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Doctorado en Matemáticas y Estad́ıstica

Ph. D. Thesis
ENGEL ELEMENTS IN GROUPS

OF AUTOMORPHISMS OF ROOTED TREES

Marialaura Noce

Supervised by:

Prof. G. A.Fernàndez-Alcober
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Abstract

Groups of automorphisms of d-adic rooted trees (Aut T for short) have

been studied for years as an important source of groups with interesting

properties. For example, many of their subgroups constitute a counterex-

ample to the General Burnside Problem. The question of whether every

Engel group is locally nilpotent is the analogue of the General Burnside

Problem in the realm of Engel groups.

In this thesis we present recent results about Engel conditions in groups

and we study Engel elements in some important families of subgroups of

Aut T .

First, we complete the description, given by Bartholdi [6], of Engel ele-

ments in the Grigorchuk group [43]. Then we consider the families of frac-

tal and (weakly) branch groups. About the former, we prove that fractal

groups with torsion-free abelianization have no non-trivial Engel elements

[17]. On the other hand, with a completely different approach, we show

that all non-torsion branch groups have no non-trivial Engel elements, and

we also prove some results concerning left Engel elements when we add the

condition of being torsion. We conclude by proving that all weakly branch

groups have no non-trivial bounded left Engel elements, and, under some

additional conditions, that the same happens for right Engel elements [20].

For all these families (fractal and (weakly) branch groups), we present sev-

eral applications to specific groups, for instance we consider the Basilica

group, the Brunner-Sidki-Vieira group, the (multi-)GGS-groups, the Hanoi

Tower group, the group of finitary automorphisms, and the whole Aut T .

Also, we study a Lie algebra introduced in [51] and from this we construct

the first example of a group which contains a left 3-Engel element whose

normal closure is not nilpotent [44].
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Sommario. I gruppi di automorfismi Aut T che agiscono su un albero

regolare e con radice rivestono particolare interesse nell’ambito della teoria

dei gruppi. In particolare, molti sottogruppi di Aut T rappresentano un

controesempio al Problema Generale di Burnside. Stabilire se ogni gruppo

di Engel è localmente nilpotente è l’analogo del Problema Generale di

Burnside nella teoria di Engel.

La tesi qui presentata è incentrata sullo studio delle condizioni di Engel in

alcuni sottogruppi di Aut T .

In primis, si completa la descrizione, ottenuta da Bartholdi [6], degli ele-

menti di Engel nel gruppo di Grigorchuk [43]. Poi, si descrivono gli ele-

menti di Engel nelle famiglie di gruppi frattali e gruppi branch. Riguardo

i primi, si dimostra che tutti i gruppi frattali con abelianizzazione libera

da torsione, non hanno elementi di Engel [17]. Inoltre, con un approccio

completamente diverso, si dimostra che tutti i gruppi non periodici branch

non hanno elementi di Engel, e si fornisce una descrizione degli elementi

di Engel a sinistra quando il gruppo branch in questione è di torsione.

Per concludere, si dimostra che tutti i gruppi weakly branch non hanno

elementi limitati di Engel e, con alcune ipotesi aggiuntive, che non ci sono

nemmeno elementi di Engel a destra [20]. Per tutte queste famiglie (gruppi

frattali e gruppi (weakly) branch), vengono presentate varie applicazioni a

gruppi noti, ad esempio il gruppo di Basilica, il gruppo di Brunner-Sidki-

Vieira, i gruppi (multi-)GGS, il gruppo di Hanoi, il gruppo di automorfismi

finitari e anche l’intero Aut T .

Si presenta, inoltre, un argomento basato sulla costruzione di una algebra

di Lie introdotta in [51] dalla quale si costruisce il primo esempio di gruppo

che contiene un elemento 3-Engel a sinistra la cui chiusura normale non è

nilpotente [44].
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Laburpena. Zuhaitz d-adiko errotuen automorfismoen taldeak sakonki

aztertuak izan dira azken urteetan, propietate interesgarriak dituzten

taldeen iturri aberatsa baitira. Esate baterako, horien azpitalde asko Burn-

sideren Problema Orokorraren kontra adibideak dira. Engelen taldeen

alorrean, Burnsideren Problema Orokorraren analogoa Engelen taldeak

lokalki nilpotenteak diren edo ez aztertzea da. Tesi honetan, Engelen bald-

intzaren inguruan izan diren azken emaitzak azalduko ditugu eta Engelen

elementuak aztertuko ditugu zuhaitz errotuen automorfismoen taldeen fa-

milia berezi batzuetan: talde fraktaletan eta talde adarkatuetan esaterako.

Lehenik, Bartholdik [6]-en hasi zuen Grigorchuken taldearen Engelen ele-

mentuen deskribapena amaituko dugu [43]. Ondoren, talde fraktalen eta

talde (ahulki) adarkatuen taldeak kontsideratuko ditugu. Talde fraktalei

dagokienez, bihurdura gabeko abelianizazioa badute Engelen elementu ez-

tribialik ez dutela frogatuko dugu [17]. Bestalde, ikuspuntu guztiz berri

batekin, bihurdura taldeak ez diren talde adarkatuek Engelen elementu

ez-tribialik ez dutela ere ikusiko dugu eta, gainera, ezkerreko Engel ele-

mentuen inguruan emaitza ezberdinak frogatuko ditugu talde adarkatua

bihurdura taldea denean. Honela, talde ahulki adarkatuek ezkerreko Enge-

len elementu bornatu ez-tribialik ez dutela frogatuko dugu eta, baldintza

batzuk gehituz, eskuineko Engelen elementuekin gauza bera gertatzen dela

ikusiko dugu [20]. Emaitza guzti hauek, talde fraktalen eta talde (ahulki)

adarkatuen familian aurki daitezkeen talde berezi batzuetan aplikatuko di-

tugu, besteak beste, Basilica taldean, (multi-)GGS-taldeetan, Hanoi Dor-

rearen taldean, automorfismo finitarioen taldean eta Aut T talde osoan.

Azkenik, [51]-en definitutako Lie-ren aljebra bat aztertuko dugu eta, honela,

eskuineko 3-Engelen elementuekin gertatzen ez den bezala, itxitura normal

ez-nilpotentea duen ezkerreko 3-Engelen elementu baten adibidea eraikiko

dugu [44].
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Chapter 1

Introduction

Subgroups of the group of automorphisms of a d-adic rooted tree (Aut Td

for short) have been studied for years as an important source of groups

with interesting properties. For instance, the Grigorchuk group is the first

example of a group of intermediate word growth, and amenable but not

elementary amenable. Together with the Grigorchuk group, other sub-

groups of Aut Td like the Gupta-Sidki p-groups and many groups in the

family of the so-called Grigorchuk-Gupta-Sidki groups (known simply as

GGS-groups) are shown to be a counterexample to the General Burnside

Problem. The question of whether every Engel group is locally nilpotent

is the analogue of the General Burnside Problem in the realm of Engel

groups. In the following we will refer to this problem as the “Burnside

Engel Problem”. For some classes of groups, the answer is positive. Nev-

ertheless, there exist examples of infinite Engel p-groups (in the family of

the so-called Golod-Shafarevich groups) which are finitely generated but

1



2 Chapter 1. Introduction

not locally nilpotent. Notice that Golod-Shafarevich groups provide also a

negative answer to the General Burnside Problem. It seems natural to ask

whether subgroups of Aut Td provide a negative answer also to the Burn-

side Engel Problem. In [6] Bartholdi proved that the Grigorchuk group and

the Gupta-Sidki 3-group are not Engel. Hence, so far, Golod-Shafarevich

groups are the only counterexample to the Burnside Engel Problem.

This thesis is mostly devoted to the study of Engel elements in certain

classes of subgroups of Aut Td, and more generally of Aut T , where T is a

spherically homogeneous rooted tree.

We recall that an element x of a group G is said to be left Engel if for any

g 2 G there exists a positive integer n depending on both g and x such

that [g,n x] = [[g,n�1 x], x] = 1. Similarly, x is right Engel if the variable g

appears on the right. The sets of all left and right Engel elements of G are

denoted by L(G) and R(G), respectively. If L(G) = G (or, equivalently,

R(G) = G) we say that G is an Engel group. Moreover, an element of G

is said to be an n-Engel element if the choice of n is independent of g. In

this case we denote the respective sets Ln(G) and Rn(G). Also we write

L(G) = [n2N Ln(G) and R(G) = [n2N Rn(G) the sets of bounded left and

right Engel elements, respectively.

A big area of interest in Engel theory is the study of the subsets L(G),

R(G), L(G) and R(G). Indeed, in general, it is not known whether these

are subgroups or not. In 2006, Bludov constructed a group based on the

Grigorchuk group that is the first example of a group in which the set of left

Engel elements is not a subgroup (see [9]). In 2016, Bartholdi [6] refined
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this example by proving that the only left Engel elements in the Grigorchuk

group itself are the involutions. However the problem for R(G), L(G), and

R(G) is still open. It is also noticeable that there exists an automaton

group where determining if an element is left Engel is undecidable [22].

The topic of this thesis stems in two directions. On the one hand we have

investigated Engel groups and Engel elements, and on the other hand we

have studied groups of automorphisms of rooted trees. More precisely, the

thesis is organized as follows.

In Chapter 2, we give the definitions of Engel groups and Engel elements

and we survey some relevant results and open problems in Engel theory.

In particular, we present the famous Burnside problems and we underline

their connection with Engel groups. We finish this chapter by giving the

definition of almost Engel groups and showing that a group that is almost

Engel and residually nilpotent is an Engel group (Section 2.3).

In Chapter 3, we analyze a problem concerning left 3-Engel elements. It

was proved by Newell [42] that any right 3-Engel element a of a group G

belongs to the Hirsch Plotkin radical HP(G) (the subgroup generated by

all normal locally nilpotent subgroups of G). Actually, Newell proved the

stronger result that the normal closure of a is nilpotent of class at most

3. The natural question of whether the analogous holds for left 3-Engel

elements arises.

We prove that this is not the case, by providing the first example of a

group with a left 3-Engel element whose normal closure is not nilpotent.

More precisely, we prove the following.
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Theorem A. There exists a locally finite 2-group G with a left 3-Engel

element a such that haiG is not nilpotent.

In fact, this theorem is a corollary of deeper results concerning the con-

struction of a Lie algebra over a field of characteristic 2. Indeed, one of

the purposes of this chapter is to further investigate the properties of a

Lie algebra introduced in [52]. This algebra provides an example of a

non-solvable Engel 3-Lie algebra of characteristic 2 containing an element

generating a non-nilpotent ideal. In the same paper, Traustason proved

that every Engel 3-Lie algebra of odd characteristic is soluble [52]. This is

an example of how different the cases of odd and even characteristic can

behave in the study of Engel conditions in Lie algebras.

All these results have given rise to the paper [44], published in Journal of

Pure and Applied Algebra written jointly with G. Tracey and G. Trausta-

son.

Chapter 4 is devoted to introduce groups acting on spherically homo-

geneous rooted trees. We present some alternative approaches to these

groups, and also study some subgroups of Aut T which play an important

role in this context, namely stabilizers and rigid stabilizers of different lev-

els of T . We define self-similar groups, fractal groups and (weakly) branch

groups, and we prove some results connecting these groups. We finish by

introducing the notion of just infinite groups and we prove a criterion for

a regular branch group to be just infinite.

In Chapter 5 we focus on specific groups of automorphisms of rooted

trees (including the Grigorchuk group, the multi-GGS groups, the Basilica
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group, the Brunner-Sidki-Vieira group, and the group of finitary auto-

morphisms) and some of their remarkable properties. Also, we provide

an alternative proof of the fact that the Brunner-Sidki-Vieira group has

torsion-free abelianization [49].

In Chapter 6 we present the state of the art of Engel theory in Aut T .

In particular, in Chapter 6.1 we reconstruct the example of Bludov which

is the first example of a group where the set of left Engel elements is

not a subgroup. As pointed out at the beginning of this introduction,

this example was never published and it is based on the first Grigorchuk

group. Ten years later, Bartholdi showed [6] that the Grigorchuk group

is not Engel, and also that all its left Engel elements are the involutions.

In Chapter 6.2 we complete the description of Engel elements in the first

Grigorchuk group.

Theorem B. Let G be the first Grigorchuk group. Then L(G) = R(G) =

R(G) = {1}.

This result has led to the paper [43] jointly written with A. Tortora and

published in International Journal of Group Theory.

There are two important subclasses of groups of automorphisms of rooted

trees: fractal groups and branch groups (both defined in Chapter 4). Chap-

ters 7 and 8 are devoted to study Engel elements in these two classes of

groups. We remark that since R(G)�1,L(G),R(G)�1 ✓ L(G) for any

group G [33], by proving that L(G) = 1 one automatically obtains that

each one of these sets is also trivial.



6 Chapter 1. Introduction

In Chapter 7 we generalize the notions of commutators and left Engel

elements to the context of group actions. We then prove that a certain

class of fractal groups has no non-trivial left Engel elements.

Our main results are stated below and are collected in [17], a paper jointly

written with G.A. Fernández-Alcober and A. Garreta and published in

Monatshefte für Mathematik.

We denote by � a standard Sylow pro-p subgroup of Aut Tp, for p a prime.

Our first theorem reads as follows.

Theorem C. Let G  � be a fractal group such that |G0 : stG(1)0| = 1.

Then L(G) = 1.

As shown in Section 7.4, the conditions |G0 : stG(1)
0| = 1 and being

fractal cannot be omitted in the theorem above. The following result is a

consequence of Theorem C.

Theorem D. Let G  � be a fractal group with torsion-free abelianization.

Then L(G) = 1.

A natural application to some well-known fractal groups follows.

Corollary. The Basilica group and the Brunner-Sidki-Vieira group have

no non-trivial left Engel elements.

The case of the GGS-group G with constant defining vector is more difficult

since the group has finite abelianization. However, we reduce the study

of Engel elements to a subgroup K  G which meets the requirements of

Theorem D. After proving that L(G) ✓ L(K), we obtain the following.

Theorem E. The GGS-group with constant defining vector has no non-

trivial left Engel elements.
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In Chapter 8 we study Engel elements in (weakly) branch groups. The

results presented in this chapter are collected in [20], a paper submitted

and written jointly with G.A. Fernández-Alcober and G. Tracey.

The main tool to our approach to Engel problems in weakly branch groups

is the reduction of the action of an automorphism f from the whole tree

to one or several “reduced trees” determined by some special orbits of

the set of vertices of T . Then we describe some properties of orbits of

automorphisms of T , and we prove several key results regarding Engel

elements in wreath products.

This machinery allows us to study Engel elements in weakly branch groups.

Our main theorems read as follows.

Theorem F. Let G be a weakly branch group. Then:

(i) L(G) = 1.

(ii) If L(G) contains non-trivial elements of finite order then:

• All such elements have p-power order for some prime p.

• rstG(n) is a p-group for some n � 1.

Moreover, if we add the stronger condition that the group is branch, we

obtain the following.

Theorem G. Let G be a branch group. Then:

(i) If G is not periodic, then L(G) = 1.

(ii) If G is periodic, then L(G) consists of p-elements for some prime p.

(iii) If L(G) 6= 1, then G is virtually a p-group for the same prime as in

(ii).
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Compare this last theorem with the situation in the Grigorchuk group. In

that case, L(G) consists of all elements of order 2 in G, and G is a 2-group.

Theorem F and G can be applied to several groups, as the two corollaries

below show.

Corollary 1. Let T be a spherically homogeneous rooted tree. Then the

following hold:

(i) If G is an infinitely iterated wreath product of finite transitive per-

mutation groups of degree at least 2, then L(G) = 1. This applies

in particular to the whole group of automorphisms of T , and also to

its Sylow pro-p subgroups if T is a p-adic tree, where p is a prime.

(ii) If F is the group of finitary automorphisms of T , and there are

infinitely many levels in which the number of descendants is greater

than 2, then L(F) = 1. If T is a p-adic tree and Fp is the group of

p-finitary automorphisms of T , then L(Fp) = 1.

(iii) If H is the Hanoi Tower group, then L(H) = 1.

(iv) If G is a multi-GGS groups, then R(G) = 1. If G is furthermore

non-torsion, then L(G) = 1.

Corollary 2. Let p be a prime and let � 2 Sym(p) be a fixed p-cycle.

Then the subgroup Fp of Aut Tp formed by the finitary automorphisms

all of whose labels lie in h�i (in other words, the intersection of F with

the standard Sylow pro-p subgroup of Aut Tp corresponding to �) satisfies

that:

(i) L(Fp) = Fp.
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(ii) L(Fp) = 1.

In Chapter 8 we also prove some results concerning right Engel elements

in branch groups.

Theorem H. Let G be a weakly branch group. If rstG(n) is not Engel for

any n, then R(G) = 1.

Theorem H can be applied to show that GGS-groups have no non-trivial

right Engel elements:

Corollary 3. Let G be a GGS-group. Then R(G) = 1.

We conclude this introduction by remarking that our results suggest that

being Engel is a condition too strong for (infinite) finitely generated frac-

tal/branch groups. Also, as pointed out before, Golod-Shafarevich groups

are the only known counterexample to the Engel Burnside Problem and

they cannot be branch (see [16, Proposition 8.11]). This motivates the

following question.

Question. Can a finitely generated branch/fractal group be Engel?

Note that, without finite generation, the group Fp shows that the answer

is positive (see Corollary 2). Also, observe that weakly branch groups

cannot satisfy a law (see [3, Corollary 1.4]) and so cannot be n-Engel for a

fixed n. Thus we are asking whether finite generation makes it impossible

for them to be Engel as well.
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Here we give a suggestion to the reader about a possible approach to read

this thesis.

1

2

3 4

5 6

87

A non-fractal tree showing logical dependence among chapters.



Part I

Engel conditions in groups





Chapter 2

Engel elements in groups

In this chapter, we give basic definitions of Engel groups and Engel el-

ements and we survey some results and open problems in Engel theory.

In particular, we present the Burnside problems and we underline their

connections with Engel groups.

Finally, in Section 2.3 we provide the definition of almost Engel group and

we show that a group that is almost Engel and residually nilpotent is an

Engel group.

2.1 Burnside problems

The origin of the general Burnside problem is the famous paper [11] where

in 1902 Burnside posed his attention to a “still undecided point” on torsion

groups. Recall that a group G is torsion (or periodic) if all its elements

have finite order, that is, for any g 2 G there exists an integer n � 1 such

13



14 Chapter 2. Engel elements in groups

that gn = 1. If the orders of the elements are also bounded, the group G is

said to have finite exponent and the least common multiple of the orders

is the exponent of G. On the other hand, a group G is torsion-free if the

only element of G of finite order is the identity.

In his 1902 paper [11], Burnside posed the following question, that is known

as the General Burnside Problem (GBP for short).

1. Is a finitely generated periodic group necessarily finite?

In 1911 Schur proved that every finitely generated periodic subgroup of

the general linear group of degree n � 1 over the complex field is finite.

No more progress was made until 1964, when Golod provided a counterex-

ample. More precisely, for any prime p and any integer r � 2, Golod

showed that there exists an infinite p-group G = hx1, . . . , xri such that

every (r � 1)-generator subgroup of G is finite [15]. Later much simpler

examples have been found. For instance, in 1980 Grigorchuk constructed

an infinite 3-generator 2-group, which will be discussed in Section 5.1.

Since Question 1 seems quite difficult, the GBP can be restated adding

the stronger hypothesis that the group is of finite exponent. Thus we have

the following.

2. Is a finitely generated periodic group of finite exponent necessarily

finite?

Question 2 is known simply as the Burnside Problem and is the same as

asking whether the free Burnside groups are finite. In the following we

recall the definition of free Burnside groups.

Definition 2.1. Let Fm be a free group of rank m. The free Burnside
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group B(m,n) is the group Fm/Fn
m, where Fn

m is the group generated by

all the n-th powers of elements of Fm.

Note that B(m,n) is the free group in which the identity xn = 1 holds and

for this reason it is the biggest group generated by m elements of exponent

n.

It is easy to prove that for any m the 2-group B(m, 2) is elementary abelian

(i.e. an abelian group in which every non-trivial element has order 2) and

so finite. Burnside proved that also B(m, 3) is finite for any m. Levi and

van der Waerden in 1993 proved that if m � 3, then the Burnside group

B(m, 3) is finite and nilpotent of class 3. One can also prove that since

B(m, 3) is a group of exponent 3, then it is a 2-Engel group (see Definition

2.9 in the next section). In 1940, Sanov proved that also the group B(m, 4)

is finite for every m. For n = 5 the problem is still open. Although for

some small values of n the Burnside groups are finite, in 1968, Novikov

and Adian proved that, in general, Burnside groups need not be finite.

Indeed they showed that if m � 2, and n is odd and greater than 4381,

then B(n,m) is infinite. This bound was improved later by Adian who

showed that n can be chosen odd and greater than or equal to 665. Also,

in 1979 Ol’shanskii constructed infinite (simple) 2-generator groups all of

whose proper non-trivial subgroups are of prime order p [1]. They are

called Tarski monster groups (for further information see [45]).

