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“And once the storm is over, you won’t remember how you made it through,
how you managed to survive. You won’t even be sure, whether the storm is really over.
But one thing is certain. When you come out of the storm, you won’t be the same person who
walked in. That’s what this storm’s all about.”

Haruki Murakami in Kafka on the Shore (2002)
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Abstract
Mathematical models for glioma growth and migration inside the brain

Martina CONTE

Gliomas are the most prevalent, aggressive, and invasive subtype of primary brain
tumors, characterized by rapid cell proliferation and great infiltration capacity. De-
spite the advances of clinical research, these tumors are often resistant to treatment,
the median survival ranges between 9 and 12 months, and recurrence is the main
cause of mortality. Glioma migration and invasion into the brain tissue is a complex
phenomenon and little is still known about the underlying mechanisms that lead to
tumor progression.

In this thesis, we propose several mathematical models studying various aspects
of glioma progression in relation to the microscopic and macroscopic scales charac-
terizing this process. Exploiting the inherently multiscale nature of glioma evolution
allows to define models based on dynamical systems, kinetic equations, and macro-
scopic PDEs with different roles depending on the considered phenomena. The in-
tegration of biological and clinical data with the mathematical models is one of the
key objectives of this thesis. The experimental data at hand are obtained from mag-
netic resonance and diffusion tensor images of the human brain and from in-vivo im-
munofluorescence analysis of protein distributions in Drosophila, a reliable model for
the study of glioblastoma dynamics.

We analyze the anisotropic characteristics of the brain tissue, using the diffusion
tensor data, and the influence of the fiber structures on tumor cell dynamics. We show
how the fiber network directs cell migration along preferential paths, reproducing the
branched and heterogeneous patterns typical of glioma evolution, and how multi-
modal treatments can reduce this behavior.

We study the interdependency of microenvironmental acidity and vasculature in
tumor angiogenesis, defining a model capable of reproducing their influence on the
emergence of phenotypic heterogeneity and hypoxia-related features (like necrosis)
typical of glioma progression. This study enables the testing of a necrosis-based tumor
grading and the investigation of multi-modal therapies with anti-angiogenic effects.

We investigated the role of cell protrusions from a non-local perspective. We ex-
plore their influence on the contact guidance phenomenon and on the emergence of
collaborative or competitive effects between two cues driving cell velocity changes.

Using the experimental analysis of protein distributions, we evaluate cell protru-
sion relationship with integrins and proteases as leading mechanisms of glioblastoma
progression. We show how the biochemical and biomechanical interactions of these
agents result in the emergence of tumor propagation fronts, which can feature a dy-
namical and heterogenous evolution in relation to environmental changes.
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Sinopsis
Modelos matemáticos para el crecimiento y migración de gliomas en el cerebro

Martina CONTE

Los gliomas forman el subtipo más prevalente, agresivo e invasivo de tumores
cerebrales primarios, caracterizados por una rápida proliferación celular y una ele-
vada capacidad de infiltración. A pesar de los avances de la investigación clínica,
estos tumores suelen ser resistentes al tratamiento; la supervivencia media oscila en-
tre 9 y 12 meses, siendo la recurrencia la principal causa de mortalidad. La migración
y la invasión de los gliomas en el cerebro son fenómenos complejos y aún se decono-
cen varios de los mecanismos subyacentes que guían la progresión de estos tumores.

En esta tesis, proponemos varios modelos matemáticos para estudiar diversos as-
pectos de la progresión del glioma en relación con las escalas microscópicas y macros-
cópicas que caracterizan este proceso. Considerar el carácter intrínsico multiescala
de la evolución del glioma permite definir modelos basados en sistemas dinámicos,
ecuaciones cinéticas y EDP macroscópicas con diferentes roles dependiendo de los
fenómenos a estudiar. Uno de los objetivos principales de esta tesis es integrar datos
biológicos y clínicos con los modelos matemáticos. Los datos experimentales utiliza-
dos se han obtenido de imágenes por resonancia magnética, de imágenes con tensor
de difusión del cerebro humano y de análisis de inmunofluorescencia in-vivo de dis-
tribuciones de varias proteínas en Drosophila, un modelo fiable para el estudio de la
dinámica del glioblastoma.

