e.g., Christiansen & Curtin, 1999; Marcus, Vijayan, Bandi Rao, & Vishton, 1999; Peña, 

Bonatti, Nespor & Mehler, 2002; Seidenberg, 1997; Yang, 2004). It was seen as providing 

evidence that experience-based learning mechanisms can potentially account for language 

learning—hence, there is no need to revert to nativist accounts of language acquisition 

(Chomsky, 1965).  

Saffran and her colleagues were careful in their original paper to qualify the scope of 

their claims: “It remains unclear whether the statistical learning we observed is indicative of a 
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mechanism specific to language acquisition or of a general learning mechanism applicable to 

a broad range of distributional analyses of environmental input (p. 1928).” However, given 

the intriguing possibility that Saffran et al. (1996) raised, SL research has expanded broadly, 

and related debates spilled over to other domains of learning and cognition. To date, the 

Science paper by Saffran and colleagues has reached nearly 4900 citations, with about a 

stable rate of more than 300 citations per year
1
.  

Research on learning regularities was pervasive decades before the paper by Saffran et 

al. (1996), mainly through implicit learning using artificial grammar learning (AGL; e.g., 

Reber, 1967) and serial-reaction time (SRT; e.g., Nissen & Bullemer, 1987) paradigms (see 

Christiansen, 2019; Hunt & Aslin, 2001; Perruchet & Pacton, 2006, for discussions). 

However, the groundbreaking finding by Saffran and her colleagues inspired a large research 

community to focus on the ability to extract embedded patterns of regularity in time and 

space, mostly TPs, across vision, audition, and tactile modality, in newborns, children and 

adults. Figure 1 shows how this field has exploded in particular over the last decade (i.e., 

since 2006) relative to the overall expansion rate of research in other major domains of 

cognitive science
2
. Our search shows that the first two decades of research on SL (1996-

2016) have produced over 760 papers
3
, we hereafter refer to this body of work as “past” 

research. In the most recent two years alone (2016-2018), over 150 papers on SL have been 

published. We consider this set of articles to represent the “present” state of the art in SL 

research. Given that the field is now expanding at an almost exponential rate, it seems like a 

                                                 
1
 Impact according to Google Scholar, June 2019. 

2
 The data for the other major domains of research was extracted by entering the labels 

presented in Figure 1 (e.g., “attention”, “memory”, etc.) into the same Scopus search 

procedure used to identify the papers on statistical learning. The choice of normalizing 

publication rates relative to 2006 was taken as it is the mid-point point of our data. The 

overall trends presented in this figure hold, however, across a range of different 

normalization schemes.     
3
 The search included all papers with SL in their title, abstract, and/or their keywords, 

excluding machine learning, see our discussion in section 2.1 Methodological considerations. 
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good time to take stock of what has been accomplished so far, what is missing from the 

current research focus, and why this might be so. This is the first aim of the present paper. 

We do so by examining the empirical work of “past” SL research in Part 1 versus “present” 

work in Part 2, considering several important criteria. These include, the scope of empirical 

research in terms of range of methodologies, the validity of theoretical presuppositions, the 

extent of integration with adjacent fields of cognitive science, and the extent of ecological 

validity. In the third part, these discussions are harnessed to point to several avenues 

regarding how future research can address some of the missing pieces.  

 

 

Figure 1. Percent volume of papers per year relative to 2006.  The number of papers 

published in 2006 is taken as the baseline from which percent volume is measured.   

 

 We should clarify from the outset that the first two parts of the paper are not aimed to 

provide a comprehensive review of all empirical work that has been done in the field, but to 

critically discuss some of the directions (and also misdirections) that this field has taken since 
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the original paper by Saffran and colleagues in 1996. Here, we do not take issue with a 

specific finding, an individual study, its experimental design, inferences, or conclusions. 

Problems at this level are not the target of the present discussion. Instead, our paper aims to 

focus on broader conceptual and methodological issues. We outline the fundamental 

characteristics of the initial SL research program when taken as a whole, distilling out what it 

has and has not accomplished. To foreshadow what follows, our take is that SL research has 

provided considerable important evidence, insights, and theoretical contributions. However, 

research paradigms often get entrenched in methodologies, basic axioms, prototypical 

metaphors, and homogeneous ways of thinking about particular issues. Pointing these out has 

the potential of moving the field forward, opening novel research avenues. This is the focus 

of Parts 1 and 2 of our discussion. In Part 3, we offer suggestions for ways in which the field 

may move forward by building on past work and dealing with current limitations. 

 

1.1. Tracing the boundaries of SL phenomena 

Before we begin the review of SL research, we must first ask and answer a fundamental 

question: What should be considered SL? Typically, a research community can at least agree 

on the scope of the issues that they are studying, yet there is no broadly agreed upon formal 

definition
4
. An imperative first step is, therefore, a precise description of our inclusion 

criteria, which allows the drawing of a clear line regarding what phenomena belong to our 

present investigation and what do not. We should emphasize that our claims in this section 

are not ontological in nature. Rather, they are aimed at providing a common ground for 

discussions by clarifying from the outset which phenomena will undergo scrutiny and which 

will not. While we do recognize that other potential demarcation lines can be drawn, we 

                                                 
4
 Anecdotally, at the conference on Interdisciplinary Advances on Statistical Learning 

(Bilbao, 2017), the question of how to define SL was at the center of a panel discussion that 

concluded without reaching any general agreement. Opinions ranged from a narrow 

definition of SL, to “all learning is SL”. 
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naturally assume that our inclusion criteria are constructive in the sense that they focus on the 

core aspects and phenomena related to SL. Here, we do not voice a principled disagreement 

with the claim that all (or almost all) learning is, in fact, statistical learning. We simply argue 

that even if convincing arguments can be put forward in its defense, adopting it will not be 

constructive in providing nuanced distinctions, precise predictions, and a tractable scope for 

future SL research. 

The present paper targets, therefore, all phenomena related to perceiving and learning 

any forms of patterning in the environment that are either spatial or temporal in nature. 

Patterning requires, by definition, that there would be more than one stimulus (an 

independent stimulus is not a pattern), and that there would be more than a single occurrence 

of events in the stream (one appearance of something is not a pattern). This inclusion 

criterion is wide enough to incorporate all learning of ordered auditory, visual, or tactile 

stimuli, but precludes instances of one-shot learning (e.g., Laska & Metzker, 1998). It also 

precludes simple frequency effects when a single stimulus is repeated again and again leading 

to changes in its representational state in the visual, auditory, or somatosensory cortex (e.g., 

Grill-Spector, Henson, & Martin, 2006). To clarify, we will not consider a rhythmic 

repetition of a single stimulus (e.g., a metronome’s tick, a flickering light at a given 

frequency), to be SL. Hence, entrainment of neural populations to this form of “regularity” is 

not within the present scope. Indeed, current evidence suggests that entrainment to rhythm 

per se (timing expectation) is very different than predictions regarding upcoming structure 

(e.g., Ding, et al., 2016). In a similar vein, a sudden change or cessation of rhythmic 

repetition, such as revealed in typical oddball paradigms, are also excluded (e.g., the 

repetition of /pa/ occasionally replaced by /ba/, e.g., Getzmann & Näätänen, 2015; Näätänen, 

Gaillard, & Mäntysalo, 1978). 
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In this sense, we focus on how organisms encode and use the regularities related to 

relationships between recurrent events (frequencies, associations, distributions, positions) to 

enable and enhance learning, and how neural changes occur due to such patterning. Hence, 

the boundaries of SL phenomena that are of interest for this paper do not include typical 

reinforcement learning that investigates how probabilistic reinforcement shapes behavior, or 

how supervised, semi-supervised, or unsupervised learning can be used to simply summarize 

the environment. Rather, our discussion targets phenomena where the organism not only 

mirrors the statistical properties of the environment (for example, mirroring the TPs structure 

within an input stream), but uses the statistical information to derive representational content 

that go beyond mirroring (for example, deriving representations of “words” given the 

differences in TPs within the input). This is what made SL potentially influential in the 

cognitive sciences. We should emphasize that within this scope, we do not focus just on 

learning TPs, but on a range of potential regularities. One may learn, for instance, that A 

occurs more frequently than B, that B is always in the middle of a sequence of three stimuli, 

that C co-occurs with D, or that ABCD is not a grammatical event. These are but a few 

examples of SL, hence our definition is anything but narrow. Thus, in addition to the work 

directly inspired by the Saffran et al. (1996) study, we also include AGL, SRT learning, and 

cross-situational learning
5
 under the umbrella of “statistical learning.” Importantly, though, 

our definition avoids the presupposition that “everything is SL”, because if everything is SL, 

practically, nothing substantial can be said about it.  

 

2. Part 1: Past accomplishments in SL 

                                                 
5
 Cross-situational learning involves learning the referent for individual words across multiple 

exposures, in which each exposure is ambiguous with respect to the words’ identity (e.g., Yu & 

Smith, 2007). From an SL perspective, this requires computing distributional statistics over possible 

word-referent mappings given their patterns of co-occurrence. 
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In this part we aim to review and summarize SL past research, first by evaluating its 

scope in terms of research questions and methodologies. We then examine various theoretical 

perspectives on SL mechanism(s), mainly whether one or more mechanisms underlie the 

learning of regularities. Next, we assess how SL has been integrated within other research 

areas in cognitive science given its initial promise to inform most theories of information 

processing. Finally, we discuss what we see as potential weaknesses or pitfalls of this 

research enterprise, focusing on issues such as extent of theoretical specification, and 

ecological validity.  

 

2.1 Methodological considerations 

We start our discussion by outlining our methodology for reviewing SL research. Our 

guidelines in structuring our review of past research followed the flow chart of PRISMA 

(Preferred Reporting Items for Systematic Review and Meta-Analyses, see Figure 2). 

PRISMA offers state-of-the-art protocols for appraising research efforts (see, 

http://www.prisma-statement.org). Our first decision point in this flow chart concerned the 

inclusion criteria for constructing the database of experimental papers on SL. Our search thus 

targeted all journal articles that contained the term “statistical learning” in their abstract, title, 

or keyword list, published from 1996 to 2016. In terms of screening, we excluded a few 

specific journals where “statistical learning” is used frequently in a machine-learning or 

analytical interpretation that is not related to cognition (e.g., IEEE journals on information 

theory, image processing, etc.).  

Admittedly, given our discussion of what SL is, there is no doubt a broader community 

doing research related to SL per our definition, without self-identifying their research as such. 

We discuss in length further on the reasons for such demarcation line between research 

paradigms (see our section on “domain integration”). However, our aim in this review was to 

http://www.prisma-statement.org/
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specifically target the community that identifies itself as engaging in SL research, and we 

assumed that our search criteria would encompass this community in an optimal way. Our 

exploration procedure undoubtedly excluded a number of papers that, for one reason or 

another, omitted a reference to SL in their title, abstract or keywords (we note, for example, 

that the influential study of Aslin, Saffran & Newport, 1998, on the computation of 

transitional probabilities statistics by infants, falls into this category). However, an exhaustive 

search to locate all potential papers that examine the learning of regularities throughout the 

full scope of the cognitive sciences is not a tractable enterprise, as it requires a manual 

inspection of thousands and thousands of papers. Importantly, expanding the search by 

devising a list of other potential keywords or perhaps a list of potential authors known to 

work on SL, would be a thorny issue. Indeed, it is unlikely that the SL research community 

would agree on exactly what those keywords or authors should be. Critically, any choice of 

keywords (e.g., “word segmentation”, “conditional probabilities”, etc.) would inevitably 

create a sampling bias towards inclusion of specific topics. Because there are many ways to 

assemble a database of papers for reviews and meta-analyses, each one with its own pros and 

cons, we have sought here to make explicit the rational for our decisions regarding inclusion 

or exclusion criteria.  
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Figure 2. PRISMA flowchart for the Past SL research literature search. 

 

Screening: Our search returned 767 papers, out of which 628 had been cited at least 

once, with a total number of 16902 citations
6
. We then manually inspected the 150 most 

highly cited articles in this set to ensure that they indeed relate to SL broadly construed. 

Together, these articles had 14032 citations. In other words, the articles that we focus on 

account for 83% of the total number of citations to the SL literature. These articles had an 

average of 94 citations each (min = 22, max = 549, excluding the original paper by Saffran et 

al.). We should emphasize that our aim in setting a cutoff by citations was to obtain insights 

regarding what has made a given study impactful within and outside the SL research 

community. Admittedly, overall number of citations is correlated with years since 

publications, creating some disadvantage for the very recent papers. However, because there 

is no clear mathematical algorithm regarding how to factor in number of years since 

publications for measuring impact, and given that we devote a full section of the paper to 

                                                 
6
 Citation statistics in this part of our discussion are based on the Scopus database accessed on July 

11th, 2017. Numbers reflect relative impact at this time point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scopus search for “statistical learning” 
(see Appendix for keywords and exclusions) 

N = 767 

Removed 617 articles not among the  
top-150 most cited papers 

Top-150 most cited articles  
left for screening 

Removed 32 articles that did not 
contain experimental data 

118 articles included in the  
“Past” analysis 
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analyze and discuss recent SL research (see Part 2 on “Present directions in SL”), our cutoff 

regarding citations served as an adequate screening procedure for assessing the impact of past 

research. Finally, given that our focus was on empirical research, we filtered the 150 

impactful articles to require that they would have at least some experimental component (see 

the PRISMA flow chart in Figure 2). This led us to set aside 32 review, opinion, or modeling 

papers.  

