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Summary 

The objective of this thesis is to shed light on several important gaps that exist in 

biodiversity–ecosystem functioning (BEF) research, by addressing key questions about 

how riparian plant litter diversity loss can alter stream ecosystem functioning. In the 

first 2 chapters, I explore the issue of how plant litter diversity loss can simultaneously 

impact multiple processes that are fundamental to streams. While most relevant 

studies have focused on litter decomposition, I consider other processes that are 

intimately linked to decomposition and occur simultaneously, namely the cycling of 

major nutrients and secondary biomass production. My results provide novel evidence 

of simultaneous effects on multiple processes and demonstrate that, despite the 

usefulness of multifunctionality metrics to assess overall impacts on the ecosystem, 

the separate analysis of different processes is essential to fully understand how 

organisms, food webs and, ultimately, ecosystems, are altered. I found the largest and 

most consistent effects of litter diversity loss on nutrient cycling, suggesting that 

studies focused solely on decomposition may underestimate the consequences of 

plant diversity loss on streams. In chapter 3, I show the existence of only weak 

interactions between the detrital and the autotrophic pathways within stream food 

webs, with no complex relationships between biodiversity and ecosystem processes 

across pathways. In chapters 4 and 5, I examine the relevance of different biodiversity 

metrics (species richness, phylogenetic distance and litter trait variability) within a BEF 

context, using both field and microcosm experiments. I reveal important differences 

among these metrics, and highlight the major role of particular litter traits (mostly the 

concentrations of major nutrients) as drivers of BEF relationships. Finally, throughout 

the thesis I improve our mechanistic understanding of BEF relationships by exploring 

the relative role of complementarity and selection effects. I demonstrate that 

complementarity is often dominant, which highlights the relevance of interspecific 

interactions as drivers of biodiversity effects on ecosystem functioning. This thesis 

provides a major step towards our understanding of how the loss and replacement of 

riparian plant species can cause significant alterations in multiple processes that are 

central to the functioning of many stream ecosystems. Moreover, the finding of large 

and consistent effects on nutrient cycling suggests that the consequences of plant 

diversity loss go beyond the functioning of stream ecosystems, with the potential to 

alter global biogeochemical cycles. 
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Resumen 

El objetivo de esta tesis es esclarecer varias lagunas de conocimiento, relativas al papel 

que juega la biodiversidad en el funcionamiento de los ecosistemas (‘BEF’, por sus 

siglas en inglés). En concreto, se abordan cuestiones clave sobre cómo la pérdida de 

diversidad del bosque ripario puede alterar el funcionamiento del ecosistema fluvial. 

En los primeros 2 capítulos, se explora cómo la pérdida de diversidad de hojarasca 

puede afectar de manera simultánea a múltiples procesos fundamentales para los 

arroyos de cabecera. Mientras que los estudios más relevantes se han centrado en la 

descomposición de la hojarasca, en esta tesis se consideran también otros procesos 

que están íntimamente relacionados y ocurren de manera conjunta, concretamente el 

reciclado de nutrientes y la producción secundaria. Los resultados evidencian efectos 

en múltiples procesos y demuestran que, a pesar de la utilidad de las métricas de 

multifuncionalidad para evaluar los impactos generales en el ecosistema, el análisis 

individual de diferentes procesos es esencial para comprender completamente cómo 

los organismos, las redes tróficas y, en última instancia, los ecosistemas, se ven 

alterados por la pérdida de diversidad de hojarasca. Los efectos más marcados y 

consistentes se detectaron sobre el reciclado de nutrientes, lo que sugiere que los 

muchos estudios centrados únicamente en descomposición pueden subestimar las 

consecuencias que tiene la pérdida de diversidad de especies riparias para el 

ecosistema fluvial. El capítulo 3 evidencia la existencia de interacciones débiles entre 

las vías detrítica y autotrófica dentro de la red trófica fluvial, sin relaciones complejas 

entre la biodiversidad y los procesos de los ecosistemas a través de ambas vías. En los 

capítulos 4 y 5, examino la relevancia de diferentes métricas de biodiversidad (riqueza 

de especies, distancia filogenética y variabilidad de rasgos biológicos) dentro de un 

contexto BEF, utilizando tanto experimentos de campo como de microcosmos. Revelo 

diferencias importantes entre estas métricas, destacando el papel principal de rasgos 

concretos de la hojarasca (principalmente las concentraciones de los nutrientes 

principales) como promotores de las relaciones BEF. Finalmente, a lo largo de la tesis, 

con el objetivo de mejorar nuestra comprensión de los mecanismos subyacentes a las 

relaciones BEF, se explora la importancia relativa de los efectos de complementariedad 

y selección. La complementariedad resultó ser, en la mayoría de los casos, el 

mecanismo dominante, lo que destaca la relevancia de las interacciones 

interespecíficas como mediadoras de los efectos de la biodiversidad en el 

funcionamiento de los ecosistemas. Esta tesis proporciona un avance importante en la 

comprensión de cómo la pérdida y el reemplazo de especies de plantas riparias puede 

causar alteraciones significativas en múltiples procesos que son fundamentales para el 

funcionamiento de los ecosistemas fluviales. Además, el hallazgo de efectos 

importantes y consistentes en el reciclado de nutrientes sugiere que las consecuencias 

de la pérdida de diversidad vegetal van más allá del funcionamiento de éstos 

ecosistemas, con el potencial de alterar los ciclos biogeoquímicos globales. 
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GENERAL INTRODUCTION 

 

GLOBAL BIODIVERSITY LOSS AND STREAM ECOSYSTEMS 

Biodiversity is rapidly decreasing at the global scale, to an extent that the occurrence 

of a 6th mass extinction has been advocated (Barnosky et al. 2011, Ceballos et al. 

2017). The main causes of such decline are related to multiple anthropogenic activities 

including habitat fragmentation (Tamisier and Grillas 1994, Light and Marchetti 2007), 

the introduction of exotic species and pathogens into novel areas (Clavero et al. 2009, 

Hermoso et al. 2011, Doherty et al. 2016), and climate change (Midgley et al. 2002, 

Colossi Brustolin et al. 2019), among others. Importantly, while the loss of biodiversity 

is in itself worrying due to its intrinsic value (Ghilarov 2000), the repercussions of such 

loss extend to the functioning of ecosystems (Naeem et al. 1994) and the services they 

provide to humans, which are often altered (Cardinale et al. 2006). Studies addressing 

biodiversity-ecosystem functioning (hereafter, BEF) relationships emerged in the 

1990’s and have been so profuse since then that a new ecological discipline, known as 

BEF research (Box 1), has developed (Schulze and Mooney 1993, Tilman et al. 2014, 

Gonzalez et al. 2020). Still, the majority of BEF studies have focused on the process of 

primary production in terrestrial ecosystems (Cardinale et al. 2011, Maestre et al. 

2012b), while other types of processes and ecosystems have received considerably less 

attention (Hooper et al. 2005, van der Plas 2019). 

Freshwater ecosystems contribute substantially to global biodiversity, as they 

hold about the 6% of all described species despite the fact that they occupy only the 

0.8% of the Earth’s surface and contain 0.01% of the World’s water (Dudgeon et al. 

2006). However, these ecosystems are also profoundly altered by human activities 

(Ormerod et al. 2010, Vörösmarty et al. 2010), and their biodiversity loss rates far 

exceed those of the most affected terrestrial ecosystems (Harding et al. 1992, Allan 

and Flecker 1993, Dudgeon et al. 2006). Of particular concern are running waters, 

which play a fundamental role in the water cycle and global fluxes of nutrients and 

carbon (C), and provide fundamental ecosystem services to humans (e.g., drinking 

water, food, waste removal and renewable energy; Millenium Ecosystem Assessment 

2005). Within river networks, headwater streams (i.e., first and second order streams) 

represent over two thirds of total channel length (Leopold et al. 2020) and hold a large 

and unique habitat and biological diversity (Meyer et al. 2007, Finn et al. 2011, 

Richardson 2019). Moreover, these streams are strongly connected with the 

surrounding terrestrial ecosystem, especially with the riparian forest (Wallace et al. 

1997), so they can be affected by both aquatic and terrestrial biodiversity loss 

(Kominoski et al. 2013). 
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Most headwater streams are detritus-based systems where primary production 

is limited by riparian shading. Inputs of terrestrial detritus, mostly in the form of leaf 

litter, are the basis of the aquatic detrital food web, where detritivorous invertebrates 

play a key role (Wallace et al. 1997). When litter enters the stream, it is rapidly 

colonized by microbial decomposers, mainly aquatic hyphomycetes (Abelho and Graça 

2006), which enhance the litter nutritional content and make it a suitable food source 

for litter-feeding detritivores (Wallace and Webster 1996, Graça and Cressa 2010, Tank 

et al. 2010). Litter is thus decomposed and fragmented by the joint action of 

microorganims, litter-feeding detritivores and physicochemical processes, leading to 

the production of fine particulate organic matter (FPOM) that feeds other detritivorous 

invertebrates such as collectors and filterers (Cummins and Klug 1979, Bundschuh and 

McKie 2016), and releasing nutrients to the water that are used by primary producers. 

The latter exude labile C that can be used by fungi and stimulate litter decomposition 

(Soares et al. 2017), and they serve as food for grazers (Cummins 1974). Finally, 

invertebrate and vertebrate predators are on top of the stream food web (Wallace et 

al. 1997) (Fig 1).  

Box 1. Glossary of main terms pertaining to BEF research 

BEF research: body of theory and collection of scientific studies that focus on the 
relationship between biodiversity and ecosystem functioning (Schulze and Mooney 1993). 

Biodiversity: contraction of the term ‘biological diversity’, which refers to variety among 
living organisms. It can refer to diversity of species (‘species richness’) or taxa in general 
(‘taxonomic diversity’), genes (’genetic diversity), or biological traits (‘trait diversity’), 
including functional traits (‘functional diversity’) (Swingland 2013). 

Ecosystem functioning: array of processes that sustain an ecosystem (   a  and  abido 
2001). 

Ecosystem process: flow of energy and matter over time and/or space driven by the 
interplay of abiotic (physical and chemical) and biotic factors. Examples include primary and 
secondary production, resource consumption, decomposition, respiration, denitrification 
and nutrient uptake (Reiss et al. 2009, Von Schiller et al. 2017). 

Ecosystem service: value or good provided by an ecosystem process to humans. Examples 
are food production, water provision, detoxification, weather control, carbon sequestration 
and recreation (   a  and  abido 2001, Isbell et al. 2017). 

Functional trait: morphological, physiological or phenological feature of an organism’s 
phenotype, measurable at the individual level, which determines its effect on processes 
and its response to environmental factors (Petchey and Gaston 2006, Violle et al. 2007). 

Phylogenetic distance: estimate of the amount of time since the most recent common 
ancestor of two species, which can be used as proxy for their differences in functional traits 
(i.e., functional diversity) (Darwin 1859, Harvey and Pagel 1991). 
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Fig 1. Main interactions occurring in the stream food web. Brown and green arrows refer to detrital 

and autotrophic pathways, respectively. Solid arrows represent feeding relationships, and dotted 

arrows represent the release of substances to the water column. 

 

BEF STUDIES ON STREAM ECOSYSTEMS 

As shown above, the decomposition of terrestrial litter and the concomitant recycling 

of nutrients and production of detritivore biomass are central processes to the 

functioning of headwater streams and the maintenance of the aquatic food web. It 

could thus be expected that changes in biodiversity of any of the trophic levels 

involved in the above processes (i.e., leaf litter, detritivores and aquatic 

hyphomycetes; Fig 1) would lead to alterations in stream ecosystem functioning 

(Gessner et al. 2010) and, ultimately, in biogeochemical cycles (Battin et al. 2009, 

Raymond et al. 2013). While microbial diversity has received relatively little attention 

in this context (but see Duarte et al. 2006, Bell et al. 2009), many studies have 
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examined the effects of plant litter or detritivore diversity (i.e., bottom-up or top-down 

diversity effects, respectively) on decomposition (Gessner et al. 2010) and, to a lesser 

extent, on associated processes (see below). However, there is still little consensus 

about BEF relationships in streams, because different studies have reported 

contrasting results. This is particularly true for bottom-up effects, which are generally 

weaker than top-down effects (Srivastava et al. 2009) and highly inconsistent across 

studies (Cardinale et al. 2011). This important gap of knowledge (see also Daam et al. 

2019) has motivated this thesis, which focuses on the relationship between plant litter 

diversity (hereafter litter diversity) and stream ecosystem functioning. 

 

BIODIVERSITY AND ECOSYSTEM MULTIFUNCIONALITY 

Ecosystems are often valued for their capacity to maintain multiple processes or 

functions simultaneously, a concept termed ‘multifunctionality’ (Hector and Bagchi 

2007).  Importantly, the number of species (or traits) needed to maintain ecosystem 

functioning increases with the number of processes measured, because progressively 

more species (or traits) are required to sustain multiple processes (Reiss et al. 2009). 

While most studies assessing BEF relationships have examined single processes in 

isolation, the study of multifunctionality has recently gained importance (Byrnes et al. 

2014), and there is now ample evidence that biodiversity affects multifunctionality in 

terrestrial ecosystems (Maestre et al. 2012b, Delgado-Baquerizo et al. 2016, Mori et al. 

2016). In contrast, there is little information available for streams, with very few 

exceptions (e.g., Perkins et al. 2015, who focused on effects of invertebrate diversity). 

The detrital stream food web is supported by several associated processes and 

complex interactions between resources and organisms at different trophic levels (Fig. 

1). Therefore, it seems relevant to examine these processes and interactions together 

in order to reveal effects of plant diversity loss on the ecosystem. However, stream 

BEF studies have focused almost solely on the process of litter decomposition, ignoring 

associated processes such us the production of FPOM and animal biomass, or nutrient 

cycling. The consequences of biodiversity loss on stream ecosystem functioning may 

thus have been underestimated, and this thesis addresses this issue by examining 

multifunctionality. 

In addition to considering multiple processes, an interesting and underexplored 

question is whether BEF relationships occur across different compartments of the 

stream food web, namely heterotrophic and autotrophic pathways (Fig. 1). Even if the 

former is dominant in low-order streams, primary producers are also present and thus 

both pathways generally coexist in the food web. Moreover, part of the leaf litter that 

enters low-order streams is not processed in situ, but rather transported downstream 

to mid reaches, where primary production becomes dominant (Vannote et al. 1980). It 
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thus seems likely that litter diversity may influence primary production and associated 

algal assemblages and, to a lesser extent, that algal diversity may have an influence on 

decomposition and associated processes. This thesis introduces this multi-trophic 

perspective and examines the reciprocal effects of biodiversity on ecosystem 

functioning between the brown and green pathways of the stream food web. 

 

HOW TO MEASURE BIODIVERSITY 

Another important drawback of many BEF studies is the way biodiversity is usually 

measured (Box 1). While the most often used metric is species richness, it has been 

argued that functional diversity of biological assemblages is probably a better 

predictor of ecosystem functioning than taxonomic diversity in general or species 

richness in particular (Buchmann and Roy 2002). This means that it is important to 

understand what organisms do and which role they play in the ecosystem, rather than 

simply knowing how many species are present. This change in perspective has 

motivated an increase in the number of studies using biodiversity measures based on 

functional traits (Petchey and Gaston 2002). Still, there is no simple o standard 

measure of functional diversity (   a  and  abido 2001), with organisms being usually 

categorized based on a set of traits that are considered relevant for ecosystem 

functioning based on existing knowledge. An alternative to this is using phylogenetic 

distance as proxy for functional diversity, as it does not rely on an a priori selection of 

traits, but it rather is an integrative measure that includes all species traits (Swenson 

2013). Although phylogenetic distance has shown relationships with ecosystem 

processes such as primary production (Cadotte et al. 2008) and litter decomposition 

(Boyero et al. 2016), the relevance of this measure compared to others such as 

functional diversity and species richness has not been explicitly addressed, and this is 

one of the issues I explore in this thesis. 

 

BIOLOGICAL MECHANISMS UNDERLYING BEF RELATIONSHIPS 

A further limitation of many BEF studies is the lack of examination of the biological 

mechanisms underlying the described patterns. One procedure is to partition the 

diversity effects on ecosystem functioning in two different types of effect: 

complementarity and selection (Box 2). Within this context, the overall effect is called 

net diversity effect, and the two components (which can be positive or negative) can 

serve as an indication of the biological mechanisms the underlie such effects (Loreau 

and Hector 2001). Positive complementarity often indicates the existence of resource 

partitioning and/or facilitation between species (Tonin et al. 2018), with negative 



López-Rojo N. PhD 

11 
 

complementarity suggesting that negative interspecific interactions (e.g., competition) 

occur (Creed et al. 2009). Positive (or negative) selection indicates that there is a 

species with particularly high (or low) contribution to a given function (Fox 2005, Jiang 

et al. 2008). Exploring the biological mechanisms that cause BEF relationships is 

essential to understand their relevance for the ecosystem, so I have used this approach 

in several chapters of this thesis.  

  

OBJECTIVES AND OUTLINE OF THE THESIS 

This dissertation intends to improve our knowledge on how the loss of diversity of 

terrestrial plant litter affects stream ecosystem functioning, by examining the research 

questions outlined above using several experimental laboratory and field approaches 

(Fig. 2). My first general objective is to examine how changes in litter diversity affect 

multiple stream ecosystem processes (decomposition, FPOM production, nutrient 

cycling and secondary production), separately and together (i.e., multifuncionality). My 

second general objective is to study the connection between different stream food 

web compartments (brown and green) within a BEF context. My third general 

objective is to assess the adequacy of different biodiversity measures (species richness, 

functional diversity and phylogenetic distance) to explore BEF (i.e., litter diversity–

stream ecosystem functioning) relationships. My fourth general objective is to explore 

the biological mechanisms underlying BEF relationships in streams by partitioning 

diversity effects into complementarity and selection effects, for different processes 

Box 2. Partitioning biodiversity effects (based on Loreau and Hector 2001) 
 

The net diversity effect is calculated as the difference between the observed value of a 
given process in a species mixture and its expected value, the latter being calculated from 
the performance of each species in monoculture and averaged by its relative abundance in 
the mixture: 
 
Net = ∑i (ValueObserved  – ValueExpected) = ∑i [(ValueMixture – ValueMonoculture)* AbundanceMixture] 

 
This net diversity effect results from the addition of positive and/or negative 
complementarity and/or selection effects. The complementarity effect is calculated as the 
average deviation from the expected performance of each species in the mixture, 
multiplied by the mean performance of species in monoculture and the number of species 
(n) in the mixture. The selection effect is calculated as the covariance between the 
deviation from the expected performance in the mixture and the performance in 
monoculture, multiplied by the number of species: 
 

Complementarity = mean (ValueMixture – ValueMonoculture) × mean ValueMonoculture × n 
 

Selection = cov [(ValueMixture – ValueMonoculture), ValueMonoculture] × n 
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and in different contexts. To address these general objectives, I have structured the 

thesis in five chapters, which are listed below. 

 

 

Fig 2. Main questions addressed in this thesis. 

 

CHAPTER 1 examines the effects of litter diversity loss (measured through species 

richness) on three ecosystem processes (litter decomposition, FPOM production and 

detritivore biomass production), with emphasis on the identity of the species lost, 

through a stream microcosm experiment. 

CHAPTER 2 tests the effects of litter diversity loss (measured through species richness) 

on nine key ecosystem processes [litter decomposition, nitrogen (N) and phosphorus 
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(P) loss from litter, FPOM production, N and P release to the water, detritivore biomass 

production, and detritivore N and P gain] separately and together (through 

multifunctionality indexes), through a stream microcosm experiment. 

CHAPTER 3 explores the effects of litter and primary producer (periphytic algae) 

diversity loss (measured through species richness) on ecosystem processes of both 

brown and green stream food webs (decomposition, fungal sporulation, algal growth 

and carrying capacity, and net primary production), through a stream mesocosm 

experiment. 

CHAPTER 4 explores the effects of different measures of plant litter diversity (species 

richness, functional diversity and phylogenetic distance) on litter decomposition and 

the associated invertebrate assemblages, through a stream field experiment. 

CHAPTER 5 examines the effects of different measures of litter diversity (species 

richness, functional diversity and phylogenetic distance) on seven ecosystem processes 

(litter decomposition, N and P loss from litter, fungal sporulation, detritivore growth, 

and detritivore N and P gain), through a stream microcosm experiment.
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Leaf traits drive plant diversity effects on litter 

decomposition and FPOM production in 

streams 
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streams. PloS One, 13(5), e0198243. 
 



Chapter 1 

16 
 

 

INTRODUCTION 

Human activities are altering freshwater ecosystems worlwide, with significant impacts 

on biological communities and ecosystem processes (Carpenter et al. 2011). The 

removal of riparian vegetation,  which often occurs in association with agriculture, 

deforestation or afforestation with exotic species, can affect key stream ecosystem 

processes such as leaf litter decomposition (Graça et al. 2002). This is particularly 

evident in forested streams, where inputs of dead organic matter from the 

surrounding vegetation constitute the basis of a detrital food web (Wallace et al. 

1997). Leaf litter is used by microbial decomposers and by invertebrate leaf-shredding 

ABSTRACT 

Biodiversity loss in riparian forests has the potential to alter rates of leaf litter 

decomposition in stream ecosystems. However, studies have reported the full range 

of positive, negative and no effects of plant diversity loss on decomposition, and 

there is currently no explanation for such inconsistent results. Furthermore, it is 

uncertain whether plant diversity loss affects other ecological processes related to 

decomposition, such as fine particulate organic matter production or detritivore 

growth, which precludes a thorough understanding of how detrital stream food 

webs are impacted by plant diversity loss. We used a microcosm experiment to 

examine the effects of plant diversity loss on litter decomposition, fine particulate 

organic matter production, and growth of a dominant leaf-shredding detritivore, 

using litter mixtures varying in species composition. We hypothesized that plant 

diversity loss would decrease the rates of all studied processes, but such effects 

would depend on the leaf traits present in litter mixtures (both their average values 

and their variability). Our findings partly supported our hypotheses, showing that 

plant diversity loss had a consistently negative effect on litter decomposition and 

fine particulate organic matter production (but not on detritivore growth) across 

litter mixtures, which was mediated by detritivores. Importantly, the magnitude of 

the diversity effect and the relative importance of different mechanisms underlying 

this effect (i.e., complementarity vs. selection) varied depending on the species 

composition of litter mixtures, mainly because of differences in litter nutritional 

quality and trait variability. Complementarity was prevalent but varied in size, with 

positive selection effects also occurring in some mixtures. Our results support the 

notion that loss of riparian plant species is detrimental to key stream ecosystem 

processes that drive detrital food webs, but that the magnitude of such effects 

largely depends on the the order of species loss. 

KEY WORDS: ecosystem processes, leaf litter, nutrititional quality, detritivores, 

complementarity, selection 
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detritivores, which incorporate the plant material into animal biomass (Wallace and 

Webster 1996). Microbial and detritivore activity, together with mechanical 

fragmentation, also lead to the production of fine particulate organic matter (FPOM), 

which provides an important resource for other consumers such as collector-gatherers 

and filter-feeders (Cummins and Klug 1979, Bundschuh and McKie 2016), ultimately 

supporting invertebrate and vertebrate predators (Wallace et al. 1997). Understanding 

how these key processes are affected by biodiversity loss is important to predict 

alterations in stream ecosystem functioning (Dudgeon et al. 2006), given the current 

high rates of extinction (Barnosky et al. 2011). 

The consequences of riparian plant diversity loss for decomposition in streams 

have been extensively studied. However, this relationship is still unclear because 

studies have found the full range of positive, negative and no effects of plant diversity 

loss on decomposition (Gessner et al. 2010). Furthermore, we know little about the 

potential  effects of plant diversity loss on processes associated with decomposition, 

such as detritivore growth and FPOM production, which are likely to have top-down 

and bottom-up effects for the detrital food web, respectively (Rosemond et al. 2001, 

Bundschuh and McKie 2016). Thus, our understanding of how detrital stream food 

webs are impacted by the loss of riparian plant diversity is limited. 

We examined the effects of plant diversity loss on the rates of litter 

decomposition, FPOM production and detritivore growth in streams, using a 

microcosm experiment with four riparian plant species (Alnus glutinosa (L.) Gaertner, 

Corylus avellana L., Quercus robur L. and Ilex aquifolium L.; hereafter Alnus, Corylus, 

Quercus and Ilex) and a detritivore species (Sericostoma pyrenaicum Pictet), all of 

which are common in our study area. Firstly, we hypothesized that plant diversity loss 

would lead to a general decrease in litter decomposition (Cardinale et al. 2011), but 

the magnitude of such effect would vary depending on the leaf traits present initially in 

litter mixtures. Thus, we examined the effects of losing plant diversity on 

decomposition not only from the 4-species mixture composed of Alnus (A), Corylus (C), 

Quercus (Q) and Ilex (I), but also from the four different possible 3-species mixtures 

(i.e., ACQ, ACI, AQI and CQI), which differed in their average leaf traits and variability. 

Secondly, we hypothesized that the effect of plant diversity on decomposition 

would be due to a combination of positive complementarity (effects resulting from 

synergistic interactions) and positive selection (effects due to the presence of a species 

with particularly high decomposition rates) (Handa et al. 2014), but the relative 

importance of both mechanisms would vary depending on the species present in the 

mixture. Specifically, we expected that selection effects would become more 

important in litter mixtures containing Alnus, because litter from this species 

decomposes faster than many other species and is often preferred by detritivores 

(Graça et al. 2001, Tonin et al. 2017). Finally, we hypothesized that effects of plant 
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diversity loss on FPOM production and detritivore growth would be similar to those on 

decomposition, as these threee processes are intimately related, although our 

experimental design did not allow exploring the relative role of complementarity and 

selection effects on FPOM production and detritivore growth because the contribution 

of different plant species to these proceses cannot be distinguished in polycultures. 

MATERIALS AND METHODS 

We selected four plant species that were present in the riparian forest and belonged to 

different plant functional types: a nitrogen (N) fixer (Alnus), a deciduous fast 

decomposer (Corylus), a deciduous slow decomposer (Quercus) and an evergreen 

species (Ilex). Although Ilex was less abundant than the other species, its relative 

contribution to stream leaf litter was considerable in seasons other than autumn (pers. 

obs.). The species differed in several leaf traits (Table 1): N and phosphorus (P) 

concentrations [% dry mass (DM)]; specific leaf area [SLA; ratio of disc area (mm2) to 

leaf DM (mg)]; leaf toughness [measured as the pressure required to pierce the leave 

tissue using a steel rod (kPa)]; and ash concentration [(% DM remaining after high-

temperature combustion), which is a surrogate of leaf defense (Moles et al. 2013)]. We 

collected leaves from the Agüera stream catchment in northern Spain (43.20 oN, 3.26 
oW) in the autumn of 2015. Leaves of deciduous species were collected from the forest 

floor immediately after natural abscission. For the evergreen Ilex, as there is no peak 

of abscission that allows the collection of leaves at one time, we followed Handa et 

al.'s procedure (Handa et al. 2014) and collected branches, which were stored in the 

laboratory until the leaves were dry. Leaf discs of 12-mm diameter were cut with a 

cork borer avoiding the basal midrib, air dried, and weighed to the nearest 0.01 mg 

using a precision balance in groups of 12, 16, 24 or 48 discs.  

The experiment was carried out in May 2016 in 150 microcosms placed in a 

temperature-controlled room kept at 10 °C (in order to mimic natural conditions in this 

region and minimize evaporation), with constant aeration and a light:dark regime of 

12:12 h. The microcosms consisted of 500-mL glass jars containing 400 mL of stream 

water (soluble reactive P: 10.0± 0.9 µg P L-1; dissolved inorganic N: 453.6 ± 30.4 µg N L-

1; n = 4) filtered through 100-µm mesh, which allowed the entrance of microorganisms. 

Each microcosm received 48 leaf discs that belonged to 1 plant species (monocultures) 

or to 2, 3 or 4 species (i.e., litter mixtures containing 24, 16 or 12 discs per species, 

respectively), with 10 microcosms per treatment. Leaf discs were incubated for 48 h to 

allow the leaching of soluble compounds and initial microbial conditioning, and after 

that the water was replaced with filtered (100 µm) stream water, and detritivores 

were added to half of the microcosms; the other half remained without detritivores, 

which allowed separating effects mediated by detritivores and microorganisms. 
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Microcosms with detritivores received 3 larvae of the caddisfly Sericostoma 

pyrenaicum (hereafter Sericostoma), which had been starved for 48 h prior to the 

experiment. Initial detritivore dry mass (DM) was estimated from a case length (CL) 

(mm) / DM (mg) relationship, using 45 additional larvae collected simultaneously as 

experimental individuals and with a similar case length range (DM = 0.0043 × CL2.8041; 

r2 = 0.79). Case length was measured under a binocular microscope with an accuracy of 

0.5 mm, and then individuals were uncased, freeze-dried and weighed. Detritivore 

initial biomass per microcosm was on average (± SE) 17.82 ± 0.36 mg. 

 
Fig 1. Experimental treatments for each litter mixture and plant diversity level. A: Alnus glutinosa; C: 
Corylus avellana; Q: Quercus robut; I: Ilex aquifolium. 
 

During the experiment, water was again replaced on days 7 and 14, and the 

experiment finished on day 21. On each occasion, water from microcosms was firstly 

filtered through 100-µm mesh to retain the invertebrates and leaf discs and fragments, 

and water was replaced with filtered (100 µm) stream water. The outgoing water was 

filtered through preweighed glass fibre filters (Whatman GF/F; pore size: 0.7-µm), and 

filters were oven-dried (70 ᵒC, 72 h), ashed (550 ᵒC, 4 h) and weighed (mg) to estimate 

FPOM production (water entering the microcosms on each occasion had no FPOM, 

which was determined as explained for outgoing water). On day 21 all the leaf material 

was separated by species, oven-dried and weighed to determine final DM, and ashed 

and re-weighed to determine final AFDM. Detritivores from each microcosm were 

uncased, freeze-dried and weighed to calculate their final DM. 

Twenty extra microcosms (5 per species, each containing 48 pre-weighed leaf 

discs) were used to estimate initial (post-leaching) AFDM of leaf discs, as well as leaf 

traits (N, P and ash concentrations and SLA). Leaf discs were removed after 48 h, oven-

dried (70 ᵒC, 72 h), weighed (mg), and SLA was estimated by dividing total leaf disc 

area (mm2) by DM (mg). Discs from each microcosm were then divided into two 

subsamples; one was ashed (550 ᵒC, 4h), and re-weighed to estimate initial AFDM and 

ash concentration (% DM). The other subsample was used to measure N and P 
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concentrations: N concentration (% DM) was determined using a Perkin Elmer series II 

CHNS/O elemental analyser, and P concentration (% DM) was measured 

spectrophotometrically after autoclave-assisted extraction (APHA 1998). Additionally, 

four microcosms were used to leach 25 leaf discs per species for 48 h and to determine 

leaf toughness using a penetrometer with a 0.79-mm diameter steel rod (Boyero et al. 

2011a); for each species we calculated the average for each set of 5 measurements, 

resulting in 5 final values. 

