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Beta-Band Activity Is a Signature of Statistical Learning
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Through statistical learning (SL), cognitive systems may discover the underlying regularities in the environment. Testing
human adults (n= 35, 21 females), we document, in the context of a classical visual SL task, divergent rhythmic EEG activity
in the interstimulus delay periods within patterns versus between patterns (i.e., pattern transitions). Our findings reveal
increased oscillatory activity in the beta band (;20Hz) at triplet transitions that indexes learning: it emerges with increased
pattern repetitions; and importantly, it is highly correlated with behavioral learning outcomes. These findings hold the prom-
ise of converging on an online measure of learning regularities and provide important theoretical insights regarding the
mechanisms of SL and prediction.
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Significance Statement

Statistical learning has become a major theoretical construct in cognitive science, providing the primary means by which
organisms learn about regularities in the environment. As such, it is a critical building block for basic and higher-order
cognitive functions. Here we identify, for the first time, a spectral neural index in the time window before stimulus pre-
sentation, which evolves with increased pattern exposure, and is predictive of learning performance. The manifestation
of learning that is revealed, not in stimulus processing but in the blank interval between stimuli, makes a direct link
between the fields of statistical learning on the one hand and either prediction or consolidation on the other hand, sug-
gesting a possible mechanistic account of visual statistical learning.

Introduction
Sensory information is often structured, both in time and in
space. Statistical learning (SL) is the ability to incidentally
discover regularities in the environment. Seminal work by
Saffran et al. (1996) demonstrated that infants can extract
syllable patterns presented in a continuous speech stream
based solely on the extent of the syllables’ co-occurrences. Ever
since, SL has been extensively investigated and was documented
in individuals of all ages, over different types of stimuli and sen-
sory modalities (for a recent review, see Frost et al., 2019). Similar
to linguistic information, our visual environment contains

extensive statistical regularities (e.g., probabilistic relations
between objects, prevalent sequences of letters, etc.). Indeed,
recent studies of visual SL demonstrated robust learning of tem-
poral relationships among sequentially presented ordered stimuli
(Fiser and Aslin, 2002; Kirkham et al., 2002; Bogaerts et al., 2016).
SL is unsupervised and may occur without intent or awareness of
the structured nature of the input (Aslin et al., 1998; Fiser and
Aslin, 2001; Turk-Browne et al., 2005).

While SL has become an important construct in cognitive sci-
ence, little is known about the neural mechanisms underlying it.
Most neuroimaging studies that identified brain regions sensitive
to the statistical regularities in sensory input have summarized
brain activity during structured versus unstructured blocks, last-
ing several seconds or minutes. These studies associated SL
effects with domain-general regions involved in binding tempo-
ral and spatial contingencies, such as the hippocampus, medial
temporal lobe, and inferior frontal gyrus (e.g., Turk-Browne et
al., 2009; Karuza et al., 2013; Shohamy and Turk-Browne, 2013).
Investigating item-specific hemodynamic responses, Turk-
Browne et al. (2010) also reported increased hippocampal activ-
ity in response to visual stimuli which predict subsequent visual
stimuli. At the same time, imaging work identified regions in the
early visual and auditory cortices that are sensitive to regularities
in vision and audition (e.g., McNealy et al., 2006; Turk-Browne
et al., 2009; for discussion, see Frost et al., 2015). A handful of
fMRI studies did go beyond the neurobiological “where in the
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brain” of visual SL. For example, Schapiro et al. (2012) demon-
strated that representations of visual elements in the human
medial temporal lobe converge when they frequently co-
occur. In the same vein, Turk-Browne et al. (2010) found
greater hippocampal hemodynamic responses to predictive
stimuli in a patterned stream, thus providing evidence for
implicit anticipation.

