
mathematics

Article

Differential Evolution Optimal Parameters Tuning with
Artificial Neural Network

Manu Centeno-Telleria 1,* , Ekaitz Zulueta 1,*, Unai Fernandez-Gamiz 2 , Daniel Teso-Fz-Betoño 1

and Adrián Teso-Fz-Betoño 1

����������
�������

Citation: Centeno-Telleria, M.;

Zulueta, E.; Fernandez-Gamiz, U.;

Teso-Fz-Betoño, D.; Teso-Fz-Betoño,

A. Differential Evolution Optimal

Parameters Tuning with Artificial

Neural Network. Mathematics 2021, 9,

427. https://doi.org/10.3390/

math9040427

Academic Editor: Fabio Caraffini

Received: 20 January 2021

Accepted: 18 February 2021

Published: 21 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 System Engineering and Automation Control Department, University of the Basque Country (UPV/EHU),
Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain; daniel.teso@ehu.eus (D.T.-F.-B.); ateso001@ehu.eus (A.T.-F.-B.)

2 Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country (UPV/EHU),
Nieves Cano 12, 01006 Vitoria-Gasteiz, Spain; unai.fernandez@ehu.eus

* Correspondence: mcenteno004@ehu.eus (M.C.-T.); ekaitz.zulueta@ehu.eus (E.Z.)

Abstract: Differential evolution (DE) is a simple and efficient population-based stochastic algorithm
for solving global numerical optimization problems. DE largely depends on algorithm parameter
values and search strategy. Knowledge on how to tune the best values of these parameters is
scarce. This paper aims to present a consistent methodology for tuning optimal parameters. At the
heart of the methodology is the use of an artificial neural network (ANN) that learns to draw links
between the algorithm performance and parameter values. To do so, first, a data-set is generated and
normalized, then the ANN approach is performed, and finally, the best parameter values are extracted.
The proposed method is evaluated on a set of 24 test problems from the Black-Box Optimization
Benchmarking (BBOB) benchmark. Experimental results show that three distinct cases may arise
with the application of this method. For each case, specifications about the procedure to follow are
given. Finally, a comparison with four tuning rules is performed in order to verify and validate the
proposed method’s performance. This study provides a thorough insight into optimal parameter
tuning, which may be of great use for users.

Keywords: evolutionary algorithm; differential evolution; parameter tuning; artificial neural network

1. Introduction

Optimization is the act of transforming something as conveniently as possible. From a
mathematical perspective, optimization is the process of finding the global maximum or
minimum of an objective function. The conventional techniques such as gradient-based
methods or deterministic hill climbing are not generally competent to solve nonlinear
global optimization problems [1]. In that context, evolutionary algorithms (EAs) have
been widely employed. EAs intrinsic stochastic component allows finding global optimal
points surpassing the conventional techniques. The field of evolutionary algorithms is
mostly constituted by genetic algorithm (GA), evolutionary programming (EP), evolution
strategies (ESs) and differential evolution (DE), see Das et al. [2].

The problems that intelligent algorithms such as DE and EAs are capable of solving,
all of them belonging to swarm algorithms, are complex. These algorithms do not require
gradient calculations of the function to be optimized. Furthermore, it does not require prac-
tically any particularly strong characteristics in the definition of optimization. For example,
it is possible to perform these algorithms with non-continuous and non-differentiable cost
functions. Additionally, it is also possible to use without having an analytical expression
that directly links the optimization variables with the cost function. Moreover, they are
optimization algorithms that easily avoid local minima by their nature. Complex opti-
mization problems are shown in the following references [3–7]. In differential equations
optimization, possible solutions must be defined by a finite parameter set. Once possible

Mathematics 2021, 9, 427. https://doi.org/10.3390/math9040427 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1362-3552
https://orcid.org/0000-0001-9194-2009
https://orcid.org/0000-0002-2740-510X
https://doi.org/10.3390/math9040427
https://doi.org/10.3390/math9040427
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040427
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/427?type=check_update&version=2

Mathematics 2021, 9, 427 2 of 20

solutions are described by a parameter set, this parameter set is optimized in order to
minimize a cost function.

Among EAs, DE is a simple and competitive algorithm proposed by Storn and
Price [8,9]. In DE, D-dimensional individuals are iteratively mixed to create new indi-
viduals and the best of them survive. A standard DE employs three main parameters:
population size NP, mutation factor F and crossover rate CR. The setting of these parame-
ters largely influences the algorithm’s performance, and the optimal setting depends on
the problem to be faced, see Mohamed et al. [10]. Consequently, in real-world problems,
the parameters are generally tuned once the objective function is designed [11].

Several studies analyze the relationship between parameters and suggest the rules of
tuning them. The most popular four tuning rules are the following ones. Storn and Price [9]
proposed the settings NP = 10D, F ∈ [0.5, 1] and CR ∈ [0.8, 1]. According to Gämperle
et al. [12], a reasonable choice for population size is between NP = 3D and NP = 8D, a
good initial choice for the mutation factor is F = 0.6 and crossover rate is CR ∈ [0.3, 0.9].
Based on Rönkkönen et al. [13], a reasonable choice for population size is between NP = 2D
and NP = 40D, F ∈ (0.4, 0.95] and when the objective function is separable CR ∈ (0, 0.2),
whereas in non-separable functions CR ∈ (0.9, 1). Zielinsky et al. [14] reported that, in
many cases, the best results are obtained with the settings of F ≥ 0.6 and CR ≥ 0.6. As can
be seen, the indications of these investigations differ among them. According to Sarker
et al. [15], a tedious trial-and-error approach for tuning parameters is commonly used.

Numerous scholars have proposed adaptive parameter control or adjusting the pa-
rameter values during evolution to address this situation. According to the study of
Al-Dabbagh et al. [16], the adaptive DE algorithms are classified into two main groups:
(1) algorithms with a single DE strategy and (2) algorithms with multiple DE strategy. The
DE strategy is composed of mutation and crossover strategies. The algorithms with a single
DE strategy use a single mutation and crossover operation during the evolution, whereas
the algorithms with multiple DE strategy use various mutations and crossover operations.

Within group 1 the following are the most recognized algorithms. jDE adjusted
the parameters F and CR using a self-adaptive scheme [17]. MDE_pBX, guided by the
knowledge of the last generation successful values, updates the values of F and CR [18].
Other scholars adapt F and CR using fuzzy logic controllers [19–21]. JADE adjusts the
parameters F and CR based on Cauchy and normal distribution [22]. A modified version
of JADE known as JADE_sort assigned smaller CR values to individuals with better fitness
values [23]. SHADE is an improved version of JADE in which the updating of parameters is
based on the historical memory of successful solutions [24]. LSHADE extends SHADE with
a simple deterministic linear reduction in the population size [11]. Various modifications of
SHADE and JADE have been developed in recent years, and those are precisely compared
and explained in [25].

Within group 2 the following are the most recognized algorithms. SaDE works with
adapted mutation strategy and parameters F and CR [26]. In SAKPDE, each individual
has its own parameters F and CR, mutation strategy and crossover strategy, and prior
knowledge and opposition learning are used to guide the evolution [27]. EFADE is an
enhanced fitness-adaptive algorithm that uses two novel adaptation schemes to update
the control parameters F and CR [28]. CoDE is a composition of three mutation strategies
and three combinations of parameters F and CR [29]. In EPSDE, the mutation strategy
and F and CR are randomly selected from two pools [30]. EDEV is a multi-population
based framework (MPF) that ensembles JADE, CoDE and EPSDE to cooperate during the
evolution [31]. MPEDE is also a multi-population based approach, but it uses unequal
sub-population sizes [32]. Besides these techniques, there are numerous algorithms with
multiple DE strategy, detailed in [16].

Adaptive DE algorithms have achieved high-precision performance; however, their
implementation may be complicated, and the number of function evaluations generally
increases [18]. The performance of DE (P) is highly dependent on the algorithm parameters
(NP, F and CR) and DE strategy (mutation and crossover operations) [15,29]. This relation-

Mathematics 2021, 9, 427 3 of 20

ship can be mathematically expressed by Equation (1). Specifically, adaptive techniques
do not directly focus on searching the function f(·), but rather normally test various pa-
rameter combinations with distinct DE strategies, and the best of them are applied during
the evolution.

P = f (NP, F, CR, DEstrategy) (1)

In the current study, the utilization of an artificial neural network (ANN) is proposed
to learn the function f(·) and afterward to extract the optimal combination of parameters
(NP, F and CR). An ANN consists of many interconnected simple functional units (neurons)
that perform as parallel information-processors and approximate the function that maps
inputs to outputs [33]. ANNs potential to solve problems with high performance and the
ability to adapt to different problems have been implemented in numerous fields such
as autonomous driving [34,35], solar and wind energy systems [36,37] and financial time
series forecasting [38]. The field of ANNs is in full motion, in that way to review its progress
and application areas in real-world scenarios, see Abiodun et al. [39].