Data analysis 

We quantified litter decomposition through litter mass loss, calculated as the 

difference between initial and final litter AFDM; initial AFDM was corrected for mass 

loss due to leaching using the correction factor obtained from extra microcosms (0.753 

for Alnus, 0.843 for Corylus, 0.844 for Quercus and 0.767 for Ilex). In microcosms with 

detritivores, we divided litter mass loss by detritivore initial DM in order to remove 

possible effects due to slight differences in detritivore size across microcosms. FPOM 

production was calculated as the accumulated FPOM collected in successive water 

replacements for each microcosm, divided by detritivore initial DM in microcosms with 

detritivores. Detritivore growth was quantified as the % change in detritivore DM: 

[(final DM – initial DM) / initial DM] ×100. 

We examined the differences in initial leaf traits (N and P concentrations, SLA, 

toughness and ash concentration) across plant species and across 3-spp litter mixtures 

with linear models using the gls function (generalized least squares) and restricted 

maximum likelihood (REML) method in the ‘nlme’ R package (version 3.2.5; R 

Development Core Team 2016), with plant species as a fixed factor, followed by Tukey 

pairwise multiple comparisons using the glht function of the ‘multcomp’ package 

(Hothorn et al. 2008). 

We explored whether litter decomposition, FPOM production and detritivore 

growth decreased with diversity loss from 4 to 1 species (categorical variable) in the 

ACQI litter mixture, with linear models followed by pairwise multiple comparisons (as 

above). For decomposition and FPOM production we did separate analyses for 

microcosms with and without detritivores. Subsequently, we split the dataset in 4 

subsets consisting of 3-species litter mixtures (ACQ, ACI, AQI, CQI; Fig. 1) by removing 

one species each time (e.g., Ilex was removed in ACQ). We examined effects of 

diversity loss from 3 to 1 species in the ACQ, ACI, AQI and CQI litter mixtures using 

linear models followed by pairwise multiple comparisons (e.g., the ACQ 3-spp mixture 

was compared with the AC, AQ and CQ 2-spp mixtures and the A, C and Q 

monocultures). Multi-panel plots for each model showed that the homogeneity of 

variances assumption was violated, requiring the use of a variance structure that takes 
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these differences into account [VarIdent function of ‘nlme’ R package (Pinheiro et al. 

2018)]. 

In cases where diversity loss had a significant effect on decomposition, we 

partitioned the net diversity effect into complementarity and selection effects using 

the additive partitioning method (Loreau and Hector 2001). The net diversity effect is 

the difference between observed and expected decomposition (the latter being 

estimated based on monocultures); the complementarity effect is the average 

deviation from expected decomposition in a mixture multiplied by mean 

decomposition in monocultures and by the number of species in the mixture; and the 

selection effect is the covariance between decomposition of species in monoculture 

and the average deviation from expected decomposition of species in the mixture, 

multiplied by the number of species in the mixture (Loreau and Hector 2001). Thus, 

complementarity results from synergistic or antagonistic interactions, while selection 

arises when the presence of a particular species with high or low process rates 

dominates the mixture (Handa et al. 2014). Additive partitioning was not applied to 

FPOM production or detritivore growth because it was not possible to separate the 

contribution of different plant species to these processes in litter mixtures. 

We compared the net diversity, complementarity and selection effects on litter 

decomposition, and the net diversity effect on FPOM production (calculated as the 

difference between observed and expected values, as described for litter 

decomposition), across 3-spp litter mixtures (ACQ, ACI, AQI and CQI) with linear 

models followed by pairwise multiple comparisons. Further, we explored whether the 

net diversity, complementarity and selection effects on litter decomposition and the 

net diversity effect on FPOM production (all continuous variables) were related to 

average leaf trait values within a mixture (corrected by the DM of each species in the 

mixture) and their varaibility using linear models; data were log-transformed to comply 

with linear model assumptions. Leaf trait variability was estimated as the mean 

distance between species pairs in a mixture; the distance between species pairs was 

calculated using cluster analysis on standardized data based on all the measured leaf 

traits using JMP 9.0.1 software (www.jmp.com). 

RESULTS 

Plant species differed in all the leaf traits examined: N concentration was higher in 

Alnus than in the other species; P concentration was highest in Alnus and lowest in 

Quercus; SLA was highest in Corylus and lowest in Ilex; toughness was highest in Ilex 

and lowest in Alnus and Corylus; and ash concentration was higher in Alnus and Corylus 

than in the other two species (Table 1). The ACQ mixture had the highest N 
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Table 1. Mean (± SE) of nitrogen (N) and phosphorus (P) concentrations (% DM), specific leaf area (SLA; mm
2
 mg

-1
), leaf toughness (kPa) and ash concentration (% DM) for 

each plant species (based on measurements of five replicates) and litter mixture, and trait distance in each litter mixture based on cluster analysis. Different letters indicate 
significant differences (p < 0.05) across single species and 3-spps litter mixtures, on the basis of linear models followed by pairwise multiple comparisons. *N concentration 
of Ilex aquifolium leaves used in the experiment (which were collected from branches) did not significantly differ from a sample of senescent leaves collected from the 
ground (1.62 ± 0.13 % DM; t-test, t = -0.28, df = 2.54, p = 0.601). 
 

 N P SLA Toughness Ash Trait distance 

Plant species       

Alnus glutinosa (A) 3.30 ± 0.16
a
 0.08 ± 4e-3

a
 13.28 ± 0.34

b
 1397 ± 75

c
 5.64 ± 0.31

a
  

Corylus avellana (C) 1.48 ± 0.03
b
 0.05 ± 1e-3

c
 21.90 ± 1.04

a
 1016 ± 44

c
 5.66 ± 0.18

a
  

Quercus robur (Q) 1.23 ± 0.07
b
 0.04 ± 4e-3

d
 11.50 ± 0.15

b
 2793 ± 158

b
 4.68 ± 0.19

b
  

Ilex aquifolium (I) 1.58 ± 0.05
b 

* 0.07 ± 2e-3
b
 6.57 ± 0.26

c
 7715 ± 100

a
 3.93 ± 0.05

b
  

Litter mixtures       
ACQI 1.80 ± 7e-3 0.06 ± 2e-4 13.31 ± 1.29 4751 ± 43 4.64 ± 0.01 3.43 ± 1e-3 
ACQ 2.09 ± 0.01

a
 0.06 ± 2e-4

 c
 15.56 ± 1.26

 a
 2263 ± 9

 c
 5.26 ± 0.01

 a
 3.30 ± 8e-3

c
 

ACI 2.02 ± 0.02
b
 0.07 ± 2e-4

 a
 13.91 ± 1.71

 b
 5246 ± 84

 b
 4.66 ± 0.02

 b
 3.69± 5e-3

a
 

AQI 1.88 ± 5e-3
c
 0.06 ± 2e-3

 b
 10.44 ± 0.77

 c
 5059 ± 69

 b
 4.49 ± 0.01

c
 3.56± 3e-3

b
 

CQI 1.46 ± 2e-3
d
 0.06 ± 2e-3

 d
 13.32 ± 1.74

 b
 5521 ± 53

 a
 4.42 ± 0.01

d
 3.27 ± 5e-3

c
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concentration and SLA and the lowest toughness; P concentration was highest in ACI; 

ash concentration was highest in ACQ and lowest in CQI; and trait variability was 

highest in ACI followed by AQI (Table 1). 

Table 2. Results of linear models exploring effects of plant diversity loss (from 4 to 1 species in ACQI, or 
from 3 to 1 species in ACQ, ACI, AQI and CQI) on litter decomposition (mg mg detritivore

-1
), FPOM 

production (mg mg detritivore
-1

) and detritivore growth (percentage) for different litter mixtures in 
microcosms with detritivores (df = degrees of freedom; F = F-statistic; p = p-value). A: Alnus glutinosa; C: 
Corylus avellana; Q: Quercus robur; I: Ilex aquifolium. 
 

Litter mixture df F p 

Litter decomposition    
ACQI 3 6.95 < 0.001 
ACQ 2 4.42 0.021 
ACI 2 11.97 < 0.001 
AQI 2 5.98 0.006 
CQI 2 10.94 < 0.001 

FPOM production    
ACQI 3 7.55 < 0.001 
ACQ 2 5.48 0.009 
ACI 2 9.12 < 0.001 
AQI 2 5.37 0.030 
CQI 2 5.59 0.008 

Detritivore growth    
ACQI 3 1.62 0.192 
ACQ 2 2.23 0.124 
ACI 2 0.94 0.399 
AQI 2 3.02 0.063 
CQI 2 1.54 0.229 

 

 Plant diversity loss from 4 to 1 species in ACQI reduced decomposition and 

FPOM production in microcosms with detritivores, but not in microcosms without 

detritivores, and there was no effect on detritivore growth (Table 2, Table S1; Fig 2). 

When 3-species litter mixtures were examined separately, the negative effect of 

diversity loss from 3 to 1 species on decomposition and FPOM production was 

significant in all mixtures; diversity loss had no effect on detritivore growth, or on any 

process in microcosms without detritivores (Table 2, Table S1, Fig 3). 

Net diversity effects on litter decomposition in the 4-species litter mixture were 

due to a combination of complementarity and selection effects, which contributed on 

average 66% and 34%, respectively (Table S2, Fig 4). When 3-species litter mixtures 

were examined separately, the relative contribution of complementarity and selection 

effects was more balanced in AQI (56% and 44%, respectively), while complementarity 

effects had considerably higher contributions than selection effects in the other 

mixtures, ranging from 67% in ACQ to 99% in CQI (Fig 4). The net diversity effect on 

decomposition varied across litter mixtures, being significantly higher in ACI than in 

CQI; the complementarity effect did not vary across litter mixtures; the selecion effect 
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was lower (and negative) in CQI than in ACI and AQI; and the net diversity effect on 

FPOM production was higher in ACI than in CQI (Fig 5). 

 

 
 
Fig 2. Changes in mean (± SE) (A) litter decomposition (mg leaf mg detritivore

-1
), (B) FPOM production 

(mg FPOM mg detritivore
-1

) and (C) detritivore growth (%) with plant diversity loss from 4 to 1 species, in 
microcosms with detritivores. Different lower-case letters represent significant differences across 
treatments (p < 0.05). 
 

The net diversity effect on decomposition was positively related to the initial 

average N and P concentration and leaf trait variability in litter mixtures (Table 3); 

thus, the highest effect occurred in the ACI mixture (Fig. 5A), which had the highest P 

concentration and trait variability and the second highest N concentration and SLA 

(Table 1), and the lowest effect occurred in CQI (Fig. 5A), which had the lowest N and P 

concentrations and trait variability and the highest toughness (Table 1).The 

complementarity effect on decomposition was not related to any trait or their 

variability (Table 3). The selection effect on decomposition was related to N and P 
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concentration and trait variability (Table 3), with the highest effect occurring in AQI 

and the lowest effect in CQI (Fig. 5C). The net diversity effect on FPOM production was 

related to P concentration and trait variability (Table 3), with the highest effect 

occurring in ACI and the lowest effect in CQI (Fig. 5D). 

 

 
Fig 3. Changes in mean (± SE) (A-D) litter decomposition (mg leaf mg detritivore

-1
), (E-H) FPOM 

production (mg FPOM mg detritivore
-1

) and (I-L) detritivore growth (%) with plant diversity loss from 3 
to 1 species in the different 3-species litter mixtures. A: Alnus glutinosa; C: Corylus avellana; Q: Quercus 
robur; I: Ilex aquifolium), in microcosms with detritivores. Different lower-case letters represent 
significant differences across treatments (p < 0.05). 
 

DISCUSSION 

The results of our experiment showed that the loss of plant diversity negatively 

affected litter decomposition in all the litter mixtures examined. This is in agreement 

with a synthesis of 39 stream studies (Cardinale et al. 2011), but contrasts with several 

individual studies reporting negative or no effects of increasing plant diversity on 

decomposition (e.g., Lecerf et al. 2007, Taylor et al. 2007, Ferreira et al. 2012). It is 

noteworthy that most studies examining litter diversity effects on decomposition have 

been conducted in streams, in contrast with experiments testing for effects of fungal 
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or detritivore diversity, which have been mostly performed in microcosms (e.g., 

Jonsson et al. 2002, Jonsson and Malmqvist 2003, Dang et al. 2005) and have generally 

found stronger diversity effects on decomposition (Srivastava et al. 2009). Field 

experiments have greater realism than microcosm experiments, but environmental 

variation often constrains the capacity for disentangling diversity-decomposition 

relationships, which are context-dependent (Leroy and Marks 2006, Lecerf and 

Richardson 2010). The choice of plant species may also have influenced the results of 

different studies: by selecting species belonging to different functional groups, our 

study and others (Handa et al. 2014) could have maximized the potential for observing 

effects of diversity loss on decomposition. 

 

 
 
Fig 4. Mean (± SE) complementarity and selection effects on litter decomposition for different litter 
mixtures. A: Alnus glutinosa; C: Corylus avellana; Q: Quercus robut; I: Ilex aquifolium. Whole bars 
represent the net diversity effect (i.e., the sum of complementarity and selection effects), except for the 
CQI mixture where the selection effect is negative. 
 

In our experiment, the plant diversity effect on decomposition was mediated by 

detritivores. Others have reported effects of plant diversity on decomposition 

mediated by microorganisms, but effects were more than 10 times stronger when 

detritivores were present (Tonin et al. 2017). Importantly, the effect of plant diversity 

on decomposition was highest in those mixtures with higher leaf quality and a higher 

variety of leaf traits, supporting our first hypothesis. Thus, the highest diversity effect 

on decomposition occurred in the mixture with the highest leaf quality and trait 

variability, and the lowest effect occurred in the mixture with the lowest leaf quality 

and trait variability. This result is noteworthy because previous studies had found weak 

or no evidence of the importance of leaf trait variability in mediating litter diversity 

effects on decomposition (Schindler and Gessner 2009, Lecerf et al. 2011). 
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Fig 5. Mean (± SE) (A) net diversity, (B) complementarity and (C) selection effects on litter 
decomposition and (D) net diversity effects on FPOM production for different litter mixtures in 
microcosms with detritivores. A: Alnus glutinosa; C: Corylus avellana; Q: Quercus robut; I: Ilex 
aquifolium. Different lower-case letters represent significant differences across treatments (p < 0.05). 
 

Plant diversity loss affected decomposition through a combination of 

complementarity and selection effects, but the relative contribution of both 

mechanisms varied, as predicted by our second hypothesis. A positive 

complementarity effect was dominant in most cases (56-99% of net diversity effects), 

which indicated the prevalence of resource partitioning or facilitation (Loreau and 

Hector 2001). Thus, leaves from different species may provide complementary 

resoruces for detritivores (e.g., different nutrients), or the presence of some species 

may facilitate the use of other species by detritivores. For example, Handa et al.’s 

(2014)  findings suggested the existence of nutrient transfer among species through 

fungal decomposers: N seemed to be transferred from leaves of N-fixer plants to 

leaves of non-fixers. Others have found that the presence of refractory leaves can 

enhance the decomposition of labile leaves (Sanpera-Calbet et al. 2009), possibly due 

to a reduction in negative density-dependent effects resulting from the aggregation of 

detritivores in higher-quality leaves (Gessner et al. 2010). 

 Nevertheless, a positive selection effect was also important in our study (21%-

44% of net diversity effects), except for the CQI mixture (the only mixture not 
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containing Alnus), where the selection effect was negligible. Thus, as expected, a 

selection effect only appeared in the initial presence of Alnus, which is consistently 

preferred by detritivores over other species in experiments (e.g., Friberg and Jacobsen 

1994, Cristina and Graça 1995, Graça et al. 2001, Tonin et al. 2017). Alnus leaves are 

very rich in N and P and highly palatable, so the loss of this species from litter mixtures 

seems to have a large effect on decomposition. Others have also shown that diversity 

effects on decomposition can depend on whether the remaining species are more or 

less preferred by detritivores (Bastian et al. 2008), but our study gives further light on 

the mechanisms underlying such effects. Thus, when Alnus leaves are present in a 

mixture, this species comes to dominate the decomposition process, even if present in 

equal abundances to other species; this differs from primary productivity, where the 

selection effect is often associated with numerical abundance of the dominant species 

(Loreau and Hector 2001). 

 We found that plant diversity loss negatively affected FPOM production, so our 

third hypothesis was partly supported. Again, the effect of plant diversity on FPOM 

production was mediated by detritivores, as there was no effect in microcosms 

without detritivores. FPOM production is tightly linked to detritivore-mediated litter 

decomposition, as FPOM is composed of their faeces (Joyce et al. 2007) and small litter 

fragments produced as a result of their feeding activity (Wallace and Webster 1996). 

Another experiment also found that FPOM production was reduced when 3-species 

litter mixtures lost one or two species (Fernandes et al. 2015). Here we further showed 

that the effect of plant diversity on FPOM production occurred across different litter 

mixtures but its magnitude varied, being stronger in ACI and weaker in CQI. This 

variation was again related to P concentration and trait variability, both of which were 

highest in ACI and lowest in CQI. 

Surprisingly, even if plant diversity effects on decomposition and FPOM 

production were mediated by detritivores, detritivore growth was not affected. This 

lack of effect could be to the fact that all litter mixtures might have offered sufficient  

resources for maximum growth (Frainer et al. 2016, Tonin et al. 2017). However, there 

was a trend for detritivore growth to decrease with plant diversity loss in most 

mixtures (ACQ, ACI and CQI), even if the trend was not significant; this suggests that 

detritivore growth responds similarly to decomposition and FPOM production, but we 

may have not been able to detect a significant effect because of the higher data 

variability. Such variability could be due to the fact that detritivore initial biomass was 

not measured directly, but rather estimated from caddisfly case length; or to the 

relatively short experimental time, although this is unlikely because mean growth was 

42% during the experiment. Another plausible explanation for the lack of effect of 

diversity on growth is that detritivores can modulate their growth efficiency (Sterner 

and Elser 2002) – that is, change their assimilation and eggestion efficiencies in order 

to balance their stoichiometric demands (Evans-White and Halvorson 2017). For 
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example, detritivores may be able to modify the composition of their fecal pelets in 

order to maintain their body composition regardless of their diet (Balseiro and 

Albariño 2006), or reduce their carbon use eficiency when resources are nutrient 

limited (Manzoni et al. 2010).  

Table 3. Results of linear models exploring the relationship between diversity effects (i.e., net diversity, 
complementarity or selection effect on decomposition and net diversity effect on FPOM production) 
and initial average leaf traits (N and P concentrations, SLA, leaf toughness and ash concentration) or 
trait variability in 3-species litter mixtures, in microcosms with detritivores (F = F-statistic; p = p-value). 

Variable F p 

Net diversity effect on litter decomposition   
 N 5.02 0.039 
 P 10.22 0.005 
 SLA 0.06 0.800 
 Toughness 0.02 0.875 
 Ash 0.09 0.760 
 Trait variability 10.10 0.005 

Complementarity effect on litter decomposition   
 N 0.14 0.707 
 P 1.85 0.191 
 SLA 0.12 0.730 
 Toughness 0.56 0.463 
 Ash 0.12 0.737 
 Trait variability 1.80 0.197 
Selection effect on litter decomposition   
 N 8.02 0.012 
 P 4.70 0.044 
 SLA 0.02 0.888 
 Toughness 0.51 0.483 
 Ash 0.59 0.450 
 Trait variability 4.97 0.039 
Net diversity effect on FPOM production   
 N 3.75 0.069 
 P 11.39 0.004 
 SLA 0.42 0.523 
 Toughness 0.27 0.606 
 Ash 5 e-3 0.945 
 Trait variability 11.99 0.003 

  

Our results support the existence of widespread effects of riparian plant species 

loss on key stream ecosystem processes driving detrital food webs, such as litter 

decomposition and FPOM production, both of which are slowed as a result of species 

loss. This is in agreement with a synthesis reporting a negative effect of plant diversity 

loss on litter decomposition (Cardinale et al. 2011) and with the only available study 

reporting a negative effect of plant diversity loss on FPOM production to our 

knowledge (Fernandes et al. 2015). However, our results further suggest that plant 

diversity effects on these processes can be stronger or weaker depending on which 
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riparian species are present originally in litter mixtures. Thus, litter mixtures that 

initially are of higher quality (i.e., with higher N and/or P concentrations) are strongly 

affected by plant diversity loss, as are litter mixtures with higher varaibility of leaf 

traits. A key outcome of our experiment is that the risk of species loss to stream 

ecosystem functioning was largely due to a loss of complementarity, but selection 

effects were also important in mixtures containing Alnus. This highlights the 

importance of riparian species such as Alnus glutinosa, which provide litter of high 

quality, their loss being likely to have substantial detrimental effects on stream 

ecosystem functioning, particularly when other riparian species are of lower quality. 
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SUPPORTING INFORMATION 

Table S1. Effects of plant diversity loss on litter decomposition (mg) and FPOM production (mg) for the 
4-species litter mixture (ACQI) and the different 3-species mixtures (ACQ, ACI, AQI and CQI) in 
microcosms without detritivores, examined with linear models. A: Alnus glutinosa; C: Corylus avellana; 
Q: Quercus robut; I: Ilex aquifolium. 
 

 df MS F p 

Litter decomposition     
ACQI 3 26.88 0.06 0.978 
ACQ 2 8.51 0.17 0.843 
ACI 2 14.82 0.02 0.977 
AQI 2 60.22 0.11 0.895 
CQI 2 10.89 0.02 0.984 

FPOM production     
ACQI 3 1.25 1.27 0.291 
ACQ 2 0.67 0.51 0.606 
ACI 2 1.29 1.05 0.363 
AQI 2 0.50 0.67 0.518 
CQI 2 0.64 0.54 0.586 

 
 
 
Table S2. Mean (± SE) net diversity, complementarity and selection effects on litter decomposition, and 
net diversity effect on FPOM production, for the 4-species litter mixture (ACQI) and the different 3-
species mixtures (ACQ, ACI, AQI and CQI) in microcosms with detritivores. A: Alnus glutinosa; C: Corylus 
avellana; Q: Quercus robut; I: Ilex aquifolium 
 

 Net diversity effect Complementarity effect Selection effect 

Litter decomposition    

ACQI 3.64 ± 0.68 2.39 ± 0.73 1.25 ± 0.20 
ACQ 3.81 ± 1.06 2.57 ± 0.96 1.25 ± 0.78 
ACI 6.31 ± 1.05 5.01 ± 1.19 1.30 ± 0.18 
AQI 4.16 ± 0.64 2.34 ± 0.59 1.82 ± 0.13 
CQI 2.53 ± 0.48 2.56 ± 0.61 -0.03 ± 0.21 

FPOM production    

ACQI 3.62 ± 0.51   
ACQ 2.92 ± 0.89   
ACI 4.81 ± 0.71   
AQI 3.36 ± 0.39   
CQI 2.13 ± 0.30   
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Plant diversity loss affects stream ecosystem 

multifunctionality 
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INTRODUCTION 

Ecosystem functioning is being increasingly affected by human impacts such as climate 

warming (Woodward et al. 2010), pollution (Woodward et al. 2012) or habitat loss 

(Haddad et al. 2015), as well as by the associated loss of biological diversity (Cardinale 

et al. 2012, Hooper et al. 2012, Sánchez-Bayo and Wyckhuys 2019). Biodiversity is 

decreasing globally at rates as high as those reported for mass extinction periods 

(Barnosky et al. 2011, Ceballos et al. 2017), so understanding how this decrease might 

alter key ecological processes is critical in predicting future scenarios of the functioning 

ABSTRACT 

Biodiversity loss is occurring globally at unprecedented rates, altering the 

functioning of the Earth’s ecosystems. Multiple processes are often key 

components of ecosystem functioning, but it is unclear how biodiversity loss affects 

ecosystem multifunctionality (i.e., the ability of ecosystems to maintain multiple 

processes simultaneously). This is particularly true for some ecosystem types such 

as streams, which have been understudied, despite their key role in global 

biogeochemical cycles and their serious impairment by the widespread loss of 

riparian vegetation as a result of global change. Using a microcosm experiment we 

tested whether losing riparian plant diversity affected stream multifunctionality, 

taking into account 9 key processes related to litter decomposition, animal biomass 

production and nutrient cycling, and simulating plant species loss from 4 to 1 in the 

presence or absence of litter-feeding detritivores. Multifunctionality increased with 

plant diversity in the presence of detritivores and decreased in their absence, 

evidencing a key role of detritivores in biodiversity-ecosystem functioning (BEF) 

relationships. Moreover, by exploring effects of plant diversity on each process 

individually we were able to reveal potential mechanisms underlying BEF 

relationships – for example, effects of plant diversity on nutrient cycling occurred at 

least partly via indirect nutrient transfer, and were possibly accompanied by 

changes in microbial stoichiometry. Such mechanisms were unnoticeable when 

examining multifunctionality metrics, suggesting that individual processes provide 

crucial information to understand how stream ecosystem functioning is impaired by 

biodiversity loss. 

KEY WORDS: Detritivore growth, detritus-based streams, ecosystem functioning, 

FPOM production, litter decomposition, multiple processes, nutrient cycling, plant 

diversity  
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of ecosystems and their provision of goods and services such as carbon (C) 

sequestration, wood production and water purification (Cardinale et al. 2012). 

Importantly, ecosystems maintain multiple processes simultaneously which has 

been termed as multifunctionality (Hector and Bagchi 2007) or, more specifically, 

ecosystem function multifunctionality (Manning et al. 2018). Ecosystems are often 

valued for such capacity to maintain multiple processes, yet most studies assessing 

biodiversity-ecosystem functioning (BEF) relationships have examined single processes 

in isolation (Hector and Bagchi 2007). However, there is now evidence that biodiversity 

effects on multifunctionality can be different from effects on single processes (Byrnes 

et al. 2014). Species loss has been shown to negatively impact multifunctionality in 

plant (Maestre et al. 2012b), microbial (Delgado-Baquerizo et al. 2016, Mori et al. 

2016), animal (Lefcheck et al. 2015) and whole soil communities (Wagg et al. 2014). In 

contrast, some ecosystem types, such as streams, have been underexplored in this 

respect, although they experience biodiversity declines far greater than those of the 

most affected terrestrial ecosystems (Dudgeon et al. 2006) and are key components of 

the global C cycle (Battin et al. 2009, Raymond et al. 2013). 

Many streams are detritus-based systems where the major basal resource is 

terrestrial plant litter (Vannote et al. 1980, Wallace et al. 1997). Litter entering the 

stream is decomposed by abiotic (leaching) and biotic agents (microorganisms and 

litter-feeding detritivores – hereafter detritivores), fueling the food web (Tank et al. 

2010). Hence, plant litter decomposition is a pivotal component of stream ecosystem 

functioning (Gessner and Chauvet 2002, Von Schiller et al. 2017), and most BEF studies 

in streams have focused on this process. Unfortunately, decomposition has often been 

considered in isolation, neglecting other related and fundamental processes such as 

the production of fine particulate organic matter (FPOM), which results from litter 

processing by detritivores and is subsequently consumed by collectors; the production 

of new detritivore biomass, which is subsequently consumed by predators; or the 

release of nutrients from litter to the water, where they are used by microorganisms 

and primary producers and thus recycled (Cummins 1974). 

Given that all the above processes (i.e. decomposition, FPOM production, 

biomass production and nutrient cycling) occur simultaneously and are key 

components of stream multifunctionality, we explored how their rates varied in 

response to changes in plant diversity (1-4 species) within stream microcosms. We 

predicted that plant diversity loss would reduce stream multifunctionality, as shown 

for other ecosystem types (Maestre et al. 2012a, Maestre et al. 2012b) (hypothesis 1). 

We used metrics proposed to measure multifunctionality (Byrnes et al. 2014), but also 

examined each process separately, as we expected varied responses to plant diversity 

loss (hypothesis 2). Given that processes represent different aspects of ecosystem 

functioning, their separate analysis could provide clues to identify mechanisms driving 
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BEF relationships, a major need of this research field (Cardinale et al. 2009, Gamfeldt 

and Roger 2017). Lastly, we investigated whether effects of plant diversity on the 

studied processes were mainly driven by microorganisms or detritivores, by 

manipulating the presence of detritivores in microcosms. We expected that plant 

diversity effects on litter decomposition and its conversion to FPOM would occur 

mostly in the presence of detritivores, which are key drivers of these processes (Graça 

2001), while effects on nutrient cycling (in which microorganisms play a crucial role; 

Gessner et al. 2010) would also be evident (but not necessarily equal) in the absence of 

detritivores (hypothesis 3). 

MATERIAL AND METHODS 

Leaf litter and detritivore collection 

We collected litter and detritivores in the Agüera stream catchment in northern Spain 

(43.21 ᵒN, 3.27 ᵒW). The climate is humid oceanic, with annual mean precipitation of 

1,650 mm distributed regularly through the year and mean annual temperature of 11.0 

ᵒC (monthly averages ranging from 5.8 to 17.0 ᵒC). Vegetation of the catchment 

consists of mixed native forest dominated by Quercus robur L. (Fagaceae), Alnus 

glutinosa (L.) Gaertner (Betulaceae), Castanea sativa L. (Fagaceae) and Corylus 

avellana L. (Betulaceae).  

In autumn 2015 we collected leaves of four plant species selected based on 

their different C allocation strategies (deciduous vs. evergreen), nitrogen (N) 

acquisition strategies (N-fixing vs. non-N-fixing) and litter recalcitrance (rapidly 

decomposing vs. slowly decomposing). These species thus represented different plant 

functional types (sensu Handa et al. 2014) and a broad spectrum of litter inputs to 

streams in the study region: A. glutinosa (deciduous, N-fixing, rapidly decomposing 

species); C. avellana (deciduous, non-N-fixing, rapidly decomposing species); Q. robur 

(deciduous, non-N-fixing, slowly decomposing species); and Ilex aquifolium Walter 

(Aquifoliaceae; evergreen, non-N-fixing, slowly decomposing species) – hereafter 

Alnus, Corylus, Quercus and Ilex. Leaves of deciduous species were collected from the 

forest floor immediately after natural abscission and air dried in the laboratory. For the 

perennial Ilex, branches were collected and stored in the laboratory until they were 

dry to simulate senescence (Handa et al. 2014). In the laboratory, discs of 12 mm 

diameter were cut using a cork borer, avoiding the widest part of the central nerve 

next to the petiole; discs were weighed to the nearest 0.01 mg and used as described 

below. 

Detritivores were larvae of Sericostoma pyrenaicum Pictet, 1865 (Trichoptera: 

Sericostomatidae), one of the most common detritivores in streams of the Agüera 
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catchment (Martínez et al. 2016). In May 2016, detritivores were manually picked from 

litter in the riverbed of one stream in this catchment (Perea stream: 43.296 ᵒN, 3.254 

ᵒW), and placed in a container with aeration and litter from the same riverbed. They 

were acclimated for 72 h, placing the container within a controlled-temperature room 

set at 10 ᵒC, which was at the lower end of the stream temperature range at the 

season when detritivores were collected (10-15 ᵒC), but which significantly reduced 

evaporation. After that, litter was removed and detritivores were starved for the next 

48 h, just before the experiment started. 