We take the final set of 118 articles to be broadly representative of the first two decades 

of empirical research performed by the SL research community (see 

  for the full listing of https://osf.io/gd7q3/?view_only=e4b03e1a26ac4f968d44d890845fa299

articles). We may not have selected the full population of papers that were generated in these 

two decades of research on SL, but we have assembled an unbiased corpus that allowed us to 

adequately characterize the main advances in the field. 

 

2.1. Scope of research  

Following Saffran et al. (1996), debates have elevated SL to be a substantial theoretical 

construct in cognitive theory. While at the onset it was taken to provide a viable explanation 

for identifying word boundaries, with time it has been expanded to cover learning regularities 

in many areas of cognition, extending well beyond language. It would be fair to say that in 

the many hundreds of studies that followed the original auditory TP learning task by Saffran 

et al. (1996), researchers often tailored the task’s parameters to address closely related 

questions. For example, the task was imported into the visual modality virtually as is, with 

shapes replacing syllables (e.g., Kirkham, Slemmer, & Johnson, 2002; Siegelman & Frost, 

2015; Turk-Browne, Junge, & Scholl, 2005). A somewhat more significant change involved 

presenting regularities in terms of spatial location in a grid, rather than a temporal location in 

the stimulus stream (Fiser & Aslin, 2001). Rather than focusing on adjacent regularities such 

https://osf.io/gd7q3/?view_only=e4b03e1a26ac4f968d44d890845fa299
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as AB, researchers have studied sequences of the form AxB, where x is a randomly selected 

stimulus (Gómez, 2002; Newport & Aslin, 2004; Onnis, Christiansen, Chater & Gómez, 

2003). Instead of studying TPs of 1, sensitivity to lower TPs has been investigated (e.g., 

Bogaerts, Siegelman, & Frost, 2016). Instead of learning one stream of regularities, 

participants have been exposed to two sets, either within (e.g., Gebhart, Aslin, & Newport, 

2009; Karuza et al., 2016), or between (e.g., Emberson, Conway, & Christiansen, 2011; 

Mitchel & Weiss, 2011; Weiss, Poepsel & Gerfen, 2015) modalities. Instead of testing human 

infants or adults, researchers have studied monkeys (e.g., Hauser, Newport, & Aslin, 2001), 

rodents (e.g., Toro & Trobalón, 2005), and birds (e.g., Lu & Vicario, 2014; see Santolin & 

Saffran, 2018, for a review of SL across species). Rather than testing normally developing 

children or adults, researchers have used the SL task with various special populations such as 

SLI or autism spectrum disorder (e.g., Evans, Saffran, & Robe-Torres, 2009; Hsu, Tomblin, 

& Christiansen, 2014; Obeid et al., 2016), and dyslexics (Gabay, Thiessen, & Holt, 2015; see 

Lammertink, Boersma, Wijnen, & Rispens, 2017, for a meta-analysis).  

We should note that the TP learning task of Saffran et al. (1996) was not the only game 

in town. A parallel line of research employed the original paradigm offered by Reber (1967) 

for studying implicit artificial grammar learning (AGL). Here participants were typically 

presented with sequences of stimuli generated by a miniature grammar, and then asked to 

classify a new set of sequences according to whether they were derived from the grammar or 

not (e.g., Altmann, Dienes, & Goode, 1995). Although the AGL task was originally taken to 

tap implicit learning, it permeated into SL research (e.g., Conway & Christiansen, 2005, 

2006; Tunney & Altmann, 1999). Whereas the task was originally taken to reflect rule 

learning, it is well accepted today that performance in the AGL task may be explained by 

overall judgments of statistically-related surface similarity between “grammatical” items that 

were presented during familiarization and those presented at test (e.g., Conway & 
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Christiansen, 2005; see Pothos, 2007, for a review). Thus, similar to the TP learning task, 

participants are provided with a relatively brief exposure to repeated regularities, after which 

learning is assessed through a two-alternative forced choice (2AFC) test phase. 

Without doubt, each of these lines of research has provided a greater understanding of 

how the kind of learning demonstrated by Saffran et al. operates in a somewhat broader range 

of circumstances. This has led to significant theoretical advances that cannot be 

overestimated. Importantly, replications that track down the nature of effects with small 

variants of paradigms and materials are critical for advances in science. On the other hand, 

constructive advances in science are characterized by a state of affairs in which large and 

diverse sets of data converge to carve out a given theoretical construct. This is because any 

one type of evidence will necessarily be imperfect or lacking in some respect, providing only 

partial constraints on the theory. In this sense, the relationship between data and theory is 

akin to a pyramid wherein a broad empirical foundation supports a specific theoretical claim. 

The major theoretical appeal of SL is that it hinted at a potentially overarching explanation of 

learning regularities in a general sense, covering deep and thorny issues such as how 

language is learned, how generalizations are made, how discrimination occurs, how 

categories are carved—in essence, impacting almost the whole scope of cognitive capacities. 

It is therefore important to evaluate to what extent the first two decades of SL research and 

empirical findings support these ambitious theoretical goals. Our analysis below provides a 

summary of the distribution of key design features in our representative sample of past SL 

studies from 1996 to 2016. Here we highlight a few illuminating observations: 

 As shown in Figure 3, 60% of all the empirical papers on SL used a variation of 

the original task by Saffran et al. (1996), embedding sequences of auditory or 

visual stimuli with different TPs in continuous stream of input (below we refer to 

these as the “TP papers”). The rest mostly used a variation of the AGL task 
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(16%) or investigated cross-situational learning (11%). This suggests that the 

field was primarily made up of results from three closely related tasks. 

 Out of the TP papers examining auditory SL, 84% used syllables as linguistic 

units, similar to the original Saffran et al. (1996) study.  

o 24% of the papers using syllabic units, included exactly the same 

“words” that Saffran et al. selected for their original study. 

 Considering the patterns of regularity investigated, 82% of TP papers embedded 

either triplets or pairs of stimuli in the input stream.  

o Over 90% of these papers used TPs of 1.0, that is, perfect regularity 

between elements within a pattern. 

 Considering the number of patterns that are the object of learning, 59% of TP 

papers employed 8 patterns or less; nearly 50% of all these experiments used four 

patterns (or less) as in the original Saffran et al. study. 

 86% of these studies used patterns that were uniform in size (i.e., either all 

trigrams or all bigrams).  

 89% of all empirical investigations used a familiarization stream that did not 

exceed 30 minutes, while 61% of studies settled on 10 minutes of familiarization 

or less.  

 In 72% of all papers, participants were given passive exposure to an input stream, 

which we contrast with a (minimally) active task where the learner is doing 

something other than watching or listening to the input, or orienting to an 

attention-grabbing stimulus in infant studies. 

 51% of all studies monitored SL performance via a 2AFC test following 

familiarization. Similarly, an additional 30% targeted infants using preferential 

looking methods.  
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 96% of all studies dealt with humans.  

 

 

Figure 3. Frequency of use of different experimental paradigms in the most frequently cited 

SL articles. 

 

These statistics indicate a substantial uniformity in the first two decades of SL research. 

We should note that within the large set of 767 papers, one can identify specific studies that 

have broken this mold (we discuss examples of such papers later on). However, our analysis 

shows these papers to be the exceptions rather than rule, and most studies were constrained to 

relatively homogeneous methodologies. This state of affairs often occurs when a 

groundbreaking experimental finding and methodology spurs on an entire field of research 

and is by no means unique to SL. A parallel situation, for example, occurred in the domain of 

reading, where the lexical decision task (Meyer & Schvaneveldt, 1971) has been used in 

thousands and thousands of experimental papers, with time eventually leading to a partial 

merging of theories of visual word recognition with theories of lexical decision per se. 

Because the original finding of Saffran et al. (1996) seemed to speak to a wide range of 

theoretical questions and view-points, the task itself was adopted by a diverse set of 
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laboratories across adjacent fields to address a very wide scope of theoretical questions. In 

that sense it is understandable why a large proportion of the experimental work derived from 

the seminal task reported by Saffran et al. (1996) has key design features in common.  

However, this has also led to a situation wherein the theoretical claims regarding the 

broad relevance of SL to cognitive science has outpaced the accumulated empirical support, 

which has remained relatively narrow in scope and confined to a restricted range of 

methodologies. Here we outline a number of examples of this phenomenon. First, although in 

the domain of speech several cues for segmentation (e.g., stress) have been considered, many 

of the original SL experiments have focused on an existence proof that a given population 

can extract high-probability TPs from an input stream. Regularities in the environment do not 

consist, however, only of TPs, and are not confined to high TPs. Second, the recurring 

patterns—the object of learning—were in most cases either pairs or triplets of visual or 

auditory stimuli. Regularities are typically significantly richer in terms of the number of 

elements involved, and are more abstract, often involving some level of generalization. Third, 

the individual elements were typically very uniform (e.g., syllables or tones of the same 

length; visual figures of the same kind and size), whereas real-world regularities often consist 

of a heterogeneous set of inputs, where instances of the same element may vary along a 

variety of dimensions (e.g., the same syllable will have different acoustic realizations 

depending on contexts and speakers; visual elements will occur across different backgrounds, 

etc.). Fourth, learning has been confined to relatively short durations, where participants 

might see each regularity 8-30 times over the course of a 5- to 15-minute familiarization 

phase. Learning regularities in the real world, however, spans a much larger period of time, 

mostly without consecutive repetitions. Fifth, learning typically has been assessed in a 

subsequent test-phase comprised of a series of 2AFC questions, which contrasts pairs or 

triplets that follow or violate the regularities in the input stream. This does not tap into how 
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learning occurs and accumulates on a step-by-step basis, and may provide a distorted view of 

what exactly has been learned (see Christiansen, 2019; Siegelman, Bogaerts, Christiansen, & 

Frost, 2017; Siegelman, Bogaerts, Kronenfeld, & Frost, 2017, for extensive discussion).  

We will return to these issues while examining the “present”, to see whether and how 

field had changed recently, leading us to the discussion regarding what has to be done in the 

future.  

 

2.2   Perspectives on SL mechanism(s).  

The unitarian view of SL 

As described above, much of past SL research has focused on providing an existence 

proof that a range of regularities can be learned. To a first approximation, this research has 

revealed commonalities across different domains. Sensitivity to TPs in the input stream was 

found not just with spoken syllables as Saffran et al. (1996) originally showed, but also with 

non-linguistic auditory material such as pure tones (e.g., Creel, Newport, & Aslin, 2004; 

Saffran, Johnson, Aslin, & Newport, 1999) and computer sound effects (e.g., Gebhart, 

Newport, & Aslin, 2009; Siegelman & Frost, 2015). In the visual modality, evidence for TP 

sensitivity was found with abstract visual shapes (e.g., Glicksohn & Cohen, 2013; Turk-

Browne et al., 2005), colored simple shapes (Kirkham et al., 2002), faces (Emberson et al, in 

press), real-world scenes (e.g., kitchen scenes, Brady & Oliva, 2008), cartoon aliens (Arciuli 

& Simpson, 2011), natural visual scenes (e.g., landscapes, Schapiro, Gregory, & Landau, 

2014), and fractal patterns (Schapiro, Kustner, & Turk-Browne, 2012). Once existence proofs 

of SL have been established across a range of domains, and in the absence of a widely 

accepted neurocomputational theory of how SL operates, verbal theorizing about the 

commonalities that have been discovered has often led to the assumption that basically the 

same abstract computations occur across the range of domains. In most studies this has not 
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been taken as an explicit well-defined presupposition. Rather, it was typically taken as a 

loose working metaphor, defining SL as “a (or the) mechanism with which cognitive systems 

discover the underlying structure of the input”.  

Here we argue that focusing on commonalities alone, although useful in some respects, 

may nevertheless lead to a theoretical emphasis on an overly abstract and underspecified 

common denominator among a large set of findings. When the theory is vague and 

underspecified, it can essentially be interpreted to be consistent with many data patterns, and 

it is unable to generate specific a priori predictions to guide future research. In contrast, 

focusing on differences in performance has the promise of providing important constraints 

regarding the viability of a unitary theory, leading a clear path regarding in what way the 

theory is incorrect and should be revised (see Evans & Levinson, 2009, for a similar 

argument regarding linguistic universals and the putative universal grammar). The focus on 

commonalities in a range of SL experiments has often led SL researchers to assume that SL is 

akin to a central device that learns regularities across a range of perceptual stimuli. 