The current study aimed to deepen our understanding of the
underlying neurobiological mechanisms of visual SL, investigat-
ing whether brain rhythms play a role in the implicit learning of
statistical regularities. So far, attempts to identify neural indices of
SL with electrophysiology centered on the consequences that
learning has on stimulus processing. Consequences of learning
were typically assessed by contrasting evoked responses to stimuli
that are predictable to those of stimuli that cannot be predicted
(N400 in the visual domain: Abla and Okanoya, 2009; N400,
N100, P300, and P200 in the auditory domain: e.g., Sanders et al.,
2002; Cunillera et al., 2006; De Diego Balaguer et al., 2007; Abla
et al., 2008; Batterink et al., 2015; for a recent review, see
Daikoku, 2018). Abla and Okanoya (2009), for example, demon-
strated that participants who show behavioral evidence for good
learning have an increased N400 in response to unpredictable
shapes in a sequence, compared with the middle and final shapes
within a sequence, which are fully predictable. ERPs were
also shown to differentiate between visual stimuli that carry
high versus low predictability for a subsequent target. Highly
reliable predictors were shown to elicit either a larger centro-
parietal late positivity (Daltrozzo et al., 2017) or a larger
P300 component (Jost et al., 2015). More recently, the pre-
dictability of visual stimuli was shown to modulate the low-
frequency activity associated with stimulus presentation:
compared with predictable second items of a learned pair,
unexpected shapes elicited stronger activity in the alpha
range (7–14 Hz) (Zhou et al., 2019). Auditory SL has also
been indexed considering longer segments of structured ver-
sus unstructured input, by quantifying the neural entrain-
ment to the temporal structure created by repeating regular
sequences (Batterink and Paller, 2017; Farthouat et al.,
2017). This entrainment is postulated to reflect the percep-
tual binding of stimuli into familiar composites (Batterink
and Paller, 2017).

In the present study, by contrast, our main interest was in
electroencephalography (EEG) activity in the time window lead-
ing up to stimulus presentation, targeting the mechanisms of
prediction. Underlying our approach are two notions on the na-
ture of SL. First, the learning process itself is likely not a passive
process; therefore, the online manifestations of learning need not
be limited to stimulus processing but could impact anticipatory
moments in the learning episode. Second, the outcome of learn-
ing, once again, might entail an active state of anticipation
whereby learned regularities lead to active predictions (e.g.,
Engel et al., 2001; Turk-Browne et al., 2010; see also Tollman,
1932). In previous studies on SL, the process of prediction has of-
ten been implied but not operationally measured (e.g., Sanders et
al., 2002; Abla and Okanoya, 2009). Our present investigation
uses EEG to focus on the prestimulus epoch in the absence of
stimulus processing, aiming to measure anticipation (and/or any
other processes associated with pattern learning) directly. In
doing so, we quantify spectral signatures of brain activity (i.e.,
brain rhythms). Indeed, experimental work with animals as well
as humans has demonstrated that rhythmic brain activity from
the delta to gamma range (1–100Hz) has functional relevance
for several sensory and cognitive processes (Buzsáki, 2016). For
example, activity and oscillatory synchrony in the beta-frequency

(13–30Hz) has been associated with sensory prediction (Arnal
and Giraud, 2012) and top-down modulation (e.g., Hipp et al.,
2011; for review, see Bressler and Richter, 2015). In addition,
theta-band activity (4–7Hz) has been associated with the cate-
gorical prediction of upcoming images (e.g., Cashdollar et al.,
2017) and locations in visual-search displays (e.g., Spaak and de
Lange, manuscript under review).

Here, we document, for the first time, divergent rhythmic
prestimulus EEG activity within patterns versus between patterns
(i.e., pattern transitions). We demonstrate increased power in the
beta-band at pattern transitions, in the context of a typical visual
SL task. We further find that this differential prestimulus beta-
band activity is a signature of learning: we show that it emerges
with increased pattern repetitions; and importantly, we show that
it is highly correlated with behavioral learning outcomes.

Materials and Methods
Participants
Thirty-five healthy individuals (21 females) participated in the study for
payment or for course credit. Participants had a mean age of 24.85 years
(range 18-33 years) and reported normal or corrected-to-normal vision
and no history of neurologic or psychiatric disease. Written informed
consent was obtained from all participants in line with the institutional
review board approval from the Hebrew University of Jerusalem.

Experimental design
The experiment consisted of a structured familiarization stream with
embedded patterns, directly followed by a test, and of a random stream.
The random stream either followed the test or preceded the structured
stream (counterbalanced across participants).

The task included 24 abstract shapes (Fig. 1) in equiluminant dark
orange (R=205, G=85, B = 50), displayed on a gray background
(R=110, G= 110, B = 110). The latent structure of the structured visual
input stream was similar to that of multiple previously used SL tasks
(e.g., Turk-Browne et al., 2005; Frost et al., 2013; Glicksohn and Cohen,
2013). Shapes were randomly organized for each participant to create 8
triplets, with a transitional probability of 1 between shapes within each
triplet. The structured stream consisted of 54 repetition blocks, with all 8
triplets appearing once (in a random order) in each repetition block,
with the constraint that a same triplet could not appear twice in a row. A
self-paced break was included after every 6 repetition blocks, dividing
the structured familiarization stream into 9 equal periods. Given our in-
terest in anticipatory brain activation, we presented stimuli for a short
duration (0.2 s) with a fixed interstimulus interval of 1.1 s. Before expo-
sure to the structured stream, participants received the instruction “In
this part there are shapes that follow each other, pay attention to the
sequence. Following this part you will be asked questions about what
you have seen” (see, e.g., Siegelman et al., 2018).