These results suggest that any counterexample to Questions 1 and 2 will

be difficult. In 1930-40s the topic was resurrected by the suggestion of a

third variant, which thanks to Magnus is known as the Restricted Burnside

Problem [39].
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3. Are there only finitely many finite groups generated by m elements

of exponent n?

The Restricted Burnside Problem is the only “Burnside question” with

positive answer. It was solved by Zelmanov in 1991 ([56] for groups of

exponent 2 and [55] for groups of odd exponent), who was awarded the

Fields medal.

2.2 Background on Engel theory

In this section, we give definitions of Engel groups and Engel elements and

we state some results that can be found, for example, in [47].

2.2.1 First definitions and properties

Let G be a group and let x1, x2, . . . be elements of G. We define the

commutator of weight n � 1 recursively by the rule

[x1, . . . , xn] =

8
>><

>>:

x1 if n = 1

[[x1, . . . , xn�1], xn] if n > 1,

where [x1, x2] = x�11 x�12 x1x2 = x�11 xx2
1 .

If x = x1 and y = x2 = · · · = xn+1, we use the following shorthand

notation

[x, ny] = [x, y, n. . ., y].

In the following we collect some basic properties of commutators.

Lemma 2.2. Let G be a group and let x, y, z 2 G. Then:
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(i) [y, x] = [x, y]�1.

(ii) [x�1, y] = [y, x]x
�1

and [x, y�1] = [y, x]y
�1

.

(iii) [xy, z] = [x, z][x, z, y][y, z] and [x, yz] = [x, z][x, y][x, y, z].

(iv) [x, y�1, z]y[y, z�1, x]z[z, x�1, y]x = 1 (Hall-Witt’s identity).

If we add the condition that the group G is metabelian (i.e. its derived

subgroup G0 is abelian), we can prove the following.

Lemma 2.3. Let G be a metabelian group. Then for any x, y, z 2 G,

u 2 G0 and for any n � 1, we have:

(i) [u, x, y] = [u, y, x].

(ii) [x, y, z][y, z, x][z, x, y] = 1 (Hall-Witt’s identity).

(iii) [x�1, ny] = [x, ny]
�x�1

.

(iv) [xy, nz] = [x, nz][x, nz, y][y, nz].

Definition 2.4. Let G be a group and g 2 G. We say that g is a right

Engel element if for any x 2 G there exists n = n(g, x) � 1 such that

[g, nx] = 1. If n is a positive integer, an element g 2 G is a right n-Engel

element of G if [g,n x] = 1 for all x 2 G. An element g 2 G is called a

bounded right Engel element if it is right n-Engel for some n.

Similarly, g is a left Engel element if for any x 2 G there exists n =

n(g, x) � 1 such that [x, ng] = 1. Again, if the choice of n is independent

from x, then g is a left n-Engel element, and an element g 2 G is called a

bounded left Engel element if it is left n-Engel for some n.
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We denote by R(G),Rn(G) and R(G) (L(G),Ln(G) and L(G)) the set of

right (left) Engel elements, right (left) n-Engel elements, bounded right

(left) Engel elements of G.

The following gives the interaction between (bounded) right and (bounded)

left Engel elements.

Proposition 2.5. In any group G, the inverse of a right Engel element

is a left Engel element and the inverse of a right n-Engel element is a left

(n+ 1)-Engel element. In other words:

(i) R(G)�1 ✓ L(G).

(ii) Rn(G)�1 ✓ Ln+1(G).

It is still an open question whether every right Engel element is a left

Engel element. However, it is easy to see that the converse does not hold

in general. For example, let Sym(3) be the symmetric group of degree 3

and consider the element g = (1 2 3). Since hgi is normal in Sym(3), we

have [x, g] 2 hgi for any x 2 G. Hence, [x, g, g] = 1 and g is a left 2-Engel

element. On the other hand, if x = (1 2), then [g, x] = g. It follows by

induction that [g, nx] = g for any n � 1. Thus, g is not a right Engel

element.

It is a long-standing problem, raised by Plotkin, whether the sets R(G)

and L(G) (R(G) and L(G), respectively) of a given group G are subgroups

(see Problem 16.15 and Problem 16.16 in the Kourovka notebook [36]).

There are some results for left k-Engel elements. For instance, consider

the standard wreath product H = C2 o K of a group of order 2 with an

elementary abelian group of order 4. The group H is generated by left
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2-Engel elements but H 6= L2(H) because of the following proposition.

We denote hxiG the normal closure of x in G.

Proposition 2.6. [2, Proposition 3.25] Let G be a group. We have L2(G) =

{x 2 G | hxiG is abelian}.

In general, for any integer n � 2, there exists a group G for which a, b 2

Ln(G) but ab /2 Ln(G). More precisely, we have the following.

Proposition 2.7. [2, Proposition 3.26] Let k � 1 and let G be a group of

exponent 2k. Take the standard wreath product H = G o (hxi ⇥ hyi), where

hxi and hyi are cyclic groups of order 2. Then Lk+1(H) is not a subgroup.

In 2006, during a conference at the University of Debrecen, Bludov an-

nounced that there exists a group in which the set of left Engel elements

is not a subgroup [9]. This example, which has never been published any-

where, will be discussed in Chapter 6.1. The question for right Engel

elements is still unsolved.

We conclude this section by stating and proving a key result for this thesis.

Proposition 2.8. Let G be group and let g 2 G be such that g2 = 1. Then

for any x 2 G and any n � 1:

[x, ng] = [x, g](�2)
n�1

.

In particular, every involution in any 2-group is a left Engel element.

Proof. We proceed by induction on n, the case n = 1 being trivial. Sup-

pose then that n > 1. Since [x,n+1 g] = [[x,n g], g] = [x,n g]
�1[x,n g]g, by
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induction hypothesis we have

[x,n g]
�1[x,n g]g = [x, g]�(�2)

n�1

([x, g]g)(�2)
n�1

.

Also, using (ii) of Lemma 2.2 and the fact that g2 = 1, we have

[x, g]g = [x, g]g
�1

= [g�1, x] = [g, x] = [x, g]�1.

It follows that

[x,n+1 g] = [x, g]�(�2)
n�1

[x, g]�(�2)
n�1

= [x, g](�2)
n

.

This completes the proof.

2.2.2 An Engel version of the general Burnside prob-

lem

Let G be a group, and recall that G is locally nilpotent if each finitely

generated subgroup of G is nilpotent.

Definition 2.9. We say that G is an Engel group if G = R(G) or,

equivalently, G = L(G). Furthermore, G is n-Engel if there exists n � 1

such that [x, ny] = 1 for all x, y 2 G.

It is easy to see that every locally nilpotent group is Engel. Indeed, for

all x, y 2 G, the subgroup hx, yi is nilpotent and therefore [x, ny] = 1

for some n = n(x, y) � 1. The question whether every finitely generated

Engel group is nilpotent is the analogue of the general Burnside problem
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for Engel groups. Also in this case, the infinite p-group G = hx1 . . . , xri

constructed by Golod is a counterexample. In fact, with r = 3, every 2-

generator subgroup of G is nilpotent and so G is an Engel group. However,

if G is nilpotent, then it is finite: a contradiction. So far, in the periodic

case, Golod’s group is the only known example of a finitely generated

Engel group that is not nilpotent. On the other hand, the general Burn-

side problem for Engel groups has a positive answer for some families of

groups such as: finite groups (Zorn [57]), groups that satisfy the maximal

condition for subgroups (Baer [5]), solvable groups (Gruenberg [31]), and

Hausdorff compact topological groups (Medvedev [40]). Nevertheless the

main open question in the realm of Engel groups is whether every n-Engel

group is locally nilpotent.

2.3 Almost Engel groups

Almost Engel groups were introduced by Khukhro and Shumyatsky in

2016, [37]. They are defined as follows.

Definition 2.10. A group G is almost Engel if for every g 2 G there

is a finite set E(g) such that for every x 2 G there exists a positive integer

n(g, x) for which [x,n g] 2 E(g) for all n � n(g, x).

For example in the case of an Engel group G, we have E(g) = {1}.

Lemma 2.11. [37, Lemma 2.1] If G is almost Engel, then for any g 2 G,

there exists a unique minimal finite set E(g) that consists precisely of all

elements z such that z = [z, g, n. . ., g], for some n.

To prove the following, first recall what is a residually nilpotent group.
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Definition 2.12. Let G be a group, and X a property of groups (for

instance being finite, being nilpotent, etc.). We say that G is residually X

if for any 1 6= g 2 G, there exists N normal in G such that:

1. g /2 N .

2. G/N is in the class X.

In other words, G is residually X if and only if

\
{N E G | G/N 2 X} = 1.

Theorem 2.13. Let G be a residually nilpotent almost Engel group. Then

G is Engel.

Proof. We want to show that for every g 2 G, then E(g) = {1} (by tak-

ing E(g) minimal). Suppose towards contradiction that E(g) 6= {1} and

consider 1 6= z 2 E(g). Then by Lemma 2.11 there exists n such that

z = [z,n g]. Since G is residually nilpotent, consider a normal subgroup N

of G such that z /2 N and G/N is nilpotent. Suppose that the nilpotency

class of G/N is k. Then z = [z,nk g] 2 �k+1(G)  N , a contradiction.



Chapter 3

On left 3-Engel elements in

groups

In this chapter we present a paper carried out in collaboration with G.

Traustason and G. Tracey, both from the University of Bath, and published

in Journal of Pure and Applied Algebra [44].

3.1 Preliminaries

In what follows HP(G) denotes the Hirsch-Plotkin radical of a group G,

that is the subgroup generated by the union of the normal locally nilpotent

subgroups of G.

Remark 3.1. Notice that any element of the Hirsch-Plotkin radical

HP(G) of a group G is a left Engel element. Indeed, take g 2 G and

x 2 HP(G). Then [g, x] 2 HP(G) and the subgroup generated by x and

23



24 Chapter 3. On left 3-Engel elements in groups

[g, x] is contained in HP(G) and so it is nilpotent. Hence [g,n x] = 1 for

some n � 1, and HP(G) ✓ L(G).

The converse is known to be true for some classes of groups, including

finite groups (more generally groups satisfying the maximal condition on

subgroups) and solvable groups [5, 32]. However, the converse is not true

in general because of Golod’s examples. Concerning bounded left Engel

elements, one can readily see that a left 2-Engel element is always in the

Hirsch-Plotkin radical. On the other hand, it is is still an open question

if the same is true for left 3-Engel elements. Recently it was proved that

any left 3-Engel element of odd order is contained in HP(G). From [50]

one also knows that in order to generalize this to left 3-Engel elements of

any finite order it suffices to deal with elements of order 2.

One can also see (for example in [34,35]) that for sufficiently large n we do

not have in general that a left n-Engel element is contained in the Hirsch-

Plotkin radical. Using the fact that groups of exponent 4 are locally finite

[48], one can also see that if all left 4-Engel elements of a group G of

exponent 8 are in HP(G) then G is locally finite.

In [42] Newell proved that if a is a right 3-Engel element in G then a 2

HP(G) and in fact he proved the stronger result that haiG (i.e. the normal

closure of a in G) is nilpotent of class at most 3. The natural question

arises whether the analogous result holds for left 3-Engel elements. In this

chapter we show that this is not the case by giving an example of a locally

finite 2-group with a left 3-Engel element a such that haiG is not nilpotent.
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3.2 Left 3-Engel element whose normal clo-

sure is not nilpotent

3.2.1 The construction of a Lie algebra

Our construction will be based on an example of a Lie algebra given in

[51]. Let F be the field of order 2 and consider a 4-dimensional vector

space V = Fx+ Fu+ Fv + Fw where

u · v = u, v · w = w, w · u = v, u · x = 0, v · x = 0, w · x = u.

Also, v · u = �u = u, w · v = �w = w, and u · w = �v = v, and the

product of a basis element with itself is 0.

We then extend the product linearly on V . One can check that V is a Lie

algebra with a trivial center and where W = Fu + Fv + Fw is a simple

ideal (see [51]). Let E = had(x), ad(u), ad(v), ad(w)i  End(V ) be the

associative enveloping algebra of V . Recall that for l 2 V , the adjoint

map ad(l) : V ! V is defined by m ad(l) = (m, l), for m 2 V . Let

e1 = ad(w), e2 = ad(w)2, e3 = ad(w)3,

e4 = ad(v), e5 = ad(v) ad(w), e6 = ad(v) ad(w)2,

e7 = ad(u), e8 = ad(u) ad(w), e9 = ad(u) ad(w)2,

e10 = ad(x), e11 = ad(x) ad(w), e12 = ad(x) ad(w)2.

Lemma 3.2. The associative enveloping algebra E is 12-dimensional with

basis e1, . . . , e12.
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Proof. We first show that E is spanned by products of the form

ad(x)✏ · ad(u)r · ad(v)s · ad(w)t

where ✏, r, s, t are non-negative integers. To see this we need to show that

any product ad(y1) · · · ad(ym), with y1, . . . , ym 2 {x, u, v, w} can be writ-

ten as a linear combination of elements of the required form. We use

induction on m. This is obvious when m = 1. Now suppose m � 2

and that the statement is true for all shorter products (since the prod-

uct of two basis elements is either 0 or another basis element). Suppose

there are ✏ entries of x, r entries of u, s entries of v and t entries of

w in the product ad(y1) · · · ad(ym). Using the fact that ad(yi) ad(yj) =

ad(yj) ad(yi) + ad(yiyj), we see that modulo shorter products we have

ad(y1) · · · ad(ym) = ad(x)✏ ad(u)r ad(v)s ad(w)t.

Hence the statement is true for products of length m. This finishes the

inductive proof of our claim.

From the fact that

ad(x)2 = ad(x) ad(u) = ad(u) ad(x) = ad(u) ad(x) = 0,

and ad(v)2 = ad(v), ad(u)2 = ad(x) ad(v) and ad(u) ad(v) = ad(u) +

ad(x) ad(w), we can assume that 0  ✏, r, s  1 and that if ad(u) is included

then we can assume that neither ad(x) nor ad(v) is included. This together

with ad(x) = ad(x) ad(v) and ad(w)4 = ad(v) ad(w)3 = ad(u) ad(w)3 =
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ad(x) ad(w)3 = 0 shows that E is generated by e1, . . . , e12. It remains to

see that these elements are linearly independent. Suppose ↵1e1 + · · · +

↵12e12 = 0 for some ↵1, . . . ,↵12 2 F. Then

0 = x(↵1e1 + . . .+ ↵12e12) = ↵1u+ ↵2v + ↵3w

gives that ↵1 = ↵2 = ↵3 = 0. Then

0 = u(↵4e4 + . . .+ ↵12e12) = ↵4u+ ↵5v + ↵6w

implies that ↵4 = ↵5 = ↵6 = 0. Likewise

0 = v(↵7e7 + . . .+ ↵12e12) = ↵7u+ ↵8v + ↵9w

giving ↵7 = ↵8 = ↵9 = 0. Finally

0 = w(↵10e10 + ↵12e11 + ↵12e12) = ↵10u+ ↵11v + ↵12w

and thus ↵10 = ↵11 = ↵12 = 0.

We use this example to construct a certain locally nilpotent Lie algebra

over F of countably infinite dimension. For ease of notation it will be useful

to introduce the following modified union of subsets of N. We let

A tB =

8
>><

>>:

A [B (if A \B = ;)

; (otherwise)
.
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For each non-empty subset A of N, we let WA be a copy of the vector space

W , where W = Fu+ Fv + Fw. That is WA = {zA : z 2 W} with addition

zA + tA = (z + t)A. We then take the direct sum of these

W ⇤ =
M

;6=A✓N
WA

that we turn into a Lie algebra with multiplication zA · tB = (zt)AtB

when zA 2 WA and tB 2 WB that is then extended linearly on W ⇤. The

interpretation here is that z; = 0. Finally we extend this to a semidirect

product with Fx

V ⇤ = W ⇤ � Fx

induced from the action zA · x = (zx)A.

Notice that V ⇤ has basis {x} [ {uA, vA, wA : ; 6= A ✓ N} and that

uA · uB = vA · vB = wA · wB = 0,

uA · x = 0, vA · x = 0, wA · x = uA

and

uA · vB = uAtB , vA · wB = wAtB , wA · uB = vAtB .

Notice that any finitely generated subalgebra of V ⇤ is contained in some

S = hx, uA1 , . . . , uA
r

, vB1 , . . . , vBs

, wC1 , . . . , wC
t

i. From the fact that zxx =

0 for all z 2 V ⇤ it follows that S is nilpotent of class at most 2(r + s+ t).

Hence V ⇤ is locally nilpotent. The next aim is to find a group G  GL(V ⇤)

containing 1 + ad(x) where 1 + ad(x) is a left 3-Engel element in G but
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where h1 + ad(x)iG is not nilpotent. The next lemma is a preparation for

this.

Lemma 3.3. The adjoint linear operator ad(x) on V ⇤ satisfies:

(i) ad(x)2 = 0.

(ii) ad(x) ad(y) ad(x) = 0 for all y 2 V ⇤.

Proof. (i) Follows from the fact that x · x = uA · x = vA · x = 0 and

(wA · x) · x = uA · x = 0.

(ii) Follows from wA · x · uB = uA · uB = 0, wA · x · vB · x = uA · vB · x =

uAtB · x = 0 and wA · x · wB · x = uA · wB · x = vAtB · x = 0.

Let y be any of the generators x, uA, vA, wA. As ad(y)2 = 0 it follows that

(1 + ad(y))2 = 1 + 2 ad(y) + ad(y)2 = 1.

Thus 1 + ad(y) is an involution in GL(V ⇤).

3.2.2 Our counterexample

Notice that for any A,B ✓ N, the pairs

(ad(uA), ad(uB)), (ad(vA), ad(vB)), (ad(wA), ad(wB))
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consist of elements that commute. Thus the subgroups

U = h1 + ad(uA) : A ✓ Ni,

V = h1 + ad(vA) : A ✓ Ni,

W = h1 + ad(wA) : A ✓ Ni,

are elementary abelian of countably infinite rank. We will be working with

the group G = h1 + ad(x),U ,V,Wi.

Lemma 3.4. The following commutator relations hold in G:

(i) [1 + ad(uA), 1 + ad(vB)] = 1 + ad(uAtB).

(ii) [1 + ad(vA), 1 + ad(wB)] = 1 + ad(wAtB).

(iii) [1 + ad(wA), 1 + ad(uB)] = 1 + ad(vAtB).

(iv) [1 + ad(uA), 1 + ad(x)] = 1.

(v) [1 + ad(vA), 1 + ad(x)] = 1.

(vi) [1 + ad(wA), 1 + ad(x)] = 1 + ad(uA).

Proof. (i) We have

[1+ ad(uA), 1 + ad(vB)] =

= (1 + ad(uA)) · (1 + ad(vB)) · (1 + ad(uA)) · (1 + ad(vB))

= 1 + ad(uA) ad(vB) + ad(vB) ad(uA)

= 1 + ad(uAvB)

= 1 + ad(uAtB).
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(ii) and (iii) are proved similarly. For (vi) we have

[1+ ad(wA), 1 + ad(x)]

= (1 + ad(wA)) · (1 + ad(x)) · (1 + ad(wA)) · (1 + ad(x))

= 1 + ad(wA) ad(x) + ad(x) ad(wA) + ad(x) ad(wA) ad(x)

= 1 + ad(wA · x)

= 1 + ad(uA).

Here in the 2nd last equality, we have used Lemma 3.3. Parts (iv) and (v)

are proved similarly.

Remark 3.5. Notice that as V ⇤ is locally nilpotent, it follows from

Lemma 3.4 that G is locally nilpotent. The next proposition clarifies

further the structure of G.

Proposition 3.6. We have G = h1 + ad(x)iUVW. Furthermore every

element g 2 G has a unique expression g = (1+ad(x))✏rst with ✏ 2 {0, 1},

r 2 U , s 2 V and t 2 W.

Proof. We first deal with the existence of such a decomposition. Suppose

g = l0(1 + ad(x))l1 · · · (1 + ad(x))ln

where l0, . . . , ln are products of elements of the form 1+ad(uA), 1+ad(vA)

and 1+ad(wA). From Lemma 3.4 we know that (1+ad(wA))(1+ad(x)) =

(1 + ad(x))(1 + ad(wA))(1 + ad(uA)) and 1 + ad(x) commutes with all

products of the form 1 + ad(uA) and 1 + ad(vA). We can thus collect the
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(1 + ad(x))’s to the left, starting with the leftmost occurrence. This may

introduce more elements of the form (1 + ad(uA)) but no new 1 + ad(x).

