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ABSTRACT 

  Clean and sustainable energy production has become a key global issue concerning the 

world’s energy shortage and environmental problematic. Despite the recognized potential of 

biohydrogen (bioH2) for sustainable development, there are still issues regarding its production 

and purification, such as the elimination of CO2, N2, and other impurities (H2O and H2S), so that 

an enriched H2 stream can be obtained for efficient energy generation. The use of poly(ionic 

liquid)s (PILs) and their derived composite materials incorporating ionic liquids (PIL–IL) has 

been considered as a highly promising strategy to design membranes with improved CO2 

separation. In this study, membranes of pyrrolidinium-based PILs containing symmetric or 

asymmetric fluorosulfonyl derived anions, namely bis(fluorosulfonyl)amide ([FSI]–), 

(trifluoromethyl)sulfonyl-N-cyanoamide ([TFSAM]–) and (trifluoromethyl)sulfonyl-N-

trifluoroacetamide ([TSAC]–), were prepared by the incorporation of different amounts of 

structurally similar ILs. The PIL–IL membranes were characterized by different techniques 

(TGA, DSC, FT-IR and Raman) and their CO2/H2 and H2/N2 separation performances were 

investigated. Higher CO2/H2 selectivities were obtained for PIL FSI–40 [C2mim][FSI] (αCO2/H2 = 

9.0) and PIL TFSAM–40 [C2mim][TFSAM] (αCO2/H2 = 7.1) compared to those of PIL–IL 

membranes containing the conventional [TFSI]– anion at similar or even higher amounts of IL’s 

incorporation. 

KEYWORDS 

Poly(ionic liquid)s, Ionic Liquids, Fluorosulfonyl derived anions, Asymmetric anions, CO2/H2 
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INTRODUCTION 

Considering the enormous potential of H2 as a clean energy carrier for sustainable 

development, extensive research into novel H2 production technologies, especially those from 

renewable sources, has been conducted. Particularly, bioH2 production and separation processes 

have been considered as environmentally friendly, given their non-aggressive operating 

conditions, close to ambient temperature (30 – 40 ºC) and atmospheric pressure (100 kPa) and 

hence, less energy consuming compared to chemical or electrochemical processes.1 In addition, 

the production of H2 from organic waste materials using biological processes can also help to 

minimize the environmental impact and leads to a sustainable resources utilization. However, the 

elimination of CO2, N2 and other impurities (H2O and H2S) is still an issue that needs to be 

solved in order to get an enriched H2 stream for efficient energy generation.2 

Ionic liquids (ILs) have been shown to be a successful platform to design novel task-specific 

materials for CO2 capture and separation.3 Supported ionic liquid membranes (SILMs) is the 

simplest approach to use ILs as gas separation membranes, in which the IL is immobilized into 

the pores of a solid inert porous membrane.4 Several works have investigated the effect of the 

design of chemical structure of ILs on CO2 separation performance, covering a wide range of 

cations and anions.3 In particular, we explored the use of ILs based on 1-ethyl-3-

methylimidazolium ([C2mim]+) cation and several fluorosulfonyl derived anions, such as 

bis(fluorosulfonyl)imide ([FSI]–), 2,2,2-trifluoromethylsulfonyl-N-cyanoamide ([TFSAM]–) and 

bis[(pentafluoro-ethyl)sulfonyl]imide ([BETI]–). The results showed that both [C2mim][TFSAM] 

and [C2mim][FSI]-based SILMs present CO2/N2 separation performance above the respective 

2008 upper bound.5 To substitute the expensive and unusual asymmetric [TFSAM]– anion 

structure, which combines both fluorinated and cyano functional groups, equimolar IL mixtures 
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of two structurally similar ILs having common ions, namely [C2mim][TFSI] and 

[C2mim][N(CN)2], were also explored.5 Although the use of IL mixtures is a promising strategy 

to tailor gas permeation through SILMs, the pure [C2mim][TFSAM] provides a SILM with 

highest CO2 permeabilities, diffusivities and solubilities compared to those prepared with IL 

mixtures.5 Besides, the introduction of asymmetry in the IL anion’s chemical structure have also 

been reported by several authors as an alternative strategy to decrease the viscosity and melting 

point of ILs.6-11 

Despite the promising results, the long-term stability and industrial operation of SILMs are 

still compromised mainly due to the risk of IL draining from pores of the support at high 

pressures or/and at high temperatures. On the other hand, different studies have been unveiling 

that the use of poly(ionic liquid)s (PILs) and their composites (PIL–IL) offer an alternative 

strategy.3, 12-14 Several studies have been demonstrating that gas permeation properties of the neat 

IL significantly influence the CO2 separation performance of PIL–IL composites, consolidating 

the huge potential of PIL–IL membranes for post-combustion flue gas treatment.14-19  

However, within the context of CO2/H2 separation using PIL–IL membranes, only a restricted 

number of works have been published in the literature. Briefly, polybenzimidazole-based PILs 

with asymmetric structure on the imidazolium moiety were synthesized by Kharul et al.20 and 

CO2 and H2 permeabilities both around 30 Barrer were obtained.20 Carlisle et al.21 explored PIL–

IL gel membranes synthesized by photopolymerization of oligo(ethylene glycol)-functionalized 

crosslinker (difunctional monomer) and vinylimidazolium IL monomers in the presence of 

[C2mim][TFSI]. The composite membrane containing 100 mol% of difunctional monomer and 

75 wt% of IL revealed CO2 permeability of 540 Barrer and CO2/H2 selectivity of 12 at room 

temperature. More recently, we studied the CO2/H2 separation performance of PIL–IL 
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membranes prepared with pyrrolidinium-based PILs having fluorinated ([TFSI]−) or cyano-

functionalized ([C(CN)3]−) anions and different amounts of free ILs, at the typical bioH2 

production conditions (T = 35 ºC and 100 kPa of feed pressure).22 The studied PIL–IL 

membranes revealed similar or superior CO2/H2 separation performance compared to the few 

PIL–based membranes reported so far,22 as it is the case of the PIL C(CN)3–60 IL C(CN)3 

membrane that displayed CO2 permeability of 505 Barrer and CO2/H2 selectivity of 12.5.  