Analizamos las características de anisotropía del tejido nervioso, utilizando los
datos del tensor de difusión, y la influencia de la estructura de las fibras en la dinámica
de las células tumorales. Mostramos cómo la red de fibras guía la migración celular
a lo largo de rutas preferenciales, reproduciendo los patrones ramificados y heterogé-
neos típicos de la evolución del glioma; asimismo, demostramos cómo los tratamien-
tos multimodales pueden reducir este comportamiento.

Estudiamos la interdependencia entre la acidez del microambiente y la vasculari-
zación en el proceso de angiogénesis tumoral. Para ello, construimos un modelo capaz
de reproducir la influencia de estos mecanismos en el desarrollo de la heterogeneidad
intratumoral y de características típicas de la progresión del glioma relacionadas con
la hipoxia (e.g. la necrosis). Este estudio permite formular una clasificación de los
tumores basada en el nivel de necrosis, así como la investigación de terapias multi-
modales que incluyan efectos anti-angiogénicos.

Investigamos la influencia de las protrusiones celulares desde una perspectiva no
local. Analizamos su rol en el fenómeno de la guía por contacto y en la manifestación
de efectos colaborativos o competitivos entre dos estímulos que determinan cambios
de dirección de la velocidad celular.

Utilizando el análisis experimental de las distribuciones de varias proteínas, eva-
luamos la relación de las protrusiones celulares con las integrinas y las proteasas como
principales mecanismos de progresión del glioblastoma. Mostramos cómo las interac-
ciones bioquímicas y biomecánicas de estos agentes dan como resultado el desarrollo
de frentes de propagación tumoral, que pueden presentar una evolución dinámica y
heterogénea en relación a los cambios ambientales.
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Laburpena
Garunaren barruko gliomaren hazkunde eta migraziorako eredu matematikoak

Martina CONTE

Glioma burmuin tumore primario motarik nagusiena, agresiboena eta inbasiboena
da, haren ezaugarririk garrantzitsuenak zelulen ugaltze azkarra eta infiltrazio gaita-
sun handia izanik. Nahiz eta ikerketa klinikoan aurrerapen ugari egon, tumore hauek
tratamenduei erresistentzia egiten diote maiz, biziraupen mediana 9 eta 12 hilabeten
artekoa da, eta tumorearen berragerpena mortalitatearen kausa nagusia da. Gliomaren
inbasioa eta migrazioa garun ehunetan zehar fenomeno konplexua da eta tumorearen
progresioa bultzatzen duten mekanismoei buruz gutxi dakigu oraindik.

Tesi honetan, hainbat eredu matematiko proposatzen ditugu, gliomaren migrazio
prozesua aztertzeko honen eskala makroskopiko eta mikroskopikoetan. Glioma ebo-
luzioaren izaera multieskalarra erabiliz, eredu desberdinak definituko ditugu, sistema
dinamikoetan, ekuazio zinetikoetan edota DPE makroskopikoetan oinarrituta, kon-
tuan hartutako fenomenoaren arabera. Tesi honen helburu nagusia eredu matemati-
koen eta datu biologiko eta klinikoen arteko integrazioa da. Erabilitako datu esperi-
mentalak erresonantzia magnetiko eta difusio-tensore irudietatik ateratakoak dira, bai
eta Drosophila espezimeneko proteina banaketen in-vivo inmunofluoreszentzia anali-
sietatik. Azken hau glioblastomaren dinamikak ikertzeko eredu fidagarria da.

Difusio tensorearen datuak erabiliz, garun ehunaren ezaugarri anisotropikoak ika-
siko ditugu, bai eta zuntzen egiturek tumore zelulen dinamikan daukaten eragina ere.
Ikusiko dugu nola zuntza-sareak zelulen migrazioa zuzentzen duen lehentasunezko
bideetan, eta nola tratamendu multimodalek jokabide hau gutxiagotu dezaketen.