Performance in the small handful of tasks was taken to be a good proxy of the device’s 

capacity. There is substantial evidence, however, that is inconsistent with a strong unitary 

theory of SL even though it has driven a substantial part of past SL research. 

 

Evidence for a pluralist view of SL 

We argue that SL, across different domains and modalities, is performed by partially 

overlapping yet distinct networks. Thus, on the one hand, brain areas dedicated to processing 

specific sensory information (visual, auditory, or somatosensory) are tuned to the statistical 

properties of the input stream (e.g., Hasson, 2017). On the other hand, the output of these 

sensory areas serves as input for other higher-order brain areas (e.g., MTL: Schapiro, Turk-

Browne, Botvinick, & Norman, 2017; Striatum: Lieberman, Chang, Chiao, Bookheimer, & 
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Knowlton, 2004). What is learned, therefore, is the product of the interactions between 

modality-specific and higher-order brain areas. In a nutshell, the brain includes a range of 

mechanisms that contribute to the perception and learning of patterned regularities. 

Consequently, to predict and explain a specific SL phenomenon one cannot simply focus on 

the computations performed by a unitary device (see Frost, Armstrong, Siegelman, & 

Christiansen, 2015; Siegelman et al., 2017, for discussion).  

From a behavioral perspective, studies examining individual performance in SL tasks 

do not lend support for a unitary view of SL. First, although SL performance in a given 

modality is relatively stable within an individual (Siegelman & Frost, 2015; Siegelman et al., 

2016), it does not reliably predict his/her ability in learning regularities in another modality. 

As Siegelman and Frost (2015) showed, performance in a visual statistical learning (VSL) 

task with abstract shapes does not correlate with performance in an analogous auditory 

statistical learning (ASL) task, with spoken syllables (but see further discussion of this point 

and additional recent findings in Part 3). The latter also does not correlate with performance 

in a similar ASL task with computer sounds rather than syllables. In the same vein, 

performance in any of these SL tasks does not correlate with performance in an SRT task, 

measuring implicit sequence learning. Since individual performance in one task across two 

timepoints using similar experimental settings would be expected to be highly correlated 

(Siegelman et al., 2015, 2018; Erikson et al., 2016), shared computations across modalities 

should have resulted in at least some correlations in performance. Evidence from the AGL 

task is not compatible with a unitary theory either. Conway and Christiansen (2006) have 

shown that learning two grammars can proceed without interference as long as they are 

implemented in two modalities. In the same vein, transfer of learning has been shown to be 

very limited across modalities (e.g., Redington & Chater, 1996; Tunney & Altmann, 1999). 

Taken together, these behavioral data do not fit with a simple architecture centered on a 
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unitary SL device. From another perspective, recent evidence suggests a very different 

developmental trajectory for visual vs. auditory SL: whereas VSL performance linearly 

improves with age, ASL does not change much across development in school-aged children 

(Raviv & Arnon, 2017) though it does appear to change during early development (Emberson 

et al., in press). Such modality-specific developmental differences are not consistent with a 

unitary system for SL.  

Admittedly, all these behavioral data and conclusions, at a first blush, stand in contrast 

with recent evidence from cognitive neuroscience, neuroimaging studies, and computational 

modeling of the hippocampus. The main evidence stemming from these studies is that the 

hippocampus (or one of its sub-regions, for example, CA1) is activated in various SL tasks 

(e.g., Turk-Browne, Scholl, Chun, & Johnson, 2009, Schapiro et al., 2014; Schapiro et al., 

2017), suggesting that it is akin to a central device for all SL computations. However, the 

same studies also showed activation in modality specific areas (see Frost et al., 2015, for a 

review). Schapiro et al. (2014) reported a case of an amnestic patient with hippocampal 

damage, who exhibited no SL abilities, arguing for the necessity of the medial temporal lobe 

system for SL. In contrast, Covington, Brown-Schmidt and Duff (2018) showed that patients 

with hippocampal damage were not uniformly at chance, and demonstrated above-chance 

performance in some SL task variants. Importantly, a range of studies implicated the striatum 

in AGL (e.g., Liberman et al., 2004), and the left inferior frontal gyrus in ASL (Karuza et al., 

2013). For example, using AGL, Knowlton, Ramus and Squire, (1992) have shown that while 

amnesic patients, the majority of which had confirmed or suspected damage to the 

hippocampus, had poor recognition of the grammatical exemplars presented during 

familiarization, they could nevertheless discriminate between grammatical and 

ungrammatical exemplars at the test phase, similar to controls. On the other hand, 

Christiansen Kelly, Shillcock and Greenfield (2010) found that agrammatic aphasics with 
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damage to the left frontal areas were unable to discriminate between test items in an AGL 

task, despite being able to complete the training task at the same level as matched healthy 

controls. This suggest that left frontal areas may also play a role in AGL, similar to TP 

learning. 

Within this context we should emphasize that cognitive neuroscience as a field is 

increasingly moving in the direction of structural and functional connectivity analyses. 

Underlying these advances is the growing appreciation that the mere activation of a given 

brain region cannot be interpreted as evidence of its unique computational role as it is 

typically densely interconnected with many other brain areas. From this perspective, deeper 

understanding the neurobiological underpinning of SL may require to also consider 

functional connectivity evidence in a range of SL tasks
7
.  

To summarize, at least at present, there is no unequivocal demonstration that all 

learning of statistical regularities requires hippocampal computations, nor is there 

neurobiological evidence supporting SL as a unitary device. Although it is currently unclear 

whether TP learning and AGL rely on the same or different brain areas, it is nonetheless 

possible that despite both being concerned with the learning of regularities, they may be 

tapping different forms of computations (however, admittedly, to our knowledge there is no 

experiment that tested this directly by combining the two tasks together within individuals). 

This leads to our conclusion that the overall neurobiological and coordinated behavioral 

evidence does not favor a unitary view of SL. 

 

The cost of the unitary view to SL research 

The main cost incurred by the unitary view comes from its inherent stranglehold on the 

development of SL as a theoretical construct. If SL is a componential and complex ability, 

                                                 
7
 We are indebted to Lizz Karuza for making this point. 
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then research should map its possible components, providing a testable theory of the different 

set of computations that each component employs, specifying in what ways they differ or 

overlap with other components’ computations, and importantly, how these components 

interact. Although some initial work has been done on this front, much more extensive 

theoretical, empirical and computational work is needed to flush out these aspects of SL 

theory.  

The unitary approach also had negative consequences in the area of individual 

differences (e.g., Arciuli & Simpson, 2012; Christiansen et al., 2010; Conway, 

Bauernschmidt, Huang, & Pisoni, 2010; Frost, Siegelman, Narkiss, & Afek, 2013; Shafto, 

Conway, Field, & Houston, 2012). In this branch of studies, researchers aimed to tie SL 

abilities to other cognitive abilities, selecting a given SL task without an a priori theory 

regarding why the chosen task was selected, rather than another (see Siegelman et al., 2017, 

for a critical discussion). In essence, such individual-difference studies treated SL as a “black 

box”, without specifying what exactly has driven an obtained correlation between 

performance in some SL task and some cognitive ability. This approach also runs the risk that 

researchers will serially search for SL tasks that “work”, in terms of predictive power, 

without overt discussions regarding why other tasks are not as predictive of a given cognitive 

ability. 

Construing SL as a unitary device also had impact on the computational work on SL. It 

has motivated modelers to develop computational accounts of how one or two basic 

computations such as tracking distributional frequencies, calculating TPs, or chunking of 

frequently occurring patterns, explain the range of SL phenomena (e.g., French, Addyman & 

Mareschal, 2011; Perruchet & Vinter, 1998; Thiessen, Kronstein, & Hufnagle, 2013). In 

principle, the development of such domain-general models built on basic computations has 

had substantial merits, as these models offer explicit evidence of how learning input 
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regularities could occur. The models also offered testable predictions to sharpen our 

understanding of how regularities could be extracted and represented. Nevertheless, they 

were mainly inspired by the qualitative commonalities in SL phenomena, offering yet again, 

an existence proof that regularities can be learned, rather than simultaneously focusing on 

how fine-grained differences in learning outcomes emerge for different parameters of the task 

(e.g., cross-modal differences, extent of familiarity with the stimuli and prior knowledge, 

event complexity, etc.). In this sense, the models have offered mostly coarse-grained insights.  

In sum, as a metaphor, the unitary view of SL has had the important benefit of focusing 

research on a well-defined set of phenomena. However, metaphors in cognitive science run 

their course in terms of their utility. Once they have served their purpose, they should be 

abandoned, for if not, they will end up dominating and becoming entrenched in the ways 

researchers think about the empirical phenomena. Based on the empirical evidence at hand 

and with the benefit of hindsight, a pluralist approach to SL would appear to be a more 

constructive way of thinking about SL. Adopting pluralism about mechanisms would lead to 

a better understanding of various SL phenomena. 

 

2.3  SL and other cognitive faculties  

Given the theoretical assumption that most cognitive functions to some degree involve the 

learning of regularities, SL should be a fundamental facet of understanding most domains of 

cognition. An important criterion for assessing SL research is, therefore, whether it has 

indeed established deep links with research in other areas of cognition or whether it has 

developed as an isolated construct. In evaluating the extent of integration of SL research with 

other aspects of cognition, we consider two independent dimensions. The first focuses on the 

breadth of the temporal window of learning. This concerns the integration of learning 

regularities with what we know about memory systems that operate on different timescales. 
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We refer to this as Timescale integration. The second, perhaps more important dimension, 

refers to the extent to which evidence regarding learning of regularities in a range of domains 

of cognitive study permeates SL theory, and vice versa. We refer to this as Domain 

integration. As we elaborate below, integration of past SL research is lacking on both of 

these dimensions. We illustrate this in Figure 4 in the domain of visual SL. 

 

 

Figure 4. Timescale and Domain integration in SL research, focusing on visual SL.  
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 SL past experiments have typically considered learning on the timescale of minutes. 

This timescale is a derivative of 1) the type of regularities (and representations) that are to be 

learned (e.g., recurrent syllabic triplets, pairs of abstract shapes, etc.), and 2) the minimal 

time needed to reach an existence proof that the targeted pattern regularities can be learned. 

This has created a highly-constrained focus on a specific fraction of the continuous learning 

trajectory, which starts with the low-level encoding of uncertainty, and ends in long-lasting 

accumulated knowledge of the environment. As presented by the red lines of Figure 3, SL 

research has typically been squashed into a small part of this learning trajectory within a 

given modality. Timescale integration thus concerns establishing connections between the 

shorter and longer timescales of this trajectory. That is, how low-level neural coding of 

uncertainly feeds into the computations of higher-level pattern regularities (see Hasson, 2017, 

for a discussion), and how pattern-level regularities consolidate and result in long-lasting 

representations, merging with existing knowledge of the environment (see Gómez, 2017; 

Coutanche & Thomson-Schill, 2015, for discussion of this problem and possible directions). 

This has not been the focus of most of the past SL research. 

 

Domain Integration 

Domain integration concerns overcoming the artificial split of learning phenomena into 

separate research areas, aiming to achieve a level of constructive interaction between these 

areas. For example, contextual cueing, scene perception, visual word recognition, and face 

perception are all concerned, one way or another, with the learning of regularities by the 

visual system. For SL theory to achieve its initial promise and become an important building 

block in a wide range of cognitive functions, evidence from all these research areas should 

permeate SL research and vice versa. This, however, does not seem to be the case, as we 

illustrate with the following prominent examples. 
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To begin, consider reading research. Of the thousands of studies concerned with 

literacy acquisition and determinants of proficient reading performance, very few have 

considered SL research, looking into how computations of regularities in the visual system 

lead to high-quality orthographic representations, shaping visual word processing abilities. A 

recent vision of reading by Grainger, Dufau and Ziegler (2016; see also the recent OB1 

model of reading by Snell, van Leipsig, Grainger, & Meeter, 2018), for example, 

acknowledges that progress in this research area has been hampered by limited cross-

fertilization. Nevertheless, this account of skilled reading centers on visual constraints such 

as crowding and visual acuity, ignoring how SL mechanisms shape orthographic 

representations and letter processing to eventually determine performance (see Frost, 2012, 

for a discussion). This is in spite of substantial evidence linking reading performance to 

visual SL abilities (e.g., Arciuli & Simpson, 2012; Chetail, 2017; Frost et al., 2013).  

Another example is research on memory. Although SL clearly involves memory at 

different levels—both short- and long-term—there has been little interaction between the two 

fields of research (though see Brady et al., 2009). Indeed, when Chekaf, Cowan and Mathy 

(2016) conducted a study of how repeated exposure to sequences of visual elements could be 

compressed into pairs (chunks) based on their features (shape, color, size), there was no 

mention of SL. Strikingly, they even predicted behavioral patterns that closely resemble those 

observed in SL experiments involving TP learning: “within-chunk transitions would more 

often be made correctly than between-chunk transitions” (Chekaf et al., 2016: p. 101). 