 Encouraged by the good results previously obtained for SILMs with asymmetric anions, the 

film-forming ability of pyrrolidinium-based PILs containing asymmetric ([TFSAM]– and 

[TSAC]–) and symmetric ([FSI]–) anions (Figure 1) is herein explored. Several PIL–IL 

membranes were prepared by the incorporation of different amounts of free IL and, along with 

both neat PIL and IL components, were characterized using different techniques, such as TGA, 

DSC and FT-IR/Raman spectroscopies. Furthermore, the CO2, N2 and H2 permeation properties 

were evaluated using the time-lag method at biohydrogen production conditions (T = 35ºC and 

100 kPa of feed pressure) and the effect of introducing asymmetry in both PIL and IL anion’s 

structures on CO2/H2 and H2/N2 separation performances was investigated.  
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Figure 1. Chemical structures of the PILs and ILs used in this work. 

EXPERIMENTAL SECTION 

Materials. 

 Poly(diallyldimethylammonium) chloride (poly([Pyr11][Cl])) solution (average Mw 400,000 

– 500,000, 20 wt% in water, Aldrich), acetone (Aldrich, 99.8%), dimethyl sulfoxide (DMSO, 

TCI Chemicals, > 99.7%) and potassium bis(fluorosulfonyl)imide (KFSI, Fisher Scientific, > 

95%) were used as received. 1-Ethyl-3-methylimidazolium bis(fluorosulfonyl)imide 

([C2mim][FSI], 99.5%) was provided by Solvionic. Carbon dioxide (CO2), nitrogen (N2) and 

hydrogen (H2) were supplied by Air Liquide with a minimum purity of 99.99%. Potassium 2,2,2-

trifluoromethylsulfonyl-N-cyanoamide (KTFSAM) was synthesized in accordance with the 

procedure published by our group previously6 (for details see the Supporting Information (SI) 

file). Potassium 2,2,2-trifluoro-N-(trifluoromethylsulfonyl) acetamide (KTSAC) was prepared 

following general procedure reported by Matsumoto H. et al.9 (see SI file). Ionic liquids, 1-ethyl-

3-methylimidazolium 2,2,2-trifluoromethylsulfonyl-N-cyanoamide ([C2mim][TFSAM], 98.5–

99.0%) and 1-ethyl-3-methylimidazolium 2,2,2-trifluoro-N-(trifluoromethylsulfonyl) acetamide 
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([C2mim][TSAC], 98 %) were synthesized according to a previously described procedure.6 5, 23 

Poly([Pyr11][FSI]), poly([Pyr11][TFSAM]) and poly([Pyr11][TSAC]) PILs were synthesized by 

anion metathesis reactions from the commercially available precursor, poly([Pyr11][Cl]), 

according to previously established procedures.14, 24, 25 All salts, ILs and PILs were characterized 

by elemental analysis, NMR and IR spectroscopy, which was in accordance with those reported 

in the literature.6, 9, 14, 24-26 

 

 

 

Synthesis of [Pyr11][TSAC] 

In the case of poly([Pyr11][TSAC]), here reported for the first time, a solution of 8.43 g (28.58 

mmol) of KTSAC salt in 10 mL of double-distilled water was added to a solution of 4.4 g (27.22 

mmol of monomeric units) of poly([Pyr11][Cl]) in 110 mL of water and the mixture was stirred 

for 30 min at room temperature. The precipitated polymer was thoroughly washed with excess of 

water, filtered and dried in vacuum at 45ºC and 133 Pa until constant weight was attained. Yield: 

7.76 g (77%). 1H NMR (400 MHz, DMSO-d6): 3.72 (br. m, 2Н, NCH2, pseudo e), 3.35-3.10 (m, 

5Н, NCH2, pseudo a, CH3 pseudo e), 3.08 (m, 3Н, CH3 pseudo a), 2.53-2.50 (m, 1.7Н, cis-C3H-

C4H), 2.09 (m, 0.3Н, trans-C3H-C4H), 1.54-1.02 (br. m, 4Н, CH2-CH2); 13C NMR (100.6 MHz, 

DMSO-d6): 160.1 (CO), 124.9-115.3 (q, 1JCF = 322 Hz, CF3SO2), 121.2-112.6 (q, 1JCF = 290 Hz, 

COCF3), 69.5, 53.1, 51.3, 37.9, 37.3, 26.5. 19F NMR (376.5 MHz, DMSO-d6, C6F6): -74.4 (s, 

COCF3), -77.9 (s, SO2CF3). IR (ATR-mode): 2948 (w, νС-Н), 287 (w, νС-Н), 1670 (s, νС=O), 1475 (m), 

1433 (w), 1317 (s, νasSO2), 1213 (w, νCF), 1167 (vs, νsSO2), 1120 (vs, νCF), 918 (m), 823 (s), 760 (m), 

620 (s), 592 (s), 544 (m) cm-1. 
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Considering the different hygroscopic properties of each anion, in the case of [FSI]– anion, the 

poly([Pyr11][FSI]) was obtained as a white powder, while for [TFSAM]– and [TSAC]– anions 

with asymmetric structures, PILs represented highly sticky solids after precise drying.  

   

Preparation of PIL–IL membranes 

 Dense composite membranes based on the synthesized PILs and defined quantities of 

imidazolium ILs having identical anions were prepared by solvent casting (Figure 2). Firstly, 6 

(wt/v)% solutions of poly([Pyr11][FSI]), poly([Pyr11][TFSAM]) and poly([Pyr11][TSAC]) in 

appropriate solvent were prepared and then the respective IL amounts were added (Table 1). The 

solutions were stirred until complete dissolution of all components at room temperature 

whereupon were poured into the glass Petri dishes and left for slow evaporation of the solvent. 