Azidotasun mikroanbientala eta baskulaturaren arteko menpekotasuna aztertuko
dugu. Horretarako, haiek duten eragina erreproduzitzeko gai den eredu bat pro-
posatuko dugu, bai fenotipoen heterogeneotasunaren agerpenan bai gliomaren aurre-
ratzearen tipikoak diren hipoxia motako ezaugarrietan, hala nola nekrosia. Azterketa
honek bidea ematen digu tumoreak sailkatzeko nekrosi graduaren arabera, bai eta on-
dorio anti-angiogenikoak duten terapia multimodalak ikertzeko ere.

Zelulen protrusioek daukaten rola ikertzen dugu ikuspuntu ez-lokal batetik. Haien
eragina esploratuko dugu bi eremutan: alde batetik, kontakatu bidezko bideraketa
fenomenoan; bestetik, zelulen abiadura aldaketa baimentzen duen bi seinalen arteko
efektu kolaboratibo edo konpetitiboen agerpenetan.

Proteina banaketen analisi esperimentala erabiliz, zelulen protrusioaren integri-
nekiko eta protreasarekiko erlazioa ebaluatuko dugu glioblastomaren garapenaren
mekanismo nagusi gisa identifikatuz. Erakutsiko dugu nola agente hauen elkarrera-
gin biokimiko eta biomekanikoek tumorearen hedapena agerrarazten duten. Hedapen
honetan ikus daiteke eboluzio dinamiko eta heterogeneoa, ingurumenaren aldaketen
arabera.
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Summary

Gliomas are the most prevalent subtype of primary brain tumors originating from mu-
tations of the glia cells in the central nervous system. Classified by the World Health
Organization into three main types and four grades depending on the degree of tu-
mor differentiation, their most common and aggressive malignant variety is called
glioblastoma (GB). Gliomas, and especially GBs, are characterized by fast cell growth,
strong invasion capability, and well-developed tumor vasculature. This vasculature
originates from hypoxia-driven mechanisms and supplies glioma cells with the nu-
trients necessary to sustain their proliferation and spread. Although the research ad-
vances and the clinical trials testing the efficacy of novel combined therapies have
allowed significant progress in the comprehension and treatment of gliomas, these tu-
mors are characterized by a poor prognosis, with a median survival range between 9
and 12 months. Therefore, the research on the mechanisms driving glioma progression
remains an emerging field.

Biological motivations and main objectives

The advancements in technology have created a considerable amount of clinical and
biological data concerning the mechanisms that drive glioma evolution. However, the
high complexity of the invasion process remains a challenge to face in the research
on glioma development, and several important questions are still unanswered. More-
over, there is a need to integrate the theoretical and empirical acquired knowledge
towards the investigation of the mechanisms that contribute to tumor growth and in-
vasion. In this context, mathematical models emerge as powerful tools to face these
challenges, as they can provide significant insights into the processes characterizing
tumor progression. In this dissertation, we propose different mathematical models for
the description of some relevant mechanisms involved in glioma growth and spread
inside the brain, with a special interest in integrating clinical and biological data in the
model settings.