Likewise, past work on SL has rarely made direct connections with the memory literature 

(though see Schapiro et al. 2012, 2014, for exceptions, and Christiansen, 2019; Isbilen, 

McCauley, Kidd, & Christiansen, 2017, for current perspectives).  

To be clear, the split between research areas is a typical product of historical divisions 

of research communities into predefined research areas. It is not a characteristic unique to SL 
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research. In that sense, just as SL research is insulated from adjacent research paradigms, the 

reverse is also true. However, in the case of SL, this isolation is particularly problematic 

because it stands in the way of SL playing a stronger and more expansive role in theories of 

cognition, as it should. Importantly, the split between domains has led researchers to 

investigate the learning of regularities without considering the specific roles they subserve in 

the different cognitive functions. Consider, for example, two sub-domains of language, 

speech perception and orthographic processing. Both of these linguistic functions 

undoubtedly require SL, but markedly differ in the type of statistical information that is the 

target of learning. Speech consists of a continuous unfolding input, whereas print has critical 

spatial characteristics. Words in speech are co-articulated, so that their boundaries have to be 

extracted through e.g., TPs or chunking, whereas word boundaries in print are given for free 

by blank spaces in most languages. Efficient print processing requires representations of 

sublexical letter combinations with some letter-position invariance (i.e., quickly registering 

ing in knowing, and knowingly, see Frost, 2012, for review), whereas speech does not. These 

are just few examples demonstrating that there is little gain in discussing “SL computations” 

in a vacuous general context, without tying them to the specific cognitive operations and 

especially to the nature of representations that are characteristic of a given domain. As such, 

the problem of a domain split is particularly problematic in the context of SL research 

relative to other domains of cognition because, in a sense, SL research is supposed to tell us 

something fundamental about virtually every domain of cognition, but without deep 

integration in other domains it is unable to do so. 

The two aforementioned examples provide an illustration of our concerns regarding the 

integration of SL with other fields. It is important, however, to quantify the overall 

integration of SL research objectively. One possible approach to do so is to examine the ratio 

of citations of SL research by other research communities. We thus focused on the proportion 
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of citations from within the field (as defined by our literature search), and from outside the 

field. Figure 5 plots the results. It shows that whereas the first decade of SL papers had an 

even distribution of citations from within and outside the field, the last decade has seen a 

sharp drop of external citations. Although part of this change in proportion likely is a product 

of the expansion of the SL community, in general references to the experimental findings of 

SL research seem to be increasingly confined to the SL community alone, characterizing a 

pattern of growing isolation from other research communities. Although an increase in 

within-field citations are to be expected as a research community grows—as ideas and 

methods are being refined—the dramatic drop in external citations since 2008 is nonetheless 

cause for concern. 

In summary, several different perspectives converge to indicate that SL research is 

relatively isolated with regards to research on other areas of cognition. Because SL as a 

theoretical construct has been taken to provide a viable and parsimonious explanation of how 

regularities are learned across domains of cognition, the isolation of SL research is 

disadvantageous not only for advancing SL theory but also for advancing theories in other 

relevant domains. 
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Figure 5. Proportion of citations that originate from outside the SL community, for each of 

the top 150 most cited articles in our database. Year refer to citations to SL research within 

that year. The “SL community” is defined as all the articles in our database.  

  

2.4  The degree of specification in SL theory  

Our starting point is that productive advances in any research field rest on developing 

precise operational terms that lead to fine-grained distinctions and well-specified predictions. 

This is because with abstract sketches, individual researchers might use a given term to mean 

very different things, obscuring how specific findings relate to one another. Without a 

precise language for scientific discourse, researchers may have different assumptions and 

intuitions regarding key questions without putting these issues on the table explicitly.  

 Consider for example the question of what is learned when patterns of regularities are 

embedded in a continuous input stream, such as the stream of syllables in the Saffran et al. 

(1996) experiment. Initially, there was no detailed account of exactly what was learned and it 
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was unclear whether different researchers had similar views of how SL occurs. Only when 

researchers began to be more explicit about this question through computational formalisms 

(e.g., Endress & Mehler, 2009; Perruchet & Poulin-Charronnat, 2012; but see Perruchet & 

Vinter, 1998, for an earlier example) did clear and fundamental differences in perspective 

became apparent. The consequent discussions revolved around whether TPs alone could lead 

to word-like chunks, or whether other cues such as prosodic information underlie stream 

segmentation. Without taking a stand on this specific matter, it exemplifies the critical value 

of specification.  

Similarly, a recent model of SL in the hippocampus (Schapiro et al., 2017) offers an 

explicit and testable theory of the central role of the hippocampus in SL. This stems from 

making precise claims regarding the nature of representations in different parts of the 

hippocampus, as well as the computations performed in each distinct neuroanatomical area. 

Such work offers specific novel predictions that can open this account to falsification and 

refinement through coordinated empirical studies. Hence, only when researchers are clear 

and precise about what they hypothesize regarding learning representation and processing, 

can contrasting views be revealed and resolved empirically.  

The above examples illustrate, in many ways, the successful consequences of 

developing well-specified accounts of particular questions relevant to the SL research 

community. Considering the first two decades of SL research, important questions 

nevertheless have remained without precise answers. To name a few: What are the 

regularities in the environment that are the object of perception in a given domain? How are 

these regularities represented following learning? What exactly is the learning mechanism(s) 

for various types of regularities? What is the relevant timescale for different learning 

situations? What are the processes that constrain the learned representations? What are their 

learning outcomes? How does the measurement of performance in a task interact with the 
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learning process? Obviously, answers to these questions would depend on providing more 

specific descriptions of what exactly is learned and how. A considerable portion of past SL 

research, however, has been relatively vague about these issues, mainly reverting to abstract 

verbal sketches, and principally concluding that a domain-general mechanism has led to 

learning the regularities in the experiment.  

This vagueness has led to a paucity of intense debates in SL past research. It contrasts 

quite strikingly with research in adjacent fields with links to SL such as memory, attention, 

and perception, which are characterized by intense controversies sparked by well-specified 

theories and models. For example, is there a domain-specific neurobiological module 

dedicated to processing faces? (see Gauthier & Tarr, 1997; Plaut & Behrmann, 2011); is 

attention object based or location based (see Chun & Jiang, 1998; Logan, 1996; Roelfsema, 

Lamme, & Spekreijse, 1998)?; is the structure of semantic memory determined by statistical 

regularities or innate constraints (e.g., Caramazza & Sheldon, 1998; Rogers et al., 2004)? 

These debates are a direct consequence of developing very detailed theories and have 

contributed to advancing our understanding of the aforementioned domains by making 

assumptions explicit and by providing testable a priori predictions for evaluating these 

assumptions. These more specific accounts have also forced researchers to be more precise in 

their discourse, preventing findings from being taken to conform to fuzzy verbal theories, 

which in turn makes falsification unlikely. There is every reason to expect that being 

similarly explicit and detailed in the development of SL theory would also lead to similar 

large advances in our collective understanding of how regularities are learned. Linking back 

to the previous section of the paper, it also seems obvious that a well-specified theory has 

even greater potential for deep integration with other adjacent fields of cognition.  

 One salient symptom of abstract sketching is how SL has been defined. A common 

occurrence in the field was merging the theoretical construct of SL with the experimental task 
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that is supposed to tap into it: If what participants do in the task is SL, then SL is what 

participants do in the experiment. We refer to this circularity as Tautologism. The problem 

with Tautologism is self-evident: If the mechanism underlying the theoretical construct is 

explained by describing what participants do in the task that is taken to tap into it, then the 

theoretical construct does not stand by itself, and is bound to the description of task 

performance. With this state of affairs, little can be said about its internal structure, and a 

theory of SL is no more than a redescription of the data. A similar phenomenon has occurred 

in the domain of intelligence measurement, where there was no agreement regarding an 

independent definition of human intelligence, mainly because of issues related to cultural bias 

in measuring intelligence. Eventually, the solution was to define IQ by reverting to 

Tautologism: “IQ is what IQ tests measure”. However, whereas the research community on 

intelligence has acknowledged this problem explicitly (see for example, Mackintosh, 1998), 

Tautologism in SL research has been pervasive, and typically implicitly embedded in the 

research assumptions. Here are but a few quotes illustrating this, including one of our own:  

— “The best-known example of this statistical learning ability is the use of the conditional 

relation between speech sounds” (Thiessen, 2011). 

— “An individual’s capacity for SL can be measured in a number of ways. For instance, it 

can be assessed by asking a participant to watch a continuous stream of evenly paced, 

individually presented items on a monitor.” (Arciuli & Simpson, 2012).  

— “The rationale of such approaches is to show that some measure of statistical learning 

ability, as assessed in tasks requiring implicitly learning relations among probabilistic 

sequences, is correlated with performance on one or more tasks involving language (Onnis, 

Frank, Yun, & Lou-Magnuson, 2016; italics added). 
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—“We hypothesized that if a general statistical-learning ability underlies learning to read in a 

new language that is characterized by a novel set of statistical regularities, then relative 

success in learning the transitional probabilities of random visual shapes would predict the 

speed and success of learning to read a new language.” (Frost et al., 2013). 

 

These quotations show how the ability of SL is explicated by describing what 

participants do in a narrow set of tasks focusing on the learning of TPs in continuous input. 

Tautologism is a consequence of underspecification and lack of preciseness because it treats 

SL as a black-box device. Without a precise description of candidate representations and 

computations operating upon them, the explanation for SL is no more than a redescription of 

performance in SL tasks. Implicit Tautologism conveys the false impression that the 

mechanisms underlying SL are understood to a first approximation, and all that remains is to 

sharpen our understanding of SL by tweaking the parameters of the task to work out the 

details. Moreover, an underspecified description of potential SL representations and 

computations may lead researchers to oversimplify the learning problems, thereby reducing 

ecological validity.  

2.5   Assessing ecological validity 

The original interest in whether children could parse an input stream based on statistical 

regularities alone was well motivated in and of itself, providing groundbreaking insights. 

However, as revealed in our literature review, past SL research has typically focused on tasks 

wherein only a very restricted type of statistical regularities is available for learning in the 

input stream, and participants were passively exposed to these inputs. We elaborate below on 

how each of these trends has impacted the ecological validity of what we know about SL and 

its role in a range of cognitive operations.  
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Let us consider first the types of statistical information. In the initial work by Saffran 

and colleagues (1996), the focus was on whether a continuous stream of four artificial three-

syllable words could be segmented based solely by learning the differences in TPs within 

versus between items. The use of a small set of artificial nonwords had the benefit of 

providing a powerful and transparent demonstration that in principle the continuous stream 

can be parsed solely by attending to differences in TPs alone. Since that initial study, a 

number of studies have provided evidence that the original findings generalize across 

different types of stimuli and domains. In this vein, Pelucchi, Hay and Saffran (2009) 

replicated the typical TP finding, but with richer stimuli based on a natural language, 

presenting infants with child-directed speech in Italian. Similarly, Schapiro et al. (2012) have 

used highly complex fractal visual objects to examine the learning of their co-occurrence. 

However, in terms of ecological validity, learning the regularities in the environment rarely 

involves learning TPs alone. In the domain of language, for example, Chinese readers learn 

that for 80 percent of logographs, the semantic radical appears on the left side, whereas the 

phonetic radical appears on the right side. In Spanish, speakers learn that words cannot end 

with the phoneme /m/. In English, native speakers learn that the bigram LT tends to appear in 

word-final position. In Semitic languages, speakers learn the constraint of obligatory 

contours: roots can have the form of ABB but not of AAB—the doubling consonants can 

only occur at the second and third root position (e.g., Berent, Everett, & Shimron, 2001). 

Similarly, Marcus et al. (1999) has shown how infants can learn regularities at a higher of 

abstraction than simple TPs, such as AAB (generalizing this reduplicative pattern to novel 

stimuli). All these examples are not easily captured by an exclusive focus on TPs alone, but 

may be captured by mechanisms sensitive to other type of regularities, though this has 

received scant attention (but see Christiansen, Conway, & Curtin, 2005).  
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 In the same vein, most past studies have used a fixed value of TPs throughout the 

stream, often with TPs of 1.0 within the repeated units (i.e., fully deterministic regularity). 

While learning such a simple regularity is an ideal starting point, the statistical regularities 

governing patterns in the real world span a wide range of values. While at some domains TPs 

can be exceedingly high, in others, such as language, they can be exceedingly small. The 

process of learning a large set of low probability regularities over time necessarily involves 

additional memory processes related to long-term memory and consolidation (see Gómez, 

2017). This creates a rift between the experimental simplification and the ecological 

equivalent it is supposed to reflect (Yang, 2004; see Bogaerts et al., 2016, for manipulation of 

TPs). 