Depending on the solvent used, the evaporation time and temperature of the casting process were 

optimized for each case and details of the procedure are listed in Table 1. The obtained 

membranes were taken carefully out of the Petri dishes and were finally dried at 50 ºC and 133 

Pa for 12 h. 

The thicknesses of the prepared membranes (105–285 µm) were measured using a digital 

micrometer (Mitutoyo, model MDE-25PJ, Japan). At this, the thickness used in calculation of 

gas permeabilities and diffusivities was taken as an average from six measurements performed at 

different membrane locations. 

 

Table 1. Composition descriptions and experimental conditions of the casting procedure used to 
prepare the PIL–IL membranes. 
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PIL-IL membrane Polymer (PIL) Ionic Liquid (IL) wt% 
of IL Solvent T (ºC) Evaporation 

time (days) 

PIL FSI – 20 IL FSI 
Poly([Pyr11][FSI]) [C2mim][FSI] 

20 
DMSO 50 4 

PIL FSI – 40 IL FSI 40 

PIL TFSAM – 20 IL TFSAM 
Poly([Pyr11][TFSAM]) [C2mim][TFSAM] 

20 
Acetone 25 3 

PIL TFSAM – 40 IL TFSAM 40 

PIL TSAC – 20 IL TSAC Poly([Pyr11][TSAC]) [C2mim][TSAC] 20 Acetone 25 3 

 
 
 

Figure 2. Images of the prepared PIL–IL composite membranes with different amounts of IL 
(successful (□) and unsuccessful cases). 
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Characterization  

 FT-IR spectra were acquired using a Thermo Electron Corporation Nicolet 5700 

spectrometer with a DTGS-TEC detector. The spectra were registered using a diamond ATR 

Smart Orbit™ accessory and collected using 128 scans, from 500 to 4000 cm-1, with a resolution 

of 4 cm-1.  

 Raman spectra were measured using a LabRAM HR 800 Evolution Horiba–Jobin Yvon 

confocal micro-Raman spectrometer, with a diffraction grating of 600 gr/mm at a spectral 

resolution of 4 cm-1. The excitation source was a 532 nm (or a 785 nm in the case of PIL–20 IL 

TSAC membrane) diode laser with ~10�mW power on the sample. The objective used was x50 

(LWD) and the spectra were acquired with 10�s of signal collection time and four 

accumulations. Although all bands in the Raman spectra were well-defined using the 532nm 

laser, a slight fluorescence effect can be observed in some of the collected Raman spectra 

considering that fluorescence background is a known issue in Raman spectroscopy of ILs.27  

NMR spectra were recorded on AMX-400 and Avance II 500 MHz spectrometers (Bruker) at 

25 °C in the indicated deuterated solvents and are listed in ppm. The signal corresponding to the 

residual protons of the deuterated solvent was used as an internal standard for 1H and 13C NMR, 

while the C6F6 was utilized as an external standard for 19F NMR. 

Thermogravimetric analysis (TGA) was performed on a TGA Q50 analyzer (TA Instruments) 

under nitrogen atmosphere. All the samples were dried under vacuum (1 Pa) at a moderate 

temperature (≈ 45 ºC) for at least 2 days before measurements. In the case of neat PILs and the 

PIL–IL composites, TGA experiments were performed at a heating rate of 10 ºC min−1 from 

room temperature to 800 ºC, while for neat ILs, the TGA experiments were only performed until 

600 ºC since open aluminum pans were used to support the liquid samples.  

A Q200 differential scanning calorimeter (TA Instruments) was used to perform the DSC 

experiments. All the samples were dried under vacuum (1 Pa) at a moderate temperature (≈ 45 



11 

 

ºC) for at least 2 days before measurements. Then, the samples were weighed (~9–12 mg) with 

the precision of ± 0.0001 g and hermetically sealed in aluminum pans under inert atmosphere 

inside an argon-filled glovebox (MBRAUN MB-Labstar, H2O and O2 content <0.5 ppm).  

The DSC experiments for neat PILs and PIL–IL membranes were carried out at a heating rate 

of 10 ºC min-1 in a large temperature window, from –90 to 200 ºC, in order to obtain a broader 

insight of their thermal profiles. Crystallization (Tc) and melting (Tm) points were determined as 

extrapolated onset temperatures. For all measurements, a first cycle was always performed to 

eliminate the thermal history of each sample. In the case of neat IL samples, both crystallization 

and melting temperatures were taken from Shaplov et al.6 which were performed at a heating rate 

of 2 ºC min-1 as recommended for an extra accurate measurement of ILs thermal properties.28, 29  

 

Gas Permeation Experiments 

 Ideal CO2, N2 and H2 permeabilities and diffusivities were measured using a time-lag 

equipment, described in detail elsewhere.19 Each membrane was degassed under vacuum inside 

the permeation cell during at least 12 h before testing. The gas permeation measurements were 

performed at 35 ºC with an upstream pressure of 100 kPa (feed) and vacuum (< 0.1 kPa) as the 

initial downstream pressure (permeate). Three separate CO2, N2 and H2 experiments on each 

duplicate PIL–IL membrane sample were carried out to ensure accuracy. The reported gas 

permeation data are the average values, in which the highest relative precision was 0.047 for gas 

permeabilities, 0.098 for gas diffusivities and 0.068 for gas solubility values. 