The objective of this thesis is to study the processes involved in cell migration and
invasion, tumor angiogenesis, and the application of possible therapeutic treatments.
The capability of cell invasion into the healthy brain tissue represents one of the most
prominent glioma features and it combines both intracellular and intercellular mecha-
nisms. In particular, the interactions between tumor cells and the extracellular matrix
(ECM) have a central role in leading tumor progression. The anisotropic fiber structure
characterizing the brain tissue influences the direction of cell migration determining
preferential paths along which the cells move. These cell-ECM interactions are medi-
ated by the cell protrusions, extensions of the plasma membrane outside of the cell body
that capture external stimuli to activate downstream pathways leading to migration.
Precisely, the external signals are detected by transmembrane receptors located on the
protrusions. Integrins are the most common family of membrane receptors involved
in glioma-ECM adhesion and they have been demonstrated to facilitate tumor infil-
tration in normal tissue. Besides the cell membrane receptors, further mediators of
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cell migration are proteases, enzymes localized in specific tumor regions that modulate
and remodel the ECM. This remodeling process allows creating space for tumor cells
to migrate. Increased levels of proteases have been shown to correlate with tumor in-
vasiveness and aggressiveness. Angiogenesis, consisting in the growth of new blood
vessels from the existing vasculature, is another core mechanism in tumor progression.
Tumor vasculature, constituted by endothelial cells (ECs), provides the necessary nu-
trients for the cells to grow and spread, and the higher the degree of vascularization,
the more advanced the tumor grade. Vascular proliferation is sustained by angiogenic
growth factors secreted by tumor cells and especially over-expressed in the surround-
ing of necrotic regions. The lack of nutrients, in fact, as well as an excessive envi-
ronmental acidity, determines the formation of necrotic matter and encourages a more
active migration of the cells towards more favorable brain regions. Concerning the
treatment of glioma patients, different multi-modal therapies have been tested and
are currently applied in the clinical practice. The standard combination of the surgical
resection of the most possible extended area interested by the tumor, the radiotherapy,
and the chemotherapy with temozolomide (the most common chemotherapeutic agent)
is supported by new therapeutic targets. We focus on the emerging therapies that
target integrin function and tumor angiogenesis. The integrin inhibitors reduces the
cell-ECM binding capability, while angiogenesis is impaired by anti-angiogenic factors
that decrease the vascular proliferation and the affinity between pro-angiogenic fac-
tors and endothelial cells.

Mathematical framework

The process of glioma evolution features an inherently multiscale nature due to char-
acteristic phenomena that occur on different spatial and temporal scales. Therefore, in
this thesis, we use a multiscale mathematical framework based on three specific lev-
els of description to characterize glioma progression. The subcellular level, generally
defined in terms of ODE systems, describes the processes taking place at the single
cell level, such as the interactions between molecules and membrane receptors. The
cellular level, modeled by kinetic equations, describes the interactions between the tu-
mor cells and the extracellular environment. These interactions influence cell invasion
(in terms of velocity changes), cell proliferative, phenotypic switches, or blood vessel
formation. The tissue level, involving PDEs for the macroscopic quantities, describes
diffusive or drift phenomena leading to tumor progression and reflects the main fea-
tures of tumor evolution that are observed in the clinical context. The equations at this
level can be properly derived from lower levels of description via asymptotic meth-
ods or can be directly stated at the macroscopic scale when the nature of the involved
mechanisms does not allow for a formal derivation from first principles.

In this dissertation, we propose different approaches relying on both the deduction
of the continuous macroscopic systems from a kinetic description of the cell behavior
(Chapters 3-6) and on their definition directly at the macroscopic level (Chapter 7). As
the presented settings assess the problem of cell migration from different perspectives,
important ingredients in the models concern the description of diffusive and disper-
sive cell dynamics. The description of these dynamics can be stated in either a linear
or a nonlinear form. While the deduction of the linear form from a kinetic level is well-
established and has been largely investigated, the definition of a proper deduction for
the nonlinear form is still a pending issue, currently under investigation. However,
the use of nonlinear diffusive terms (especially in their flux-saturated form) allows to
account for additional properties of the solution, such as a finite speed of propagation,
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the definition of invasion fronts, and the preservation of the initial profile characteris-
tics (compactness of the support or possible jump discontinuities). Therefore, in this
dissertation, we rely on a linear description of the diffusive terms in the kinetic-based
settings (Part II), while we use a nonlinear description in the macroscopic setting (Part
III).

Description of the thesis contents and the main achievements

This thesis is structured in seven main chapters divided into three parts. An intro-
duction to both the biological and the mathematical concepts of this dissertation is
provided in Chapter 1. Here, we first discuss the biological aspects related to the
study of glioma progression. We focus on three central topics that represent the cores
of the proposed models: glioma invasion in the brain tissue and its main mediators,
namely cell protrusions (subjects of Chapters 6 and 7), membrane receptors (subjects
of Chapters 3-5 and 7), and proteases (subjects of Chapter 7); tumor angiogenesis, with
its characteristic features associated with tissue hypoxia, acidity and necrosis (subjects
of Chapters 4 and 5); clinical treatments, combining standard and novel therapeutic
agents (subjects of Chapters 3 and 5). Moreover, we discuss the biological and clinical
data that we include in the models. Namely, we describe the commonly used medical
imaging techniques, with a special focus on MRI and DTI, which allow the recon-
struction of the brain geometry and the diffusion-tensor data used in Chapters 3-5,
and the immunostaining techniques, which provide the protein distribution data used
in Chapter 7. Then, we introduce the mathematical aspects of the thesis. We discuss
the inherent multiscale nature of our problem, introduce the basic concepts of the two
modeling frameworks we rely on, namely multiscale models stated in terms of kinetic
equations and macroscopic models, and highlight their main peculiarities.