We thus see that

g = (1 + ad(x))ng1 · · · gm

where each gi is of the form 1 + ad(uA), 1 + ad(vA) or 1 + ad(wA). This

reduces our problem to the case when g 2 hU ,V,Wi. Suppose

g = h0(1 + ad(uA1))h1 · · · (1 + ad(uA
n

))hn

where h0, . . . , hn are products of elements of the form 1 + ad(vA) and

1 + ad(wA). Suppose that the elements occurring in these products are

1 + ad(vA
n+1), . . . , 1 + ad(vA

n+l

), 1 + ad(wA
n+l+1), . . . , 1 + ad(wA

m

).

Using Lemma 3.4 we know that (1+ad(vB))(1+ad(uA)) = (1+ad(uA))(1+

ad(vB))(1+ad(uAtB)) and that (1+ad(wB))(1+ad(uA)) = (1+ad(uA))(1+

ad(wB))(1+ ad(vAtB)). We can thus collect 1+ ad(uA1), . . . , 1+ ad(uA
n

)

to the left. In doing so we may introduce new terms of the form 1+ad(uA),

with A of the form Ai1 t · · · tAi
s

, and s � 2. This shows that

g = (1 + ad(uA1)) · · · (1 + ad(uA
n

))g1 · · · gm

where each gj is of the form 1+ad(vB), 1+ad(wB) or 1+ad(uA), and A is

a modified union of at least 2 sets from {A1, . . . , Am}. We can repeat this

procedure, collecting all the new (1 + ad(uA))s. In doing so, we possibly

introduce some new such elements but these will then be with an A that

is a modified union of at least 3 sets from {A1, . . . , Am}. Continuing like
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this the procedure will end after at most m steps as every modified union

of m + 1 sets from {A1, . . . , Am} will be trivial. We have thus seen that

g = rh with r 2 U and h 2 hV,Wi. We are now only left with the situation

when g 2 hV,Wi. Suppose

g = l0(1 + ad(vA1))l1 · · · (1 + ad(vA
n

))ln

where l0, l1, . . . , ln are of the form 1 + ad(wA). As (1 + ad(wB))(1 +

ad(vA)) = (1 + ad(vA))(1 + ad(wB))(1 + ad(wAtB)), we can now collect

1+ ad(vA1), . . . , 1+ ad(vA
n

) to the left and in doing so, all the new terms

introduced will be of the form 1 + ad(wA). Thus g = st with s 2 V and

t 2 W. This completes the existence part. We now want to show that

such a decomposition is unique. Suppose

(1 + ⌘ ad(x))(1 + ↵1 ad(uA1)) · · · (1 + ↵r ad(uA
r

))

(1 + �1 ad(vB1)) · · · (1 + �s ad(vB
s

))(1 + ✏1 ad(wC1)) · · · (1 + ✏t ad(wC
t

))

=

(1 + ⌧ ad(x))(1 + �1 ad(uA1)) · · · (1 + �r ad(uA
r

))

(1 + �1 ad(vB1)) · · · (1 + �s ad(vB
s

))(1 + ⌫1 ad(wC1)) · · · (1 + ⌫t ad(wC
t

)),

where all these coefficients can be either 0 or 1.

Applying both sides to wN we get

wN + ⌘ uN = wN + ⌧ uN
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from which we get ⌘ = ⌧ . Applying both sides to x we get

(x+ ✏1uC1 + · · ·+ ✏ruC
t

)(✏1✏2vC1tC2 + · · ·+ ✏t�1✏tvC
t�1tCt

)

(✏1✏2✏3wC1tC2tC3 + · · ·+ ✏t�2✏t�1✏twC
t�2tCt�1tCt

)

=

(x+ ⌫1uC1 + · · ·+ ⌫ruC
t

)(⌫1⌫2vC1tC2 + · · ·+ ⌫t�1⌫tvC
t�1tCt

)

(⌫1⌫2⌫3wC1tC2tC3 + · · ·+ ⌫t�2⌫t�1⌫twC
t�2tCt�1tCt

)

from which we see that ✏1 = ⌫1, . . . , ✏t = ⌫t. Thus

(1 + ↵1 ad(uA1)) · · · (1 + ↵r ad(uA
r

))(1 + �1 ad(vB1)) · · · (1 + �s ad(vB
s

))

= (1 + �1 ad(uA1)) · · · (1 + �r ad(uA
r

))(1 + �1 ad(vB1) · · · (1 + �s ad(vB
s

)).

We can assume that Aj 6✓ Ai and Bj 6✓ Bi when i < j. Applying both

sides to uN\B1
gives

uN\B1
+ �1uN = uN\B1

+ �1uN

from which we see that �1 = �1. Cancelling on both sides by 1+�1 ad(vB1)

and then applying both sides to uN\B2
likewise gives �2 = �2. Continuing

in this manner gives �1 = �1, . . . , �s = �s. We then have

(1+↵1 ad(uA1)) · · · (1+↵r ad(uA
r

)) = (1+�1 ad(uA1)) · · · (1+�r ad(uA
r

)).

A similar argument as before, applying both sides to vN\A1
, vB\A2

, . . . gives

likewise ↵1 = �1, . . . ,↵r = �r. This finishes the proof.
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We are now ready to prove the main result of this chapter.

Theorem 3.7. The element 1 + ad(x) is a left 3-Engel element in G.

However h1 + ad(x)iG is not nilpotent.

Proof. Let g = h(1 + ad(wA1)) · · · (1 + ad(wA
n

)) be an arbitrary element

in G where h 2 h1 + ad(x)iUV. We want to show that g is left 3-Engel

that is the same as showing the following

[(1 + ad(x))g,2 1 + ad(x)] = 1.

Notice first that if y 2 V then

(1 + ad(y))1+ad(w
A

) = (1 + ad(wA))(1 + ad(y))(1 + ad(wA))

= 1 + ad(y) + ad(ywA).

Notice that

(1 + ad(x))g = (1 + ad(x))(1+ad(w
A1 ))···(1+ad(w

A

n

))

and a straightforward induction shows that

(1 + ad(x))g = 1 + ad(y)

where

y = x+
X

1in
uA

i

+
X

1i<jn
vA

i

tA
j

+
X

1i<j<kn
wA

i

tA
j

tA
k

.
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Since ad(x) ad(y) ad(x) = 0 (see Lemma 3.3), the commutator of (1 +

ad(x))g with 1 + ad(x) is

(1 + ad(y))(1 + ad(x))(1 + ad(y))(1 + ad(x))

= 1 + ad(y) ad(x) + ad(x) ad(y) + ad(y) ad(x) ad(y).

Then

[(1 + ad(x))g,2 1 + ad(x)] = ((1 + ad(y))(1 + ad(x))4

= ((1 + ad(y) ad(x) + ad(x) ad(y) + ad(y) ad(x) ad(y))2 = 1

using again the fact that ad(x) ad(y) ad(x) = 0.

Then the normal closure of 1 + ad(x) in G is though not nilpotent as for

Ai = {i} we have

[1 + ad(wA1), 1 + ad(x), 1 + ad(wA2), 1 + ad(wA3), . . .

. . . , 1 + ad(x), 1 + ad(wA2n), 1 + ad(wA2n+1)] = 1 + ad(wA),

where A = A1 t . . . tA2n+1 = {1, 2, . . . , 2n+ 1}.

Our next aim is to show however that if we take any r conjugates (1 +

ad(x))g1 , . . . , (1 + ad(x))gr of 1 + ad(x) in G, they generate a nilpotent

subgroup of r-bounded class that grows linearly with r.

We first work in a more general setting. For each e 2 E and ; 6= A ✓ N,
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let e(A) 2 End(V ⇤) where

uBe(A) = (ue)BtA.

Then let E⇤ = had(x), e(A) : e 2 E and ; 6= A ✓ Ni. As V ⇤ is locally

nilpotent, one sees readily that the elements of E⇤ are nilpotent and thus

1 + E⇤ is a subgroup of End(V ⇤). We are going to see that 1 + E⇤ is of

finite exponent.

Remark 3.8. Notice that ad(uN) = ad(vN) = 0.

Lemma 3.9. The elements ad(wN) and {ei(A) : 1  i  12, ; 6= A ⇢

N} [ {e1(N), e2(N), e3(N)} form a basis for E⇤.

Proof. One sees that these elements span E⇤ as a vector space in a similar

way as in the proof of Lemma 3.2. We then show that these elements are

linearly independent. Suppose

✏ ad(x) +
12X

i=1

X

A

✏iAei(A) = 0,

where only finitely many of the coefficients ✏, ✏iA are non-zero. Denote the

left hand side by T . Then

0 = xT =
X

A

✏1AuA +
X

A

✏2AvA +
X

A

✏3AwA

implying that ✏iA = 0 for all A and i = 1, 2, 3. Then

0 = uN\AT =
X

B✓A
✏4Bu(N\A)tB +

X

B✓A
✏5Bv(N\A)tB +

X

B✓A
✏6Bw(N\A)tB .
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In particular ✏iA = 0 for all A 6= N and i = 4, 5, 6. We continue in a similar

way. Next

0 = vN\AT =
X

B✓A
✏7Bu(N\A)tB +

X

B✓A
✏8Bv(N\A)tB +

X

B✓A
✏9Bw(N\A)tB

that shows that ✏iA = 0 for all A and i = 7, 8, 9. Finally

0 = wNT = ✏uN

giving ✏ = 0 and

0 = wN\AT =
X

B✓A
✏10B u(N\A)tB +

X

B✓A
✏11B v(N\A)tB +

X

B✓A
✏12B w(N\A)tB

and ✏iA = 0 for all A and i = 10, 11, 12. This finishes the proof.

Corollary 3.10. We have (1 + E⇤)32 = 1.

Proof. Let Ē be the subalgebra of E⇤ generated by all ei(A) where 1 

i  12 and ; 6= A ✓ N. Let f = ad(x) + e 2 E where e 2 Ē. Then f2 =

ad(x)2+e2+(e ad(x)+ad(x)e) = e2+(e ad(x)�ad(x)e). Since Ē is an ideal

in the Lie algebra E⇤, it is straightforward to see that e ad(x)�ad(x)e 2 Ē

and thus f2 2 Ē. It thus suffices to show that Ē16 = 0, as then it will

follow that (E⇤)32 = 0 and therefore (1+ e)32 = 1+ e32 = 1 for all e 2 E⇤.

Let e = y1 + · · ·+ ym be any element in Ē where y1, . . . , ym belong to the

basis {ei(A) : 1  i  12, ; 6= A ⇢ N} [ {e1(N), e2(N), e3(N)} for Ē given

in Lemma 3.9. As any product with a repeated term is 0 we see that e16
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is a sum of terms of the form

X

�2S16

f�(1) · · · f�(16) (3.1)

with f1, . . . , f16 2 {y1, . . . , ym}. As 16 > 12 some two of f1, . . . , f16 must

be of the same type. Without loss of generality we can assume that these

are f15 = ei(A) and f16 = ei(B). Notice that the sum 3.1 splits naturally

into 16!/2 sums of pairs

X

�2S16

f�(1) · · · f�(16)

=
X

�2S14

(ei(A)ei(B) + ei(B)ei(A))f�(1) · · · f�(14) + · · ·

+
X

�2S14

f�(1) · · · f�(14)(ei(A)ei(B) + ei(B)ei(A)),

one for each of the
�16
2

�
positions of the pair (ei(A), ei(B)) within the

product. But for each such choice of positions the two elements in the pair

have the same value and as the characteristic is 2, the sum of each pair is

0. Thus the sum in (3.1) is zero and we have shown that Ē16 = 0.

Proposition 3.11. Any r-generator subgroup of 1 + E⇤ is nilpotent of

r-bounded class.

Proof. From Corollary 3.10 we know that 1 +E⇤ is of bounded exponent.

The result thus follows from Zelmanov’s solution to the Restricted Burn-

side Problem.

Despite the fact that the normal closure of 1+ad(x) in G is not nilpotent,
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it turns out that the nilpotency class of the subgroup generated by any k

conjugates grows linearly with respect to k. In order to see this we first

introduce some more notation. Let A1, A2, . . . , Ak be any k subsets of N.

For each k-tuple (i1, i2, . . . , ir) of non-negative integers and each e 2 E we

let

e(i1,...,ir) =
X

B1 ✓ A1

|B1| = i1

. . .
X

B

k

✓ A

k

|B
k

| = ik

e(B1 tB2 t · · · tBk).

Notice that

e(i1,...,ir)f (j1,...,jr) =

✓
i1 + j1

i1

◆
· · ·

✓
ir + jr

ir

◆
(ef)(i1+j1,...,ir+jr).

Now notice that
�3+i

3

�
is even for i = 1, 2, 3 and the same is true for

�2+2
2

�

and
�1+1

1

�
. However

�2+1
2

�
is odd. From this it follows that

Q = had(x), e(i1,...,ir) : e 2 E, 0  i1, . . . , ir  3, i1 + · · ·+ ir � 1i

is a subalgebra of E⇤.

Also, a non-zero product in Q can have at most 2r elements of the form

e(i1,...,ir) and as ad(x)2 = 0 we could then have at most 1+2r occurrences

of ad(x) in a non-zero product. Thus Q4r+2 = 0. With these remarks in

mind, we prove the last result of this chapter.

Proposition 3.12. Let (1+ad(x))g1 , . . . , (1+ad(x))gr be any r conjugates

of 1+ad(x) in G. Then the group generated by these conjugates is nilpotent

of class at most 4r + 2.

Proof. Take some r conjugates of (1 + ad(x)) in G. Recall that each

conjugate is of the from (1 + ad(x))(1+ad(w
C1 ))···(1+ad(w

C

j

)). For ease of
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notation we will assume that each Ck is a singleton set. The following

argument also works for the more general case. Let

A1 = {1, . . . , k1}, A2 = {k1 + 1, . . . , k2}, . . . , Ar = {kr�1 + 1, . . . , kr}.

Then we have seen (see the proof of Theorem 3.7) that

(1 + ad(x))(1+ad(w1))···(1+ad(w
k1 ))

= 1 + ad(x) + e
(1,0,...,0)
7 + e

(2,0,...,0)
4 + e

(3,0,...,0)
1

...

(1 + ad(x))(1+ad(w
k

r�1+1))···(1+ad(w
k

r

))

= 1 + ad(x) + e
(0,...,0,1)
7 + e

(0,...,0,2)
4 + e

(0,...,0,3)
1 .

In other words the r conjugates are all in 1+Q. Hence if H is the subgroup

of GL(V ⇤) generated by the r conjugates then

�4r+2(H)  �4r+2(1 +Q)  1 +Q4r+2 = 1.

This completes the proof.
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Chapter 4

Preliminaries

All our wisdom is stored in the trees.

Santosh Kalwar

In this chapter we define groups of automorphisms of spherically homoge-

neous rooted trees (in the following, Aut T for short). We exhibit some

important families of subgroups of Aut T such as branch groups, (strongly)

fractal groups, and just infinite groups.

4.1 Spherically homogeneous rooted trees

A tree is a connected graph with no cycles. A rooted tree is a tree with

a designated vertex called the root. Let m = {mi}Ni=1, be a sequence of

natural numbers mi � 2, where N can be either a natural number or

infinity. The tree is called homogeneous because at every level there is

the same number of descendants (but this could be different at different

45
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levels). In other words, all the vertices at distance n from the root have the

same number mn+1 of immediate descendants. We will write Tm to denote

the spherically homogeneous rooted tree corresponding to the sequence m.

m1

m2
m2 m2

m3

ÿ

... ...... ...

... ...... ...

. . .

. . . . . . . . .. . .

. . .. . . . . .

Figure 4.1: A spherically homogeneous rooted tree corresponding to the
sequence m1,m2,m3, . . .

Let m be an infinite constant sequence m = m,m, . . . , with m � 2, then

we say that Tm is a regular rooted tree of degree m or a m-adic tree. For

every positive integer m, there is a unique regular rooted tree of degree m

(up to isomorphism). We will call it simply Tm and it looks as in Figure

4.2.

Let X = {x1, x2, . . . , xm}. A word of length n in X is an expression of the

form xi1xi2 . . . xi
n

, where i1, i2, . . . , in 2 {1, . . . ,m}. Let Xn be the set of

all words of length n and X⇤ =
S

n2N Xn the set of all word of finite lengths

over the alphabet X. It is customary to denote a vertex of the tree as a

word in X⇤, where Xn represents all the vertices of the n-th level of Tm.

The free monoid generated by X is X⇤, where we can multiply together



4.1. Spherically homogeneous rooted trees 47

|{z}
m

|{z}
m

|{z}
m

;

· · ·

· · ·
...

· · ·

· · ·
...

· · ·

· · ·
...

· · ·

· · ·
...

· · ·

· · ·
...

· · ·

· · ·
...

· · ·

· · ·
...

· · ·

· · ·
...

· · ·

· · ·
...

Figure 4.2: The m-adic tree Tm

elements by juxtaposition. Indeed, if we consider u 2 Xn and v 2 Xm,

then uv 2 Xn+m. Moreover, chosen a vertex u, the subtree of Tm hanging

from u constitutes the set uX⇤ and it is a copy of Tm. If we deal with the

regular rooted tree, it is customary to choose the set X = {1, 2, . . . ,m}.

More generally, let Tm be a spherically homogeneous rooted tree, and let

X = X1, X2, . . . be a sequence of alphabets such that |Xi| = mi. A word

of length n over X is an expression of the form x1x2 . . . xn where xi 2 Xi

for all i. We denote with ; the empty word (the word of length 0), and

the set of all words over X is X
⇤.

For ease of notation and unless it is strictly necessary, we write T to de-

note a generic spherically homogeneous tree Tm. Furthermore, we usually

consider as a generic sequence, a sequence of the form m = m,m2, . . . (we

omit the subindex in the first component).
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4.2 The group Aut T and some of its subgroups

If we consider bijective maps of the set X⇤ which preserve the root and

incidence, i.e. automorphisms of T , the set of all of these maps is a

group with respect to the ordinary composition between functions, where

(fg)(u) = g(f(u)). We call this set Aut T . For example we have the iden-

tity map or we can permute rigidly the subtrees hanging from the vertices

1, 2, . . . ,m using a permutation ↵ 2 Sym(m). This is called the rooted

automorphism corresponding to ↵. Suppose that Xi = {1, 2, . . . ,mi}. Let

g be in Aut T , and let u be a vertex in the level i � 1. If g sends u to v

then

u1 7�! v↵(1)

u2 7�! v↵(2)

...

u(mi) 7�! v↵(mi),

where ↵ 2 Sym(mi). Furthermore ↵ is called the label of g at the vertex

u and it is denoted by g(u). The portrait of g is the set of all labels of g.

The portrait of an element is a way of describing automorphisms of Aut T .

Indeed, given g 2 Aut T , if its portrait is known, then we can calculate

the image under g of any vertex of T . More precisely,

g(i1i2 . . . in) = g(;)(i1)g(i1)(i2) . . . g(i1...in�1)(in). (4.1)



4.2. The group Aut T and some of its subgroups 49

Conversely, given any portrait on the tree with elements in Sym(mi) for

every i, by formula (4.1) we can define an automorphism of T .

For every n 2 N, we write Ln for the set of all vertices on the n-th level of

T . If u is a vertex of T , the vertex stabilizer of u is denoted st(u) and it is

defined as the subgroup of Aut T consisting of all those automorphisms of

Aut T that fix the vertex u. The n-th level stabilizer is the normal finite

index subgroup of Aut T consisting of the automorphisms of T that fix all

the vertices on the level n, that is

st(n) = {f 2 Aut T | f(u) = u 8u 2 Ln}.

In particular, st(n) =
T

u2L
n

st(u). Also, if H  Aut T , we define stH(n) =

H \ st(n).

Using the portrait one can see that if f 2 Aut T , it is easy to establish

when f 2 st(n) because up to level n, all the labels of f must be 1.

Note that there is a chain of subgroups of Aut T

Aut T ◆ st(1) ◆ st(2) ◆ · · · ◆ st(n) ◆ . . .

where
T

n2N st(n) = 1. Hence Aut T is a residually finite group (i.e. a

group in which the intersection of all its normal subgroups of finite index

is trivial).

In the following, we show that Aut T is a profinite group. To this end, we

first need to recall the definition of inverse system and inverse limit and

to fix some notation.

Definition 4.1. An inverse system of groups over a directed set S is a
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family of groups {Gs}s2S with homomorphisms ⇡s1,s2 : Gs1 �! Gs2 (for

all s1 � s2) such that:

1. For any s1, s2, s3 2 S, ⇡s2,s3 � ⇡s1,s2 = ⇡s1,s3 .

2. The map ⇡s,s is the identity map of Gs for any s 2 S.

Definition 4.2. The inverse limit with respect to an inverse system

⇣
{Gs}s2S , {⇡s,s0 | s, s0 2 S}

⌘

is the subgroup of the Cartesian product
Q

s2S Gs of the tuples (gs) such

that when s1 � s2, we have ⇡s1,s2(gs1) = (gs2). We denote such group G

by:

G = lim �Gs = lim �{Gs}s2S .