This work’s main contribution is to present a consistent methodology for tuning
the optimal parameters of DE. This methodology’s heart is the use of ANN to learn the
relationship between the algorithm’s performance and the parameters. Knowledge on
how to tune the optimal values of these parameters is scarce [15,23]. In that context,
this paper suggests a manner to fill that knowledge gap. In the proposed methodology,
once the objective function is designed, the experimental requisitions are defined and
the DE strategy is chosen, four consecutive steps are applied: data-set generation, data-
set normalization, ANN approach and best parameters extraction. In order to analyze
the distinct cases that may arise, the proposed methodology is evaluated on a set of 24
objective functions from the Black-Box Optimization Benchmarking (BBOB) [40]. Finally,
the validation of the proposed method is performed, on the one hand, checking if the
neural network predictions are correct, and on the other, making a comparison with the
four most common tuning rules: Storn and Price [9], Gämperle et al. [12], Rönkkönen
et al. [13] and Zielinsky et al. [14].

The rest of this paper is organized as follows. In Section 2, the experimental set-up
is defined. In Section 3, the basic DE algorithm and ANN model are presented. Section 4
introduces the proposed methodology in detail. In Section 5, the results are presented and
discussed. Finally, the conclusions are drawn in Section 6.

2. Simulation Set-Up

The objective functions are defined and evaluated over RD. The global point search
domain is given as xopt ∈ [−5, 5]D. In this study, the optimization problem is a mini-
mization bi-dimensional (D = 2) problem. BBOB defines 24 noise-free real-parameter
single-objective functions, which are detailed and described in [40]. These objective func-
tions are composed of five groups.

The first group functions are separable (Fcn1-Fcn5). The second group functions have
low or moderate conditioning (Fcn6-Fcn9). The third group functions have high condition-
ing and are unimodal (Fcn10-Fcn14). The fourth group functions have adequate global
structure and are multimodal (Fcn15-Fcn19). The fifth group functions have weak global
structure and are multimodal (Fcn20-Fcn24). Apart from the first group, all other objective
functions are non-separable. The termination criteria for the DE is when 20 generations are
reached. Therefore, the DE algorithm is forced to converge quickly to the optimal point.
The required fitness precision for each objective function is ∆ f = 10−2. Consequently, the
target value to be achieved is defined as follows ft = fopt + ∆ f , where fopt is the objective
function’s global optimal point value.

In this paper, the performance (P) expressed in Equation (1) is quantified by the
parameter success rate (SR) defined in Equation (2). SR defines the probability of achieving
the requirements, so it directly relates to the algorithm’s effectiveness. The DE algorithm’s
intrinsic stochastic component provokes different results with the same parameter setting.

Mathematics 2021, 9, 427 4 of 20

Therefore, the performance is quantified by the mean of satisfactory runs with respect
to total independent runs. Satisfactory runs are the executions of DE that achieved the
required ft. Consequently and logically, higher values of SR are more interesting than
lower values.

SR =
sruns

truns
(2)

where sruns is the number of satisfactory DE runs, and truns is the total number of DE
independent runs, which in this paper is 40.

All simulations are performed in MATLAB 2020b software with the system config-
uration of Intel core i7-8550U, 8 GB RAM, 1.80 GHz processor and 64 bit Windows 10
operating system.

3. Procedures
3.1. Differential Evolution Algorithm

In this section, the standard DE algorithm is introduced. DE is a robust population-
based meta-heuristic search algorithm in which the population of D-dimensional indi-
viduals is used to optimize a problem. Each individual of the population is a candidate
solution to the problem and is coded as a vector. The population in the G-generation is
defined as {XG

i = (XG
i,1, XG

i,2, . . . , XG
i,D), i = 1, 2, . . . , NP}, where D is the dimensionality

of the problem and NP is the population size. DE is composed of four steps, which are
initialization, mutation, crossover and selection.

3.1.1. Initialization

In the initialization step, three main parameters of the algorithm are defined: pop-
ulation size (NP), mutation factor (F) and crossover rate (CR) [41]. Moreover, the initial
population of NP individuals is randomly generated according to a uniform distribution
within the search space. Once initialized, the DE algorithm performs mutation, crossover
and selection operations iteratively until the user-defined stopping criteria are reached.

In this iterative process, new individuals are generated and evolved over generations.
In this work, all generated individuals for the search space are feasible solutions since
the problems are non-constrained. If it is necessary to handle non-feasible solutions, see
Caraffini et al. [42].

3.1.2. Mutation Operation

In each G-generation, following a mutation strategy the mutation vectors {VG
i =

(VG
i,1, VG

i,2, . . . , VG
i,D), i = 1, 2, . . . , NP} are generated. In this paper, the most popular muta-

tion strategy, ‘DE/rand/1’, is used. In this strategy, two vectors (individuals) are randomly
chosen, their difference is multiplied by a mutation factor F, and the result is added to a
third random vector. The difference vector automatically adapts to the scale of the opti-
mized function, and that is the key success factor of the DE algorithm [43]. The ‘DE/rand/1’
strategy is defined as follows:

VG
i = XG

r1 + F · (XG
r2 − XG

r3) (3)

where r1, r2 and r3 are randomly selected distinct integers within the range [1, NP] and are
also different from i.

The most popular mutation strategies are defined in the next list. Each strategy affects
population diversity differently; therefore, the search convergence rate might vary [44].

• ‘DE/rand/2:’
VG

i = XG
r1 + F · (XG

r2 − XG
r3) + F · (XG

r4 − XG
r5) (4)

• ‘DE/best/1:’
VG

i = XG
best + F · (XG

r1 − XG
r2) (5)

Mathematics 2021, 9, 427 5 of 20

• ‘DE/best/2:’
VG

i = XG
best + F · (XG

r1 − XG
r2) + F · (XG

r3 − XG
r4) (6)

• ‘DE/current-to-best/1:’

VG
i = XG

i + F · (XG
best − XG

r1) + F · (XG
r2 − XG

r3) (7)

• ‘DE/current-to-pbest/1:’

VG
i = XG

i + F · (XG
p − XG

i) + F · (XG
r1 − XG

r2) (8)

where r1, r2, r3, r4 and r5 are randomly selected distinct integers within the range [1, NP]
and are also different from i. XG

best is the best individual of the current population, and XG
p

is randomly chosen as one of the top 100p% individuals in the current population with
p ∈ (0, 1] [22].

The mutation factor F defines the search step of the optimization. According to
Storn and Price, F range is in [0, 2] [9]. Generally, smaller values of F are better when the
population is closer to the global best value. In contrast, larger values of F are preferred
when the population is far from the global best value [45].

New mutation strategies are proposed in recent years, such as random neighbor based
mutation (‘DE/neighbor/1’) [46], new triangular mutation [28], mutation vector inspired
from the biological phenomenon called Hemostasis [41], an enhanced mutation strategy
with time stamp scheme [47] and ‘DE/pbad-to-pbest-to-gbest/1’ [48].

3.1.3. Crossover Operation

After the mutation operation, the crossover operation is performed to increase the
diversity of mutation vectors. The crossover operator generates a trial vector {UG

i =
(UG

i,1, UG
i,2, . . . , UG

i,D), i = 1, 2, . . . , NP} between the interaction of the mutation vector VG
i

and the target vector XG
i . In this paper, the classic binary crossover strategy defined in

Equation (9) is used (‘DE/rand/1/bin’). However, it is possible to use other crossover
strategies, such as exponential crossover [49,50] or an eigenvector-based crossover opera-
tor [51].

UG
i =

{
VG

i , if rand(0, 1) ≤ CR
XG

i , otherwise
(9)

The crossover rate CR reflects the probability in which the trial vector inherits mu-
tation vector’s values. According to Storn and Price, CR range is in [0, 1] [9]. CR has a
direct influence on the diversity of the population and, therefore, on search convergence
capacity [45].

3.1.4. Selection Operation

Following the crossover operation, the fitness value of the trial vector is calculated.
Afterward, the trial vector Ui and the target vector Xi compete, and if Ui has a better fitness
value than Xi, then Ui will replace Xi in the next generation. The selection operation is
defined as follows:

XG+1
i =

{
UG

i , if f (Ui) < f (Xi)
XG

i , otherwise
(10)

where f (UG
i) and f (XG

i) are the fitness values of UG
i and XG

i , respectively.

3.2. Artificial Neural Network Model

In this section, the mathematical model of an ANN under the DE environment is
explained in detail. ANNs are composed of a set of artificial neurons and grouped in
interconnected layers that, in their entirety, simulate the behavior of biological neural

Mathematics 2021, 9, 427 6 of 20

networks. The connection strength between neurons is quantified by layer weights (W). In
this paper, the most popular ANN class called multilayer perceptron (MLP) is designed.
The MLP contains at least three layers: an input layer, a hidden layer and an output layer.