Similarly, as our database shows, past work focused to a large extent on presenting 

patterns composed of the same number of elements (i.e., pairs, triplets). However, if all 

patterns composing the stream have the same length, the problem of segmenting the stream 

into its constituents is vastly simplified. To be concrete, if the stream is composed of N 

patterns, and all patterns are composed of K elements, finding the boundaries of one single 

pattern removes all remaining uncertainty regarding the identity of the remaining patterns in 

the stream. Indeed, there have been suggestions that some perceptual cues in the stream drive 

the segmentation procedure (e.g., Endress & Mehler, 2009). Obviously, if the stream was 

composed of patterns varying in length, say K=1-5 elements per pattern, as all languages are 

(no language has words of a fixed syllable length), segmentation would be a much more 

challenging problem to solve, and may require additional mechanisms. Although the leading 

computational models of SL (e.g., PARSER, Perruchet & Vinter, 1998; SRN, Elman, 1990; 

TRACX, French et al., 2011) are set to deal with non-uniform continuous streams, at present 

there is little experimental evidence regarding learning performance of complex streams, and 

what the underlying mechanisms and computations for such learning might be. 
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Finally, SL research has almost exclusively focused on methods in which participants are 

passively exposed to an input stream, where the only learnable information is that which is 

contained in the stream. Such an approach implicitly adopts an apathetic perspective of the 

learner, taking organisms to be automatic absorbers of environmental regularities. That some 

pattern regularities can be learned by mere exposure is not contested. Indeed, children and 

adults have been shown to automatically segment a continuous input stream, even while 

engaging in a secondary covert task, such as drawing computer illustrations (Arciuli, 

Torkildsen, Stevens, & Simpson, 2014; Saffran, Newport, Aslin, Tunick, & Barrueco, 1997). 

Nevertheless, just because learning can easily occur incidentally in such passive 

circumstances does not mean that SL typically is a passive process where regularities are 

automatically detected, registered, and learned. Indeed, in a more ecologically valid setting, 

this type of “pure” statistical learning is rarely the case.  

Consider for example the question of how children learn to map the spoken forms they 

hear into the objects they see. Given the extensive uncertainty regarding the correct mapping, 

this is a clear SL problem. Two recent lines of research that have explored how this is 

achieved have reached similar conclusions: children are not passive learners but are actively 

shaping the learning process by constraining the information to which they are exposed. For 

example, Smith and her colleagues (e.g., Clerkin, Hart, Rehg, Yu, & Smith, 2017; Smith, Yu, 

Yoshida, & Fausey, 2015) have shown that the manner by which children focus on objects 

throughout development determines what is in the center of their visual field and for how 

long, thereby reducing significantly the extent of ambiguity regarding the correct mappings 

of object-label pairs. Breaking into language through SL is, thus, determined by an intricate 

set of specific interactions of the learning child with his/her environment. In a different 

related line of work, Frank and his colleagues (e.g., Frank & Goodman, 2014; Yurovsky & 

Frank, 2015) have shown that children consider a variety of social cues to actively seek out 
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additional constraints beyond the information presented to them, so as to try to resolve 

ambiguity during learning (see also Goldstein & Schwade, 2008). Taken together, these 

studies demonstrate that a good SL theory is one which considers and focuses on the 

interactions of the organism with the environment (see also Dale & Christiansen, 2004).  

Overall, patterns in the natural environment are vastly less constrained than in typical 

SL experiments, are characterized by more subtle and varied statistical regularities, and the 

learning situations are different than those tested in typical statistical learning tasks. 

Naturally, initial SL experimental work intentionally distilled the learning situations into 

easily tractable pieces to obtain a set of existence proofs that learning can occur in principle. 

Nevertheless, with time, the lack of methodological expansion of SL research has led to 

reduced ecological validity.  

 

To summarize Part 1, the first two decades of self-identified SL investigations have 

formed a large research community that extensively examined the learning of regularities in 

the auditory, visual, and tactile modalities. An important part of this research was harnessed 

to provide an existence proof that humans and non-humans are sensitive to the statistical 

properties of the input, focusing to a large extent on transitional statistics. This was done by 

using variations of a relatively narrow set of experimental tasks. We have outlined the 

important merits and promise of this methodological approach but also its potential 

weaknesses and limitations in making SL an important theoretical construct in cognitive 

science. We now move on to examine the most recent SL research, aiming to provide a 

perspective regarding the trajectory that this field has been taking most recently. 

 

3. Part 2: Present directions in SL 
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Our aim in this part is to examine whether the initial characteristics of past SL research 

have undergone changes in recent years, and if so in what direction. Having this goal in mind, 

we focused on SL papers published in the period between 2016 to 2018. Our search used the 

same criteria as before, targeting all journal articles that contained the term “statistical 

learning” in their abstract, title, or keyword list. Given the brief period since publication, the 

number of citations could not serve as a reliable criterion. Our only requirement was 

therefore that papers would be cited at least once. Our search returned 151 such papers. 

Manual inspection revealed that 5 of these papers were not related to SL, and 16 additional 

papers centered on theoretical reviews, corpus analyses, computational modeling or 

description of statistics in various domains, which left us with 130 experimental papers—a 

sample that has about the same size as the one the served the “past” analysis (see Figure 6 for 

a PRISMA flowchart). 

 

 

Figure 6. PRISMA flowchart for the Present SL research literature search 

 

Our analysis of “present” research followed then similar criteria as “past” research. 

Thus, we first focused on whether the scope of methodologies and research questions have 

widened. Our findings are presented in Figure 7. The figure reveals less uniformity in the key 
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design of studies, suggesting that present SL research moves towards greater expansion in 

research questions and methods. Here we highlight some important observations:  

 

 

Figure 7. Frequency of use of different experimental paradigms in SL articles 2016-2018. 

 

 The traditional SL paradigms are still dominant. However, the original task 

reported by Saffran et al. (1996), which constituted over 60% of past 

experimental research, constitutes 35% overall of the present studies, with AGL 

and cross-situational learning accounting for 10% and 9% of the distribution, 

respectively.  

 Although most experiments that involved familiarization with a continuous 

input in the auditory modality used syllables as linguistic units (about 60%), 

40% extended research to music pitch, beat, or linguistic tones.  

 About 26% of all empirical studies involved neurobiological measures, such as 

EEG recording, BOLD activation, connectivity, and neural oscillations (see our 
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next section on novel approaches to SL). This reflects the permeation of 

neuroscience into SL research. 

 7% of all studies focused on special populations such as dyslexics, aphasics, 

children with SLI, Williams syndrome, and autism. 

 Considering the structural properties of experimental designs, out of the papers 

that employed the typical task of presenting “words” embedded in a continuous 

input stream, 90% used TPs of 1.0, and 98% used patterns that were uniform in 

size (though see Trecca et al., 2019, for an exception). These were, as a rule, 

triplets or pairs, where number of patterns range from 4-9.  

 About 72% of studies involving SL or AGL tasks used a 2AFC test following 

familiarization, which was typically brief (in the range of minutes). 

 As before, only 6% of studies examined species other than humans. 

 

These statistics reveal that recent experimental work, self-identified as “SL research”, 

does appear to be undergoing some important changes. First, studies more frequently move 

away from established proof of concept to present research exploring the learning of 

regularities in a range of domains. To name a few examples these (labeled ‘Other’ in Figure 

7) include, social learning in infancy (Crivello, Philips, & Poulin Dubois, 2016); learning 

melodic structure (Rohrmeier & Widdess, 2017); pitch (Daikoku, Yatomi, & Yumoto, 2016); 

face discrimination (e.g., Altvater-Mackensen, Jessen, & Grossmann, 2016; Dotsch, Hassin, 

& Todorov, 2016); action prediction (e.g., Monroy, Gerson, & Hunnius, 2017; Schuwerk, 

Sodian, & Paulus, 2017); orthographic regularities (Chetail, 2017; Hex & Tong (2016); and 

natural images (e.g., Denison, Sheynin, & Silver, 2017).  

Our label of “Other” SL methods spans a range of experimental approaches. Here, again, 

we offer a few characteristic examples. To identify the neural correlates of audiovisual SL in 
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musicians and non-musicians, Paraskevopoulos et al. (2018) used complex streams that 

involved statistical regularities in four dimensions, colors, shape, pitch, and timbre, in an 

oddball paradigm. Sloan and Johnson (2018) tracked eye-movements of infants in a spatial 

array of shapes appearing on a screen in 5 locations, examining the learning of illusory and 

embedded visual sequences to assess whether they are represented as chunks or not. Giorgio 

et al. (2018) employed brain imaging to track the functional brain networks implicated in SL 

by presenting probabilistic sequences using Markov chains of stimuli. Yu and Zhao (2018) 

investigated how SL shapes object representation by exposing subjects to objects in 

structured and non-structured streams, showing how pairing objects in space, impacts the 

judged distance between them. 

These few examples suggest important methodological advances. We first note the 

increased introduction of neurobiological measures for tracking learning. Aside of having the 

promise of advancing towards a mechanistic explanation of SL, such measures often provide 

information regarding how learning actually unfolds (see for example, Farthouat et al., 2016). 

Following this goal, behavioral online measures that provide information regarding the time-

course of learning have also been introduced (e.g., Siegelman et al., 2017). This is a 

significant step forward as it holds the promise of assessing learning more reliably (see 

Siegelman et al., 2017, for discussion). 

 However, in spite of this expansion our analysis above shows that, to some extent, SL 

research is still often focused on probabilistic predictions, often tapping full regularities 

where TPs are 1.0. Similarly, patterns are uniform in size (mostly pairs or triplets), limited in 

number (mostly 4-8), with brief familiarization streams (typically in the range of minutes). 

Importantly, the unitarian view of SL still dominates research methods, where SL is often 

tacitly assumed to be akin to a domain-general “black box”. A given task is thus typically 

chosen as a proxy for this unified ability, without much discussion of the targeted 
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computations. From this perspective, underspecification is still the rule rather than the 

exception in present studies. This leads us then to the final part of our discussion where we 

discuss possible future directions for SL research.  

 

4. Part 3: Towards a more pluralistic approach to SL 

 

Our aim in delineating the current limitations of SL research was to outline possible 

principles for a novel framework for SL research that would enhance its overall impact in 

cognitive science. In this part of our discussion, we offer possible directions for future 

research. To be clear, our suggestions for future directions should not be taken to undermine 

the important contributions of SL research so far. Rather, we argue that to achieve its initial 

promise, SL research should now adopt different working assumptions, set novel goals, ask 

different questions, and consider different methodologies. In what follows, we describe the 

basic tenets underlying our approach, and outline our proposal for a novel research agenda 

for SL. 

 

4.1  A realistic view of the learning environment 

 Two decades of research have produced an irrefutable proof of concept: humans and 

non-humans are able to perceive and learn the range of spatial or sequential regularities that 

experimenters typically embed in the sensory input. However, from the stand-point of 

external validity, the question at hand is whether the experimental environment resembles the 

ecological environment in which SL is hypothesized to occur. Here to re-emphasize: we take 

it as self-evident that experimental designs are inevitably constrained and necessarily 

constructed to focus on a limited set of independent variables to avoid experimental 

confounds. Thus, we do not take issue with the inherent procedures imposed by the rigorous 
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nature of scientific investigations; nor do we take issue with the limitation of scope of any 

given SL study. Our claim is that the ecological environment in which learning typically 

occurs is still distant from current SL research to an extent that our understanding of how 

organisms learn the full range of regularities of their environment is, at best, very partial, and 

at worst, inaccurate. Importantly, the typical experimental designs of SL research have 

constrained the range of questions that have been asked about learning regularities, with 

some critical issues being missed as a result. 

  The first fact to consider is that organisms are bombarded by a virtually infinite range 

of regularities in the environment (see Saffran & Kirkham, 2018, for a similar argument 

within the domain of language). Whereas in a given experiment, participants are passively 

presented with a relatively simple input containing, in most cases, one type of regularity (e.g., 

K “words” with TPs of p within elements, and q between words), human babies, zebra 

finches, or cotton-top tamarins are continuously exposed to a myriad of regularities in all 

sensory modalities but learn only a subset of these. What mechanisms lead species to focus 

on a given range and type of regularities, disregarding or being insensitive to others?
8
 Can 

multiple regularities be learned at the same time? If so, what are the constraints regarding the 

capacity of simultaneous assimilating multiple regularities? If not, is there a priority for 

learning one type of regularity over another? What determines these priorities? These are but 

a handful of questions to which we, to date, have no clear answers. Yet, they are fundamental 

for our understanding of SL, once a realistic ecological view of the learning environment is 

adopted.  