Experimental procedure 

In May-June 2016, we conducted an experiment in 150 microcosms (580-mL, 8 cm-

diameter glass cups) that were constantly aerated. These were placed within the 

above-mentioned controlled-temperature room under a light/dark regime of 12:12 h. 

Each microcosm contained 400 mL of filtered (100µm) stream water (dissolved 

inorganic nitrogen: 453.61 ± 30.36 µg L-1; soluble reactive phosphorus: 9.98 ± 0.92 µg L-

1; measured during the experiment before each water change, n = 4) and 48 litter discs 

(air-dried and pre-weighed to the nearest 0.01 mg). The discs belonged to 1 species 

(monocultures) or to 2, 3 or 4 species (polycultures with all possible species 

combinations, containing 24, 16 or 12 discs per species, respectively). Within each 

plant combination there were 5 replicates with detritivores (3 larvae per microcosm) 

and 5 without detritivores.  

The experiment was run for 24 days. Initially, only the litter discs were added to 

the microcosms to allow the leaching of soluble compounds and initial microbial 

conditioning (Findlay and Arsuffi 1989). Water was replaced on day 3, and detritivores 

(previously measured under a binocular microscope with an accuracy of 0.5 mm) were 

added. Water was again replaced on days 11 and 18, using a 100-µm-mesh filter to 

avoid losing litter fragments. From each water replacement we collected 2 water 

samples from each microcosm: 1 sample (100 mL) was filtered through a 0.7-µm pre-

weighed glass fiber filter (Whatman GF/F), which was incinerated (550 ᵒC, 4 h) and re-

weighed to estimate FPOM production in terms of ash-free dry mass (AFDM); the 

other sample (45 mL) was frozen and stored at –20 ᵒC for analyses of total N [by 

catalytic combustion and NDIR detection using a TOC/TN analyzer (TOC-LCSH/TNM-

L, Shimadzu)] and total P [using autoclave-assisted extraction (APHA 1998)]. 

At the end of the experiment, all the remaining litter material in each 

microcosm was separated by species, oven dried (60 ᵒC, 72 h) and weighed to estimate 

final dry mass (DM). We separated each litter sample into 2 subsamples, which were 

either incinerated (550 ºC, 4 h) and used to estimate final AFDM, or ground into 

powder (1-mm screen) and used to determine N [using a Perkin Elmer series II CHNS/O 

elemental analyzer (Perkin Elmer, Norwalk, CT, USA)] and P contents (as above). 
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Caddisfly larvae were removed from their cases, freeze-dried, weighed and ground to 

powder, and their final N and P contents were determined as for litter samples. Forty-

five extra larvae were used to estimate the relationship between case length (CL, mm) 

and body dry mass (DM, mg) (DM = 0.0043 CL2.8041; r2= 0.79) and to estimate initial 

body N and P contents. 

Twenty extra microcosms were used to estimate the initial (post-leaching) 

AFDM and N and P contents of litter discs. Each microcosm contained 48 air-dried, pre-

weighed litter discs of one of the 4 species (n = 5), which were collected on day 3 and 

separated into 2 subsamples. One subsample was oven dried (60 ᵒC, 72 h) and weighed 

to determine initial N and P contents. The other subsample was incinerated (550 ᵒC, 

4h) and weighed to estimate AFDM. We used these data to correct the initial DM data 

of litter discs in experimental microcosms. 

Data analyses  

We examined 9 ecosystem processes which are key in detritus-based streams. Despite 

moderate to high correlations among some of these processes (examined with 

Pearson correlation coefficients; average: 0.63; range: 0.48-0.83; Table S1], we 

considered that each process would provide unique information that would help 

identify mechanisms underlying BEF relationships, as stated above. The first 3 

processes examined were related to mass and nutrient losses in leaf litter: (1) litter 

mass loss = initial – final AFDM (mg); (2) litter N loss = initial – final N content (mg); and 

(3) litter P loss = initial – final P content (mg). Another 3 processes were related to the 

amounts of organic matter and nutrients in the water, which were used as proxies for 

organic matter and nutrient cycling, as has been done elsewhere [e.g., Maestre et al. 

(2012b)]: (4) FPOM production (mg), calculated as the accumulated FPOM collected in 

the successive water replacements for each microcosm; (5) N release to the water 

(mg), calculated as the accumulated amount of N in the successive water replacements 

corrected by initial water N content; and (6) P release to the water (mg), calculated as 

for N release. Finally, 3 processes were related to detritivore growth and the increase 

in their nutrient contents: (7) detritivore relative growth = (final – initial DM)/initial DM 

(mg); (8) detritivore N gain = (final – initial N)/initial N (mg); and (9) detritivore P gain = 

(final – initial P)/initial P (mg). While processes 7–9 were examined only in microcosms 

with detritivores for obvious reasons, processes 1–6 were examined both in 

microcosms with and without detritivores. In microcosms with detritivores, all 

processes were standarized by mean detritivore DM to remove possible effects of 

differences in detritivore size among microcosms. 

We tested our 1st hypothesis (i.e., that multifunctionality is positively related to 

plant diversity) by calculating a multifunctionality index based on the averaging 

approach, as elsewhere (e.g., Maestre et al. 2012b, Delgado-Baquerizo et al. 2016). 
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The index was the average of all processes standardized by their maximum observed 

value (Wagg et al. 2014). As the measured values of some variables were negative 

(e.g., water N release in the absence of detritivores, Table S2), we standardized them 

by accounting for the range of values in the dataset using the formula: (x-z)/(a-z), 

where x was the observed value and z and a were the lowest and highest observed 

value in the data set, respectively (e.g., Perkins et al. 2015). 

We explored the relationship between plant diversity and multifunctionality 

using mixed effects models, with plant diversity as fixed factor (1, 2, 3 and 4 species) 

and species combination as random factor. We initially ran both linear and additive 

mixed models, as we did not have an a priori expectation about the shape of the 

relationship. Linear models were fitted using the lme function using restricted 

maximum likelihood (REML) estimation in the ‘nlme’ package (Pinheiro et al. 2018) in R 

software (version 3.2.5; R Core Team 2018), and additive models were fitted using the 

gamm function (generalized additive mixed model) in the ‘mgcv’ R package (Wood 

2011). As linear and additive models showed similar results, but estimated degrees of 

freedom of additive models equaled 1, indicating linear relationships (Wood 2017), we 

only show the results of linear mixed effects models. We examined separately 

microcosms with and without detritivores because data exploration revealed clear 

differences in the variance of each response variable between both treatments, and 

thus potential violation of the homogeneity of variances assumption for linear models 

(Fig. S1), as well as to avoid very complex models with many interactions (cf., Tonin et 

al. 2017). We tested the significance of the models calculating ordinary nonparametric 

bootstrapped 95% confidence intervals [BCa method using the boot function on ‘boot’ 

R package, based on 999 bootstrap replicates (Davison and Hinkley 1997, Canty and 

Ripley 2016) for the slope coefficient (Fox 2016)]. We determined whether or not 

those intervals contained the value of zero – i.e., the null expectation that plant 

diversity had no effect on multifunctionality. 

Additionally, we used the multiple threshold approach for further exploration 

of the relationship between plant diversity and multifunctionality. This approach 

describes a relationship between diversity and the total number of processes 

performing at or above a given threshold (i.e., a given proportion of the maximum 

observed rate for each process), and had been considered as the most comprehensive 

description of multifunctionality (Byrnes et al. 2014), although recent research has 

suggested that it should be interpreted with caution (Gamfeldt and Roger 2017), as 

discussed below. Methods and results of this method are provided as supporting 

information. 

We explored our 2nd hypothesis (i.e., that different ecosystem processes would 

respond differently to plant diversity loss despite an overall effect on 

multifunctionality) using mixed effects models – which again fitted a linear relationship 
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– and nonparametric bootstrapped 95% confidence intervals for each individual 

process. Initial data exploration using Cleveland dot- and boxplots revealed 2 outliers 

(1 for litter mass loss in the presence of detritivores and 1 for FPOM production in the 

absence of detritivores), which were removed prior to analyses (Ieno and Zuur 2015). 

Additionally, for processes showing a significant relationship with plant diversity, we 

examined the ratio between (1) the performance of the 4-spp polyculture and the 

average of the performances of monocultures, testing for a net diversity effect; and (2) 

the ratio between the polyculture and the best performing monoculture, testing for a 

max diversity effect (cf., Allen et al. 2016). We calculated nonparametric bootstrapped 

95% confidence intervals (as above) for these ratios to determine whether or not these 

intervals contained the value of 1 – i.e., the null expectation that the performance of 

the polyculture was not different from the mean or the best monoculture. 

To test our 3rd hypothesis (i.e., that plant diversity effects on ecosystem 

processes would differ depending on the presence or absence of detritivores), we 

examined whether bootstrapped 95% confidence intervals for the slope of linear 

models exploring the relationship between plant diversity and stream processes (each 

single process and the multifunctionality index, with and without detritivores), 

overlapped; i.e., the null expectation that diversity effects on ecosystem functioning 

did not differ. 

RESULTS 

Plant diversity had an effect on multifunctionality, supporting our 1st hypothesis; the 

multifunctionality index increased with plant diversity in the presence of detritivores 

and decreased in the absence of detritivores (Fig 1, Table S3). The multiple threshold 

approach also showed a positive effect on multifunctionality (i.e., a positive slope of 

the diversity-multifunctionality relationship) in the presence of detritivores, across 

thresholds up to 93%, with a maximum effect at the 44% threshold; and a negative 

effect in the absence of detritivores, for thresholds below 5%, with no significant effect 

for the rest of thresholds (Fig. S2). 

Fig 1. Linear relationship 
between plant diversity (1–4 
species) and the 
multifunctionality index 
(averaging approach) in the 
presence and absence of 
detritivores. Dots represent 
replicates, lines represent the 
fit of significant (p < 0.05) 
linear models, and grey areas 
represent 95% confidence 

intervals from linear models. 
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Fig 2. Linear relationships between plant diversity (1–4 species) and stream processes: litter mass loss (panels A, J), litter N loss (B, K), litter P loss (C, L), FPOM production 
(D, M), N release (E, N) and P release (F, O) to the water, all of them in the presence or absence of detritivores; and growth (G), N gain (H) and P gain (I) in detritivores. Dots 
represent replicates, lines represent the fit of significant (p < 0.05) linear models, and grey areas represent 95% confidence intervals from linear models. 
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 When processes were examined separately, we found different responses to 

changes in plant diversity, in support of our 2nd hypothesis (Fig. 2). In the presence of 

detritivores, most processes (7 out of 9: litter mass loss, litter N loss, litter P loss, 

FPOM production, water N release, water P release and detritivore P gain) increased 

with plant diversity. We found a net diversity effect (i.e., the performance of the 4-spp 

polyculture was higher than the average performance of monocultures) for litter mass 

loss, litter P loss, FPOM production and water N and P release; and a max diversity 

effect (i.e., the performance of the 4-spp polyculture was higher than that of the best 

performing monoculture, Alnus) for water P release (Fig. 3). In the absence of 

detritivores, a lower number of processes were affected by plant diversity (2 out of 6: 

litter P loss and water N release) and the relationship was negative in both cases (Fig. 

2; Table S4). 

 

 
 
 
Fig 3. Ratios of the performance of the 4spp-polyculture against the average of monocultures (left-hand 
panel) or against the best-performing monoculture (right-hand panel) for stream processes significantly 
related to plant diversity. The dashed line denotes the value of 1 (i.e., the null expectation that 
performances of polyculture and monocultures do not differ). Circles are means (black and grey 
represent treatments with and without detritivores, respectively) and whiskers denote upper and lower 
bounds of 95% nonparametric bootstrapped confidence intervals. Closed circles represent intervals that 
reject the null hypothesis (i.e., do not contain the value of one) and open circles represent intervals that 
do not reject the null hypothesis. 
 

Bootstrapped intervals of models with and without detritivores did not overlap 

for any single process or the multifunctionality index, indicating different effects 

depending on the presence or absence of detritivores, as predicted by our 3rd 

hypothesis. Effects were higher with than without detritivores in all cases, except for 

the effect on water N release, which was greater (and negative – indicating N uptake 

rather than release) without detritivores (Fig 4).  
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Fig 4. Slope and confidence intervals (BCa) of linear models (i.e., the change in process rates and their 
variability with plant diversity, respectively) shown in Fig. 1, with data standardized by their maximum 
value. The dashed line denotes the value of 0 (i.e., the null expectation that there is no effect of plant 
diversity). Circles are means (black and grey represent treatments with and without detritivores, 
respectively) and whiskers denote upper and lower bounds of 95% nonparametric bootstrapped 
confidence intervals. Closed circles represent intervals that reject the null hypothesis (i.e., do not 
contain the value of zero) and open circles represent intervals that do not reject the null hypothesis. 

DISCUSSION 

Riparian plant diversity loss alters stream ecosystem multifunctionality 

Our study demonstrates that riparian plant diversity loss alters stream ecosystem 

multifunctionality, as shown elsewhere for plant and microbial diversity in terrestrial 

ecosystems (Maestre et al. 2012b, Delgado-Baquerizo et al. 2016, Mori et al. 2016). 

Importantly, multifunctionality decreased as a result of plant diversity loss in the 

presence of detritivores, while it showed the opposite pattern in their absence, 

indicating a major role of detritivores as drivers of BEF relationships, which we discuss 

below. 

Both the averaging approach and the multiple threshold approach evidenced 

similar effects of plant diversity on multifunctionality. However, the usefulness of 

these approaches is controversial. Several studies have claimed that an average 

standardized index cannot identify tradeoffs among processes (e.g., it cannot 

distinguish between scenarios where two processes are performing at their opposite 

extremes vs. two processes performing at intermediate values; Gamfeldt et al. 2008, 

Lefcheck et al. 2015). Others, in contrast, have warned that the multiple threshold 
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approach is highly sensitive to the number of species, the number of processes 

considered, their original distributions, or the method of standardization, impeding 

direct comparison across studies and suggesting that this approach should be used 

with caution (Gamfeldt and Roger 2017). 

Moreover, we highlight that, even if these two methods can evidence an effect 

of diversity on multifunctionality, neither of them provides a clue about the underlying 

mechanisms, which should be a priority in the biodiversity–multifunctionality field 

(Cardinale et al. 2009, Gamfeldt and Roger 2017). Our study thus goes one step 

further, compared to previous studies, by analyzing plant diversity effects on single 

processes and suggesting mechanisms that could underlie such effects, as discussed 

below. 

Detritivores are key drivers of BEF relationships 

A key finding of our experiment was that stream multifunctionality and most single 

processes had their rates altered as a result of changed plant diversity in the presence 

of detritivores, while only two processes were affected when detritivores were absent. 

This suggests that detritivores are key drivers of BEF relationships. We should note, 

however, that microbial processing generally occurs at a slower pace than detritivore 

feeding (Hieber and Gessner 2002), suggesting that further effects of plant diversity 

mediated by microorganisms might occur at later stages of decomposition (Fernandes 

et al. 2013). However, this can only be tested in longer experiments, which are difficult 

to conduct in microcosms and may require other approaches. In any case, this 

observation does not invalidate the fact that detritivores played a key role in the BEF 

relationships found in this study. 

 Processes affected by plant diversity in the presence of detritivores all linearly 

increased their rates with increasing diversity. Two of these processes were litter mass 

loss and FPOM production, both of which are intimately related. FPOM is produced in 

streams as a result of detritivore feeding and mechanical fragmentation by flow 

(Patrick 2013), but the latter is negligible in microcosms, where FPOM results from 

detritivore feeding only. Thus, it is not surprising that these two processes showed 

similar patterns, as shown in another experiment (Fernandes et al. 2015). While most 

stream BEF studies have focused on litter mass loss, effects on FPOM production are 

likely to be more relevant for stream invertebrate communities, because FPOM is the 

main food source for collectors (Cummins 1973), which often are the predominant 

functional group of invertebrates in streams (Wallace et al. 1997, Cheshire et al. 2005). 

Both litter mass loss and FPOM production showed a net diversity effect (Allen 

et al. 2016) in the presence of detritivores, meaning that the litter mixture showed 

higher process rates than the average of single species. Such an effect is important, 
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despite the absence of a max diversity effect (i.e., the litter mixture showing higher 

process rates than the best-performing species; Allen et al. 2016), as best-performing 

species could change along time in relation to phenology and environmental changes. 

Despite the crucial role of detritivores in BEF relationships, detritivore growth 

was unaffected by plant diversity. This matches the findings of previous experiments, 

which suggested that all litter combinations could provide sufficient resources for 

maximum detritivore growth (Tonin et al. 2017). Our data support this hypothesis, as 

we found high rates of detritivore growth (average of 2.00% day-1) compared to other 

studies (e.g., 0.75% day-1 for Sericostoma personatum feeding on Alnus; Friberg and 

Jacobsen 1999). Moreover, litter-feeding detritivores – especially caddisflies – show 

high feeding plasticity and can grow using alternative food sources such as FPOM 

(Carvalho and Graça 2007). 

Plant diversity loss alters nutrient dynamics via detritivores and microorganisms 

We found that N and P dynamics were affected by plant diversity in the presence of 

detritivores. At higher levels of diversity, more N and P were lost from litter and 

released to the water, and more P was incorporated by detritivores. Moreover, we 

observed a max diversity effect for water P release, which means that the polyculture 

outperformed the best-performing species, Alnus. Such an effect, also called 

transgressive overyielding, is rarely found in experiments, where the most efficient 

species usually outperforms the polyculture (Cardinale et al. 2011). 

We thus found that plant diversity affected the transfer of nutrients between 

different compartments of the ecosystem (litter, water and detritivores), with the 

strongest effect found for P release from litter to water. This suggests that nutrient 

transfer between litter of different species, a mechanism proposed to drive BEF 

relationships (Gessner et al. 2010), can occur at least partly due to initial leaching from 

litter of certain species and subsequent capture by fungi colonizing litter of other 

species, although direct nutrient transfer between species fungal hyphae has been 

proposed elsewhere (Handa et al. 2014). Besides, we should note that indirect nutrient 

transfer might be more important in microcosms than in streams, where nutrients may 

not be so readily available due to the action of flow. 

 When detritivores were absent and thus only microorganisms contributed to 

litter processing, N concentration did not increase as expected, but it rather decreased 

throughout the experiment. Microorganisms most likely used N from the water when 

it was not abundant enough in litter (Tonin et al. 2017), and N did not return to the 

water as it does through excretion by detritivores when these are present (Díaz-

Villanueva et al. 2012). Moreover, N uptake increased with plant diversity, which could 

be due to higher demand of nutrients related to higher fungal biomass (Fernandes et 
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al. 2013). However, this contrasted with the decrease in litter P loss with diversity, 

which suggested possible changes in microbial stoichiometry, possibly in relation to 

changes in community composition depending on P availability (Heuck et al. 2015). 

Conclusions and insights 

Riparian species loss is a widespread phenomenon as a result of human activities 

(Nilsson and Berggren 2000), the expansion of fungal infections (Bjelke et al. 2016) and 

climate change (Kominoski et al. 2013), hence the importance of our results. We 

provide evidence for a significant reduction in stream multifunctionality and the rate of 

multiple key processes, meaning that stream functioning is likely to be impaired as a 

result of riparian plant diversity loss. Our findings support previous research on effects 

of plant diversity loss on several processes (Handa et al. 2014, Fernandes et al. 2015, 

López-Rojo et al. 2018) and provides evidence of similar effects for multiple processes, 

shedding light on potential mechanisms underlying BEF relationships in streams (e.g., 

indirect nutrient transfer or changes in microbial stoichiometry) and on the crucial role 

of detritivores, and showing the usefulness of a comprehensive analysis of single 

processes when exploring multifunctionality. As a result of altered ecosystem 

multifunctionality, the capacity of streams to provide necessary goods and services is 

likely to be compromised (e.g., impaired capacity for water purification as a result of 

reduced nutrient cycling), which entails major consequences for human wellbeing 

(Cardinale et al. 2012). 

 Although there are limitations inherent to microcosm experiments (e.g., the 

short duration, number of species that can be manipulated, low environmental 

complexity, or absence of flow), our results suggest likely patterns that should ideally 

be further examined within a real-world context. Our inclusion of 4 plant species may 

seem too limited to draw conclusions about the number of species required to sustain 

multiple processes; however, our experiment represented a plausible scenario of plant 

species diversity in natural litter mixtures in temperate streams, often composed of 

few species (Swan and Palmer 2004, Boyero et al. 2017). Moreover, most studies 

examining effects of diversity loss on decomposition have based their conclusions on 

microcosm or field experiments using similar numbers of species of plants (e.g., 4 

species in Swan et al. 2009, 3 species in Bruder et al. 2014) or detritivores (e.g., 3 

species in Jonsson and Malmqvist 2000, 4 species in Perkins et al. 2015), partly due to 

the inherent limitation of experiments in terms of numbers of experimental units that 

can be managed. The fact that field studies have often failed to find effects of plant 

diversity on decomposition (e.g., Lecerf et al. 2007, Schindler and Gessner 2009), in 

contrast to microcosm experiments (e.g., Fernandes et al. 2015, Tonin et al. 2017), 

suggests that diversity effects are masked by the very high environmental and 

biological complexity of streams. Future experiments should try to better mimic 

natural conditions (e.g., using stream mesocosms and longer experiments); examine 
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microbial processes, such as nutrient immobilization and mineralization, and changes 

in microbial biomass, community composition and stoichiometry; and further explore 

the role that detritivores play in BEF relationships, including the potential 

consequences of concomitant changes in the diversity of riparian plants and 

detritivores. 
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SUPPORTING INFORMATION 

The multiple threshold approach to explore multifunctionality 

 

Although we based our calculation of multifunctionality on the averaging approach, we 

used the multiple threshold approach for further, visual exploration of the relationship 

between plant diversity and multifunctionality. This approach describes a relationship 

between diversity and the total number of processes performing at or above a given 

threshold (i.e., a given proportion of the maximum observed rate for each process). 

We calculated the maximum value for each process using the mean of the n + 1 

highest measurements of a process, n being the smallest sample size of a single 

diversity level (i.e., n + 1 = 6 in our case) (Byrnes et al. 2014). The inverse value of the 

multifunctionality metric estimates the proportional increase in multifunctionality per 

addition of a species (e.g., a value of 0.25 indicates that 4 additional species are 

needed to bring an extra process above a given threshold) (Perkins et al. 2015). 

We first used selected thresholds (20, 40, 60 and 80%) to examine the 

relationship between plant diversity and multifunctionality with linear and additive 

models (as described in the main text). Then we explored how the diversity effect on 

multifunctionality (i.e., the slope of each linear model) changed with the threshold 

(from 1% to 99%), which indicated the change in the number of processes per species 

added. We used the multifunc R package (Byrnes 2015) to compute the number of 

processes performing at or above the full range of thresholds from 1% to 99% (Byrnes 

et al. 2014, Delgado-Baquerizo et al. 2016). 

 From the latter relationship we extracted several metrics that are used to 

characterize multifunctionality (Byrnes et al. 2014): the minimum and maximum 

thresholds (Tmin and Tmax; i.e., the lower and upper thresholds beyond which diversity 

has no effect on multifunctionality); the threshold of maximum diversity effect (Tmde; 

i.e, the threshold at which the diversity effect on multifunctionality is strongest); and 

the realized maximum diversity effect (Rmde; i.e., the strength of the relationship at 

Tmde). These metrics were calculated using the ‘getIndices’ function in the multifunc R 

package, and plots were drawn using the ggplot2 (Wickham 2016) and gridExtra 

(Auguie et al. 2016) R packages. 

Plant diversity was positively correlated with the number of processes 

exceeding threshold values of 20%, 40% and 60% when detritivores were present, and 

the slope of the diversity-multifunctionality relationship across the full range of 

thresholds revealed that plant diversity had a positive effect on multifunctionality up 

to a Tmax of 93%, with no Tmin; Tmde was 44% and Rmde was 1.73. In the absence of 

detritivores, plant diversity was negatively correlated with the number of processes 

exceeding the threshold value of 20%, and the slope of the diversity–multifunctionality 

relationship across the full range of thresholds did not show a clear pattern; Tmin was 

5% and there was no Tmax, Tmde or Rmde (Fig. S2).  
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Table S1. Pearson´s pairwise correlations between stream processes. 

 Litter N 
loss 

Litter P 
loss 

FPOM 
Water 
N rel. 

Water 
P rel. 

Detr. 
Gr. 

Detr. N 
gain 

Detr P 
gain 

Litter mass loss 0.68 0.82 0.74 0.59 0.74 0.57 0.54 0.56 
Litter N loss  0.81 0.81 0.83 0.64 0.66 0.51 0.46 
Litter P loss   0.78 0.71 0.77 0.63 0.50 0.50 
FPOM     0.78 0.77 0.69 0.53 0.56 
Water N rel.     0.62 0.59 0.48 0.39 
Water P rel.      0.49 0.40 0.50 
Detr. Gr.       0.59 0.49 
Detr. N gain        0.78 

 

 
 
 

Table S2. Mean and standard error (SE) for each stream process at each plant diversity level, in 
treatments with and without detritivores. Units are mg except for growth, N and P gain, which are 
expressed in proportion.  

 Plant diversity (number of species) 

 1 2 3 4 

Variable Mean±SE Mean±SE Mean±SE Mean±SE 

With Detritivores     
 Litter mass loss 111.47 ± 12.24 151.14 ± 8.35 183.47 ± 11.11 169.85 ± 12.31 
 Litter N loss 3.04 ± 0.67 3.61 ± 0.36 4.74 ± 0.49 3.97 ± 0.53 
 Litter P loss 0.09 ± 0.01 0.15 ± 0.01 0.18 ± 0.02 0.17 ± 0.02 
 FPOM production 67.74 ± 9.54 91.35 ± 5.91 116.91 ± 7.61 118.41 ± 8.92 
 Water N release 1.14 ± 0.27 1.67 ± 0.17 2.13 ± 0.19 2.19 ± 0.28 
 Water P release 0.11 ± 5e-3 0.13 ± 6e-3 0.19 ± 0.01 0.19 ± 0.01 
 Detritivore growth 0.33 ± 0.05 0.46 ± 0.04 0.47 ± 0.04 0.35 ± 0.12 
 Detritivore N gain 0.25 ± 0.05 0.36 ± 0.03 0.39 ± 0.04 0.29 ± 0.10 
 Detritivore P gain 0.05 ± 0.03 0.15 ± 0.03 0.25 ± 0.03 0.20 ± 0.15 

Without Detritivores     
 Litter mass loss 35.71 ± 7.29 35.58 ± 3.32 34.22 ± 2.56 31.43 ± 4.20 
 Litter N loss 0.41 ± 0.17 0.28 ± 0.14 -0.07 ± 0.26 0.19 ± 0.15 
 Litter P loss 0.06 ± 0.01 0.04 ± 6e-3 3e-3 ± 9e-3 0.04 ± 7e-3 
 FPOM production 7.31 ± 0.32 6.90 ± 0.16 7.26 ± 0.15 7.72 ± 0.47 
 Water N release -0.05 ± 0.01 -0.10 ± 8e-3 -0.17 ± 0.01 -0.14 ± 0.01 
 Water P release 0.07 ± 4e-3 0.05 ± 1e-3 0.07 ± 2e-3 0.07 ± 3e-3 
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Table S3. Estimated regression parameters, slope and bootstrapped 95% confidence intervals of the 
slope for linear models testing the effects of plant diversity on the multifunctionality index and several 
multifunctionality thresholds (multiple threshold approach), with and without detritivores.  

Variable Estimate Slope Confidence interval 

With detritivores    
 Multifunc. index 0.313 0.082 ( 0.059,  0.112 ) 
 80% threshold 0.054 0.543 ( 0.182,  0.958 ) 
 60% threshold 0.563 1.117 ( 0.863,  1.339 ) 
 40% threshold 1.691 1.188 ( 1.007,  1.410 ) 
 20% threshold 4.036 0.595 ( 0.425,  0.756 ) 

Without detritivores    
 Multifunc. index 0.614 -0.035 (-0.051, -0.017 ) 
 80% threshold 1.629 -0.259 (-0.448, -0.028 ) 
 60% threshold 2.396 -0.077 (-0.244,  0.103 ) 
 40% threshold 3.416 -0.083 (-0.324,  0.090 ) 
 20% threshold 4.028 -0.031 (-0.231,  0.171 ) 

 
 
 
 
Table S4. Estimated regression parameters, slope and bootstrapped 95% confidence intervals of the 
slope for linear models testing the effects of plant diversity on single stream processes in microcosms, 
with and without detritivores.  

Variable Estimate Slope Confidence interval 

With detritivores    
 Litter mass loss 0.333 0.092 ( 0.055,  0.122 ) 
 Litter N loss 0.373 0.067 ( 0.037,  0.103 ) 
 Litter P loss 0.217 0.098 ( 0.066,  0.130 ) 
 FPOM 0.262 0.117 ( 0.096,  0.151 ) 
 Water N release 0.178 0.101 ( 0.070,  0.144 ) 
 Water P release 0.265 0.127 ( 0.106,  0.147 ) 
 Detr. Growth 0.443 0.032 (-0.015,  0.083 ) 
 Detr. N gain 0.404 0.038 (-0.007,  0.083 ) 
 Detr. P gain 0.290 0.076 ( 0.032,  0.146 )    

Without detritivores    
 Litter mass loss 0.374 -0.004 (-0.031,  0.013 ) 
 Litter N loss 0.648 -0.034 (-0.069,  0.003 ) 
 Litter P loss 0.469 -0.053 (-0.090, -0.017 ) 
 FPOM 0.761 0.009 (-0.016,  0.031 ) 
 Water N release 0.783 -0.133 (-0.173, -0.096 ) 
 Water P release 0.659 4e-3 (-0.020,  0.030 ) 
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Fig. S1. Boxplots showing variation in process rates measured in the presence and absence of 
detritivores.
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CHAPTER 3 

 

No evidence for biodiversity effects on stream 
ecosystem functioning across green and brown 

stream food web pathways 
 
 

 
 
 

This chapter has been submitted to Freshwater Biology 
 

López-Rojo N., Boyero L., Pérez V., Basaguren A. & Cardinale B.J.  No evidence for 
biodiversity effects on stream ecosystem functioning across green and brown stream 

food web pathways. Freshwater biology. Under review
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INTRODUCTION 

Studies focused on the relationship between biodiversity and ecosystem functioning 

(B-EF) have increased in the last decades due to concerns about the potential 

ecological consequences of biodiversity loss (Naeem et al. 1994, Cardinale et al. 2012, 

Tilman et al. 2014). Ecosystems are often valued for their capacity to maintain multiple 

processes, yet most studies assessing biodiversity–ecosystem-functioning relationships 

have examined single processes in isolation (Hector and Bagchi 2007). Among the 

different components of ecosystem functioning, B-EF studies have mostly focused on 

two opposite and fundamental processes controlling carbon and nutrient cycles 

globally (Field et al. 1998, Gessner et al. 2010): primary production, and how it is 

affected by the diversity of primary producers in the ‘green pathway’ (Cardinale et al. 