Following exposure to the structured stream, participants completed
a test consisting of 32 two-alternative forced-choice questions. For each
question, participants were instructed to select which of two possible tri-
plet sequences they believed had occurred during the structured famili-
arization stream. For each question, participants were sequentially
presented with the following: (1) a target: three shapes that formed a tri-
plet in the structured stream; and (2) a foil: three shapes that never
appeared in sequence in the structured stream. Foils were constructed
without violating the position of the shapes within the triplets (e.g., given
the triplets ABC, DEF, and GHI, a possible foil could be, e.g., AEI or
GBF but not BID). Shapes making up a target or foil appeared sequen-
tially with a fixed presentation rate and interstimulus interval as during
exposure. A blank screen of 1.5 s separated the two three-item sequences.
The offline test score, defined as the number of correct identifications of
targets, ranged from 0 to 32. Chance performance corresponds to a score
of 16 of 32.

The random stream consisted of 18 repetition blocks, with the same
24 shapes appearing once in each repetition block, in a random order
(with timing parameters identical to those in the structured stream).
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Before their exposure to the random stream, participants received the
instructions: “In this part we want to test whether your brain recognizes
individual shapes. We will therefore present the same shapes again and
again. Your task is simply to watch the shapes attentively.”We opted for
nonidentical instructions before the random versus structured stream
given the evidence that exposure to a random stream can impair the
subsequent learning of structure (e.g., Jungé et al., 2007; see also Turk-
Browne et al., 2009). In order to be able to demonstrate predictive valid-
ity, we prioritized finding robust behavioral evidence for behavioral
learning above absolute equality.

EEG recording
EEG was recorded from 64 Ag/AgCl active electrodes (g.tec medical en-
gineering, 62 scalp electrodes and 2 electrode earclips). Four EOG elec-
trodes were placed at the outer canthi of both eyes (horizontal EOG),
and above and below the left eye (vertical EOG). Eye position and pupil
area were monitored (binocularly) with a video-based eye tracker
(Eyelink 1000, SR Research). A chinrest was used to reduce head move-
ments. We used a Simulink model in MATLAB (2015a, The
MathWorks) as the data acquisition software. EEG was recorded using a
sampling frequency of 512Hz, and eye data were coregistered by the
model at that same sampling frequency.

EEG data preprocessing
All EEG analyses were conducted using the Fieldtrip toolbox
(Oostenveld et al., 2011) for MATLAB (2016b, The MathWorks). EEG
preprocessing was conducted using the following analysis pipeline:
(1) Scalp signals were referenced to the average of the left and right ear-
lobes. (2) Signals were bandpass filtered between 0.1 and 140Hz with 50
and 100Hz line noise removal. (3) The data were segmented into 1.3 s
epochs (0.8 s before 0.5 s after shape onset). (4) We identified bad
channels (mean number per participant = 1.86, SD=2.21) and elimi-
nated epochs containing large artifacts (including eye movement
artifacts), based on an absolute amplitude threshold and a variance
threshold using Fieldtrip’s artifact detection routines (mean threshold
absolute amplitude = 237.06mV, SD=103.30mV; mean threshold var-
iance = 3381.243 mV, SD=3231.28mV). On average, 4.30% of epochs
were removed for each participant (range 0.87%-12.15%). (5) Large mus-
cle artifacts were identified using automatic artifact detection, and were
subsequently visually inspected. Epochs containing confirmed muscle
artifacts were rejected (average of 1.78% of epochs rejected, range 0.23%-
5.79%). (6) Blink artifacts were corrected using independent component
analysis (see Jung et al., 2000) (mean number of components= 1). (7)
The data without large artifacts were cleaned a last time using the
threshold approach of Step 4 (mean threshold absolute amplitude =
136.61mV, SD=45.34; mean threshold range 212.35mV, SD=75.72;

mean threshold variance= 2012.12mV, SD=2567.40), rejecting on aver-
age 3.91% of epochs (range 0.64%–10.07%). This step also took care of
smaller eye movement artifacts. (8) Finally, bad channels were interpo-
lated using the average of all neighbors (with regularization parameter
l = 1e-5).

The total number of epochs rejected was small (average of 10.00% of
epochs rejected, range 3.99%–25.75%) and the proportion of remaining
trials did not differ significantly between conditions (for all comparisons:
x 2
(1), 2.29, p, 0.78, Bonferroni-corrected for multiple comparisons).

The average remaining number of trials was 355.14 for the first triplet
position, 355.40 for the second, 357.14 for the third, and 339.57 for
random.

