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ABSTRACT: Despite the widespread use of cross-dehydrogenative couplings in modern organic synthesis, mechanistic studies are still 

rare in the literature and those applied to α-amino carbonyl compounds remain virtually unexplored. Herein the mechanism of a Co-catalyzed 

CDC of N-aryl glycinates with indoles is described. DFT studies supported the formation of an imine type intermediate as the more plausible 

transient electrophilic species. Likewise, key information regarding the role of the N-aryl group and free NH motif within the reaction 

outcome has been gained, which may set the stage for further developments in this field of expertise. 

Introduction 

C–H functionalization reactions have undoubtedly changed the 

landscape of modern organic chemistry, thus enabling the develop-

ment of unprecedented tactics through innovative bond disconnec-

tions.1 As a result, the modification of otherwise unreactive C–H 

bonds in a predictable and sustainable fashion remains a pressing 

goal of prime synthetic interest.2 In particular, Cross-Dehydro-

genative Couplings (CDCs) occurring between two distinct C–H 

reactive sites have recently emerged as atom-economical, yet envi-

ronmentally friendly techniques for the assembly of a vast array of 

C–C and C–heteroatom linkages.3 They have spawned many ad-

vantages including the use of first-row transition metals such as 

copper, iron or cobalt as efficient catalysts and the production of 

minimal chemical waste by avoiding the use of pre-functionalized 

compounds (Scheme 1).  

Scheme 1. CDC processes with tertiary and secondary amines

In 2004, Li reported the first oxidative coupling of tertiary amines 

with terminal alkynes upon copper catalysis.4 Since then, CDCs to-

ward the modification of α-C–H bonds in adjacent position to ni-

trogen atoms have received a great deal of attention and has 

evolved into a powerful platform for forging α-substituted amines.5 

However, despite their widespread use in organic synthesis, mech-

anistic studies are still rare in the literature and in particular those 

applied to secondary amines remain virtually unexplored. Accord-

ingly, the understanding of the underlying key elemental steps for 

the formation of the corresponding electrophilic transient interme-

diates is of paramount significance and will be pivotal in spurring 

new applications of CDCs in the years to come at the forefront of 

organometallic chemistry. 

Since the first reports by Miura6 and Murahashi7 with Fe- and Ru-

based catalytic systems, respectively, metal-catalyzed oxidative 

functionalizations of tertiary amines have been posited to proceed 

via the formation of electrophilic iminium species. Despite the ex-

istence of a few comprehensive mechanistic investigations, they 

rendered divergent mechanistic scenarios and hence the exact mode 

of activation of the amine derivative still remains a matter of de-

bate. In this light, Klussmann and co-workers8 experimentally 

demonstrated the intermediacy of the iminium ion Int-A derived 
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from a direct oxidation by the metal source when using a combina-

tion of CuCl2/O2 as the catalyst/oxidant system and N-aryl tetrahy-

droisoquinolines (THIQs) as substrates (Scheme 2, route a). Fur-

ther DFT studies supported the formation of the latter species upon 

a Single Electron Transfer (SET)/ Hydrogen Atom Transfer (HAT) 

sequence.9 Conversely, when using the system CuBr/tert-butyl hy-

droperoxide (TBHP), the peroxy species Int-B was shown to be a 

more plausible intermediate through DFT studies.10 On the other 

hand, studies by Doyle and co-workers11 on the use of N,N-dime-

thylanilines proposed an initial SET step toward the formation of 

the ensuing N-centered radical cation Int-D which would further 

undergo a proton transfer (PT)/SET sequence to deliver the corre-

sponding iminium intermediate Int-E (Scheme 2, route b). There-

fore, it is evident that the conclusions made for a particular system 

may not be extended to other related ones and the nature of the cat-

alyst, oxidant (oxygen vs organic peroxides) and amine derivative 

played a determinant role in the reaction pathway. 