A group G is said to be profinite if G is an inverse limit of an inverse

system of finite groups. Additionally, if each Gs has order a power of p for

some fixed prime p, then G is a pro-p group.

Let T[n] be the tree with all finitely many vertices up to level n, that is

T [n] = T(m1,...,mn

). From the definition of n-th level stabilizer, it follows

that Aut T[n] ⇠= Aut T / st(n). Also, for any n,m 2 N with m � n we have

the projections ⇡m,n : Aut T[m] �! Aut T[n] that form an inverse system.

One can prove that the full group of automorphisms is the inverse limit of

Aut T[n] and so is a profinite group. Thus we have

Aut T ⇠= lim �
n!1

Aut T[n].
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We conclude this section by defining another important subgroup of Aut T :

Hn = {g 2 Aut T | g(u) = 1 8u 2 L�n},

where L�n is the set of all vertices in a level k � n.

One can check that Aut T = Hn n st(n). Since H1 = Sym(m), then in

particular we have Aut T = Sym(m)n st(1). Also, all the automorphisms

in H1 are rooted automorphisms of T .

4.3 Other facts about Aut T

In the following, we denote by Tu the subtree hanging from the vertex u

of the tree. Since for any two vertices u, u0 of the same level Ln we have

Tu ⇠= Tu0 , we denote by Thni any tree isomorphic to a subtree with root at

a generic vertex of level n.

Let f 2 Aut T and suppose that f(u) = u, where u 2 X⇤. The section

of f at u is the restriction of f to the subtree hanging from u, which is

identified with Thni. It is denoted by fu. Then fu can be described as

f(uv) = ufu(v).

More generally, without requiring the condition f(u) = u, the section of

f at u is defined by f(uv) = f(u)fu(v). Below we collect some useful

formulas for sections (these are also satisfied for labels).

Lemma 4.3. Let f, g 2 Aut T and let u be a vertex of T . Then the

following hold:

(i) (fg)u = fugf(u).
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(ii) (f�1)u = (ff�1(u))
�1.

(iii) (fg)u = (gg�1(u))
�1fg�1(u)gf(g�1(u)).

Proof. We prove (i). Let v be a vertex of T . We have

(fg)(uv) = g(f(uv)) = g(f(u)fu(v)) = g(f(u))gf(u)(fu(v))

= (fg)(u)(fugf(u))(v).

Then we obtain that (fg)u(v) = fugf(u)(v) for every vertex of T and

(fg)u = fugf(u). Items (ii) and (iii) easily follow by using same arguments

of (i).

Using sections, one can define the following isomorphism that will be of

fundamental importance throughout the thesis. Let n 2 N, we define  n

as

 n : st(n) �! Aut Thni ⇥
m1···mn· · · ⇥Aut Thni

g 7�! (gu)u2L
n

,

for every g 2 st(n).

Observe that by giving the image of  n(g), one can use  n to define an

element g 2 st(n). We usually write  instead of  1.

If the tree is regular of degree m, the situation is much easier. Indeed we

have

st(n) ⇠= Aut Tm ⇥ mn

· · · ⇥Aut Tm.

This implies that Aut Tm contains direct products Aut Tm ⇥mn

· · ·⇥Aut Tm,
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a fact that is not true for a general group (if we consider Z, there does not

exist a subgroup H of Z such that H ⇠= Z⇥ Z).

Notice that the “semidirect” structure of Aut Tm and the fact that st(n) ⇠=

Aut Tm ⇥ mn

· · · ⇥Aut Tm imply that Aut Tm can also be seen as an iterated

permutational wreath product

Aut Tm ⇠= Sym(m)n st(1) ⇠= Aut Tm o Sym(m)

⇠= ((Sym(m) o . . . ) o Sym(m)) o Sym(m).

From this it follows that an element g 2 Aut Tm can be written in the form

g = h�, where h = (h1, . . . , hm) 2 st(1), and � 2 Sym(m).

Definition 4.4. Let Tp be the p-adic tree, for p a prime. If � = (1 . . . p),

we define a standard Sylow pro-p subgroup of Aut Tp as the subgroup � 

Aut Tp that is mapped isomorphically to

((h�i o . . . ) o h�i) o h�i = ((Cp o . . . ) o Cp) o Cp.

In this case, every element g 2 � can be written in the form g = h�t, for

some t 2 Z and h 2 st(1) such that  (h) 2 �⇥ p· · ·⇥ �.

4.4 Self-similar and fractal groups

In this section, we provide some definitions and basic properties of self-

similar and fractal groups. Before giving the definition of these groups, we

need to recall what a spherically transitive group is.

Definition 4.5. A group G  Aut T is spherically transitive (or level
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transitive) if it acts transitively on each level of the tree. Also, a spherically

transitive group cannot be finite as the following proposition shows.

Proposition 4.6. Let G be a spherically transitive group. Then G is

infinite.

Proof. If we fix a vertex u1 2 Ln, then for every vertex ui 2 Ln, there

exists gi 2 G such that gi(u1) = ui. Clearly, gi 6= gj for any i 6= j. Then,

since {g1, . . . , g|L
n

|} ✓ G, we have |G| � |Ln| = m1 · · ·mn. Since this

holds for every n 2 N, the only possibility is that G is infinite.

Definition 4.7. A group G  Aut T is self-similar if  (h) 2 G⇥ m· · ·⇥G

for all g = h� 2 G, with h 2 stG(1) and � 2 Sym(m).

Let  u : stG(u) ! Aut T be the homomorphism which sends each g 2

stG(u) to the section gu. Neither this map nor the map  n defined before

need be surjective, as in the case of Aut T . Hence it is useful to give some

definitions and considerations related to this problem.

Definition 4.8. Let G  Aut T be a self-similar group. We say that:

• G is fractal (or self-replicating) if for all u 2 T ,  u(stG(u)) = G.

• G is strongly fractal if ⇡i( (stG(1))) = G for all i = 1, . . . ,m, where

⇡i is the projection onto the i-th component of G⇥ m. . .⇥G. Equiv-

alently, one can say that G is strongly fractal if for all g 2 G, there

exist g2, . . . , gm 2 G such that (g, g2, . . . , gm) 2 G (and similarly for

all components other than the first).

Recall that � denotes the standard Sylow pro-p subgroup of Aut Tp. If
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G  �, then G is fractal if and only if it is strongly fractal, by [53, Lemma

2.5]. We now prove a useful lemma for fractal groups.

Lemma 4.9. Let G be a fractal group. Then G is spherically transitive if

and only if G acts transitively on the first level of the tree L1.

Proof. One implication is trivial. Suppose that G acts transitively on the

first level of the tree. We want to prove that for any u and v in Ln there

exists g 2 G such that g(u) = v. We argue by induction on n. The

case n = 1 is trivially satisfied. Thus, suppose that G acts transitively

on the level Ln�1 and let us prove that G acts transitively also on Ln.

Take u, v 2 Ln, and write u = xw and v = x0w0 where x, x0 2 L1 and

w,w0 2 Ln�1. By induction, there exists h 2 G such that h(x) = x0. If we

consider an arbitrary g 2 G and we evaluate hg(u), we have

hg(u) = hg(xw) = hg(x)(hg)x(w) = g(h(x))gh(x)(hx(w)).

Again by induction hypothesis, since if w 2 Ln�1, then hx(w) 2 Ln�1,

there exists f 2 G such that f(hx(w)) = w0. Moreover, the group G is

fractal, that is  h(x)(stG(h(x))) = G. Then, there exists g 2 stG(h(x))

such that gh(x) = f . Then, finally, we obtain

g(h(x))gh(x)(hx(w)) = h(x)f(hx(w)) = x0w0 = v,

as required.
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4.5 Branch groups

In this section we define (weakly) branch groups and we show some im-

portant properties of these groups.

Branch groups, which were first defined by Grigorchuk [8] at the Groups at

St. Andrews conference in Bath in 1997, are generalizations of the famous

p-groups constructed by Grigorchuk himself, and Gupta and Sidki (see

Section 5 for a detailed account on these groups). Despite their relatively

recent introduction, branch groups have appeared in the literature in the

past, without being explicitly defined. For instance, the class of branch

groups contains one of the three classes of groups in John Wilson’s famous

characterization of just infinite groups [54]. This is one of the primary

motivations for their study. Another important motivation comes from

the remarkable properties that examples of these groups, such as the Grig-

orchuk and Gupta-Sidki groups mentioned above, possess. Among others,

we mention the fact that (weakly) branch groups do not satisfy any law,

a result proved by Abért [3].

Let G be a subgroup of Aut T . In the following, for simplicity we denote

by  n the map

 n : stG(n) �!  n(stG(n)),

where  n(stG(n)) need not be a direct product. Let n � 0 and u 2 Ln.

The rigid stabilizer of the vertex u is the subgroup of G that consists of

all those automorphisms that fix all vertices not having u as a prefix, i.e.

rstG(u) = {g 2 stG(n) | gv = 1 8 v 2 Ln where u 6= v}.
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If u is a vertex of Ln, then  n(rstG(u)) has all coordinates equal to 1

except at the position u. As a consequence, if G is self-similar, for some

subgroup Ru of Aut T , we have

{1}⇥ · · ·⇥ {1}⇥Ru ⇥ {1}⇥ · · ·⇥ {1} ✓  n(stG(n)).

The rigid stabilizer of the n-th level is

rstG(n) = hrstG(u) | u 2 Lni.

Clearly, rstG(n) ✓ stG(n) and we have the following decomposition:

rstG(n) =
Y

u2L
n

rstG(u).

Obviously, if G is the whole Aut T then the rigid stabilizer coincides with

the n-th level stabilizer. However, this is not usually the case for arbitrary

subgroups of Aut T .

Remark 4.10. Note that by Lemma 4.3, one can readily prove that

rstG(v)
g = rstG(g(v))

for every vertex of T and g 2 G. Thus if G is spherically transitive,

then each level rigid stabilizer rstG(n) is a direct product of isomorphic

subgroups for all n 2 N.

The subgroup rstG(n) is highly important in the study of branch groups.

Indeed, informally speaking, the subgroup  n(rstG(n)) is the largest sub-
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group of  n(stG(n)) which is a “geometric” direct product. We recall that

if Hi are normal subgroups of Gi for i = 1, . . . , n, then H1 ⇥ · · ·⇥Hn is a

normal subgroup of G1 ⇥ · · · ⇥ Gn. We call a subgroup of G1 ⇥ · · · ⇥ Gn

of the form H1 ⇥ · · ·⇥Hn is a subproduct of G1 ⇥ · · ·⇥Gn.

Proposition 4.11. Let H  stG(n) and  n(H) be a subproduct of im( n).

Then H  rstG(n).

Proof. Let Hu be such that

{1}⇥ · · ·⇥Hu ⇥ · · ·⇥ {1} ✓  n(H) =
Y

u2L
n

Hu.

Moreover, we can consider Ju ✓ stG(n) where

 n(Ju) = {1}⇥ · · ·⇥Hu ⇥ · · ·⇥ {1},

then we have  n(Ju) ✓  n(H). Now we have  n(H) =
Q

u2L
n

Hu =

 n

�Q
u2L

n

Ju
�

and since  n is injective, H =
Q

u2L
n

Ju. Moreover, if we

consider h 2 Ju, since hv = 1 for any v 2 Ln different from u, we have

Ju ✓ rstG(u). Finally, H =
Q

u2L
n

Ju ✓ rstG(n). This completes the

proof.

Definitions and basic properties

In this section we provide basic definitions and properties of branch groups.

Definition 4.12. Let G  Aut T be a spherically transitive group.

• We say that G is a branch group if for all n � 1, the index of the
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rigid n-th level stabilizer in G is finite. In other words, for all n � 1,

|G : rstG(n)| < 1.

Notice that this is the same as asking that | stG(n) : rstG(n)| < 1.

• If G is self-similar, we say that G is a weakly regular branch group

(respectively, regular branch group) if there exists a non-trivial sub-

group K of stG(1) (of finite index) such that K ⇥ · · · ⇥K ✓  (K).

If we want to emphasize the subgroup K, we say that G is weakly

regular branch over K (regular branch group over K).

• Note that level stabilizers cannot be trivial. Indeed, they are sub-

groups of finite index of G and G is infinite by Proposition 4.6. How-

ever, this is not the case of rigid level stabilizers, since they might

be trivial. We say that G is a weakly branch group if all of its rigid

vertex stabilizers are non-trivial for every vertex of the tree.

We remark that since a branch group is spherically transitive and hence

infinite (see Proposition 4.6), then any branch group is a weakly branch

group. From now on, we will always assume that G is a subgroup of Aut T

acting spherically transitive on T .

As the following result shows, one could have defined weakly branch groups

by requiring that all its rigid stabilizer are infinite.

Proposition 4.13. Let G be a weakly branch group. Then all its rigid

vertex stabilizers of G are infinite.

Proof. Since all rigid vertex stabilizers of G are non-trivial, consider a
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vertex u of the tree and 1 6= g 2 rstG(u). Let v be a vertex of T where

g has non-trivial label, and consider a descendant of v, say w. Now again

rstG(w) must be non-trivial, and also g /2 rstG(w) because it has non-trivial

label at v /2 Tw. So we can find a non-trivial automorphism h 2 rstG(u)

different from g. We can continue in this way and we get infinitely many

different elements inside rstG(u). Hence rstG(u) cannot be finite.

We also remark that, in general, it is possible for subgroups of Aut T

to have all trivial rigid stabilizers. As the proposition below shows, an

example of this case is the adding machine. The adding machine is the

group H = hxi acting on the binary tree, where x = (1, x)� and � is the

rooted automorphism corresponding to the cycle (1 2).

Proposition 4.14. Let H be the adding machine. Then all its rigid sta-

bilizers are trivial.

Proof. Note first that x2n = (xn, xn), and x2n+1 = (xn, xn)�. As a con-

sequence, the portrait of x2n is as follows: it has trivial label in L<n and

the permutation � at every vertex in Ln. Also, the stabilizer of the first

level is hx2i, and more generally stH(n) = hx2ni. Thus since no power of

x belongs to rstH(n), all rigid stabilizers of H are trivial. This concludes

the proof.

We conclude this section providing an important property of regular branch

groups.

Lemma 4.15. Let K  G. If G is regular branch over K, then G is

branch.
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Proof. Write Kn =  �1n (K⇥mn

· · ·⇥K) and so  n(Kn)  K⇥mn

· · ·⇥K. First

we show that also the converse inclusion is true in the latter. Note that

 n(Kn) = (K ⇥ mn

· · · ⇥K) \  n(stG(n)) = K ⇥ mn

· · · ⇥K.

In this case, we have

K ⇥ mn

· · · ⇥K =  n(Kn)   n(stG(n))  G⇥ mn

· · · ⇥G,

where the last inclusion holds because G is self-similar. By Proposition

4.11, we have Kn  rstG(n), and since  is injective, we obtain the follow-

ing inequalities

| stG(n) : rstG(n)|  | stG(n) : Kn| = | n(stG(n)) :  n(Kn)|

 |G⇥ mn

· · · ⇥G : K ⇥ mn

· · · ⇥K| = |G : K|mn

< 1.

Since from the expression above we have | stG(n) : rstG(n)| < 1, then G

is branch. This completes the proof.

4.6 Just infinite groups

In this section we define just infinite groups and we observe how the fact

that the group is branch gives us some additional properties of the group.

For further references one can see Chapter 4 of [14].

Definition 4.16. Let H be a group and X a property of groups. We

say that H is just X if H has the property X and every proper quotient of
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H does not have the property X. In particular, a group G is just infinite

if G is infinite and if all of its proper quotients are finite.

The following is a criterion for a regular branch group to be just infinite.

We denote with K 0 the derived subgroup of K and we use the notation of

Kn introduced in Lemma 4.15. Also, we for a group P , and a subgroup

R  P , the (normal) core of R is the largest normal subgroup of P that is

contained in R.

Theorem 4.17. [30, Theorem 4] If G is regular branch over K, then G

is just infinite if and only if |K : K 0| < 1. Furthermore if |K : K 0| < 1

then for every non-trivial normal subgroup N of G, there exits n 2 N such

that K 0n ✓ N .

Proof. First note that K 0 is of infinite index in K, and so also its core is of

infinite index. Also, since weakly branch groups do not satisfy any law [3],

they cannot have abelian subgroups of finite index. Indeed, if there exists

an abelian subgroup of index m in G, then G satisfies the law [xm, ym] for

any x, y 2 G. Hence, K 0 must be non-trivial. This implies that G is not

just infinite.

Conversely, let |K : K 0| < 1. Let g 2 G such that g 6= 1 and write

H = hgiG. We will prove that H contains K 0n, for some n. It is enough to

prove that G is just infinite. Indeed, in this case, we obtain

|G : H|  |G : K 0n|  |G : K| · |K : K 0n| < 1,

for some n, where the last inequality holds because we are assuming that

G is regular branch over K and that |K : K 0| < 1. Now, suppose that g
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is in stG(n) \ stG(n + 1), and write  n(g) = (⇤, . . . , ⇤, gu, ⇤, . . . , ⇤), where

the vertex u has length n and is such that gu /2 stG(1). Then we can write

gu = ha, with h 2 stG(1) and a 6= 1 sending x to y, where x and y are

different vertices of L1. If we consider an arbitrary element ⇠ 2 K, we can

associate f 2 stG(n+ 1) defined as follows:

 n(f) = (1, . . . , 1, fu, 1, . . . , 1) and  (fu) = (1, . . . , 1, ⇠, 1, . . . , 1),

with ⇠ in position x. Notice that this choice is possible since G is regular

branch over K and then Kn+1 =  �1n+1(K ⇥ mn+1
. . . ⇥ K) ✓ stG(n + 1), as

shown in the proof of Lemma 4.15. The commutator [g, f ] belongs to H

because H is a normal subgroup. Also, [g, f ] belongs to stG(n + 1), and

we have

 n([g, f ]) = (1, . . . , 1, [gu, fu], 1, . . . , 1)

= (1, . . . , 1, a�1h�1f�1u hafu, 1, . . . , 1).

Then, in the (n+ 1)-st level, we have

 n+1([g, f ]) = (1, . . . , 1, ⇠�hx , 1, . . . , 1, ⇠, 1, . . . , 1),

where ⇠�hx is in position y and ⇠ in position x. Consider another element

⌘ 2 K and define l 2 stG(n+ 1) by the following expression

 n+1(l) = (1, . . . , 1, ⌘, 1, . . . , 1).
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Then, [[g, f ], l] = (1, . . . , 1, [⇠, ⌘], 1, . . . , 1). Since ⇠ and ⌘ are arbitrary

elements of K, we have

{1}⇥ · · ·⇥ {1}⇥K 0 ⇥ {1}⇥ · · ·⇥ {1}   n+1(stH(n+ 1)).

As a consequence

K 0 ⇥ mn+1
. . . ⇥K 0   n+1(stH(n+ 1))

because H is normal in G and the action of G is transitive. Also,

K 0 ⇥ mn+1
. . . ⇥K 0 = (K ⇥ mn+1

. . . ⇥K)0 =  n+1(Kn+1)
0 =  n+1(K

0
n+1).

Hence we obtain K 0n+1 ✓ stH(n+ 1). This concludes the proof.

As a consequence, a finitely generated torsion regular branch group is just

infinite. Also, the study of branch groups is motivated by the following

theorem, whose proof can be found in [30].

Theorem 4.18 (Proposition 3, [30]). If G is a finitely generated infinite

group, then G can be mapped onto a just infinite group.

Hence, every finitely generated infinite group has a just infinite quotient.

However, there exist infinitely generated groups that do not have just

infinite quotients, for instance the additive group of rational numbers Q.
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Some important groups of

automorphisms

In this chapter we provide some important examples of groups of auto-

morphisms acting on a regular rooted tree. In particular, we define the

(first) Grigorchuk group, the (multi-)GGS-groups, the Basilica group, the

lamplighter group, the group of finitary automorphisms, the Hanoi Tower

group, and the Brunner-Sidki-Vieira group. About the latter, in Section

5.5.1, we give a different proof of the fact that it has torsion-free abelian-

ization.

5.1 The Grigorchuk group

The (first) Grigorchuk group G, introduced by Grigorchuk [24] in 1980 is

a subgroup of Aut T2. The Grigorchuk group possesses a lot of interesting

65



66 Chapter 5. Some important groups of automorphisms

properties. For instance, it was the first group shown to be of intermediate

growth [25], it is a counterexample to the General Burnside Problem and

it is amenable but not elementary amenable [29]. For more information

about growth of groups and on amenability see [41] and [46], respectively.

The group is generated by a = (1 2) that is the swap at the root, and

other three elements b, c, d 2 st(1) defined recursively as follows

 (b) = (a, c),  (c) = (a, d),  (d) = (1, b),

whose portrait is represented below:

b

(12) c

(12) d

1 b

(12) c...

c

(12) d

1 b

(12) c

(12) d...

d

1 b

(12) c

(12) d

1 b... .