The gas transport through PIL–IL membranes was assumed to occur according to solution-

diffusion mass transfer mechanism.30 Thus, the permeability (P) is related to diffusivity (D) and 

solubility (S) as follows:  
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The permeate flux of each studied gas (Ji) was determined using Eq. (2), assuming an ideal gas 

behavior and a homogeneous membrane.31  
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where Vp is the permeate volume, ∆pd is the variation of downstream pressure, A is the effective 

membrane surface area, t is the experimental time, R is the Gas Constant and T is the 

temperature. Ideal gas permeability (Pi) was then calculated from the pressure driving force (∆pi) 

and membrane thickness (ℓ) as shown in Eq. (3). 

                                                             (3) 

Eq. (4) was used to determine gas diffusivity (Di). The time-lag parameter (θ) was deduced by 

extrapolating the slope of the linear portion of the pd vs. t curve back to the time axis, where the 

intercept is equal to θ.32  

                                                             (4) 

Gas solubility (Si) was calculated using the relationship given by Eq. (1), after defining both Pi 

and Di. 

The ideal permeability selectivity (or permselectivity), αi/j, which can also be expressed as the 

product of diffusivity selectivity and solubility selectivity, was obtained by dividing the 
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described in Eq. (5).  
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RESULTS AND DISCUSSION  

Characterization of PILs and ILs. 

Fourier-Transform Infrared (FT-IR) Spectroscopy. 

FT-IR spectroscopy was performed to confirm the chemical structure of the synthesized PIL 

and IL components containing different fluorosulfonyl anions, as well to evaluate possible 

interactions between the different components in the prepared membranes. The obtained FT-IR 

spectra of the PILs, ILs and their respective PIL–IL membranes are depicted in Figures 3a – 3c). 

Considering the asymmetric nature of [TFSAM]– and [TSAC]– anions, presenting in their 

anion’s structure half of the conventional [TFSI]– anion structure, both PIL and IL components 

incorporating the latter anion, are also shown in Figure 3d). Bearing in mind that ILs used in this 

work have a common imidazolium cation ([C2mim]+) in their structure, the most characteristic 

absorption bands of the imidazolium ring can be seen in Figures 3a – 3d) at around 3120-3126 

cm-1 and 3157-3163 cm-1 attributed to C–H stretching modes of the imidazolium ring and at 

around 1574 cm-1, assigned to ring in-plane symmetric/asymmetric stretch and –CH2(N)/–

CH3(N)CN stretch.33-36 Likewise, considering that pyrrolidinium polycation ([Pyr11]+) is 

common to all studied PILs, the absorption bands detected at 2939-2962 cm-1 and 2871-2875 cm-

1 are associated to –CH2 stretching vibrations, while the bands observed at around 1475 cm-1 are 

assigned to the –CH3 bending vibration originated from the pendant methyl units of the cationic 

backbone (Figures 3a–3d).  

 Figure 3a displays the FT-IR spectra of both PIL and IL containing the [FSI]– anion and 

corresponding PIL–IL membranes. The absorption bands observed at 1377 and 1359 cm-1 are 

attributed to –SO2 asymmetric stretching, while the band at 1166 cm-1 is assigned to –SO2 
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symmetric stretching.37-39 Two other peaks at 827 and 727 cm-1, respectively associated with S–

N–S asymmetric and symmetric stretching,37, 38 are also observed in both [C2mim][FSI] and 

poly([Pyr11][FSI]) spectra.   

 In what concerns PIL, IL and PIL–IL membranes containing [TFSAM]– anion, which has an 

asymmetric chemical structure (Figure 1), from Figure 3b, the strong –CN stretching vibration at 

2187 cm-1 as well as the vibrational bands at 1326 cm-1 (–SO2 asymmetric stretching), 1213 cm-1 

(–CF3 stretching modes), 1164 cm-1 (–SO2 symmetric stretching) and 1114 cm-1 (–CF3 stretching 

modes) are clearly observed attributing to cyano and trifluoromethylsulfonyl functional groups, 

respectively. This infrared pattern obtained is similar to those previously published by Shaplov et 

al.6 for other ILs containing the [TFSAM]– anion. 

 Figure 3c shows the FT-IR spectra of the compounds bearing the asymmetric [TSAC]– 

anion. The characteristic absorption bands of the [TSAC]– anion appear at 1670 cm-1 (–C=O 

stretching vibration), 1317 cm-1 (–SO2 asymmetric stretching), 1120 and 1213 (–CF3 asymmetric 

stretching) and at 1167 cm-1 (–SO2 symmetric stretching). Two more peaks, detected at 918 and 

823 cm-1, with low to medium intensity, might also be assigned to [TSAC]– anion, since they 

appear in both PIL and IL spectra. It should be mentioned that no literature data was found 

related to FT-IR spectroscopy analysis of PILs or ILs containing the [TSAC]– anion. From 

Figure 3d, the partial similarity of the [TFSI]– anion structure compared to the [TFSAM]– and 

[TSAC]– anion structures can be confirmed by the characteristic bands of –CF3 or –SO2 

functional groups present in each respective spectrum.  

Furthermore, from Figures 3a – 3c, all the characteristic absorption bands assigned to 

different anions and cations in ILs and PILs can be found in the FT-IR spectra of the respective 

PIL–IL membranes. Depending on the amount of IL incorporated in the membranes, the 
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differences in intensity of the bands associated with both imidazolium cation and pyrrolidinium 

polycation were observed. Finally, no significant deviations were observed in the PIL–IL 

membranes FT-IR spectra in comparison with the spectra of the respective neat components, 

even by increasing the amount of IL in the composite membranes. 

Figure 3. FT-IR spectra of both neat PILs and ILs and respective PIL–IL membranes bearing 
different anions: (a) [FSI]–, (b) [TFSAM]–; (c) [TSAC]– and (d) [TFSI]–. 
 

Raman Spectroscopy.  