 

Scheme 2. Proposed mechanisms for CDCs with tertiary 

amines 

Driven by their important biological applications in proteomics and 

drug discovery, α-amino carbonyl compounds have lately emerged 

as a prominent class of bio-based compounds.12 C–H functionali-

zation represents a straightforward avenue for the construction of 

α-substituted amino acids and peptides13 that are beyond the reach 

of traditional methods based on solid-phase techniques and carban-

ion chemistry. Due to the lack of mechanistic studies covering the 

oxidative coupling of secondary amines upon CDC processes, it is 

a common practice to propose reaction pathways derived from the 

extrapolation of the conclusions made with tertiary amine deriva-

tives or indirect experimental evidences. As a result, the formation 

of an electrophilic α-aldimine or α-aldiminium intermediate, 

through the oxidation of the starting α-amino carbonyl compound 

and further reaction with the corresponding nucleophile is gener-

ally accepted as a reasonable mechanism (Scheme 3).14 However, 

in-depth investigations are clearly required to gain some insights 

into the fundamental steps of the process, thereby understanding 

the unique features as well as the current limitations of the existing 

CDCs. 

 

Scheme 3. CDC processes with N-aryl Gly compounds 

On the one hand, the existing methods mostly allow the modifica-

tion of terminal N-aryl glycine (Gly) units and their corresponding 

N-acyl analogues are rarely utilized.15 On the other hand, N,N-di-

substituted Gly derivatives seem to be unsuitable substrates in these 

endeavors. In line with our interest in C–H functionalization,16 we 

have recently described the efficient CDC reaction between a vari-

ety of N-aryl Gly compounds and indoles featuring the use of an 

aqueous solution of TBHP and Co(acac)2 as the oxidant and cata-

lyst, respectively.17 On the basis of previous reports,18 the interme-

diacy of an iminium type species was tentatively suggested in our 

initial report (Scheme 4). The reaction was proposed to start with 

the Co(II)-induced decomposition of tBuOOH,19 and subsequent 

HAT would furnish the alkyl radical intermediate Int-F. The latter 

would be likely converted through a SET event assisted by Co(III) 

to the electrophilic iminium ion Int-G, which upon reaction with 

the corresponding indole would eventually deliver the coupling 

product. The proposed mechanism was merely speculative and fur-

ther studies were clearly required to rationalize the formation of the 

electrophilic intermediate, the strong requirement of the terminal 

N-aryl group20 and the crucial role that the NH group seemed to 

have within the reaction outcome. The latter are indeed common 

features in a variety of CDCs with amino acids and peptides.14 Ac-

cordingly, we have performed a computational study of the CDC 

between N-aryl glycinates and indoles in the presence of a 

Co(II)/tBuOOH catalytic system and the more important conclu-

sions are disclosed herein. To the best of our knowledge, this study 

represents the first computational investigation of a metal-cata-

lyzed CDC involving a secondary amine derivative and the ob-

tained results could facilitate the development of new late-stage 

modification of peptides via CDC techniques.21 



 

 

Scheme 4. Co-catalyzed heteroarylation of Gly-containing pep-

tides 

Results and Discussion 

It is often assumed that tert-butylhydroperoxide (TBHP) can be 

easily decomposed under thermal conditions and with the aid of 

either transition metal salts such (Cu, Fe and Co) or iodide salts.22 

Owing to the redox-active role of the metal, both tert-butoxyl 

(tBuO) and tert-butylperoxyl radicals (tBuOO) would likely co-

exist within our reaction conditions. In principle, any of them could 

be responsible for the first hydrogen abstraction step (HAT-1) on 

the Gly derivative 1 to produce the carbon-centered radical Int-H 

(Scheme 5). However, irrespective to the mechanistic nuances, 

HAT with tBuO species have been documented to be faster than 

the formation of tBuOO.10,23 Inspired by the mechanistic studies 

conducted with tertiary amines,8-11 different reaction pathways can 

be envisaged toward the formation of the transient electrophilic 

iminium or imine species (Scheme 5). First, a direct radical cou-

pling with tBuOO would provide Int-I, which has been proposed 

to exist in equilibrium with the corresponding iminium ion Int-J 

(route a). Second, oxidation to the carbocation Int-K upon an elec-

tron-transfer step (SET-3) (route b). The latter could also be inter-

cepted by the tBuOOH or its corresponding anion to yield Int-I 

(route d). And third, H abstraction could furnish a neutral imine 

intermediate (route c). 