Figure 5.1: Portrait of the elements b, c and d of the Grigorchuk group

For further information and for the proof of the following theorem, one

can see [13, Chapter 7].

Here we collect some properties of G that we will use later in this thesis.

Theorem 5.1. The group G satisfies the following properties:

(i) G is strongly fractal.

(ii) G is regular branch over K = h[a, b]iG.

(iii) G is a 2-group.
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(iv) G is just infinite.

5.2 The GGS-groups

Let p be an odd prime, and e = (e1, . . . , ep�1) a vector where ei 2

{1, . . . , p} and such that not all the ei’s are 0. The GGS-group Ge, named

after Grigorchuk, Gupta, and Sidki, is the group generated by the two

automorphisms a, b 2 Aut Tp, where a is the rooted automorphism corre-

sponding to the cycle (1 . . . p), and b 2 st(1) is

 (b) = (ae1 , . . . , aep�1 , b).

For example the famous Gupta-Sidki p-group is a GGS-group whose defin-

ing vector e is e = (1,�1, 0, . . . , 0).

The group Ge is strongly fractal for any vector e, but other properties

depend on the choice of e (see [19]). For instance, Ge is just infinite and

branch if and only if e is not constant. If the defining vector is constant

the situation is much different. For the rest of the section we consider Ge

in the case when e is constant, i.e. e1 = · · · = ep�1 = n for some non-zero

n. We may assume that n = 1 since proportional non-zero vectors define

the same GGS-group, and for ease of notation we let G = Ge. We collect

here some results from [19] which will be used later in Chapter 8. Before

doing this, we need to fix some notation. Write y0 = ba�1 and yi = ya
i

0

for every i = 1, . . . , p, and let K be the normal closure of y0 in G.

Lemma 5.2. [19, Lemma 4.2] Let G and K be as before. Then the follow-

ing hold:
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(i) |G : G0| = p2.

(ii) |G : K| = p.

(iii) K = hy0, . . . , ypi.

(iv) G is weakly regular branch over its derived subgroup K 0.

We remark that (i) of the Lemma above is satisfied by all GGS-groups.

5.3 Multi-GGS groups

Given an odd prime p and a non-trivial subspace E of F

p�1
p , we define

the multi-GGS group GE (again, GGS stands for Grigorchuk, Gupta, and

Sidki) as the following subgroup of Aut Tp. The group GE is generated

by the rooted automorphism a of order p corresponding to the p-cycle

(1 2 . . . p), and by the elementary abelian p-subgroup B consisting of all

automorphisms be, with

e = (e1, . . . , ep�1) 2 E,

defined recursively via

be = (ae1 , . . . , aep�1 , be). (5.1)

If dimE = 1 then GE is simply a GGS group. Multi-GGS groups are

usually presented by giving a basis (e1, . . . , er) of E and defining bi 2 B

from ei as in (5.1) for each i = 1, . . . , r, so that GE = ha, b1, . . . , bri. We
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refer the reader to [4] for general facts about multi-GGS groups. Multi-

GGS groups are infinite and provide a wealth of examples giving a negative

answer to the General Burnside Problem. In general, a multi-GGS group

is periodic if and only if E is contained in the hyperplane of Fp�1
p given

by the equation e1 + · · ·+ ep�1 = 0 [4, Theorem 3.2]. On the other hand,

multi-GGS groups are known to be branch unless E = h(1, . . . , 1)i consists

of constant vectors, in which case it is weakly branch [4, Proposition 3.7].

5.4 The Basilica group

The Basilica group B was introduced by Grigorchuk and Zuk in 2002 [28].

The name Basilica comes from the Schreier graph of B (Figure 5.2 below),

since it has the shape of the basilica of San Marco in Venice together with

its reflection in the water, see [12].

Figure 5.2: The Schreier graph of the Basilica group B

The Basilica group is the subgroup of Aut T2 generated by the two auto-
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morphisms a and b defined as

a = (1, b) and b = (1, a)�,

where � is the rooted automorphism of T2 that corresponds to the per-

mutation (1 2). Here, we abuse notation by writing a = (1, b) instead of

 (a) = (1, b), and similarly for the element (1, a). The portrait of these

two automorphisms is represented below.

a 1

1 �

1 1

1 �

1 1...

b �

1 1

1 �

1 1

1 �... .

Figure 5.3: The portrait of the generators of the Basilica group B

Here we collect some properties of B that can be found in [28]. We recall

that for a group G, its abelianization is the quotient of the group by its

commutator subgroup G0.

Theorem 5.3. Let B be the Basilica group. Then:

(i) B is strongly fractal.

(ii) B is weakly regular branch over its derived subgroup B0.

(iii) B is torsion-free.
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(iv) B is just non-solvable.

(v) B has torsion-free abelianization.

5.5 The Brunner-Sidki-Vieira group

The Brunner-Sidki-Vieira group S is the group of automorphisms of T2

generated by

c = (1, c�1)� and d = (1, d)�,

where � is the rooted automorphism of T2 corresponding to the cycle (1 2).

Again, we have omitted the map  in the definition of c and d.

In the following we present some relevant properties of S that can be found

in [10] and also in [49].

Theorem 5.4. Let S be the Brunner-Sidki-Vieira group. Then:

(i) S is strongly fractal.

(ii) S is weakly regular branch over its derived subgroup S 0.

(iii) S is torsion-free.

(iv) S is just non-solvable.

(v) S has torsion-free abelianization.

In the subsection below, we present a different proof of the fact that S has

torsion-free abelianization.
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5.5.1 Abelianization of the Brunner-Sidki-Vieira group

Throughout the section, we let M be the free monoid M(c, d) generated

by c and d. First observe that any g 2 S can be written uniquely as

g = h�", for some h 2 st(1) and some " = 0, 1. The element h may not

belong to S, but  (h) = (h1, h2) satisfies h1, h2 2 S. We call h1 and

h2 the components of the stable part of h. Let w 2 M, and let w1 and

w2 be the components of the stable part of ⇡(w), where ⇡ is the natural

projection of the monoid to the group. There are natural words u1 and u2

such that ⇡(u1) = w1 and ⇡(u2) = w2. These can be obtained as follows:

if |w| = 1 and w = c, then u1 = 1 and u2 = c�1. If w = d, then u1 = 1 and

u2 = d. Inductively, if w = w0c for some subword w0 and if ⇡(w0) 2 stS(1),

then u1 = w01 and u2 = w02c
�1. If ⇡(w0) /2 stS(1), then u1 = w01c

�1 and

u2 = w02 (this comes from the fact that, in this case, ⇡(w0) ends with �,

and from the computation  (�c�) = (c�1, 1)). The remaining cases are

treated similarly.

We will denote u1 and u2 by ⇢1(w) and ⇢2(w). Notice that then ⇡�⇢1(w) =

w1 and ⇡ �⇢2(w) = w2. We also let nc(w) and nd(w) be the exponent sum

of c and d in w, respectively.

Lemma 5.5. The following hold for any w 2 M:

(i) |w| = |⇢1(w)|+ |⇢2(w)|.

(ii) nc(w) = nc(⇢1(w)) + nc(⇢2(w)), nd(w) = nd(⇢1(w)) + nd(⇢2(w)).

Proof. The results follow immediately by induction on the length of w.

Lemma 5.6. Suppose that |w| � 2. Then | (⇢i � ⇢j) (w)| < |w| for all

i = 1, 2, j = 1, 2.
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Proof. The case |w| = 2 is immediate by direct computations. Now assume

that |w| � 3, so that w = uv for some subwords u and v, with |v| = 2. One

has that ⇢1(w) = ⇢1(u)⇢1(v), ⇢2(w) = ⇢2(u)⇢2(v) or ⇢1(w) = ⇢1(u)⇢2(v),

⇢2(w) = ⇢2(u)⇢1(v), depending on whether ⇡(u) and ⇡(v) belong to stS(1)

or not. More generally, for both j = 1, 2, ⇢j(w) = ⇢j(u)⇢j�"(v), where

" 2 {0, 1}, and ⇢0(v) is defined to be ⇢2(v). Now, for i = 1, 2 and j = 1, 2,

we have

| (⇢i � ⇢j) (w)| = |⇢i(⇢j(w))| = |⇢i(⇢j(u)⇢"�j(v))|. (5.2)

Fix j, and let u0 = ⇢j(u), v0 = ⇢j�"(v), w0 = u0v0. Repeating the argu-

ments above, ⇢1(w0) = ⇢1(u
0)⇢"0(v0) and ⇢2(w0) = ⇢2(u

0)⇢1�"0(v0) for some

"0 = 0, 1. Plugging these into (5.2), we have

| (⇢i � ⇢j) (w)| = |⇢i(⇢j(u)⇢j�"(v))| = |⇢i(w0)|

= |⇢i(⇢j(u))⇢i�"0(⇢j�"(v))|

= | (⇢i � ⇢j) (u)|+ | (⇢i�"0 � ⇢j�") (v)|

< | (⇢i � ⇢j) (u)|+ |v| (5.3)

 |⇢j(u)|+ |v|  |u|+ |v| = |w| (5.4)

where (5.3) has been obtained using that the lemma is true for words v of

length 2, and (5.4) is a consequence of (i) of Lemma 5.5 applied twice.

Lemma 5.7. Suppose ⇡(w) = 1, i.e. suppose that w represents the identity

element of S. Then nc(w) = nd(w) = 0.

Proof. We proceed by induction on the number of letters |w| of w. If |w| 

2 the statement is clear. Suppose the lemma holds when |w| � 2. By taking
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appropriate conjugates, we can assume that w = uc"d, for some subword

u and some " = �1, 1. Suppose " = 1. Since c"d 2 stS(1), then u 2 stS(1)

where  (c"d) = (d, c�1), and ⇢1(w) = ⇢1(u)d, ⇢2(w) = ⇢2(u)c
�1.

Since ⇡(w) = 1, then ⇡(⇢1(w)) = ⇡(⇢2(w)) = 1. By (i) of Lemma 5.5,

|⇢1(u)d| + |⇢2(u)c�1| = |w|. Now, if |⇢1(u)d| < |w| and |⇢2(u)c�1| < |w|,

by induction,

nc(⇢1(u)d) = nd(⇢1(u)d) = 0,

nc(⇢2(u)c
�1) = nd(⇢2(u)c

�1) = 0. (5.5)

Using (ii) of Lemma 5.5, and (5.5), we have

nc(w) = nc(⇢1(u)d) + nc(⇢2(u)c
�1) = 0,

nd(w) = nd(⇢1(u)d) + nd(⇢2(u)c
�1) = 0,

as required. Now suppose that |⇢2(u)c�1| = 0 (the other case follows

similarly). Then ⇢2(u)c
�1 = 1 and  (⇡(w)) = (⇡(⇢1(u)d), 1), with |w| =

|⇢1(u)d| � 2. Since we must have ⇡(⇢1(u)d) = 1, we can repeat the same

arguments used so far with ⇢1(u)d. By Lemma 5.6, it is not possible that

⇢1(⇢1(u)d) or ⇢2(⇢1(u)d) is trivial (equivalently, both words must have

length strictly smaller than |⇢1(u)d| = |w|). Hence, by induction,

nc(⇢1(u)d) = nd(⇢2(u)d) = 0,

and since w = ⇢1(u)d, we have nc(w) = nc(⇢1(u)d) = 0, and nd(w) =

nd(⇢1(u)) = 0.
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Before proving the main result of this subsection, we recall that given a

free abelian group G, its rank is the smallest cardinality of a generating

set for G.

Theorem 5.8. The abelianization of S is the free abelian group of rank 2

generated by cS 0 and dS 0.

Proof. Clearly, S/S 0 is generated by cS 0 and dS 0. To prove the lemma,

it suffices to show that if cidjS 0 = S 0 then i = j = 0. Indeed, suppose

cidjS 0 = S 0 holds. There must exist a word u 2 M(c, d) that represents

an element from S 0, and cidj = u in S. Since we are taking elements in

S 0, i.e. commutator words, we have nc(u) = nd(u) = 0, and, consequently,

nc(u
�1) = nd(u

�1) = 0. Since ⇡(cidju�1) = 1, Lemma 5.7 implies that

nc(c
idju�1) = 0 and nd(c

idju�1) = 0. But then

nc(c
idju�1) = nc(c

idj) + nc(u
�1) = i+ 0 = 0

and, similarly, nd(c
idju�1) = j = 0. This completes the proof.

5.6 The lamplighter group

The lamplighter group L is the wreath product C2 oC1. It is given by the

presentation

L = ha, t | a2, [atn , atm ] for m,n 2 Zi.

The name lamplighter comes from viewing the group as acting on a dou-

bly infinite sequence of street lamps . . . , l�2, l�1, l0, l1, l2, . . . . Each of them

can be on or off, and a lamplighter standing at some lamp lk. The gener-
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ator t increments k, so that the lamplighter moves to the next lamp (t�1

decrements k), while the generator a means that the state of lamp lk is

changed (from off to on or from on to off).

The lamplighter group L is a metabelian self-similar group of exponential

growth [27]. It can be seen also as a group acting on a binary tree defined

by a = (a, a�) and the rooted automorphism � corresponding to the cycle

(1 2).

5.7 The Hanoi Tower group

The Hanoi Tower game is a mathematical puzzle which consists of disks of

different sizes and n pegs. The goal is to move the entire stack to another

peg, following some rules:

• One disk can be moved at a time.

• Each move consists of taking the upper disk from one of the stacks

and placing it on top of another or on an empty peg.

• No disk may be placed on top of a smaller disk.

Let the number of pegs be 3. A word in X = {1, 2, 3} is a configuration of

the disks and the length of the word is the number of disks. For example

the configuration 231123, being of length 6, is a configuration of the game

with 6 disks. Also, it means that the first smaller disk is on the second

peg (231123), that the second smaller is on the third (231123), and so on.

Then the goal is to send 11 n. . .1 to 33 n. . .3. Thus, a configuration (i.e. a

sequence of n digits from {1, 2, 3}) can be seen as a vertex on the n-th
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level in a rooted ternary tree, and each move takes one vertex on the n-th

level of the tree to another vertex on the n-th level. Hence each move

in the Hanoi Tower game can be thought of as an automorphism of the

rooted ternary tree.

We define the move a as follows:

• Search for the first time a 1 or 2 appears in the configuration and

switch it with 2 or 1.

• Apply the identity in the other digits of the configuration.

For example a(21322) = 11322. This means that a, reading the configura-

tion from the smaller disk to the biggest, does the only movement allowed

to do between pegs 1 and 2. In a similar way one can define the remaining

two moves b and c, the swap of 1 with 3 and 2 with 3, respectively.

The Hanoi Tower group H is the subgroup of Aut T3 generated by the

three automorphisms a, b and c given by the following recursive formulas

(we abuse notation by omitting the map  ):

a = (1, 1, a)(1 2),

b = (1, b, 1)(1 3),

c = (c, 1, 1)(2 3).

In [23] it has been proved that H is weakly regular branch over its derived

subgroup H0.
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5.8 The group of finitary automorphisms

An automorphism of T is called finitary if it has finitely many non-trivial

labels in its portrait. Finitary automorphisms form a locally finite sub-

group F of Aut T . If T is a p-adic tree for a prime p and we fix a p-cycle

� in Sym(p), the group Fp of finitary automorphisms whose labels are all

powers of � constitute a subgroup of F . We call this the group of p-finitary

automorphisms of T (we give no reference to �, since different choices of

the p-cycle give rise to isomorphic groups). Observe that Fp is locally a

finite p-group.



Chapter 6

Engel elements in Aut T :

state of the art

In this chapter, we motivate the search of Engel elements in subgroups of

Aut T . Indeed, the example of Bludov (explained below in Section 6.1),

based on the Grigorchuk group G, is the first example of a group in which

the set of left Engel elements is not a subgroup. Bartholdi in [6] refined this

example by proving that the only left Engel elements of the Grigorchuk

group G are the involutions (i.e. elements of order 2). In particular, this

shows that the Grigorchuk group is not Engel.

In Section 6.2 we complete the study of the Engel sets in the first Grig-

orchuk group. These results have given rise to a paper produced with A.

Tortora and published in International Journal of Group Theory [43].

In Section 6.3 we give an alternative proof (suggested by Bartholdi in [7])

that the Grigorchuk group is not Engel.

79
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6.1 The example of Bludov

In 2006 Bludov announced the possibility to construct a group based on the

Grigorchuk group in which the set of left Engel elements is not a subgroup

[9]. This was the first example of a group with this property. Let G be the

first Grigorchuk group, and let K = hgi be a cyclic group of order 4. By

taking G = G oK, we will show that there exists an element g 2 G that is

not a left Engel element of G. This leads to the following.

Lemma 6.1. Let g 2 K, and h = (1, ab, ca, d) 2 G⇥G⇥G⇥G. We have

[h,n g] 6= 1 for any n � 1.

Proof. If we calculate [h,n g] starting from n = 1, we have

h1 = [h, g] = h�1hg = (1, ba, ac, d)(d, 1, ab, ca)

= (d, ba, cab, dca) = (d, ba, cab, ba);

h2 = [h1, g] = (d, ab, bca, ab)(ba, d, ba, cab)

= (ca, ac, bcaba, bacab);

h3 = [h2, g] = (ac, ca, abcab, bacba)(bacab, ca, ac, bcaba)

= (acbacab, cca, abcabac, bacbabcaba)

= (cabcab, cca, bacbac, bcabbacba).

Since h3 is in the first level stabilizer, we can consider  (h3,i) = (h3,a
i

, h3,b
i

)

for all i = 1, . . . , 4 and set

h4 = (h3,a1 , h3,a2 , h3,a3 , h3,a4).
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Then, we have

 (h3,1) =  (cabcab) = (d, a)(a, c)(d, a)(a, c) = (dda, cac);

 (h3,2) =  (cca) = (a, d)(d, a) = (ad, da);

 (h3,3) =  (bacbac) = (c, a)(a, d)(c, a)(a, d) = (cca, dad);

 (h3,4) =  (bcabbacba) = (a, c)(d, a)(a, c)(c, a)(a, d)(c, a)

= (dacac, cacda).

Thus, we set h4 = (dda, ad, cca, dacac) and we compute h5 = [h4, g]. We

have

h5 = [h4, g] = (daddacac, ddada, cacad, ccadcaca);

h6 = [h5, g]

= (ccaddadcacdacca, daddaddadcac, dcacdadda, cacdaccaccad).

Arguing as before, we have

 (h6,1) =  (ccaddadcacdacca) = (babad, da);

 (h6,2) =  (daddaddadcac) = (ca, bad);

 (h6,3) =  (dcacdadda) = (da, bac);

 (h6,4) =  (cacdaccaccad) = (dbadad, dab).

As for h4, we set h7 = (babad, ca, da, dbadad) and compute

h8 = [h7, g] = (dbabdabdad, cabbad, ba, ddab)
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and

 (h8,1) =  (dbabdabdad) = (cbab, bab);

 (h8,2) =  (cabbad) = (dac, cab);

 (h8,3) =  (ba) = (c, a);

 (h8,4) =  (ddab) = (ba, bc).

We set h9 = (cbab, dac, c, ba) and

h10 = [h9, g] = (bbada, cbabab, bac, ad);

h11 = [h10, g] = (dabbad, bbabdabda, cdabbab, dbac).

Then

 (h11,1) =  (dabbad) = (bac, cab);

 (h11,2) =  (bbabdabda) = (cabab, ca);

 (h11,3) =  (cdabbab) = (baca, bac);

 (h11,4) =  (dbac) = (ca, bad).

Again with h12 = (bac, cabab, baca, ca), we have

h13 = [h12, g] = (cda, bbacbac, cadbab, cabca).
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Then

 (h13,1) =  (cda) = (ab, d);

 (h13,2) =  (bbacbac) = (caca, cdad);

 (h13,3) =  (cadbab) = (ba, bac);

 (h13,4) =  (cabca) = (dad, ca).

Now we set h14 = (h13,b1 , h13,b2 , h13,b3 , h13,b4) = (d, cdad, bac, ca) and we

apply again  . We have

 (h13,b1) =  (d) = (1, b);

 (h13,b2) =  (cdad) = (ab, c);

 (h13,b3) =  (bac) = (ca, ad);

 (h13,b4) =  (ca) = (d, a).

Finally, setting h15 = (1, ab, ca, d), we find again h. So we fall in a loop

and consequently [h,n g] 6= 1 for all n � 1. Thus, g is not an Engel element

of G.

Now we are able to prove the main theorem of this section.

Theorem 6.2. Let D8 = hx, y | x2 = y2 = (xy)4 = 1i, and let G = G oD8,

where the action of D8 on G is seen as the action on the set of vertices of

a square. Then L(G) is not a subgroup.