 

The challenge of multiple regularities 

                                                 
8
 Here we focus on regularities that, in principle, could be perceived by an organism given its 

neurobiological endowment, yet, they are not.  
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A main theoretical shift, in the present context, is to consider the learner as “active” in 

the sense of him/her focusing on a specific range of regularities, and allocating priorities 

regarding what will be assimilated at a given time and what will not. In contrast to the typical 

lab setting where the regularities are selected for participants (whether humans or 

nonhumans), organisms are faced continuously with a multitude of visual and auditory 

regularities but do not learn them all. How is all this orchestrated? For a given species, what 

cues determine which specific streams of regularities should be attended to and learned, and 

which should be ignored?  

Some initial insights regarding possible mechanisms can be gained from two recent 

studies. In the first, Ferguson and Lew-Williams (2016) investigated children’s ability to 

learn patterns such as ABB (generalizing le-di-di to ko-ga-ga, see Marcus et al., 1999). 

Marcus, Fernandes, and Johnson (2007) have shown that when children hear speech sounds, 

they learn the patterns, but when they hear non-speech sounds such as sine-wave tones, they 

do not. This seems like an innate mechanism of selection, and indeed this finding was 

originally taken to suggest that speech is “special” given the unique human capacity for 

language (see for example, Liberman & Mattingly, 1985). Children, it was concluded, are 

hardwired to attend to speech. However, Ferguson and Lew-Williams (2016) demonstrated 

that if children are previously exposed to a video of two persons communicating in tones (a 

communicative context), learning does occur for tones, just as it occurs for speech sounds. 

Hence, it is not the speech signal that matters but the information regarding the 

communicative value of the signal.  

Two important conclusions can be drawn from this example. First, that for children, 

and presumably for any organism, there are some preferences regarding what regularities 

should be attend to, and what regularities should be initially ignored. A system that tracks all 

possible regularities in the environment will simply not work, because memory is limited. 
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Second, one important source of priority is informativeness—what in the environment carries 

important information for a given species. Communication is critical for many if not for most 

species, be they humans or zebra finches. Consequently, learning regularities that subserve 

communication within species will be a primary filter for selection among the infinite 

regularities presented in the environment. However more generally, if the informativeness is 

indeed an important constraint for shaping organisms’ sensitivity to specific patterning in the 

environment, then a viable theory of SL should first focus on mapping what types of 

patterning carry what information for a given species. This will enable researchers to draw 

clear, testable predictions regarding what would be learned easily, and what would not.  

The second study concerns preferences to attend to regularities at a specific range of 

complexity. In a recent study, Kidd, Piantadosi, & Aslin (2012) demonstrated that infants 

prefer to attend to events that are neither highly unpredictable nor highly predictable. This 

“Goldilocks effect”, was explained by Kidd and her colleagues as a characteristic of 

immature members of any species, that must be highly selective in sampling information 

from their environment in order to learn efficiently. Kidd et al. (2012) were clearly targeting 

a new and overlooked aspect of SL in arguing that children must avoid learning from events 

that are too simple or too complex. However, this constraint is not restricted to immature 

members of species, it is a prerequisite of efficient learning even when organisms mature. 

Learning abilities do indeed increase with development, but they are always limited. 

Selection of relevant regularities should, consequently, always be a primary mechanism for 

shaping SL at any age.  

The findings of Kidd et al. (2012) resonate also with what we know about the 

neurobiology of tracking uncertainty. Recent neuroimaging studies have identified brain 

systems that track uncertainty in a curvilinear U-shaped function, in both the visual and 

auditory cortices (Nastase, Iacovella, & Hasson, 2014; and see Hasson, 2017, for a review). 
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Thus, for these systems, full randomness or full regularity are alike in terms of 

informativeness (or lack thereof), and they are tuned to the quasi-regularities in the 

environment, whether visual or auditory. Note that current SL research typically puts the 

demarcation line between random and non-random streams, implicitly assuming that 

everything that is not random is, in principle, the target of learning. However, the two lines of 

research we have reviewed here suggest that this assumption may be an oversimplification.  

 

The challenge of complex streams. 

Independent of the issue of learning priorities discussed above, the cascade of 

regularities in the environment is almost never as simple as in laboratory experiments. Thus, 

even if the sensory streams would carry the right amount of informativeness, and have 

adequate levels of uncertainty for tracking the statistical information, typically they would be 

far more complex than those employed in current laboratory settings. Visual and auditory 

inputs often contain multiple regularities. A typical example would be infants in bilingual 

environments, where speakers may switch from a first language to a second language without 

any cue that a switch was about to occur. How are regularities in these environments 

processed? 

The current evidence regarding how learners deal with multiple regularities is relatively 

meager and mixed. For example, Gebhart et al. (2009) reported a primacy effect where, in the 

absence of a contextual cue, the first set of structural regularities in two sequentially 

presented streams was learned, whereas the second set was not. In contrast, tracking learning 

online, Siegelman et al. (2017) showed that the second set of regularities is learned as well 

(and see Bulgarelli & Weiss, 2016, for similar conclusions). Weiss, Gerfen and Mitchel 

(2009) demonstrated that when two streams overlap in their statistics, a contextual cue (e.g., 

change of voice) is required to learn both. In the same vein, Mitchel and Weiss (2010) 
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showed that learning of two speech streams is facilitated when it is accompanied by coherent 

visual information. Using an AGL task, Conway and Christiansen (2006) found that the 

simultaneous learning of two sets of different regularities is possible when the sequences 

from two separate grammars are presented in different modalities. Moreover, Vuong, Meyer 

and Christiansen (2016) demonstrated that it is possible to learn both adjacent and 

nonadjacent dependencies using an experimental paradigm in which an AGL is embedded 

within an SRT task. This set of findings raises intriguing questions regarding how the 

learning of complex streams is orchestrated in ecological settings. Cleary, evidence regarding 

this critical issue is scarce. 

To complicate matters further, words in continuous speech vary in length, and vary in 

the distribution of TPs within and between elements. This complicates learning significantly. 

Indeed, Hoch, Tyler and Tillmann (2013) demonstrated that inserting units of different length 

into the auditory stream, hinders learning (though partial learning is possible, Trecca et al., 

2019). In the same vein, as reported above, Lew-Williams and Saffran (2012) showed that 

previous exposure to disyllabic words hinders infant performance in streams containing 

trisyllabic words, and vice versa. If SL is to play a major role in explaining language 

acquisition, a comprehensive theory of SL should specify the relevant bootstrapping 

mechanisms and the range of cues that are utilized for processing complex streams, as well as 

how they interact. 

The substantial impact of the findings by Saffran et al. (1996) was in demonstrating 

that word boundaries can be perceived given differences in TPs within and between words, so 

that relatively simple learning mechanisms can potentially account for language learning. 

Yet, the linguistic environment is exceedingly complex, morphological structure often 

concatenates an array of phonological units that differ in size and structure, differences in 

frequencies of co-occurrence are typically very subtle, regularities are intermixed with 



 49 

irregularities, and correlations are remarkably small. Whether the mechanisms revealed in 

common SL experimental settings can be taken as a proxy for how language acquisition 

proceeds, is still an outstanding question (though some promise may be found in providing 

multiple cues to the relevant structure; Van den Bos, Christiansen & Misyak, 2012). 

To summarize, given the infinite complexity of the environment, an ecological theory 

of SL should focus on unravelling empirically the series of constraints that predict what will 

be learned, what will not, and why it is so. Importantly, the theory should explain how 

learning proceeds when the stream to be learned is complex and not uniform in terms of sizes 

of units and the statistics of their co-occurrence.  

 

4.2 Adopting a more realistic view of the learner 

Organisms learn the regularities of their environment continuously from birth (see James, 

2010, for earlier fetal learning). Hence, learning of regularities typically involves the 

updating of existing representations to facilitate subsequent processing, rather than 

establishing entirely novel ones. In other words, learners typically come to the task of 

learning having being exposed to the distributional properties of sensory events in their 

environment, so that any novel learning occurs against the backdrop of prior experience with 

similar or related input. The learner, then, is not a tabula rasa—a blank slate—upon which SL 

can work. From an evolutionary perspective, efficient processing requires that novel 

regularities in the incoming input should be weighed against what the organism has already 

learnt about its environment. Simple bottom-up processing of the input would not do. Indeed, 

why evolve mechanisms for aggregating the distributional properties of the environment, as 

has been demonstrated in a wide set of studies (e.g., Clerkin et al., 2017), if this accumulated 

learning is not used online for improving processing? The critical questions for investigation, 

therefore, are: How does prior exposure to the incoming signal influence the learning 
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process? How, in the long term, is the novel information assimilated to facilitate the 

organisms’ future behavior in that environment?  

Current SL research has very few answers to these basic questions. The main reason is 

that most SL studies implicitly consider learning to be a process of assimilating novel 

regularities. Siegelman, Bogaerts, Arciuli, and Frost (2018) label this “the tabula rasa 

assumption” of SL research (see Christiansen, Conway, & Curtin, 2000; Christiansen & 

Curtin, 1999, for an earlier version of this criticism). The “tabula rasa” assumption considers 

the learning outcomes of an experiment to reflect only the input structure set by the 

experimenter alone. In typical experiments of visual or auditory SL, the relevant factors 

would be, for example, the number of patterns in the stream, the TPs within and between 

patterns, the similarity of test items to foils in the subsequent 2AFC test phase, etc. 

Underlying this approach is the assumption that the patterns as well as the foils embedded in 

the stream were unknown to the participants at the start, so whatever is acquired (or not) 

during the familiarization session reflects the net efficiency of SL computations. The “tabula 

rasa” assumption may largely be valid in experimental designs when the learned material is 

very novel (e.g., abstract shapes, Turk-Browne et al., 2005; fractal stimuli, Schapiro et al., 

2014), and importantly, when there is no prior knowledge regarding co-occurrences of 

elements in the stream. It is clearly false, however, when the learned material is not novel, 

such as many studies involving linguistic material. For example, humans hear speech 

continuously from birth, and accumulate knowledge about the distributional properties of 

speech sounds in their native language every day of their lives. This means that they already 

have expectations regarding the co-occurrence of speech sounds in their language. The 

critical question is, therefore, how the well-established representations regarding probabilistic 

co-occurrences of speech sounds in one’s native language determine the outcome of 

subsequent learning. 
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There is ample evidence showing that prior linguistic exposure affects performance in 

ASL tasks, such as the one originally offered by Saffran et al. (1996). For example, pre-

exposing participants to isolated words or part-words before the beginning of the 

familiarization stream has a substantial effect on ASL performance, which can either 

facilitate (Cunillera, Camara, Laine, & Rodriguez-Fornells, 2010; Lew-Williams, Pelucchi, & 

Saffran, 2011), or hinder (Perruchet, Poulin-Charronnat, Tillmann, & Peereman, 2014; 

Poulin-Charronnat, Perruchet, Tillmann, & Peereman, 2016) learning. Some studies have 

shown that phonotactic cues characteristic to a particular language can drive segmentation of 

the speech input (e.g., Finn & Hudson Kam, 2008; Mersad & Nazzi, 2011; Onnis, Monaghan, 

Richmond, & Chater, 2005). In a similar vein, native language background can also affect if 

and how learners might segment an artificial language (e.g., Caldwell-Harris, Lancaster, 

Ladd, Dediu, & Christiansen, 2015; Toro, Sebastián-Gallés, & Mattys, 2009; Trecca et al., 

2019). Together, these findings suggest that differences in prior linguistic experience lead to 

different results in the ASL task. They also show that the entrenchment of the statistics of 

one’s native language inevitably produces biases towards probable co-occurrences of speech 

elements, influencing the patterns of subsequent learning. That is, ASL performance does not 

simply reflect the learning of the artificial patterns in the task, as was originally assumed. 

Rather, performance reflects how these new patterns fit with the statistics of prior language 

exposure—and this holds for learners of all ages. 

The impact of entrenchment in the auditory SL task was recently demonstrated by 

Siegelman et al. (2018) by considering the internal consistency of the “words” employed in 

the task. When there is no prior knowledge whatsoever, and thus no possible predictions 

regarding the co-occurrence of elements in the stream, then all patterns—“words”—are by 

definition equal in terms of the learner’s prior expectations, and this results in high 

correlation in performance between patterns. In contrast, if items are not entirely novel, and 
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implicate some prior knowledge, then the “words” in the stream are not equal in terms of 

what they impose on the learner, and consequently substantial variance between patterns 

inevitably emerges. Siegelman and his colleagues have shown that whereas visual SL with 

abstract shapes always displays high internal consistency, the classical ASL task always 

displays low internal consistency. Thus, learning, for example, “balogi” in a continuous input 

stream, does not predict learning another “word”, such as “gupati”. In this context, our 

finding in Part 1, that about 24% of studies with ASL used the same set of words employed 

by Saffran et al. (1996) carries then critical significance. If different “words” were used in the 

different studies, a significant variability in the experimental outcomes would have probably 

been the result
9
.  