Before starting with our computational studies, we conducted some 

control experiments in order to discard or support the intermediacy 

of some of the possible transient species depicted above. In this re-

gard, we synthesized the highly reactive imine Int-L-PMP and the 

α-tert-butyldioxyl intermediate Int-I-Ph and submitted to the pre-

viously optimized reaction conditions (Scheme 6). The treatment 

of imine Int-L-PMP with indole afforded the CDC product 3b in 

99% yield in the absence of both metal and TBHP even at room 

temperature, thus discarding any role of the latter components 

within the nucleophilic attack of the indole. On the other hand, per-

oxyl derivative Int-I-Ph furnished non-functionalized Gly com-

pound 1a in 41% yield and just traces of the coupling product 3a 

were detected under the standard conditions. As a result, experi-

mental evidences would render unlikely the intermediacy of Int-I 

and hence route a and route d may not represent a feasible mecha-

nistic scenario. Furthermore, in accordance with literature re-

ports,18b,24 tertiary amine 4 remained unreactive under the standard 

conditions and variations on the nature of the metal source or tem-

perature did not result in the formation of the corresponding prod-

uct. 

 

Scheme 5. Co-catalyzed routes toward the electrophilic species 

 

Scheme 6. Control experiments with possible intermediates 

Based on the possible reaction mechanisms disclosed in Scheme 5 

and the results of the control experiments, different reaction path-

ways have been considered by means of Density Functional Theory 



 

(DFT).25 The main questions to be answered by these theoretical 

calculations are the following:  

i) Is the imine or the iminium cation pathway preferred?  

ii) Which is the actual Co redox cycle?  

iii) Why tertiary amines do not react in these CDCs?  

iv) Which is the role of the N-aryl group? 

In order to elucidate all these issues, we focused our calculations 

on three distinct glycine derivatives (1a-c) (Scheme 6). All the car-

tesian coordinates of the species mentioned hereafter are given in 

the Supporting Information, along with the corresponding calcu-

lated enthalpies, Gibbs free energies and imaginary harmonic fre-

quencies for Transition States. Notice that along this study, infi-

nitely separated reactants and products are considered along with 

reactant complexes, transition states, intermediates and products, in 

order to ensure the continuity of the reaction energy profiles (see 

Section 3 in SI for further details).25 Hence, in order to avoid the 

unphysical overestimation of entropic effects due to the no inclu-

sion of explicit solvent molecules,26 all the energetic discussion 

will be carried out with enthalpies. 

Owing to the good performance of Ph-Gly-OEt (1a) within the Co-

catalyzed CDC with indoles, our initial study commenced with the 

characterization of its full reaction mechanism including a compar-

ative analysis of previously mentioned routes for the CDC with in-

doles. Before going beyond, however, there are two issues that may 

be fixed: the most favorable spin states of Co(II) and Co(III) spe-

cies as well the Co redox cycle in our reaction pathway. Regarding 

the spin states of Co(acac)2 species, doublet and quadruplet planar 

and tetrahedral species have been considered (Figure 1). According 

to our calculations, the most stable structure is the tetrahedral quar-

tet spin state, with 2.96 kcal/mol and 25.83 kcal/mol difference 

with respect to the quartet and doublet planar structures, respec-

tively. No tetrahedral doublet structure was found. Hence, we have 

considered the quartet tetrahedral species as the most stable one for 

the Co(acac)2 catalyst.  

 

  
Figure 1. Calculated planar (left) and tetrahedral (right) structures 

for doublet and quartet spin states of Co(acac)2 

 

As depicted on Scheme 5, the Co(II) catalyst would assist the cleav-

age of the oxidant, thereby providing the tBuO radical and the cor-

responding hydroxylated Co(III) complex upon the SET-1 step. 

Three possible spin states have been considered for the hydrox-

ylated Co(III) complex: singlet, triplet, and quintet complexes have 

been calculated and the most stable species is the quintet, being the 

triplet and singlet states 22.86 kcal/mol and 29.44 kcal/mol higher 

in energy, respectively. This peroxidation process leading to quin-

tet Co(acac)2OH complex, commonly referred to as Haber-Weis 

cycle, has been studied by UV-VIS spectroscopy19b and has an en-

ergy penalty of 19.31 kcal/mol. Since the Gly counterpart is not 

involved, this energy value is common to all Gly compounds re-

gardless of their substitution pattern. In principle, the so-formed 

Co(III)-OH complex may react with tBuOOH, leading to the recov-

ery of the Co(II) catalyst and the formation of tBuOO through the 

SET-2 step. This process is exothermic by -11.82 kcal/mol. Ac-

cordingly, the Co-redox cycle upon SET-1 and SET-2 would be 

overall endothermic by 7.49 kcal/mol and hence the formation of 

tBuOO radical species would be unlikely to happen. Conse-

quently, route a could be reasonably discarded. Based on existing 

precedents and our computational studies,27 we concluded that 

tBuO species is much more reactive than tBuOO and that the sub-

sequent HAT event will be more likely to occur with the former 

radical species.  