Proof. Suppose D8 is generated by x and y. Define g = xy, and h =

(1, ab, ca, d) 2 G⇥G⇥G⇥G, as before. We have [h,n g] 6= 1 for any n � 1
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by Lemma 6.1. Since every involution in a 2-group is a left Engel element,

by Proposition 2.8, we deduce that x, y 2 L(G). However xy /2 L(G).

Hence L(G) is not a subgroup.

According to this theorem, there exists a 2-group generated by involutions

with an element of order four which is not left Engel. This suggests the

following question.

Question 6.3 (Bludov). Assuming that G is not a 2-group, is L(G) a

subgroup of G?

Since the Grigorchuk group G is a 2-group generated by involutions, one

might wonder whether G is an Engel group but the answer is negative, as

shown by Bartholdi.

Theorem 6.4. [6, Theorem 1] Let G be the first Grigorchuk group. Then

L(G) = {g 2 G | g2 = 1}.

In particular, G is not an Engel group.

Notice that in the next Chapter 6.3 we propose an alternative proof with-

out using the result of Bartholdi about the fact that the Grigorchuk group

is not an Engel group. The proof is based on an idea given by Bartholdi

in [7].

The following natural question now arises: are L(G),R(G) and R(G) sub-

groups of G?
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6.2 Engel elements in the first Grigorchuk group

In this section we present a paper written with A. Tortora and published in

International Journal of Group Theory [43]. Let G be the first Grigorchuk

group. According to a result of Bartholdi, the only left Engel elements

of G are the involutions. This implies that the set of left Engel elements

of G is not a subgroup. The natural question arises whether this is also

the case for the sets of bounded left Engel elements, right Engel elements

and bounded right Engel elements of G. Motivated by this, we prove that

these three subsets of G coincide with the identity subgroup.

Let us first see what consequences can be derived if one of these subsets is

a subgroup of G.

Recall that G is just-infinite. As a consequence, if L(G) were a nontrivial

subgroup of G, then L(G) would be finitely generated and, by Theorem

6.4, also abelian. Hence L(G) would be finite and then trivial as otherwise

G would be an extension of a finite group by a finite group giving the

contradiction that G is finite. Thus the only possibility for L(G) to be a

subgroup is to be trivial. Notice also that the same holds for R(G) and

R(G).

For the proof of our main theorem of this section, we require two lemmas

concerning commutators between specific elements of G.

Lemma 6.5. Let x = ag be an involution in G where g 2 stG(1) and

 (g) = (g1, g2). Let y 2 stG(1) where  (y) = (k, 1). Then for every m � 1

we have

 ([y,m x]) = (k(�1)
m 2m�1

, (kg2)(�2)
m�1

).
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Proof. Since x is an involution we have [y,m x] = [y, x](�2)
m�1

for every

m � 1 (see Proposition 2.6). Thus

 ([y,m x]) =  ([y, x])(�2)
m�1

=  (y�1yag)(�2)
m�1

=
⇣
 (y�1) (ya) (g)

⌘(�2)m�1

= (k�1, kg2)(�2)
m�1

= (k(�1)
m 2m�1

, (kg2)(�2)
m�1

),

as desired.

Lemma 6.6. Let x = ag where g 2 stG(1) and  (g) = (g1, g2). Let

y 2 stG(1) with  (y) = (y1, y2). Then for every m � 1 we have

 ([x,m+1 y]) = ([(y�12 )g1 ,m y1]
y1 , [(y�11 )g2 ,m y2]

y2).

Proof. Of course, [x,n y] 2 stG(1) for every n � 1. Thus

 ([x, y]) =  ((y�1)xy) =  ((y�1)a) (g) (y)

= ((y�12 )g1 , (y�11 )g2)(y1, y2) = ((y�12 )g1y1, (y
�1
1 )g2y2).

It follows that

 ([x, y, y]) = [ ([x, y]), (y)]

= [((y�12 )g1y1, (y
�1
1 )g2y2), (y1, y2)]

= ([(y�12 )g1y1, y1], [(y
�1
1 )g2y2, y2])

= ([(y�12 )g1 , y1]
y1 , [(y�11 )g2 , y2]

y2).
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This proves the result when m = 1. Let m > 1. Then, by induction, we

conclude that

 ([x,m+1 y]) = [ ([x,m y]), (y)]

= [([(y�12 )g1 ,m�1 y1]y1 , [(y�11 )g2 ,m�1 y2]y2), (y1, y2)]

= ([(y�12 )g1 ,m y1]
y1 , [(y�11 )g2 ,m y2]

y2),

as required.

We are now ready to prove our main theorem, which is stated below.

Theorem 6.7. Let G be the first Grigorchuk group. Then

L(G) = R(G) = R(G) = {1}.

Proof. Let x be a nontrivial element of G where x is either in L(G) or

R(G). First, notice that we may assume x /2 stG(1). In fact, if x 2

stG(n)\ stG(n+ 1) then

 n(x) = (x1, . . . , x2n)

where all the xi’s are Engel elements (since G is strongly fractal) of the

same kind as x and one of the xi’s does not belong to stG(1). Hence

x = ag, for some g 2 stG(1) with  (g) = (g1, g2). We distinguish two

cases: x 2 L(G) and x 2 R(G).

Assume x 2 L(G). Then for some m, [y,m x] = 1 for every y 2 G. Also

x2 = 1, by Theorem 6.4. Since K is not of finite exponent, we can take
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k 2 K of order > 2m�1. On the other hand  (K) � K⇥K, so there exists

y 2 K  stG(1) such that (k, 1) =  (y). Thus, by Lemma 6.5, we have

(1, 1) =  (1) =  ([y,m x]) =
⇣
k(�1)

m 2m�1

, (kg2)(�2)
m�1

⌘
.

It follows that k2
m�1

= 1, a contradiction. This proves that L(G) = {1}.

Assume x 2 R(G). Since K is not abelian, it cannot be an Engel group

by Theorem 6.4. Thus [h,m y1] 6= 1 for some h, y1 2 K and for every

m � 1. Put y2 = [y1, h]
g�1
1 . Obviously, y2 2 K and (y�12 )g1 = [h, y1].

Now G is regular branch over K, so there exists y 2 K ✓ stG(1) such

that  (y) = (y1, y2). Furthermore, there is m = m(x, y) � 1 such that

[x,m y] = 1. Applying Lemma 6.6, we get

(1, 1) =  (1) =  ([x,m+1 y])

= ([(y�12 )g1 ,m y1]
y1 , [(y�11 )g2 ,m y2]

y2)

= ([h,m+1 y1]
y1 , [(y�11 )g2 ,m y2]

y2).

This implies that [h,m+1 y1] = 1, which is a contradiction. Therefore

R(G) = R(G) = {1}, and the proof is complete.

6.3 The Grigorchuk group is not Engel

In this section, we give an alternative proof of the fact that the Grigorchuk

group is not an Engel group. This proof is based on a final remark in

Bartholdi’s paper [7].

We are going to consider a subgroup H of G, and an epimorphism, say ⇢,
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from H to G = G oD8. Notice that, as before, D8 is the dihedral group of

8 elements and it can be seen as a permutation group over the vertices of

a square (i.e. D8 = h(1 2 3 4), (2 4)i). As we have already seen in Section

6.1, the group G is not Engel. Our goal here is to find a suitable H  G

and ⇢ such that
H

ker ⇢
⇠= G.

If this is the case, G will contain a subgroup H that is not Engel so G

itself is not an Engel group.

Now, we construct H and ⇢. Before doing this, we need some preliminary

results. Consider four vertices {x1, x2, x3, x4} of the third level of the

binary tree, where x1 = 111, x2 = 112, x3 = 211, x4 = 212.

;

1

1211

111 112 121 122

2

21 22

222221211 212...
...

Figure 6.1: The vertices x1, x2, x3 and x4

Recall that the group G is regular branch over the subgroup

K = h[a, b], [b, da], [ba, d]i  G.
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Then  �1(K ⇥ 8. . .⇥K)  rstG(3)  G.

In the following we set

L =  �1(K ⇥K ⇥ {1}⇥ {1}⇥K ⇥K ⇥ {1}⇥ {1})  K  G.

Also, we write the elements of ha, di as cycles acting on x1, x2, x3 and x4.

We have

a = (x1 x3)(x2 x4), d = (x3 x4), ad = (x1 x4 x2 x3).

Proposition 6.8. We have

hL, a, di = Lo ha, di ⇠= K oD8,

where D8 acts naturally on four letters.

Proof. First, we prove that L \ ha, di = {1}. Obviously, ha, di 6✓ stG(1).

If we take J = h(ad)2, di = {1, (ad)2, d, (ad)2d}, we have J  stG(1) but

still J is not contained in K. Indeed  ((ad)2) = (b, b),  (d) = (1, b), and

 (da) = (b, 1). Hence the intersection of L with ha, di must be trivial,

because L ✓ st(3) but (ad)2, d and (ad)2d are not in st(3).

Also, L is normal in hL, a, di. Indeed if we consider l 2 L, such that

 (l) = (k1, k2, 1, 1, k3, k4, 1, 1), then we have

 (ld) = (k1, k2, 1, 1, k4, k3, 1, 1) 2 L

and also  (la) = (k3, k4, 1, 1, k2, k1, 1, 1) 2 L. This concludes the proof.
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For ease of notation we write K0 = stK(u), where u is the vertex 1111. As

K0 ✓ K, we take L0 =  �1(K0 ⇥K0 ⇥ {1}⇥ {1}⇥K0 ⇥K0 ⇥ {1}⇥ {1}).

Then we have, as before,

hL0, a, di = L0 o ha, di ⇠= K0 oD8.

Lemma 6.9. The group K0 has a quotient isomorphic to G.

Proof. Take u = 1111. Let  u be the map sending an element f of K0 to

its section fu. We prove that  u is onto G. Take [a, b]4, [b, da]4, [a, b](ac)
2 2

K0. By easy computations, one can see that  u([a, b]
4) = a,  u([b, d

a]4) =

b and  u([a, b]
(ac)2) = c. Then

G ⇠= K0

ker u
,

and the result follows.

In the following we write a general lemma regarding wreath products whose

proof is straightforward.

Lemma 6.10. Let A,B be arbitrary groups, and consider a wreath product

AoB, corresponding to some action of B on a set X. Consider the following

maps:

A o B

A⇤ o B

↵ IdB
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where ↵ is a homomorphism sending A to the group A⇤, and IdB denotes

the identity map. For (a1, . . . , an)b 2 A oB, define

⇢((a1, . . . , an)b) = ↵(a1, . . . , an)b.

Then ⇢ is a homomorphism.

Now we are ready to prove the main theorem of this section.

Theorem 6.11. The Grigorchuk group is not an Engel group.

Proof. Suppose towards contradiction that G is an Engel group. Then also

its subgroup hL, a, di ⇠= K oD8 is Engel. The latter contains K0 oD8. Let

⌘ be the map sending K0 to G via  u (defined in Lemma 6.9), and D8 to

D8 via the identity map. By the previous Lemma 6.10, ⌘ is a epimorphism

and so G = G oD8 is also an Engel group. This contradicts the fact that

G is not Engel as showed in Section 6.1.

6.3.1 Branch groups and almost Engel groups

In Theorem 2.3 we proved that any residually nilpotent almost Engel group

is necessarily an Engel group.

Since the Grigorchuk group is not Engel, we conclude this chapter by point-

ing out that it cannot be almost Engel either. Moreover this is the same

situation for all those branch groups lying in the Sylow pro-p subgroup �

that are not Engel (see Chapter 7 for more groups in this family) since

they are residually finite p-groups and hence residually nilpotent. Hence,

we have the following theorem whose proof is straightforward.
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Theorem 6.12. Let G  � be a branch group. If G is non-Engel, then G

cannot be almost Engel.
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Engel elements in some

subgroups of Aut T





Chapter 7

Engel elements in some

fractal groups

In this chapter we present a paper [17] produced in collaboration with

G.A. Fernández-Alcober and A. Garreta and published in Monatshefte für

Mathematik.

We will consider group actions by using a more general notion of commu-

tator. This is achieved by defining [h, g] = h�1hg, where hg is the action

of g on h, and h 2 H, g 2 G. One then denotes by L(G y H) the set

of all g 2 G such that for all h 2 H, we have [h, g, n. . ., g] = 1 for some n.

With this in mind, we prove some properties concering Engel actions and

then we apply fractal groups. In particular, we consider a prime p and

a subgroup G of a Sylow pro-p subgroup of the group of automorphisms

of the p-adic tree. We prove that if G is fractal and |G0 : stG(1)0| = 1,

then the set L(G) of left Engel elements of G is trivial. This result applies

97
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to fractal non-abelian groups with torsion-free abelianization, for example

the Basilica group, the Brunner-Sidki-Vieira group, and also to the GGS-

group with constant defining vector. We further provide two examples

showing that neither of the requirements |G0 : stG(1)0| = 1 and being

fractal can be dropped.

7.1 Engel elements in strongly fractal groups

We start by studying the set of left Engel elements of strongly fractal

groups G  Aut Td. We will use the following identity

 ([h,n g]) = ([h1,n g1], . . . , [hd,n gd]) , (7.1)

which holds for any two elements h, g 2 st(1). Here the hi’s and gi’s are

the components of  (g) and  (h).

Lemma 7.1. Let G  Aut Td be a strongly fractal group. Then

L(G) \ stG(1) =
�
h 2 stG(1) |  (h) 2 L(G)⇥ d. . .⇥ L(G)

 
.

Proof. Let g 2 L(G)\stG(1), and write  (g) = (g1, . . . , gd). We show that

each gi is left Engel in G. Assume for contradiction that there exists h 2 G

be such that [h,n gi] 6= 1 for all n. Since G is strongly fractal, there exists

an element s 2 stG(1) such that  (s) = (h1, . . . , hi�1, h, hi+1, . . . , hd),

for some h1, . . . , hi�1, hi+1, . . . , hd 2 G. Then, by (7.1), we obtain that
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 ([s,n g]) has components

([h1,n g1], . . . , [hi�1,n gi�1], [h,n gi], [hi+1,n gi+1], . . . , [hd,n gd]) .

This element is non-trivial because [h,n gi] 6= 1 for all n, and so [s,n g] 6= 1

for all n, contradicting the fact that g 2 L(G).

To prove the reverse inclusion, let h 2 stG(1) be such that all components

of  (h) are left Engel, and let g be any element of G. Then, since stG(1)

is normal in G, we have [g, h] 2 stG(1). It follows now from the equality

(7.1) that [g,n h] = 1 for some n, as required.

The following constitutes a key observation.

Proposition 7.2. Let S be a subset of Aut Td. Suppose that S ✓ st(1)

and that  (S) ✓ S ⇥ d. . .⇥ S. Then S = 1.

Proof. Suppose that S 6= 1. Then there exists a maximum n such that

S ✓ st(n), but S 6✓ st(n+ 1). Let s 2 S. In particular, s 2 st(1), and the

components s1, . . . , sd of  (s) belong to S by hypothesis. Since S ✓ st(n),

each si stabilizes the first n levels of Td, and hence s 2 st(n + 1). This

occurs with all s 2 S, yielding the contradictory inclusion S ✓ st(n + 1).

Therefore S = 1.

The following is an immediate consequence of Lemma 7.1 and Proposi-

tion 7.2.

Corollary 7.3. Let G  Aut Td be a strongly fractal group such that

L(G) ✓ stG(1). Then L(G) = 1.
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7.2 Engel elements, group actions, and fractal

groups

Here, we generalize the notion of commutator and of left Engel element to

the context of group actions G y H. We will use exponential notation to

refer to the action of a group G on another group H, so that h · g = hg for

all g 2 G, h 2 H.

Given an action of groups G y H, one may define commutators by letting

[h, g] = h�1hg, for g 2 G and h 2 H. Then, [h,n g] is defined similarly as

before. Of course, if H is a normal subgroup of G and the action G y H is

the standard conjugation, then [h, g] is the usual commutator h�1g�1hg.

An element g 2 G is called left Engel with respect to G y H if for all h 2 H

there exists n � 1 such that [h,n g] = 1. The set of left Engel elements of

G with respect to G y H will be denoted L(G y H). If L(G y H) = G,

then G y H is called an Engel action. Given S ✓ H, and T ✓ G, we

denote [S, T ] = h[s, t] | s 2 S, t 2 T i.

We start by proving a key fact regarding how periodic groups can act on

finitely generated abelian groups.

Proposition 7.4. Let G y A be an Engel action of a finite group G on a

finitely generated abelian group A. Then [A,G] is finite. As a consequence,

if A is free abelian, then the action G y A is trivial.

Proof. Let ` be the order of G, and take two elements a 2 A, and g 2 G.

We claim that if [a,n g] = 1 for some n, then [a, g]`
n�1

= 1. We argue by

induction on n, the case n = 1 being obvious. Then let n > 1. If we denote

s = [a,n�2 g], we have [s, g, g] = 1. One can then prove by induction that
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[s, gk] = [s, g]k for all k 2 Z. Then [a,n�1 g]` = [s, g]` = [s, g`] = 1. Write

K = h[a,n�1 g]h | h 2 Gi, A = A/K, and consider the Engel action G y A,

which is still an Engel action of a finite group on a finitely generated abelian

group. Then, [ā,n�1 g] = [a,n�1 g] = 1 and, by induction, [ā, g]`
n�2

= 1.

Thus, [a, g]`
n�2 2 K, and so [a, g]`

n�1

= 1 because K is abelian generated

by elements of order dividing `. This completes the proof of the claim.

We have proved that each element of the generator set of [A,G] has finite

order. Since [A,G] is finitely generated and abelian, we conclude that

[A,G] is finite. The last part of the lemma immediately follows.

Now we can proceed to the proof of the main theorem of this chapter.

Theorem 7.5. Let G  � be a fractal group such that |G0 : stG(1)0| = 1.

Then L(G) = 1.

Proof. Write S for stG(1). We claim that L(G) ✓ S, from which L(G) = 1

follows by using Corollary 7.3 and the fact that subgroups of � are strongly

fractal if and only if they are fractal (Lemma 2.5 of [53]). By way of

contradiction, we assume that L(G) 6✓ S. Since G  �, then |G : S|  |� :

st�(1)| = p. Note that |G : S| 6= 1 because otherwise G would be trivial.

Then |G : S| = p and also the factor group G/S0 is solvable. By a result

of Gruenberg (Theorems 2 and 4 of [32]), L(G/S0) is a subgroup of G/S0.

Since S/S0 is an abelian normal subgroup of G/S0, we have S/S0 ✓

L(G/S0) and then either L(G/S0) = S/S0 or G/S0. In the former case,

we have L(G) ✓ S, which is a contradiction. In the latter, G/S0 is an

Engel group. Since S/S0 is abelian, the action of G on S by conjugation

induces an action of G/S on S/S0, by which we have [sS0, gS] = [s, g]S0
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for all s 2 S and g 2 G. Thus this action is Engel. By Proposition 7.4,

the subgroup [G/S, S/S0] is finite, i.e. [G,S]/S0 is finite. Now since G/S

is cyclic, it follows that G0 = [G,S] and we conclude that G0/S0 is finite.

This contradiction completes the proof of the theorem.

7.3 Applications to specific fractal groups

In this section we apply Theorem 7.5 to a family of fractal groups.

Since R(G)�1,L(G),R(G)�1 ✓ L(G) for any group G, by proving that

L(G) = 1 one automatically obtains that each one of these sets is also

trivial. We will omit this observation in the statement of the subsequent

results.

Theorem 7.6. Let G  � be a non-abelian fractal group with torsion-free

abelianization. Then L(G) = 1.

Proof. Denote S = stG(1). By Theorem 7.5, it suffices to prove that |G0 :

S0| = 1. Suppose towards contradiction that this is not the case. Let ⇡i

be the projection of G⇥ p. . .⇥G onto its i-th component. Notice the chain of

inclusions S0  G0  S  G. Since G is strongly fractal, ⇡i( (S0)) = G0 for

all i = 1, . . . , p. By assumption |G0 : S0| < 1, hence | (G0) :  (S0)| < 1

and |⇡i( (G0)) : ⇡i( (S0))| < 1, for all i = 1, . . . , p. Thus, ⇡i( (G0))/G0

is a finite subgroup of G/G0. Since G/G0 is torsion-free, it follows that

⇡i( (G
0)) = G0 for all i. This implies that  (G0)  G0 ⇥ p. . .⇥G0. In this

case, by Proposition 7.2, we have G0 = 1, which is a contradiction.

This theorem can be directly applied to a variety of groups that are weakly

regular branch groups over their derived subgroups, for example the Basil-
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ica group and the Brunner-Sidki-Vieira group. Note that these groups

are fractal and have torsion free abelianization (see Sections 5.4 and 5.5,

respectively). We have the following.

Theorem 7.7. The Basilica group and the Brunner-Sidki-Vieira group

have no non-trivial left Engel elements.

7.3.1 The GGS-group with constant defining vector

Throughout this section we let G denote the GGS-group corresponding to

the vector e = (1, . . . , 1).