A realistic view of the learner requires a major shift in SL research, taking into 

account learning that interfaces with prior knowledge and learning that does not. In the 

domain of language, therefore, the main focus should be on how prior linguistic exposure 

might affect SL task involving linguistic stimuli (see e.g., Caldwell-Harris et al., 2015; 

Trecca et al., 2019). For example, understanding the impact of statistical entrenchment in 

speech perception would require mapping the cues that could, in principle, impact speech 

segmentation, and then assessing the relative weight of each of these cues and their possible 

interactions with one another. Another possibility is to study SL “in the wild”—directly 

measuring sensitivity to statistics in natural language (for example, as measured via corpus 

analyses) to see how these might relate to language processing (see McCauley, Isbilen & 

Christiansen, 2017). Similarly, a theory of orthographic SL would require weighing the 

relative frequency of individual letters and various possible letter combinations, including 

bigrams, trigrams, etc., given their position within words in the language, Relatedly, it would 

                                                 
9
 Some SL researchers, perhaps implicitly aware of this issue, have used two different input 

streams to avoid potential idiosyncratic effects of a single set of stimuli. However, since the 

two streams were often created so that words of one stream served as foils for the other, they 

remain closely related sharing many of the same entrenchment effects.  
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also need to consider visual factors such as crowding, visual acuity, and other constraints on 

the visual system (see Lerner, Armstrong, & Frost, 2014; Grainger et al., 2016, for 

discussion), then taking into account the correlation of orthographic forms with phonological, 

semantic, and other patterns. Having identified the cue weightings associated with these 

various regularities, the different statistics could then be evaluated in targeted laboratory 

experiments.  

 

4.3 Integrating SL into cognition 

The important role of SL in cognitive science stems from the wide range of processes it 

subserves. As we have argued in Part 1, understanding the learning of regularities requires 

researchers to define, as a first step, the specific domain of learning, whether it is speech, 

visual scenes, objects, faces, grammar, or print, to name a few. Each of these domains is 

characterized by different types of regularities, and different types of computations. Common 

to them all is only a very abstract and vacuous notion of learning “patterns”, per our initial 

definition of SL. While it is possible that there may be something common to all pattern 

learning, very little can be said about it, mainly that the learning focuses on patterns in the 

environment. The increased focus of SL research on a specific type of patterning, that of co-

occurrence of elements in a stream (either through TP statistics or through AGL), has led, to 

some extent, to the conception of SL as a cohesive and independent domain of research in its 

own right, concerned with mapping the constraints of such learning. Here we would like to 

argue that, in the long term, SL research should be incorporated into the different research 

programs of each of the above domains. We label this form of incorporation Domain 

integration, per the logic of Figure 4. It contrasts with Timescale integration which requires 

SL research to converge with what we know about the general faculties that subserve 
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cognition such as memory, attention, or executive functions. In the following, we discuss 

both. 

 

Domain integration 

To outline what domain integration could involve, let us consider two major faculties 

that involve statistical regularities—literacy acquisition and face perception. To assess the 

range of regularities that are assimilated during literacy acquisition, we should consider the 

bulk of established effects reported in the domain of visual word recognition and text reading. 

For example, proficient readers name words with regular spelling-to-sound correspondence 

(i.e. punt) faster than words with irregular spelling-to-sound correspondence (i.e. pint, e.g., 

Cortese & Simpson, 2000). They are faster to name words with a consistent body such as 

mint than words with an inconsistent body like pint (e.g., Jared, McRae, & Seidenberg, 

1990). They automatically decompose morphologically complex words like farmer into stem 

farm, and suffix er, but also pseudo-complex words like corner into corn+er (e.g., Rastle, 

Davis, & New, 2004). They are sensitive to the sequential co-occurrence of root letters within 

different words that correlate in meaning in Semitic languages (e.g., Frost, Forster, & 

Deutsch, 1997). They learn that there is a high probability that the semantic radical of 

Chinese words will be on the left side, whereas the phonetic radical will be in the right side 

(e.g., Lee, 2011). They know that in French, n could probably follow r but not follow c, 

thereby affecting perceptual processing of bigrams in rapid serial visual presentation (e.g., 

Chetail, 2017). They learn that words in English that end with the sound /es/ and are printed 

us are most probably nouns rather than adjectives (Ulicheva, Ahronoff, & Rastle, 2018).  

These findings highlight the types of regularities that are the object of learning in this 

domain, driving the range of behavioral and neurobiological phenomena involved in lexical 

decision, naming, priming, semantic judgements, or eye movements. These regularities 
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concern correlation between letters or letter sequences and sound or sound sequences of the 

language, correlations between short letter sequences such as suffixes and prefixes and 

semantic meaning, regularities regarding spatial location of graphemes and lexical status, 

regularities regarding the probabilistic co-occurrences of letters within isolated words and 

probabilistic co-occurrences of words in a sentence, the regularity between spelling patterns 

and syntactic class, and this is not an exhaustive list. Proficient literacy is, thus, a form of SL 

expertise, related to assimilating a range of statistical regularities that reflect the dimensions 

of language—orthography, phonology, morphology, and meaning. What aspects of SL take 

part in the acquisition of this skill? How exactly do domain-general SL contribute to 

establishing orthographic representations and lexical organization? These types of questions, 

to which we presently have too few answers given that SL and reading research proceed in 

parallel lines, are the basis for our suggestion for domain integration of SL into literacy 

acquisition research (see for example, Arciuli, 2018, for discussion). 

Consider now face perception, another human ability that involves expertise. Within just 

100 ms of exposure, people can form inferences regarding the trustworthiness or 

aggressiveness of unfamiliar faces (Willis & Todorov, 2006). These inferences emerge from 

perceived emotion, facial maturity, or perceived gender that, in turn, are correlated with a 

range of consistent cues such as the distance between eyes and eyebrows, the size of eyes, or 

the ratio of width to height of the face, etc. (e.g., Oosterhof & Todorov, 2008). We know that 

humans are better at memorizing faces of their own race than other races (the other-race-

effect, e.g., Tanaka, Kiefer, & Bukach, 2004), suggesting that experience and learning 

determine performance. Recently, Dotsch, Hassin and Todorov (2016) have shown how SL 

shapes face evaluation. By generating a statistical distribution of facial features through 

sampling of a large number of real faces, Dotsch et al. demonstrated that the location of a 

face on the statistical distribution determines its evaluative inference, the more distant it is 
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from the mean tendency of the distribution, the more negative the inference. Finally, in a 

recent study, Zwebner, Sellier, Rosenfeld, Goldenberg and Mayo (2017) have shown that 

participants examining an unfamiliar face within their own culture, are above chance in 

selecting the person’s true name from a list of several names. Zwebner et al. argued that 

social expectations how a person with a specific name should look like (e.g., hairstyle, etc.), 

eventually influence his/her facial appearance, resulting in some regularity. The manner by 

which such statistical information is perceived by participants probably underlies the effect. 

This brief review leads to the conclusion that, similar to word perception, learning of 

regularities underlies important aspects of face perception. However, the precise nature of the 

regularities that drive the above list of effects remains to a large extent obscure. What is the 

object of learning that leads to face perception expertise? What are the culturally-bound 

internal representations that develop with experience, and underlie emotion inference? What 

aspects of SL are implicated in this form of regularity learning? Only by integrating work on 

SL within face perception research can significant advances be achieved. 

 

Timescale integration 

We now turn to integrating SL theory and research with the general abilities that 

subserve cognition, focusing, as an example, on attention and memory.  

 

SL and attention  

Our analysis of past and present reveals that only few papers have directly target SL 

and attention (but see recent work by Wang & Theeuwes, 2018a,b,c), in the timescale where 

attention determine the learning process. Admittedly, the role of attention in modulating 

cognitive capacities is under-researched across cognitive psychology in general. However, 

the important role of selective attention as a theoretical construct in understanding learning 
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should lead to greater integration of attention research with SL. Indeed, the implicit learning 

literature has investigated the impact of attention on learning for quite some time (for 

reviews, see e.g., Perruchet & Vinter, 2002; Shanks & St. John, 1994). However, the 

extensive work on explicit vs. implicit learning has not been integrated into SL research, 

reflecting another aspect of lack of integration (see for example Perruchet & Pacton, 2006, 

for a discussion). Possibly, once it was established that SL can be incidental, not requiring 

overt attention (e.g., Saffran et al., 1997), integrating theories of attention with theories of SL 

was not a major concern. However, the extent to which selective attention determines SL 

performance is an unresolved issue. For example, in contrast to Saffran et al. (1997), Toro, 

Sinnett and Soto-Faraco (2005) found that speech segmentation in the ASL task is 

compromised without attention allocation. In visual SL, Turk-Browne et al. (2005) offered a 

nuanced discussion of the role of attention, suggesting that attention is required for selecting 

the relevant stimulus properties, while the learning of regularities occurs without intent (and 

see Baker, Olson, & Behrmann, 2004, for the impact of attention on perceptual grouping in 

visual SL). However, using a similar experimental approach, Musz, Weber and Thompson-

Schill (2015) have recently observed that visual SL is not reliably modulated by attention.  

Attention, however, is a highly complex theoretical construct, and simply splitting 

cognitive processes into those “requiring overt attention” and those that do not, may miss 

important aspects of it. Indeed, attention is consistently discussed in the literature on 

contextual cueing (CC). In the CC paradigm (e.g., Chun & Jiang, 1998), participants search 

for a letter target (T) within a spatial configuration of many distractors (L), when half of the 

configurations are repeated and half are novel. The CC effect is defined as the faster 

detection of the letter T in the repeated configurations vs. the novel ones. CC, therefore, is a 

clear SL phenomenon (see Goujon, Didierjean & Thorpe, 2015, for discussion), although few 

researchers explicitly label it as such according to our literature search. It revolves around the 
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implicit learning of spatial contingencies (see Goujon et al., 2015, for discussion), quite 

similar to the seminal study of Fiser and Aslin (2001) with spatial grids. The typical account 

for the CC effect is that learning the regularities regarding the location of the letter T in the 

grid, results in deployment of visual attention towards the right location, leading to faster 

search time. In that sense, CC is a pure attentional effect (e.g., Chun, 2000), demonstrating 

how visual SL learning leads to patterns of attention deployment, even though learning is 

incidental—participants are at chance in recognizing the repeated configurations. Hence, 

incidental learning does not necessarily mean lack of attention deployment. 

The interplay of SL and attention has been recently demonstrated by Wang and 

Theeuwes (2018a,b,c). These studies employed the singleton task, where participants search 

for a salient shape (e.g., a green diamond surrounded by green circles), and are required to 

ignore a distractor that stands out (e.g., a red circle). The typical finding is that the time to 

locate the target increases if a distractor is present in the display, in spite of explicit 

instructions to ignore it, because attention is captured automatically (e.g., Theeuwes, 1992). 

The singleton paradigm thus monitors to what extent attentional selection can or cannot be 

controlled. In their series of studies, Wang and Theeuwes have shown that if the color 

distractor is presented in one location at a high probability, its hindering impact in term of 

capturing attention decreases, and this is independent of participants’ awareness of the 

statistical regularities. Thus, the extent of involuntary capture of attention is modulated by the 

learning of the statistical information regarding distractor location, whether learning is 

incidental or not. They further explored how SL interacts with intentional top-down 

suppression, suggesting an intricate interaction between SL computations and attention 

allocation. In the same vein, Tummeltshammer, Mareschal and Kirkham (2014) have shown 

that the ability to shift attention away from a distractor stimulus to learn a cue–reward 

regularity, changes over the course of development. Similarly, Zhao, Al-Aidros, & Turk-
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Browne (2013) reported that, in general, regularities bias spatial attention so that visual 

search is facilitated at locations that involve temporal regularities, irrespective whether these 

regularities predicted target location. Further, Zhao and Luo (2017) showed that statistical 

regularities in local vs. global scale prioritize local vs. global processing. Taken together, 

these studies demonstrate an attentional priority to statistically structured sources of 

information.  

Discussions of attention in the domain of SL often intermix attention (or the lack 

thereof) with “intent”, “automaticity”, “awareness”, or “explicitness”. Here the problem of 

underspecification becomes perhaps more acute. Integrating SL with theories of attention 

requires a well-specified definition of what aspect of attention is the target of research, and 

what attentional mechanism(s) undergo experimental scrutiny. At present, we know that SL 

can occur largely automatically, without intent, without conscious awareness, and that it is 

often implicit and incidental. Nevertheless, we do not know exactly how mechanisms of 

attention determine what regularities will be attended to and what will not, how they 

modulate learning outcomes, how they change over the course of development to impact SL 

behavior, and how they interact with memory systems to determine whether learning is long 

lasting or not. This should be a primary concern for future SL research. 

