
 

  

Leioa, 2020ko ekainaren 17a /Leioa, 17 de junio de 2017 

 
 

 
 

Gradu Amaierako Lana / Trabajo Fin de Grado 
Ingenieritza Elektronikoko Gradua / Grado en Ingeniería Electrónica 

 

 

 
 

 A Quantum Model for Trend and Political 

Forecasting 
 

 
 

 

 
 

 

 
 

 

 
 
 
 

 
 
 
 
 

 
 
 

Egilea/Autor/a: 

Rubén Ibarrondo López 
Zuzendaria/Director/a: 

Prof. Iñigo L. Egusquiza 
Zuzendarikidea/Codirector/a: 

Dr. Mikel Sanz 

 

 
© 2020, Rubén Ibarrondo 

 



Contents

1 Adiabatic quantum computation 5
1.1 Fundamentals of quantum mechanics . . . . . . . . . . . . . . . . . . . 5

1.1.1 The Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 The adiabatic theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Example of the adiabatic theorem . . . . . . . . . . . . . . . . . 10
1.3 Computation based on adiabatic evolution . . . . . . . . . . . . . . . . 11

2 Implementation in superconducting platforms 16
2.1 Hamiltonian description of circuits . . . . . . . . . . . . . . . . . . . . 16

2.1.1 LC circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Josephson junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 The flux qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Connecting flux qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Computational architecture . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Overview of the QPU operation cycle . . . . . . . . . . . . . . . . . . . 23

3 Mathematical model of forecasting election polls 25
3.1 Physical models to describe social behaviour . . . . . . . . . . . . . . . 25
3.2 Political compass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Political Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Gathering the data from Twitter . . . . . . . . . . . . . . . . . . . . . 30

3.5.1 Deciding the test group . . . . . . . . . . . . . . . . . . . . . . . 31
3.5.2 Analysing the interactions . . . . . . . . . . . . . . . . . . . . . 32

3.6 Forecasting with quantum adiabatic computers . . . . . . . . . . . . . . 33

A Requests to the Twitter API 39

2



Introduction and objectives

Quantum adiabatic computation is a computational paradigm which employs the
quantum adiabatic theorem in order to find configurations minimising a cost function
(usually referred as energy), which codifies the solution to a certain problem. In
particular, it has been shown that it can be applied for solving satisfiability problems [1],
which are present in fields such as electronic design automation or scheduling problems.
A satisfiability problem has several criteria that a given configuration should satisfy to
solve the problem, or at least, satisfy as many conditions as possible. When the size of
the problem scales up, finding that configuration is a very difficult task. Although the
intervention of quantum phenomena is expected to increase the efficiency in solving such
problems, some limitations must be considered. Therefore, we should keep in mind the
constraints imposed by the physical implementation of quantum adiabatic processors,
in order to know the scope of applicability of such resources. In this work we will
revisit how quantum adiabatic computation can be employed to find the minimal energy
configuration efficiently and we will review the limitations that must be considered.

The mathematical description of physical systems has inspired in the past models to
describe social dynamics [2, 3, 4, 5]. Some of the models have actually been contrasted
with experimental data, often showing that their results successfully replicate real social
patterns. In this work, we will review a model for forecasting elections based on a
spin system [6]. We will see that the spin couplings and individual magnetic fields
can be used to describe interactions between the ideology of individuals and external
agents. The orientation of each spin reflects a possible choice on a referendum and each
interaction adds an energy contribution to the total energy of the system. The energy
of the system can be minimised for a given configuration, which reflects the expected
outcome for that referendum. We will describe the model and the experiment that
was carried out to check the validity of its predictions. We will see how we obtained
the data to build the model from the interactions of the individuals in social networks.
Additionally, we show that this model can be implemented in a quantum adiabatic
computer, providing an efficient method for solving it.

This work pursues three main objectives. The first one is to understand and explain
quantum adiabatic computation, which requires mastering fundamental concepts on
quantum mechanics and learning the practical steps to solve a problem with this
technique. The second one is to see a particular example of the physical implementation
of quantum computation, more precisely, the implementation with superconducting
circuits. The third objective is to describe the procedure followed to develop and
experimentally contrast the model in Ref. [6]. This required simulating quantum
adiabatic processes and also getting familiar with the data retrieval using Twitter API,
which was used to obtain the parameters of the model.
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CONTENTS

This work is divided into three chapters. In the first chapter, I review the necessary
background to understand quantum adiabatic computation. In the second one, I explain
the most relevant concepts about the implementation of quantum adiabatic computation
with superconducting circuits. In the third chapter, I explain the model for forecasting
elections and the experimental realization followed to contrast its results.
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Chapter 1

Adiabatic quantum computation

Adiabatic quantum computation can be applied for solving satisfiability problems [1].
A satisfiability problem has several criteria that one wants to fulfil. The solution is
obtained when a configuration that satisfies all the criteria is found, or at least, a
configuration that fulfils as many conditions as possible. When the size of the problem
scales up, finding that configuration is a very complex task. Such complexity could
easily overcome the current capacity of classical computers, but it would be tractable
for quantum computers.

The aim of this chapter is not to provide a detailed description of quantum mechanics
and information, but to understand the principles of quantum processing units based
on quantum adiabatic computation. However, I will revisit some fundamental concepts
that we will employ. I will also explain some examples in order to understand how a
problem can be adapted to be solved with this approach. This concepts will be key in
the final chapter to solve a particular case of a forecasting model.

In Sec. 1.1, I introduce some relevant concepts concerning quantum mechanics, in
particular, the concept of Hamiltonian. In Sec. 1.2, I review the adiabatic theorem
which describes the physical principle in which quantum adiabatic computation relies
on, this is mostly based on Ref. [1]. Finally in Sec. 1.3, I explain how quantum adiabatic
evolution can be employed to perform quantum adiabatic computation to find solutions
for given problems.

1.1 Fundamentals of quantum mechanics

In classical physics a state is a possible configuration of a system, described by the
magnitudes that can be measured in it, which we call observables. For example, the
position and velocity of a particle or the orientation of a compass with respect to a
magnetic field. In classical physics we assume that there is a set of fixed numbers that
are associated with those magnitudes, although we also assume there is an uncertainty
in our measurement. In a quantum state we may have a well defined state, with certain
values for the observables, but we may also have the state in a superposition of many
possibilities, such as having a particle in a superposition of different positions.

For example, take a closed circuit where current can flow in clockwise or anticlockwise
direction. We will not consider variations in the magnitude of the current, only in its
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1.1. FUNDAMENTALS OF QUANTUM MECHANICS

direction. In a classical system we would only admit a state where the current flows
either in one direction or the other, but in a quantum state we can have a superposition
of both. If we use |�〉 to represent the state with current flowing clockwise and |	〉 to
represent the anticlockwise flowing current, then the most general state can be described
by

|state〉 = α |�〉+ β |	〉 , (1.1)
where the coefficient of each state is known as its amplitude and they are complex
numbers which have a modulus and a phase. The coefficient of each state contains the
probability to measure it. Precisely, the probability to measure the current flowing
clockwise, |�〉, is |α|2 and the probability to measure it anticlockwise, |	〉, is |β|2. From
this property it can be inferred that the coefficients are complex numbers whose squared
modulus must add up to 1, that is, |α|2 + |β|2 = 1.

As a general definition, the state of a quantum system is the mathematical object
from which we can obtain the probabilities associated with observables. Properties
of quantum states open a range of possibilities for new paradigms of computation.
For instance, in quantum information we use the quantum bit or qubit. A qubit is a
two-state quantum system, where instead of having a 1 or a 0, as in a classical bit, we
may have a superposition of both. There are many physical systems that can be used
to implement the qubit, we will review some of them in Chapter 2.

A typical case where we must consider a quantum state is the spin of an electron.
This magnitude describes the intrinsic angular momentum of the electron, and it is also
related to its intrinsic magnetic momentum. It is as if the electron were a point magnet
and the spin described its orientation. Due to quantum uncertainties we cannot define
all the components of the spin vector simultaneously, which is why we usually define
the spin in terms of up and down in a given direction. The state of an electron’s spin
can be generally described by

|ψ〉 = α |↑〉+ β |↓〉 , (1.2)

where |↑〉 and |↓〉 refer to the state with spin upwards and the state with spin downwards.
The state, as shown below, can be represented by a complex vector containing the

coefficients for each possible state. This must be done according to a defined basis, in
which every state is represented by a two dimensional vector,

|ψ〉 =
(
α
β

)
, with |↑〉 =

(
1
0

)
and |↓〉 =

(
0
1

)
. (1.3)

In order to describe the state we may want to measure it. The probability to measure
the spin upwards or downwards can be computed from the coefficients of the spin state,
as we saw for the current flow state in Eq. 1.1. From those probabilities, we could
compute the expected value for the direction of the spin, with +1 upwards and −1
downwards it would be 1 · |α|2 + (−1) · |β|2. This can be straightforwardly computed
because we have described our state in terms of the upwards and downwards states.
But in order to obtain a general description observables are represented by matrices,
which represent operations in the quantum states. For example, the z direction of the
spin can be described by the z Pauli matrix

σz =
(

1 0
0 −1

)
. (1.4)
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1.1. FUNDAMENTALS OF QUANTUM MECHANICS

Representing observables as operators, the expected value for a magnitude can be
computed as

〈ψ|σz|ψ〉 =
(
α∗ β∗

)(1 0
0 −1

)(
α
β

)
= |α|2 − |β|2, (1.5)

where a∗ refers to the complex conjugate of a. In particular the states that satisfy the
eigenvector equation for an observable, M |ψ〉 = λ |ψ〉, are called eigenstates of the
operator and the expected value is the eigenvalue λ, which is obtained with certainty.
For example, |↑〉 and |↓〉 represent the eigenvectors for σz with eigenvalues +1 and −1,
respectively.