The case of this group is different because it has finite abelianization thus

we cannot apply directly Theorem 7.6. Hence, we reduce the study of L(G)

to a subgroup K that meets the requirements of Theorem 7.6 and we show

first that L(G) ✓ L(K) and then we prove that L(K) = 1.

According to Lemma 4.2 of [19], G has a normal subgroup K of index p

such that G is weakly regular branch over K 0. Moreover, if ¯ denotes the

projection G ! G/K 0, then by Proposition 3.4 of [18], we have G = Knhai,

with K ⇠= C1 ⇥ p�1. . . ⇥ C1, and hai ⇠= Cp.

Lemma 7.8. We have L(G) = K. As a consequence, L(G) ✓ L(K).

Proof. Since G is solvable, L(G) is a subgroup of G, and since K is normal

abelian, we have K  L(G). Thus either L(G) = K or G. In the latter case,

the action of hai on K is Engel and, since K is free abelian, this action

is trivial, by Proposition 7.4. Hence G is abelian and G0 = K 0, which is a

contradiction, since |G : G0| = p2 is finite by Theorem 2.1 of [19]. It follows

that L(G) = K and, since L(G) ✓ L(G), we get L(G) ✓ L(K).
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We now proceed to prove that L(K) = 1. Unfortunately, K is not even

self-similar. This can be fixed by appropriately conjugating K in Aut Tp.

Lemma 7.9 ([21]). Let h 2 st(1) be such that

 (h) = (ah, a2h, . . . , ap�1h, h).

Then Kh is strongly fractal.

Proof. As shown in Lemma 4.2 of [19], K is generated by y0 = ba�1, and

yi = ya
i

0 (i = 1, . . . , p� 1). Define

z1 = (z1, 1, . . . , 1)a
�1,

z2 = (1, z2, 1, . . . , 1)a
�1,

...

zp = (1, . . . , 1, zp)a
�1.

By making computations, one may check that yhi = zi for all i (reading

the subindices modulo p). Hence, Kh is generated by the zi. It is now

clear that Kh is self-similar, and strong-fractalness of Kh is a consequence

of the identity zpi = (zi, . . . , zi), which holds for all i.

Theorem 7.10. The GGS-group with constant defining vector has no non-

trivial Engel elements.

Proof. By Lemma 7.8, it suffices to show that L(K) = 1. Let h be the

element of Lemma 7.9. Since K ⇠= Kh, one has that L(K) = 1 if and only

if L(Kh) = 1. To prove the latter we will use Theorem 7.6. Lemma 7.9
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states that Kh is fractal, and clearly Kh is a subgroup of the Sylow pro-

p subgroup �. On the other hand, (Kh)/(Kh)0 ⇠= K/K 0 is torsion-free.

Hence, by Theorem 7.6, we have L(Kh) = 1, and we conclude that L(G) =

1.

7.4 The lamplighter group and the adding ma-

chine: examples

Theorem 7.5 states that L(G) = 1 for any fractal group G such that

G  �  Aut Tp and |G0 : stG(1)0| = 1. In this part we show that if

|G : G0| = 1 and |G0 : stG(1)0| < 1 this is no longer true. We also prove

that the condition of being fractal cannot be dropped.

Recall that the lamplighter group L is the metabelian group C2 o C1. It

is well known that L can also be seen as the group of automorphisms of

the binary tree T2 generated by a = (a, a�) and the rooted automorphism

� corresponding to the cycle (1 2).

Proposition 7.11. The lamplighter group L satisfies the following prop-

erties: L  � = Aut T2, |L : L0| = 1, L is fractal, |L0 : stL(1)0| is finite,

and L(L) 6= 1.

Proof. The first property is trivially satisfied. To see that the group L

is fractal, notice that the first components of a and a� generate L, since

a = (a, a�) and a� = (a�, a). The same holds for the second components.

It is also well known that the abelianization of L is isomorphic to C2⇥C1

with h�L0i ⇠= C2 and haL0i ⇠= C1.
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We now prove that the index of stL(1)0 in L0 is finite. Let us write S =

stL(1). Notice that S0 ✓ L0 ✓ S ✓ L. One can compute that S = ha, a�i.

Now, letting c = [a,�],

S/S0 = haS0, a�S0i = haS0, acS0i = haS0, cS0i. (7.2)

We claim that L0/S0 = hcS0i. Indeed, let y 2 L0/S0. In particular, y 2

S/S0, and by (7.2), y = ancmS0, for some m and n. Then, anS0 2 L0/S0

and thus n = 0, because haL0i ⇠= C1. It follows that L0/S0  hcS0i, and

so L0/S0 = hcS0i. Notice that c has order 2 because c = [a,�] = a�1a� =

(�,�). Then, |L0 : S0|  2 (in fact, |L0 : S0| = 2 by Proposition 7.2).

Finally, since the base group of L is abelian and normal, it is contained in

L(L) and L(L) 6= 1.

We next show that the requirement of being fractal is necessary in Theo-

rem 7.5. Let H be the subgroup of Aut T2 generated by � and x, where

� is again the rooted automorphism corresponding to the cycle (1 2), and

x = (1, x)� is the so-called adding machine.

Proposition 7.12. The group H  � = Aut T2 is not fractal, |H 0 :

stH(1)0| = 1, and L(H) = stH(1).

Proof. Define b = x�. Note that b = (1, x) 2 st(1) and x2 = (x, x). Then

both elements x and b have infinite order. By easy computations, one can

see that stH(1) = hb, b�i and stH(1) ⇠= C1 ⇥C1. In particular, stH(1)0 =

1. Moreover H 0 = h[�, b]iH = h(x�1, x)iH = {(x±n, x⌥n) | n 2 Z}, and it

follows that |H 0 : stH(1)0| = 1. Note also that H is not fractal because

we can never obtain � 2 H in a component of an element of stH(1) since
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b = (1, x) and b� = (x, 1).

We now prove that L(H) = stH(1). One inclusion is obvious, since stH(1)

is abelian and normal in H. Since H is solvable, it follows that L(H) =

stH(1) or H. In the latter case, the action of H/ stH(1) on stH(1) is Engel

and, by Proposition 7.4, this action must be trivial. This implies that

H 0 = [H, stH(1)] = 1, which is a contradiction.





Chapter 8

Engel elements in weakly

branch groups

Here we present a recent submitted paper carried out in collaboration with

G. A. Fernández-Alcober and G. Tracey.

In this chapter, we study properties of Engel elements in weakly branch

groups, lying in the group of automorphisms of a spherically homogeneous

rooted tree. More precisely, we prove that the set of bounded left Engel

elements is always trivial in weakly branch groups. In the case of branch

groups, the existence of non-trivial left Engel elements implies that these

are all p-elements and that the group is virtually a p-group (and so peri-

odic) for some prime p. We also show that the set of right Engel elements

of a weakly branch group is trivial under a relatively mild condition. Also,

we apply these results to well-known families of weakly branch groups, like

the multi-GGS groups.
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8.1 Orbits of automorphisms of T

The main tool in our approach to Engel problems in weakly branch groups

is the reduction of the action of an automorphism f from the whole tree

to one or several “reduced trees" determined by some special orbits of

f on V (T ). Hence we start by describing some properties of orbits of

automorphisms of T .

Definition 8.1. If f 2 Aut T and v 2 V (T ), the f -orbit of v is the

orbit of v under the action of hfi on V (T ), i.e. the set {f i(v) | i 2 Z}.

The f -orbit is trivial if it consists of only one vertex, that is, if f(v) = v.

In the statement of the following lemma, we consider the least common

multiple of an unbounded family of positive integers to be infinity.

Lemma 8.2. Let f 2 Aut T and, for every vertex v 2 V (T ), let Ov be

the f -orbit of v. Then the following hold:

(i) If w is a descendant of v, then |Ov| divides |Ow|.

(ii) |f | = lcm(|Ov| | v 2 V (T )).

(iii) If |f | is finite then there exists a finite subset V of V (T ) satisfying

that |f | = lcm(|Ov| | v 2 V ) and that, whenever w is a descendant

of a vertex v 2 V , we have |Ow| = |Ov|. Also if f is non-trivial then

all the orbits Ov with v 2 V are non-trivial. Furthermore, V can be

chosen to lie in Ln for some n.

Proof. (i) This is obvious by the orbit-stabilizer Theorem, since st(w) ✓

st(v).
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(ii) Set H = hfi. Then |Ov| = |H/ stH(v)| for all v 2 V (T ). The natural

map ' from H to the cartesian product of finite groups
Q

v2V (T ) H/ stH(v)

is injective, since the intersection of all vertex stabilizers is trivial. Conse-

quently

|f | = |'(f)| = lcm(|f stH(v)| | v 2 V (T ))

= lcm(|H/ stH(v)| | v 2 V (T )),

which proves the result.

(iii) Let L = {|Ov| | v 2 V (T )}. If |f | is finite then, by (ii), it can be

achieved as the least common multiple of a finite subset of L. Let k be the

minimum cardinality of such a subset and let

S = {S ✓ L | |S| = k and lcm(S) = |f |}.

Observe that S is a finite set.

We introduce a relation d in S by letting S d T if there exists a bijection

↵ : S ! T such that s | ↵(s) for all s 2 S. By (i), this models the

situation when we pass from the orbits of a set of vertices to the orbits

of a set of descendants of those vertices. We claim that d is an order

relation in S. Obviously, only antisymmetry needs to be checked. Assume

that ↵ : S ! T and � : T ! S are such that s | ↵(s) and t | �(t) for

all s 2 S and t 2 T . Then s divides �(↵(s)) and, if they are not equal,

we get lcm(S r {s}) = |f |. This is contrary to the minimality condition

imposed on k. Thus �(↵(s)) = s and, since s | ↵(s) and ↵(s) | �(↵(s)), we

obtain that ↵(s) = s for all s 2 S. We conclude that S = T , which proves
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antisymmetry of d.

Now choose S in S that is maximal with respect to the order d, and let

V = {v1, . . . , vk} ✓ V (T ) be such that S = {|Ov1 |, . . . , |Ov
k

|}. Consider

an arbitrary set of vertices W = {w1, . . . , wk}, where each wi is a descen-

dant of vi, and let T = {|Ow1 |, . . . , |Ow
k

|}. Then S d T and, by the

maximality of S, we have S = T . This implies that |Ow
i

| = |Ov
i

| for all

i = 1, . . . , k. Observe also that the minimality of k implies that, if f is

non-trivial, no orbit Ov with v 2 V is of length 1. Hence V satisfies the

properties stated in (iii).

Finally, observe that also the set W satisfies the required properties. Thus

by considering, for a suitable n, a subset of Ln consisting of one descendant

of each vertex in V , we may assume that V ✓ Ln.

Vertices and orbits as in part (iii) of the previous lemma will play a fun-

damental role in the rest of the chapter, and it is convenient to introduce

some terminology.

Definition 8.3. Let f 2 Aut T and let O be an f -orbit. We say that O

is totally splitting if for every descendant w of a vertex v 2 O, the length

of the f -orbit of w is equal to |O|.

Equivalently, an f -orbit O is totally splitting when the set of descendants

of the vertices in O at every level of the tree splits into the maximum

possible number of f -orbits.

Definition 8.4. Let f 2 Aut T be an automorphism of finite order. If

V is a finite set of vertices satisfying the conditions in (iii) of Lemma 8.2,

all of them lying on the same level of T , we say that V is a fundamental
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system of vertices for f .

Next we give a sufficient condition for two automorphisms of T to generate

a wreath product.

Lemma 8.5. Let f 2 Aut T be an automorphism of finite order m, and

assume that the f -orbit of a vertex v 2 V (T ) has length m. Then for every

g 2 rst(v), the subgroup hg, fi of Aut T is isomorphic to the regular wreath

product hgi o hfi.

Proof. Let O be the f -orbit of v. Since |O| = |f |, we have hfi \ st(v) = 1.

As a consequence, if v lies at level n of the tree, also hfi \ st(n) = 1 and

hg, fi = hfi hg, gf , . . . , gfm�1i = hfin hg, gf , . . . , gfm�1i, (8.1)

since g 2 rst(v) implies that hg, gf , . . . , gfm�1i ✓ st(n).

Now set vi = f i(v) for all i 2 Z, so that O = {v0, v1, . . . , vm�1}. Since g 2

rstG(v), from Remark 4.10, we get gf
i 2 rstG(vi) for all i = 0, . . . ,m� 1,

and then

hgfii \ hg, gf , . . . , gfi�1i ✓ rstG(vi) \ rstG({v1, . . . , vi�1}) = 1.

Also [gf
i

, gf
j

] = 1 for every i, j 2 {0, . . . ,m� 1}. It follows that

hg, gf , . . . , gfm�1i = hgi ⇥ hgf i ⇥ · · ·⇥ hgfm�1i,

and since gf
m

= g, we conclude from (8.1) that hg, fi ⇠= hgi o hfi.

The result in Lemma 8.5 raises the question of whether an automorphism
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f 2 Aut T of finite order m must have a regular orbit on V (T ), i.e. an

orbit of length m. This is clearly the case if m is a prime power, by (ii)

of Lemma 8.2, but it usually fails otherwise. Indeed, one can consider for

example a rooted automorphism corresponding to a permutation whose

order is strictly bigger than the lengths of its disjoint cycles. However,

as we see in Lemma 8.8 below, it is always possible to derive a collection

of automorphisms fi from f , acting not on T but on some other rooted

trees Ri obtained from T , and having the property that every fi has a

regular orbit on V (Ri). These automorphisms fi will allow us to study

Engel conditions regarding f by using Lemma 8.5.

As we will see, Lemma 8.8 is essentially a reformulation of (iii) of Lemma 8.2.

Before proceeding we need to introduce the concept of reduced tree. Note

that reduced trees are somehow related to the trees obtained by deletion

of layers defined by Grigorchuk and Wilson in [26].

Definition 8.6. Let V be a subset of vertices of T , all lying on the

same level n. We define the reduced tree of T at V , denoted by R(V ), as

the rooted tree consisting of the subtrees Tv for v 2 V , all connected to a

common root. In other words, the set of vertices of R(V ) is

{;} [ {vw | v 2 V, w 2 Tsn+1( d )},

where as before s denotes the shift operator on sequences.

For example, in the following figure, we consider the rooted automorphism

f of the ternary tree T3 corresponding to the permutation (1 2 3) and we

show in red the reduced tree at the orbit of the vertex 13:



8.1. Orbits of automorphisms of T 115

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 8.1: An f -orbit and its corresponding reduced tree

Every f 2 Aut T such that f(V ) = V induces by restriction an automor-

phism fV 2 AutR(V ). Clearly, the map �V : f 7�! fV is a homomor-

phism of groups. The effect of �V is to focus on the action of f only on

the subtrees Tv with v 2 V , so to speak. We will use reduced trees mainly

in the case where V is an orbit of f .

Remark 8.7. If v is a vertex of the reduced tree R(V ) and f 2 Aut T

is such that f(V ) = V , then the fV -orbit of v coincides with the f -orbit

of v as a vertex in V (T ). In particular, if O is a totally splitting f -orbit

and we consider the induced automorphism x = �O(f) of R(O), then (ii)

of Lemma 8.2 implies that |x| = |O|. In other words, O is a regular orbit

of x in R(O).

Given a subgroup G of Aut T , we write GV for the image of the setwise
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stabilizer of V in G under the homomorphism �V . In other words,

GV = {fV | f 2 G and f(V ) = V }.

Then GV is a subgroup of AutR(V ), and for every vertex v 2 V we have

�V (rstG(v)) ✓ rstG
V

(v) (the inclusion can be proper, since there can be

automorphisms in G whose action is trivial on Tw for every w 6= v with

w 2 V , but non-trivial for some w 62 V ).

On the other hand, if f 2 G stabilizes the set V and x = �V (f) is the

induced automorphism of R(V ), then f 2 L(G) or f 2 L(G) imply that

x 2 L(G) or x 2 L(G), respectively. In particular, by choosing V to be an

f -orbit, this will allow us to transfer the analysis of a given Engel element

in a subgroup of Aut T to a more restricted situation where, for example,

the Engel element acts transitively on the first level of the tree.

Actually the most convenient strategy is to reduce the tree to non-trivial

totally splitting f -orbits, since the induced automorphisms will then have

regular orbits. More precisely, we will rely on the following lemma, which

is basically a rephrasing of part of Lemma 8.2 in the language of reduced

trees.

Lemma 8.8. Let f 2 Aut T be an automorphism of finite order m > 1

and let {v1, . . . , vk} be a fundamental system of vertices for f . For every

i = 1, . . . , k, let Oi be the f -orbit of vi, set Ri = R(Oi), and let fi be the

automorphism of Ri induced by f . Then the following hold:

(i) lcm(|O1|, . . . , |Ok|) = m.

(ii) Oi is a non-trivial totally splitting f -orbit for every i = 1, . . . , k.
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(iii) |fi| = |Oi| for every i = 1, . . . , k.

Proof. The first two items follow from (iii) of Lemma 8.2, and (iii) from

Remark 8.7.

8.2 Some properties of Engel elements in

wreath products

In this section we prove several results regarding Engel elements in wreath

products. These will provide the basis for the proof of the main theorem,

which will be addressed in Sections 8.3 and 8.4.

We start by studying left Engel elements lying outside the base group of a

regular wreath product of two cyclic groups. To this purpose, we rely on

the paper [38] by Liebeck.

Before proving the next lemma, we need a preliminary definition and a

remark.

Definition 8.9. We say that the Engel degree of x on g is the smallest

n such that [g,n x] = 1.

Remark 8.10. For completeness of the next lemma, we recall that Baer’s

Theorem states that if a subgroup K satisfies the maximal condition on

subgroups, then K = HP(K) [5]. In particular, L(K) coincides with the

Fitting subgroup if K is finite.

We recall that a group K, we denote by F (K) its Fitting subgroup (the

subgroup generated by all normal nilpotent subgroups of K).



118 Chapter 8. Engel elements in weakly branch groups

Lemma 8.11. Let X = hxi and Y = hyi be two non-trivial cyclic groups,

where X is finite, and let W = Y oX be the corresponding regular wreath

product. If x 2 L(W ) then X and Y are finite p-groups for some prime p.

Furthermore, the Engel degree of x on g = (y, 1, . . . , 1) is equal to

|x|+ 1

p
(logp |y|� 1)(p� 1)|x|.

Proof. Let m be the order of x, and let p be an arbitrary prime divisor of

m. Also, write d for the Engel degree of x on g = (y, 1, . . . , 1).

First of all, suppose that Y is finite. Then W is finite and, as a conse-

quence, x lies in the Fitting subgroup F (W ), by Baer’s Theorem. We

claim that Y is then a p-group. To this purpose, assume that |Y | is divis-

ible by a prime q 6= p, and let Z = hzi 6= 1 be the subgroup of Y of order

q. Consider the direct product ZX inside the base group of W . Since ZX

is abelian and normal in W , it lies in F (W ). Now ZX is a q-group and

xp = xm/p is a p-element, and both lie in the nilpotent group F (W ). It

follows that xp centralizes ZX , which is clearly a contradiction, since xp

does not commute with (z, 1, . . . , 1). This proves the claim, and since this

property holds for every prime divisor of m, it also follows that X is a

p-group. Observe that, since both X and Y are finite p-groups, the proof

of Theorem 5.1 of [38] yields that

d = m+
1

p
(logp |y|� 1)(p� 1)m (8.2)

in this case.

Now we prove that it is impossible for Y to be infinite. To see this,
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argue by way of contradiction and observe that the wreath product Wn =

(Y/Y pn

) oX can be seen as a factor group of W for all n 2 N. By applying

(8.2) to Wn, we get

d � m+
1

p
(n� 1)(p� 1)m

for every n, which is impossible.

Now we digress from Engel elements for a moment, but still working with

wreath products of cyclic groups, in order to prove that rigid stabilizers

of weakly branch groups are not only infinite, but have infinite exponent

(Proposition 8.13 below).

Lemma 8.12. Let X = hxi and Y = hyi be two finite cyclic groups, where

Y is non-trivial, and let W = Y o X be the corresponding regular wreath

product. If g = (y, 1, . . . , 1) then |xg| > |x|.

Proof. Set m = |x| and let n 2 {1, . . . ,m} be arbitrary. Then

(xg)n = xn

mz }| {
(y, . . . , y| {z }

n

, 1, . . . , 1) .

In particular, (xg)n 6= 1 for 1  n  m, and consequently |xg| > m, as

desired.

Proposition 8.13. Let G be a weakly branch group. Then the exponent

of rstG(n) is not finite for every n 2 N.

Proof. By way of contradiction, assume that rstG(n) has finite exponent.

Thus rstG(n) is periodic and there is a bound for the orders of its elements.
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For every k � n, let ⇡k be the (finite) set of prime divisors of the orders

of the elements of rstG(k). Then {⇡k}k�n is a decreasing sequence of non-

empty finite sets and consequently their intersection is also non-empty.

Let p be a prime in \k�n ⇡k.