ABSTRACT 

Biodiversity loss is known to affect the two fundamental and opposite processes 

controlling carbon and nutrient cycles globally, primary production and 

decomposition, which are driven by green and brown pathways of food webs, 

respectively. However, these two pathways of food webs have been rarely studied 

together, and their potential reciprocal effects on ecosystem processes as a result 

of biodiversity loss remain unclear.  We conducted a 35-day stream mesocosm 

experiment with two levels of algal diversity (natural and diluted periphyton 

communities) and three levels of litter diversity (no litter, monocultures of poplar, 

maple and oak, and the 3-spp mixture) to simulate changes in biodiversity in both 

the green and brown pathways of an aquatic food web. We then measured multiple 

ecosystem processes pertaining to carbon cycling. We predicted that algal diversity 

would enhance decomposition and sporulation of fungal decomposers, while litter 

diversity would enhance algal growth and net primary production, due to the more 

diverse algal exudates or litter nutrients being released from more diverse mixtures. 

In contrast to this hypothesis, we only found biodiversity effects on an ecosystem 

process within the green pathway: there was a relationship between algal diversity 

and carrying capacity. Nevertheless, we found that this relationship was influenced 

by the presence or absence of litter, as it was positive in its presence and negative 

in its absence. Litter presence and identity also influenced the algal community 

structure. Our results suggest a lack of complex relationships between biodiversity 

and ecosystem processes in different parts of the food web, which may facilitate 

the prediction of the impacts of biodiversity loss on ecosystems. 

 

KEY WORDS: algae, aquatic hyphomycetes, biofilm metabolism, leaf litter 

decomposition, mesocosms, species richness 
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2011); and leaf litter decomposition, and how it is affected by the diversity of litter or 

consumers in the ‘brown pathway’ (Sanpera‐Calbet et al. 2009, López-Rojo et al. 2019). 

These processes have mostly been considered separately, possibly because they are 

often dominant in different parts of the river network (Vannote et al. 1980). However, 

both processes generally co-occur, and studies have neglected how biodiversity in 

both food web compartments and the processes occurring within them may interact to 

influence one another. 

Microbial decomposers (mainly aquatic hyphomycetes) secrete extracellular 

enzymes that allow the decomposition of litter recalcitrant organic compounds (Marks 

2019). This process can be favored by the presence of periphytic algae, which exude 

fresh, labile carbon (C) that can be used by fungi to invest in growth and enzyme 

production (Soares et al. 2017), in a phenomenon known as ‘priming effect’ (Löhnis 

1926, Guenet et al. 2010). There is also evidence that algal accumulation in the 

epilithic biofilm increases the amount of organic substrates available for bacteria, and 

thus can enhance the use of organic matter by heterotrophic assemblages (Roman and 

Sabater 1999). Similarly, when litter enters the stream, soluble compounds are 

released to the water column by leaching, including dissolved organic matter mainly in 

the form of carbohydrates and nutrients (Bärlocher 2005), which can enhance algal 

nutrient uptake and growth (Elser et al. 2007) and increase the C:nutrient ratios of 

algae (Stelzer and Lamberti 2001). Some studies have addressed the complex 

interactions between primary producers and heterotrophic decomposers (Harte and 

Kinzig 1993, Daufresne and Loreau 2001, Danger et al. 2007), but there is no evidence 

of whether such interactions across food web compartments are magnified by 

biodiversity, which could occur through the same mechanisms that operate within 

compartments. For example, different algal taxa often produce chemically distinct 

exudates (Widrig et al. 1996, Hamels et al. 2004) that might be used more efficiently 

by microbial decomposers (i.e., a complementarity effect); and the presence of more 

litter types could increase the chance that a nutrient-rich species might be present, 

with higher nutrient concentrations enhancing algal activity (i.e., a selection effect). 

Here, we studied reciprocal effects between biodiversity and ecosystem 

processes between green and brown food web compartments (i.e., how biodiversity in 

the green compartment affected processes in the brown compartment, and vice 

versa). To do so, we completed a stream mesocosm experiment with two levels of 

both algal and litter diversity, where we examined rates of litter decomposition, fungal 

sporulation, algal growth, and net primary production. We hypothesized that: (1) algal 

diversity would enhance litter decomposition and fungal sporulation and (2) the 

presence of litter and its diversity would promote algal growth, carrying capacity and 

net primary production. In both cases, (3) we predicted shifts in (fungal and algal) 

taxon richness and assemblage composition, mediated by the differences in resource 

use (Frost et al. 2007).  
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MATERIALS AND METHODS 

Collection site and stream mesocosms 

We collected the leaf litter, microbial inoculum, and periphytic algae from a section of 

the Huron River that runs through the University of Michigan's Nichols Arboretum in 

Ann Arbor, Michigan (42.283 ᵒN, 83.724 ᵒW). At this location, the Huron River is a 5th-

order stream that drains 1,888 km2 in southeast Michigan, with a mean annual 

discharge of 13.31 m3 s-1. Conductivity was 716 µS cm-1, dissolved oxygen 

concentration 10.40 mg L-1, nitrogen (N) concentration 365 μg L-1 and phosphorus (P) 

concentration 19 μg L-1 (USGS Station #04174500).  

The experiment was conducted at the experimental flume facility of the 

University of Michigan, which is equipped with recirculating streams called flumes. 

Each flume was 0.6 m long × 0.1 m wide × 0.1 m deep, held 13.3 L of water, and had a 

7-cm diameter propeller controlled by a DC motor attached to a TechPower HY3020E 

3-amp voltage regulator that maintains water flow [set at 20 cm s-1 (SD = 0.02)]. 

Temperature was maintained at 13 ± 1 ᵒC by coolers, and lighting was provided by 

Coralife Aqualight T5 light fixtures (containing two 9-watt, 10K daylight spectrum 

fluorescent lamps) set to a 14:10 h light:dark cycle. These flumes are too small to be 

realistic depictions of stream systems, but they are useful as laboratory ‘mesocosms’ 

that can be used for experiments with high degree of control and replication. 

Experimental design 

The experiment included 2 algal treatments (low and high diversity) and 5 litter 

treatments (no litter, 3 monocultures and the 3-spp mixture), resulting in 10 

treatments. Combinations with litter were replicated 5 times (n=5; 40 flumes) while 

those without litter were replicated 3 times (n=3; 6 flumes), for a total of 46 

experimental flumes, which were randomly assigned to treatment. We added 0.5 L of 

inorganic sediment, 400 mL of gravel-sized rocks (4 ± 1 cm Ø) and 100 mL of pea-sized 

gravel (1 ± 0.5 cm Ø), to a 220-cm2 working section at the bottom of each flume, thus 

creating a heterogeneous substrate for colonization and growth of periphytic algae 

that was consistent across all flumes. We also added 4 round ceramic tiles (1.9-cm Ø) 

to the working section as a substrate with a standardized area (2.84 cm2) to simplify 

algal sampling and quantification. We filled the flumes with dechlorinated Ann Arbor 

city water (which comes from the Huron River) that was kept in an opaque holding 

tank recirculating through an ultraviolet sterilizer (Aqua Ultraviolet, USA) for 72 h 

before its use. Immediately before the experiment, we added NaNO3 and KH2PO4 to 

the water to achieve the ambient concentrations of nutrients in the Huron River (USGS 

Station #04174500). 
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Algal communities 

On October 27, 2019, we collected ca. 14 L of cobbles that were evenly spaced along 

transects placed in both riffle and run habitats of the Huron River. We transported the 

cobbles to the laboratory in a cooler immersed in stream water, and then gently 

removed their biofilm with a soft toothbrush. We filtered the resulting biofilm slurry (7 

L) through a 250-μm sieve to remove macroinvertebrates and large detritus. A 15-mL 

subsample of the slurry was preserved in 3% formalin for later determination of algal 

cell density and community composition using a Neubauer-improved hemocytometer 

in a binocular microscope at 400× magnification. The remaining slurry was used to 

prepare two solutions representing the two treatments of algal diversity: the initial 

slurry (i.e., the natural community, composed of 20 morphospecies) was used as the 

high algal diversity treatment, which was used to inoculate half of the flumes; and a 6-

fold dilution of the initial slurry [which eliminated less abundant species, reducing 

diversity to 6 morphospecies, thus simulating extinction of rare species (Costello et al. 

2018)] was used as the low diversity treatment, which was inoculated to the other half 

of the flumes. All mesocosms were inoculated with the same number of algal cells (ca. 

30,000 per flume).  

Leaf litter and microbial inoculum 

In October 2019 we collected recently abscised litter of three of the most common 

species in riparian habitat along the Huron river in south eastern Michigan: Populus 

deltoides W. Bartram ex Marshall (hereafter poplar), Acer saccharum Marshall 

(hereafter maple) and Quercus rubra L. (hereafter oak). Litter was transported to the 

laboratory, air dried to constant mass, and leaf discs (1.27-cm Ø) were cut using a cork 

borer. Sets of 48 discs (belonging to one or three species; 16 discs per species in the 

latter case) were weighed to the nearest 0.0001 g and enclosed in 2-mm mesh bags. 

Each flume received five litter bags belonging to one of four treatments (i.e., 

monocultures of poplar, maple or oak, or the 3-spp polyculture), while others received 

no litter. 

 Additionally, we collected litter from natural leaf packs from the bed of the 

Huron river (DM = 37.80 g; 43.56% Acer spp., 27.83% Quercus spp., 7.14% Platanus 

occidentalis, 4.77% Ulmus americana, 4.20% Populus deltoides, 3.15% Tilia americana, 

and 9.35% unrecognized fragments and seeds) and associated natural foam (i.e. 

natural foam-like aggregates containing high density of aquatic hyphomycete conidia) 

to obtain a representative inoculum of the microbial decomposer community (Descals 

2005). We transported the material (litter and foam) to the laboratory within ziplock 

bags filled with stream water in a cooler, and incubated it for 5 d in a plastic container 

with 7 L of water (the same used to fill the flumes) and constant aeration. Water was 

replaced every 24 h until the start of the experiment (to ensure freshly detached 
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conidia), at which, we added 125 mL of this microbial inoculum (ca. 3x103 conidia) to 

each flume. We also collected 8 subsamples of this inoculum and preserved them in 

2% formalin to characterize the initial fungal community. For this purpose we added 

150 μL of 0.5% Triton X-100 to each preserved sample, which was mixed with a 

magnetic stirrer in order to ensure a uniform distribution of conidia; 10-15 mL were 

filtered (25 mm diameter, pore si e 5 μm, Millipore SMWP, Millipore  orporation; 

Descals 2005) and stained with 0.05% trypan blue in 60% lactic acid, and conidia were 

identified and counted at 200× magnification (Gulis et al. 2005). 

Experimental procedure 

On day 1 of the experiment (October 30, 2019), litter bags were introduced in the 

flumes and attached to floating styrofoam squares that suspended them in the water 

column and maintained separation from the sampling section in order to avoid 

shading. We then we added algal and microbial inocula, as described in the previous 

section. For the first two days, flow in the flumes was kept at a low velocity of 10 cm s-1 

(half of the flow velocity during the rest of the experiment) to facilitate algal settling 

and colonization of the substrates. We replaced 50% of the water in each flume weekly 

in order to minimize nutrient depletion, and to maintain water pH. We collected one 

litter bag per flume on days 3, 6, 10, 16 and 32 to measure decomposition via mass 

loss, and one ceramic tile per flume on days 7, 11, 17 and 33 to measure algal biomass 

per unit area. Collection of litter bags and tiles was separated by one day to allow 

sample processing within the first 24 h. We did not collect tiles on day 4 because it was 

too early to detect algal biomass accrual. 

Upon collection, litter from each bag was dried (60 ᵒC, 72 h), weighed, 

incinerated (550 ᵒC, 4 h) and reweighed to measure the remaining ash-free dry mass 

(AFDM). On day 3 (hereafter post-leaching), litter from each species was processed 

separately and, before incineration, we divided each sample in two subsamples; one 

was preserved to analyze nitrogen (N; Perkin Elmer series II CHNS/O elemental 

analyzer) and phosphorus (spectrometer after autoclave-assisted extraction; APHA 

1998) contents (% DM) in order to calculate the amount of N and P leached. Specific 

leaf area (SLA; mm2 mg-1) was also measured as a proxy of leaf toughness. We used 

extra non-incubated leaf discs (3-10 replicates per species) to calculate % moisture, 

initial ash and N and P contents and initial SLA (as above). Decomposition rate for each 

litter treatment was estimated using the single-phase exponential decay model Mr = Mi 

× e-kt , where Mr = remaining mass at time t, Mi = initial mass, and k = decomposition 

rate. This model proved to be a good fit to mass loss, explaining an average 63% of the 

variation. 

On day 32, we separated 6 discs from each bag (2 per species in mixtures) 

before being dried to measure fungal sporulation rate, following 48 h incubation of the 
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discs in 25 mL of water placed on a shaker table that was set at 100 rpm at the same 

temperature as the flumes. We preserved the resulting conidial suspension to 

characterize the fungal community (as above) and processed the leaf discs and 

determined the final SLA (as above). Tiles were scratched with a soft tooth-brush in ca. 

10 mL of water in order to obtain the biofilm. The resulting solution was filtered (pre-

dried and weighed 0.7 µm GF/F glass fiber filters) and filters were oven-dried (60 ᵒC, 72 

h) and reweighed to calculate biofilm DM. Biofilm growth rate and carrying capacity 

were estimated using the logistic growth model dB/dt = r × B × (1 – (B/c)), where B = 

biomass at time t, r = growth rate, and c = carrying capacity. 

On days 34-35, after all bags and tiles had been collected, and only periphyton 

growing on the natural substrate remained in the flumes, we measured the change in 

oxygen concentration in 40 flumes; one replicate flume was excluded in treatments 

with litter monocultures due to equipment limitations. Flumes were deployed with an 

oxymeter (miniDOT Logger, PME, US), totally filled with water removing air bubbles, 

and hermetically closed. We then recorded oxygen concentration every minute over 

the course of a 8-h light, and 12-h dark period. We calculated respiration rate (R) as 

the slope of the decrease in oxygen concentration (mg 02 L
-1 h-1) during the dark period, 

and net primary production (NPP) as the slope of the increase in oxygen concentration; 

we then calculated gross primary production (GPP) as the difference between GPP and 

R. 

Data analyses 

We examined the effect of algal and litter diversity on decomposition and sporulation 

rates, algal growth rate, carrying capacity and NPP with linear mixed effects (LME) 

models [lme function, ’nlme’ R package (Pinheiro et al. 2018)]. All models included 

litter and algal diversity as fixed effects (fitted as an interaction to test whether algal 

diversity effects varied depending on litter diversity treatments and vice versa), litter 

species as a random effect, and the variance function structure varIdent, which 

allowed different variances for each algal diversity level (low or high); the need for this 

term was identified in initial data exploration and confirmed by comparison of the 

Akaike Information Criterion (AIC) of models with and without this component. 

Additionally, we examined whether algal diversity effects differed between litter of 

different species (litter species as fixed factor) with lineal models as above (lm 

functions, nlme R packages). When necessary, response variables where log-

transformed to comply with model assumptions (Ieno and Zuur 2015). 

We analyzed the effect of initial algal and litter diversity on the final fungal 

conidial and algal diversity with LME models (as above), and on taxonomic structure of 

fungal conidial and algal assemblages with non-metric multidimensional scaling 

(NMDS) and permutational analysis of variance (PERMANOVA) based on a Bray–Curtis 
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dissimilarity matrix of Hellinger transformed data, (adonis function, ‘vegan’ package); 

we determined the most representative taxa or morpho-species (simper, ‘vegan’ 

package).  

 

Table 1. Results of lineal effects models testing for the effect of algal diversity and litter species (Acer, 
Populus or Quercus) and their interaction on decomposition and sporulation rate, biofilm growth rate 
and carrying capacity and net primary production (NPP). Df: degrees of freedom, F: F statistic value, p: p-
value. 

Variable Factor df F p 

Decomposition rate Algal div 1 1.578 0.222 
 Litter species 2 108.091 <0.001 
 Algal div: Litter species 2 2.695 0.089 

Sporulation rate Algal div 1 0.325 0.574 
 Litter species 2 24.070 <0.001 
 Algal div: Litter species 2 0.770 0.474 

Growth rate Algal div 1 1.136 0.298 
 Litter species 2 0.144 0.866 
 Algal div: Litter species 2 0.771 0.474 

Carrying capacity Algal div 1 21.682 <0.001 
 Litter species 2 3.299 0.056 
 Algal div: Litter species 2 5.163 0.015 

NPP Algal div 1 0.829 0.374 
 Litter species 2 0.753 0.485 
 Algal div: Litter species 2 1.633 0.223 

Aquatic hyphomycete diversity Algal div 1 0.708 0.408 
 Litter species 2 3.285 0.055 
 Algal div: Litter species 2 0.322 0.727 

Algal final diversity Algal div 1 9.062 0.006 
 Litter species 2 0.498 0.614 
 Algal div: Litter species 2 4.359 0.027 

 

Lastly, given that litter and algal diversity did not explain variation in the 

studied variables (excepting algal community structure; see Results), we explored how 

the variables were affected by the leaf litter characteristics and the amount of leached 

N and P during the first 72h of incubation. We constructed linear models (lm function 

in the ‘nlme’ package with initial and post-leaching N, P, ash (%) and SLA, final SLA and 

amount of leached N and P as response variables and then selected the model with the 

lowest Akaike information criterion (AI ) using the step function (‘stats’ package). 
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Table 2. Results of lineal-mixed effects models testing for the effect of algal diversity, litter diversity and 
their interaction on decomposition and sporulation rate, biofilm growth rate and carrying capacity, net 
primary production (NPP) and aquatic hyphomycete and algal richness and community structure. Df: 
degrees of freedom, F: F statistic value, p: p-value. 

Variable Factor df F p 

Decomposition rate Algal div 1,32 0.141 0.709 
 Litter div 1,2 0.002 0.964 
 Algal div: Litter div 1,32 0.127 0.724 

Sporulation rate Algal div 1,33 0.456 0.503 
 Litter div 1,2 0.004 0.954 
 Algal div: Litter div 1,33 0.337 0.565 

Growth rate Algal div 1,35 3.524 0.068 
 Litter div 1,3 2.374 0.221 
 Algal div: Litter div 1,35 1.757 0.139 

Carrying capacity Algal div 1,36 8.652 0.005 
 Litter div 1,3 0.134 0.738 
 Algal div: Litter div 1,36 0.032 0.859 

NPP Algal div 1,30 0.390 0.536 
 Litter div 1,3 1.815 0.271 
 Algal div: Litter div 1,30 1.416 0.243 

Aquatic hyphomycete conidial 
diversity Algal div 1,33 0.062 0.804 
 Litter div 1,2 0.699 0.491 
 Algal div: Litter div 1,33 1.975 0.169 

Final algal diversity Algal div 1,36 10.108 0.003 
 Litter div 1,3 3.239 0.169 
 Algal div: Litter div 1,36 0.576 0.453 

Aquatic hyphomycete 
community Algal div  0.859 0.519 
 Litter div  1.468 0.188 
 Algal div: Litter div  1.461 0188 

Algal community Algal div  2.011 0.018 
 Litter div  2.130 0.013 
 Algal div: Litter div  0.682 0.777 

 

RESULTS 

Litter identity, but not diversity, had an effect on processes of the brown pathway. 

Thus, decomposition and sporulation rates and fungal conidial diversity varied among 

litter types (Fig. 1A, 1B, 3A, Table 1). Decomposition rates ranged from -0.001 to 
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0.017d-1, being highest for maple and lowest for oak litter. Sporulation rates varied 

from 205.84 to 1.67 conidia mg-1 d-1, being highest for poplar and maple and again, 

lowest for oak (Table S1). Litter samples presented an average of 5 ± 0.32 (mean ± SE) 

fungal conidial species. All litter types released N and P to the water during the first 72 

h (leaching period), with the exception of oak, which immobilized N. Poplar was the 

species which released more N, while oak leached the highest amount of P (Tables 3 

and 4). 

 

 

Fig 1. Litter decomposition rate (d
-1

) and sporulation rate (conidia mg
-1

 d
-1

, logarithmic scale) for 
treatment with low or high diversity of algae and with no litter, monocultures (Acer, Populus or Quercus) 
or the mixture (mean ± SE).  
 

Initial algal diversity had a positive effect on algal carrying capacity and final 

diversity, but not on algal growth rate or primary production. The latter was in general 

low, ranging from -0.006 to 0.048 mgO2 L-1d-1. At the end of the experiment, 

differences between algal diversity treatments were lower than initially but still 

significant (t = -3.007, df = 40.696, p = 0.004). Flumes corresponding to initial low and 

high algal diversity treatments presented 20.70 ± 0.70 and 23.85 ± 0.74 morphospecies 

respectively (Table S2). 
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We found no evidence that initial algal diversity enhanced rates of 

decomposition or fungal sporulation (Fig 1, Table 2), thus rejecting our first hypothesis. 

Similarly, neither litter presence nor diversity promoted algal growth or carrying 

capacity or primary production (Fig. 2, Table 2), rejecting our second hypothesis. 

However, we did find an interaction between the green and brown pathways: in the 

absence of litter, algal carrying capacity was higher at the low algal diversity treatment, 

and the pattern was opposite in its presence, regardless of diversity (Fig. 2B).  

 

 

 

Fig 2. Biofilm growth rate (mg·cm
2
·d

-1
) and carrying capacity (mg·cm

2
) and net primary production (NPP, 

mgO2·L
-1

·d
-1

) for treatment with low or high diversity of algae and with no litter, monocultures (Acer, 
Populus or Quercus) or the mixture (mean ± SE). 
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We did not find an effect of algal diversity on fungal conidial richness or 

assemblage structure. The most abundant species were Tetracladium marchalianum 

and Lemmoneira pseudofloscula (Table S1). Litter diversity tended to increase final 

algal diversity, but the trend was not significant. However, algal assemblage structure 

varied depending on litter presence and identity; flumes without litter and with oak 

litter differed from others. Diatoms were abundant in all samples, but simper analysis 

revealed that flumes without litter were characterized by the abundance of Limnothrix, 

while flumes with litter were characterized by the presence of Fragilaria, Synedra, 

Nitzchia and diatom 4 (Fig 3D, Table S2).  

Table 3. Amount of nitrogen (N) or phosphorous (P) leached to the water (mg per flume) in treatments 
with litter of poplar (Populus), maple (Acer), oak (Quercus) or the 3-spp mixture. 

Litter treatment Leached N (mg/flume) Leached P (mg/flume) 

Populus 4.99 ± 1.16 0.86 ± 0.05 

Acer 2.24 ± 0.37 0.22 ± 0.02 

Quercus -1.70 ± 0.66 0.97 ± 0.02 

Mixture 2.39 ± 0.24 0.68 ± 0.02 

 

Table 4. Initial and post-leaching nitrogen (N), phosphorous (P) and ash percentage (mean ± SE) and 

specific leaf area (SLA, mm
2
 mg

-1
) of litter species (Populus, Acer and Quercus).  

Litter species N P Ash SLA 

Populus Initial 1.32 ± 0.08 0.08 ± 0.01 12.04 ± 0.16 11.06 ± 0.14 

 Post-leaching 1.38 ± 0.04 0.07 ± 0.00 9.45 ± 0.31 13.12 ± 0.15 

Acer Initial 1.07 ± 0.02 0.06 ± 0.00 9.22 ± 0.22 21.28 ± 0.54 

 Post-leaching 1.13 ± 0.05 0.06 ± 0.00 11.00 ± 0.18 23.61 ± 0.30 

Quercus Initial 0.90 ± 0.05 0.10 ± 0.01 5.23 ± 0.23 17.91 ± 0.33 

 Post-leaching 1.00 ± 0.05 0.04 ± 0.00 5.37 ± 0.30 16.39 ± 0.32 

 

The model selection procedure showed that decomposition rate was mainly 

explained by post-leaching ash content, sporulation rate was explained by final SLA 

and initial and post-leaching ash, and aquatic hyphomycete conidial diversity was 

explained by initial P.  The model for algal growth rate included post-leaching N but its 

influence was non-significant (p= 0.173), and the same occurred for net primary 

production with final SLA and initial P (p= 0.06 and 0.07 respectively) and gross primary 

production by final SLA. None of measured litter characteristics explained the variation 

on algal carrying capacity or final algal diversity (Table 5). 
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DISCUSSION 

Primary production and litter decomposition are key processes determining stream 

ecosystem functioning, and both can be altered by changes in biodiversity. However, 

studies have mainly focused on how primary producer diversity affects primary 

production (i.e., the green pathway of the food web) and how leaf litter diversity 

affects decomposition (i.e., the brown pathway), mostly ignoring the reciprocal 

interaction between both pathways. Here, we addressed this issue through a stream 

mesocosm experiment, finding that leaf litter presence and identity (but not diversity) 

affected the green pathway, but no effects in the other direction. Below we discuss 

these results, and suggest future research directions that may improve our 

understanding of biodiversity effects on stream ecosystem functioning. 

Algal diversity did not affect the brown pathway 

Our experiment did not reveal any effect of algal diversity on microbially-mediated 

litter decomposition or aquatic hyphomycete sporulation. This lack of effect was 

unexpected, as we had hypothesized that the algal priming intensity (i.e., the 

magnitude of the priming effect on heterotrophic activity; Halvorson et al. 2019) would 

increase with the variety of algal exudates, hence with algal diversity. However, the 

difference between our two algal diversity treatments at the end of the experiment 

(20 vs. 24 morphospecies), albeit significant, was not as large as it was initially (6 vs. 

20), possibly due to unwanted colonization of additional algal species (mostly of the 

low-diversity flumes) through the microbial inoculum. This smaller-than-expected 

difference between our low and high algal diversity treatments may have precluded 

the occurrence of a diversity effect on the brown pathway, although further studies 

will be needed to confirm this hypothesis. 

There are other possible explanations for the lack of effect of algal diversity on 

the brown pathway. The overall low net primary production rates measured at the end 

of the experiment suggests an important contribution of heterotrophic bacteria to the 

composition of biofilm in the flumes. These bacteria could monopolize the organic 

exudates excreted by algae (Marshall, 1989) and prevent their use by fungal 

decomposers. Also, microbial decomposers often show high functional redundancy 

(Gessner et al. 2010), which may have precluded any complementarity effect derived 

from the existence of a higher variety of algal exudates.  

Leaf litter presence and identity (but not diversity) affected the green pathway 

Litter diversity had no effect on algal growth, carrying capacity or primary production, 

which again contradicted our expectations of enhanced algal activity in the presence of 

a higher variety of nutrients in the water as a result of leaching. Strikingly, rates of the 
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above processes did not even differ between treatments with and without litter, 

despite the fact that most litter types released N and P to the water (except for oak, 

which immobilized N). Algal biomass production is usually enhanced as a result of N 

and P enrichment (Artigas et al. 2013), but here nutrient enhancement was due to 

leaching, which may be expected to be lower in magnitude than enrichment due to 

other sources.  Despite a trend for algal growth to be higher in presence of the litter 

mixture (especially in treatments with low algal diversity), this trend was not  

 

 

Fig 3. Aquatic hyphomycete and algal richness for treatment with low or high diversity of algae and with 
no litter, monocultures (Acer, Populus or Quercus) or the mixture (mean ± SE) and NMDS analysis of 
aquatic hyphomycete and algal community composition. A.acu: Alatospora acuminata; A.pul: 
Alatospora pulchella; A.tet: Articulospora tetracladia; F.cur: Flagelospora curvula; Fon: Fontanella sp.; 
G.inf: Geniculospora inflata; G/M: Gonopila/Margaristospora; L.aqu: Lemmoneira aquatica; L.cen: 
Lemmoneira centrosphaera; L.pse: Lemmoneira pseudofloscula; L.cur: Lunulospora curvula; T.ele: 
Tetrachaetum elegans; T.fur: Tetracladium furcatum; T.mar: Tetracladium marchalianum; Tric: 
Tricladium sp.; T.var: Tricladium varium; Trid: Tridentaria sp.; T.acu: Triscelophorus monosphorus; T.cam: 
Trypospermun camelopardus; T.myr: Trypospermun myrti; V.gig: Variocladium giganteum. Ulo: Ullothrix; 
Fra: Fragillaria; Ach1-3: morphospecies of Achanthidiaceae; col1-3: colonial algae; Enc: Encyonema; 
nav1-6: morphospecies of naviculoid diatoms; Nit: Nitzschioid diatom; Cym: Cymbellonitzschia; Nei: 
Neidium; dia1-7: morphospecies of diatoms; Syn: Synedra; Diat: Diatoma; gre1-2: morphospecies of 
green algae; Cya: cyanobacteria; Lim: Limnothrix; Sce: Scenodesmus; Chl: Chlorococcum; Ped: 
Pediastrum; Des: Desmodesmus; Rho1-2: morphospecies of Rhoicospenia; Coc: Cocconeis; Amp: 
Amphora; Tet: Tetraedron; Clo: Closterium. 
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significant and thus did not indicate an effect of litter diversity. Again, the lack of 

effects could be related to the low rates of net primary production found in the 

flumes. This situation might be similar to that of many detritus-based streams, where 

algal production is generally low (Fisher and Likens 1973).  

 

Table 5. Results of linear models examining the variability of decomposition and sporulation rates, algal 

growth rate and carrying capacity, net and gross primary production (NPP and GPP) and aquatic 

hyphomycete conidial diversity based on initial and post-leaching N, P and ash (%) and SLA, final SLA and 

amount of leached N and P (mg per flume). Retained variance: percentage of the variance retained by 

each factor. (+) and (–) indicate positive and negative relationships, respectively 

 

 

Interestingly, the presence of litter modulated the relationship between algal 

diversity and algal carrying capacity. This relationship was negative in the absence of 

litter (i.e., carrying capacity was higher in less diverse algal communities, which were 

mainly characterized by high numbers of green algae and lower numbers of diatoms) 

and was positive in the presence of litter (i.e., carrying capacity was higher in more 

diverse algal assemblages). This different may be related to the fact that more diverse 

algal assemblages can take greater advantage of nutrients leached from litter (trough 

Response variable Selected factors  
Retained 
variance 

F value p-value 

Decomposition rate Post-leaching ash (+) 84.64% 305.11 <0.001 

 Leached N (+) 2.35% 8.46 0.006 

 Final SLA (+) 2.05% 7.39 0.010 

 Initial P (-) 1.19% 4.28 0.046 

 Initial ash (+) 0.89% 3.22 0.081 

Sporulation rate Final SLA (+) 20.99% 15.32 <0.001 

 Initial ash (+) 15.97% 11.66 0.001 

 Post-leaching ash (-) 15.11% 11.03 0.002 

Growth rate Post-leaching N (+) 9.52% 1.99 0.173 

NPP Initial P (-) 13.99% 3.82 0.067 

 Final SLA (-) 13.37% 3.65 0.072 

 Post-leaching SLA (+) 10.48% 2.86 0.108 

GPP Final SLA (+) 19.11% 5.11 0.036 

 Post-leaching SLA (-) 13.60% 3.63 0.072 

Aquatic 
hyphomycete 
diversity 

Initial P (-) 12.04% 5.06 0.030 
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resource partitioning), allowing the coexistence of more species at higher population 

sizes (Chapin et al. 1997, Cardinale 2011). 