Raman spectroscopy was also used to analyze the chemical structure of the synthesized PIL 

and IL samples and possible PIL–IL interactions as a complementary technique to FT-IR 

spectroscopy. Depending of the vibrational modes of each sample, some of the bands show high 
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intensity in FT-IR spectra and low intensity in Raman spectra or vice-versa. In addition, 

considering that Raman spectroscopy can provide information at lower wavenumbers (< 400 cm-

1) compared to FT-IR spectroscopy, a wide spectrum range can also be evaluated.  

The Raman spectra of PILs and ILs bearing [TFSAM]–, [FSI]– and [TSAC]– anions and 

respective PIL–IL membranes are provided in Figures S1 – S3 (see Supporting Information file). 

It should be mentioned that, to the best of our knowledge, no literature data has been yet 

published describing the analysis of ILs or PILs with [TFSAM]– or [TSAC]– asymmetric anions 

by Raman spectroscopy. 

PIL and IL structures containing [TFSAM]– (Figure S1)) and [TSAC]– (Figure S3) anions 

show the characteristic bands at 2186 cm-1 (–CN stretching vibration) and at 1670 cm-1 (–C=O 

stretching vibration). The other pronounced bands were found at 1320 cm-1 (–SO2 asymmetric 

stretching), 1170 cm-1 (–SO2 symmetric stretching) 1213 and 1120 cm-1 (–CF3 asymmetric 

stretching). At low wavenumbers, three well-defined bands attributed to the [TFSAM]– anion 

structure at around 162 cm-1 (–CF3 torsion vibration), 301 cm-1 (–CF3 bending vibration) and 335 

cm-1 (–SO2 torsion vibration) can be observed in Figure S1. These assignments were also 

reported for ILs containing the [TFSI]– anion, having similar CF3SO2- group.36 Two more bands 

at 447 and 478 cm-1 are simultaneously visible in [C2mim][TFSAM], poly([Pyr11][TFSAM]) and 

composite membranes spectra, which means that they can also be attributed to the [TFSAM]– 

anion. The intensities of the described vibrational modes were found to be different for 

[C2mim][TFSAM] and poly([Pyr11][TFSAM]), that can be explained by the specific interactions 

between [TFSAM]– anion and imidazolium or pyrrolidinium cations (Figure S1).40 However, no 

frequency shift or change in the appearance of specific vibrational modes were detected in Figure 

S1c. 
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For [C2mim][TSAC], poly([Pyr11][TSAC]) and composite membrane on their basis three 

absorption bands at 263 (–CF3 bending vibration),41 309 (–CF3 bending vibration) and 404 cm-1 

(–SO2 wagging vibration) can be observed (Figure S3).36 Additionally, one more absorption band 

with slightly higher intensity can also be seen at 223 cm-1, which is probably associated to the 

[TSAC]– anion, since it appears in all PIL, IL and PIL–IL membrane’s spectra. 

Figure S2 shows Raman spectra of [C2mim][FSI], poly([Pyr11][FSI]) and their composites 

with 20 and 40 wt% of  IL. Correspondingly to what was observed in FT-IR analysis, the 

characteristic bands of [FSI]– anion in Raman spectra appear at 1361 (SO2 asymmetric 

stretching), 1215 (SO2 symmetric stretching), 828 (SNS asymmetric stretching) and at 725 cm-1 

(SNS symmetric stretching). In addition, at low wavenumbers, the –SO2F torsion vibrational 

mode can be found at 289 cm-1 in all the studied spectra, as well as the –SO2F bending 

vibrational modes can be seen at 324, 356, 452 and 481 cm-1. All these assignments were found 

to be in agreement with the previously reported data.36, 38   

Overall, some differences in the intensity of the bands in the Raman spectral region of 50 – 

400 cm-1 for all ILs, PILs and PIL–IL membranes were observed, that can be attributed to the 

different anion-cation interactions.40 In addition, similarly to what was observed in FT-IR 

analysis, no band shifts were observed in Raman spectra with increasing amount of ILs in all 

composite membranes. 

 

Thermogravimetric analysis.  

The degradation profiles of PILs, ILs and PIL–IL membranes were assessed by TGA analysis, 

not only to determine their onset decomposition temperatures, but also to study the influence of 

the IL content on the thermal stability of the prepared membranes. Both onset (Tonset) and 
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decomposition (Td) temperatures are given in Table 2, while the TGA thermograms are provided 

in Figure S4 for neat ILs, Figure S5 for neat PILs and in Figures S6 – S8 for PIL–IL membranes.  

Thermal stability of ILs with respect to counter anion structure was found to be evolved as 

follows (Table 2): Tonset [C2mim][TSAC] 295 oC > Tonset [C2mim][TFSAM] 250 oC > Tonset 

[C2mim][TFSAM]  215 oC. At the same time for PILs, the transition from [FSI]– to [TSAC]– and 

further to [TFSAM]– anions affords an increase in their thermal stability following the following 

order (Table 2): Tonset poly([Pyr11][TFSAM]) 280 oC ≥ Tonset poly([Pyr11][TSAC) 270 oC > Tonset 

poly([Pyr11][FSI]) 220 oC. Both neat ILs and PILs displayed single weight-loss step degradation 

profile (Figures S4 and S5, respectively), being the PIL containing the [FSI]– anion the only 

exception with two degradation steps, at 220 and ~260 ºC. In the case of TSAC system, the Tonset 

of imidazolium IL was higher than the one of pyrrolidinium PIL, while the comparison of PIL–

IL composites bearing [TFSAM]– and [FSI]– anions revealed the opposite dependence (Table 2). 