 

Having all these considerations in mind, Figure 2 collects the pro-

posed reaction mechanism for Gly derivative 1a. As described be-

fore, the first step would be the catalyst oxidation step through 

SET-1 with an energy penalty of 19.31 kcal/mol, leading to the 

formation of tBuO radical. In this manner, upon initial approach 

of tBuO species to Gly derivative 1a a reactant complex slightly 

stabilized with respect to the separated species would be formed (2-

RC in Figure 2). The oxygen atom is orientated towards one of the 

α-hydrogen atoms within Gly 1a, and the corresponding hydrogen 

abstraction has a small barrier of around 5 kcal/mol respect to the 

reactant complex, which would lead to the formation of the carbon-

centered radical Int-H-Ph. Notice that the latter is stabilized 

through delocalization within the aromatic group and the π-electron 

pair of the neighboring nitrogen atom. As a result, intermediate Int-

H-Ph is planar. The spin density on the α-C atom was calculated to 

be 0.587 and 0.183 in the adjacent nitrogen atom, which under-

pinned the existing radical delocalization. The formed intermediate 

is hence stabilized, and located -26.56 kcal/mol below the reactant 

complex of this step and -10.16 kcal/mol below the reactants.25 

 

Once intermediate Int-H-Ph is formed, two plausible reaction 

pathways could happen: an oxidation toward iminium ion Int-K-

Ph through SET-3 (Scheme 5, route b) or a hydrogen abstraction 

through HAT-2 to deliver imine Int-L-Ph (Scheme 5, route c). The 

latter are depicted on Figure 2,28 wherein it is clearly shown that 

the formation of the iminium cation intermediate Int-K is energet-

ically unfavorable and is located much higher in energy in the po-

tential energy surface. Therefore, the carbon-centered glycine rad-

ical Int-H-Ph would be prone to undergo a subsequent HAT-2 step 

(Scheme 5, route c) in order to yield the imine intermediate rather 

than being oxidized to the ensuing iminium ion Int-K-Ph (Scheme 

5, route b). In this manner, a Int-H-Ph–Co(III)-OH reactant com-

plex is formed (3RC in Figure 2), which is stabilized by the for-

mation of a hexacoordinated species, where a hydrogen bond is 

formed between the secondary amine and the OH of the cobalt 

complex. 

 

 

 

 

 

 

 

 

  



 

 

Figure 2. Full reaction mechanism with compound 1a. RC, PC and TS stand for reactant complex, product complex and transition state, 

respectively, and the number in front accounts for the reaction step; Energy profile (ΔH) in kcal/mol.

As shown in Figure 2, this reaction complex 3RC is ready to un-

dergo a hydrogen abstraction by the hydroxylate ion leading to the 

recovery of the Co(II) catalyst, thereby closing the Co-redox cycle, 

and the formation of a water molecule. This type of reductions of a 

Co(III)-OH complex via hydrogen transfer are known in other cat-

alytic reactions such as decomposition of hydroperoxides.19b,29 

Compared to the initially proposed Co redox cycle where Co(III)-

OH could be reduced to Co(II) with an enthalpy difference of -11 

kcal/mol upon a SET-2 step (Scheme 5), the formation of the Int-

L-Ph and recovery of Co(II) catalyst via the HAT-2 step is favored 

by -45 kcal/mol, thus 34 kcal/mol more favorable. 