As described in Section 2, the DE algorithm’s performance (P) is quantified by the
success rate (SR). As it is explained in Section 4, the SR value only varies with parameters
(NP, F and CR) since the DE strategy is fixed during the data-set generation. The ANN
learns the problem of mapping the inputs NP, F and CR to the output SR. Based on this
reasoning, in this particular case, the 3-K-1 MLP topology is designed. The hidden layer
neuron number (K) is obtained with an experimental approach in the ANN training phase.

Figure 1 illustrates the created MLP in this paper. Inside MLP, additional constant
units known as bias are applied to decide if a neuron can be fired or not [52]. The main
elements of the designed MLP are as follows:

• Input layer neurons are {X1, X2 and X3}, bias is {X0} and first layer weights are defined
in W(1);

• Hidden layer K neurons outputs are {a(2)1 , a(2)2 , . . . , a(2)K }, bias is {a(2)0 } and second layer
weights are defined in W(2);

• The output layer neuron’s output is a(3)1 .

NP

F

CR

SR

 INPUT
LAYER

 HIDDEN
LAYER

 OUTPUT
LAYER

a(2)
0X0

X1

X2

X3

a(2)
1

a(2)
2

a(2)
k

a(3)
1

W(1) W(2)

Figure 1. The designed ANN-MLP with dimension 3-K-1. Inputs of the neural network are DE
parameters NP, F and CR, and the output is the prediction of SR expressed as ŜR. The hidden layer
neuron number (K) is obtained in the ANN training process.

In MLP, the information is propagated from the input layer to the output layer. In
that propagation, mathematical operations are performed to achieve a final prediction
output value (ŜR). The input layer only transmits the information, whereas the hidden
and output layer apart from transmitting also transform it by using an activation function.
The parameter values of NP, F and CR are just positive, so in the hidden layer a sigmoid
activation function and in the output layer a linear activation function are used. The
mathematical model of network propagation is explained below.

Initially, the network takes the inputs and multiplies them by the weights of the first
layer. The result generated by the multiplication passes through the sigmoid activation
function to the second layer. The outputs of the hidden layer are defined as follows:

a(2)1 = g(W(1)
10 X0 + W(1)

11 X1 + W(1)
12 X2 + W(1)

13 X3) (11)

a(2)2 = g(W(1)
20 X0 + W(1)

21 X1 + W(1)
22 X2 + W(1)

23 X3) (12)
...

a(2)K = g(W(1)
K0 X0 + W(1)

K1 X1 + W(1)
K2 X2 + W(1)

K3 X3) (13)

where W(1)
ji is the weight value from input neuron i to hidden neuron j.

Mathematics 2021, 9, 427 7 of 20

Abbreviating in vectors and matrices,

a(2) = g(W(1)X) (14)

where the dimension of the weights of the first layer is W(1) ∈ RKx4, the dimension of the
input vector is X ∈ R4x1, the dimension of the hidden layer output vector is RKx1 and the
sigmoid activation function is g(s) = 1

1+e−s .
Subsequently, the hidden layer outputs are multiplied by the weight of the second

layer, and it passes through the linear activation function to the output of the network. The
output of the network is the predicted value ŜR defined as follows:

ŜR = a(3)1 = f (W(2)
10 a(2)0 + W(2)

11 a(2)1 + W(2)
12 a(2)2 + · · ·+ W(2)

1K a(2)K)

= f (W(2)(a(2)0 + a(2)))

= f (W(2)z(2))

(15)

where the dimension of the weights of the second layer is W(2) ∈ R1x(K+1), the dimension
of the input vector is z(2) ∈ R(K+1)x1, the output predicted value is ŜR ∈ R1x1 and the
linear activation function is f (s) = s.

In conclusion, it is clearly observed that the output prediction value (ŜR) depends
directly on input parameters values (NP, F and CR), first and second layer weight values
(W(1), W(2)) and their dimension (K hidden neurons). Weights values and hidden layer
neuron number (K) are defined in the neural network training phase.

4. Proposed Method

In solving an optimization problem with DE, the objective function and the DE
algorithm are designed first (the left sub-block of Figure 2). In this work, as stated in
Section 2, 24 single-objective functions are performed to check the proposed method in
distinct environments. On the other hand, the DE algorithm is designed as defined in
Section 3.1. After this, the DE algorithm parameters (NP, F, and CR) are tuned. A tedious
trial-and-error approach for tuning the best DE algorithm parameters is commonly used in
real-world problems. To tackle this issue, a consistent methodology for tuning the optimal
parameters of DE is presented in this work.

The proposed methodology comprises four consecutive steps: data-set generation,
data-set normalization, ANN approach and best parameters extraction. These four steps
are graphed in Figure 2. For each objective function, each step is executed just one time. As
a result of this process, the optimal DE parameters (NP, F and CR) are obtained for each
objective function.

In the data-set generation, the DE algorithm is executed with various NP, F and CR
parameter combinations, and the achieved SR is saved. In the data-set normalization, the
obtained combinations of NP, F, CR and SR are normalized to help the learning process
of the ANN. In the ANN approach, the training and testing of the ANN are performed.
Lastly, using the best ANN of the previous step, the optimal parameters of DE (NP, F and
CR) are extracted.

Objective Function Design
&

DE Algorithm Design

Data-set
Generation

Data-set
Normalization

ANN Approach Best Parameters
Extraction

First step Thirst step Fourth stepSecond step

Training & Testing

Figure 2. The block diagram of the proposed method. The method is applied once the objective function and DE algorithm
are designed. Each step is executed just one time for each objective function. As a result of this method, the optimal DE
parameters (NP, F and CR) are obtained for each objective function.

Mathematics 2021, 9, 427 8 of 20

As declared before, the ANN learns the function f (·) defined in Equation (1). Once
the objective function and DE strategy are chosen, the performance of DE (P) quantified by
SR only varies with parameters NP, F and CR. Therefore, the ANN exactly learns to map
the input parameters (NP, F and CR) with the output SR.

As concluded in Section 3.2, the network’s prediction (ŜR) depends directly on the
weight values (W(1), W(2)), and these values are calculated in the training approach of the
neural network. The training procedure requires a training set that relates the network’s
input parameters with the output value. For that reason, initially, a data-set of examples
is generated.

4.1. Data-Set Generation

In this step, the DE algorithm with different combinations of input parameters (NP, F
and CR) is performed, and their output (SR) is calculated and saved. The parameter NP is
taken from [10, 100] by steps of 10. The parameter F is taken from [0.1, 2] by steps of 0.1.
The parameter CR is taken from [0.1, 1] by steps of 0.1. As a consequence of this process, a
data-set of 2000 combinations of NP, F and CR with their respective SR is generated.

It should be noted that it is possible to take bigger or smaller steps. With smaller steps,
more combinations of parameters are achieved, and the neural network’s learning will be
more precise, although the time of the data-set generation will be longer. In this study, for
each objective function, the generation of the data-set required an average of six hours.

4.2. Data-Set Normalization

Once the data-set is generated, the normalization of the NP and F parameters is
performed as defined in Equations (16) and (17), respectively. The normalization of CR
and SR has not been performed since they are already within the range [0, 1]. After the
normalization, the four parameters used in ANN (NP, F, CR and SR) are in the same range,
and that helps the ANNs accurate learning.

NPnorm =
NP− NPmin

NPmax− NPmin
(16)

where NPnorm is the normalized NP, NPmax is the highest NP value and NPmin is the
lowest NP value.

Fnorm =
F− Fmin

Fmax− Fmin
(17)

where Fnorm is the normalized F, Fmax is the highest F value and Fmin is the lowest F value.

4.3. ANN Approach

In this third step, firstly, the ANN training is performed in order to learn the rela-
tionship between the input parameters (NPnorm, Fnorm and CR) with the desired output
(SR). The training is resumed in the left scheme of Figure 3. Secondly, the trained ANN is
validated in the testing procedure. The testing procedure is resumed in the right scheme of
Figure 3.

The data-set obtained after the second step of the method is divided into three sets:
training data-set, validation data-set and testing data-set. In the training procedure, the
training data-set and validation data-set are used. The training set, which represents 75%
of the data-set, is used to choose the best layer weights (W(1) and W(2)). The validation set,
which represents 12.5% of the data-set, is used to prevent the ANNs from overfitting. In
the testing procedure, the test set, which represents the remaining 12.5% of the data-set, is
used to evaluate and validate the trained ANNs performance.

Mathematics 2021, 9, 427 9 of 20

Training Dataset
Input

CR Fnorm NPnorm
Desired Output

SR

ANN +
-SR

RMSE
Training Method

Weight update

LM
Training

ANN +
-SR

RMSE
Testing

Testing Dataset
Input Desired Output

CR Fnorm NPnorm

ANN APPROACH

SR

Figure 3. Schematic illustration of the proposed method’s third step, called ANN approach. The ANN approach is composed
of the training and the testing processes of ANN. The left scheme defines the training of the ANN. The right scheme defines
the testing of the ANN.