There are also defined operators for observables related with measuring the spin
pointing in the x and y directions, which are σx and σy respectively

σx =
(

0 1
1 0

)
, and σy =

(
0 −i
i 0

)
. (1.6)

And their expected values can be computed in a similar manner,

〈ψ|σx|ψ〉 =
(
α∗ β∗

)(0 1
1 0

)(
α
β

)
= Re{α∗β}, (1.7)

〈ψ|σy|ψ〉 =
(
α∗ β∗

)(0 −i
i 0

)(
α
β

)
= Im{α∗β}. (1.8)

We can also obtain their eigenvectors and eigenvalues,

for σx : |↑〉+ |↓〉√
2

with + 1, and |↑〉 − |↓〉√
2

with − 1; (1.9)

for σy : |↑〉+ i |↓〉√
2

with + 1, and |↑〉 − i |↓〉√
2

with − 1. (1.10)

1.1.1 The Hamiltonian

The energy operator is called Hamiltonian, H. For instance, the Hamiltonian of
an electron’s spin in a magnetic field oriented in the z direction, B = B0ez, can be
represented by

H = µBB0σz = µBB0

(
1 0
0 −1

)
, (1.11)

with µB the Bohr magneton, which is a physical constant that represents the coupling
of the electrons spin with the magnetic field. The value for the Bohr magneton is
µB = e~/2me, where e is the electron charge, ~ the reduced Planck constant and me the
electron mass. We notice that the eigenstates of this Hamiltonian are the states |↑〉 and
|↓〉, with eigenvalues µBB0 and −µBB0. Those eigenvalues represent the energy of each
state. Instead, if the magnetic field is oriented in the x direction then the Hamiltonian
is H = µBB0σx, with σx defined in Eq. 1.6. Although the eigenvalues are the same,
now they correspond to the eigenstates of σx, shown in Eq. 1.9.

There are other physical systems where we could have more energy levels. For
example, a 3 energy level Hamiltonian could be represented with a 3 dimensional matrix
such us

H =

E1 0 0
0 E2 0
0 0 E3

 . (1.12)
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1.2. THE ADIABATIC THEOREM

The notation related to this should be settled. The eigenvalues of the Hamiltonian
form the spectrum of the Hamiltonian, it is sometimes represented with a level graph as
shown in Fig. 1.1 for two example Hamiltonians. The state with the lowest energy is
called the ground state. The next energy level in the spectrum is known as the first
excited energy level, and the following one as the second excited energy level, and so
forth. When there is more than one state corresponding to an energy level, we say that
the energy level is degenerate. If the energy levels are non-degenerate, then we can
easily assign the index of the energy level to the corresponding state. In this case the,
nth state refers to the state in the nth energy level.

(a) (b)

Figure 1.1: Energy levels for (a) Hamiltonian in Eq. 1.11 and (b) Hamiltonian in Eq. 1.12 for
some energy values.

1.2 The adiabatic theorem

The meaning of the word adiabatic is discipline dependent. In the thermodynamic
sense, a process is called adiabatic if during the process there is no heat transfer between
the system and the environment. For example, take a gas in a cylinder with a moving
wall controlled by a piston. If the piston is pushed strongly, so that the gas is rapidly
compressed, it is assumed that the walls of the cylinder would keep heat from being
transferred, because the process happens in a very sort time.

However, in quantum theory the term adiabatic process usually refers to a process
that was performed very slowly. We will see a quantum example below, but a classical
analogy can be described also considering a gas in a cylinder. Instead of pressing the
piston strongly, we will apply a slowly increasing force. For example, placing small
weights on the piston. As each weight applies a very small change, the force of the
accumulated masses will instantaneously be compensated by the increase of the inner
pressure of the gas. Thus, during an adiabatic process the system transits from the
initial state to the final one through equilibrium states. In the quantum sense this
would be called adiabatic even if the walls would not adiabatically isolate the gas. An
example from daily life can be any of us carrying a dish filled with soup, walking very
slowly while praying for the soup to remain in the equilibrium state and not spilling it.

From now on, we will work with the second definition for adiabatic process, so
whenever the term adiabatic process is used it must be understood in the quantum
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1.2. THE ADIABATIC THEOREM

sense, that is, a process where the physical system varies slowly.
The adiabatic theorem states that if a quantum system is initially in the nth eigenstate

of an initial Hamiltonian, Hi, and this Hamiltonian is adiabatically transformed into a
final Hamiltonian, Hf , then the state will evolve adapting to the new Hamiltonian’s
corresponding nth eigenstate. This is ensured as far as there are no energy levels
crossing with the nth energy level. In particular, if the state is initially in the ground
state, it will be in the ground state of the final Hamiltonian.

Let me now review the adiabatic theorem with a notation that can be applied for a
general system, for a precise example look at Section 1.2.1. Along an adiabatic process
the Hamiltonian will depend on the time t along the process, that is, H = H(t). We will
give the name T to the time required by the system to go from the initial Hamiltonian
to the final one, i.e. the duration of the adiabatic process. Of course, the time evolving
Hamiltonian must obey H(0) = Hi and H(T ) = Hf .

The evolution can be parametrized by s = t/T , with 0 ≤ s ≤ 1. Assuming the
following equation for H(s) is satisfied for any value of the evolution parameter

H(s) |n, ψ(s)〉 = En(s) |n, ψ(s)〉 , (1.13)

where En(s) represents the energy of the nth eigenstate and |n, ψ(s)〉 is the corresponding
eigenstate, both depending on the evolution parameter s. We will focus on the evolution
of the ground state. In order to apply the adiabatic theorem, it is required the absence
of level crossing, i.e. E0(s) < En(s) for all n 6= 0 and for 0 ≤ s ≤ 1.

Now we can define a reference to say that the system is slowly changing. In fact, the
length of the gap between the ground state and the first excited state imposes a limit
in the time that an adiabatic process can take. The longer the process take, the slower
the evolution of the system is done. The time required is constrained to,

T � ξ~
g2

min
, (1.14)

where

ξ = max
0≤s≤1

∣∣∣∣∣
〈
n = 1; s

∣∣∣∣∣dHds
∣∣∣∣∣n = 0; s

〉∣∣∣∣∣ and gmin = min
0≤s≤1

(E1(s)− E0(s)). (1.15)

The parameter gmin refers to the minimum energy gap over ground state, during the
evolution. In particular, if there exists a value of s for which E1(s)− E0(s)→ 0, then
gmin → 0 and T → ∞ which shows that in the limit where the gap is too small the
adiabatic process would require an infinite time.

The parameter ξ is the maximum value matrix element of the operator dH
ds between

the first excited state (n = 1) and the ground state (n = 0). We will not go into a
precise description, but usually this parameter is in the order of a typical eigenvalue
of H, and its effect in the constraint imposed to the parameter T can be neglected
compared to the effect of the energy gap.

For a finite time T , the adiabatic transition from the initial state to the final one may
not be perfect. The error of the adiabatic process, ε, can be defined as the component
of the final state that is orthogonal to the final ground state. In many cases, the error
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1.2. THE ADIABATIC THEOREM

bound can be approximated by [7]

ε .
~
T

max
s

∥∥∥ d
dsH(s)

∥∥∥
|E1(s)− E0(s)|2

, (1.16)

The tolerance in the error for the adiabatic process imposes a lower limit for the evolution
time. Nevertheless, the evolution time cannot be increased indefinitely, the limit is
usually imposed by the coherence time of the physical system. After the coherence,
time the quantum state collapses to a classical thermal of state, loosing its quantum
properties. This feature is explained in Chapter 2.

1.2.1 Example of the adiabatic theorem

As an example of an adiabatic process, let us take the case of an electron’s spin
initially in a magnetic field in z direction in its ground state, downwards. We will
progressively rotate the direction of the magnetic field until it is in the x direction. The
adiabatic theorem states that if the transition Bzez → Bxex is performed smoothly, the
electron’s spin will remain in the ground state, aligning its direction with the opposite
direction of the magnetic field.

The Hamiltonian for the process can be described by

H(s) = −BzµB(1− s)σz −BxµBsσx = −µB
(
Bz(1− s) Bxs
Bxs −Bz(1− s)

)
, (1.17)

the Hamiltonians for the magnetic fields in direction z and x were described in Sec. 1.1.1.
It can be computed that the eigenvalues for H(s) are

E0(s) = −µB
√
B2
z (1− s)2 +B2

xs
2 (1.18)

E1(s) = +µB
√
B2
z (1− s)2 +B2

xs
2. (1.19)

In Fig. 1.2 the evolution for the both energies is shown for the case Bz = Bx = B0
and the initial and final states are noted. These states are the eigenvectors of σz
initially and the eigenvectors of σx finally. According to the adiabatic theorem, if the
system is initially in the ground state |↑〉 then it will finally be in the new ground state
(|↑〉+ |↓〉)/

√
2.