Interestingly, Int-H-Ph–Co(III)-OH reactant complex 3RC could 

undergo an unexpected and unproductive reaction pathway wherein 

a new C–O bond form is formed between the carbon centered rad-

ical and the oxygen atom within one of the acetylacetonate ligands 

(route e). The latter is competitive in energy with the HAT-2 pro-

cess, but the resulting non-reactive adduct lies 7 kcal/mol above, 

and the calculated TS barrier is 10 kcal/mol higher than the HAT-

2 one. Nevertheless, an intermediate between 3-RC and both TS’s 

is missing. All attempts to locate such intermediate eventually 

ended on either Int-L-Ph–Co(acac)2 complex, or the alternative 

mentioned adduct.25 Careful analysis underpinned the crucial im-

portance of the electron density of the carbon atom within the rad-

ical species Int-H to undergo such an unproductive route and hence 

the importance of using N-aryl groups to minimize the reactivity of 

the radical intermediate upon effective delocalization (vide infra).  

As it will be later explained, the released water molecule may play 

a key role in the final coupling with the corresponding indole. Im-

portantly, this step is crucial in the reaction mechanism and the hy-

drogen atom transfer could not occur over tertiary amines, which 

reasonably explains the experimental evidence that N-methyl gly-

cine derivative 4 was not reactive under the standard CDC reaction 

conditions. This concordance between the theoretical and experi-

mental results reinforces the viability of route c featuring the for-

mation of an imine intermediate. 

 

Once imine intermediate Int-L-Ph is formed, it may undergo fur-

ther nucleophilic attack by the corresponding indole derivative to 

furnish the targeted CDC product 3a. Although straightforward at 

first sight, this attack was found to occur upon a two-step sequence 

facilitated by the water molecule released along HAT-2. In the first 

step, indole 2 would approach to the electrophilic imine Int-L-Ph, 

thus forming a reactant complex by hydrogen bonding with the wa-

ter molecule. Indeed, the water molecule was found to play a dual 

role and not only enabled the coordination of the electrophile and 

the nucleophile but also assisted the nucleophilic attack itself. In 

this respect, imine Int-L-Ph could increase its electrophilicity upon 

hydrogen bonding with the water molecule, thus allowing the sub-

sequent attack of the indole to forge the new C–C bond. In the sec-

ond step (4-TS2 in Figure 2), rearomatization of the indole motif 

would deliver the targeted coupling product.  

 

With the aim to clarify the actual role of the phenyl ring in the re-

action outcome, the reaction mechanism was also calculated for 

glycine derivatives 1b and 1c bearing a p-methoxyphenyl and an 

acetyl motif at the nitrogen atom, respectively.25 The first main dif-

ference between the N-aryl glycinates 1a and 1b and the parent N-

acetyl derivative 1c is that the carbon-centered radical Int-H is 

much less stabilized for 1c, which is in accordance with the com-

mon trend of utilizing N-aryl compounds in these oxidative func-

tionalization reactions. Notice that the products of the formation of 

the radicals lie around 6-7 kcal/mol higher in energy in comparison 

to the N-aryl substituted radicals.25 In particular, the stabilization of 

the aromatic radicals Int-H-Ph and Int-H-PMP is due to the effec-

tive delocalization of the radical. Spin densities for the α-carbon 

atom show values of 0.587, 0.563 and 0.708 for Int-H-Ph, Int-H-

PMP and Int-H-Ac, respectively. Based on these values, it can be 

concluded that the radical is more delocalized in N-aryl derivatives.  

Recall that the more delocalized the radical is, the higher its stabil-

ity. This stabilization effect is also observed in the formation of the 

Int-H–Co(III)-OH complex and the corresponding imine interme-

diate Int-L, which are more stable for N-aryl derivatives by roughly 

15 kcal/mol. The higher stabilization of the imine derivatives Int-

L-Ph and Int-L-PMP in comparison with Int-L-Ac shows that the 



 

hydrogen atom transfer occurring in this step is more difficult for 

1c than for the parent aromatic compounds 1a and 1b. In fact, ow-

ing to the higher electron density of the carbon radical of Int-H-Ac 

derived from the N-acetyl glycine derivative 1c, in this case com-

plex 3RC would preferentially evolve into the formation of a new 

adduct through route e instead of the expected HAT-2 with the 

concomitant reduction of the Co(III) catalyst (Scheme 7).  

 

Scheme 7. Distinct reactivity of N-aryl and N-acyl derivatives 

Despite the similar energy values toward the formation of Int-H, 

the presence of an N-acetyl group clearly favors the unproductive 

route e. Conversely, in the case of the N-aryl compounds, Int-L-

Ph and Int-L-PMP are the preferred products through route c (Fig-

ure 3). Consequently, the formation of Int-L-Ac would be frus-

trated due to the high spin density concentration in the α-carbon. 