The training of ANNs has been performed using Neural Network Toolbox from
Matlab software. At the beginning of the training procedure, each layer’s weights are
initialized with the Nguyen–Widrow method [53]. Iteratively, the training set is propa-
gated in the network and the network’s prediction error is calculated. To conclude the
training procedure, the weights of the layers are updated using the Levenberg–Marquard
(LM) algorithm [54]. With this iterative procedure, the neural network has the ability to
approximate non-linear functions. The training’s stopping condition is the gradient level
criteria of 10−8 and six validation checks. The metric to evaluate the neural network’s
performance is the root-mean-squared error (RMSE) in this work.

As stated in Section 3.2, the ANNs performance depends on weight values and the
number of hidden neurons (K). In this paper, K is defined by an experimental procedure. Six
neural network architectures with a different number of hidden neurons (K) are created, K
varies from 5 to 30, with intervals of 5 neurons. For each possible architecture, 20 networks
are trained to reduce the effect of randomness in the weights initialization. The network
that presents the smallest test error is chosen as the representative of the architecture.
Therefore, there will be a total of six neural networks representing six architectures. Lastly,
their performance is compared, and the neural network that shows the smallest testing
error is selected as the final network to extract the optimal parameters values.

4.4. Best Parameters Extraction

Finally, the extraction of the best combination of parameters is performed. In this way,
new combinations are created: the parameter NP is taken from [10, 100] by steps of 5. The
parameter F is taken from [0.1, 2] by steps of 0.05. The parameter CR is taken from [0.1, 1]
by steps of 0.05. As a consequence of this process, a data-set of 14,709 combinations of NP, F
and CR has been generated. Note that the ANN trained in the previous step has learned the
relation of normalized inputs parameters with the output SR variable, so new combinations
generated in this step need to be also normalized following Equations (16) and (17).

Subsequently, new normalized combinations of parameters are propagated through
the neural network, and their respective output ŜR predictions are saved. In this case,
the data-set consists of 14,709 combinations of NP, F, CR and ŜR. These combinations
have to be de-normalized following Equations (16) and (17). Finally, the combinations
with the highest ŜR values are extracted from the data-set, and these ones are the optimal
parameters to face the problem.

Mathematics 2021, 9, 427 10 of 20

5. Results and Discussion
5.1. ANN Training Results

In this section, the results obtained after applying the third step of the proposed
method are summarized. Table 1 presents the training and testing performance of each
neural network architecture in BBOB objective functions. The network with the smallest
testing error is chosen to extract the optimal parameter values. Table 2 resumes the chosen
architecture for each objective function.

From the data given in Table 1, it can be seen that the increase in hidden layer neurons
(K) generally leads to a decrease in test error. However, a small network with 15 hidden
neurons obtained the best performance in Fcn6 and Fcn11. We can also see that the training
and testing errors in Fcn23 and Fcn24 were zero. As it is explained in Section 5.2.3, the
designed DE algorithm cannot converge to the optimal point in 20 generations with the
required fitness in these two functions. Therefore, the obtained SR value with all parameters
is zero, and consequently, it is a straightforward mapping problem for the neural network.

Table 1. The summary of the training and testing RMSE performance of each neural network architecture in BBOB
objective functions.

Function Number Statistical Measure Hidden Neurons K
5 10 15 20 25 30

Fcn 1 Training RMSE 0.0793 0.0651 0.0617 0.0573 0.0554 0.0558
Testing RMSE 0.0758 0.0616 0.0599 0.0613 0.0578 0.0556

Fcn 2 Training RMSE 0.0433 0.0312 0.0308 0.0297 0.0258 0.0265
Testing RMSE 0.0448 0.0328 0.0322 0.0307 0.0264 0.0295

Fcn 3 Training RMSE 0.0262 0.0210 0.0215 0.0197 0.0190 0.0192
Testing RMSE 0.0325 0.0268 0.0238 0.0202 0.0208 0.0208

Fcn 4 Training RMSE 0.0146 0.0131 0.0132 0.0130 0.0133 0.0119
Testing RMSE 0.0180 0.0149 0.0132 0.0134 0.0132 0.0124

Fcn 5 Training RMSE 0.0343 0.0297 0.0298 0.0213 0.0243 0.0178
Testing RMSE 0.0383 0.0369 0.0318 0.0274 0.0261 0.0246

Fcn 6 Training RMSE 0.0412 0.0300 0.0313 0.0322 0.0317 0.0302
Testing RMSE 0.0413 0.0333 0.0284 0.0322 0.0312 0.0290

Fcn 7 Training RMSE 0.0558 0.0511 0.0468 0.0471 0.0495 0.0450
Testing RMSE 0.0565 0.0523 0.0469 0.0480 0.0509 0.0465

Fcn 8 Training RMSE 0.0406 0.0395 0.0359 0.0349 0.0356 0.0357
Testing RMSE 0.0414 0.0418 0.0396 0.0379 0.0381 0.0344

Fcn 9 Training RMSE 0.0405 0.0379 0.0375 0.0362 0.0360 0.0344
Testing RMSE 0.0407 0.0389 0.0381 0.0381 0.0365 0.0395

Fcn 10 Training RMSE 0.0315 0.0236 0.0220 0.0206 0.0198 0.0193
Testing RMSE 0.0421 0.0304 0.0237 0.0214 0.0223 0.0207

Fcn 11 Training RMSE 0.0330 0.0219 0.0185 0.0287 0.0200 0.0220
Testing RMSE 0.0355 0.0234 0.0223 0.0317 0.0235 0.0227

Fcn 12 Training RMSE 0.0190 0.0182 0.0164 0.0169 0.0159 0.0137
Testing RMSE 0.0216 0.0224 0.0178 0.0171 0.0187 0.0159

Fcn 13 Training RMSE 0.0360 0.0288 0.0259 0.0232 0.0228 0.0208
Testing RMSE 0.0381 0.0330 0.0272 0.0237 0.0233 0.0247

Fcn 14 Training RMSE 0.0116 0.0127 0.0106 0.0115 0.0102 0.0131
Testing RMSE 0.0165 0.0133 0.0119 0.0133 0.0116 0.0134

Fcn 15 Training RMSE 0.0116 0.0127 0.0106 0.0115 0.0102 0.0131
Testing RMSE 0.0165 0.0133 0.0119 0.0133 0.0116 0.0134

Mathematics 2021, 9, 427 11 of 20

Table 1. Cont.

Function Number Statistical Measure Hidden Neurons K
5 10 15 20 25 30

Fcn 16 Training RMSE 0.0220 0.0229 0.0202 0.0209 0.0199 0.0199
Testing RMSE 0.0247 0.0229 0.0221 0.0236 0.0210 0.0206

Fcn 17 Training RMSE 0.0263 0.0208 0.0248 0.0249 0.0193 0.0211
Testing RMSE 0.0278 0.0236 0.0249 0.0253 0.0208 0.0232

Fcn 18 Training RMSE 0.0322 0.0149 0.0133 0.0127 0.0145 0.0136
Testing RMSE 0.0332 0.0191 0.0176 0.0191 0.0193 0.0143

Fcn 19 Training RMSE 0.0485 0.0466 0.0468 0.0467 0.0463 0.0475
Testing RMSE 0.0505 0.0481 0.0478 0.0469 0.0486 0.0476

Fcn 20 Training RMSE 0.0264 0.0265 0.0245 0.0249 0.0264 0.0254
Testing RMSE 0.0288 0.0258 0.0271 0.0296 0.0289 0.0259

Fcn 21 Training RMSE 0.0744 0.0665 0.0656 0.0651 0.0649 0.0637
Testing RMSE 0.0780 0.0668 0.0679 0.0654 0.0693 0.0689

Fcn 22 Training RMSE 0.0741 0.0645 0.0638 0.0622 0.0625 0.0620
Testing RMSE 0.0757 0.0660 0.0639 0.0626 0.0636 0.0626

Fcn 23 Training RMSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Testing RMSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fcn 24 Training RMSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Testing RMSE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 2. The chosen ANN architecture for each objective function of BBOB.

Function Number Hidden Neurons K Function Number Hidden Neurons K

Fcn1 30 Fcn13 25
Fcn2 25 Fcn14 30
Fcn3 20 Fcn15 25
Fcn4 30 Fcn16 30
Fcn5 30 Fcn17 25
Fcn6 15 Fcn18 30
Fcn7 30 Fcn19 20
Fcn8 30 Fcn20 30
Fcn9 25 Fcn21 20
Fcn10 30 Fcn22 30
Fcn11 15 Fcn23 5
Fcn12 30 Fcn24 5

5.2. Optimal Parameters Results

In this section, the results obtained after applying the fourth step of the proposed
methodology are summarized. As stated in Section 4.4, a data-set of 14,709 combinations
of NP, F, CR and ŜR is obtained in each objective function. From this last data-set, the
combination of parameters with the highest ŜR value is extracted. In this extraction, three
behaviors are observed.