In this case the upper bound for the error can be calculated from Eq. 1.16. For the
term

∥∥∥ d
dsH(s)

∥∥∥ we have

d
dsH(s) = −µBB0

(
−1 1
1 1

)
⇒
∥∥∥∥∥ d

dsH(s)
∥∥∥∥∥ =
√

2µBB0, (1.20)

which does not depend on s. And the term of the energy gap is

|E1(s)− E0(s)|2 = 4µBB2
0(1 + 2s2 − 2s), (1.21)

which is minimised for s = 1/2 with the value mins |E1(s)− E0(s)|2 = 2µ2
BB

2
0 . Then,

the expected error with an adiabatic time T is

ε .
~√

2µBB0

1
T
. (1.22)
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1.3. COMPUTATION BASED ON ADIABATIC EVOLUTION

Figure 1.2: Evolution of the two energy levels of Hamiltonian in Eq. 1.17, with Bz = Bx = B0.

1.3 Computation based on adiabatic evolution

Many problems can be represented by a cost function which we want to minimise
under certain constraints. For example, if we were trying to build a low noise amplifier,
we would be looking for the best combination of electronic devices minimising the
noise, ensuring at least a minimum amplification power. The idea of quantum adiabatic
computing is to map our cost function to the Hamiltonian of a quantum system, and
use the adiabatic theorem to find the minimum of that function.

The system is initialized in a Hamiltonian whose ground state can be straightforwardly
obtained, named H0. Starting from that ground state the system is slowly driven to
the Hamiltonian representing the cost function of the problem, HP . Finally, according
to the adiabatic theorem, the system will be in the ground state of HP , which encodes
the desired configuration. The Hamiltonian of the evolution can be written as

H(t) =
(

1− t

T

)
H0 + t

T
HP . (1.23)

We will illustrate how to obtain HP for a simple problem, afterwards we will describe
a more general procedure to build a problem Hamiltonian.

Two-puppet dilemma. Imagine that we have three children (1, 2 and 3) and two
kind of puppets, the Teddy Bear and the Rainbow Unicorn. The problem stems from
trying to fulfil all of their whims: 1 and 3 both would like to have the same kind of
puppet, 2 and 3 would also like the same, but 1 and 2 are not getting on well lately so
they definitely do not want the same puppet. You prefer to buy the Teddy Bear, as the
Unicorn is quite expensive. Which is the choice minimising the nonconformity? We
will see how we can build a HP representing the nonconformity as a cost function.

The nonconformity can be represented by the energy of a system, where each children
would be a quantum spin. The two states of the spins tell the puppet each one would
obtain, the state |↑〉 represents the Teddy Bear and |↓〉 the Rainbow Unicorn. We
will build the Hamiltonian defining separate terms which consider each condition as a
contribution to the overall energy.

The preference to buy the cheapest puppy can be represented by a magnetic field
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1.3. COMPUTATION BASED ON ADIABATIC EVOLUTION

applying a bias in the three spins, which leads to the Hamiltonian

Hbias = −B0σ
(1)
z −B0σ

(2)
z −B0σ

(3)
z , (1.24)

where σ(i)
z represents the z-direction operator applied in the ith spin and B0 > 0. The

ground energy of this term is obtained for the case wherein the three children get the
Teddy Bear, which is described by three spins up |↑↑↑〉 with energy −3B0.

Now we introduce the fact that 3 wants the same puppet as their siblings introducing
a coupling between their spins represented by

Hcoupling_1 = −J13σ
(1)
z σ(3)

z − J23σ
(2)
z σ(3)

z , (1.25)

with Jij > 0, which is minimized if 1 and 3 are aligned and 2 and 3 too. Both |↑↑↑〉
and |↓↓↓〉 have the minimum energy −(J13 + J23) for this term.

Similarly, we can represent the condition of 1 and 2 not admitting to have the same
puppet with a coupling that promotes counter-alignment

Hcoupling_2 = J12σ
(1)
z σ(2)

z , (1.26)

which is minimised for any state where they are not aligned, no matter the direction of
2, which are |↑↓↑〉, |↑↓↓〉, |↓↑↑〉 and |↓↓↑〉, with energy −J12.

If we combine the three terms, we get the Hamiltonian for the problem

HP = Hbias +Hcoupling_1 +Hcoupling_2. (1.27)

Figure 1.3: Energy levels for the two puppet dilemma, the states corresponding to each level
are noted in their right.

We will set values for the constants in order to obtain a particular solution. We set
the overall bias to B0 = 1 and the aligning coupling to J13 = J23 = 2. As we want
to really avoid the case where 1 and 2 obtain the same puppet we will set the second
coupling to J12 = 5, so that it is higher than the other two. With this values, the
spectrum of HP is represented in Fig. 1.3. We can see that there are two states that
correspond to the lowest energy levels, with energy −6: The |↓↑↑〉 and |↑↓↑〉, which
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1.3. COMPUTATION BASED ON ADIABATIC EVOLUTION

means that the choices that lower the cost function are to buy either the Teddy Bear
to 1 and 2 or to 2 and 3, with the remaining child getting the Rainbow Unicorn.

From the two-puppet example we can deduce that a problem Hamiltonian can be
built employing many terms to represent each condition that we want to fulfil. In
particular, we have seen that a preference can be represented by a magnetic bias, Bi,
as we did to introduce our preference to buy the cheapest puppet in Eq. 1.24. Similarly,
using coupling terms, Jij, such as in Eq. 1.25 and Eq. 1.26, we can represent the
tendency towards alignment or counter-alignment. Additionally, we have described a
numerical example where we have employed the amplitude of the biases and couplings
to assign different weights to each condition, such as choosing the counter-alignment
term bigger than the others.

The Hamiltonian obtained in the two-puppet dilemma (Eq. 1.27) is a particular case
of a quantum Ising Hamiltonian. The parameters Bi are known as individual biases
and Jij are the coupling constants. For a system with n spins we have

H(Bi, Jij) =
∑
i

Biσ
(i)
z +

∑
i<j

Jijσ
(i)
z σ

(j)
z , (1.28)

where the second sum is performed for every i and every j greater than i. This structure
for a Hamiltonian can be useful to implement the HP of many different problems. We
can also obtain the classical Ising Hamiltonian employing the variables si = ±1 for each
classical spin

H(Bi, Jij) =
∑
i

Bisi +
∑
i<j

Jijsisj. (1.29)

This allows us to straightforwardly show why adiabatic computing is particularly
promising for satisfiability problems. This problems arise when we must find a configuration
that satisfies many Boolean conditions. That is, we have a system of n bits and we are
given a set of Boolean clauses for them. In general, it is easy to find a configuration
satisfying one of these clauses, but finding one which satisfies all of them is challenging.
Additionally some of the conditions are incompatible, thus finding a perfect solution is
impossible and the configuration satisfying as many clauses as possible is sought. In
these cases, a weight can be assigned to each constraint, which allows us to prioritise
some constraints over others.

We can define the clauses so that we can add their result and construct an overall
energy (cost) function for the system, H, as we did for the Ising Hamiltonian. The
value of each bit can be related to a classical spin variable as qi = (si + 1)/2 which is
either 1 or 0. Let us consider a 2-satisfiability problem (2-SAT), where each Boolean
clause can only involve at most 2 bits, the energy in that case is

H =
∑
i

∑
j≥i

aijqiqj, (1.30)

where the constants aij are the weight constants for each clause. If there is no constraint
affecting the pair qiqj then the weight can be set to aij = 0. If a constraint is to be
applied on a single bit, then by setting i = j we get aiiqiqi = aiiqi, as qi is a Boolean
variable.

We will describe an example where the 2-SAT formulation is used to build a HP .
We will employ bit arrays to encode the possible configurations and describe how the
values for each coupling constants can be decided.
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1.3. COMPUTATION BASED ON ADIABATIC EVOLUTION

Map colouring. Imagine that we want to colour regions in a map without using the
same colour for adjacent regions employing a restricted amount of different colours.
This simple formulation can derive into a difficult problem when the number of regions
is big and there are scarce colours available. We will consider a small example with 7
regions and 3 different colours.

(a) (b) (c)

Figure 1.4: Output example of a map colouring problem. (a) and (b) show correct outputs
with no colour match between adjacent regions, while (c) represents an unsuccessful
output.

1 2 3 4 5 6 7
-2 3 3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 -2 3 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
-2 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

-2 3 3 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
2 -2 3 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

-2 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
-2 3 3 1 0 0 0 0 0 0 0 0 1 0 0

3 -2 3 0 1 0 0 0 0 0 0 0 0 1 0
-2 0 0 1 0 0 0 0 0 0 0 0 1

-2 3 3 0 0 0 0 0 0 0 0 0
4 -2 3 0 0 0 0 0 0 0 0 0

-2 0 0 0 0 0 0 0 0 0
-2 3 3 1 0 0 1 0 0

5 -2 3 0 1 0 0 1 0
-2 0 0 1 0 0 1

-2 3 3 0 0 0
6 -2 3 0 0 0

-2 0 0 0
-2 3 3

7 -2 3
-2

Figure 1.5: Couplings and biases for the map colouring problem. Each column/row delimited
by lines represents a region and each contains three bits. The values in the diagonal
are the individual biases and the off diagonal terms represent the couplings between
different bits.