Finally, we found differences in algal assemblage composition depending on 

litter identity. The presence of diatoms like Fragillaria on treatments with poplar, 

maple or the liiter mixture agrees with other studies that related the presence of these 

species with high contents of water N (Costello et al. 2018). Others have related higher 

abundances of other diatoms  (i.e. Rhoicosphenia and Nitzchia, which in our case were 

more abundant in flumes with litter) with nutrient enriched conditions (Artigas et al. 

2013). In contrast, the dominance of green algae in flumes without litter may be 

related to the scarcity of silicon in the water, as this element is necessary for diatom 

growth and is common in structural compounds of leaf litter. Measurements of 

inorganic content and micronutrients of leaf litter could provide a better 

understanding of litter identity effects on algal assemblage composition, as observed 

for microbial decomposers (Purahong et al. 2016). 

Conclusions and insights 

Our results revealed notable effects of litter presence and identity on algal 

assemblages, although we did not see any change in biomass and primary production, 

which was low overall. Similarly, algal diversity had no effects in the brown pathway, 

which agrees with other field and laboratory studies finding no or little evidence of 

algal priming effects on decomposition (Bengtsson et al. 2014, Elosegi et al. 2018). As a 

whole, these results suggest that biodiversity–ecosystem functioning relationships in 

streams occur mostly within food web compartments, and are thus less complex than 

we expected, which may facilitate the prediction of the impacts of biodiversity loss on 

these ecosystems; however, this result should be taken with caution due to the 

experimental drawbacks discussed above. An important result of our research is that 

nutrients leached from leaf litter can modify the composition of algal assemblages, 

which could drive further changes in the green pathway in the longer term. Given that 

algae and microbial decomposers compete for the same inorganic nutrients, and that 

algae are often worse competitors (Currie and Kalff 1984) and seasonality dependent 

(Francoeur et al. 1999), interactions between both types of organisms may vary with 

light and nutrient availability and thus change throughout the year, which merits 

further attention.  
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SUPPORTING IMFORMATION 

 

Table S1. Sporulation rate (mean ± SE, conidia mg
-1

 d
-1

) for each litter and algal diversity treatment. 
Fungal species code: see Figure 3. 

 

 
Algal low diversity Algal high diversity 

 
Populus Acer Quercus Mixture Populus Acer Quercus Mixture 

A.acu 0.77 ± 0.39 0.41 ± 0.26 
 

0.11 ± 0.11 0.21 ± 0.13 1.14 ± 0.55 0.28 ± 0.17 0.37 ± 0.24 

A.pul 0.13 ± 0.13 
  

0.28 ± 0.17 0.10 ± 0.10 
   

A.tet 0.83 ± 0.83 0.37 ± 0.23 0.43 ± 0.27 0.97 ± 0.49 0.52 ± 0.28 1.29 ± 0.83 0.49 ± 0.21 0.64 ± 0.40 

F.cur 
 

0.35 ± 0.35 
      

Fon 
    

0.11 ± 0.11 
   

G.inf 
      

0.10 ± 0.10 
 

G/M 
 

0.26 ± 0.26 0.45 ± 0.45 
  

  
  

L.aqu 0.11 ± 0.11 0.51 ± 0.51 
  

0.11 ± 0.11 0.77 ± 0.56 0.11 ± 0.11 0.82 ± 0.25 

L.cen 
   

0.11 ± 0.11 
    

L.pse 2.22 ± 0.94 2.69 ± 1.94 0.14 ± 0.14 6.89 ± 2.93 0.77 ± 0.29 5.68 ± 2.21 0.22 ± 0.13 1.76 ± 0.99 

L.cur 
 

1.81 ± 0.92 
 

3.44 ± 2.83 0.11 ± 0.11 
   

T.ele 
 

0.20 ± 0.20 
   

0.19 ± 0.19 
  

T.fur 0.87 ± 0.27 1.54 ± 1.54 
 

0.11 ± 0.11 
  

0.11 ± 0.11 0.11 ± 0.11 

T.mar 52.62 ± 18.27 58.26 ± 31.12 1.54 ± 0.62 31.97 ± 19.31 31.89 ± 13.65 41.74 ± 19.44 3.14 ± 1.52 18.22 ± 9.62 

Tric 
   

0.68 ± 0.68 
  

0.15 ± 0.15 
 

T.var 0.13 ± 0.13 0.18 ± 0.18 0.30 ± 0.30 0.24 ± 0.15 
 

0.18 ± 0.18 
 

0.23 ± 0.23 

Trid 
     

0.18 ± 0.18 
  

T.acu 0.11 ± 0.11 
 

0.15 ± 0.15 0.15 ± 0.15 0.11 ± 0.11 0.19 ± 0.19 
 

0.12 ± 0.12 

T.mon 
     

0.19 ± 0.19 0.15 ± 0.15 0.11 ± 0.11 

T.cam 0.22 ± 0.22 2.11 ± 1.45 0.52 ± 0.35 0.97 ± 0.39 0.51 ± 0.23 4.71 ± 2.18 0.47 ± 0.33 0.78 ± 0.37 

T.myr 0.11 ± 0.11 0.87 ± 0.55 
 

0.13 ± 0.13 
 

0.77 ± 0.37 0.36 ± 0.23 
 

V.gig 0.34 ± 0.34 
  

1.16 ± 1.03 
 

0.19 ± 0.19 
  

Total 58.48 ± 18.57 69.57 ± 35.81 2.82 ± 1.03 47.2 ± 20.09 34.45 ± 13.84 57.23 ± 19.71 5.58 ± 1.72 23.16 ± 21.21 
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Table S2 (1/2). Algal morphospecies abundance (mean ± SE, number of cell mL
-1

) for each litter and algal diversity treatment. Algal species code: see Figure 3 

 

 
Algal low diversity Algal high diversity 

 
none Populus Acer Quercus Mixture none Populus Acer Quercus Mixture 

col1 
      

1.00 ± 1.00 
   

Ulo 
 

6.89 ± 4.80 
 

6.67 ± 3.12 6.40 ± 2.18 
 

24.28 ± 13.11 24.44 ± 21.88 5.44 ± 3.04 0.83 ± 0.83 

Fra 1.85 ± 1.85 31.60 ± 14.76 10.14 ± 4.20 9.78 ± 4.96 27.64 ± 8.29 4.07 ± 4.07 32.06 ± 15.05 26.25 ± 9.80 24.83 ± 23.20 63.61 ± 42.25 

Ach1 
 

2.00 ± 2.00 6.67 ± 6.67 
 

1.11 ± 1.11 
 

3.33 ± 2.11 1.39 ± 1.39 2.22 ± 2.22 0.56 ± 0.56 

col2 
 

12.98 ± 6.04 6.27 ± 3.94 22.00 ± 7.98 11.56 ± 9.73 2.22 ± 2.22 76.28 ± 25.20 42.78 ± 32.03 28.22 ± 18.36 19.72 ± 11.58 

Enc 1.11 ± 0.64 1.78 ± 0.90 0.36 ± 0.36 1.78 ± 0.57 2.13 ± 0.73 4.13 ± 2.08 2.72 ± 1.14 1.81 ± 1.19 2.17 ± 1.35 0.28 ± 0.28 

Ach3 3.33 ± 0.64 7.07 ± 4.08 3.15 ± 2.00 4.89 ± 2.01 12.53 ± 4.89 5.24 ± 0.99 12.28 ± 5.62 8.06 ± 0.95 11.56 ± 7.31 8.61 ± 3.81 

nav1 13.33 ± 0.64 33.11 ± 19.28 15.89 ± 7.22 16.44 ± 4.53 49.20 ± 18.67 14.29 ± 4.33 40.00 ± 20.28 34.44 ± 4.23 12.17 ± 6.49 35.56 ± 7.56 

nav2 13.70 ± 1.96 22.89 ± 9.29 33.00 ± 10.07 15.11 ± 3.73 38.80 ± 17.23 14.92 ± 3.27 31.94 ± 13.23 22.64 ± 3.36 18.78 ± 7.30 31.81 ± 8.36 

nav3 8.52 ± 4.55 10.76 ± 8.90 11.83 ± 6.35 8.00 ± 2.00 21.07 ± 9.75 13.23 ± 2.33 19.28 ± 4.78 27.78 ± 9.27 9.44 ± 4.09 35.56 ± 21.63 

Nit 2.96 ± 1.96 7.42 ± 2.93 7.60 ± 1.90 6.89 ± 0.65 16.13 ± 5.47 4.76 ± 2.90 27.83 ± 12.95 12.08 ± 4.50 9.06 ± 3.19 30.00 ± 10.49 

Cym 1.11 ± 0.64 
  

0.44 ± 0.27 
 

0.74 ± 0.74 0.72 ± 0.49 2.08 ± 1.21 0.22 ± 0.22 1.11 ± 0.45 

nav4 1.11 ± 0.64 9.91 ± 8.55 2.08 ± 1.58 0.67 ± 0.44 6.84 ± 2.62 1.90 ± 1.90 8.67 ± 2.21 16.81 ± 5.17 2.78 ± 0.90 8.61 ± 4.04 

nav5 0.37 ± 0.37 
 

2.44 ± 1.99 1.78 ± 0.90 8.40 ± 4.36 3.76 ± 1.03 4.78 ± 2.94 2.92 ± 1.05 4.83 ± 3.22 3.33 ± 2.36 

nav6 0.37 ± 0.37 1.02 ± 0.77 0.83 ± 0.83 
 

0.67 ± 0.44 0.37 ± 0.37 0.67 ± 0.44 3.75 ± 1.78 0.72 ± 0.49 0.56 ± 0.32 

dia1 7.41 ± 3.70 16.58 ± 6.57 49.27 ± 22.76 32.67 ± 4.94 53.78 ± 23.26 35.61 ± 15.33 82.17 ± 33.09 48.19 ± 7.57 56.67 ± 31.04 111.39 ± 73.06 

dia2 62.96 ± 18.60 81.47 ± 41.17 148.95 ± 56.48 136.22 ± 36.20 192.27 ± 98.18 189.37 ± 38.25 165.11 ± 58.07 144.17 ± 9.83 143.33 ± 82.25 218.19 ± 119.89 

Nei 7.78 ± 1.92 38.22 ± 13.55 20.40 ± 4.95 20.22 ± 4.73 61.56 ± 28.46 20.05 ± 13.49 61.28 ± 29.37 42.08 ± 10.00 21.22 ± 7.28 38.33 ± 2.59 

dia3 6.67 ± 2.22 27.07 ± 19.22 11.09 ± 3.51 11.56 ± 2.37 48.84 ± 19.00 18.99 ± 1.38 28.33 ± 10.11 42.22 ± 20.38 10.72 ± 3.77 34.44 ± 22.07 

dia4 0.37 ± 0.37 7.69 ± 2.07 5.16 ± 2.62 2.22 ± 0.86 9.73 ± 2.88 
 

10.89 ± 4.85 3.47 ± 1.25 6.72 ± 4.03 6.81 ± 1.12 

Syn 
 

15.64 ± 3.97 13.06 ± 6.47 8.44 ± 1.30 19.29 ± 5.51 5.03 ± 1.45 35.50 ± 8.19 18.06 ± 5.00 11.44 ± 5.00 28.89 ± 8.91 
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Table S2 (2/2). Algal morphospecies abundance (mean ± SE, number of cell mL
-1

) for each litter and algal diversity treatment. Algal species code: see Figure 3 

 

 
Algal low diversity Algal high diversity 

 
none Populus Acer Quercus Mixture none Populus Acer Quercus 

Mixture 
 

gre1 
   

0.67 ± 0.67 0.62 ± 0.41 0.48 ± 0.48 0.22 ± 0.22 0.83 ± 0.83 0.89 ± 0.65 
 

gre2 1.85 ± 0.98 2.40 ± 0.96 3.49 ± 3.13 6.89 ± 2.09 8.67 ± 7.84 2.22 ± 1.70 4.50 ± 3.31 
 

4.61 ± 1.48 3.33 ± 2.27 

Ach2 6.67 ± 2.22 13.11 ± 5.58 16.55 ± 3.53 14.22 ± 4.89 33.51 ± 17.91 14.97 ± 6.22 38.00 ± 20.48 15.14 ± 5.51 18.28 ± 9.40 38.33 ± 24.28 

Cya 18.15 ± 7.44 23.56 ± 6.30 22.74 ± 6.15 24.67 ± 5.53 31.33 ± 9.91 48.84 ± 23.89 31.28 ± 9.56 17.78 ± 2.53 30.78 ± 7.30 58.47 ± 29.07 

Lim 37.41 ± 15.53 11.78 ± 2.89 9.17 ± 2.10 28.67 ± 7.80 30.53 ± 17.43 66.46 ± 11.27 30.06 ± 6.10 11.53 ± 0.53 16.78 ± 3.25 58.06 ± 40.78 

Sce 
     

1.48 ± 1.48 
    

Chl 
 

1.11 ± 0.70 0.71 ± 0.71 2.67 ± 2.40 4.00 ± 2.47 2.38 ± 2.38 
 

1.11 ± 0.79 1.11 ± 0.70 19.58 ± 17.58 

Ped 
   

0.22 ± 0.22 
  

0.33 ± 0.33 
   

col3 
   

0.22 ± 0.22 
      

Des 2.96 ± 1.61 1.33 ± 1.08 0.36 ± 0.36 4.00 ± 2.55 9.78 ± 7.62 21.75 ± 6.43 8.11 ± 4.48 2.08 ± 0.92 9.78 ± 2.31 9.86 ± 3.53 

Rho 0.74 ± 0.74 0.22 ± 0.22 0.28 ± 0.28 0.22 ± 0.22 2.00 ± 0.82 0.48 ± 0.48 2.28 ± 1.38 1.81 ± 1.19 0.44 ± 0.44 1.39 ± 0.83 

Coc 
   

2.22 ± 1.27 0.44 ± 0.44 1.59 ± 0.97 6.94 ± 3.46 2.50 ± 0.83 2.17 ± 1.40 2.22 ± 1.36 

Sta 
 

0.22 ± 0.22 0.28 ± 0.28 0.89 ± 0.42 0.80 ± 0.80 0.37 ± 0.37 3.83 ± 2.24 2.78 ± 1.32 0.22 ± 0.22 0.56 ± 0.56 

Amp 
   

1.33 ± 0.65 
 

0.48 ± 0.48 0.67 ± 0.44 1.39 ± 0.53 0.44 ± 0.27 0.28 ± 0.28 

Tet 1.48 ± 0.37 6.27 ± 2.43 9.82 ± 3.32 4.00 ± 2.24 0.89 ± 0.89 5.13 ± 3.24 2.22 ± 2.22 2.78 ± 0.96 2.22 ± 2.22 5.56 ± 4.84 

Rho2 
   

0.22 ± 0.22 0.44 ± 0.44 
 

0.67 ± 0.67 0.83 ± 0.53 
 

0.56 ± 0.32 

dia5 
  

0.56 ± 0.56 
   

0.44 ± 0.44 
   

Clo 
       

0.42 ± 0.42 
  

dia6 
    

0.44 ± 0.44 0.37 ± 0.37 
    

dia7 
 

0.22 ± 0.22 
     

0.42 ± 0.42 
  

Total 202.22 ± 52.65 394.76 ± 146.12 329.70 ± 113.96 396.89 ± 41.53 711.42 ± 298.15 505.66 ± 97.94 798.67 ± 265.93 469.44 ± 133.78 470.28 ± 215.87 701.11 ± 370.67 
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CHAPTER 4 

 

Shifts in key leaf litter traits can predict effects 

of plant diversity loss on decomposition in 

streams 

 

 

This chapter is published with the following reference: 

 

López-Rojo N., Pérez J., Pozo J., Basaguren A., Apodaka-Etxebarria U., Correa-Araneda 
F. & Boyero L. (2020). Shifts in Key Leaf Litter Traits Can Predict Effects of Plant 

Diversity Loss on Decomposition in Streams. ECOSYSTEMS. 
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INTRODUCTION  

The first Earth Summit celebrated in 1992 led to the conclusion that species, genes and 

biological traits were being lost at alarming rates as a result of human actions 

(Cardinale et al. 2012). This gave rise to a new body of research, referred to as 

‘biodiversity and ecosystem functioning’ or BEF (Schulze and Mooney 1993), with 

hundreds of studies exploring how biodiversity loss affected key ecosystem processes. 

The development of the BEF field has provided strong evidence that biodiversity loss 

reduces the efficiency of plant communities in capturing resources and producing 

biomass, but there is weaker evidence that plant litter diversity loss slows down 

decomposition and the recycling of elements (Cardinale et al. 2011, Handa et al. 2014). 

The latter effects are globally relevant because detritus is the major carbon pathway in 

ABSTRACT 

Plant biodiversity loss in riparian forests is known to alter key stream ecosystem 

processes such as leaf litter decomposition. One potential mechanism mediating 

this biodiversity-decomposition relationship is the increased variability of plant 

functional traits at higher levels of biodiversity, providing more varied resources for 

decomposers and thus improving their function. We explored this in a field 

experiment exposing litter from different assemblages with low or high trait 

variability (measured through phylogenetic distance, PD) to microbial decomposers 

and invertebrate detritivores within litterbags in a low-order stream. Litter 

assemblages generally lost less mass but more phosphorus (P) than expected from 

monocultures, and nitrogen (N) tended to increase in the absence of detritivores 

and decrease in their presence, with little effect of PD. In contrast, there were 

strong influences of mean values and variability of specific traits (mostly N, P and 

condensed tannins) on decomposition and on net diversity effects. The negative 

diversity effect on litter mass loss was mainly driven by negative complementarity 

(i.e., physical or chemical interference among species or traits), although there was 

positive selection (i.e., particular species or traits with large effects on 

decomposition) in high-PD assemblages with detritivores. High-PD assemblages 

tended to have more invertebrates and attracted more typical litter-consuming 

detritivores. Our study suggests that decomposition of litter assemblages is mainly 

driven by concentration and variability of several key litter traits, rather than overall 

trait heterogeneity (measured through PD). However, differences in invertebrates 

colonizing high-PD and low-PD assemblages pointed to potential long-term effects 

of PD on decomposition. 

 

KEY WORDS: Complementarity effect, detritivores, ecosystem functioning, net 

diversity effect, riparian plants, selection effect. 
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most ecosystems (Cebrian 1999), and of prime importance for headwater stream 

ecosystems, which are fuelled by detrital inputs from riparian forests due to the low 

availability of light and nutrients (Wallace et al. 1997). 

Riparian forests are often altered due to forestry practices that replace native 

mixed vegetation by exotic monocultures (Pozo et al. 1998), fungal infections that 

cause dieback of riparian species (Bjelke et al. 2016), ornamental planting 

(Loewenstein and Loewenstein 2005), or plant invasions (Ferreira et al. 2016). Such 

alterations can change the diversity and composition of leaf litter (hereafter litter) that 

enters the stream and is decomposed through the activity of microorganisms (mainly 

fungi) and invertebrate detritivores specialized in shredding and consuming litter 

(Gessner et al. 2010). Understanding how changes in the diversity and composition of 

riparian vegetation affect decomposition rates is important, given the critical role of 

litter decomposition in stream ecosystem functioning (Gessner et al. 1999) and its 

significant contribution to global biogeochemical cycles (Battin et al. 2009). 

Changes in the number of species present in litter have been shown to alter 

decomposition rates. However, the outcomes of different studies have differed: some 

experimental studies have shown a positive relationship between species richness and 

decomposition rate while others have shown a negative relationship or no effect 

(Gessner et al. 2010), and meta-analyses have found either no effect (Srivastava et al. 

2009) or a positive but weak effect (Cardinale et al. 2011). This discrepancy across 

studies indicates that species richness might not be the most relevant feature of 

biodiversity influencing ecosystem functioning. Instead, the diversity of functional 

traits  (i.e., characteristics of an organism's phenotype that affect its fitness and its 

effects on ecosystem processes; Truchy et al. 2015) is likely to have important 

functional repercussions (Schindler and Gessner 2009). However, measuring trait 

diversity is not as straightforward and consistent as measuring species richness, with 

an array of measures being used (Cadotte et al. 2009, Petchey et al. 2009). 

 We explored the relationship between litter trait diversity and decomposition 

[in terms of mass, nitrogen (N) and phosphorus (P) loss] using litter assemblages 

differing in their phylogenetic distance (PD). Species that are closer in the phylogeny 

often share a higher number of traits than more distant species (Cadotte et al. 2009, 

LeRoy et al. 2019), even if not all traits are phylogenetically conserved (Moles et al. 

2013), and despite the existence of convergent evolution (Ackerly and Reich 1999) and 

phenotypic plasticity (Valladares et al. 2007). Thus, PD has been proposed as a useful 

proxy for trait diversity, as it generally contains more information than a few selected 

traits (Swenson 2013). We combined litter of 9 species in assemblages of 3 species that 

belonged to the same family (low PD) or to different families (high PD) in a field 

experiment, using fine-mesh and coarse-mesh litterbags that allowed quantifying 
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decomposition mediated by microorganisms and litter-consuming detritivores 

(hereafter detritivores) (Boyero et al. 2011b). 

Besides comparing decomposition between low-PD and high-PD litter 

assemblages, we explored the proportional deviation between observed 

decomposition values in litter assemblages and the values expected from the 

corresponding monocultures (i.e., the net diversity effect). Additionally, we partitioned 

the net diversity effect into complementarity (which can occur through resource 

partitioning or from synergistic or antagonistic interactions) and selection effects 

(which arise when a species with particularly high or low decomposition rate 

dominates the mixture), as these give information about the potential mechanisms 

underlying diversity effects on decomposition (Truchy et al. 2015, Tonin et al. 2017, 

López-Rojo et al. 2018). 

We predicted that PD would be a good proxy for litter trait diversity (hypothesis 

1) and would influence decomposition, which would be faster in high-PD than in low-

PD assemblages (hypothesis 2); we expected this effect to be evident both for 

decomposition and for net diversity effects. We further predicted that 

complementarity effects would be more important than selection effects (hypothesis 

3), as shown elsewhere (Handa et al. 2014, Tonin et al. 2017). Lastly, we expected that 

some differences would arise between fine-mesh and coarse-mesh bags, with 

differences between low-PD and high-PD assemblages being more evident in coarse-

mesh bags (hypothesis 4), due to different mechanisms operating in the absence and 

presence of detritivores. For example, a higher trait diversity in high-PD assemblages 

would benefit a wider variety of detritivore species with different morphological and 

behavioural characteristics (e.g., larger caddisflies are able to shred tougher leaves 

than smaller stoneflies; Tonin et al. 2018). In contrast, these differences might not be 

so evident for microorganisms, as fungal decomposers generally show high functional 

redundancy (Allison and Martiny 2008, Pérez et al. 2018, Martínez et al. 2019) and low 

resource specificity (Gulis 2001, Pérez et al. 2014). 

MATERIALS AND METHODS 

Plant species and study area 

We selected 9 riparian tree species that belonged to 3 different families with wide 

distribution and an a priori high variety of litter traits: 3 species from the family 

Betulaceae [Alnus acuminata Kunth., Alnus glutinosa (L.) Gaertn. and Alnus incana L. 

Moench], 3 from the family Moraceae (Ficus insipida Willd, Ficus natalensis Hochst. 

and Ficus dulciaria Dugand) and 3 from the family Fagaceae (Fagus sylvatica L., 

Quercus prinus L. and, Castanea sativa Mill.). These species were selected from a 

database containing data on several litter traits (Boyero et al. 2017) and were used in a 
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global-scale decomposition experiment conducted at ≈ 40 locations around the world 

(DecoDiv project, GLoBE network; www.globenetwork.es), of which the experiment 

detailed here is part. Litter with no visible signs of herbivory or decomposition was 

collected from the riparian forest floor or using vertical traps at different locations 

(Table S1) and air-dried in the laboratory. 

We conducted the experiment in a permanent, first-order stream located 

within the Agüera river catchment in northern Spain (N 43ᵒ 12.745´, W 3ᵒ 16.256´; 350 

m asl), between December 2017 and January 2018. The climate in the region is 

temperate oceanic, with mean temperature of 16 ᵒC and annual precipitation of 1100 

mm. Riparian vegetation in the catchment is composed of native mixed forest 

dominated by Quercus robur L. (Fagaceae), A. glutinosa, Corylus avellana L. 

(Betulaceae) and C. sativa. 

Litter trait characterization 

We measured several traits in litter, which was previously submerged in water in order 

to induce the leaching of soluble compounds. For that purpose, we introduced 3-g 

replicates (n = 6 per species) in glass jars with 400 mL of filtered (100 µm) stream 

water collected at the experimental site (see below). Jars were placed in a controlled-

temperature room at 10 ᵒC (close to the mean stream temperature at the time of the 

experiment) for 72 h, with water replacement every 24 h. Litter was then oven-dried 

(60 ᵒC, 72 h), weighed to estimate the relationship between air dry mass (DM) and 

oven DM and divided into two subsamples. One was incinerated (550 ᵒC, 4 h) and re-

weighed to calculate a relationship between initial DM and post-leaching ash free dry 

mass (AFDM) and subsequently estimate litter mass loss due to leaching and the 

proportion of ash (i.e., the inorganic residue that remains after incineration) for each 

species. The other subsample was used to measure multiple traits, including the 

concentration of carbon (C), main nutrients (N and P), micronutrients and other 

elements [aluminium (Al), boron (B), calcium (Ca), cobalt (Co), copper (Cu), iron (Fe), 

lithium (Li), magnesium (Mg), manganese (Mn), nickel (Ni), lead (Pb), potassium (K), 

silica (Si), sodium (Na), strontium (Sr) and titanium (Ti)], and secondary compounds 

(condensed tannins); and structural traits [concentrations of hemicellulose, cellulose 

and lignin; toughness; and specific leaf area (SLA)]. Methods for trait measurement are 

detailed in supporting Information. 

Field work 

Air-dried litter was introduced within fine-mesh (0.4 mm) and coarse-mesh (5 mm) 

bags (12 × 15 cm). Each bag contained 3 g of litter belonging to one species 

(monocultures, 9 treatments) or to 3 species (1 g each; mixtures, 6 treatments) of the 

same family or different families (Table 1), with 5 replicates per mesh type (fine and 
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coarse) and treatment (each of the monocultures or mixtures). Within each bag, litter 

of the same species was kept together using safety pins with attached coloured plastic 

rings, which facilitated species identification at the end of the experiment. 

Table 1. Plant species and Rao´s quadratic diversity (RaoQ) of low-PD (I, II, III) and high-PD (IV, V, VI) 
litter assemblages.  
 

Assemblages  Plant species  RaoQ 

Low PD     
I Alnus acuminata Alnus glutinosa Alnus incana 11.3 
II Ficus insipida Ficus natalensis Ficus dulciaria 20.8 
III Fagus sylvatica Quercus prinus Castanea sativa 8.5 

High PD     
IV A. acuminata F. insipida F. sylvatica 26.3 
V A. glutinosa F. natalensis Q. prinus 18.8 
VI A. incana F. dulciaria C. sativa 18.2 

 

We selected 5 sites (run/pool habitats) within a 50-m long stream reach. At 

each site we tied one replicate per treatment to iron bars that were anchored 

randomly to the streambed. The bags were retrieved after 28 days (which equalled 

235.4 degree days), enclosed individually in zip-lock bags and transported on ice to the 

laboratory. Litter from each bag was rinsed using filtered (100-µm) stream water on a 

500-μm sieve to remove sediments and invertebrates. Then litter was sorted into 

species, oven-dried (70 ᵒC, 72 h), weighed and divided in two sub-samples; one was 

incinerated (550 ᵒC, 4 h) and re-weighed to estimate final AFDM, and the other was 

used to determine final N and P concentrations. Invertebrates collected from coarse-

mesh bags were preserved in 70% ethanol, identified under a stereoscopic microscope 

to the lowest possible taxonomic level (genus for most taxa, with the exception of 

Diptera and Oligochaeta that were identified to family and class, respectively) and 

assigned to (litter-consuming) detritivore or non-detritivore categories using Tachet et 

al. (2000). They were subsequently oven-dried (70 ᵒC for 72 h) and weighed to 

calculate biomass. We calculated taxon richness, abundance (number of individuals 

per bag) and biomass (mg per bag) for detritivores and total invertebrates in each bag. 

Data analysis 

We quantified decomposition through three variables: (i) the proportion of litter mass 

loss (LML), calculated as the difference between initial and final AFDM (g) divided by 

initial AFDM (g), with initial AFDM corrected by the proportion of LML due to leaching 

(calculated as above); (ii) the proportion of litter N loss (LNL), calculated as the 

difference between final and initial N contents (g) divided by initial N content (g); and 

(iii) the proportion of litter P loss (LPL), calculated as the difference between final and 

initial P contents (g) divided by initial P content (g). Potential outliers were identified 
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with Cleveland dot- and boxplots (Ieno and Zuur 2015) and were removed for 

subsequent analyses (<5% of the data). We calculated the net diversity effect as the 

difference between the observed value of LML, LNL or LPL in each assemblage and the 

expected value based on the respective monocultures. We further partitioned the net 

diversity effect into complementarity and selection effects using the additive 

partitioning method (Loreau and Hector 2001); this was done for LML only, as the 

existence of both positive and negative data precluded their calculation for LNL and 

LPL. 

We examined hypothesis 1 (i.e., that PD is a good proxy for litter trait diversity) 

using two principal component analyses (PCAs), which were run using the prcomp 

function in the ‘stats’ package of R statistical software (R Core Team 2019; version 

3.5.0). The first PCA explored the dispersion of the 9 plant species in multivariate trait 

space; the second one was based on the mean weighted value for each trait, and 

examined how the different litter assemblages varied in their trait composition. We 

explored trait variation in assemblages using Rao’s quadratic diversity (RaoQ; dbF  

function in the ‘F ’ package), which is the sum of pairwise functional distances 

between species weighted by their relative abundances (Rao 1982, Roscher et al. 

2012). 

In order to test hypothesis 2 (i.e., that decomposition and the net diversity 

effect on decomposition are higher in high-PD than in low-PD litter assemblages) we 

calculated ordinary nonparametric bootstrapped 95% confidence intervals for LML, 

LNL, LPL and diversity effects on LML, LNL and LPL, in low-PD and high-PD assemblages. 

We used the BCa method, based on 999 bootstrap replicates, using the boot function 

in the ‘boot’ R package (Davison and Hinkley 1997, Canty and Ripley 2016). We then 

determined whether the intervals contained the value of zero (i.e., the null 

expectation of no effect) and whether the intervals for low-PD and high-PD 

assemblages overlapped (i.e., the null expectation that effects did not differ depending 

on PD). We did so separately for fine-mesh and coarse-mesh bags (thus also partially 

exploring hypothesis 4). 

We examined hypothesis 3 (i.e., that complementarity is more important than 

selection) through bootstrapped 95% confidence intervals for complementarity and 

selection effects. Again, we did this separately for fine-mesh and coarse-mesh bags to 

see if they overlapped (i.e., whether the effect differed depending on the presence of 

detritivores, thus partially examining hypothesis 4). 