5.2.1. First Case: Multiple Combinations with High Effectiveness

The DE algorithm has the ability to converge quickly in 20 generations to the optimal
point with the required fitness precision of ∆ f = 10−2. Furthermore, in this first case, the
required fitness is achieved with multiple parameter combinations and high effectiveness
defined as ŜR ≥ 0.95. That means, if the DE algorithm is executed 100 times, there are
several combinations of parameters that will achieve the required fitness a minimum of
95 times.

Mathematics 2021, 9, 427 12 of 20

In Table 3, the objective functions with this behavior and their respective number
of combinations that achieved the required fitness are summarized. From these multiple
parameter combinations, any of them is competent to solve the problem modeled by the
objective function.

Table 3. Objective functions from the first case and their respective number of combinations that
achieved the required fitness with high effectiveness ŜR ≥ 0.95 are summarized.

Function Number Number of Combinations

Fcn1 4855
Fcn2 424
Fcn5 12,994
Fcn6 101
Fcn7 1137
Fcn8 171
Fcn9 99

Fcn10 131
Fcn11 103
Fcn13 69
Fcn14 2367
Fcn17 114
Fcn21 1316
Fcn22 2325

There are numerous combinations of parameters for each objective function, so it is
unmanageable to show all of them in this paper analytically. For that reason, they are
published as a MATLAB file in Supplementary Materials. However, in this paper, as an ex-
ample, all 14,709 parameter combinations of Fcn1 and Fcn2 are graphed in Figures 4 and 5.
It is helpful to illustrate the association of parameters and performance to analyze the DEs
behavior in the objective function. Each point reflects a combination of NP, F and CR. The
point color depends on ŜR value. If the color is dark blue, that combination has a high
precision; whereas if the color is dark red, that combination has a small precision. From the
following two figures, it can be seen that in Fcn1 the density of blue points was higher than
in Fcn2. That is logical because, as defined in Table 3, the number of combinations with
high effectiveness was bigger in Fcn1 than in Fcn2.

SR

(a)

SR

(b)

Figure 4. The illustration of 14,709 parameter combinations of Fcn1. Each point reflects a combination of NP, F and CR. The
point color depends on ŜR precision value. The dark blue color means a high DE precision to achieve the requirements. The
dark red color means a small DE precision to achieve the requirements: (a) first perspective, (b) second perspective.

Mathematics 2021, 9, 427 13 of 20

SR

(a)

SR

(b)

Figure 5. The illustration of 14,709 parameter combinations of Fcn2. Each point reflects a combination of NP, F and CR. The
point color depends on ŜR precision value. The dark blue color means a high DE precision to achieve the requirements. The
dark red color means a small DE precision to achieve the requirements: (a) first perspective, (b) second perspective.

Finally, by analyzing each objective function’s extracted data-set, the best ranges are
defined and summarized in Table 4. It is necessary to remark that these ranges are a gener-
alization of the extracted analytical data-set. There are also combinations of parameters
out of these ranges, which achieve high performance. One can notice that the best ranges
were generally represented by high NP and CR values and low F values. We can see this
effect visually in Figure 5.

Table 4. The first case objective functions and their respective best parameters ranges.

Function Number Best Parameters Ranges

Fcn1 NP > 60 0.65 > F > 0.10 CR > 0.40
Fcn2 NP > 75 0.20 > F > 0.10 CR > 0.75
Fcn5 NP > 50 F > 0.40 CR > 0.10
Fcn6 NP > 80 0.45 ≥ F ≥ 0.40 CR > 0.90
Fcn7 NP > 75 0.50 ≥ F ≥ 0.30 CR > 0.75
Fcn8 NP > 80 0.35 > F > 0.20 CR ≥ 0.85
Fcn9 NP > 85 0.35 > F > 0.20 CR > 0.90
Fcn10 NP > 65 0.35 > F > 0.20 CR ≥ 0.90
Fcn11 NP > 75 0.35 > F > 0.20 CR > 0.90
Fcn13 NP > 75 0.35 > F > 0.20 CR ≥ 0.95
Fcn14 NP > 60 0.55 > F > 0.10 CR > 0.55
Fcn17 NP > 80 0.30 > F ≥ 0.20 CR ≥ 0.90
Fcn21 NP > 70 0.45 > F > 0.10 CR > 0.55
Fcn22 NP > 75 0.65 > F > 0.20 CR > 0.60

5.2.2. Second Case: Medium Effectiveness

The DE algorithm can converge quickly in 20 generations to the optimal point with
the required fitness precision of ∆ f = 10−2 and medium ŜR effectiveness. In this study,
medium effectiveness is expressed as ŜR < 0.95. In this second case, the combination with
the highest effectiveness value is extracted.

Table 5 shows the second case’s objective functions, their best parameters combination,
and the achieved ŜR. In all objective functions the best combination was the maximum NP,
F tended to be the minimum and CR tended to the maximum. However, the ŜR value was
distinct in each objective function. Note that depending on the user’s specific problem, the

Mathematics 2021, 9, 427 14 of 20

effectiveness achieved may be sufficient or not. If greater effectiveness is needed, the user
should increment the number of DE generations or try other DE strategies or DE variants.

Table 5. The second case objective functions, their best parameter combination and the achieved
ŜR value.

Function Number Best Parameters Combination ŜR Value

Fcn3 NP = 100 F = 0.10 CR = 0.80 0.77
Fcn4 NP = 100 F = 0.10 CR = 0.80 0.53

Fcn12 NP = 100 F = 0.25 CR = 1.0 0.69
Fcn15 NP = 100 F = 0.10 CR = 1.0 0.46
Fcn16 NP = 100 F = 0.10 CR = 1.0 0.46
Fcn18 NP = 100 F = 0.20 CR = 1.0 0.87
Fcn19 NP = 100 F = 0.10 CR = 0.90 0.82
Fcn20 NP = 100 F = 0.10 CR = 0.80 0.72

Lastly, as an example, all 14,709 parameter combinations of Fcn3 are graphed in
Figure 6. It can be seen that the density of blue points was much lower compared to red
ones and also to blue ones of Figures 4 and 5. Furthermore, as in the first case, the best
combinations were obtained with high NP and CR values and low F values.

SR

Figure 6. The illustration of 14,709 parameter combinations of Fcn3. Each point reflects a combination
of NP, F and CR. The point color depends on ŜR precision value. The dark blue color means a high
DE precision to achieve the requirements. The dark red color means a small DE precision to achieve
the requirements.

5.2.3. Third Case: Zero Effectiveness

The DE algorithm could not converge quickly in 20 generations to the optimal point
with the required fitness precision of ∆ f = 10−2. All 14,709 combinations of parameters
had zero ŜR value. That means there is no combination of parameters that achieved the
required fitness. To observe how far real fitness is from the required one, the DE algorithm
was executed truns times with a priory competent parameter combination, and the mean
fitness precision was calculated (∆ fmean) as follows:

∆ fmean =
∑truns

i=1 ∆ f i
truns

(18)

where ∆ fi is the difference between the target value ft and the objective function’s global
optimal point value fopt, and truns is the total number of DE independent runs, which in
this case was 40.

Mathematics 2021, 9, 427 15 of 20

Table 6 shows the third case’s objective functions, the used combination of parameters,
and the achieved ∆ fmean. It is observed that the mean fitness precision was much higher
than the required one, so the obtained fitness value was far from the optimal one. In this
circumstance, the user has two main possibilities: the definition of more flexible requisitions
or the use of another DE strategy or variant.

Table 6. The third case objective functions, the used combination of parameters and the mean fitness
value ∆ fmean.

Function Number Combination of Parameters ∆ fmean Value

Fcn23 NP = 100 F = 0.10 CR = 1.00 0.80
Fcn24 NP = 100 F = 0.10 CR = 1.00 1.25

5.3. Validation of the Method

In the previous section, the best combinations of parameters for each objective func-
tion have been shown. As explained, these combinations are obtained from the prediction
(ŜR) of the ANN. In this section, these predictions defined in Supplementary Materi-
als, Tables 5 and 6 are checked by running the DE algorithm with the extracted optimal
parameters and calculating their respective SR value.

The obtained results are presented in Table 7. In this table, the used combination of
parameters for each objective function, the mean value and standard deviation value of SR
averaged over 10 independent runs are given. In the first case functions, from multiple
optimal combinations extracted, any one is chosen. In the second and third case functions,
the combinations defined in Tables 5 and 6 are chosen.

Next, a comparison with prevailing tuning rules is performed in order to verify and
analyze the proposed method’s performance. In the introduction section, the four most
popular tuning rules are defined: Storn and Price [9], Gämperle et al. [12], Rönkkönen
et al. [13] and Zielinsky et al. [14]. Following these rules, a parameter combination is de-
signed and evaluated with ten independent DE algorithm runs for each objective function.
The designed parameter combinations are as follows:

• Storn & Zielinsky: from Storn and Price rule [9], and Zielinsky et al. rule [14], a
combination is designed that meets both rules. NP = 10D = 20, F = 0.7 and CR = 0.85.