For this problem, we will use 21 bits, qi = 1 or 0 with 1 ≤ i ≤ 21. Each of the 7
regions will have three bits, each bit representing a possible colour it could have. Setting
a bit to 1 means that the colour it represents is used in the region it is within. So if we
get 100 in a given region it would represent the colour blue, 010 orange and 001 green.

To define the problem Hamiltonian, we will use the Hamiltonian defined in Eq. 1.30,
so we have to define the values for the coupling constants aij. In order to promote
colouring, qi = 1 states, the individual bias of each bit will be set to aii = −2 ∀i.
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1.3. COMPUTATION BASED ON ADIABATIC EVOLUTION

Nevertheless, it is important that within each region only one bit is set to 1, otherwise
the colour encoding would be invalid. Thus, we set the coupling for the bit pairs (i, j)
within the same region to aij = 3. Once the fundamental constraints are stated, we
introduce our desired result imposing a coupling aij = 1 between the same color in
adjacent cells. An example for region distribution is shown in Fig. 1.4, and the couplings
definition for that case are shown in Fig. 1.5.

Figure 1.4 also represents three typical outcomes of a simulated adiabatic evolution
process. Most of the outputs are valid solutions to the problem, which have energy
−14. Whereas some solutions with some equal adjacent colours were also obtained,
with energy −13, due to the small energy difference between both cases. However, no
solutions with invalid colours were obtained owing to the energy penalty imposed to
those cases.

In contrast to the two-puppet dilemma, where there are only 8 different configurations,
for the map colouring problem there are 221 possible configurations (37 = 2187 if we only
consider the ones with a valid colour encoding). This shows how rapidly the complexity
of a 2-SAT problem can grow and the possibilities emerging from the usage of adiabatic
quantum computation. In fact, for this example we had to set only 55 non-zero coupling
constants, which is an straightforward task compared to computing all the possible
configurations. Adiabatic quantum computation enables an effective way to obtain a
configuration minimising the cost function employing a HP defined with the coupling
constants, without having to compute the energy of every configuration.
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Chapter 2

Implementation in superconducting
platforms

A bit is the fundamental unit of classical information, which can take the values 1 or
0. It can be electronically implemented easily with transistors and two voltage levels.
Its quantum counterpart, the qubit, must also be physically implemented if we desire
to employ its promising properties. In this chapter, we will review how qubits can be
designed in superconducting platforms and how to implement a quantum adiabatic
process in this technology.

Firstly we will introduce some concepts about the Hamiltonian description of circuits,
which are necessary for the quantization of circuits involving superconductors. Then,
we will explain Josephson junctions, which are non-linear circuit elements used to build
the superconducting qubit. Making use of these elements, we will construct a flux qubit.
There are other qubit types, but we will focus on the flux qubit since this is the kind of
qubit employed by D-Wave [8], which is a quantum computing company that performs
quantum adiabatic computations on demand. We will briefly review some technical
details of their computers [9], including the connectivity of the qubits, the topology of
the architecture employed and an overview of the quantum processing units operation
cycle.

2.1 Hamiltonian description of circuits

In order to describe the quantum behaviour of a superconducting circuit, let us
introduce the fundamentals of the Hamiltonian description of circuits. In this Section,
we will focus on linear elements and their quantum description. In the following Section,
we will describe a non-linear element known as the Josephson junction. In any case, we
will only focus on two-terminal elements.

An electronic circuit can be represented by a network of nodes connected by branches.
For every time t, each node has an electrical potential which is given with respect to to a
ground node with zero value. This allows us to define the voltage difference in a branch,
vb(t), and the current through it, ib(t). The positive direction of these magnitudes are
shown in Fig. 2.1. Two-terminal elements are circuit elements that connect only two
nodes of the circuit, thus involving a single branch. Two-terminal linear elements can
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2.1. HAMILTONIAN DESCRIPTION OF CIRCUITS

be theoretically described by the relation between vb(t) and ib(t). For the resistance in
Fig. 2.1 we have the Ohm law vb(t) = R · ib(t), where the constant R is the resistance
that depends on the particular device.

v1

ib(t)

Figure 2.1: Example of a two-terminal element (a resistance) with the positive directions of
the current through the branch ib(t) and the voltage difference vb(t).

Employing this variables it is possible to calculate the energy of the branch. Recalling
that the power of a branch is obtained from ib(t)vb(t), its energy

εb(t) =
∫ t

−∞
ib(t′)vb(t′) dt′ . (2.1)

Other basic circuit elements are the inductor and the capacitor, which respectively
satisfy the equations

ib(t) = 1
L

∫ t

−∞
vb(t′) dt′ and vb(t) = 1

C

∫ t

−∞
ib(t′) dt′ , (2.2)

where the constants L and C, called inductance and capacitance, depend on the
particular device.

In superconducting circuits, it is a commonplace to describe the elements in terms
of the branch flux, φb(t), and the branch charge, Qb(t), which are defined as

φb(t) =
∫ t

−∞
vb(t′) dt′ , and Qb(t) =

∫ t

−∞
ib(t′) dt′ , (2.3)

where it is assumed that the circuit was initially (at t→ −∞) at rest and there was no
dissipation. This parameters allow us to describe the equations for the inductance and
the capacitance in a simpler manner:

ib(t) = φb(t)
L

, and vb(t) = Qb(t)
C

. (2.4)

The energy for these elements can be obtained from Eq 2.1. For the inductor

εL(t) =
∫ t

−∞

1
L
φb(t′)

dφb(t′)
dt′ dt′ = φ2

b(t)
2L , (2.5)

and for the capacitor

εC(t) =
∫ t

−∞

1
C
Qb(t′)

dQb(t′)
dt′ dt′ = Q2

b(t)
2C . (2.6)

Now, I will introduce the application of the Hamiltonian formulation to electrical
circuits, which will lead to the quantization of the system [10]. Recalling that in the
classical formulation the Lagrangian function is defined as de difference between the
kinetic and the potential energies

L = T − V , (2.7)
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2.1. HAMILTONIAN DESCRIPTION OF CIRCUITS

both components are written in terms of the generalized coordinates, qν(t), where ν
represents each degree of freedom, and their corresponding momenta, pν(t), defined as

pν = ∂L
∂q̇ν

, (2.8)

where q̇ν = dqv

dt . Then, the Hamiltonian of the system is obtained by

H =
∑
ν

pν q̇ν − L. (2.9)

This formalism can be applied to circuits composed by branches with inductors and
capacitors. The generalized coordinates are the charges of the capacitors in each branch
Qb, and their corresponding conjugate momenta are the flux of the inductors φb of the
same branch. According to this convention, the kinetic energy of the system is the
energy in the inductors and the potential energy is the energy of the capacitors. This
leads to the Lagrangian

L =
∑
b

φ2
b

2Lb
− Q2

b

2Cb
, (2.10)

and it follows that the Hamiltonian is

H =
∑
b

φ2
b

2Lb
+ Q2

b

2Cb
. (2.11)

We can make use of the canonical quantization, which in this case simply reduces
to replace the flux and charge variables by the quantum operators. Now Qb and φb,
instead of representing the values for the classical charge and magnetic flux in branch
b, they represent operators acting on the quantum state of the system. As they are
conjugate operators they must obey the commutation relation

[φb, Qb] = φbQb −Qbφb = i~, (2.12)

where i denotes the imaginary unit. This equality implies that Qb and φb cannot be
measured simultaneously. That is, there is no state with fixed charge and fixed flux for
a branch b. In the following Subsection, we will study the network comprising only one
inductor and one capacitor, called LC circuit. There, the commutation relation will be
employed to obtain a spectral analysis of the circuit.

2.1.1 LC circuit

We will analyse the example of an LC circuit, i.e. a network comprising a capacitor
and an inductor connecting a node with the ground node, as depicted in Fig 2.2. For
this particular case, the Hamiltonian in Eq. 2.11 reduces to

H = φ2

2L + Q2

2C . (2.13)

As in a classical LC circuit, this Hamiltonian can be related to the one-dimension
harmonic oscillator

Hharm = p2

2m +mω2x
2

2 , (2.14)
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2.2. JOSEPHSON JUNCTION

C L
φq

Figure 2.2: Simplest LC circuit.

with the analogy p↔ φ, x↔ q, m↔ C and ω ↔ 1/
√
LC. Let us now introduce the

creation and annihilation operators defined by

a =
√

1
2~ωLφ+ i

√
ωL

2~ q, (2.15)

a† =
√

1
2~ωLφ− i

√
ωL

2~ q, (2.16)

where i denotes the imaginary unit and † denotes the Hermitian conjugate of the
operator. Introducing these operators, the Hamiltonian can be written as

H = ~ω(a†a+ 1
2). (2.17)

These operators fulfil the commuting property
[
a, a†

]
= 1. It is well known that

there exists an eigenbasis |n〉, with n = 0, 1, 2..., in which the action of these operators
is

a |n〉 =
√
n |n− 1〉 , and a† |n〉 =

√
n+ 1 |n+ 1〉 . (2.18)

It can be shown that the states |n〉 are eigenstates of the Hamiltonian with energy
~ω(n+ 1/2),

H |n〉 = ~ω(n+ 1
2) |n〉 = ~√

LC
(n+ 1

2) |n〉 . (2.19)

This leads to an infinite spectrum of energy levels separated by an energy gap En+1 −
En = ~ω, which is independent of n.