Statistical analyses
Classification of learners. Participants were divided into two groups,

“learners” and “other,” using a conservative criterion. Learners were
defined as individuals who scored on the behavioral offline test 22 or
more of 32. According to the binomial distribution, this is the minimal
score needed to present significantly above-chance learning at the indi-
vidual level (with a=0.05) (see, e.g., Bogaerts et al., 2016; Siegelman et
al., 2017b). All participants that did not meet this criterion are consid-
ered “other.”

Spectral decomposition. All spectral estimates were based on time-
frequency representations of power derived via a sliding-window FFT.
Spectral estimates were computed for frequencies between 1 and 30Hz
on 0.5 s. Hann tapered windows covering the interval between �0.8 and
0.5 s (17 windows with a step size of 0.05 s). Each window was zero-
padded to 1 s, providing a spectrally interpolated frequency resolution of
1Hz. For our analysis of the prestimulus window, we computed a single
prestimulus power spectral density estimate for each participant, chan-
nel, frequency, and epoch by averaging the estimates for the first 7 win-
dows, covering the �0.8 to 0 s interval. This prestimulus time window is
largely uncontaminated by the visual evoked response for the preceding
shape, which onsets 0.6 s before this window of interest. Averaging in
this way over each FFT window results in a more stable spectral estimate
via Welch’s method with a consecutive window overlap of 90% (Welch,
1967). The focus on oscillatory activity in the window leading up to
stimuli (i.e., no stimulation) was also our motivation to analyze the fre-
quency range up to 30Hz. Indeed, higher frequency signatures have typ-
ically been associated with the response to stimulus presentation (e.g.,
Muthukumaraswamy and Singh, 2013; Landau et al., 2015).

Grand-average power spectrum. To calculate the grand-average
power spectrum (shown in Fig. 2), we averaged the spectral estimates for
all trials, including trials from Positions 1–3 as well as random trials. We
then averaged over subjects and electrodes. Spectral peaks were identi-
fied as maxima in the 1–30Hz grand-averaged power spectrum. Band-

Figure 1. Schematic depiction of the structured familiarization stream, containing 9 exposure periods each consisting of 6 repetitions of 8 embedded triplets.
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limited estimates were derived based on these
peaks as the average of the maximum 61Hz,
which we refer to as frequencies of interest
(FOI). A simple normalization by frequency
was applied dividing each power bin by 1/f.
The identified spectral peak frequencies for
each of the trial types were virtually identical
to those of the reported grand-average power
spectrum. In addition, they fell within a signif-
icant frequency cluster, identified by cluster-
based permutation, based on an F-statistic
computed from 1 to 30Hz across the three
positions.

Spectral content of different prestimulus
intervals. To investigate differences in spectral
power of the prestimulus windows before the 3
triplet position stimuli, we computed average
power per stimulus position for each channel
and FOI for each of the 9 structured exposure
periods. As a control, we also calculated average
power for yoked 1, 2, and 3 positions in the ran-
dom stream (e.g., each third stimulus is treated
as a Position 3), for which no differences were
predicted. To mitigate individual differences in
overall raw EEG power, a normalization was
performed separately for each stream type (ran-
dom vs structured). The power for each position
(triplet positions for the structured stream;
yoked positions for the random stream) was
expressed as the modulation of average power
(i.e., percentage) over all three positions and
channels.

To contrast the spectral power of the pres-
timulus windows before the 3 triplet position
stimuli, taking into account the expected pro-
gression of learning over the course of the
experiment, we used a cluster-based approach
based on Monte-Carlo estimates (Maris and
Oostenveld, 2007). The 9 exposure periods of
the structured stream were treated as the time
dimension in this analysis. For each FOI, a
nonparametric permutation test clustered
data samples of adjacent electrodes and time
points (i.e., periods within the structured
familiarization) simultaneously and compared
the sum of the descriptive statistic used, across
each cluster. This approach is similar to the
standard cluster-based analysis over elec-
trode-time pairs within a trial, except here
time is considered not at the trial level but at the larger scale of the 9 ex-
posure periods of the structured familiarization stream (Maris and
Oostenveld, 2007). Here and in subsequent analyses, cluster-based tests
were dependent samples and parameterized with a minimum number of
neighboring channels of three and the cluster threshold F-value (or t-
value) corresponding to a p-value of 0.25. This cluster threshold parame-
ter does not affect the false alarm rate of the cluster test (for which we
maintained the standard value of a = 0.05, with p-values Bonferroni-cor-
rected for the number of FOIs tested). It merely sets the threshold for
considering a sample as a candidate member of a cluster: smaller values
favor highly localized clusters, and larger cluster threshold p-values favor
clusters with large spatiotemporal extent (Maris and Oostenveld, 2007).
We do, however, demonstrate robustness of our main cluster results
across a range of values for this parameter (Steegen et al., 2016). All per-
mutation tests were based on distributions formed from 100,000 permu-
tations. We hypothesized spectral power differences as a result of
assimilating the patterned structure of the stream; hence, for our initial
analysis, we only included the subset of individuals who demonstrated
learning in the test phase (n= 25). We further show that, for these same
individuals, no position differences are observed in the random stream.