• Gämperle et al. [12]: NP = 5D = 10, F = 0.6 and CR = 0.4;
• Rönkkönen et al. [13]: in separable functions NP = 30D = 60, F = 0.6 and CR = 0.1, and

in non-separable functions NP = 30D = 60, F = 0.6 and CR = 0.95.

The statistical results achieved with the combinations described above are summarized
in Table 8. It includes the mean and standard deviation value of SR calculated over ten DE
independent runs.

Several interesting observations can be obtained from the data reported in
Tables 7 and 8 and among the results presented in this paper. First, we can conclude
that ANN predictions are accurate. In the first and third case functions, the ŜR predictions
and the calculated SR values are practically the same. In the second case functions, there
is a mean difference of 2.3% between these two values. This difference is not related to
ANN accuracy. Still, it is provoked by the algorithm’s intrinsic stochastic component since
it is tough to obtain an identical result in two DE independent runs. Even so, assuming
this characteristic of the algorithm, the present results confirm that the ANN predictions
are precise.

Second, the proposed method outperforms Storn and Price [9], Gämperle et al. [12],
Rönkkönen et al. [13] and Zielinsky et al. [14] tuning rules. Compared to Storn & Zielinsky
SR values, the achieved SR values are equal in Fcn1, Fcn5, Fcn23 and Fcn24 and significantly
better in all other functions. Compared with Gämperle et al. [12] SR values, the achieved
SR values are equal in Fcn23 and Fcn24 functions, similar in Fcn5 and significantly better
in all other functions. Finally, in comparison with Rönkkönen et al. [13], the achieved

Mathematics 2021, 9, 427 16 of 20

SR values are equal in Fcn14, Fcn22, Fcn23 and Fcn24, similar in Fcn21 and significantly
superior in all other functions. Furthermore, the calculated values are equal and zero
in Fcn23 and Fcn24 because all tuning rules, including our method, are used in the DE
conventional algorithm under the same requirements, and the algorithm cannot converge
with the required fitness precision.

Third, in this study, the typical pattern among the optimal parameters values has
been a high population size (NP), low mutation factor (F) and high crossover factor (CR).
Consequently, the best performance is achieved with many individuals taking small steps
and maintaining high diversity. Furthermore, the statement realized in [55] is corroborated,
which exclaims that in low-dimensional problems (D < 30), the population size of 100 indi-
viduals is a competent choice to solve the problem, whereas a population size lower than
50 individuals is rarely recommended.

Fourth, the biggest problem of the tuning rules defined in Table 8 is that they extrapo-
late the same choice law for all problems. That is, they do not adapt to the characteristics
of the problem. In this case, it has been proven that this way of acting does not produce
good results. Between the tuning rules, Storn & Zielinsky obtain the best performance
in separable functions (Fcn1-Fcn5) and Rönkkönen et al. [13] in non-separable functions
(Fcn6-Fcn24). The main reason for this is that in separable functions, Storn & Zielinsky use
a significantly larger CR value than Rönkkönen et al. [13], while in non-separable functions,
Rönkkönen et al. [13] employ larger NP and CR value than Storn & Zielinsky. On the other
hand, the tuning rules generally obtain their best results in Fcn1, Fcn5, Fcn7, Fcn14, Fcn21
and Fcn22. Within the first case group, these last functions are where the DE algorithm
has the greatest facilities to converge to the optimal point with the required fitness. In the
results of our method, in Table 3, it is proven that precisely in these functions, the number
of combinations that achieved the required fitness is the highest. The most significant
advantage of these tuning rules is that it is unnecessary to design or code new approaches.

Finally, the proposed method can be extrapolated to different problems and that is
mostly the differentiating key factor compared to other tuning rules. In the DE algorithm,
there is a strong interaction between the parameters NP, F and CR, the DE strategy, the
objective function to optimize, the global point search domain and the requisitions such as
maximum generations and required fitness. In the designed method, once the objective
function is designed, the DE strategy is chosen, and the requirements are defined, the values
of the optimal parameters are calculated adjusting to these characteristics. In summary,
this allows the user not to waste time thinking about what parameter values are competent
enough to solve his problem or avoid using the tedious trial-and-error approach.

Table 7. Experimental results by DE algorithm for 24 BBOB objective functions with their respective
parameter values. The mean (SR mean) and standard deviation (SR std) values of SR are calculated
over 10 DE algorithm independent runs.

Function Number Combination of Parameters SR Mean SR Std

Fcn1 NP = 60 F = 0.40 CR = 0.45 1.0000 0.0000
Fcn2 NP = 80 F = 0.15 CR = 0.80 0.9975 0.0079
Fcn3 NP = 100 F = 0.10 CR = 0.80 0.7520 0.0691
Fcn4 NP = 100 F = 0.10 CR = 0.80 0.5075 0.0736
Fcn5 NP = 55 F = 1.65 CR = 0.40 1.0000 0.0000
Fcn6 NP = 85 F = 0.40 CR = 0.95 0.9800 0.0284
Fcn7 NP = 80 F = 0.30 CR = 0.85 1.0000 0.0000
Fcn8 NP = 85 F = 0.25 CR = 0.90 0.9975 0.0079
Fcn9 NP = 90 F = 0.30 CR = 0.95 0.9800 0.0230
Fcn10 NP = 75 F = 0.25 CR = 0.90 0.9875 0.0212
Fcn11 NP = 90 F = 0.25 CR = 0.95 1.0000 0.0000
Fcn12 NP = 100 F = 0.25 CR = 1.00 0.7075 0.0898
Fcn13 NP = 85 F = 0.25 CR = 0.95 0.9950 0.0105
Fcn14 NP = 65 F = 0.45 CR = 0.70 1.0000 0.0000

Mathematics 2021, 9, 427 17 of 20

Table 7. Cont.

Function Number Combination of Parameters SR Mean SR Std

Fcn15 NP = 100 F = 0.10 CR = 1.00 0.4300 0.0832
Fcn16 NP = 100 F = 0.10 CR = 1.00 0.4500 0.0870
Fcn17 NP = 90 F = 0.20 CR = 0.90 0.9950 0.0158
Fcn18 NP = 100 F = 0.20 CR = 1.00 0.9175 0.0528
Fcn19 NP = 100 F = 0.10 CR = 0.90 0.7900 0.0444
Fcn20 NP = 80 F = 0.10 CR = 0.80 0.7400 0.0876
Fcn21 NP = 85 F = 0.30 CR = 0.70 1.0000 0.0000
Fcn22 NP = 100 F = 0.25 CR = 0.75 1.0000 0.0000
Fcn23 NP = 100 F = 0.10 CR = 1.00 0.0000 0.0000
Fcn24 NP = 100 F = 0.10 CR = 1.00 0.0000 0.0000

Table 8. Experimental results by DE algorithm for 24 BBOB objective functions following four distinct
parameter tuning rules: Storn and Price, Gämperle et al., Rönkkönen et al. and Zielinsky et al. From
Storn and Price rule, and Zielinsky et al. rule, a combination called Storn & Zielinsky is designed that
meets both rules. The mean (SR mean) and standard deviation (SR std) values of SR are calculated
over 10 DE algorithm independent runs.

Function Number
Storn & Zielinsky Gämperle Rönkkönen

SR Mean SR Std SR Mean SR Std SR Mean SR Std

Fcn1 1.0000 0.0000 0.7025 0.0606 0.1900 0.0648
Fcn2 0.0500 0.0264 0.0000 0.0000 0.0025 0.0079
Fcn3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fcn4 0.0050 0.0105 0.0000 0.0000 0.0000 0.0000
Fcn5 1.0000 0.0000 0.9825 0.0265 1.0000 0.0000
Fcn6 0.0775 0.0322 0.0000 0.0000 0.7075 0.0635
Fcn7 0.5975 0.0862 0.0525 0.0381 1.0000 0.0000
Fcn8 0.0725 0.0362 0.0050 0.0158 0.4175 0.0717
Fcn9 0.1125 0.0710 0.0100 0.0175 0.4925 0.0528

Fcn10 0.0025 0.0079 0.0000 0.0000 0.1700 0.0537
Fcn11 0.0025 0.0079 0.0000 0.0000 0.1675 0.0501
Fcn12 0.0000 0.0000 0.0000 0.0000 0.0200 0.0197
Fcn13 0.0025 0.0079 0.0000 0.0000 0.1325 0.0457
Fcn14 0.9625 0.0358 0.1275 0.0506 1.0000 0.0000
Fcn15 0.0025 0.0079 0.0000 0.0000 0.0075 0.0169
Fcn16 0.0025 0.0079 0.0025 0.0079 0.0275 0.0275
Fcn17 0.0125 0.0177 0.0000 0.0000 0.1175 0.0541
Fcn18 0.0000 0.0000 0.0000 0.0000 0.0025 0.0079
Fcn19 0.0875 0.0489 0.0325 0.0313 0.3125 0.0922
Fcn20 0.0075 0.0121 0.0025 0.0079 0.0500 0.0204
Fcn21 0.5975 0.0759 0.1850 0.0603 0.9825 0.0169
Fcn22 0.8575 0.0678 0.2525 0.0606 1.0000 0.0000
Fcn23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Fcn24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6. Conclusions

The present study focuses on exposing a method to tune the optimal parameters of the
DE algorithm. In the DE algorithm, there is a strong interaction between the parameters
NP, F and CR, the DE strategy, the objective function to optimize, the global point search
domain and the requisitions such as maximum generations and required fitness. It is in the
interplay of these variables where the proposed method is inserted.