2.2 Josephson junction

Superconductor

Insulator
Superconductor

(a) (b)

Figure 2.3: Josephson junction, (a) diagram representing the junction and (b) circuit
representation for an ideal Josephson junction.
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2.3. THE FLUX QUBIT

When two superconducting materials are separated by an insulator, a current flux
arises due to quantum tunnelling. This structure can be used to obtain a new circuit
element known as Josephson junction [11], which is depicted in Fig. 2.3. As two
superconducting materials are similar to two parallel metallic plates, Josephson junctions
show also a capacitive behaviour besides the superconducting current corresponding
to the quantum tunnelling. This two phenomena are usually considered separately,
represented the real Josephson junction as an ideal one with a capacitor in parallel.

The ideal Josephson junction can be modelled as a non-linear inductor. The equations
relating the current, i(t), through the junction and its voltage drop, v(t), strongly depend
on the magnetic flux through the junction, Φ(t). More precisely, the equations are

i(t) = Ic sin(ϕ(t)) and v(t) = Φ0

2π
dϕ(t)

dt , (2.20)

where Ic is the critical current, Φ0 denotes the quantum of magnetic flux and ϕ = 2πΦ/Φ0
denotes a phase representing the reduced flux. The magnetic flux quantum can be
calculated from the Planck constant h and the charge of the electron e, Φ0 = h/(2e).

Recalling Eq. 2.1, we introduce the equations for the Josephson junction and change
the integration variable to obtain the energy of this element

εJ =
∫ t

−∞
IC sinϕ(t′)Φ0

2π
dϕ(t′)

dt′ dt′ =
∫ ϕ(t)

0
IC

Φ0

2π sinϕ dϕ = EJ(1− cosϕ(t)), (2.21)

where the constant EJ = ICΦ0/2π.

2.3 The flux qubit

The fundamental unit in the quantum processor is the qubit, that is a bit with
quantum properties, as defined in Sec. 1.1. Now, we will show a method to physically
implement a qubit with superconducting circuits, leading to the flux qubit. This qubit
is based on the quantization of the magnetic flux, employing the lowest energy levels.
There are other superconducting qubits like the charge qubit or the phase qubit, but we
will focus on the flux qubit due to its use in adiabatic quantum computing. In particular,
the flux qubit has been used to build adiabatic quantum processors by D-Wave [8].

Flux qubits are implemented with rf-SQUIDs, meaning Superconducting QUantum
Interference Devices, and RF signals are used to control the magnetic fluxes. The
Josephson junctions are the main elements in the rf-SQUID. The simplest configuration
is represented in Fig. 2.4a, which is a loop with a Josephson junction and a coil that
represents the inductance of the loop. The loop is under the influence of a magnetic
flux, Φx

act, which is used to act on the circuit and tune the value of the phase ϕ in
Eq. 2.20. More complex configurations are also possible, like the compound Josephson
junction in Fig. 2.4b, where the smaller loop is biased by a magnetic flux, Φx

co, which
enables more accurate controlling.

For the rf-SQUID with a single junction the phase ϕ of the junction can be equated
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2.4. CONNECTING FLUX QUBITS

ϕ L

ϕL

⊗ Φx
act

(a)

Lco/2

ϕ2

Lco/2

ϕ1 L

ϕL

⊗ Φx
co

⊗ Φx
act

(b)

Figure 2.4: Circuit for a rf-SQUID. (a) Single junction rf-SQUID and (b) compound Josephson
junction rf-SQUID.

to the phase in the inductance ϕ = ϕL, and the Hamiltonian can be written as [12]

H = Q2

2C + V (ϕ), (2.22)

V (ϕ) =
(

Φ0

2π

)2 1
L

(
(ϕ− ϕx)2

2 − β cosϕ
)
, (2.23)

β = 2πLIc
Φ0

, (2.24)

where C represents the capacitance of the junction and ϕx = 2πΦx
act/Φ0, which is

usually biased so that ϕx ≈ π. If β is increased, two local minima which are separated
by an energy barrier appear in the potential V (ϕ). This leads to two low energy states
separated by a big energy gap from the next excited state, typically in the order of
~/
√
LC. In the low energy regime, the effective quantum Hamiltonian can be simplified

considering only two energy levels as

H = −1
2 (εσz + ∆σx) = −1

2

(
ε ∆
∆ −ε

)
, (2.25)

where ε contains the terms biasing the system towards one of those states and ∆
represents the terms associated with the energy of the transition from a state to the
other. This Hamiltonian is represented in the basis of the persistent currents, which
are the eigenstates when the device is strongly biased by Φx

act (ε � ∆), which are
counter-circulating persistent current states (clockwise/anticlockwise). The matrices σz
and σx are defined in Eq. 1.4 and Eq. 1.6, respectively. The constants in the effective
two-level Hamiltonian can be controlled by external parameters, which makes it possible
to use this system as a computational qubit.

2.4 Connecting flux qubits

Several SQUIDs can be connected through magnetic induction [13]. Such a magnetic
coupling can be represented by Jijσ(i)

z σ
(j)
z , just like for the coupling between spins in

Sec. 1.3. In this case, Jij can be a positive or negative constant representing the strength
of the coupling, and σ(i)

z represents an operation in the state of the ith SQUID.

21



2.5. COMPUTATIONAL ARCHITECTURE

Combining the individual terms and the coupling terms the two-state Hamiltonian
for a single flux qubit becomes a quantum Ising Hamiltonian, as defined in Sec. 1.3,

H = −
∑
i

1
2
[
εiσ

(i)
z + ∆iσ

(i)
x

]
+
∑
i<j

Jijσ
(i)
z σ

(j)
z . (2.26)

This shows that this circuit implementation can be effectively used to implement
adiabatic quantum computation.

To perform quantum adiabatic computation, the terms of the Hamiltonian are initially
set so that for any i or j we have ∆i ≈ ∆� εi, Jij . This leads to H0 = −∑i ∆iσ

(i)
x /2 as

the effective initial Hamiltonian. As the ground state for each SQUID is a superposition
of the two base states (see Eq. 1.9 for the eigenstates of σx), the ground state of the
whole system is a superposition of all the possible states in the basis. Such an initial
state can be easily obtained. Then, the parameters are driven towards the values
encoding the problem Hamiltonian, so that effectively

HP = −
∑
i

εi
2 σ

(i)
z +

∑
i<j

Jijσ
(i)
z σ

(j)
z , (2.27)

where εi represents the individual biases and Jij the couplings for the problem.

2.5 Computational architecture

Ideally a quantum adiabatic processor would allow for couplings between any pair of
SQUIDs, that is, Jij could be non-zero for any (i, j) pair, but this is not generally possible.
The technical implementation constrains the connectivity between SQUIDs. We will
focus on the strategy employed by D-Wave to arrange the connectivity network. The
connections of the SQUIDs follow the Chimera architecture. Each SQUID is represented
by a node in a Chimera graph, which shows the connections allowed. Recently a new
connectivity architecture has been proposed based on Pegasus graph [14].

A Chimera graph is arranged in unit cells, as the one depicted in Fig. 2.5, which
are mutually connected. Each cell contains four vertical nodes and four horizontal
nodes, each connected to the ones in the perpendicular direction. Each node in the cell
is also connected to two nodes in adjacent cells, which are the same position as the
first node but in their own cells. The ones in the vertical line are connected with the
closest cells in the horizontal direction of the grid and the ones in the horizontal line
are connected to the closest cells in the vertical direction of the grid. The connections
are also depicted in Fig. 2.5, employing different colours for the connections within the
same cell and the connections with adjacent cells.

Usually, we need a particular connectivity different to the one provided by the
Chimera architecture. This limitation can be overcome by merging nodes in the graph,
forming a chain representing a single node in the original problem. The coupling within
a chain has to be considerably stronger than the ones imposed between chains, to make
them act as a single node.

Take the example of three connected nodes, as in the two-puppet dilemma example
in Sec. 1.3. There are three problem nodes (n1, n2 and n3 ) and connections between
the three of them are required (J12, J13 and J23). We can map problem nodes n1 and
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0 1 2 3

4

5

6

7

Figure 2.5: Unit cell in a Chimera graph. Black lines represent connections with the
perpendicular nodes in the same cell, blue lines represent the connections of
each nodes with two nodes in adjacent cells.

n2 to the graph nodes 1 and 5, while n3 can be represented by the chain comprising
nodes 2 and 6 (see Fig. 2.5). Then, the problem coupling J12 would be used in the
graph coupling between nodes 1 and 5. The problem couplings J13 and J23 would be
used in the graph couplings between 1 and 6, and 2 and 5, respectively. Finally, an
stronger coupling would be imposed between nodes 2 and 6, so that we ensure that
they point in the same direction. This configuration is shown in Fig. 2.6. The mapping
process that relates an original node distribution to nodes and chains in a Chimera
graph is called minor embedding.

n1

n2

n3J13

J23J12

1

5

2

6
J13

J23J12

Jchain

Figure 2.6: Example of minor embedding. The couplings satisfy |Jchain| � |J12|, |J13|, |J23|.