Following the cluster-based F-tests, post hoc permutation-based
paired t-tests were performed between each stimulus position, for
each FOI that showed a significant difference for the cluster-based
test. For these tests, the average power over subjects was computed
for the set of all electrodes that were members of the significant
cluster over the temporal extent of the cluster (in practice, this
meant averaging across 35 electrodes and across the last 5 exposure
periods). No more than one significant cluster was identified
for any of the cluster-based tests. Each of the three t-tests was
controlled for multiple comparisons using a maximum-based
approach, where an omnibus null distribution was constructed for
the three t-tests based on the maximum value over t-tests for each
permutation (Nichols and Holmes, 2002; Maris and Oostenveld,
2007). For the beta band, we determined via the post hoc t-tests
that there was no difference between the two predictable Positions
2 and 3, whereas both of these predictable positions significantly
differed from unpredictable Position 1 (Fig. 3). This motivated us
to pool Positions 2 and 3, and to perform a cluster-based t-test
between this average and Position 1. Desiring to generalize results
to all subjects with their varying levels of learning, and investigate
the brain-behavior correlation, this test was performed on the

Figure 3. A, Average normalized beta power for the significant cluster (based on learners). Error bars indicate the
between-subject SE. p-values are corrected for multiple comparisons. B, Temporal evolution of the cluster beta power for each
of the prestimulus intervals, across the structured familiarization stream. Exposure Period 1 indicates the start of the structured
familiarization stream. Period 9 indicates the end of the structured familiarization stream.

Figure 2. A, Peaks in the grand-average raw power spectrum of all prestimulus epochs within the structured and random
stream. Yellow lines indicate the peak frequency. B, Time-frequency plots for the grand-average for the entire trial epoch. A,
B, Bottom, Lower frequencies; Top, Higher frequencies (with separate axes).
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“learner” group but also on all subjects. The cluster obtained for all
subjects served our neural index for subsequent analyses that
included the full sample of participants.

Brain-behavior correlation. The neural index of learning in the fre-
quency domain (Position 1 minus average of Positions 2 and 3) was cal-
culated per individual. This index was based on the average value over
each electrode that was present in the significant cluster, across the tem-
poral extent of the cluster (in practice, this meant averaging across 46
electrodes and across the last 6 exposure periods). We tested whether
this index is higher for the “learners” compared with the “other” group
using an independent-samples t-test. Given that the distribution of the
post-test data deviates significantly from normality (Shapiro-Wilk
statistic = 0.793, p, 0.001), we assessed the relation between our neural
index of learning and offline test performance using a Spearman rank
correlation coefficient. Finally, we tested whether neural indices quanti-
fied separately for each of the 9 exposure periods (averaging across the
same 46 cluster electrodes) show a monotonic increase in their correla-
tion with test performance, which would be expected if the neural index
reflects a learning trajectory.

Stimulus-evoked activity. To examine poststimulus ERPs, the pre-
processed data were bandpass filtered from 0.15 to 30Hz, segmented
into epochs ranging from stimulus onset to 0.5 s, and baseline corrected
to a 200 ms prestimulus interval. Mean ERPs in the 3 triplet positions
were calculated for each participant. To contrast the ERPs for the 3 tri-
plet positions, we took a cluster-based approach, clustering over chan-
nels and time points within the epoch using a nonparametric
dependent-samples t statistic, with a minimum number of neighboring
channels of 3. This approach does not restrict the analysis to a particular
time window within the epoch or a particular electrode location. A simi-
lar approach was taken to investigate spectral differences in the poststi-
mulus intervals of predictable Positions 2 and 3 versus Position 1: we
performed a standard cluster-based analysis on the FFT time-frequency
results, limited to the epoch from stimulus onset to 0.5 s. For both the
ERP and the time-frequency analyses, the reported results are for learn-
ers, but qualitatively identical results were obtained looking at the full
sample.

Data sharing and code accessibility
The behavioral data reported in this paper, experimental materials, and
analysis code will be made available via the Open Science Framework
(https://osf.io/). EEG data will be provided to any scientist on request.
This study has not been preregistered.