According to these results, the experimental evidence of the higher 

reactivity of aromatic amine derivatives versus the lack of reactiv-

ity of the acyl analogues may be reasonably explained. In fact, a 

wide variety of extra experiments were performed with N-acyl gly-

cine derivative 1c (Table S1, Supporting Information), but the tar-

get CDC product 3c was never detected, which reinforced the hy-

pothesis that an aromatic moiety within the N-terminal position is 

required for the process to occur. On balance then, we could con-

clude that the formation of the imine species Int-L upon route c is 

the preferred pathway to obtain the CDC product, which is favored 

by the presence of aryl groups within the terminal nitrogen atom. 

 

 

Figure 3. Comparison of the reaction energetics (in kcal/mol) for 

1a and 1c within route c (straight line) and route e (dashed line) 

Based on the DFT studies disclosed above, we revisited the origi-

nally proposed reaction mechanism featuring the intermediacy of 

iminium species,14,17 and the most feasible reaction pathway in-

volving a neutral imine intermediate is disclosed in Scheme 8. The 

reaction was proposed to start with the Co(II)-induced cleavage of 

tBuOOH to produce the active tBuO species, which would further 

deliver a carbon-centered alkyl radical upon a HAT event. The lat-

ter would undergo a more energetically favored hydrogen abstrac-

tion by the Co(III) species, thus closing the catalyst cycle and de-

livering the electrophilic imine intermediate. Eventually, the nucle-

ophilic attack of the indole would furnish the target coupling prod-

uct, which seems to be favored by the water molecule released 

along the HAT-2.  

 

Scheme 8. Proposed revised mechanism for the Co-catalyzed 

heteroarylation of N-aryl glycinates 

Conclusions 

In summary, we have investigated the mechanism of Co-catalyzed 

CDC of N-substituted glycinates with indoles by DFT studies. Alt-

hough merely speculative, existing reports commonly proposed the 

intermediacy of both imine and iminium-type species in these en-

deavors; however, the nature of the actual electrophilic intermedi-

ate remained unclear. Our computational studies supported the for-

mation of a neutral imine species as the more favorable pathway in 

the Co-catalyzed heteroarylation of glycine-containing com-

pounds. Likewise, this route seemed to be favored when using N-

aryl substituted derivatives and secondary amines as substrates due 

to the strong delocalization of the α-carbon centered radical inter-

mediate. These computational studies are in full agreement with the 

common practice of performing CDC reactions with N-aryl glycine 

compounds and the rationale described herein could lay the foun-

dation for further developments in this field of expertise.  

Experimental Section 

Control Experiments with Preformed Intermediate Int-L-

PMP: A reaction tube containing a stirring bar was charged with 

imine Int-L-PMP (0.25 mmol, 103 mg) and indole (0.25 mmol, 

29.3 mg). The reaction tube was then evacuated and back-filled 

with dry argon (this sequence was repeated up to three times). 

Then, MeCN (1 mL) was added under argon atmosphere and the 

reaction was stirred at room temperature for 24 hours. The mixture 

was then concentrated under reduced pressure and purified by flash 

chromatography (hexanes/EtOAc 9/1) to deliver 80 mg (99% yield) 

of 3b as a brownish oil. The spectroscopic data corresponded to 

those previously reported in the literature.17  

Control Experiments with Preformed Intermediate Int-I-Ph: A 

reaction tube containing a stirring bar was charged with Int-I-Ph17 

(0.50 mmol, 134 mg), Co(acac)2·H2O (5 mol %) and indole (1.00 

mmol, 117 mg). The reaction tube was then evacuated and back-

filled with dry argon (this sequence was repeated up to three times). 

Then, dry MeCN (1 mL) and an aqueous solution of TBHP (70 wt. 

% in H2O) (2.00 equiv.) were added under argon atmosphere. The 

reaction tube was next warmed up to 40 ºC and stirred for 16 hours. 

The mixture was then allowed to warm to room temperature, con-

centrated under reduced pressure and purified by flash chromatog-

raphy (Hexane/EtOAc, 8/2) to deliver 37 mg (41% yield) of prod-

uct 1a as a white solid and just traces of coupling product 3a. 
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