We further explored hypothesis 4 by comparing community descriptors (taxon 

richness, abundance and biomass) of all invertebrates and detritivores between low-

PD and high-PD assemblages using BCa intervals, and we did the same for the net 

diversity effect on community descriptors (i.e., the difference between observed 
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values in assemblages and expected values based on monocultures). Additionally, we 

examined community structure using permutational multivariate analysis of variance 

(PERMANOVA) based on a Bray-Curtis dissimilarity matrix, comparing low-PD and high-

P  assemblages (adonis function, ‘vegan’ package), and determining which were the 

most representative taxa in each assemblage (simper function, ‘vegan’ package).  

Lastly, given that PD did not explain variation in the studied variables (except 

for selection effects on LML; see Results), we explored how all these variables were 

affected by the mean value and variability of individual litter traits. Mean values were 

measured through weighted trait means in each assemblage, and variability of each 

trait was calculated with RaoQ. We first excluded collinear traits (retaining the trait 

with the lowest variance inflation factor from each pair) using the vifcorr function in 

the ‘usdm’ package (Naimi et al. 2014); then constructed linear models (lm function in 

the ‘nlme’ package for variables and rda function in the ‘vegan’ package for community 

structure) with all possible combinations of traits; and finally selected the model with 

the lowest Akaike information criterion (AI ) using the step function (‘stats’ package). 

RESULTS 

Phylogenetic distance and trait diversity in litter assemblages 

The two first axes of the first PCA explained 58.3% of variation in trait values among 

species (Fig. 1a). The first principal component (34.4%) mostly showed positive 

relationships with ash, Ca, Sr, Mg, hemicellulose and cellulose, and negative 

relationships with C, lignin, N:P, Pb and Cu. The second principal component (23.9%) 

mostly showed positive relationships with toughness, condensed tannins, B and Na 

and negative relationships with S, Fe, Ni and Li. The Betulaceae family was located in 

the lower left part of the two-dimensional space, while Fagaceae was located in the 

upper left part; Moraceae was the most diverse family and was located in the right 

part. The first two principal components of the second PCA explained 72.9% of 

variation in trait weighted means among treatments (Fig. 1b); high-PD assemblages 

were located near the centre of the axes, while low-PD assemblages were located 

further away from the centre. High-PD assemblages had higher RaoQ values than low-

PD assemblages, with the exception of assemblage II, which RaoQ value was slightly 

higher than that of assemblages V and VI (Table 1). 

Decomposition and diversity effects in low-PD and high-PD litter assemblages 

Litter assemblages in fine-mesh bags lost, on average, 12% of their mass and 

17% of P, and gained 13% of N; there was no influence of PD on LML and LPL; PD only
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Fig. 1 Standardized Principal Components Analysis (PCA; first vs. second axes) of: a) the 9 plant species characterized by 29 litter traits, and b) the weighted means of trait 
values calculated for each assemblage. Species: A.acu, Alnus acuminata; A.glu, Alnus glutinosa; A.inc, Alnus incan; F.ins, Ficus insipida; F.dul, Ficus dulciaria; F.nat, Ficus 
natalensis; F.sylv, Fagus sylvatica; C.sat, Castanea sativa; Q.pri, Quercus prinus.  Traits: C, carbon; N, nitrogen; P, phosphorous; Al, aluminium; B, boron; Ca, calcium; Cel, 
cellulose; Co, cobalt; Cu, copper; Fe, iron; Hemicel, hemicellulose; Li, lithium; Lign, lignin; Mg, magnesium; Mn, manganese; Ni, nickel; Pb, lead; K, potassium; Si, silica; Na, 
sodium; SLA: specific leaf area; Sr, strontium; Tan: condensed tannins; Ti, titanium; Tough: toughness. Assemblages: see Table 1. 
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 determined LNL, which was negative (i.e., an increase in N content) in low-PD 

assemblages and null (i.e., no change in N content) in high-PD assemblages (Fig. 2a, 

Table S2). In coarse-mesh bags, litter assemblages lost, on average, 31% of their mass, 

19% of N and 42% of P; again, PD did not affect LML, LNL or LPL (Fig. 2b, Table S2). 

 The net diversity effect on LML in fine-mesh bags was negative, with no effect 

of PD; the net diversity effect on LNL was not significant for low-PD and positive for 

high-PD assemblages; and the net diversity effect on LPL was positive and not affected 

by PD (Fig. 2c, Table S2). In coarse-mesh bags, the net diversity effect on LML was not 

significant for low-PD and negative for high-PD assemblages; the net diversity effect on 

LNL was not significant for either low-PD or high-PD assemblages; and the net diversity 

effect on LPL was positive, with no effect of PD (Fig. 2d, Table S2). 

 

 

 Fig. 2. Decomposition (proportion of litter mass loss, LML; litter nitrogen loss, LNL; and litter 
phosphorus loss, LPL) and net diversity effects (proportion) on LML, LNL and LPL, in low-PD (circles) and 
high-PD (squares) litter assemblages. Symbols are means, and whiskers denote upper and lower bounds 
of 95% nonparametric bootstrapped confidence intervals. Significant net diversity effects (i.e., intervals 
that do not contain the value of zero) are marked with asterisks. 

 

Complementarity effects on LML were negative in fine-mesh bags, did not vary 

with PD, and were, on average, 13 times greater than selection effects; the latter were 

negative for low-PD and not significant for high-PD assemblages (Fig. 3, Table S2). In 
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coarse-mesh bags, complementarity was not significant for low-PD and negative for 

high-PD assemblages, and selection was negative for low-PD and positive for high-PD 

assemblages; complementarity was, on average, 3 times greater in magnitude than 

selection (Fig. 3, Table S2). 

 

 

Fig. 3. Complementary and selection effects for litter mass loss in low-PD (circles) and high-PD (squares) 
assemblages. Symbols are means, and whiskers denote upper and lower bounds of 95% nonparametric 
bootstrapped confidence intervals. Significant net diversity effects (i.e., intervals that do not contain the 
value of zero) are marked with asterisks. 

 

Invertebrate communities 

Low-PD assemblages within coarse-mesh bags contained, on average, 38 invertebrate 

individuals from 11 taxa and an average biomass of 34.09 mg; and 9 detritivore 

individuals of 4 taxa, with an average biomass of 19.46 mg (Fig. S3). High-PD 

assemblages within coarse-mesh bags had, on average, 49 invertebrate individuals 

from 14 taxa and an average biomass of 25.66 mg; and 14 detritivore individuals of 5 

taxa, with an average biomass of 17.02 mg (Fig. S3). Thus, abundance and taxon 

richness tended to be higher in high-PD assemblages, while biomass tended to be 

higher in low-PD assemblages, although these differences were not significant, nor 

there were significant differences for net diversity effects on community descriptors 

(Fig. S3). The PERMANOVA reflected some differences between low-PD and high-PD 

assemblages in community structure (p = 0.023); taxa that most contributed to 

differences between both assemblages were Orthocladinae, Oligochaeta, Simuliidae, 

Echinogammarus, Habroleptoides, Sericostoma, Leuctra and Amphinemura (which 

were more abundant in high-PD assemblages), and Chironomini and Tanytarsini (which 

were more abundant in low-PD assemblages). 
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Mean trait values and trait variability in litter assemblages 

We retained 15 traits to be included in the models; the others were excluded because 

of their high correlations with other traits (Fig. S1, S2). The model selection procedure 

showed that LML was mainly explained by mean P in fine-mesh bags, and mean P and 

N in coarse-mesh bags; LNL was explained by variability of Pb and P in fine-mesh bags, 

and mean N in coarse-mesh bags; and LPL was explained by mean condensed tannins 

in fine-mesh bags, and variability of P in coarse-mesh bags (Table S6). Net diversity 

effects on LML and complementarity were explained by mean C in fine-mesh bags, and 

mean N in coarse-mesh bags; selection was explained by mean condensed tannins in 

both fine-mesh and coarse-mesh bags; net diversity effects on LNL were explained by 

mean condensed tannins in fine-mesh bags and variability of C in coarse-mesh bags; 

and net diversity effects on LPL were explained by variability of P in fine-mesh bags 

and variability of C in coarse-mesh bags (Table S6). Taxon richness of detritivores was 

explained by mean P; taxon richness of all invertebrates was explained by variability of 

N; detritivore and invertebrate abundances were explained by variability of N; and 

detritivore and invertebrate biomass by mean N (Table S7). 

DISCUSSION 

Phylogenetic distance is not always a good proxy for litter trait diversity 

The diversity of biological traits has been claimed as a more appropriate measure than 

species richness when assessing BEF relationships, due to the link between traits and 

the function or performance of species (Hillebrand and Matthiessen 2009), and to the 

often high intraspecific variation of traits, which is sometimes comparable to 

interspecific variation (LeRoy et al. 2006, Lecerf and Chauvet 2008). However, the lack 

of consensus on how to measure trait diversity (Petchey et al. 2009) has precluded a 

robust analysis of how it affects key ecosystem processes such as litter decomposition. 

We expected that PD would be a good proxy for trait diversity in litter assemblages 

and would predict decomposition (see Boyero et al. 2016), but this was not the case 

considering the set of traits that we measured. Even if species of the same family had 

more similar trait values than species of different families overall, there were 

exceptions (traits of Ficus insipida differed greatly from those of other Ficus species). 

However, we note that, despite the large number of traits measured, we may have 

excluded traits that would increase differences among families (hence differences 

between low-PD and high-PD assemblages). For example, Ficus species are 

characterized by the presence of latex (Lansky 2008, Konno 2011), which is not present 

in the Fagaceae or Betulaceae. 

 Low-PD and high-PD assemblages did not consistently differ in decomposition, 

although litter-consuming detritivores (i.e., Echinogammarus, Sericostoma, Leuctra 
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and Amphinemura) seemed to prefer high-PD assemblages, indicating potential effects 

on decomposition in the longer term that were not detected here. Moreover, a meta-

analysis of 285 studies showed a key role of plant phylogenetic history in predicting 

decomposition (LeRoy et al. 2019), suggesting that the lack of relationship between PD 

and decomposition should be taken with caution. 

Net diversity effects on decomposition  

Our experimental design allowed us not only to examine effects of PD on 

decomposition, but also on net diversity effects, by comparing decomposition in litter 

assemblages vs. monocultures. Interestingly, we found mostly negative diversity 

effects on litter mass loss (i.e., litter of particular species lost more mass when in 

monoculture than in assemblages), but mostly positive diversity effects on litter P loss 

(i.e., litter lost more P in assemblages than in monocultures) and on litter N gain (i.e., 

high-PD assemblages gained or immobilized more N than monocultures). The fact that 

litter gained N when enclosed in fine-mesh bags but lost N in coarse-mesh bags points 

to different modes of resource acquisition by microorganisms and invertebrates, which 

may influence the remaining resource quality.   

Our results contrasted with those of microcosm experiments finding positive 

diversity effects on litter mass loss in the presence and absence of detritivores, and on 

litter N and P loss in microcosms with detritivores (e.g., Tonin et al. 2017, López-Rojo 

et al. 2019). We suggest that these differences could be related to different 

experimental conditions; for example, nutrients lost from litter in microcosms can be 

recycled during the whole experiment, while in streams they can be rapidly lost 

downstream and thus reduce any potential diversity effect. Also, microcosms in the 

above-cited experiments contained one detritivore species, while our field study 

allowed litter to be colonized by multiple invertebrates; thus, in the field, feeding 

activities of different detritivores can be affected in opposite ways, and both negative 

and positive interspecific interactions can occur, resulting in masked or reversed litter 

diversity effects on litter mass loss (McKie et al. 2009). Furthermore, detritivores in the 

field can also feed on litter outside litterbags, and hence diversity effects can be 

diluted or modified (Tiegs et al. 2008). Another field study conducted across biomes 

(Handa et al. 2014) found overall positive, albeit small and inconsistent, diversity 

effects on litter mass loss and litter N loss, which also highlights the relevance of the 

environmental setting and local detritivore communities. 

In our study, the negative diversity effect on litter mass loss was mainly driven 

by the complementarity effect, which was higher than the selection effect, particularly 

in fine-mesh bags. Negative complementarity, which occurred both in the presence 

and absence of invertebrates, suggested the existence of physical or chemical 

interference between species or litter traits. For example, the presence of litter with 



Chapter 4 
 

86 
 

higher tannin contents could have acted as a feeding deterrent for detritivores, 

limiting consumption of higher quality litter that would be consumed faster in 

monoculture (Graça et al. 2001). Similarly, the leaching and passive transfer of 

inhibitory compounds from some litter types could have limited microbial activity in 

others (Gessner et al. 2010). 

Selection was considerably smaller than complementarity. However, 

interestingly, in coarse-mesh bags, selection was negative in low-PD assemblages, 

which contained more generalist taxa, and positive in high-PD assemblages, where 

more litter-feeding detritivores were found. This indicates that detritivores might be 

actively selecting higher-quality litter because of its nutritional quality, while other 

invertebrates could be avoiding litter with higher concentrations of toxic, secondary 

compounds. These compounds would be leached and affect these invertebrates even 

when they do not feed on litter, for example through the alteration of abiotic 

conditions such as dissolved oxygen (Chergui et al. 1997). 

Decomposition is strongly influenced by a limited number of litter traits 

In our experiment, the mean values of several traits influenced decomposition in litter 

assemblages, in agreement with previous studies (e.g., Fernandes et al. 2012, Ferreira 

et al. 2012, López-Rojo et al. 2018). Importantly, among the large number of litter 

traits examined (i.e., 29), we found that mean concentrations of N and P were the 

most relevant traits for decomposition and associated invertebrate communities, 

followed by concentration of condensed tannins and C. There is ample evidence for 

the positive effects of N and P on decomposition (Cornwell et al. 2008), and condensed 

tannins are known to delay decomposition because they are resistant and toxic to 

microorganisms (Graça and Bärlocher 2005). Moreover, tannins are generally inversely 

related to N and P (Boyero et al. 2017; r = –0.53 and r = –0.61, respectively, in this 

study), reinforcing differences in the quality of different litter types and hence in their 

decomposition. 

Lignin, toughness and specific leaf area (SLA) can also be good indicators of 

litter quality (Ostrofsky 1997, Casas et al. 2013). However, in our study, these traits 

were excluded from models because of their high collinearity with other variables. 

Lignin is a recalcitrant compound that usually delays decomposition (Schindler and 

Gessner 2009), but in our study it was positively related to nutrients, mostly N (r = 

0.90), and negatively related to toughness (r = –0.78). This may be due to the relatively 

high lignin concentration found in Alnus species (23.7-26.7%), compared to other 

studies (e.g., 3.9-18.7% for A. glutinosa; Lecerf and Chauvet 2008). Toughness and SLA 

are usually inversely related (Fugère et al. 2012; r = –0.84 in our study), and both were 

strongly related to C (r = –0.71 and r = 0.87, respectively), the latter affecting the 

structure of invertebrate communities colonizing litter assemblages. This could be 
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associated with differences in detritivore mouthparts, some of which are specialized 

for feeding on tougher litter while others allow feeding only on softer material (Tonin 

et al. 2018). 

The role of many plant micronutrients and other elements is relatively 

unexplored, but some studies have revealed that decomposition can be affected by 

concentrations of Mg and Ca (Makkonen et al. 2012, García-Palacios et al. 2016). We 

did not find direct correlations between micronutrients and decomposition, but Fe, S 

and Ca were strongly and negatively related to tannins (r = –0.81, r = –0.80 and r = –

0.76, respectively), A positive relationship between cations such as Ca, K, Mg and Na 

and litter decomposition has been reported in several terrestrial studies (Nicolai 1988, 

Cornelissen and Thompson 1997); our results indicate a possible positive influence of 

these micronutrients on decomposition also in stream ecosystems. 

Trait variability can promote decomposition and mediate diversity effects on 

decomposition 

In addition to mean trait values, we showed that the variability of some traits within 

litter assemblages also influenced decomposition. Particularly important was the 

variability of nutrients (N and P) and some micronutrients (Pb, Mn and Ti; and 

potentially S and Cu, which were strongly and positively related to N, r = 0.97 and r = 

0.93, respectively), and possibly the variability of cellulose and SLA, also related to N (r 

= 0.84 and r = 0.75, respectively). Another study showed that, in the presence of 

detritivores, litter assemblages with intermediate quality but high trait heterogeneity 

decomposed faster than higher-quality assemblages (Landeira-Dabarca et al. 2018), 

possibly because the presence of more refractory litter enhanced overall consumption 

through a ‘clutching at straws’ effect (sensu Landeira-Dabarca et al. 2018; see also 

Sanpera-Calbet et al. 2009). 

Importantly, the variability of some traits (i.e., hemicellulose – in fine-mesh 

bags only –, C, N, P and some micronutrients –mostly Pb, and possibly Ti, which was 

positively related to Pb) influenced litter diversity effects on decomposition (i.e., 

differences between observed decomposition in assemblages vs. expected 

decomposition based on monocultures). However, effects were positive only in some 

cases (hemicellulose and N), while in others the variability of the same trait had either 

positive or negative effects on different variables (C, P, Pb, and several other traits 

related to them). A laboratory experiment had shown that diversity effects on 

decomposition were higher in litter assemblages with higher overall trait 

heterogeneity (López-Rojo et al. 2018); we further show that diversity effects on LML 

could be mediated by a structural trait (hemicellulose) and a key nutrient (N). 

Furthermore, hemicellulose had an effect in fine-mesh bags, while N was relevant in 

coarse-mesh bags, suggesting a more important role of litter structure variability for 
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microorganisms and of nutrient variability for detritivores; this result seems 

counterintuitive and merits further exploration. 

Conclusions and insights 

Human-driven changes in riparian plant diversity involve changes in litter inputs to 

streams, which in turn can affect key processes such as litter decomposition (Pozo et 

al. 1998) and related ecosystem services such as C sequestration or water purification 

(Cardinale et al. 2012). We demonstrate that changes in litter decomposition can be 

largely predicted by considering how several key litter traits are altered, both in terms 

of mean values and their variability. We highlight the importance of considering 

nutrient dynamics when studying decomposition (see also Handa et al. 2014, López-

Rojo et al. 2019), as these can differ from patterns of litter mass loss, which is often 

the only process considered in decomposition studies. 
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SUPPORTING INFORMATION 

Supplementary methodology 

We measured C and N concentrations (% DM) using a Perkin Elmer series II CHNS/O 

elemental analyser; P concentration (% DM) with an spectrophotometer after 

autoclave-assisted extraction (APHA 1998); micronutrients and other elements with 

inductively coupled plasma optical emission spectroscopy (ICP-OES) using a THERMO 

ICAP 6500 DUO spectrometer; condensed tannins with a radial diffusion assay (Graça 

and Bärlocher 2005); hemicellulose, cellulose and lignin concentrations using an 

ANKOM 200/220 fibre analyser; toughness using a penetrometer, which measured the 

pressure (kPa) necessary to pierce the leaf tissue with a 1.55-mm diameter steel rod; 

and SLA as the ratio of leaf area (mm2) to leaf DM (mg). 
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Table S1. Locations where leaf litter of each species was collected and most influential litter traits. 
 

Family Species C (%) N (%) P (%) Lignin (%) 
Condensed 
tannins (%) 

Ash (%) Site of collection 

Betulaceae Alnus acuminata 56.16 ± 0.97 2.39 ± 0.08 0.05 ± 2e-3 26.72 ± 1.40 0.00 ± 0.00 2.50 ± 0.07 Ecuador (1.78ºS, 79.35ºW) 
 Alnus glutinosa 52.46 ± 0.78 2.89 ± 0.01 0.05 ± 1e-3 21.22 ± 2.62 0.45 ± 0.10 4.86 ± 0.55 Spain (43.20ºN, 3.26ºW) 
 Alnus incana 51.04 ± 0.57 3.55 ± 0.02 0.08 ± 3e-3 23.73 ± 2.03 0.00 ± 0.00 6.98 ± 0.20 Sweden (64.16ºN, 19.50ºE) 
Moraceae Ficus insipida 36.72 ± 1.05 1.09 ± 0.09 0.07 ± 3e-3 11.95 ± 0.61 0.00 ± 0.00 25.71 ± 1.03 Costa Rica (10.26ºN, 84.00ºW) 
 Ficus natalensis 45.16 ± 0.68 1.32 ± 0.01 0.05 ± 2e-3 13.15 ± 1.38 0.42 ± 0.06 13.93 ± 0.60 Kenya (0.37ºS, 35.93ºE) 
 Ficus dulciaria 47.59 ± 0.23 1.84 ± 0.07 0.08 ± 1e-3 19.34 ± 2.04 0.00 ± 0.00 7.31 ± 0.53 Ecuador (1.78ºS, 79.35ºW) 
Fagaceae Fagus sylvatica 49.82 ± 1.62 1.05 ± 0.07 0.04 ± 1e-3 20.11 ± 0.42 0.42 ± 0.06 3.70 ± 0.10 France (43.41ºN, 2.21ºE) 
 Quercus prinus 48.61 ± 0.32 0.69 ± 0.02 0.03 ± 1e-3 14.28 ± 1.99 1.56 ± 0.02 5.74 ± 0.21 USA (39.23ºN, 76.74ºW) 
 Castanea sativa 51.62 ± 0.60 1.05 ± 0.03 0.04 ± 2e-3 12.29 ± 0.96 2.26 ± 0.27 3.24 ± 0.17 Portugal (40.09ºN, 8.20ºW) 
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Table S2. Mean and standard error of variables measuring litter decomposition (litter mass loss, LML; litter nitrogen loss, LNL; and litter phosphorus loss, LPL) and diversity 
effects on decomposition (net, complementarity and selection effects) in the different litter assemblages (I-VI, see Table 1) within fine-mesh and coarse-mesh bags. 
Variables are expressed in proportion (i.e., difference between initial and final values divided by initial value). 

 
 

Litter decomposition 
 

Diversity effects on litter decomposition 

Mesh Assemblage LML LNL LPL 
 

Net (LML) Compl. (LML) Sel. (LML) Net (LNL) Net (LPL) 

Fine I 0.127 ± 0.008 -0.015 ± 0.057 0.230 ± 0.050 
 

-0.058 ± 0.009 -0.045 ± 0.006 -0.013 ± 0.004 0.040 ± 0.057 0.060 ± 0.051 

 II 0.147 ± 0.015 -0.227 ± 0.041 0.275 ± 0.028 
 

-0.164 ± 0.015 -0.139 ± 0.012 -0.025 ± 0.004 -0.015 ± 0.040 0.184 ± 0.027 

 III 0.087 ± 0.010 -0.329 ± 0.043 0.041 ± 0.043 
 

-0.040 ± 0.009 -0.050 ± 0.007 0.010 ± 0.004 0.066 ± 0.044 0.201 ± 0.044 

 IV 0.111 ± 0.003 -0.011 ± 0.039 0.311 ± 0.024 
 

-0.062 ± 0.003 -0.054 ± 0.015 -0.008 ± 0.013 0.068 ± 0.039 0.210 ± 0.023 

 V 0.076 ± 0.025 -0.114 ± 0.037 0.095 ± 0.035 
 

-0.108 ± 0.025 -0.105 ± 0.027 -0.003 ± 0.003 0.124 ± 0.037 0.203 ± 0.035 

 VI 0.182 ± 0.012 -0.097 ± 0.012 0.087 ± 0.022 
 

-0.105 ± 0.011 -0.049 ± 0.012 -0.001 ± 0.001 0.065 ± 0.013 -0.040 ± 0.024 

Coarse I 0.567 ± 0.019 0.527 ± 0.026 0.699 ± 0.005 
 

0.124 ± 0.018 0.159 ± 0.033 -0.035 ± 0.021 0.181 ± 0.026 0.218 ± 0.007 

 II 0.391 ± 0.056 0.112 ± 0.084 0.476 ± 0.053 
 

-0.076 ± 0.056 -0.074 ± 0.055 -0.002 ± 0.006 -0.063 ± 0.085 0.166 ± 0.053 

 III 0.095 ± 0.014 -0.246 ± 0.038 0.131 ± 0.067 
 

-0.088 ± 0.014 -0.092 ± 0.014 0.004 ± 0.001 0.011 ± 0.038 0.167 ± 0.068 

 IV 0.153 ± 0.020 0.040 ± 0.066 0.330 ± 0.026 
 

-0.111 ± 0.020 -0.165 ± 0.020 0.053 ± 0.006 -0.126 ± 0.066 0.067 ± 0.026 

 V 0.197 ± 0.029 0.125 ± 0.054 0.273 ± 0.043 
 

-0.100 ± 0.029 -0.130 ± 0.025 0.030 ± 0.005 0.152 ± 0.054 0.178 ± 0.044 
 VI 0.485 ± 0.048 0.557 ± 0.044 0.584 ± 0.026 

 
0.005 ± 0.047 -0.018 ± 0.047 0.022 ± 0.006 0.199 ± 0.039 0.170 ± 0.023 
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Table S3. Mean and standard error of variables measuring litter decomposition (litter mass loss, LML; 
litter nitrogen loss, LNL; and litter phosphorus loss, LPL) in monocultures within fine-mesh and coarse-
mesh bags. Variables are expressed in proportion (i.e., difference between initial and final values divided 
by initial value). 

Mesh Species LML LNL LPL 

Fine Alnus acuminata 0.092 ± 0.007 -0.204 ± 0.168 0.040 ± 0.108 
 Alnus glutinosa 0.166 ± 0.014 0.427 ± 0.092 0.513 ± 0.057 

 Alnus incana 0.351 ± 0.028 0.477 ± 0.117 0.590 ± 0.048 

 Ficus natalensis 0.232 ± 0.007 -0.131 ± 0.016 -0.352 ± 0.078 

 Ficus dulciaria 0.219 ± 0.015 -0.145 ± 0.070 -0.050 ± 0.118 

 Ficus insipida 0.464 ± 0.008 -0.093 ± 0.147 0.235 ± 0.085 

 Fagus sylvatica 0.056 ± 0.008 -0.585 ± 0.046 0.063 ± 0.025 

 Castanea sativa 0.149 ± 0.013 -0.611 ± 0.095 0.035 ± 0.051 

 Quercus prinus 0.145 ± 0.023 -0.565 ± 0.186 -0.649 ± 0.417 

Coarse Alnus acuminata 0.224 ± 0.056 0.040 ± 0.086 0.022 ± 0.085 

 Alnus glutinosa 0.372 ± 0.058 -0.134 ± 0.083 -0.021 ± 0.096 

 Alnus incana 0.858 ± 0.069 -0.054 ± 0.074 0.195 ± 0.093 

 Ficus natalensis 0.353 ± 0.014 -0.016 ± 0.070 0.127 ± 0.068 

 Ficus dulciaria 0.406 ± 0.060 0.491 ± 0.160 0.674 ± 0.094 

 Ficus insipida 0.597 ± 0.034 0.415 ± 0.171 0.629 ± 0.106 

 Fagus sylvatica 0.070 ± 0.013 -0.052 ± 0.064 0.216 ± 0.044 

 Castanea sativa 0.277 ± 0.074 -0.115 ± 0.068 -0.106 ± 0.065 

 Quercus prinus 0.164 ± 0.015 -0.255 ± 0.182 -0.041 ± 0.132 
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Table S4. Mean and bootstrapped 95% confidence intervals for variables measuring litter decomposition 
(litter mass loss, LML; litter nitrogen loss, LNL; and litter phosphorus loss, LPL) and diversity effects on 
decomposition (net, complementarity and selection effects) in assemblages with low and high 
phylogenetic distance (PD). 

Mesh Variable PD Mean Confidence interval 

Fine LML Low 0.120 (0.104, 0.140) 

    High 0.119 (0.088, 0.145) 

  LNL Low -0.203 (-0.278, -0.110) 

    High -0.072 (-0.114, -0.030) 

  LPL Low 0.179 (0.110, 0.244) 

    High 0.170 (0.109, 0.232) 

  Net (LML) Low -0.090 (-0.126, -0.062) 

    High -0.091 (-0.118, -0.076) 

  Compl. (LML) Low -0.081 (-0.110, -0.059) 

    High -0.071 (-0.105, -0.052) 

  Sel. (LML) Low -0.009 (-0.018, 0.000) 

    High -0.004 (-0.014, 0.003) 

  Net (LNL) Low 0.030 (-0.016, 0.081) 

    High 0.087 (0.049, 0.122) 

  Net (LPL) Low 0.155 (0.094, 0.202) 

    High 0.136 (0.062, 0.192) 

Coarse LML Low 0.331 (0.205, 0.445) 

    High 0.272 (0.203, 0.375) 

  LNL Low 0.095 (-0.069, 0.307) 

    High 0.232 (0.113, 0.367) 

  LPL Low 0.411 (0.255, 0.546) 

    High 0.386 (0.310, 0.467) 

  Net (LML) Low -0.026 (-0.089, 0.037) 

    High -0.071 (-0.108, -0.019) 

  Compl. (LML) Low -0.017 (-0.087, 0.070) 

    High -0.106 (-0.145, -0.052) 

  Sel. (LML) Low -0.009 (-0.035, 0.000) 

    High 0.035 (0.027, 0.045) 

  Net (LNL) Low 0.030 (-0.078, 0.102) 

    High 0.081 (-0.031, 0.167) 

  Net (LPL) Low 0.181 (0.112, 0.227) 
  

 

High 0.141 (0.094, 0.189) 
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Table S5. Mean and bootstrapped 95% confidence intervals for abundance (individuals per bag), 
richness (taxa per bag) and biomass (mg per bag) of all invertebrates and litter-consuming detritivores in 
assemblages with low and high phylogenetic distance (PD). 

Variable PD Mean Confidence interval 

Invertebrate richness Low 11.25 (9.54, 12.18) 
  High 13.54 (11.62, 15.23) 

Detritivore richness Low 3.83 (2.66, 4.58) 
  High 4.92 (4.00, 5.53) 

Invertebrate abundance Low 38.33 (31.13, 47.31) 
  High 48.62 (40.85, 55.85) 

Detritivore abundance Low 8.67 (6.00, 10.58) 
  High 14.08 (10.46, 18.57) 

Invertebrate biomass Low 34.10 (19.45, 54.33) 
  High 25.67 (19.83, 44.19) 

Detritivore biomass Low 19.46 (10.55, 38.91) 
  High 17.02 (11.41, 29.33) 
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Table S6. Results of linear models examining the variability of litter decomposition (litter mass loss, LML; 
litter nitrogen loss, LNL; and litter phosphorus loss, LPL) and diversity effects on decomposition (net, 
complementarity and selection effects), based on weighted mean litter trait values (“mean”) and their 
variability (“var”; measured with RaoQ), in litter assemblages within fine-mesh and coarse-mesh bags; + 
and – indicate positive and negative relationships, respectively. Traits: see Fig. 1. AIC: Akaike information 
criteria. Retained variance: proportion of the variance explained by each factor. 