Results
Behavioral results
Average group performance on the offline test was 26.46 of 32
(SD= 6.41), which is significantly above chance (one-sample t-
test comparing mean performance to a score of 16, correspond-
ing to 50% chance level, t(34)= 9.65, p, 0.0001). Learning scores
did not differ significantly between participants who were first
exposed to the structured stream (M=27.21, SD=5.64) versus
first exposed to the random stream (M=25.56, SD=7.31)
(t(33) = 0.752, p=0.457). Based on a conservative individual crite-
rion (see Classification of learners), 25 of 35 participants were
classified as learners.

Spectral results
Two analyses support our choice of FOIs. A cluster-based F-test,
with frequency and time as clustering dimensions (averaging
over electrodes), was used to identify the frequency range of dif-
ferences in the spectral content of the prestimulus interval pre-
ceding the first, second, and third stimuli of a triplet. We
observed a single significant cluster (p=0.01) spanning an 8-
25Hz frequency range (over exposure Periods 4–9). Within this
range, we identified two maxima in the average power spectrum
across all participants and trials: at 10 and 20Hz (Fig. 2).

Subsequent analyses focused on these peak frequencies (FOIs)6
1Hz. We refer to the 9–11Hz range as the alpha range and the
19–21Hz band as the beta range.

Prestimulus beta power is dependent on stimulus position
Focusing on the data of learners, we performed cluster-based
F-tests for alpha and beta FOIs, comparing spectral content aver-
aged over the prestimulus interval of the different triplet posi-
tions, and the FOI6 1Hz range (electrodes and exposure period
as clustering dimensions). We detected one significant positive
cluster with a broad central scalp distribution across exposure
Periods 5–9 for the beta range indicating a difference between
the three positions (Bonferroni-corrected p= 0.01), but none in
the alpha range (Bonferroni-corrected p= 0.11). A multiverse
analysis (Steegen et al., 2016) evaluating the robustness of this
beta result across cluster threshold parameter values revealed a
significant cluster with all threshold values between 0.05 and
0.46.

A control analysis for the beta finding contrasted the yoked
positions in the random stream and revealed no significant clus-
ters (p=0.385).

Post hoc permutation-based paired t-tests for learner’s beta
power in the significant beta-range cluster revealed significantly
higher power for the interval preceding a triplet transition (i.e.,
the interval before shapes in Position 1), which by design was
unpredictable (Fig. 3). No difference was found between the
spectral power of the prestimulus interval preceding the two
predicable Positions 2 and 3, which were virtually identical.
Figure 3 also shows the evolution of average cluster beta power
over the 9 exposure periods. What we observe is a gradual diver-
gence of the beta power at pattern transitions relative to the beta
power within patterns. An ANOVA with position and exposure
period as repeated-measures factors indicates a significant effect
of position (F(2,48) = 4.20, p=0.021) as well as a significant inter-
action between position and exposure period (F(16,384) = 2.10,
p= 0.008).

Beta power within versus between pattern transitions
Given the difference between the prestimulus beta-frequency
power of the unpredictable first shape and the predictable shapes
of Positions 2 and 3, we subsequently focused on the contrast of
Position 1 versus the average of Positions 2 and 3. For the
“learner” group, this contrast revealed, in line with the results
reported above, a significant cluster (p= 0.0038; significant with
all cluster threshold values � 0.02). We performed the cluster-
based t-test also including all participants (see Spectral content

Figure 4. Temporal evolution of the topography of the difference between prestimulus
beta-band power for within versus between triplet transitions (based on the full sample).
Period 1 indicates the start of the structured familiarization stream. Period 9 indicates the
end of the structured familiarization stream. Electrodes that are part of the significant cluster
are filled black.
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of different prestimulus intervals). Figure 4 illustrates the signifi-
cant cluster (p=0.0032; significant with all cluster threshold val-
ues � 0.01) we observed for the full sample, revealing a broad
central scalp distribution across exposure Periods 4–9. This full
sample cluster is subsequently used for quantifying the neural
beta index of learning for all individual participants.