Part I accounts for the preliminary studies, proposed in Chapter 2, that concern
some of the characteristics of the brain tissue. The features described in this chapter
are subsequently taken into account in all the model settings. Precisely, we discuss the
anisotropic characteristics of the brain fiber network that are responsible for the macro-
scopic heterogeneous patterns observed in glioma images. Accounting for this aspect
of fiber alignment is fundamental to obtain reliable mathematical models. We pro-
vide insight into the diffusion tensor imaging (DTI) technique and the provided tensor
data, which describe the molecular diffusivity in the different directions. In particular,
we discuss the quantification of these data employing scalar maps (e.g. the fractional
anisotropy (FA)). Then, since the tensor describing cell diffusivity is derived from the
DTI tensor data, we comment on some methodologies that have been identified to in-
clude the DTI information into the macroscopic and the kinetic-based modeling frame-
works. Referring to the kinetic framework, we comment on the use of a distribution
function to describe the fiber network and build the tensor characterizing cell diffu-
sivity. Moreover, we perform a comparison between the three main used expressions for
this function (Peanut distribution, von Mises-Fisher distribution (VMF), and orienta-
tion distribution function (ODF) [3, 216]), using processed DTI data and the fractional
anisotropy (Figures 2.7-2.11). The results highlight strengths and weaknesses of each
of these distributions, providing proper arguments to motivate the choices of one of
them instead of another. The Peanut distribution is easy to compute, although it par-
tially loses the anisotropic information originating from the DTI data, while the VMF
distribution is more accurate, but requires a proper tuning of the parameters involved
in its expression. The computation of the ODF is more complex and costly, but this
distribution shows a good degree of accuracy. This analysis represents a preparatory
work for the settings proposed in Part II, in which the distribution functions have a
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central role in the modeling of the contact guidance phenomenon.
Part II comprises the kinetic-based models in which the macroscopic settings are

formally derived from systems of kinetic transport equations. Precisely, the models in
Chapters 3-5 are built using a micro-meso formulation that combines the description
of microscopic dynamics with mesoscopic kinetic equations from which the macro-
scopic settings are derived via parabolic limit and the Hilbert expansion method.
Chapter 6 presents a class of non-local kinetic models only stated at the mesoscopic
level on which both parabolic and hyperbolic limits are applied to derive the macro-
scopic settings in the appropriate regime. Macroscopically, the models proposed in
these chapters feature linear diffusion and multiple taxis, the latter carrying infor-
mation about the microscopic dynamics (when applicable). The influence of the brain
tissue architecture on tumor cell migration represents the core of the DTI-based model
proposed in Chapter 3. In line with the studies in [74, 126], we model the role of the
brain fibers as the cue guiding cell migration and we describe the dynamics of inte-
grins as mediators of cell-ECM interactions. These interactions are also responsible for
tumor proliferation. The macroscopic equation is derived via parabolic scaling and
simulated on a 2D brain slice, which is reconstructed from the MRI data processing
and accounts for DTI data. The numerical tests analyze the impact of the different
expressions of the fiber distribution functions and of the microscopic dynamics on the
emergence of anisotropic macroscopic patterns in the tumor evolution (Figures 3.3-
3.5). For instance, when the Peanut distribution is included in the model, we notice
a more homogenous tumor spreading, different from the branched patterns observed
in the case of the ODF. Analogous differences are shown comparing the inclusion and
the exclusion of the microscopic dynamics in the model. Moreover, we incorporate in
the model the description of a combined therapy based on integrin inhibitors and radiation,
showing numerically the reduction of tumor infiltration due to the integrin inhibitors
and the radiation impact on the cell density (Figures 3.6-3.7).