D-Wave provides tools to embed a problem automatically. Nevertheless, understanding
this process is necessary in order to keep in mind the limitations of this technology. For
instance, although 16×16 grids with 2048 nodes are available, the effective number of
nodes can rapidly decrease when a highly-connected topology is required.

2.6 Overview of the QPU operation cycle

We have so far reviewed the physical implementation in superconducting circuits
of a quantum processing unit (QPU). From the fundamental units, implemented with
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2.6. OVERVIEW OF THE QPU OPERATION CYCLE

rf-SQUIDs, to their connectivity. Now we will briefly explain how the QPU operates to
attend a given request.

The operation cycle of the QPU is divided in two phases: the programming cycle
and the anneal-read cycle. During the first phase, the values introduced for a particular
problem, represented in HP , are transformed into the raw signal that will control the
magnetic fields of the rf-SQUIDs, shown in Fig. 2.4. This includes performing the
mapping of the minor embedding and afterwards performing the transformation to the
analog signal. This transformation is performed by the room-temperature electronics
performing classical digital-to-analog conversion (DAC). Then, the anneal-read cycle
consists in the implementation of the quantum adiabatic evolution procedure. The
process is repeated several times, as many times as specified by the user, each final
state is measured and returned as a read to the user. Each annealing process takes
varying time T according to the annealing time defined by the user. The process is
represented in the flow diagram of Fig. 2.7.

Programming cycle Anneal-read cycle

Minor
embedding

Constants
of HP

DAC

Raw
signal
for the
SQUIDs

Quantum
adiabatic
evolution
(n times)

Results of
sampling
the final
state

Figure 2.7: Flow diagram for QPU operation process.
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Chapter 3

Mathematical model of forecasting
election polls

This Chapter summarises the main results shown in R. Ibarrondo et al [6], where a
spin system has been proposed to model political or poll election and used to forecast
the result. Additionally, a practical example employing data from social networks is
proposed, with the future goal of running their experiment in an available adiabatic
quantum computer.

This Chapter begins with an introduction about the role of physical models in the
description and prediction of social behaviour and phenomena. Afterwards, I introduce
the concept of political compass, which is a useful representation of the ideology of an
individual. In the following section, I describe the political Hamiltonian whose ground
state configuration represents the expected outcome of election polls. This leads to a
review of the experimental implementation and the data retrieval from Twitter to set
the free parameters. Finally, I describe how this model could be solved in an adiabatic
quantum computer.

3.1 Physical models to describe social behaviour

Mathematical models inspired in physical systems have been widely employed to
describe the collective social behaviour [2]. For example, molecular dynamics in gases
inspired a model to describe the collective behaviour of assistants in heavy metal
concerts [4]. People were represented as particles in a gas, whose collective motion was
simulated and their analysis of available videos of heavy metal concerts showed a strong
accordance with their predictions.

We have already described that some problems can be codified in the Ising Hamiltonian
given in Eq. 1.28. In particular, we are specially interested in applying it to the study
of social dynamics. For example, in Ref. [3] an Ising Hamiltonian was used to study
social opinion interaction within neighbourhoods where neighbouring individuals tend
to think alike. They represented a city by a spin grid, that is, a classical spin was
assigned to each point in the grid, si = ±1, involving that neighbouring spins tend
to align. Due to the spin representation, the tendency to align was straightforwardly
introduced with ferromagnetic couplings between neighbouring spins. This couplings
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3.2. POLITICAL COMPASS

were introduced into an Ising Hamiltonian which provides a measure of the energy of
the lattice (unhappiness of the neighbourhood), which is to be minimised, and it is
given by

H = −
∑
(i,j)

sisj, (3.1)

where si is the ith spin in the grid and the sum is performed over all neighbouring
positions (i, j). If two neighbouring spins happen to have the same direction, si = sj =
±1, then their contribution to energy is negative −si · sj = −1, reducing the energy.
While if they are counteraligned, si = −sj = ±1, their contribution to energy is positive
−si · sj = 1, increasing the energy. This model was studied generating initial patterns
which were evolved iteratively lowering the energy of the system. Finally, the patterns
in the final lattices were analysed, which showed a tendency towards clustering. This
model reproduces the clustering of ideologies observed in the vote distribution among
electoral districts.

These are only a couple of examples modelling social behaviour by physical interactions.
Both models have been contrasted with experimental data, showing that their results
successfully replicate real social patterns.

3.2 Political compass

Figure 3.1: Example of a two-axis political compass.

We are familiar with the left-right classification of political parties in a political
spectrum, since it simplifies the prediction of possible policies. This is the reason why
when a new party emerges, social media quickly try to allocate it in that spectrum. We
are also familiar with expressions like "that decision of the party reveals it is turning
left/right" to describe the change in the political strategy of a party. To sum up, we are
used to describing some aspects of the ideology of a party by using a single axis (left -
right), but this is sometimes too simplistic. Indeed, it is reasonable to think that by
introducing multiple axes, we can improve the accuracy in the description of the ideology
of a party. Typically, when several axes are employed, the term political spectrum is
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3.3. POLITICAL HAMILTONIAN

replaced by the more general concept of political compass. Ideally, a political compass
has a range of different axes that altogether can precisely describe the ideology of either
a political party or a citizen. Roughly speaking, in the political context, two main axes
would be the economic axis "left - right" and the social axis "authoritarian - libertarian".
In Fig. 3.1, a representation of the space of possibilities with two-axis is shown. For a
more detailed discussion about the topic see Ref. [5].

The political compass is more than a theoretical concept. In fact, knowing the
ideology of an individual provides valuable information about what it is willing to
vote. Particularly, we can assume that its decision will tend towards the position
in the political compass space. Altogether, if the position of each individual in the
political compass is known beforehand, predicting the outcome of a voting process is
straightforward. The model described in this Chapter deals with the estimation of the
position of each individual in the political compass in order to predict the outcome of
referendums or election polls.

Determining the vector corresponding to each individual is undoubtedly not an easy
task. In the following section, we will consider several aspects which affect the position
of the political compass. First, we will consider the initial ideological background of
each individual. We will also introduce the impact of external events, such as crisis
scenarios or controversial acts of political entities. And finally, we will consider the vast
amount of social interactions between individuals themselves, which mutually modify
their position in the political compass.

3.3 Political Hamiltonian

In this Section, I will review the model introduced in Ref. [6] and I will focus on the
case of a single-axis political compass. The position in an axis is described by a vector
in a two dimensional space, ~Si, which represents a classical spin. More explicitly, it is
determined by the projection of the vector ~Si in it, cos θi, which is computed with the
angle θi ∈ [0, 2π). For the limit cases where the spin is completely aligned in the axis
(θi = 0 or π) we have that the projection is either cos θi = 1 or −1.

Representing the position in the political compass with a spin vector allows us to find
an Ising Hamiltonian that we call political Hamiltonian. As I explained in Section 1.3,
biases can be used to consider preferences and couplings between spins can be used
to consider interactions between individuals. In the following we will describe how to
build the political Hamiltonian, whose ground state configuration is considered to be
the expected configuration.

First, we will introduce opinion preferences of each individual, ~Bpref
i , which represent

the ideological background of each individual. We should also consider, in the same
manner, the effect of external agents as individual magnetic fields, ~Bext

i . This agents
could be either social events which can affect public opinion or even the influence of a
trending topic video. In this case, although the external agent may be the same for
every person, individual magnetic fields are considered because the effect on each person
may vary strongly. Both magnetic fields can be interpreted as components of a single
individual bias ~Bi = ~Bpref

i + ~Bext
i . The effect of the individual biases is introduced in
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the Hamiltonian as the term
−
∑
i

~Bi · ~Si. (3.2)

We must also consider the interaction between individuals, following a similar
reasoning to the deduction of Eq. 3.1,

−
∑
i,j

Jij ~Si · ~Sj, (3.3)

where Jij are the coupling constants. When the interaction is ferromagnetic, Jij > 0,
the spins tend to be aligned. While if the interaction is antiferromagnetic, Jij < 0,
coupled spins tend to point in opposite directions. The ferromagnetic (antiferromagnetic)
interaction is applied between individuals which tend to think alike (differently). The
strength of the interaction is represented by the absolute value of the coupling constant,
|Jij|. This allows us to distinguish strongly interacting individuals from the weakly
interacting ones. In fact, for a non-interacting pair we simply consider Jij = 0.

Under the consideration of the ideological background (− ~Bpref
i · ~Si), the effects of

external events (− ~Bext
i · ~Si), and the pairwise interaction (−Jij ~Si · ~Sj), we can define

the political Hamiltonian as

H = −
∑
i

~Bi · ~Si −
∑
i<j

Jij ~Si · ~Sj, (3.4)

where the second sum is performed for every different i, j pair. Consequently, by finding
the ground state configuration for the whole system, we can obtain the the spin state
~Si for each individual. Knowing those states will allow us to perform a prediction.