Relation between neural beta indices of learning and offline test
scores
In order to validate our beta finding as a neural signature of learn-
ing, it is important to establish a link to behavior. We thus investi-
gated whether the difference in beta power for within- versus
between-pattern transitions (averaged across exposure Periods 4-9
and all cluster channels; see Brain-behavior correlation) covaried
with the offline measure of learning across individuals (Fig. 5). An
independent-samples t-test corroborated the prediction of higher
beta indices for “learners” (n=25) compared with the “other” group
(n=10), although the effect was marginal (Mlearners = 3.50 SDlearners

= 4.88; Mothers = 0.59; SDothers = 4.62; t(33) =1.616; p=0.058), likely
because of the uneven group sizes and the smaller “other” sample.
Indeed, when grouping the participants into high (n=17) and low
(n=18) scorers based on a median-split of the behavioral learning
measure, that same test showed a highly significant difference
(Mhigh = 4.86 SDhigh = 4.92; Mlow = 0.60 SDlow = 4.04; t(33) =2.81,
p=0.004). It is worth noting that the beta effect was not significantly
modulated by the order of presentation of the two streams
(t(33) =0.99, p=0.328). Considering learning score as a continuous
variable, we observe a strong positive relation between these two
indices of learning (Spearman’s r =0.55, p=0.0007). Finally, when
calculating separately for each of the 9 exposure periods, the beta
difference (within vs between triplets), and a Spearman’s rho corre-
lation coefficient quantifying the strength of the relation between
this difference and the offline test performance, we observe a strong
linear increase of r values over time (r=0.785, p=0.012).

Stimulus-evoked results
ERP results
No significant clusters were observed when comparing the grand
average ERPs for either Position 1 versus the average of Positions
2 and 3, Position 1 versus Position 2, or Position 1 versus
Position 3. When calculating the ERP based on exposure Periods
4–9 of the experiment only, we again find no significant clusters
for either contrast (smallest corrected p-value= 0.19).

Time-frequency analysis
A cluster-based time-frequency analysis comparing the poststi-
mulus window for Position 1 versus the average of 2 and 3, 1 ver-
sus 2, and 1 versus 3 did not reveal any significant clusters. The
same result was obtained for data from exposure Periods 4-9
only (smallest corrected p-value= 0.78).

Overall, this suggests that our frequency finding in the presti-
mulus interval occurs in the absence of any significant modula-
tion of EEG activity in the poststimulus window because of the
learning of statistical structure.

Discussion
In the current study, we identified a neural signature of visual SL,
operationalized as the extraction of triplet patterns embedded in
a continuous sequence of abstract shapes given differences in
transitional probabilities. This signature comprised increased
beta-band activity in the interval leading up to unpredictable
shapes in the stream; thus, this effect was concurrent with triplet
boundaries. Importantly, our results indicate that the differential
beta-band power before unpredictable shapes increased steadily
over the course of repeated exposure to the patterns. Moreover,
looking at individual differences in the magnitude of this effect,
we show that the differential prestimulus beta power is highly
predictive of performance in an offline behavioral test of pattern
recognition, which is the learning measure used by the vast ma-
jority of SL studies (see Siegelman et al., 2017a). This leads us to
conclude that our proposed spectral signature is tracking the
learning process of segmenting the continuous stream, and thus
provides a valid online assessment of SL performance.

The identification of a neural signature of visual SL offers
novel insights regarding the mechanisms underlying SL. The
increased beta power at triplet transitions point to two theoreti-
cal possibilities. A first possibility is that such beta-band activity
reflects anticipation of uncertainty (i.e., higher entropy) once the
statistical structure of the recurrent patterns in the stream is
assimilated. Moreover, in addition to uncertainty, the upcoming
item, consisting of the first position of a new triplet, is highly in-
formative of the identity of this triplet. Thus, the maximal prepa-
ration of processing resources may be expected before the first
item of a triplet. This interpretation concurs with the proposed
functional role of beta oscillations for attentional top-down

Figure 5. A, Boxplot summarizing the beta power modulation (average difference across exposure Periods 4-9) for participants classified as learners versus other. On each box, the central
line indicates the median, and bottom and top edges of the box indicate the 25th and 75th percentiles. Dashed whiskers extend to the most extreme data points not considering outliers.1,
Outliers. B, Relation between the size of the beta power difference and behavioral test scores. C, The relation between the beta power difference (calculated per exposure period) and test
scores increases over time. Dashed line indicates the critical rho value.
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regulation in the literature (for review, see Engel and Fries, 2010;
Bastos et al., 2012). Whereas this would be, to our knowledge,
the first report on increased beta power at high entropy moments
in a sequence, it has previously been shown that hippocampal
BOLD activity is sensitive to the entropy of a visual stimulus
stream (Strange et al., 2005; Harrison et al., 2006). In line with
our first suggested interpretation of the beta finding, this hippo-
campal activity represents “the expected information or novelty
of an event before it occurs” (Strange et al., 2005).