The core of the method is using an ANN-MLP to predict the optimal parameter values
depending on the objective function, the DE strategy and the user-defined requirements.

Mathematics 2021, 9, 427 18 of 20

Subject to the DE algorithm’s ability to solve the problem, three different cases may arise
with applying this method. For each case, specifications about the procedure to follow are
given in detail.

The final results show that ANNs prediction effectiveness is more accurate in the first
and third case than in the second case objective functions. This difference is caused because
in the second case objective functions, the stochastic component effect of DE is more signif-
icant than in the other two cases. Even so, taking into account this stochastic characteristic
of DE, the present results confirm that these predictions are considerably accurate.

Finally, a comparison with four prevailing tuning rules is performed, and it is con-
cluded that the proposed method outperforms these rules. Future research could examine
this method’s application in high-dimensional problems with different user-defined re-
quirements and DE strategies. Our aim is to apply the proposed method to a robotic
manipulator axis interpolation with auto-guided vehicle movement in future work.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-739
0/9/4/427/s1. The optimal parameter combinations of the first case objective functions have been
added. For each function a MATLAB file (.mat) is defined. In total, there are 14 files.

Author Contributions: Conceptualization, M.C.-T., E.Z. and D.T.-F.-B.; Data curation, U.F.-G.; Formal
analysis, M.C.-T. and E.Z.; Project administration, E.Z. and U.F.-G.; Resources, D.T.-F.-B. and A.T.-F.-
B.; Software, M.C.-T.; Supervision, U.F.-G. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors appreciate the support to the government of the Basque Country through
research programs Grants N. ELKARTEK 20/71 and ELKARTEK: KK-2019/00099.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors have added 14 MATLAB files. In each file, the optimal
parameter combinations of the first case objective functions are defined.

Acknowledgments: The authors are grateful for the support provided by SGIker of UPV/EHU.
This research has been developed under the frame of the Joint Research Laboratory on Offshore
Renewable Energy (JRL-ORE).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Back, T.; Fogel, D.B.; Michalewicz, Z. Handbook of Evolutionary Computation, 1st ed.; IOP Publishing Ltd.: Bristol, UK, 1997.
2. Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31.

[CrossRef]
3. Abderazek, H.; Ferhat, D.; Ivana, A. Adaptive mixed differential evolution algorithm for bi-objective tooth profile spur gear

optimization. Int. J. Adv. Manuf. Technol. 2017, 90, 2063–2073. [CrossRef]
4. Biswas, P.; Suganthan, P.; Wu, G.; Amaratunga, G. Parameter estimation of solar cells using datasheet information with the

application of an adaptive differential evolution algorithm. Renew. Energy 2019, 132, 425–438. [CrossRef]
5. Zamuda, A.; Sosa, J.D.H. Success history applied to expert system for underwater glider path planning using differential

evolution. Expert Syst. Appl. 2019, 119, 155–170. [CrossRef]
6. Zulueta, E.; Kurt, E.; Uzun, Y.; Lopez-Guede, J.M. Power control optimization of a new contactless piezoelectric harvester. Int. J.

Hydrogen Energy 2017, 42, 18134–18144. [CrossRef]
7. Aramendia, I.; Saenz-Aguirre, A.; Boyano, A.; Fernandez-Gamiz, U.; Zulueta, E. Oscillating U-Shaped Body for Underwater

Piezoelectric Energy Harvester Power Optimization. Micromachines 2019, 10, 737. [CrossRef]
8. Storn, R.; Price, K. DE-a simple and efficient adaptive scheme for global optimization over continuous space. Tech. Rep. 1995,

25, 95–102.
9. Storn, R. On the usage of differential evolution for function optimization. In Proceedings of the North American Fuzzy

Information Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523. [CrossRef]
10. Mohamed, A.W.; Mohamed, A.K. Adaptive guided differential evolution algorithm with novel mutation for numerical optimiza-

tion. Int. J. Mach. Learn. Cybern. 2019, 10, 253–277. [CrossRef]
11. Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings

of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 1658–1665.
12. Gämperle, R.; Müller, S.D.; Koumoutsakos, P. A parameter study for differential evolution. In Advances in Intelligent Systems,

Fuzzy Systems, Evolutionary Computation; WSEAS Press: Zurich, Switzerland, 2002; Volume 10, pp. 293–298.

https://www.mdpi.com/2227-7390/9/4/427/s1
https://www.mdpi.com/2227-7390/9/4/427/s1
http://doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1007/s00170-016-9523-2
http://dx.doi.org/10.1016/j.renene.2018.07.152
http://dx.doi.org/10.1016/j.eswa.2018.10.048
http://dx.doi.org/10.1016/j.ijhydene.2017.01.180
http://dx.doi.org/10.3390/mi10110737
http://dx.doi.org/10.1109/NAFIPS.1996.534789
http://dx.doi.org/10.1007/s13042-017-0711-7

Mathematics 2021, 9, 427 19 of 20

13. Ronkkonen, J.; Kukkonen, S.; Price, K. Real-Parameter Optimization with Differential Evolution; IEEE: New York, NY, USA, 2005;
p. 513.

14. Zielinski, K.; Weitkemper, P.; Laur, R.; Kammeyer, K.D. Parameter study for differential evolution using a power allocation
problem including interference cancellation. In Proceedings of the 2006 IEEE International Conference on Evolutionary
Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 1857–1864.

15. Sarker, R.A.; Elsayed, S.M.; Ray, T. Differential Evolution With Dynamic Parameters Selection for Optimization Problems. IEEE
Trans. Evol. Comput. 2014, 18, 689–707. [CrossRef]

16. Al-Dabbagh, R.D.; Neri, F.; Idris, N.; Baba, M.S. Algorithmic design issues in adaptive differential evolution schemes: Review
and taxonomy. Swarm Evol. Comput. 2018, 43, 284–311. [CrossRef]

17. Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [CrossRef]

18. Islam, S.M.; Das, S.; Ghosh, S.; Roy, S.; Suganthan, P.N. An Adaptive Differential Evolution Algorithm With Novel Mutation
and Crossover Strategies for Global Numerical Optimization. IEEE Trans. Syst. Man Cybern. Part B-Cybern. 2012, 42, 482–500.
[CrossRef]

19. Liu, J.; Lampinen, J. A fuzzy adaptive differential evolution algorithm. Soft Comput. 2005, 9, 448–462. [CrossRef]
20. Ochoa, P.; Castillo, O.; Soria, J. Differential Evolution Using Fuzzy Logic and a Comparative Study with Other Metaheuristics.

Nat.-Inspired Des. Hybrid Intell. Syst. 2017, 667, 257–268. [CrossRef]
21. Tsafarakis, S.; Zervoudakis, K.; Andronikidis, A.; Altsitsiadis, E. Fuzzy self-tuning differential evolution for optimal product line

design. Eur. J. Oper. Res. 2020, 287, 1161–1169. [CrossRef]
22. Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009,

13, 945–958. [CrossRef]
23. Zhou, Y.Z.; Yi, W.C.; Gao, L.; Li, X.Y. Adaptive Differential Evolution with Sorting Crossover Rate for Continuous Optimization

Problems. IEEE Trans. Cybern. 2017, 47, 2742–2753. [CrossRef] [PubMed]
24. Tanabe, R.; Fukunaga, A. Success-History Based Parameter Adaptation for Differential Evolution. In Proceedings of the 2013

IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; p. 78.
25. Piotrowski, A.P.; Napiorkowski, J.J. Step-by-step improvement of JADE and SHADE-based algorithms: Success or failure? Swarm

Evol. Comput. 2018, 43, 88–108. [CrossRef]
26. Qin, A.K.; Huang, V.L.; Suganthan, P.N. Differential Evolution Algorithm With Strategy Adaptation for Global Numerical

Optimization. IEEE Trans. Evol. Comput. 2009, 13, 398–417. [CrossRef]
27. Fan, Q.; Wang, W.; Yan, X. Differential evolution algorithm with strategy adaptation and knowledge-based control parameters.