Precisely, if we focus on the case of two-option referendums the political Hamiltonian
has the form

H = −
∑
i

Bisi −
∑
i<j

Jijsisj, (3.5)

where we replaced ~Si by si = ±1, as we only care about the extreme cases in the axis.
According to Section 1.3 this Ising Hamiltonian can be described in terms of quantum
spins as

H = −
∑
i

Biσ
(i)
z −

∑
i<j

Jijσ
(i)
z σ

(j)
z , (3.6)

with σ(i)
z representing the z-direction spin operator, which makes it suitable for quantum

adiabatic computation.
It is worthy to mention a previous work employing similar Hamiltonians to reproduce

human opinion interaction and applied to forecasting election outcomes [15]. Nevertheless,
the focus on previous research is done in the analysis of the dynamics. In this case,
instead of looking for a dynamical analysis, the aim is to obtain the ground state that
would represent the most reasonable output.

3.4 Experimental procedure

We have tested the model introduced in the previous Section by running a simple
experiment employing data from social networks [6]. Indeed, using a small group of
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volunteers, who allowed us to collect data from their social networks, more precisely,
from Twitter, to construct the model and, afterwards, they made a two option poll
whose outcome we tried to predict using our model. In order to construct the political
Hamiltonian, we used their latest 200 tweets and latest 200 likes. The interactions were
restricted to positive interactions which are considered in a number aij that represents
the amount of positive reactions which individual j gave to i. Then, these constants
are used to obtain estimations for the parameters in Eq. 3.4.

As the coefficients aij are not symmetric the coupling between individuals is defined
as

Jij ≡
1
2(aij + aji). (3.7)

The individual fields, hi, which play the role of ~Bi in Eq. 3.4, were estimated considering
the total amount of positive reactions one individual produces,

hi ≡ fi
∑
j

aij, (3.8)

with the constant fi reflecting the initial preferences of the individual i. It will be set
to ±1 if the preference of that individual is known and to 0 if no previous preference is
determined.

Recalling that we will consider decisions with only two possible choices the spin
Hamiltonian reads

H =
∑
i

hisi −
∑
i,j

Jijsisj. (3.9)

More specifically, our experiment involved 10 individuals whose interactions were
employed to obtain the parameters for the Hamiltonian. Once the couplings were
obtained a survey with 9 questions was elaborated. This questions were of the form
choose "A" or "B", and stand for possible referendum options. Although the coupling
factors are assumed to be the same for every question, the initial preferences, fi, must
be adjusted depending on the question. Nevertheless, we do not have a measure of
the biases before the survey is done, thus we will use part of the information obtained
from the outcome of the survey in order to estimate their preferences. Precisely, we will
consider neutral preferences for most of the individuals, fi = 0, while fixing it, fi = ±1,
for a small subset by directly checking their answers to the survey.

In the following Section, I review the procedure to obtain the data from Twitter for
setting the parameters of the Hamiltonian in the aforementioned experiment. Let us
now advance the results from those interactions, which are condensed in the matrix a,
which reads

a =



0 3 2 1 4 11 21 3 0 2
2 0 3 3 1 2 2 0 0 0
1 3 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0
7 6 1 1 0 5 12 56 0 6
1 1 0 1 2 0 1 0 1 1
1 1 0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0
1 2 2 1 2 1 2 1 0 0



. (3.10)

29



3.5. GATHERING THE DATA FROM TWITTER

Employing this data we are able to construct the coupling matrix, J , given by Eq. 3.7

J =



0.0 2.5 1.5 0.5 5.5 6.0 11.0 2.0 0.0 1.5
2.5 0.0 3.0 2.0 3.5 1.5 1.5 0.0 0.0 1.0
1.5 3.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 1.0
0.5 2.0 0.5 0.0 0.5 1.0 0.5 0.0 1.0 0.5
5.5 3.5 0.5 0.5 0.0 3.5 6.5 28.5 0.0 4.0
6.0 1.5 0.0 1.0 3.5 0.0 1.0 0.0 1.0 1.0
11.0 1.5 0.0 0.5 6.5 1.0 0.0 0.5 0.5 1.5
2.0 0.0 0.0 0.0 28.5 0.0 0.5 0.0 0.0 1.0
0.0 0.0 0.0 1.0 0.0 1.0 0.5 0.0 0.0 0.0
1.5 1.0 1.0 0.5 4.0 1.0 1.5 1.0 0.0 0.0



. (3.11)

Although the individual fields, hi, depend on each question let us show the case where
all the initial preferences are set aligned, fi = 1,

h∗ =
(
47 13 5 3 94 8 8 3 2 12

)
, (3.12)

which shows the maximum absolute value each hi can have.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
A −1 +1 +1 −1 −1 +1 −1 −1 +1
B −1 +1 −1 −1 +1 −1 +1 −1 −1
C +1 −1 +1 +1 −1 +1 −1 +1 +1
D +1 −1 +1 +1 −1 +1 +1 +1 +1
E +1 +1 +1 −1 −1 +1 −1 −1 +1
F +1 −1 −1 +1 +1 −1 +1 +1 −1
G +1 +1 −1 +1 +1 −1 +1 +1 −1
H −1 −1 −1 +1 +1 −1 +1 +1 −1
I −1 +1 +1 −1 −1 +1 −1 −1 +1
J −1 +1 −1 +1 +1 −1 +1 +1 +1

Score 50% 50% 67% 62.5% 56% 89% 62.5% 62.5% 75%
Fixed E, G A, C A C, G G A C, D C, G A, G

Table 3.1: Results obtained from the survey and the accordance with our prediction. For
the 9 questions (Q1 - Q9) the answer given by each individual (A - J) is shown,
together with the prediction score obtained by the model. We also show which
individuals were fixed for each question.

In Table 3.1 we show the answer each individual (A - J) gave to each question (Q1 -
Q9). We also show the proportion of correctly predicted answers, which gives a score of
the correctness. According to the calculations performed, the model reproduces some
of the scenarios with great accuracy. We can check that the score obtained is above the
50% in all of them and reaches even 70− 90% for some questions.

3.5 Gathering the data from Twitter

For the purpose of collecting interactions in the social network, the Twitter API was
accessed by means of the Twython library available for Python. First, we will explain
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how the test group was selected and then the data obtained from their interactions.
For a brief description of the Twitter API, see Appendix A. The Python programs I
developed to perform the tasks described in this Section are available in the repository
of the University of the Basque Country (ADDI).

3.5.1 Deciding the test group

In order to have a suitable test group for the experiment, our aim was to find at
least 10 highly interacting individuals. Those users were chosen from the scientific
community close to quantum technologies, which enabled topic related questions and
facilitated the obtention of their permission. The challenge was to find a small group
that was also highly interacting in Twitter.

Initially 5 users were selected based on a qualitative insight. Once their mutual
interaction was ensured, we faced the task of getting at least 15 additional candidates.
The reason is to account with a margin in case some of them refuse to take part in the
survey. We tried to get the remaining participants from the Twitter contacts of one of
the members of the community, also connected with the 5 members of the initial group.
This provided us with near to 400 candidates.

The main objective is to find the most interacting subgroup from the 400 candidates,
which included the 5 initial users. In order to construct an optimal solution, we designed
a sorting criteria based on the interactions of the individuals with the initial group.
Moreover, once the interactions between users are measured, it is straightforward to find
the individuals that interact the most with the initial ones, but we also want those that
mutually interact strongly. Therefore, we designed a net analysis inspired by eigenvector
centrality and PageRank, an algorithm used to rank webpages [16].

Firstly, the interactions in the complete network of candidates were characterized and
the initial group (seed-group) was defined. Our ranking algorithm worked as follows,

1. Initially each individual in the net has 0 score points.

2. An initial score point, so, is added to each individual in the seed-group.

3. Each individual distributes their score, dealing to each target individual a portion
proportional to the connection the source individual has with the target individual.
The score shared is computed by dividing by a decrease factor, d, the original
score of the individual.

4. Each individual in the seed-group gets an additional score increment, si.

5. Repeat steps 3 and 4 until an ending criteria is met.

The initial score and the score increment of the seed-group ensures they behave as
the ’score-source’ in the score sharing process. Similarly, applying a decrease factor
prevents from selecting highly interacting users who are too far from the seed-group.

For this case, the choice so = 1, d = 1.05 and si = 0.1 perfectly worked iterating
100 times. We performed this twice, one implementing connections as follow/unfollow
relations and other considering the likes they gave to each other. From the best ranked
individuals, we selected the candidates for the experiment and asked for their permission
to take part in the experiment.
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3.5.2 Analysing the interactions

We will now consider the ten individuals named from A to J, in order to analyse
their interactions. According to the restrictions of Twitter API, we were only allowed
to employ data from the latest 200 posted and liked tweets. Depending on the user,
this usually varies from 1 to 4 months.

Figure 3.2: The interactions between users based on follows. The arrows show which users
are followed by a given user.

The first part of the analysis consists in checking whether the users mutually follow. In
Fig. 3.2, we show a directed graph in which each arrow represents connected individuals.
The arrow indicates who follows whom, and a double arrow means that they mutually
follow. This is useful to check that the selected group is highly connected.

The arrows depicted in Fig. 3.3a represent the amount of times an individual liked
a tweet posted by other individual. The data depicted in this plot is provided in
Table 3.3b.

Finally, arrows in Fig. 3.4a represent the amount of times a user retweeted other.
The data depicted in this graph is given in Table 3.4b.