On a speculative note, given the direction of our effect (i.e.,
more beta power before pattern transitions relative to transitions
within a visual pattern) and its wide scalp distribution, it might
reflect a distributed, global beta network state in anticipation of
high uncertainty and a focused, local state in anticipation of pre-
dictable events. Consistent with the latter state, locally increased
beta activity before expected sensory events has been suggested
to reflect “the mobilization of neuronal populations under pre-
dictive signals” (Arnal and Giraud, 2012; see also Bernasconi et
al., 2011). Linking back to neurophysiological findings in the pri-
mate literature (Bressler and Richter, 2015), the assumption is
that intracranial recordings, which are typically limited in spatial
coverage, pick up on such local beta network states, whereas
EEG, with its wide scalp coverage, might be more sensitive to
beta synchronization within distributed states.

A second possibility is that the increased beta oscillations
reflect postprocessing of the now completed triplet. If one
regards a learned triplet as a cognitive set that is the target of
learning, it is possible that the interval between triplet transitions
is used to actively maintain this set in memory. Indeed, such
functional role has been hypothesized for beta-band activity
(Engel and Fries, 2010). This is further evident in findings
reporting elevated beta-band activity in the delay phase of work-
ing memory tasks (Deiber et al., 2007; Siegel et al., 2009; Salazar
et al., 2012). Similarly, if learning results in the grouping of stim-
uli into chunks and these chunks are what is stored in memory
(Orbán et al., 2008; Perruchet, 2019), the oscillatory beta signal
could reflect the process of memory encoding or strengthening
(e.g., Berke et al., 2008). However, whereas participants in our SL
task were cued about the presence of structure, they were not
informed about the embedded triplet patterns or instructed to
memorize them (different from typical working memory tasks).
An interpretation in terms of postprocessing is also in line with
studies in the event boundary literature showing that offline
encoding processes occur immediately following an event offset
and are predictive of subsequent memory performance for the
event (e.g., Ben-Yakov and Dudai, 2011; Sols et al., 2017).

Our finding that we can track learning during passive expo-
sure to regularities without monitoring overt responses has im-
portant implications for assessing learning. The caveats involved
in assessing learning through postfamiliarization test have been
discussed in length (see, e.g., Siegelman et al., 2017a). Our find-
ings offer then an online neurobiological signature of learning
that potentially reveals a learning trajectory over time. The emer-
gence of the beta effect with increased pattern repetitions and the
strong linear increase of the relation between the beta-power dif-
ference (between vs within triplets) and final test performance
suggests it might indeed reflect the learning trajectory. However,
given that learning was measured behaviorally only at a single
time point, this interpretation needs to be further established
using continuous behavioral testing during pattern exposure.

How generalizable the oscillatory beta signature of SL is to
different learning situations is an important question for future
research. Whereas previous findings linked theta-band activity to

the prediction of visual categories and locations during search
(e.g., Cashdollar et al., 2017; Spaak and de Lange, unpublished
observations), we did not observe such an effect for the predict-
able shape identities. This suggests that oscillatory signatures of
regularity learning might be contingent on the object of learning
and/or the nature of experimental tasks.

The manifestation of learning in interstimulus beta-power
differences was observed in the absence of any difference in stim-
ulus processing between positions as assessed by ERPs and time-
frequency analysis. Previous literature suggests that the learning
of structure modulates stimulus processing as captured by ERPs,
a finding not reproduced in our study despite the relatively large
sample size. One possibility is that our use of equiluminant
shapes obscured differences in stimulus processing. However,
Abla and Okanoya (2009), using a visual SL task most similar to
ours yet with maximally contrasting shapes, reported significant
N400 differences only for learners (n=9) and only for the first of
three sessions of triplet exposure. Jointly with the absence of ERP
differences in our dataset, this raises the question of whether
such ERP measures in tasks with passive visual exposure are reli-
able and, if they are, what aspect of the learning process they tap
given that the effect seems not sustained across later periods of
exposure. Based on the recent finding that perceptual expecta-
tions modulate activity in the alpha range (Zhou et al., 2019),
one could make the prediction of more alpha power for first
position shapes, which are unpredictable. We found no evidence
for this prediction, suggesting that the alpha modulation
observed by Zhou et al. (2019) might be specific to the contrast
between expected and unexpected items, with the latter items
being violations of a predictable transition given a learned
pattern.

In conclusion, our findings reveal a neural signature of visual
regularity learning: elevated beta-band activity at pattern transi-
tions. This signature tracks the segmentation process during pat-
tern exposure and is highly predictive for the behavioral learning
outcome. Whether the heightened beta-band activity reflects the
anticipation of a novel upcoming pattern or rather postprocess-
ing of the completed pattern requires additional investigation,
aiming to unravel the possible functional role(s) of beta-band
oscillations in regularity learning.
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