Artif. Intell. Rev. 2019, 51, 219–253. [CrossRef]
28. Mohamed, A.W.; Suganthan, P.N. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential

evolution algorithm with novel mutation. Soft Comput. 2018, 22, 3215–3235. [CrossRef]
29. Wang, Y.; Cai, Z.; Zhang, Q. Differential Evolution with Composite Trial Vector Generation Strategies and Control Parameters.

IEEE Trans. Evol. Comput. 2011, 15, 55–66. [CrossRef]
30. Mallipeddi, R.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. Differential evolution algorithm with ensemble of parameters and

mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696. [CrossRef]
31. Wu, G.; Shen, X.; Li, H.; Chen, H.; Lin, A.; Suganthan, P.N. Ensemble of differential evolution variants. Inf. Sci. 2018, 423, 172–186.

[CrossRef]
32. Wu, G.; Mallipeddi, R.; Suganthan, P.N.; Wang, R.; Chen, H. Differential evolution with multi-population based ensemble of

mutation strategies. Inf. Sci. 2016, 329, 329–345. [CrossRef]
33. Sengupta, S.; Basak, S.; Saikia, P.; Paul, S.; Tsalavoutis, V.; Atiah, F.; Ravi, V.; Peters, A. A review of deep learning with special

emphasis on architectures, applications and recent trends. Knowl.-Based Syst. 2020, 194, 105596. [CrossRef]
34. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.

2020, 37, 362–386. [CrossRef]
35. Teso-Fz-Betoño, D.; Zulueta, E.; Sánchez-Chica, A.; Fernandez-Gamiz, U.; Saenz-Aguirre, A. Semantic Segmentation to Develop

an Indoor Navigation System for an Autonomous Mobile Robot. Mathematics 2020, 8, 855. [CrossRef]
36. Lopez-Guede, J.; Ramos, J.; Zulueta, E.; Fernandez-Gamiz, U.; Oterino, F. Systematic modeling of photovoltaic modules based on

artificial neural networks. Int. J. Hydrogen Energy 2016, 41. [CrossRef]
37. Saenz-Aguirre, A.; Zulueta, E.; Fernandez-Gamiz, U.; Ulazia, A.; Teso-Fz-Betoño, D. Performance enhancement of the artificial

neural network–based reinforcement learning for wind turbine yaw control. Wind Energy 2019, 23. [CrossRef]
38. Sezer, O.B.; Gudelek, M.U.; Ozbayoglu, A.M. Financial time series forecasting with deep learning: A systematic literature review:

2005–2019. Appl. Soft Comput. 2020, 90, 106181. [CrossRef]
39. Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the-art in artificial neural network

applications: A survey. Heliyon 2018, 4, e00938. [CrossRef]
40. Hansen, N.; Finck, S.; Ros, R.; Auger, A. Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions

Definitions. Research Report RR-6829, INRIA. 2009. Available online: https://hal.inria.fr/inria-00362633v2/file/RR-6829v2.pdf
(accessed on 20 January 2021).

http://dx.doi.org/10.1109/TEVC.2013.2281528
http://dx.doi.org/10.1016/j.swevo.2018.03.008
http://dx.doi.org/10.1109/TEVC.2006.872133
http://dx.doi.org/10.1109/TSMCB.2011.2167966
http://dx.doi.org/10.1007/s00500-004-0363-x
http://dx.doi.org/10.1007/978-3-319-47054-2_17
http://dx.doi.org/10.1016/j.ejor.2020.05.018
http://dx.doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1109/TCYB.2017.2676882
http://www.ncbi.nlm.nih.gov/pubmed/28362602
http://dx.doi.org/10.1016/j.swevo.2018.03.007
http://dx.doi.org/10.1109/TEVC.2008.927706
http://dx.doi.org/10.1007/s10462-017-9562-6
http://dx.doi.org/10.1007/s00500-017-2777-2
http://dx.doi.org/10.1109/TEVC.2010.2087271
http://dx.doi.org/10.1016/j.asoc.2010.04.024
http://dx.doi.org/10.1016/j.ins.2017.09.053
http://dx.doi.org/10.1016/j.ins.2015.09.009
http://dx.doi.org/10.1016/j.knosys.2020.105596
http://dx.doi.org/10.1002/rob.21918
http://dx.doi.org/10.3390/math8050855
http://dx.doi.org/10.1016/j.ijhydene.2016.04.175
http://dx.doi.org/10.1002/we.2451
http://dx.doi.org/10.1016/j.asoc.2020.106181
http://dx.doi.org/10.1016/j.heliyon.2018.e00938
https://hal.inria.fr/inria-00362633v2/file/RR-6829v2.pdf

Mathematics 2021, 9, 427 20 of 20

41. Tong, L.; Dong, M.; Jing, C. An improved multi-population ensemble differential evolution. Neurocomputing 2018, 290, 130–147.
[CrossRef]

42. Caraffini, F.; Kononova, A.; Corne, D. Infeasibility and structural bias in Differential Evolution. Inf. Sci. 2019, 496, 161–179.
[CrossRef]

43. Stanovov, V.; Akhmedova, S.; Semenkin, E. Selective Pressure Strategy in differential evolution: Exploitation improvement in
solving global optimization problems. Swarm Evol. Comput. 2019, 50, 100463. [CrossRef]

44. Brest, J.; Maucec, M.S.; Boskovic, B. Single Objective Real-Parameter Optimization: Algorithm jSO; IEEE: New York, NY, USA, 2017;
p. 1318.

45. Deng, W.; Xu, J.; Song, Y.; Zhao, H. Differential evolution algorithm with wavelet basis function and optimal mutation strategy
for complex optimization problem. Appl. Soft Comput. 2020, 106724. [CrossRef]

46. Peng, H.; Guo, Z.; Deng, C.; Wu, Z. Enhancing differential evolution with random neighbors based strategy. J. Comput. Sci. 2018,
26, 501–511. [CrossRef]

47. Meng, Z.; Pan, J.S.; Tseng, K.K. PaDE: An enhanced Differential Evolution algorithm with novel control parameter adaptation
schemes for numerical optimization. Knowl.-Based Syst. 2019, 168, 80–99. [CrossRef]

48. Li, X.; Wang, L.; Jiang, Q.; Li, N. Differential evolution algorithm with multi-population cooperation and multi-strategy
integration. Neurocomputing 2021, 421, 285–302. [CrossRef]

49. Zhao, S.Z.; Suganthan, P.N. Empirical investigations into the exponential crossover of differential evolutions. Swarm Evol.
Comput. 2013, 9, 27–36. [CrossRef]

50. Qiu, X.; Tan, K.C.; Xu, J. Multiple Exponential Recombination for Differential Evolution. IEEE Trans. Cybern. 2017, 47, 995–1006.
[CrossRef]

51. Guo, S.; Yang, C. Enhancing Differential Evolution Utilizing Eigenvector-Based Crossover Operator. IEEE Trans. Evol. Comput.
2015, 19, 31–49. [CrossRef]

52. Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation Functions: Comparison of trends in Practice and Research for
Deep Learning. arXiv 2018, arXiv:1811.03378.

53. Pavelka, A.; Procházka, A. Algorithms for initialization of neural network weights. In Proceedings of the Conference Technical
Computing, 4 November 2004; pp. 453–459. Available online: https://www2.humusoft.cz/www/papers/tcp04/pavelka.pdf
(accessed on 4 February 2021).

54. Hagan, M.T.; Menhaj, M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994,
5, 989–993. [CrossRef]

55. Piotrowski, A.P. Review of Differential Evolution population size. Swarm Evol. Comput. 2017, 32, 1–24. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2018.02.038
http://dx.doi.org/10.1016/j.ins.2019.05.019
http://dx.doi.org/10.1016/j.swevo.2018.10.014
http://dx.doi.org/10.1016/j.asoc.2020.106724
http://dx.doi.org/10.1016/j.jocs.2017.07.010
http://dx.doi.org/10.1016/j.knosys.2019.01.006
http://dx.doi.org/10.1016/j.neucom.2020.09.007
http://dx.doi.org/10.1016/j.swevo.2012.09.004
http://dx.doi.org/10.1109/TCYB.2016.2536167
http://dx.doi.org/10.1109/TEVC.2013.2297160
https://www2.humusoft.cz/www/papers/tcp04/pavelka.pdf
http://dx.doi.org/10.1109/72.329697
http://dx.doi.org/10.1016/j.swevo.2016.05.003

	Introduction
	Simulation Set-Up
	Procedures
	Differential Evolution Algorithm
	Initialization
	Mutation Operation
	Crossover Operation
	Selection Operation

	Artificial Neural Network Model

	Proposed Method
	Data-Set Generation
	Data-Set Normalization
	ANN Approach
	Best Parameters Extraction

	Results and Discussion
	ANN Training Results
	Optimal Parameters Results
	First Case: Multiple Combinations with High Effectiveness
	Second Case: Medium Effectiveness
	Third Case: Zero Effectiveness

	Validation of the Method

	Conclusions
	References