This can be explained by the fact that independently of the cation nature the thermal stability of 

polycations is usually higher than that of structurally similar ILs.42 

Regarding PIL–IL membranes, their thermal stability varies in between the Tonset values of 

respective ILs and PILs. The incorporation of [FSI]– and [TFSAM]– containing imidazolium ILs 

into the corresponding PILs reduces the thermal stability of membranes in comparison with neat 

PILs (Table 2). In contrast, the Tonset of membranes with [TSAC]– anion does not change after 

the incorporation of 20 wt% of neat IL. From the Figures S6 – S8, it can also be perceived that 

the PIL–IL membranes generally follow the thermal profile of the respective neat PILs, probably 

due to the fact that the polymer fraction dominates the composition. Summarizing the data 

reported in Table 2, it can be concluded that all PIL–IL membranes are thermally stable up to 

200 oC making them attractive as materials for gas separation membranes. 
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Table 2. Thermal properties of studied PILs, ILs and PIL–IL membranes: onset (Tonset), 
crystallization (Tc), melting (Tm) and glass transition (Tg) temperatures. 

Sample  Tonset (°C)a Tc (°C)b Tm (°C)b Tg (°C)c 

PIL poly([Pyr11][FSI]) 220 - - - 

PIL FSI – 20 IL FSI 215 - - - 

PIL FSI – 40 IL FSI 210 - - - 

[C2mim][FSI] 215 -30 -16 - 

PIL poly([Pyr11][TFSAM]) 280 - - 51 

PIL TFSAM – 20 IL TFSAM 255 - - -24 

PIL TFSAM – 40 IL TFSAM 250 - - -23 

[C2mim][TFSAM] 250 -54 -22 - 

PIL poly([Pyr11][TSAC]) 270 - - 23 

PIL TSAC – 20 IL TSAC 270 - - -7 

[C2mim][TSAC] 295 -40 -10 - 
      a Tonset defined as the onset weight loss of the sample by TGA.  
      b Taken from Shaplov et al.6 

c Determined by DSC. 
 

Differential scanning calorimetry.  

The neat PILs, ILs and respective PIL–IL membranes were also characterized by DSC 

analysis. The determined melting (Tm), crystallization (Tc) and glass transition (Tg) temperatures 

Alexzip � 24/12/19 16:23
Eliminado: Salto de sección (Continua)
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are listed in Table 2, while the DSC curves of neat PILs and PIL–IL composites are provided on 

Figures S9 – S12 (see the ESI file).   

From Shaplov et al.6 all neat ILs showed both crystallization and melting temperatures. For 

instance, [C2mim][FSI] revealed Tc peak around –30 ºC, as well as Tm at –16 ºC and no Tg was 

detected. Similarly, ILs containing asymmetric anions such as [C2mim][TFSAM] and 

[C2mim][TSAC], showed only Tc and Tm temperatures (Table 2). At this, both transitions occur 

at lower temperatures than that of [C2mim][FSI] proving the statement that asymmetry of anions 

are playing an important role in the synthesis of low melting salts.7, 28, 32  

 Analyzing the DSC results of the neat PILs (Table 2 and Figure S9), it can be seen that no 

obvious Tg was detected for poly([Pyr11][FSI]). This finding is in accordance with previously 

reported results for similar PILs.37, 43 Conversely, well-defined glass transition temperatures were 

observed at 51 and 23 ºC for the PILs bearing asymmetric [TFSAM]– and [TSAC]– anions, 

respectively.   

Similarly to neat poly([Pyr11][FSI]), the PIL–IL membranes with 20 and 40 wt% of 

[C2mim][FSI] IL display no Tg values In contrast, the Tg values of PIL–IL membranes with 

[TFSAM]– and [TSAC]– anions are significantly lower than those of respective neat PILs (Table 

2 and Figures S10 and S12). The reduction in Tg is more significant for the PIL–IL TFSAM 

membranes, indicating a stronger plasticizing effect of the [C2mim][TFSAM] IL within the PIL 

polymer chains. On the other hand, the Tg values of PIL–IL TFSAM membranes do not 

significantly change when increasing the amount of free IL from 20 to 40 wt%. The observed 

tendency slightly differs from what has been reported in literature,44-46 which is the reduction of 

Tg when increasing the IL content into polymer matrices. 
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Gas Permeability, Diffusivity and Solubility of PIL-IL membranes.  

 The measured CO2, N2 and H2 permeabilities (P) and diffusivities (D) of the prepared PIL–

IL membranes are presented in Figures 4a and 4b, respectively, while gas solubility (S) values 

calculated using Eq. (1) are shown in Figure 4c.  

 The same trend of gas permeabilities was obtained for all studied PIL–IL membranes: PCO2 

>> PH2 > PN2 (Figure 4a). The CO2, N2 and H2 permeabilities increase with the amount of IL 

incorporated into the composites. For instance, in the case of PIL–IL FSI membranes, the 

increment of IL (from 20 to 40 wt%) led to 5.5, 4 and 2 times increase in CO2, N2 and H2 

permeabilities, respectively. Comparison of CO2 permeabilities for PIL–IL composites 

containing 20 wt% of IL revealed the following order (Figure 4a): PIL–20 IL TSAC (72) > PIL–

20 IL TFSAM (40) ≈ PIL–20 IL FSI (38 Barrer). However, this order changed when the amount 

of the incorporated IL was increased to 40 wt%: PIL–40 IL FSI (201) > PIL–40 IL TFSAM (177 

Barrer). 

The overall evolution of gas permeabilities for PIL–IL membranes comprising 20 wt% of IL 

according to anion structure can be summarized as follows: [TSAC] > [TFSAM] > [FSI] (Figure 

4a). Unfortunately, for PIL–IL TSAC membranes, it was not possible to prepare mechanically 

stable and homogeneous membranes at [C2mim][TSAC] content higher than 20 wt% (Figure 2). 

This observation indicates that the film-forming ability of PIL–IL materials is strongly dependent 

on the anion’s nature.  