 

SL and memory  

For SL to underlie basic functions of cognition, such as language, visual perception, 

or semantic categorization, the continuous perception of regularities in the environment has 

to be assimilated into stable long-term representations. However, when the time course of 

these processes is considered, an apparent paradox emerges. Whereas learning the co-

occurrences of elements in an input stream is exceedingly fast and effortless (neonates right 

after birth already display sensitivity to frequency of co-occurrences of syllables in an 
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auditory stream presented for 15 minutes during sleep, see Teinonen, Fellman, Näätänen, 

Alku, & Huotilainen, 2009), assimilating the regularities in the environment seems to be 

exceedingly slow. Consider the case of language. In general, learning a first (or second) 

language is a slow and effortful process. Thus, there is a striking contrast between how early 

and fast SL is compared to how slow the process of learning language regularities is. Aside 

from the very simplified, extremely limited nature of SL stimuli compared to the noisy input 

of real-world language (as discussed in our section on the realistic view of the learning 

environment), several factors affect the relative slowness of language learning. One relates to 

how new experience is affected by and subsequently impacts on existing patterned 

regularities learned from prior exposure to language (for related discussion, see Armstrong, 

Dumay, Kim, & Pitt, 2017). However, another potential factor is the interaction between 

experience and the gradual maturation of different neural systems. Gomez (2017) argued that 

different memory-related neural systems with different encoding and retention capacities 

emerge over the course of development, and this determines what will be retained, and at 

what speed. In the same vein, Santolin and Saffran (2017) provide an extensive review of 

cross-species learning abilities, highlighting differences in their memory systems. In a 

nutshell, since the perceived distributional properties of the input have to be assimilated long 

term to impact behavior, understanding the learning of regularities in the environment 

requires a focus on how mechanisms of SL interact with the different neural systems of a 

given species at a given developmental phase to produce stable learning.
10

  

                                                 
10

 We note here that our discussion of memory-related neural systems does not imply that we 

endorse a strict separation of memory and processing. Indeed, recent neuroimaging results 

suggests that memory is not separated from but rather intrinsic to processing (see Hasson, 

Chen & Honey, 2015, for a review). Similarly, it has been proposed that learning simply 

involves becoming better at processing in both SL (Christiansen, in press) and natural 

language (Christiansen & Chater, 2016), pointing to an integrated account of learning, 

memory, and processing. 
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The above discussion implies that studies that focused on existence proofs of SL 

abilities with different populations showed at best that, in principle, these populations display 

sensitivity to regularities, not that they can and do assimilate and retain the perceived 

statistical information. Indeed, direct evidence about retention of SL is scarce (though see 

e.g., Kim, Seitz, Feenstra, & Shams, 2009). To have ecological validity, SL research should 

therefore consider the maturation trajectory of the different neural systems (e.g., the CA1 and 

CA3 hippocampal regions, the cortico-striatal networks, the neocortex, etc.), the maturation 

trajectory of their interconnecting pathways, what we know about processes of consolidation 

(see Gomez, 2017, for a review), how but mostly, how experience interacts with maturation 

over various timescales. 

 

4.4 Opening the door to novel approaches to SL 

As our summary of critical features of the Past SL research reveals, over 51% of studies 

that presented regularities in a familiarization stream measured SL performance via a 2AFC 

test following familiarization. Present research reveals a similar ratio. Thus, the majority of 

SL research and theory hinges on tapping the number of correct responses to a relatively 

short series of test questions regarding the structure of the input stream relative to chance. We 

have detailed the psychometric and methodological shortcomings of this offline measure 

elsewhere (Christiansen, 2019; Isbilen et al., 2017; Siegelman et al., 2016, 2017), and we will 

not reiterate them here. However, aside from these inherent methodological limitations, a 

fundamental shortcoming of the 2AFC measure of SL is that it asks participants to reflect on 

what they have learned, rather than tapping more directly into the underlying system doing 

the learning with a processing-based measure (for discussion, see Christiansen, 2019). This 

makes the current dominant measure of SL deeply impoverished: It does not provide any 

information regarding the time-course of learning or its trajectory (e.g., how fast is learning, 
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is it incremental or abrupt?); it does not capture learning and its relation to broader cognitive 

abilities such as memory or attention; it does not address the neural underpinnings of SL. 

Adopting processing-based measures is critical for reaching a mechanistic understanding of 

how SL proceeds, stabilizes, and is integrated with prior learning across cognitive systems.  

There are several lines of emerging research that can help address the problem of 

underspecification in SL research using processing-based measures. Some of this work 

relates to understanding the time course of learning. Whereas the SRT task has been used for 

some time to investigate the time course of learning fixed sequences (e.g., Nissen & 

Bullemer, 1987), it has more recently been used to study SL by incorporating AGL into this 

task (e.g., Misyak, Christiansen, & Tomblin, 2010). Closer to the classic paradigm 

monitoring the learning of triplet in a continuous stream, Siegelman et al. (2017) 

demonstrated that tracking the extent of speeded RTs to predictable stimuli throughout the 

experimental session holds the promise of revealing novel information regarding when 

learning occurs and how it proceeds. This simple behavioral online measure comes almost for 

free by simply asking participants to advance through the sequence in a self-paced manner 

rather than watching the shape sequence in a passive manner. However, like most RT 

measures it is inherently noisy, and therefore will benefit from being supplemented by other 

convergent measures of learning.  

Another line of research seeks to link SL more closely to the cognitive mechanisms that 

it subserves, such as memory. The rationale is that sensitivity to statistical patterns should 

improve memory recall through the familiar process of chunking: coherent statistical patterns 

should be easier to chunk and thus result in improvement of memory performance. 

Intriguingly, very early work on AGL explicitly used a classic memory task—serial recall—

to demonstrate effects of learning (Miller, 1958; Reber, 1967; see Christiansen, 2019, for a 

historical overview). More recently, serial recall has been used to study both VSL (Karpicke 
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& Pisoni, 2004) and ASL (Conway et al., 2010), demonstrating how sensitivity to 

distributional regularities facilitates short-term memory performance. Relatedly, Isbilen et al. 

(2017) used the recall task to obtain a reliable measure of TP learning, capturing sensitivity to 

patterned regularities hypothesized to be relevant for language learning. Importantly, such 

statistically-induced facilitation of recall should be observable not only in the context of 

experiments with artificial language stimuli, but also in studies involving real-world natural 

language statistics as demonstrated by McCauley et al. (2017).  

Interestingly, as an example of lack of integration, in parallel to SL research there is 

currently extensive work on the neurobiological basis of prediction focusing on neural 

oscillations. Neuronal oscillations reflect rhythmic fluctuations in the inhibition/excitation 

balance of neuronal populations (e.g., Buzsáki & Wang, 2012; Haider & McCormick, 2009) 

and have been proposed to be instrumental to account for memory formation and attentional 

selection of inputs. They provide, therefore, an efficient mechanism to amplify the neuronal 

responses to behaviorally relevant events (e.g., Schroeder, et al., 2010). These mechanisms 

have been shown to support the detection of predictable events given statistical regularities. 

Evidence indicates that such rhythmic processing may be achieved by a phase entrainment of 

oscillatory activity at delta (1-5 Hz) and beta (15-30Hz) frequencies, which follows the 

temporal structure of the continuous stream of individual elements and patterns embedded 

therein (e.g., Lakatos et al., 2008). Learning regularities implies that events in any input 

stream would differ in terms of their predictability. This should be reflected in specific 

oscillatory activity at a given time point. Whereas Lakatos et al. (2008) were concerned with 

simple temporal expectations, beta-range oscillations have been associated with expectation 

in a SL paradigm (Pearce et al., 2010). Another approach is to track patterns of 

synchronization of EEG activity. It has been shown that in an auditory stream of syllables 

where “words” are embedded, EEG activity synchronizes first with syllable presentation, but 
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then synchronizes with “word” rate (e.g., Batterink & Paller, 2017; Buiatti, Peña, & Dehaene-

Lambertz, 2009). Pinpointing the time by which synchronization diverges, thus provides 

evidence regarding the time course of learning. Hence, using such range of neural measures 

has the promise of advancing SL research significantly towards a better understanding of its 

underlying mechanisms.  

This discussion leads us to the potential merit of tracking individual performance in SL. 

Reaching a more precise mechanistic theory of SL, and mapping its componential facets will 

benefit from a move from aggregate measures of learning at the group-level to investigating 

differences in individual performance (see Frost et al., 2015, for discussion, and Kidd, 

Donnelly & Christiansen, 2018, for similar arguments about language). This line of research 

holds the promise of teasing apart different aspects of SL, examining their relation with one 

another, as well as their relations with specific cognitive abilities. Indeed, substantial 

evidence against the unitarian view of SL has been provided by studies that focused on 

individual performance (e.g., Misyak & Christiansen, 2012; Siegelman & Frost, 2015). 

Although recent years have seen a growing interest in such research, little is known to date 

about the precise componential structure of SL, what its independent facets are, and to what 

extent these facets predict specific abilities (see Siegelman et al., 2017, for discussion). 

Precise investigation of individual performance, however, requires shaping novel 

methodologies that are sensitive enough to track how learning proceeds within single 

participants.  

Finally, computational models of SL can serve as a major research tool in investigating 

the process of updating representations when prior knowledge dominates learning of novel 

regularities, and when learning involves complex streams of information. As we have argued 

in our discussion of the impact of the unitarian view of SL, this requires a major change of 

focus in computational approaches to SL. Rather than providing proof of concept that SL can 
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proceed through one or two types of computations, modelling work should be harnessed to 

provide sources of constraints regarding how learning of regularities proceeds, and how 

fundamental learning, representation, and processing principles interact with the statistical 

properties of a sensory input, to capture, explain, and predict a wide range of empirical 

phenomena (see e.g., McCauley & Christiansen, 2019, for statistically-based computational 

model that captures early language acquisition across multiple languages).  

 

5 Summary and conclusions 

 This article has focused on the important accomplishments of self-identified SL 

research, but also on an apparent gap between the promise of SL as a theoretical construct, 

and the actual advances that this field of research has achieved so far. The working 

hypothesis of SL research has been that it is applicable to all functions related to 

distributional analyses of environmental input, and would thus provide adequate descriptive 

and explanatory foundations for a wide range of cognitive abilities. However, research on SL 

has been hampered by some critical limitations, preventing it from achieving its original 

promise: the imbalance between the breadth of theoretical claims and the actual empirical 

evidence supporting them; taking SL to be a unitary central device, overlooking evidence 

concerning its componential aspects; studying SL in isolation from the cognitive systems it 

subserves and interacts with, while focusing on very narrow timescales; often being too 

vague and imprecise regarding actual representations, processing mechanisms, and learning 

outcomes; taking the dominant experimental paradigm to be the explanatory mechanism, and 

explaining the mechanism by describing behavior in the experimental paradigm; ignoring the 

complexity of learning situations in the environment, focusing on relatively impoverished 

learning conditions which lack ecological validity; considering the learner as an apathetic 

passive absorber of regularities, missing their active role in shaping the learning parameters. 
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Taken together, these limitations have led to the situation where SL research is often engaged 

in manipulating a narrow set of parameters within a too small set of experimental procedures.  

These limitations led us to conclude that a change of focus is required for future 

research, so that SL would achieve its original promise. The first step is to consider and adopt 

a more realistic and ecologically valid view of the learning environment, and of the 

organisms that are continuously learning from it. This, however, requires asking a novel set 

of research questions. A valid theory of SL has to provide adequate answers for how and why 

organisms focus on a specific subset of regularities from an infinite range of patterns in the 

environment, how they perceive and assimilate multiple regularities embedded in sensory 

input, how they learn patterns that are not uniform in size and vary in their distributional 

properties, and how they overcome the substantial noise characteristics of sensory inputs. A 

realistic view of the learner requires stressing that learning seldom involves assimilating 

completely novel representations. Rather, the learning of regularities is a continuous process 

where prior knowledge affects the learner’s expectations, determining the learning outcome 

to a large extent. This suggests that the multiple existence proofs of SL accumulated in the 

last two decades have centered to a large extent on situations that are quite distant from the 

ecological learning environment we typically face. Going forward, a valid theory of SL 

should refocus to not only consider simple existence proof experiments but also to provide an 

adequate account of how learning accumulates and stabilizes into long-term representations, 

given what we know about the developmental trajectories of other cognitive skills, such as 

memory and attention. 

This new research agenda requires a departure from current experimental paradigms, 

adopting novel methodologies and approaches. As a first step, measures of learning should be 

processing-based rather than reflection-based as in much of the past SL work. They should be 

refined and expanded to consider learning trajectories, learning stability, integrated with 
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cognitive systems, and allow for the merging together of reliable behavioral and 

neurobiological signatures of learning, and drawing upon constraints provided by 

computational learning models. This, in fact, reflects the typical advances in all domains that 

focus on assimilating expertise, in vision or audition, whether in processing orthographic 

information, understanding speech, recognizing objects, or analyzing visual scenes. Hence, it 

is possible that in time, SL may eventually outlive its purpose as an independent field of 

research, and instead have become integrated into the study of these different domains.  
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