Consider a p-element f 2 rstG(n) of maximum order, say m. Since the

order of f is the least common multiple of the orders of the components

of  n(f), we may assume without loss of generality that f 2 rstG(u) for

some vertex u of the nth level. By (ii) of Lemma 8.2, there is a vertex v

in the tree T such that the f -orbit of v has length m. Of course, v must

be a descendant of u. Now let g be a non-trivial p-element in rstG(v) and

set H = hg, fi. By Lemma 8.5, we have H ⇠= hgi o hfi. In particular, H

is a finite p-group. On the other hand, by Lemma 8.12, H contains an

element of order greater than m. This is a contradiction with the choice

of m, since H ✓ rstG(n).

Now we continue with our analysis of Engel elements in some wreath prod-

ucts. Before proceeding, we introduce some further notation. If G is a

group and S ✓ G, we write LG(S) to denote the set of all x 2 G that are

left Engel elements on every element of S, that is, such that for all s 2 S

there exists n = n(s, x) such that [s,n x] = 1. We define the set LG(S) in

the obvious way, and if x 2 LG(S) then the Engel degree of x on S is the

maximum of the Engel degrees of x on the elements of S.

Lemma 8.14. Let W = Y o X be a regular wreath product of two non-

trivial groups, where X is finite cyclic of order n, and let ⇡ : W ! X be

the natural projection. Assume that D = D1 ⇥ · · ·⇥Dn 6= 1 is a subgroup

of the base group of W , and that w 2 W is such that ⇡(w) is a generator
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of X. Then the following hold:

(i) If w 2 LW (D) has Engel degree d on D then d � n.

(ii) If w 2 LW (D) then CD(w) is periodic.

Proof. Write w = (y1, . . . , yn)x, where yi 2 Y and x generates X. We may

assume that x permutes the components of the base group according to

the cycle (1 . . . n).

(i) Without loss of generality, we may assume that D1 6= 1. Choose a

non-trivial element g = (y, 1, . . . , 1) 2 D and let 1  i  n � 1. One can

easily check by induction on i that

[g,i w] = (y(�1)
i

, . . . , yy1...yi , 1, . . . , 1),

where the last non-trivial component is in position i + 1. It follows that

[g,n�1 w] 6= 1 and d � n.

(ii) By contradiction, assume that h = (z1, . . . , zn) 2 CD(w) is of infinite

order. For notational convenience, set z0 = zn and y0 = yn. Then from

the condition h = hw we get zi = z
y
i�1

i�1 for all i = 1, . . . , n. Hence all

components of h are conjugate and they are all of infinite order.

Now let g = (z1, 1, . . . , 1) 2 D. For every k � 0, let us write [g,k w] =

(zk,1, . . . , zk,n) and, as before, set zk,0 = zk,n. We claim that the following

hold for every k � 0:

(a) zk,i 2 hzii for every i = 1, . . . , n.

(b) If we write zk,i = z
m

k,i

i , then there exists i 2 {1, . . . , n} such that

mk,i 6= mk,i�1.
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We argue by induction on k. The result is obvious for k = 0, so assume

k � 1 and that the claim is true for values less than k. Since [g,k w] =

[g,k�1 w]�1[g,k�1 w]w, it follows that

zk,i = z�1k�1,i z
y
i�1

k�1,i�1 = z
�m

k�1,i

i (z
y
i�1

i�1 )mk�1,i�1 = z
m

k�1,i�1�mk�1,i

i

for all i = 1, . . . , n. This proves (a) and, if (b) does not hold, then

mk�1,1 �mk�1,2 = mk�1,2 �mk�1,3

= · · · = mk�1,n�1 �mk�1,n = mk�1,n �mk�1,1.

Now the sum of the n� 1 first terms in this chain of equalities is the same

as n� 1 times the last one, i.e.

mk�1,1 �mk�1,n = (n� 1)(mk�1,n �mk�1,1).

From this, it readily follows that

mk�1,1 = mk�1,2 = mk�1,3 = · · · = mk�1,n,

which is contrary to the induction hypothesis.

Finally, observe that (b) above implies that mk,i and mk,i�1 cannot both

be zero. Since zi and zi�1 are of infinite order, we conclude that [g,k w] 6= 1

for all k � 1 and consequently w 62 LW (D). This contradiction completes

the proof.
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8.3 Left Engel elements in weakly branch

groups

At this point, we can start combining all the machinery developed in Sec-

tion 8.2 in order to prove our main results. In this section we consider

left Engel elements. The following is an expanded version of our main

theorem.

Theorem 8.15. Let G be a subgroup of Aut T in which all rigid vertex

stabilizers are non-trivial. Then:

(i) If f is a non-trivial left Engel element of finite order, and O is a

non-trivial totally splitting f -orbit, then for some prime number p

the length of O is a p-power and rstG(O) is a p-subgroup.

If G is furthermore weakly branch, then:

(ii) If the set of finite order elements of L(G) is non-trivial then it is a

p-set for some prime p, and rstG(n) is a p-group for some n � 1.

(iii) L(G) = 1.

Proof. (i) Denote the reduced tree R(O) by R, and set x = �O(f) and

H = GO. We observe that |x| = |O| by Remark 8.7. Consider now a

vertex v in O and an arbitrary element g 2 rstG(v), and set y =  v(g)

(here v is considered as a vertex in T ). Then h = �O(g) lies in rstH(v)

and  v(h) = y (here v is considered as a vertex in R). By Lemma 8.5,

we have hh, xi ⇠= hhi o hxi. Since x 2 L(H), Lemma 8.11 implies that both

|y| and |x| are p-powers for some prime p. Thus |g| and |O| are p-powers.
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Since g 2 rstG(v) was arbitrary and f acts transitively on O, we conclude

that rstG(O) is a p-group.

(ii) Let again f 2 L(G) be a non-trivial element of finite order. By applying

Lemma 8.8 to f , we obtain non-trivial totally splitting f -orbits O1, . . . ,Ok,

all lying on the same level n of the tree, such that |f | = lcm(|O1|, . . . , |Ok|).

Let us fix i 2 {1, . . . , k}. By (i), there exists a prime p (in principle,

depending on i) such that |Oi| is a p-power and rstG(Oi) is a p-group.

Since G acts now level transitively on T , all rigid vertex stabilizers are

isomorphic by Remark 4.10 in Chapter 4. It follows that p is the same for

all i and consequently rstG(n) is a p-group. Also the length of all orbits

O1, . . . ,Ok is a power of p and f is a p-element.

(iii) By contradiction, assume that f 2 L(G), f 6= 1. Let d be the Engel

degree of f .

Assume first that f is of finite order. Let O be a non-trivial totally splitting

f -orbit. Define x and y as in the proof of (i), and recall that these are

p-elements. By Lemma 8.11,

d � |x|+ 1

p
(logp |y|� 1)(p� 1)|x|.

On the other hand, since the exponent of rstG(n) is not finite by Proposi-

tion 8.13, the order of y is unbounded. This is a contradiction.

Assume now that the order of f is infinite. By Lemma 8.2, there exists an

f -orbit O of length ` > d. Let once again R be the reduced tree R(O),

and set h = �O(f) and H = GO. Then h 2 Shxi, where S is the first level

stabilizer in AutR (i.e. the stabilizer of O) and x is a rooted automorphism
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corresponding to a cycle of length `. Observe that Shxi is isomorphic to

a regular wreath product W = Y oX, where Y is the stabilizer in R of a

vertex in O and X = hxi is cyclic of order `. Under this isomorphism, h

corresponds to an element w with ⇡(w) = x. Also h lies in LH(D) with

Engel degree at most d, where D = �O(rstG(O)) corresponds to a non-

trivial direct product inside the base group of W . Now, by applying (i) of

Lemma 8.14, we get d � `, which is a contradiction. This completes the

proof of (iii).

Now we proceed to prove the main theorem of this section.

Theorem 8.16. Let G be a branch group. If L(G) 6= 1 then G is periodic

and there exists a prime p such that:

(i) L(G) consists of p-elements.

(ii) G is virtually a p-group.

Proof. It suffices to show that L(G) does not contain any elements of infi-

nite order. Indeed, since L(G) 6= 1, the theorem then follows immediately

from (ii) of Theorem 8.15, by taking into account that |G : rstG(n)| is

always finite if G is a branch group.

Let us assume then that f 2 L(G) is of infinite order. Consider an f -orbit

O in V (T ) of length ` � 2, and let n be the level of T containing O. Set

R = R(O), h = �O(f) and H = GO. Then for every vertex v 6= ; of R we

have �O(rstG(v)) ✓ rstH(v), and consequently all rigid vertex stabilizers

of H are non-trivial. Also h 2 L(H).

If h has finite order, then by (i) of Theorem 8.15, the rigid stabilizer in H

of some vertex v 6= ; of R is periodic. Consequently rstG(v) is periodic,
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and by level transitivity of G, also rstG(n) is periodic. Since |G : rstG(n)|

is finite, it follows that G itself is periodic, which is a contradiction.

Assume now that the order of h is infinite. As in the proof of (iii) of

Theorem 8.15, h lies in Shxi, where S is the first level stabilizer of AutR,

and x is a rooted automorphism corresponding to a cycle of length `. We

can identify Shxi with the regular wreath product W = Y o X, where

X = hxi is cyclic of order ` and h maps onto x. Then h 2 LW (D), where

D = �O(rstG(O)) = �O(rstG(n))

corresponds to a non-trivial direct product inside the base group of W . By

(ii) of Lemma 8.14, CD(h) is periodic. However, since G is branch we have

fk 2 rstG(n) for some k � 1 and then hk = �O(fk) 2 D. It follows that

hk 2 CD(h) is an element of infinite order, which is a contradiction.

Now we can apply Theorems 8.15 and 8.16 to some distinguished subgroups

of Aut T . All the groups below have been introduced in Chapter 5.

Corollary 8.17. In all the following groups, the only left Engel element

is the identity:

(i) Every infinitely iterated wreath product of finite transitive permuta-

tion groups of degree at least 2. In particular, Aut T and �p, for p

a prime.

(ii) The group F of all finitary automorphisms of T , provided that the

sequence d defining T contains infinitely many terms greater than 2.

(iii) All non-periodic multi-GGS groups GE, i.e. those with at least one
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vector e 2 E having non-zero sum in Fp.

(iv) The Hanoi Tower group H.

Proof. (i) For every n 2 N, let Kn be a finite transitive permutation group

of degree dn � 2, and let W be the iterated wreath product of all these

groups. Let T be the spherically homogeneous rooted tree corresponding

to the sequence d = {dn}n2N. Then W is isomorphic to the subgroup K of

Aut T consisting of all automorphisms whose labels at level n are elements

of Kn+1. Observe that K is a branch group, since every Kn is transitive

and obviously rstK(n) = stK(n) in this case.

According to Theorem 8.16, we only need to construct an element of infinite

order in K to conclude that L(W ) = 1. To this purpose, we choose an

infinite sequence {kn}n2N of non-trivial permutations kn 2 Kn, and an

infinite sequence {vn}n2N[{0} of vertices, where vn 2 Ln and kn(vn) 6= vn.

Also, let On denote the orbit of vn under hkni and set `n = |On|.

Now we define f to be the automorphism of T having label kn+1 at vertex

vn for all n 2 N [ {0}. We claim that the length of the f -orbit of vn is

`1 . . . `n for all n 2 N. Since `i � 2 for every i, we conclude that f is of

infinite order by using (ii) of Lemma 8.2.

We prove the claim by induction on n. The result is obvious for n = 1,

since f behaves as k1 on the first level of T . Then f `1 fixes all vertices in

the orbit O1, and a simple calculation shows that on all those vertices the

section of f `1 coincides with the section of f at v1, let us call it g. Since

vn lies at level n � 1 for g, by induction the length of the g-orbit of vn is

`2 . . . `n. From this one can readily see that the f -orbit of v1 has length

`1 . . . `n, as desired.
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(ii) Obviously, F is spherically transitive and rstF (n) = stF (n) for all

n 2 N. Thus F is a branch group. In this case, all elements of F are

of finite order, but we still get L(F) = 1 from Theorem 8.16, because

there is no prime p for which F is virtually a p-group. Indeed, assume

for a contradiction that N is a normal p-subgroup of F of finite index m.

Under this assumption, if H is a q-subgroup of F for a prime q 6= p, the

order of H cannot exceed m. However, as we see in the next paragraph,

the condition on the sequence d implies that F has 2-subgroups and 3-

subgroups of arbitrarily high order, and we get a contradiction.

Consider the following subset of N:

S = {n 2 N | dn � 3}.

By hypothesis, S is infinite. For every n 2 S, let Hn be the subgroup of F

consisting of all automorphisms with labels lying in h(1 2)i for all vertices

in Ln and trivial labels elsewhere. Then the order of Hn is 2 d1...dn , which

tends to infinity as n ! 1. We can define similarly a subgroup Jn of

order 3d1...dn for every n 2 S, by using the 3-cycle (1 2 3). Thus we get

2-subgroups and 3-subgroups of F of arbitrarily high order, as desired.

(iii) If E = h(1, . . . , 1)i then L(GE) = 1 by [17, Theorem 7]. Otherwise GE

is a branch group, and the result follows immediately from Theorem 8.16

and from the characterisation of periodic multi-GGS groups.

(iv) The Hanoi Tower group is known to be a branch group [23, Theorem

5.1]. Let us see that the element ab = (b, 1, a)(1 2 3) is of infinite order.

Assume, for a contradiction, that |ab| = k is finite. Observe that k = 3`
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for some `, since ab has order 3 modulo the first level stabilizer. But then

(ab)3` = ((ba)`, (ab)`, (ab)`)

implies that (ab)` = 1, which is a contradiction.

Corollary 8.18. Let p be a prime and let � 2 Sym(p) be a fixed p-cycle.

Then the subgroup Fp of Aut Tp formed by the finitary automorphisms all

of whose labels lie in h�i (in other words, the intersection of F with the

standard Sylow pro-p subgroup of Aut Tp corresponding to �) satisfies that:

(i) L(Fp) = Fp.

(ii) L(Fp) = 1.

Proof. Since Fp is locally a finite p-group, (i) is clear. On the other hand,

since Fp is spherically transitive and rstF
p

(n) = stF
p

(n) for all n, (ii)

follows directly from Theorem 8.15.

8.4 Right Engel elements in weakly branch

groups

In this section, we prove our main theorem regarding right Engel elements

in weakly branch groups, and then we apply it to show that R(G) = 1

whenever G is a GGS-group. Before proceeding, we need a straightforward

lemma.

Lemma 8.19. Suppose that T has d vertices in the first level, and consider

x, y 2 Aut T such that:



130 Chapter 8. Engel elements in weakly branch groups

1. y = az, where a is the rooted automorphism corresponding to the

cycle (1 2 . . . d) and z 2 st(1) is given by  (z) = (z1, . . . , zd).

2. x 2 st(1) is given by  (x) = (x1, . . . , xd).

Then, for all k � 2, we have

 ([y,k x]) = ([(x�1d )z1 ,k�1 x1]
x1 , . . . , [(x�1d�1)

z
d ,k�1 xd]

x
d).

Proof. We have

 ([y, x]) =  ((x�1)yx) =  ((x�1)a) (z) (x)

= ((x�1d )z1x1, (x
�1
1 )z2x2, . . . , (x

�1
d�1)

z
dxd).

Now the result follows immediately by observing that taking subsequent

commutators with x is performed componentwise.

Theorem 8.20. Let G be a weakly branch group. If rstG(n) is not an

Engel group for all n 2 N, then R(G) = 1.

Proof. Let f 2 G, f 6= 1, and assume by way of contradiction that f 2

R(G). Choose a non-trivial f -orbit O = {v1, . . . , vd}, and assume that

f permutes cyclically the vertices vi. Let R = RO, H = GO and y =

�O(f) 2 R(H). Then we can write y = az, where a is rooted in R

corresponding to the cycle (1 2 . . . d) and z is in the first level stabilizer.

Write  (z) = (z1, . . . , zd).

Let n be the level of T where O lies. Since �O(rstG(n)) ✓ rstH(1) and

rstG(n) is not Engel by hypothesis, it follows that rstH(1) is not an Engel
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group. If L is the first component of the direct product  (rstH(1)) then

L is not an Engel group either, and we can choose a, b 2 L such that

[b,k a] 6= 1 for all k � 1. Now consider r1, r2 2 rstH(1) such that

 (r1) = (a, 1, . . . , 1) and  (r2) = (b, 1, . . . , 1),

and define x = r1(r
�1
2 )y

�1

, so that

 (x) = (a, 1, . . . , 1, (b�1)z
�1
1 ).

By applying the formula in Lemma 8.19, we get

 ([y,k x]) = ([b,k�1 a]a, ⇤, . . . , ⇤)

and consequently [y,k x] 6= 1 for all k � 2. This is a contradiction, since

y 2 R(H) and x 2 H.

Theorem 8.20 can be applied to show that GGS-groups have no non-trivial

right Engel elements. We first need to prove the weaker result that they

are not Engel groups.

Lemma 8.21. Let G be a GGS-group. Then G is not an Engel group.

Proof. We show that there is a power of b that is not a left Engel element of

G. Let e be the defining vector of b. Consider any index i 2 {1, . . . , p� 1}

such that ep�i 6= 0 in Fp, and choose � 2 F

⇥
p such that �ep�i = �i. Then

we have

 ((b��)a
i

) = (⇤, . . . , ⇤, ai), (8.3)
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where we use ⇤ to denote unspecified elements of G.

Since (b��)a
i

= [ai, b�]b��, it follows that, for every k � 2,

[(b��)a
i

, b�, k�1. . . , b�] = [[ai, b�]b��, b�, k�1. . . , b�]

= [[ai, b�, b�]b
��

, b�, k�2. . . , b�]

= [ai, b�, k. . ., b�]b
��

.

By using (8.3), it follows that

 ([ai, b�, k. . ., b�]b
��

) =  ([(b��)a
i

, b�, k�1. . . , b�])

= (⇤, . . . , ⇤, [ai, b�, k�1. . . , b�]). (8.4)

Now if b� is a left Engel element of G, choose the minimum k � 1 such

that [ai, b�, k. . ., b�] = 1. Since ai and b� do not commute, we have k � 2

and so [ai, b�, k�1. . . , b�] 6= 1. According to (8.4), this is a contradiction.

Corollary 8.22. Let G be a GGS-group. Then R(G) = 1.

Proof. If the defining vector e is constant, then L(G) = 1 by [17, Theorem

7], and consequently also R(G) = 1. Thus in the remainder we assume that

e is not constant. By [19, Lemma 3.2 and Lemma 3.4], we know that G

is regular branch over K, where K = �3(G) if e is symmetric and K = G0

otherwise. Since rstG(n) contains a copy of K⇥ pn

· · ·⇥K for every n 2 N, if

we prove that K is not Engel then Theorem 8.20 applies to conclude that

R(G) = 1.

In order to show that K is not Engel, we are going to find a vertex v of

the first level of the tree such that  v(K) = G. Since G is not Engel by
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Lemma 8.21, it follows that K is not Engel either, as desired.

We consider separately the cases when e is symmetric and non-symmetric.

Assume first that e is non-symmetric, so that K = G0. We have

 ([b, a]) = (a�e1b, ae1�e2 , ae2�e3 , . . . , aep�2�ep�1 , b�1aep�1).

Since e is not constant, there exists i 2 {1, . . . , p� 2} such that ei 6= ei+1

in Fp. If v is the vertex i+ 1 on the first level of the tree, then

 v([b, a]) = aei�ei+1 and  v([b, a]
ai

) = a�e1b.

Since the subgroup haei�ei+1 , a�e1bi coincides with G, we get the desired

equality  v(G
0) = G.

Now let e be symmetric, i.e. such that ei = ep�i for all i = 1, . . . , p � 1.

Since e is not constant, this implies that p � 5. We have

 ([b, a, a]) =  ([b, a]�1) ([b, a]a)

= (b�1ae1b�1aep�1 , a�2e1+e2b, ae1�2e2+e3 , . . . ,

aep�3�2ep�2+e
p�1 , a�ep�1baep�2�ep�1).

If ei � 2ei+1 + ei+2 6= 0 for some i 2 {1, . . . , p� 3}, we have a non-trivial

power of a in one of the components of  ([b, a, a]) and we can argue as

above to prove that  v(�3(G)) = G for a vertex v in the first level. On
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the other hand, if ei � 2ei+1 + ei+2 = 0 for all i = 1, . . . , p� 3, then

e3 = 2e2 � e1,

e4 = 2e3 � e2 = 3e2 � 2e1,

e5 = 2e4 � e3 = 4e2 � 3e1,

...

ep�1 = 2ep�2 � ep�3 = (p� 2)e2 � (p� 3)e1.

Since ep�1 = e1, the last equation implies that e1 = e2, and then using all

other equations, we get that all components ei are equal to e1. Thus the

vector e is constant, which is a contradiction.
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