 Figure 4b displays the experimental CO2, N2 and H2 diffusivities obtained through the 

prepared composites. Mainly because of the smaller kinetic diameter of H2 (2.89 Å) compared to 

that of CO2 (3.30 Å), the difference of one or two orders of magnitude between H2 and CO2 
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diffusivities was observed.47 Similarly, the higher N2 kinetic diameter (3.64 Å) compared to that 

of H2 explain the one order of magnitude lower N2 diffusivities compared to those of H2. The 

composite membranes in accordance with the values of the displayed CO2 and N2 diffusivities 

can be ordered as follows: PIL TFSAM–20 IL TFSAM < PIL FSI–20 IL FSI < PIL TSAC–20 IL 

TSAC < PIL TFSAM–40 IL TFSAM < PIL FSI–40 IL FSI. In fact, the presence of the [FSI]– 

anion leads to higher CO2 and N2 diffusivities compared to those of the membranes containing 

the [TFSAM]– anion. Conversely, a different trend was observed for H2 diffusivity values: PIL 

FSI–20 IL FSI < PIL TFSAM–20 IL TFSAM < PIL FSI–40 IL FSI < PIL TSAC–20 IL TSAC < 

PIL TFSAM–40 IL TFSAM. This means that the presence of a cyano functional group in the 

[TFSAM]– anion’s structure promotes enhanced H2 diffusivities when compared to the 

membranes with 20 and 40 wt% of [C2mim][FSI]. It is also interesting to point out that the 

membrane prepared with 20 wt% of [C2mim][TSAC], which has a carbonyl group in its anion, 

displayed the highest CO2, N2 and H2 diffusivities compared to those of the other PIL–20 IL 

membranes (Figure 4b).  

 As it can be seen from Figures 4a and 4b, the CO2 permeability followed the same trend as 

CO2 diffusivity, except for the cases of PIL FSI–20 IL FSI and PIL TFSAM–20 IL TFSAM 

composites. Similarly, the H2 permeability followed the same behavior as H2 diffusivity, except 

for the case of PIL TSAC–20 IL TSAC membrane, that presents higher H2 diffusivity compared 

to PIL FSI–40 IL FSI composite, but lower H2 permeability. The membranes having 40 wt% IL 

content showed the highest H2 permeabilities (177 – 201 Barrer) and diffusivities (1021 – 873 x 

10-12 m2 s-1). Furthermore, the superior H2 diffusivity obtained for PIL TSAC–20 IL TSAC (907 

x 10-12 m2 s-1) compared to PIL FSI–40 IL FSI (873 x 10-12 m2 s-1) membrane (Figure 4b) led to 
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the conclusion that the presence of a carbonyl group in the IL anions’ structure has a significant 

effect on H2 diffusivity. 

 As illustrated in Figure 4c,	 the CO2 solubility of the prepared PIL–IL membranes ranged 

from 10.4 to 17.1 (x 10-6) m3(STP) m−3 Pa−1. On the other hand, the N2 and H2 solubility values 

were two orders of magnitude lower, varying from 0.16 and 0.43 (x 10-6) m3(STP) m−3 Pa−1 in 

the case of N2, and from 0.15 to 0.2 (x 10-6) m3(STP) m−3 Pa−1, in the case of H2. In addition, 

improved CO2 solubilities were obtained by increasing the IL amount incorporated into the 

membrane. For instance, when increasing the IL content from 20 to 40 wt% into PIL–IL TFSAM 

membranes, the increment in CO2 solubility reached 29%. Moreover, this effect was more 

pronounced for PIL–IL FSI membranes, where the CO2 solubility increased approximately 63%. 

A similar behaviour, although less expressed, was also observed for H2 solubilities. This large 

difference between CO2 and H2 solubilities has also been identified and discussed in our previous 

study for other PIL–IL membranes.22 At 20 wt% of IL content, the highest CO2, N2 and H2 

solubilities were demonstrated by the membranes with [TSAC]– asymmetric anion (Figure 4c), 

similarly to what was observed for gas permeability (Figure 4a) and diffusivity (Figure 4b). 

Increasing IL content up to 40 wt% the PIL TFSAM–40 IL TFSAM membrane presented the 

highest CO2 solubility, while the highest H2 solubility was observed for PIL FSI–40 IL FSI 

composite (Figure 4c). Overall, the large difference of H2 diffusivities compared to CO2 and N2 

diffusivities is somehow compensated by the very low H2 solubilities, which significantly impact 

the H2 permeability results.  
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Figure 4. (a) Gas permeabilities (P), (b) diffusivities (D) and (c) solubilities (S) for the studied 
PIL–IL membranes at T = 35 ºC. Error bars represent standard deviations based on three 
experimental replicas. In some cases, the standard deviations are very small leading to error bars 
that cannot be clearly represented. 

a)	

b)	

c)	
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CO2/H2 Separation Performance.  

 The single CO2, N2 and H2 permeabilities and the ideal CO2/H2 and H2/N2 selectivities 

determined at 35 ºC are listed in Table 3. The PIL–IL membranes with 40 wt% of IL exhibited 

higher CO2/H2 and lower H2/N2 permselectivities compared to those of the membranes with 20 

wt%. For instance, the PIL FSI–40 IL FSI showed higher CO2/H2 permselectivity (αCO2/H2 = 8.9) 

in comparison with PIL TFSAM–40 IL TFSAM (αCO2/H2 = 7.2). However, both membranes 

displayed similar H2/N2 permselectivities (~ 5.0). Although the highest CO2 and H2 

permeabilities were obtained for the PIL TSAC–20 IL TSAC membranes (among those with 20 

wt% of IL), the CO2/H2 selectivity was found to be nearly independent on the nature of the anion 

(Table 3). 