Response variable AIC Selected factors Retained variance p-value 

Fine mesh     
LML -112.242 Mean (P) + 0.553 <0.001 
  Var (Al) – 0.051 0.084 
LNL -53.004 Var (Pb) + 0.405 <0.001 
  Var (P) + 0.243 <0.001 
  Mean (Na) – 0.034 0.121 
LPL -62.878 Mean (Tan) – 0.637 <0.001 
  Mean (N) – 0.060 0.035 
Net (LML) -110.451 Mean (C) + 0.409 <0.001 
  Var (Hemicel) + 0.203 <0.001 
  Var (P) – 0.076 0.023 
Comp. (LML) -107.539 Mean (C) + 0.401 <0.001 
  Var (Hemicel) + 0.159 0.005 
  Mean (Na) + 0.036 0.151 
Sel. (LML) -156.305 Mean (Tan) + 0.320 0.001 
  Var (Hemicel) + 0.085 0.069 
Net (LNL) -55.455 Mean (Tan) + 0.132 0.094 
  Var (Pb) + 0.093 0.049 
Net (LPL) -62.086 Var (P) – 0.404 <0.001 
  Mean (Tan) – 0.206 0.001 
  Var (Al) – 0.035 0.135 
Coarse mesh     
LML -54.625 Mean (P) + 0.654 <0.001 
  Mean (N) + 0.159 <0.001 
  Var (Mn) – 0.065 0.003 
LNL -30.328 Mean (N) + 0.708 <0.001 
  Mean (Na) 0.096 0.001 
  Var (Ti) + 0.039 0.022 
  Var (N) + 0.036 0.027 
LPL -44.588 Var (P) – 0.715 <0.001 
  Mean (N) + 0.088 0.002 
  Mean (P) + 0.046 0.022 
Net (LML) -56.092 Mean (N) + 0.487 <0.001 
  Var (Pb) – 0.075 0.064 
  Mean (C) + 0.045 0.142 
Compl. (LML) -56.164 Mean (N) + 0.483 <0.001 
  Var (Pb) – 0.149 0.004 
  Mean (P) – 0.082 0.026 
Sel. (LML) -126.437 Var (C) + 0.294 <0.001 
  Var (N) + 0.273 <0.001 
  Mean (Tan) + 0.203 <0.001 
Net (LNL) -32.450 Var (C) – 0.360 <0.001 
  Var (Pb) + 0.170 0.008 
  Var (P) + 0.076 0.063 
Net (LPL) -47.539 Var (C) – 0.207 0.025 

 



Chapter 4 
 

96 
 

Table S7. Results of linear models examining the variability of community descriptors (richness, 
abundance and biomass for all invertebrates and detritivores) and community structure based on 
weighted mean litter trait values (“mean”) and their variability (“var”; measured with RaoQ); + and – 
indicate positive and negative relationships, respectively. Traits: see Fig. 1. AIC: Akaike information 
criteria. Retained variance: proportion of the variance explained by each factor. 
 

Response variable AIC Selected factors Retained variance p-value 

All invertebrates     

Richness 125.565 Var (N) + 0.116 0.102 
Abundance 201.376 Var (N) + 0.099 0.122 
  Mean (C) - 0.091 0.137 
Biomass 222.167 Mean (N) + 0.134 0.068 
  Var (Pb) - 0.099 0.113 

Detritivores     

Richness 90.734 Mean (P) + 0.210 0.017 
  Var (N) + 0.099 0.088 
  Var (Ti) + 0.071 0.143 
Abundance 157.964 Var (N) + 0.229 0.013 
  Var (B) + 0.085 0.112 
  Mean (P) + 0.068 0.153 
Biomass 205.238 Mean (N) + 0.358 0.002 
     
Community structure  Mean (C)  0.064 0.036 
  Mean (N)  0.045 0.237 
  Var (N)  0.043 0.287 
  Mean (P)  0.036 0.482 
  Mean (Co)  0.027 0.780 
  Var (C)  0.022 0.903 

 
 

 
 
Fig. S1. Pairwise correlations between mean litter trait values in litter assemblages. Traits: see Fig. 1. 
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Fig. S2. Pairwise correlations between litter trait variabilities (measured with RaoQ) in litter 

assemblages. Traits: see Fig. 1. 

 

 

 

Fig S3. Invertebrate (black symbols) and detritivore (grey symbols) taxon richness (no. taxa per bag), 
abundance (individuals per bag) and biomass (mg per bag) (left panel), and net diversity effects 
(proportion) on these variables (right panel), for low-PD (circles) and high-PD (squares) assemblages. 
Symbols are means, and whiskers denote upper and lower bounds of 95% nonparametric bootstrapped 
confidence intervals. Significant net diversity effects (i.e., intervals that do not contain the value of zero) 
are marked with asterisks.  
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CHAPTER 5 

 

Effects of two measures of riparian plant 
biodiversity on litter decomposition and 

associated processes in stream microcosms 
 

 

 

This chapter is published with the following reference  

López-Rojo N., Pérez V., Basaguren A., Pozo J., Rubio-Ríos J., Casas J.J., & Boyero L. 

Effects of two measures of riparian plant biodiversity on litter decomposition and 

associated processes in stream microcosms. Scientific Reports. In press
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INTRODUCTION 

Current rates of biodiversity loss are far greater than those before human dominance 

of Earth (Lawton et al. 1995, Loh and Wackernagel 2004, Barnosky et al. 2011), as a 

result of multiple environmental changes of anthropogenic origin such as land 

transformation, climate change and species invasions (Vitousek et al. 1997, Mack et al. 

2000, Leroy and Marks 2006, Amici et al. 2015). Biodiversity loss, in turn, can alter 

ecosystem processes such as plant litter decomposition, which is key for the 

functioning of ecosystems (Hooper et al. 2012). Headwater streams are detritus-based 

ecosystems that are fuelled by allochthonous plant litter detritus inputs from the 

surrounding terrestrial catchment (Vannote et al. 1980, Wallace et al. 1997, 

Suurkuukka et al. 2014). Once in the stream, plant litter is decomposed by 

ABSTRACT 

Plant litter decomposition is a key ecosystem process that can be altered by global 

changes such as biodiversity loss. These effects can be particularly important in 

detritus-based ecosystems, such as headwater streams, which are mainly fuelled by 

allochthonous plant litter inputs. However, experiments examining effects of plant 

diversity on litter decomposition in streams have not reached consensus about 

which measures of biodiversity are more relevant. We explored the influence of 

two of these measures, plant species richness (SR; monocultures vs. 3-species 

mixtures) and phylogenetic distance (PD; species belonging to the same family vs. 

different families), on leaf litter decomposition and associated processes (nutrient 

dynamics and fungal and detritivore biomass production), in a stream microcosm 

experiment using litter from 9 tree species belonging to 3 families. We found a 

negative effect of SR on decomposition (which contradicted the results of previous 

experiments) but a positive effect on fungal biomass production. While PD did not 

affect decomposition, both SR and PD altered nutrient dynamics: there was greater 

litter and detritivore N loss in low-PD mixtures, and greater litter P loss and 

detritivore P gain in monocultures. This suggested that the number of species in 

mixtures and the similarity of their traits both modulated nutrient availability and 

utilization by detritivores. Moreover, the greater fungal biomass production with 

higher SR could imply positive effects on detritivores in the longer term. Our results 

provide new insights of the functional repercussions of biodiversity loss by going 

beyond the often-explored relationship between SR and decomposition, and reveal 

an influence of plant species phylogenetic relatedness on nutrient cycling that 

merits further investigation. 

KEY WORDS: phylogenetic distance, species richness, litter traits, nitrogen, 

phosphorus, detritivores, fungi 
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microorganisms (mainly fungi) and invertebrates (litter-consuming detritivores), which 

involves the cycling of major nutrients such as nitrogen (N) and phosphorus (P), and 

the production of microbial and invertebrate biomass (Marks 2019). All these stream 

processes can be altered by multiple global environmental drivers (e.g., climate 

warming, eutrophication) and by terrestrial plant diversity loss, which is caused by 

widespread forestry practices such as monospecific plantations (Kominoski et al. 

2013). 

There is evidence that plant diversity loss affects litter decomposition (Swan 

and Palmer 2004), nutrient cycling (López-Rojo et al. 2019) and biomass production 

(Stout III et al. 1993), with effects mediated by complementary resource by 

detritivores (i.e., complementarity effects) or by the presence of particular litter types 

that decompose faster or slower than others (i.e., selection effects) (Loreau and Hector 

2001). However, inconsistencies between field and laboratory studies and across 

experiments (Gessner et al. 2010) suggest that there are still important gaps within 

this research field. A key question is whether species richness (SR; which has been 

used in most relevant studies) is the most appropriate measure of biodiversity, 

compared to other measures that consider the diversity of species traits (Hillebrand 

and Matthiessen 2009, Krause et al. 2014). Trait-related biodiversity measures could 

be expected to have greater influence on ecosystem processes than SR, because traits 

have direct functional repercussions (Petchey and Gaston 2006). For example, 

phylogenetic distance (PD) is often a good predictor of species trait variation 

( avender‐Bares et al. 2009, Burns and Strauss 2011, Mouquet et al. 2012, Lópe -Rojo 

et al. 2020b), and it has shown relationships with ecosystem processes such as primary 

production (Cadotte et al. 2008) and litter decomposition (Boyero et al. 2016). 

We experimentally explored how both plant SR and PD within litter 

assemblages influenced litter decomposition and associated processes (nutrient 

cycling and the production of fungal and detritivore biomass) in stream microcosms. 

We examined the net diversity effect (i.e., the deviation between observed 

decomposition values in litter assemblages and the values expected from the 

corresponding monocultures) and, when possible, partitioned this effect into 

complementarity and selection effects (Loreau and Hector 2001). We used leaf litter 

from 9 tree species belonging to 3 families (Betulaceae, Salicaceae and Fagaceae), 

which were introduced in microcosms (with and without detritivores) as monocultures 

(SR = 1) or mixtures (SR = 3) with either low PD (3 species from the same family) or 

high PD (3 species from 3 different families). The above processes were quantified 

after 6 weeks, and the following hypotheses were examined: (1) plant SR enhances all 

studied processes (i.e., they have greater values in mixtures than in monocultures) 

(Fernandes et al. 2015, López-Rojo et al. 2019), mostly due to complementarity effects 

(Handa et al. 2014); (2) the difference between monocultures and mixtures is greater 

for high-PD than for low-PD mixtures; and (3) all the above patterns are more marked 
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in the presence of detritivores, which often are key drivers of biodiversity-ecosystem 

process relationships (Vos et al. 2011, Tonin et al. 2017, López-Rojo et al. 2018). 

MATERIALS AND METHODS 

Litter and detritivores 

The plants used in the experiment were 3 species from the family Betulaceae (Alnus 

glutinosa (L.) Gaertner, Corylus avellana L. and Betula celtiberica Rothm. & Vasc.), 3 

from the family Salicaceae (Populus nigra L., Salix alba L. and Salix atrocinerea Brot.) 

and 3 from the family Fagaceae (Castanea sativa Mill., Fagus sylvatica L. and Quercus 

robur L.). These 9 species represented common litter inputs to headwater streams in 

our study area. Leaves were collected from the forest floor immediately after natural 

abscission in the autumn of 2017 from different locations in northern Spain: A. 

glutinosa, C. avellana, C. sativa and Q. robur at the Agüera stream catchment (43.20 

ᵒN, 3.26 ᵒW); B. celtiberica and F. sylvatica at Urkiola natural park (43.32 ᵒN, 2.97 ᵒW); 

S. alba at Mungia (43.33 ᵒN, 2.80 ᵒW); S.atrocinera at the Biscay campus of the 

University of the Basque Country (43.32 ᵒN; 2.97 ᵒW); and P. nigra at Barakaldo (43.29 

ᵒN; 2.99 ᵒW). Leaves were cut in fragments of about 4 cm2 avoiding the basal midrib, 

air dried, and weighed to the nearest 0.01 mg using a precision balance. 

 Detritivores were larvae of the cased caddisfly Sericostoma pyrenaicum, a 

common invertebrate in the study area that has been often used in microcosm 

experiments assessing litter decomposition ( orrea‐Araneda et al. 2017, Lópe -Rojo et 

al. 2018). Detritivores were collected manually from the benthos of Perea stream 

(43.291 ᵒN, 3.243 ᵒW) in March 2018. The initial dry mass (DM) of experimental larvae 

(mean ± SE: 13.87 ± 0.56 mg) was estimated from their case length (CL, measured 

under a binocular microscope with an accuracy of 0.5 mm; mean ± SE: 12.51 ± 0.22 

mm) and the relationship DM = 0.1398eCL*0.2818 (r2 = 0.899). This relationship was 

calculated using 35 additional larvae that were collected simultaneously and with a 

similar case length range to experimental larvae (mean ± SE: 11.65 ± 0.52 mm), 

measured as above, uncased, freeze-dried and weighed. Experimental larvae were 

starved for 48 h just before the start of the experiment; the additional larvae were also 

starved for 48h before being measured and weighed. 

Experimental setup 

Litter treatments consisted of the 9 monocultures and six 3-species mixtures, either of 

low PD (species from the same family) or high PD (each species randomly assigned 

from each of the 3 families; Table 1). We explored whether high-PD mixtures had 

greater trait variability than low-PD mixtures using Rao’s quadratic diversity (RaoQ; 

dbF  function in the ‘F ’ package), which is the sum of pairwise functional distances of 
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measured traits between species in a mixture weighted by their relative abundances 

(Rao 1982, Roscher et al. 2012). RaoQ was higher in two high-PD mixtures than in low-

PD ones, with the exception of the mixture composed by the 3 species of family 

Betulaceae, which had a higher value that one of the high-PD mixtures (Table 1). 

Table 1. Species comprising low-PD and high-PD litter mixtures (i.e., 3 plant species from the same 
family, or 3 species each from a different family, respectively), and trait variability (measured through 
RaoQ; value for each mixture and mean ± SE for each mixture type); PD: phylogenetic distance. 
 

Litter mixtures RaoQ 

Low-PD 1.84 ± 0.46 

 Alnus glutinosa + Betula celtiberica + Corylus avellana 2.74 

 Populus nigra + Salix alba + Salix atrocinerea   1.55 

 Castanea sativa + Fagus sylvatica + Quercus robur    1.23 

High-PD 3.24 ± 0.89 

 A. glutinosa + S. alba + C. sativa 4.79 

 C. avellana + S. atrocinerea + F. sylvatica 1.83 

 B. celtiberica + P. nigra + Q. robur 3.11 

 

The experiment was carried out in March-April 2018 in 150 microcosms placed 

within a temperature-controlled room at 10 ºC (which mimicked natural conditions 

and minimized evaporation), with constant aeration and a light:dark regime of 12:12 h. 

The microcosms consisted of 580-mL glass jars (8 cm diameter, 11 cm height) 

containing 400 mL of stream water (Perea stream; soluble reactive phosphorous (P): 

4.32 ± 1.25 μg P L-1; dissolved inorganic N: 369.55 ± 37.59 μg N L-1; n = 8) filtered 

through a 100-μm mesh (which allowed the entrance of microorganisms); and 30 cm3 

of sediment, composed of equal parts of fine sand (200 µm-1 mm) and small gravel 

(0.5 cm-1.5 cm), collected from the river bed and sterilized by incineration (550 ᵒC, 4h). 

Each microcosm received 1.5 g of air-dried litter fragments (an amount that avoided 

resource limitation during the experiment) belonging to 1 plant species (monocultures) 

or to 3 species (0.5 g per species), with 10 microcosms per litter treatment. Litter 

fragments of the same species were kept together using safety pins to facilitate 

species identification at the end of the experiment; the same was done in 

monocultures to avoid any possible confounding effect. Litter was incubated for 72 h 

(with water replacement after the first 48 h) to allow the leaching of soluble 

compounds and initial microbial conditioning. Water was replaced with filtered (100 

μm) stream water, and 7 microcosms per treatment received detritivores (2 larvae per 
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microcosm), while 3 microcosms per treatment remained without detritivores (in 

order to quantify microbial processes). We used higher replication in microcosms with 

detritivores because these have shown greater variability than microcosms without 

detritivores in previous experiments (Tonin et al. 2017, López-Rojo et al. 2019). 

During the experiment, water was replaced weekly (days 7, 14, 21, 28 and 35), 

and the experiment finished on day 42; on each replacement, water was filtered 

through a 100-μm mesh in order to avoid loss of litter fragments and detritivores. At 

the end of the experiment (day 42) litter was collected, sorted by species in mixtures, 

oven-dried, weighed to determine final DM, and then divided in two subsamples. One 

was incinerated and re-weighed to determine final ash free dry mass (AFDM); the 

other was used to determine final nitrogen (N) content (using a Perkin Elmer series II 

CHNS/O elemental analyzer) and P content (measured spectrophotometrically after 

autoclave-assisted extraction (APHA 1998). From the 3 microcosms without 

detritivores and 3 out of the 7 microcosms with detritivores in each treatment, and 

before oven-drying the litter, we cut 12-mm diameter discs (5 per species) using a cork 

borer; discs were freeze-dried, weighed and processed in order to measure lipid 

ergosterol, with procedures slightly modified from Newell et al. (1988) and Suberkropp 

and Weyers (1996) (Supplementary Methods). Detritivores remained 48 h in starvation 

within the microcosms, so they were in the same conditions as at the start of the 

experiment; on day 44 they were uncased, freeze-dried, weighed individually to 

calculate their final DM, and their final N and P contents were determined as above. 

Twenty-seven extra microcosms (3 per species, each containing 1.5 g of air-

dried litter fragments) were used to estimate the initial (post-leaching) AFDM and 

several litter traits. Litter fragments were collected after 72 h, and leaf toughness was 

measured as the pressure required to pierce the leaf tissue using a steel rod (kPa). 

Then litter was oven-dried (70 ᵒC, 72 h), weighed and divided in two subsamples. One 

was used to determine initial N and P contents (as above) and SLA [ratio of disc area 

(mm2) to DM (mg)]. The other was incinerated (550 ᵒC, 4 h) and re-weighed to 

determine the ash content and the relationships between air-dried and oven-dried 

DM, and between post-leaching DM and AFDM. 

Data analyses 

Survival of detritivores was 100% during the experiment but 2 larvae pupated, so those 

microcosms were excluded for the analyses. We calculated RaoQ for each litter 

mixture (see above) and for each litter trait (i.e., the variability of each particular trait 

in a mixture). Litter decomposition was quantified through proportional litter mass loss 

(LML), calculated as the difference between initial and final AFDM divided by initial 

AFDM. In microcosms with detritivores, we standardized LML using mean detritivore 

initial DM, in order to remove any possible effects due to differences in detritivore size 
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across microcosms. Detritivore biomass production was measured through 

proportional growth, calculated as the difference between final and initial DM divided 

by the initial DM. We quantified nutrient dynamics through the proportional change in 

litter and detritivore N and P contents (i.e., the difference between final and initial N 

or P content divided by initial N or P content). Initial data exploration using Cleveland 

dot- and boxplots revealed some potential outliers (2 data points for LML, including 1 

in microcosms with detritivores and 1 in microcosms without detritivores, and 4 for 

detritivore growth; <5% of the data), which were removed for subsequent analyses 

(Ieno and Zuur 2015). 

We explored the effect of plant SR on LML and ergosterol through the net 

diversity effect, which is the difference between the observed value of the response 

variable in a mixture and the expected value based on the values of the corresponding 

monocultures (netLML = LMLO − LMLE) (Loreau and Hector 2001). Moreover, in order to 

explore the mechanisms driving any net diversity effect, we partitioned this net 

diversity effect into complementarity effects and selection effects. The 

complementarity effect was calculated as the average deviation from expected LML of 

species in a mixture multiplied by the mean LML of species in monoculture and the 

number of species (n) in the mixture (mean ΔLML × mean LML × n), and the selection 

effect was calculated as the covariance between deviation from expected LML of 

species in a mixture and in monoculture, multiplied by the number of species 

[cov(ΔLML,LML) × n](Loreau and Hector 2001, Handa et al. 2014, López-Rojo et al. 

2018). For nutrient dynamics and detritivore growth, the existence of both positive 

and negative values precluded the interpretation of net diversity effects, so we directly 

examined differences among monocultures, low-PD and high-PD mixtures. 

We ran linear mixed-effects models (lme function, ‘nlme’ package) testing for 

the effect of PD and detritivore presence (fixed factor fitted as an interaction) on all 

measured variables. Litter mixture was a random factor, and differences in variance 

between treatments with and without detritivores were considered using the VarIdent 

structure. As the interaction between PD and detritivore presence was not significant 

for any variable, we used ordinary nonparametric bootstrapped 95% confidence 

intervals (BCa method using the boot function on ’boot’ R package, based on 999 

bootstrap replicates (Davison and Hinkley 1997, Canty and Ripley 2016)), which are not 

subject to requirements of parametric analysis, to represent: (i) differences in net 

diversity, complementarity and selection effects on LML and ergosterol between low-

PD and high-PD mixtures and between microcosms with and without detritivores; (ii) 

differences in litter N and P change between monocultures and low-PD and high-PD 

mixtures and between microcosms with and without detritivores; and (iii) differences 

in detritivore growth and detritivore N and P change between monocultures and low-

PD and high-PD mixtures in microcosms with detritivores. In all cases, we determined 

whether the confidence intervals contained the value of zero (i.e., the null expectation 
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of no effect or no change) and whether the confidence intervals of different 

treatments overlapped (i.e., the null expectation of no differences between 

treatments). All statistical analyses were performed in R statistics software (R Core 

Team 2020). 

 

 

Fig. 1. Net diversity, complementarity and selection effects for litter mass loss (proportion) and 
ergosterol content (µg · mg litter 

-1
) for low-PD and high-PD treatments, with (black) and without (grey) 

detritivores. Circles are means and whiskers denote upper and lower bounds of 95% nonparametric 
bootstrapped confidence intervals. Closed circles represent intervals that reject the null hypothesis (i.e., 
do not contain the value of zero) and open circles represent intervals that do not reject the null 
hypothesis. 
 

RESULTS  

The net diversity effect on decomposition (quantified through LML) was mostly 

negative (i.e., LML was higher in monocultures than in mixtures), and significant only in 

the presence of detritivores (Fig. 1A). In contrast, the net diversity effect on fungal 

biomass production [quantified through lipid ergosterol (Gessner and Chauvet 1993)] 

was positive (i.e., there was more ergosterol in mixtures than in monocultures), and 

the effect was significant only for low-PD mixtures (Fig. 1D). When the net diversity 

effect was partitioned into complementarity and selection effects, results again 

differed for LML and ergosterol: for LML, complementarity was negative (Fig. 1B) and 
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selection was positive in low-PD (with and without detritivores) and high-PD mixtures 

(with detritivores: Fig. 1C); for ergosterol, there was positive complementarity 

(significant in low-PD mixtures without detritivores and high-PD mixtures with 

detritivores; Fig. 1E) and negative selection (except for low-PD mixtures with 

detritivores; Fig. 1F). Diversity effects were thus almost entirely driven by 

complementarity effects in the presence of detritivores, with important contribution 

of selection effects in their absence (Table S4). 

 

 

Fig. 2. Proportional change in litter nitrogen and phosphorus content (mg · g litter
-1

) for monocultures 
(Mono), low-PD and high-PD litter mixtures, with (black) and without (grey) detritivores. Circles 
represent means and whiskers denote upper and lower bounds of 95% nonparametric bootstrapped 
confidence intervals. Closed circles represent intervals that reject the null hypothesis (i.e., do not 
contain the value of zero) and open circles represent intervals that do not reject the null hypothesis. 
 

Nutrient dynamics in litter showed differences between monocultures and 

mixtures. Litter N concentration tended to increase in monocultures and decrease in 

mixtures, although the difference was only significant for low-PD mixtures in the 

presence of detritivores (Fig. 2A). Litter P concentration decreased in the presence of 

detritivores in monocultures and low-PD mixtures, with no change in high-PD mixtures; 

there was an increasing trend from monocultures to high-PD mixtures both in the 

presence and absence of detritivores, but it was not significant (Fig. 2B). Detritivore 

biomass production (quantified through growth) was highly variable and showed no 

differences between treatments (Fig. 3A). Detritivores decreased their N proportional 

content, and the decrease was higher in mixtures than in monocultures (Fig. 3B). In 

contrast, detritivores increased their P proportional content in monocultures and low-

PD mixtures and showed a similar but nonsignificant trend in high-PD mixtures; the 

pattern shown was opposite to that in P litter concentration (Fig. 3C). 
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Fig. 3. Detritivore biomass production and change in nitrogen and phosphorus (proportion) for 
monocultures (Mono), low-PD and high-PD litter mixtures. Circles represent means and whiskers denote 
upper and lower bounds of 95% nonparametric bootstrapped confidence intervals. Closed circles 
represent intervals that reject the null hypothesis (i.e., do not contain the value of zero) and open circles 
represent intervals that do not reject the null hypothesis. 

DISCUSSION 

Litter decomposition was lower in mixtures than in monocultures due to negative 

complementarity 

Our experiment revealed a negative effect of plant species richness on litter 

decomposition: monocultures decomposed, on average, faster than litter mixtures. 

This result was unexpected when compared with several other microcosm 

experiments, which have found faster decomposition of litter mixtures than 

monocultures (Fernandes et al. 2015, Tonin et al. 2017, López-Rojo et al. 2018, López-

Rojo et al. 2019). In most of the above-mentioned microcosm experiments, diversity 

effects occurred only in the presence of detritivores, suggesting that they were the key 

drivers of such effects, and the main underlying mechanism was a positive 

complementarity effect. Similarly, in our study, the diversity effect was significant in 

the presence of detritivores; in their absence, complementarity and selection effects 

presented similar but opposite values that counterbalanced each other (see below). 

Positive complementarity can occur when different litter types offer 

complementary resources to consumers, or when the presence of one litter type 

enhances the consumption of another (i.e., facilitation), and is often greater than the 

positive selection effect (i.e., when a given litter type is decomposed faster than 

others). For example, an experiment found that complementarity accounted for 66% 

of the diversity effect on decomposition on average (and up to 99%) in several litter 

mixtures (López-Rojo et al. 2018). In our study, we also found that complementarity 

was the dominant mechanism behind diversity effects on decomposition in the 

presence of detritivores (selection effects were significant and positive, but only 

accounted for 13% of the net diversity effect on average) but, in this case, it was 

negative complementarity. 
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Negative complementarity was also found in a field study with a similar design 

to ours (López-Rojo et al. 2020b), and could indicate some kind of physical or chemical 

interference between litter types. For example, toxic compounds present in one 

species could inhibit the consumption of another that would otherwise be consumed 

faster (McArthur et al. 1994, Graça et al. 2001). In our study, in the absence of 

detritivores, negative complementarity and positive selection were similar in 

magnitude (53% and 47% on average, respectively), resulting in a non-significant net 

diversity effect. This suggests that selection effects were more relevant for microbial 

than for detritivore-mediated decomposition, and indicates that the lack of net 

diversity effects on microbial decomposition found here and in other studies (López-

Rojo et al. 2018, López-Rojo et al. 2019) could be due to different mechanisms 

operating in opposite ways, rather than to the absence of interactions between litter 

diversity and microbial decomposers. 

Fungal biomass production was higher in litter mixtures, mostly in those with low 

phylogenetic distance 

Despite the negative effect of plant species richness on decomposition, the effect on 

fungal biomass production was opposite, that is, litter mixtures produced more fungal 

biomass than expected from monocultures. This may result in greater litter 

conditioning (Gessner et al. 1999) and thus enhance detritivore-mediated 

decomposition in the longer term. However, this was significant only for low-PD 

mixtures (with and without detritivores), and driven by positive complementarity 

(which accounted for 87% of the net diversity effect on average), suggesting the 

existence of resource partitioning or facilitation among fungal species. This can occur if 

different species within the fungal assemblage differ in their enzymatic complements 

or activity patterns (Gessner et al. 2010), or benefit from the presence of litter types 

differing in physical structure [e.g., contrasting toughness or specific leaf area (SLA)], 

which increase habitat complexity and stability. However, we cannot confirm this as 

we did not characterise fungal assemblages. Moreover, in our case, such effects did 

not translate into differences in microbial decomposition, such as those shown in 

terrestrial ecosystems (Hättenschwiler and Gasser 2005), possibly due to functional 

redundancy of fungal species (Gessner et al. 2010). 

Although we did not quantify fungal species richness, other studies have found 

that it is positively related to plant (litter) species richness, in relation to a higher 

functional trait diversity (Rajashekhar and Kaveriappa 2003, Laitung and Chauvet 

2005). In our study, high-PD mixtures tended to have higher trait diversity than lower-

PD mixtures. Thus, it is possible that fungal assemblages growing on our high-PD 

mixtures were more diverse than those growing on low-PD mixtures, and more diverse 

fungal assemblages generally show slower production due to increased interspecific 

competitive interactions (Gessner et al. 2010). In high-PD assemblages, positive 



Chapter 5 

110 
 

complementarity was the dominant mechanism (82% of the net diversity effect) only 

in the presence of detritivores, which most likely mediated this complementarity 

effect. In the absence of detritivores, positive complementarity and negative selection 

were similar in magnitude (53% and 47%, respectively), as occurred for decomposition, 

resulting in a very low and non-significant net diversity effect. 

Nutrient dynamics was influenced by plant species richness, with a lower influence of 

phylogenetic distance 

Plant species richness affected the dynamics of N and P in litter and detritivores, but 

had no effect on detritivore biomass production, which was 42% on average (i.e., 

1.14% per day); this is within the range reported elsewhere for Sericostoma spp. (0.75-

2.99%) (Friberg and Jacobsen 1999, López-Rojo et al. 2019). While litter monocultures 

tended to present higher N concentration (although the trend was not significant), it 

tended to be lower in mixtures (being the reduction significant only for low-PD 

mixtures, and significantly different from that of monocultures only in the presence of 

detritivores). This suggests that more N was used from litter in mixtures, which is in 

accordance with their higher fungal biomass production, and with the key role of 

microorganisms in N dynamics shown elsewhere (Tonin et al. 2017, López-Rojo et al. 

2019). We note, however, that N litter content cannot be separated from N content of 

colonising fungi. In contrast, detritivores reduced their N proportional content in all 

cases, but less so when exposed to monocultures, suggesting that detritivores were 

able to use more N from litter when fungal activity was lower. The general reduction in 

detritivore N content could be due to the fact no litter type fulfilled their N demands 

(even if A. glutinosa had high N concentration; Table S1); these demands are usually 

high for caddisflies because they use it for the production of silk and N-rich chitin for 

the exoskeleton (Frainer et al. 2016). 

 The dynamics of P showed a different pattern, which was opposite in litter and 

detritivores: litter decreased its P proportional content in monocultures and low-PD 

mixtures in the presence of detritivores, and detritivores increased their P proportional 

content when exposed to monocultures and low-PD mixtures; the trend was similar for 

high-PD mixtures in both cases, albeit not significant. This suggests that P dynamics 

were highly dependent on detritivores, which used P from monocultures and low-PD 

mixtures more efficiently than from high-PD mixtures, that is, from litter with lower 

diversity of functional traits in general or P in particular (P variability was 0.17% ± 0.09 

SE in low-PD mixtures and 0.84% ± 0.39 in high-PD mixtures; Supplementary Table 2). 