We interpreted this interactions as positive interactions, reflecting the strength of a
ferromagnetic coupling between each pair of individuals. Finding a negative coupling
may be trickier, as Twitter does not provide a dislike button. It would have been
interesting to analyse the language used in the retweeted or replied tweets, searching
for negatively intended messages. Nevertheless, finding a reliable method to perform
that measurement without a great risk of false positives would be tough and out of
the scope of this project. It is worth, nonetheless, to explore this path if this model is
applied to a more elaborated decision process.

32



3.6. FORECASTING WITH QUANTUM ADIABATIC COMPUTERS

(a)

user 1 user 2 1 liked 2 2 liked 1
A B 2 1
A C 0 1
A E 5 3
A F 0 9
A G 0 22
A H 0 2
B C 1 2
B D 0 6
B E 1 0
B G 0 1
C E 1 0
E F 1 1
E G 0 7
E H 1 34
E J 5 4
F G 0 1
F I 0 2
F J 12 9
G H 0 1

(b)

Figure 3.3: The interactions between users based on likes, (a) graph representation of the
interactions and (b) table showing the raw data.

(a)

user 1 user 2 1 RTed 2 2 RTed 1
A E 4 0
A G 0 1
B C 1 0
B E 5 0
E F 0 3
E G 0 3
E H 0 16
E J 0 3
F J 1 0

(b)

Figure 3.4: The interactions between users based on retweets (RTs), (a) graph representation
of the interactions and (b) table showing the raw data.

3.6 Forecasting with quantum adiabatic computers

For the particular case of 10 individuals, the model can be computed with classical
resources, which is what was attained in Ref. [6] as a proof of principle. Nevertheless,
it is also possible to solve the model using quantum adiabatic computation and it
is meaningful for larger networks. In this Section, I describe a simulated quantum
adiabatic computation process using the software offered by D-Wave [8]. The simulation
of this example shows that the parameters of the model can be easily codified as a
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natural input for quantum adiabatic computers.
I employed the SimulatedAnnealingSampler class, available in the neal library

offered by D-Wave. With this class we can simulate a request to a quantum adiabatic
computer, using the very same input and output formats. In order to use the method
sample_ising, which reproduces the results we would obtain, we need to recast hi and
Jij to a Python dictionary format. For example,

1h = {0 : 0 , 1 : 0 , 2 : −5, 3 : 0 , 4 : 0 , 5 : 0 , 6 : 8 , 7 : 0 ,
28 : 0 , 9 : 0}
3J = {(0 , 1 ) : −2.5 , (0 , 2 ) : −1.5 , (0 , 3 ) : −0.5 , (0 , 4 ) : −5.5 ,
4(0 , 5 ) : −6.0 , (0 , 6 ) : −11.0 , (0 , 7 ) : −2.0 , (0 , 9 ) : −1.5 ,
5(1 , 2 ) : −3.0 , (1 , 3 ) : −2.0 , (1 , 4 ) : −3.5 , (1 , 5 ) : −1.5 ,
6(1 , 6 ) : −1.5 , (1 , 9 ) : −1.0 , (2 , 3 ) : −0.5 , (2 , 4 ) : −0.5 ,
7(2 , 9 ) : −1.0 , (3 , 4 ) : −0.5 , (3 , 5 ) : −1.0 , (3 , 6 ) : −0.5 ,
8(3 , 8 ) : −1.0 , (3 , 9 ) : −0.5 , (4 , 5 ) : −3.5 , (4 , 6 ) : −6.5 ,
9(4 , 7 ) : −28.5 , (4 , 9 ) : −4.0 , (5 , 6 ) : −1.0 , (5 , 8 ) : −1.0 ,
10(5 , 9 ) : −1.0 , (6 , 7 ) : −0.5 , (6 , 8 ) : −0.5 , (6 , 9 ) : −1.5 ,
11(7 , 9 ) : −1.0}

To determine the directions of h2 and h6 their answers were checked, as explained in
Section 3.4. Then the quantum adiabatic process is simply simulated with the following
lines:

12s o l v e r = nea l . SimulatedAnneal ingSampler ( )
13sampleset = s o l v e r . sample_is ing (h , J , num_reads=10)
14output = sampleset . f i r s t [ 0 ]

Let me briefly describe this code. In line 12, I create an object which simulates the
streamline with a real quantum computer. In line 13, I call a method simulating a
request for an experiment with the defined bias and coupling values, which is iterated
10 times. In the sampleset object, the information about the different runs of the
experiment would be saved, and in line 14, the configuration for the configuration with
the lowest energy obtained is accessed and saved in the output variable. Finally, we
can see the comparative between the prediction and the result obtained in the poll:

Prediction: [−1, −1, −1, −1− 1, −1, −1, −1, −1, −1]
Poll: [ 1, −1, 1, −1, 1, −1, −1, −1, 1, −1],

which results in an accordance score of 60% between the prediction and the poll.
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Conclusions

Social dynamics have been successfully described employing mathematical models
inspired by physical systems. Along these lines, we have described a model that
can forecast the results of two option referenda, codifying it in a spin Hamiltonian
representing a network of individuals. Additionally, we have shown how this problem
can be solved using quantum adiabatic computation, which is a computational paradigm
that uses the principles of quantum adiabatic evolution to find configurations minimising
given cost functions.

In the first chapter, an introduction to quantum adiabatic computation is provided
starting from the most fundamental concepts of quantum mechanics and understanding
the representation of the Hamiltonian in quantum systems, which plays the roll of
their energy. Due to the adiabatic theorem, a quantum system in its ground state
(the configuration that minimises its energy) can be slowly varied towards the final
Hamiltonian while keeping it in the ground state. This enables us to find the ground
state configuration of an arbitrary Hamiltonian, which can encode the formulation of
satisfiability problem, for example.

After introducing the fundamental theoretical concepts of adiabatic quantum compu-
tation, we have reviewed the physical implementation of quantum adiabatic computation
with superconducting circuits in Chapter 2. This chapter provides a brief description of
the technical details of quantum adiabatic processors, which allows us to describe the
scope of problems that can be implemented in these platforms. Satisfiability problems
can be solved and the minimal energy configuration for Ising Hamiltonians, e.g. the
one considered in the final chapter, can be found as far as the size of the network and
its connectivity is limited.

Finally, the last chapter is dedicated to describe the model for election forecasting
based on spin systems published in Ref. [6]. First, I introduce the mathematical
formulation of the model. Afterwards, I show how the data retrieval from Twitter was
performed, and how the couplings are constructed by means of likes and retweets of
individuals within a chosen network. The Python programs I developed to perform this
task are available in the repository of the University of the Basque Country (ADDI).
Finally, this model is used to predict the possible outcomes of a poll with two option
questions performed to the network of individuals.

Altogether, this work shows that quantum adiabatic computation can be used to find
optimal configurations for a spin model. In particular, we have applied it to predict the
results of polls, which could be used to predict elections and referendums. Additionally,
we have reviewed the technical resources provided by D-Wave to implement quantum
adiabatic computation, which could be used to solve the political forecasting model.
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Future perspectives would include to implement the problem in a D-Wave computer
and to use other sources to set the parameters of the model, such as other social
networks or preliminary surveys. This could allow us to design a better real interactions
in the Hamiltonian. Certainly, testing the model with a larger network would be
enriching. This would provide not only a more accurate result from the statistical point
of view, but it would also provide the opportunity to perform a deeper analysis of the
interactions.
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Appendix A

Requests to the Twitter API

Here I briefly expose the request types employed, in order to clearly expose the
available data and the challenge in its entirety. This information is a summary of the
Twitter API Documentation [17] sticking to the relevant information for our purposes.

It is a commonplace to use user objects to handle the data about a user. The
relevant attributes held within this objects usually are: the user id, the user name, the
screen name, the count of followers and the count of friends. They also contain a status
object containing creation data, biography text... To identify users within the net we
will employ their user ids and map them to a new code when shown, so as to ensure
anonymity.

GET friends/ids, GET friends/list. These requests allow us to get the list of
users followed by a given user, also called friends. The first one returns only the ids
of each friend, while the second one provides a user object containing complementary
information. The first method returns a maximum of 5,000 ides per distinct request,
the second a maximum of 200 users. Both allow at most 15 request per 15 minutes. The
methods also provide complementary data and parameters to adjust to the requirements
of the application.

GET friendship/show. Given a source user and a target user a response will be
provided with a relationship object. The attributes of relationship provide if they
follow each other, among others. We are allowed 180 request per 15 minutes.

GET statuses/user_timeline. Returns the latest tweets posted by a given user.
This also contains retweeted tweets and some optional parameters are allowed to filter
the obtained result. There is a 1,500 request per 15 minutes limit and a maximum of
100,000 request a day. Each request contains a maximum of 200 tweets. Each tweet
contains its creation data, the user that posted it, its text, if it was in reply to any
other tweet or user, the count of retweets and favourites it has. When retweeted you
get the whole user object of the retweeted account. This is the best way we found to
check if users retweeted each other.
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GET favourite/list. Returns the list of the latter liked tweets by a specified user.
The user that posted the tweet id within the tweet object, as mentioned above. A
maximum of 200 tweets can be obtained in each request and the request limit is of 75
request per 15 minutes. We are kept from accessing tweets that are too old, limiting
our capacity to gather liked tweets.
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