 

Table 3. Single gas permeabilities (P)a and ideal selectivities (α) of the studied PIL–IL 
membranes.b 

PIL-IL membrane Gas Permeability (Barrer) Ideal Selectivities 
PCO2 ± σ PN2 ± σ PH2 ± σ α CO2/H2 α H2/N2 

PIL TFSAM–20 IL TFSAM 40 ± 0.2 1.1 ± 0.02 12.4 ± 0.10 3.2 ± 0.04 11.5 ± 0.22 

PIL TFSAM–40 IL TFSAM 177 ± 0.5 5.0 ± 0.01 24.6 ± 0.14 7.2 ± 0.06 4.9 ± 0.06 

PIL FSI–20 IL FSI 37 ± 0.3 0.9 ± 0.01 10.5 ± 0.22 3.6 ± 0.10 11.7 ± 0.18 

PIL FSI–40 IL FSI 201 ± 0.8 4.5 ± 0.01 22.7 ± 0.10 8.9 ± 0.07 5.0 ± 0.01 

PIL TSAC–20 IL TSAC 72 ± 0.6 2.8 ± 0.01 20.2 ± 0.43 3.5 ± 0.11 7.3 ± 0.19 
a Barrer (1 Barrer = 10−10 cm(STP)3·cm·cm−2·s−1·cm·Hg−1).  
b The listed uncertainties represent the standard deviations (σ) based on six experiments. 
 

 Figure 5 shows the gas separation performance of the studied PIL–IL membranes, in which 

the CO2/H2 permselectivity is plotted against the permeability of the more permeable gas (CO2). 

This plot displays a trade-off (black line) between gas permeability and permselectivity. This 

upper bound, represented in Figure 5 at T = 27 ºC, was developed by Rowe et al.48 for the 
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CO2/H2 gas pair and was used to evaluate the performance of the prepared PIL–IL membranes at 

biohydrogen production conditions (T = 35 ºC and 100 kPa).  

 As it can be clearly seen from Figure 5, all PIL–IL membranes prepared in this work 

revealed CO2/H2 separation performances above the upper bound. An increment from 20 to 40 

wt% of IL in the membrane not only promoted a significant increase in CO2 permeability, but 

also increase the CO2/H2 permselectivity. Accordingly, the membrane composed of 

poly([Pyr11][FSI]) and 40 wt% of [C2mim][FSI] IL displayed the best CO2/H2 separation 

performance. 

 For comparison purposes, the PIL–IL membranes reported in our previous work, containing 

the [TFSI]– or [C(CN)3]– anions, as well as literature data for other reported PIL–IL membranes 

are also included in Figure 5.21 It can be observed that the CO2/H2 permselectivities obtained for 

both PIL FSI–40 IL FSI (αCO2/H2 = 8.9) and PIL TFSAM–40 IL TFSAM (αCO2/H2 = 7.2) 

membranes were found to be superior in comparison with those reported for PIL–IL membranes 

based on conventional [TFSI]– anion (PIL TFSI–40 [C2mim][TFSI] (αCO2/H2 = 6.5) and PIL 

TFSI–60 [Pyr14][TFSI] (αCO2/H2 = 6.3).22 This means that the introduction of asymmetry in the 

IL’ anion structure, as the case of [TFSAM]– anion, leads to enhanced CO2/H2 permselectivities, 

even when compared to PIL–IL membranes materials with higher amounts of incorporated IL 

containing the common [TFSI]– anion.  
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Figure 5. CO2/H2 separation performance of the PIL–IL membranes prepared in this work. The 
experimental error is within the data points. Data are plotted on a log–log scale and the upper 
bound at T = 27 ºC was adapted from Rowe et al.48 Literature data points (♦) from other reported 
PIL–IL membranes are also displayed for comparison, as well as the PIL–IL composites reported 
in our previous work (*).22 
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CONCLUSIONS 

 Three poly(ionic liquid)s (PILs) were synthesized by ion exchange reaction between  

poly(diallyldimethylammonium) chloride and salts with [TFSAM]–, [TSAC]– and [FSI]– anions. 

Further on, these PILs were used in the preparation of composite membranes with different 

amounts of ionic liquids (ILs) based on 1-methyl-3-ethylimidazolium ([C2mim]+) cation and 

bearing the same anion as respective PIL. The film-forming ability of composites was evaluated 

in terms of the maximum amount of neat IL that can be incorporated. All obtained neat ILs, PILs 

and PIL–IL membranes were characterized by a set of techniques (TGA, DSC, FT-IR and 

Raman) and their CO2/H2 and H2/N2 separation performances at bioH2 production conditions (T = 

35 ºC and pfeed = 1bar) were studied. 

The FT-IR and Raman results showed an increase in the intensity of the IL’s characteristic 

bands with increasing IL content in the composite. Regarding the thermal analysis, the onset 

weight loss temperatures for ILs and PILs were found to be strictly dependent on the anion’s 

nature. The [C2mim][TSAC] showed the highest thermal stability (Tonset = 295 oC) among ILs, 

while for PILs the best result was achieved for poly([Pyr11][TFSAM]) (Tonset = 280 oC). The DSC 

revealed the lower Tgs of PIL–IL composites compared to the corresponding neat PILs, 

demonstrating the plasticizing effect of IL’s addition. 

The CO2, N2 and H2 permeabilities, diffusivities and solubilities were affected by the nature 

of the anion and the amount of the incorporated IL. All the prepared PIL–IL membranes revealed 

CO2/H2 separation performances above the upper bound. What is more, the CO2/H2 

permselectivities of PIL TFSAM–40 IL TFSAM and PIL FSI–40 IL FSI membranes with 40 

wt% of IL were found to be superior in comparison with those previously reported for composite 

membranes based on conventional [TFSI]– anion and containing 40 or even 60 wt% of IL. In 

order to better evaluate the CO2/H2 separation performance of the PIL–IL membranes here 
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presented, further studies regarding gas permeation tests with multi-component gas mixtures are 

currently in progress.  
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hydrogen Sulfide; ILs, ionic liquids; Ji, steady-state gas flux; �, membrane thickness; N2, 
nitrogen; P, permeability; PILs, poly(ionic liquid)s; R, ideal gas law constant; S, solubility; t, 
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