This agrees with studies suggesting that detritivores can benefit from the 

concentration of resources (Friberg and Jacobsen 1994, Boyero et al. 2016) and with 

the fact that detritivore biomass production was not constrained by P supply, as shown 

elsewhere (Frainer et al. 2016). 
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Biodiversity effects on ecosystem functioning may depend on experimental 

conditions and on the biodiversity measure used 

Our study supports previous evidence that plant biodiversity loss can affect litter 

decomposition and associated processes in stream ecosystems. However, it suggests 

that effects can be variable depending on the available litter, fungal assemblages and 

detritivore numbers used, and hence the biological interactions allowed. Experimental 

conditions thus seem to be main determinants of outcomes, which have been variable 

among different field and microcosm experiments (Lecerf and Richardson 2010). This is 

particularly true for field studies, which have often found positive, negative and/or no 

effects at different sites (Handa et al. 2014) or for different litter mixtures (Lecerf et al. 

2007, Taylor et al. 2007). Many microcosm experiments have found positive diversity 

effects (Vos et al. 2013, Fernandes et al. 2015, Tonin et al. 2017, López-Rojo et al. 

2019), but these sometimes depended on which species were lost (Boyero et al. 2014), 

and here we found negative diversity effects. Contrasting results could be related to 

differences in experimental conditions, mainly regarding two aspects. 

Firstly, studies or sites with more diverse detritivore assemblages have more 

potential for complementary resource use (Handa et al. 2014). However, at the same 

time, the balance between different positive and negative interspecific and 

intraspecific interactions mediating diversity effects is more variable (McKie et al. 

2009, Tonin et al. 2018), which may obscure the results (as discussed for microbial 

decomposition above). This, however, may not apply to many microcosm experiments, 

which use a single detritivore species, although intraspecific interactions could also 

play a role (Boyero and Pearson 2006), for example between individuals with different 

body size (Reiss et al. 2011), and due to density-dependent effects (McKie et al. 2008). 

In our experiment, each microcosm contained 2 individuals, which differed from other 

experiments using more individuals per microcosm [e.g., 3 in López-Rojo et al. (2019); 

6 in Boyero et al. (2014)], hence with more potential for intraspecific interactions (and 

positive diversity effects) in the latter. 

Secondly, the amount and types of litter provided could influence the results of 

microcosm experiments (but not so much in field studies, where litter other than that 

provided within litter bags is generally available in the stream). This may also help 

explain the outcome of our study (a negative diversity effect on decomposition) 

compared to other microcosm experiments. In particular, we provided litter in large 

excess, and > 60% of the litter preferred by detritivores (A. glutinosa) remained at the 

end of the experiment in mixtures; in contrast, others have provided more limited 

amounts (Tonin et al. 2017). The presence of a limiting amount of the preferred litter 

in mixtures may enhance the consumption of other litter types, and thus enhance 

overall decomposition compared to monocultures. However, this may not happen if 
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the preferred litter is highly abundant in mixtures, because detritivores would feed 

mostly on it and there would be no differences with monocultures. 

Another relevant question raised here is how to measure biodiversity in these 

studies. We found that phylogenetic distance had no effect on decomposition, but it 

influenced nutrient dynamics, which would have been only partially assessed by 

exploring species richness only. This is despite the fact that phylogenetic distance and 

trait variability was not strongly related, at least in relation to the traits that we 

measured; the inclusion of other traits such as tannins (which are generally high in the 

Fagaceae) would most likely have increased this relationship. Nevertheless, we provide 

evidence of a key role of trait-based biodiversity measures such as phylogenetic 

distance on nutrient dynamics (which are little explored compared to decomposition) 

highlights the relevance of compositional changes in vegetation for stream ecosystem 

functioning, regardless of changes in species richness. Still, our results should be taken 

with caution because we did not include all possible low-PD and high-PD mixtures 

resulting from different combinations of the plant species used. Given that other 

studies have found either significant (Boyero et al. 2016, LeRoy et al. 2019) or non-

significant effects (López-Rojo et al. 2020b) of phylogenetic distance on litter 

decomposition in streams, and that its effects on associated processes (such as those 

examined here) are mostly unknown, we suggest that this issue merits further 

investigation. 
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SUPPORTING MATERIAL 

Supplementary Methodology 

Ergosterol was extracted from the frozen-dried litter discs (≈50 mg) in 10 mL screw-cap 

test tubes by 30 m of refluxing in 2 mL of KOH-methanol at 80 ᵒC using a dry-bath 

system. Once cooled at room temperature, the mixture was treated with 1 mL of a 

saturated Na l solution (≈ 0.36 g mL-1) to saturate the aqueous-phase, and sterols 

were extracted from the alcoholic base by partitioning with the addition of 1 mL of n-

hexane (HPLC grade). Samples were then stirred in a vortex mixer for 30 s and 

centrifuged for 4 m at 1165RCF. The supernatant (n-hexane phase containing sterols) 

was collected, transferred to 1.5 mL HPLC vials, and evaporated to dryness under a 

stream of N2. A second extraction was carried out adding another 1 mL of n-hexane to 

the sample test tube, and repeating the above process in the same HPLC vial. The dry 

residue was dissolved in 1 mL of methanol (HPLC grade) and immediately injected into 

a high-pressure liquid chromatography system (HPLC). 
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Table S1. Litter traits (mean ± SE) measured for each plant species: nitrogen (N), phosphorus (P) and ash 

contents (%), specific leaf area (SLA; mm
2 

· mg
-1

) and leaf toughness (kPa).  

 

Plant species %N %P %Ash SLA Toughness 

A. glutinosa 3.05 ± 0.11 0.08 ± 2e-3 13.81 ± 3.33 17.47 ± 0.29 1672 ± 174 

C. avellana 1.38 ± 0.05 0.07 ± 4e-3 18.60 ± 3.13 19.54 ± 2.74 1563 ± 116 

B. celtibérica 1.61 ± 0.13 0.05 ± 1e-3 9.38 ± 1.26 16.41 ± 0.49 2271 ± 161 

P. nigra 1.53 ± 0.09 0.13 ± 2e-3 15.57 ± 0.64 11.90 ± 0.75 3859 ± 715 

S. alba 1.80 ± 0.10 0.12 ± 2e-3 23.41 ± 1.10 12.97 ± 0.51 3036 ± 116 

S. atrocinerea 1.79 ± 0.06 0.09 ± 5e-3 21.36 ± 6.27 13.86 ± 0.56 2371 ± 137 

C. sativa 1.40 ± 0.07 0.05 ± 3e-3 12.63 ± 2.06 19.64 ± 0.99 1640 ± 107 

F. sylvatica 0.91 ± 0.12 0.05 ± 3e-3 14.70 ± 4.26 17.87 ± 2.25 2142 ± 187 

Q. robur 1.41 ± 0.13 0.05 ± 6e-3 9.57 ± 1.14 14.71 ± 0.86 2752 ± 117 
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Table S2. Mean value and variability (RaoQ) of litter traits for each litter mixture: nitrogen (N), phosphorus (P) and ash contents (%), specific leaf area (SLA; mm
2 

· mg
-1

) and 
leaf toughness (kPa).  

 

 

%N %P %Ash SLA Toughness 

Litter mixture mean RaoQ mean RaoQ mean RaoQ mean RaoQ mean RaoQ 

Low-PD 

 

 

 

     

 

 

 
A. glutinosa + B. celtiberica + C. avellana 2.00 1.56 0.07 0.19 13.90 0.60 17.80 0.21 1840 0.17 

 
P. nigra + S. alba + S. atrocinerea   1.71 0.04 0.12 0.32 20.14 0.47 12.90 0.08 3095 0.64 

 
C. sativa + F. sylvatica + Q. robur    1.24 0.16 0.05 0.00 12.28 0.19 17.34 0.52 2192 0.36 

High-PD 
 

 
 

     
 

 

 
A. glutinosa + S. alba + C. sativa 2.06 1.42 0.08 0.67 16.60 0.98 16.72 0.98 2115 0.75 

 
C. avellana + S. atrocinerea + F. sylvatica 1.34 0.37 0.07 0.27 18.05 0.32 17.18 0.68 2023 0.20 

 
B. celtiberica + P. nigra + Q. robur 1.51 0.02 0.08 1.60 11.38 0.33 14.39 0.41 2939 0.74 
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Table S3. Results of linear mixed-effects models testing for the effect of diversity, detritivore presence 
and their interaction on the response variables. Diversity levels were low-PD and high-PD treatments for 
net, complementarity and selection effects on decomposition (measured through leaf mass loss, LML) 
and fungal biomass production (measured through ergosterol); and monocultures vs. low-PD vs. high-PD 
treatments for the change in litter and detritivore nitrogen (N) and phosphorus (P) and detritivore 
growth. df: numerator and denominator degrees of freedom; F: F-statistic value; p: p-value. 
 
 

Variable Effect df F p 

Net LML Diversity 1,4 0.25 0.639 
 Detritivore presence 1,49 3.34 0.073 
 Diversity: Detr. presence 1,49 0.08 0.769 

Complementarity LML Diversity 1,4 0.04 0.854 
 Detritivore presence 1,49 3.11 0.084 
 Diversity: Detr. presence 1,49 0.08 0.777 

Selection LML Diversity 1,4 0.36 0.578 
 Detritivore presence 1,49 0.04 0.837 
 Diversity: Detr. presence 1,49 1.11 0.297 

Net Ergosterol Diversity 1,4 0.49 0.519 
 Detritivore presence 1,28 0.02 0.884 
 Diversity: Detr. presence 1,28 1.08 0.306 

Complementarity Ergosterol Diversity 1,4 0.86 0.406 
 Detritivore presence 1,28 0.09 0.759 
 Diversity: Detr. presence 1,28 0.14 0.706 

Selection Ergosterol Diversity 1,4 1.10 0.353 
 Detritivore presence 1,28 5.30 0.029 
 Diversity: Detr. presence 1,28 0.01 0.900 

Change in litter N Diversity 2,12 1.98 0.179 
 Detritivore presence 1,13 0.66 0.418 
 Diversity: Detr. presence 2,13 0.75 0.474 

Change in litter P Diversity 2,12 1.353 0.295 
 Detritivore presence 1,13 4.955 0.027 
 Diversity: Detr. presence 2,13 0.068 0.933 

Detritivore growth Diversity 2,12 0.049 0.951 

Change in detritivore N Diversity 2,12 14.538 <0.001 

Change in detritivore P Diversity 2,12 1.429 0.279 
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Table S4. Contribution (%) of complementarity and selection effects to the net diversity effect (sum of 
absolute value complementarity and selection effects) of litter mass loss (LML) and ergosterol content 
for each treatment (low- or high-PD) with and without detritivores. 

 

 

With detritivores Without detritivores 

Variable Complementarity Selection Complementarity Selection 

LML 
    

 
Low PD 85.66 14.34 60.38 39.62 

 

High PD 88.47 11.53 45.40 54.60 

Ergosterol 
    

 
Low PD 91.04 8.96 83.01 16.99 

 

High PD 81.68 18.32 53.35 46.65 
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GENERAL DISCUSSION 

This thesis aimed to shed light on several important gaps of BEF research, by 

addressing key questions regarding the effects of plant litter diversity loss on stream 

ecosystem functioning. Despite the large number of experimental studies that have 

addressed BEF relationships in the last two decades (Tilman and Downing 1994, 

Cardinale et al. 2011, Mora et al. 2011), there still is much uncertainty concerning the 

key processes operating in detrital food webs, particularly in stream ecosystems (Mori 

et al. 2020). In this synthesis I try to provide some answers to these issues that derive 

from the different chapters of the thesis, and raise new questions that may stimulate 

future research. 

The first fundamental issue addressed here was the lack of information on how 

biodiversity could simultaneously impact multiple processes, all of which are 

fundamental to the functioning of stream ecosystems. Many stream food webs are to 

a large extent detrital, with most energy deriving from allochthonous leaf litter (Tank 

et al. 2010), and so most stream BEF studies have focused on the process of litter 

decomposition, often quantified as the rate of litter mass loss (Hector et al. 2000). 

However, I predicted that examining this process in isolation would not be sufficient to 

understand how the ecosystem is affected by changes in plant litter diversity. A 

number of other processes occur and are intimately linked to decomposition (Gessner 

et al. 2010), so I expected that their joint examination would provide a more 

comprehensive picture of how stream ecosystems may be altered by changes in plant 

litter diversity (Chapters 1 and 2). Moreover, I explored the concept of 

multifunctionality (Chapter 2), which intends to encapsulate ecosystem functioning in 

a single measurement (Byrnes et al. 2014) and has received considerable attention in 

recent literature, but at the same time has been controversial (Gamfeldt and Roger 

2017). 

My results provided novel evidence of simultaneous effects on an array of 

relevant processes (i.e., decomposition, nutrient cycling and biomass production, 

among others) and demonstrated that (1) different processes provide complementary 

information that cannot be ignored when assessing effects at the ecosystem level; and 

(2) despite the advantages of using multifunctionality indices in some instances, the 

separate analysis of different processes is essential to understand how organisms, food 

webs and, ultimately, ecosystems, will be altered by changes in plant litter diversity. It 

was particularly interesting to see that processes related to nutrient cycling (i.e., 

nutrient loss from litter and increases in the water and in detritivores) were more 

often affected by changes in plant litter diversity than decomposition. Given that the 

latter process is by far the most examined process in relevant studies, many effects of 

diversity loss on ecosystem functioning may have been overlooked by ignoring nutrient 
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cycling. A thorough assessment of BEF relationships thus requires an understanding of 

which processes are fundamental to the functioning of ecosystems, and the 

examination of these individual processes, which may also be examined using 

multifunctionality metrics for further verification of overall effects. 

The second question explored here was the potential interaction between 

detrital and autotrophic stream food webs (Chapter 3), which often coexist, mostly 

downstream the headwaters that have been explored in other chapters (Halvorson et 

al. 2020). Part of the terrestrial litter entering these low-order streams is not 

processed in situ, being transported downstream and processed in mid-order reaches, 

where the contribution of the autotrophic pathway gains importance (Vannote et al. 

1980). Here, I explored BEF relationships between microbial decomposers and primary 

producers, a topic that has been understudied. Although the results did not support 

the hypothesis of bidirectional effects of biodiversity on ecosystem functioning 

between both food webs, I found that the green food web was in fact affected by the 

presence and identity of leaf litter, which mainly determined the structure of 

periphytic algal assemblages) and by several litter traits, which influenced net primary 

production. 

The third issue examined in this thesis was whether different types of 

biodiversity were more or less relevant within the context of BEF research. Thus, I 

went beyond the assessment of species richness effects and considered also functional 

aspects of biodiversity based on biological traits and species phylogenetic relatedness. 

To explore this question I used two approaches, a field experiment (Chapter 4) and a 

microcosm experiment (Chapter 5), which offered different perspectives. Thus, while 

the field experiment allowed the examination of processes and effects mediated by 

whole stream assemblages and under natural environmental conditions, microcosms 

offered the opportunity to study processes that are difficult to explore in the field, 

mostly those related to C and nutrient cycling. In both cases I looked at the 

consequences of changing plant species richness, functional diversity (measured 

through a set of relevant biological traits) and phylogenetic distance on decomposition 

and other processes. My results revealed important differences among these 

biodiversity measures, and highlighted the central role of several litter traits (mostly 

the concentrations of major nutrients, N and P) as drivers of changes in decomposition 

and associated processes. Plant species richness (the most used metric in BEF 

research) influenced decomposition and other processes, but effects were not entirely 

consistent across experiments, which suggests that this metric should not be used 

solely without considering more functional aspects such as the mean concentrations 

and diversity of traits. Lastly, effects of plant phylogenetic distance were in most cases 

weaker than those of the other metrics, so it should be used with caution. Given that 

some important traits might not be phylogenetically conserved (Moles et al. 2013) or 

may show convergent evolution (Ackerly and Reich 1999) or phenotypic plasticity 
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(Valladares et al. 2007), more detailed information about these issues may be required 

when phylogenetic distance is used. 

Finally, I addressed the scarce knowledge about the biological mechanisms 

underlying BEF relationships (Chapters 1, 4 and 5). In order to improve our 

understanding of such mechanisms I used the diversity partitioning approach (Loreau 

and Hector 2001), which separates net diversity effects into complementarity (which 

evidences a key role of interspecific interactions) and selection (which indicates that 

effects are mainly driven by a particular species), both of which can either be positive 

or negative. I observed that diversity effects on ecosystem functioning were in most 

cases driven by complementarity (Fig. 1), which was greater than selection, both in 

laboratory and field experiments. This occurred even in the presence of especially 

nutrient-rich species, which may be expected to drive large selection effects. 

Moreover, all these patterns were particularly evident in the presence of detritivores, 

with differences in magnitude between different mechanisms being less marked in the 

absence of detritivores. 

 

Fig 1. Graphical illustration of main processes and mechanisms identified to drive BEF relationships in 

streams 
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Below I discuss the main findings of each of the above topics, their potential 

implications within and beyond streams, and some insights and future research 

directions that arise from my results. 

 

MULTIFUNCTIONALITY: LITTER DIVERSITY EFFECTS GO BEYOND THE DECOMPOSITION 

PROCESS 

I found that, in the presence of detritivores, several ecosystem processes were 

negatively affected by the loss of plant litter diversity, quantified as species richness. 

When I explored diversity effects on multiple processes simultaneously through the 

use of multifunctionality indices (with two different approaches: averaging and 

multiple threshold) I found an overall, strong alteration of ecosystem functioning. In 

contrast, when detritivores were absent, only two of the measured processes (P loss 

from litter and N release to the water) showed a significant (and negative) relationship 

with diversity, which were translated in an overall effect on multifunctionality. The 

negative relationship between diversity and N release to the water indicated greater N 

uptake from the water column (Chapter 2); this, together with the significant diversity 

effect on ergosterol content (an indicator of fungal biomass, Gessner and Chauvet 

1993) found in Chapter 4, suggested a positive effect of plant litter diversity on fungal 

growth. During the experiment, however, enhanced fungal growth did not imply 

higher microbial decomposition, although it is possible that effects may arise in the 

longer term, as microbial leaf litter processing generally occurs at a slower pace than 

detritivore feeding (Hieber and Gessner 2002). The lack of diversity effects on 

microbially-mediated decomposition, commonly found in BEF studies, does not 

necessarily mean that microbial decomposers are not affected by plant litter diversity, 

as reported elsewhere (Swan and Palmer 2004, Sanpera‐ albet et al. 2009). 

Conversely, the strong effects of plant litter diversity on nutrient dynamics and fungal 

biomass found here suggest that more attention should be paid to the microbial 

compartment, particularly to predict changes in ecosystem functioning in the long 

term. 

In the presence of detritivores, the greatest diversity effect was observed for P 

release to the water, with the most diverse polyculture outperforming the best 

monoculture. This phenomenon, often called transgressive overyielding, has been 

seldom reported and demonstrates a strong diversity effect (Cardinale et al. 2007). The 

alteration of nutrient transfer across different compartments of the ecosystem (litter, 

water, and detritivores) is an issue rarely addressed in BEF research, but here I show its 

relevance when predicting biodiversity effects on ecosystem functioning. It is worth 

noting, however, that changes in nutrient cycling may be overestimated in microcosm 

experiments because nutrients are so readily available in streams, due to the action of 
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flow. Nevertheless, this applies to the transfer of nutrients from and to the water at 

small scales, but not to transfer through fungal hyphae (Handa et al. 2014). For 

example, in Chapter 3, I found positive diversity effects on litter P loss in the field, 

which contrasted with the negative effects on decomposition.  

Terrestrial litter decomposition and the concomitant recycling of nutrients and 

production of detritivore biomass are central processes maintaining the functioning of 

headwater stream ecosystems. My results highlight the advantage of considering these 

processes together rather than focusing on decomposition only as proxy for stream 

ecosystem functioning (Chauvet et al. 2016) when exploring effects of biodiversity loss. 

Moreover, plant litter diversity effects on decomposition were more variable across 

experiments than effects on nutrient cycling, and seemed to be more influenced by 

experimental methodology (e.g., the amount and types of litter provided). In contrast, 

diversity effects on nutrient cycling were more consistent and are thus likely to be 

highly relevant for future BEF studies.  

 

NO EVIDENCE OF BEF RELATIONSHIPS ACROSS DIFFERENT FOOD WEB PATHWAYS 

Most BEF studies have examined biodiversity loss effects on ecosystem processes that 

occur within a particular pathway of the stream food web (e.g., the detrital or brown 

pathway in Chapters 1, 2, 4 and 5). Such interactions are to be expected in low-order 

streams where the detrital pathway is dominant, as mentioned above. However, 

interactions between brown and green pathways occur in streams (Danger et al. 2007, 

Halvorson et al. 2020), and hence BEF relationships between both pathways may be 

expected and were examined in Chapter 3. However, I was unable to find evidence of 

such reciprocal biodiversity effects. Interestingly, I observed that the presence and 

identity of plant litter had an influence on algal assemblage structure, and on the 

relationship between algal diversity and carrying capacity. This influence may be 

important because part of the litter entering headwater streams is transported 

downstream to mid and low reaches, where the green pathway is dominant (Vannote 

et al. 1980). I suggest that future studies should further explore BEF relationships 

across food web compartments, including interactions across multiple trophic levels, 

which are also underexplored (but see Srivastava et al. 2009). 

 

THE DIVERSITY OF KEY TRAITS IS HIGHLY RELEVANT FOR ECOSYSTEM FUNCTIONING 

Biodiversity measures other than species richness have been rarely used when 

addressing plant diversity effects on decomposition, but inconsistencies across studies 

suggest that species richness might not be the most important feature of biodiversity 

within this context. However, I found no clear effects of plant phylogenetic distance on 
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litter decomposition, either in field or laboratory approaches (Chapters 4 and 5). This 

result contrasts with several terrestrial studies showing that plant phylogenetic 

distance is a good predictor of plant biomass accumulation (Cadotte et al. 2008, Flynn 

et al. 2011), a contrast that might be explained by differences in the relevant biological 

traits. The assumption that plant phylogenetic distance can influence an ecosystem 

process is based on the existence of a strong phylogenetic signal in the traits driving 

the process, meaning that traits present more similar values in close relatives than in 

distant ones (Flynn et al. 2011). For example, it is known that the main traits 

determining grassland primary production exhibit strong phylogenetic signals 

(Srivastava et al. 2012). In contrast, riparian leaf litter traits relevant for decomposition 

have shown weak phylogenetic signal (Boyero et al. 2017). These differences between 

‘live’ leaves and ‘dead’ leaf litter may be related to the nutrient resorption that occurs 

prior to leaf senescence (Yuan and Chen 2009) and merit further attention. 

In contrast to the lack of effect of phylogenetic distance on stream ecosystem 

functioning, I found strong effects of several litter traits and their diversity. The most 

relevant ones were the concentrations of essential nutrients (i.e., N and P) and 

secondary compounds (i.e., condensed tannins), which together largely contribute to 

litter quality. Previous experiments at large spatial scales and systematic reviews have 

demonstrated that litter quality, together with environmental conditions, is a major 

driver of litter decomposition in both aquatic and terrestrial ecosystems (Cornwell et 

al. 2008, García-Palacios et al. 2016). Here, I demonstrated that not only the mean 

value of these traits is relevant, but also their diversity or variability within litter 

mixtures is important. Interestingly, I observed that traits related to litter chemical 

composition were relevant mostly for detritivores, while traits related to its physical 

structure (e.g., hemicellulose and specific leaf area) were mostly relevant for 

microorganisms (Chapter 3). This finding seems counterintuitive, given that 

detritivores mostly shred on litter and thus would be expected to be affected by their 

toughness; microorganisms, in contrast, secrete enzymes that decompose litter and 

subsequently use the released C and nutrients, so they should be mostly affected by 

the chemical composition of litter (Marks 2019). This is thus an interesting avenue that 

merits further exploration in future studies. 

The importance of litter trait variability for decomposition and nutrient cycling 

had been previously shown for terrestrial ecosystems. For example, García‐Palacios et 

al. (2017) found that both mean trait values and their variability had a large influence 

on litter C and N loss, even when compared with the influence of environmental 

factors. Here, I found that effects of trait variability were higher for nutrient cycling 

than for decomposition, as occurred with species richness.  Another important finding 

was the fundamental role of the variability of N concentration in litter mixtures 

(Chapters 4, 5). In particular, the high N concentration of alder litter probably 

enhanced the use of other litter types that are poorer in this nutrient (see discussion 
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about complementarity effects below). It is worth noting that trait variability can be 

measured using different indices, which might lead to different results, although large 

differences are unlikely. 

 

COMPLEMENTARITY IS A MAJOR MECHANISM DRIVING BEF RELATIONSHIPS  

I found ample evidence that complementarity effects were a main driver of BEF 

relationships in stream ecosystems, as they were always greater in magnitude than 

selection effects. This is consistent with results of previous field and microcosm studies 

(e.g., Handa et al. 2014, Tonin et al. 2017), and indicates that detritivores (and, to a 

lesser extent, microorganisms) can benefit from the use of complementary resources 

provided by different litter types (i.e., species). For example, the presence of litter with 

different nutrient concentrations can help organisms meeting with their stoichiometric 

requirements (Cross et al. 2005, Manzoni et al. 2010). Detritivores often feed 

preferentially on certain litter types (Graça et al. 2001), and fungal mycelia can 

colonize different litter types at the same time and selectively take different nutrients 

from them. The latter phenomenon has been described as nutrient transfer between 

litter types (Handa et al. 2014) and has also  been observed in terrestrial studies, not 

only for major nutrients such as N but also for labile C (Schimel and Hättenschwiler 

2007) and micronutrients such as potassium, calcium and magnesium (Briones and 

Ineson 1996). Interestingly, these studies pointed to a greater complementarity effect 

on nutrient dynamics than on decomposition, which agrees with my results discussed 

above. 

Litter mixtures can be more or less diverse not only based on their nutrient 

concentrations, but also due to their different structural traits (e.g., leaf size, 

toughness, surface structure or specific leaf area). Thus, leaves of different toughness 

may promote complementary resource use by different detritivore species, with large 

caddisflies with strong mouthparts being able to deal with tougher leaves, and small 

stoneflies preferentially feeding on those that are softer (Tonin et al. 2018). Tougher 

leaves, however, may provide a better habitat of longer duration than softer ones, so 

different litter types should be seen not only as food resources, but also as 

microhabitats that could drive complementarity effects. For example, in terrestrial 

ecosystems, Wardle et al. (2003) found higher decomposition and N loss in mixtures 

containing slow-decomposing moss species that had particularly high water holding 

capacity. It must be highlighted that complementary resource use by different 

detritivore species could not occur in my microcosm experiments, as I only used one 

species, but the field approach allowed litter colonization by natural assemblages and I 

found a positive relationship between litter diversity and invertebrate diversity. Future 
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studies should also consider the temporal dimension, which can also influence the role 

on resource complementarity (Van Groenigen et al. 2015). 

 

KEY FINDINGS OF THIS THESIS AND SUGGESTIONS FOR FUTURE RESEARCH  

In this thesis, I have shown that the loss of riparian tree biodiversity can cause 

significant alterations in multiple ecosystem processes that are central to the 

functioning of many headwater streams. Importantly, I have demonstrated strong 

effects on the cycling of major nutrients, which had been overlooked in many studies. 

Thus, when native forests are replaced by monoespecific plantations (Fig. 3), we may 

expect large shifts in nutrient balances regardless of the magnitude of changes in litter 

decomposition rates. I have also shown significant effects on the secondary production 

of detritivores, and my results suggest potential effects on other detritivorous groups 

through altered production of fine particulate organic matter. All these effects add to 

other consequences of forestry practices on stream ecosystems that have been 

explored elsewhere, such as inputs of pesticides that can ultimately end in the stream 

water and alter ecosystem functioning (Cornejo et al. 2020). I also found some 

evidence of interactions across different components of the stream food web; changes 

in biodiversity in one food web compartment did not seem to affect processes 

occurring in another compartment, but further exploration of these interactions, as 

well as effects of changes in biodiversity simultaneously in multiple trophic levels, are 

worthwhile. 

Biodiversity can be measured in different ways, and here I explored the 

relevance of different measures of taxonomic and functional diversity, all of which 

provided complementary information on how ecosystem functioning is impacted by 

biodiversity loss. Importantly, I found that good knowledge of the studied processes 

and the organisms involved is fundamental to determine the biological traits that 

mediate BEF relationships. Understanding which mechanisms underlie these 

relationships is also important, and the partitioning method proposed two decades 

ago  (Loreau and Hector 2001) still holds effective in disentangling mechanisms related 

to biological interactions from purely random effects. 

Although not addressed in this thesis, changes in the diversity and composition 

of riparian vegetation can interact with other stressors of anthropogenic origin (Fig. 2) 

and produce complex effects (Piggott et al. 2015). This multiple-stressor approach is 

rarely found in BEF literature, and it may be a promising research avenue. The 

magnitude of biodiversity effects on ecosystem functioning is comparable to that of 

major environmental drivers (Hooper et al. 2012, Mori et al. 2020), so assessing 

potential synergisms between them seems highly relevant. This is particularly true for 
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stressors which effects are still poorly, known, such as emerging pollutants (López-Rojo 

et al. 2020a) or extreme climatic events (Correa-Araneda et al. 2015). However, 

exploring these interactions in the field can be complicated, due to the lack of control 

of many factors and because sufficient replication is sometimes unattainable. These 

drawbacks can be avoided in microcosm experiments, where multi-factorial designs 

with high numbers of experimental units can be used (Fox 2004), although 

extrapolation to natural systems should always be taken with caution. I thus advocate 

future BEF studies that include a multiple-stressor approach, together with realistic 

scenarios of loss of species and traits and emphasis on nutrient cycling, ideally at 

different spatial and temporal scales.  

 

 

 Fig. 4. Examples of multiple stressors that can affect the functioning of stream ecosystems.
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“Look closely at nature. Every species is a masterpiece, exquisitely 

adapted to the particular environment in which it has survived.  

Who are we to destroy or even diminish biodiversity? 

 

E. O. Wilson 
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GENERAL CONCLUSIONS 

 

1. Plant litter diversity altered stream multifunctionality. Effects differed depending on 

whether detritivores were present or absent but, in both cases, they were mostly 

driven by changes in nutrient cycling.  

2. The use of multifunctionality metrics precluded the observation of effects on 

different processes. The examination of processes individually was necessary to fully 

understand how the ecosystem could be impaired by plant diversity loss. 

3. There was a weak connection between the brown and green pathways of the 

stream food web, with no BEF relationships across pathways. This suggested that 

effects of biodiversity loss on ecosystem functioning are less complex than could be 

expected. 

4. Different measures of biodiversity (i.e., species richness, phylogenetic distance and 

trait variability) revealed effects on ecosystem functioning. However, the strongest and 

most consistent effects were those of litter trait variability, together with mean values 

of certain traits (mostly nitrogen, phosphorus and tannin concentrations). Effects of 

species richness and phylogenetic distance varied depending on the species/traits 

involved and were also influenced by the experimental setting. 

5. The complementarity effect consistently was the major biological mechanism 

underlying plant diversity effects on stream ecosystem processes, mostly in the 

presence of detritivores. The selection effect gained importance when processes were 

mediated by microbial decomposers. 

6. Riparian plant biodiversity loss and compositional changes can cause significant 

alterations in multiple processes that are central to the functioning of many stream 

ecosystems. The overriding repercussions of such changes on the cycling of major 

nutrients indicated potential consequences for global biogeochemical cycles.  
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