The first extension of this multiscale setting is proposed in Chapter 4, where the
description of tumor evolution is coupled with the modeling of the interdependency
of acidity and vascularity, two key ingredients in the process of tumor angiogene-
sis. In this setting, tumor evolution involves, at the microscale, the dynamics of two
types of membrane receptors, mediating cell interactions with the ECM and the ex-
tracellular protons determining the environmental acidity. Moreover, we introduce a
component of intratumor heterogeneity in the description of glioma evolution. We
rely on the go-or-growth hypothesis asserting that a cell can either move or proliferate
and the respective behavior is transient. The switching between growth and migra-
tion depends on the nutrient availability (supplied by vasculature), the extracellular
pH (determined by the acidity), and the crowding of the environment. Angiogenesis
is necessary to sustain tumor proliferation and is described in terms of the evolu-
tion of the EC density. ECs are characterized by a migratory behavior towards tumor
cells in response to the pro-angiogenic growth factors that tumor produces to satisfy
the energy demand. The macroscopic equations for tumor and ECs are derived via
parabolic scaling of the kinetic formulation, which involves the microscopic dynam-
ics, and feature multiple taxis phenomena. We first couple this macroscopic setting
with the dynamics of protons, regulating the extracellular pH and, consequently, the
acidification of the tumor microenvironment. For this model, we lump together the
two mechanisms of hypoxia (due to low oxygenation) and acidosis (due to hypoxia-
driven metabolism shift), evaluating directly the resulting level of extracellular pH and
modeling its influence on tumor dynamics. The numerical simulations show the non-
linear nature of the dynamics that arise from the repellent pH-taxis (tumor cells tend
to avoid highly acidic regions) and the ability of the model to capture hypoxia-related
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histopathological features (Figures 4.3-4.4). Moreover, with these simulations we analyze
the influence of the go-or-growth dichotomy on the overall behavior, noticing a gen-
eral slowdown of the tumor dynamics compared to the case in which this dichotomy
is neglected (Figures 4.5-4.6). Then, we extend the setting to include the dynamics of
tissue and necrotic matter, caused by the acidity. With these two additional elements,
we define a necrosis-based tumor grading that allows us to analyze the influence of in-
tratumor heterogeneity and vasculature on the evolution of the tumor grade (Figure
4.10).

The influence of angiogenesis on the tumor response to the therapy is the central
focus of Chapter 5. Here, we model the dynamics of tumor and endothelial cells at
both the microscopic and the kinetic level, and then coupling the derived macroscopic
equations with the description of vascular endothelial growth factors (VEGFs) evolution.
These growth factors, whose effect on ECs was indirectly included in the setting of
Chapter 4, are produced by tumor cells in hypoxic conditions to attract ECs towards
the tumor mass and, thus, provide the nutrients to sustain tumor proliferation. More-
over, at the tissue level, we include the description of healthy tissue degradation and
the growth of necrotic matter. In this model, we describe the effects of a treatment
combining radiation, chemotherapy with temozolomide, and anti-angiogenic therapy. The
former affects tumor, ECs, and healthy tissue, whose degradation also depends on the
(acidity produced by) the activity of tumor cells. Chemotherapy is delivered by blood
and only affects the tumor population, while the anti-angiogenic therapy impacts ECs.
Anti-angiogenic therapy reduces ECs proliferation and the affinity between ECs and
VEGFs. The preliminary numerical results analyze the effects of this multi-modal
treatment, which mainly depletes tumor density and degrades the healthy tissue, with
respect to the situation without any therapies (Figures 5.2 and 5.4). Moreover, we
study the effect of the only anti-angiogenic therapy in decreasing EC migration and
the vasculature supply to the tumor (Figure 5.5). This model lays the basis for a study
of the therapy efficacy based on real data of glioma patients (which is the subject of a
forthcoming work).

In the previous chapters, the proposed settings assume a single cue to drive the
velocity changes at the kinetic level. This cue can be either the fiber network (as for
tumor cells in Chapters 3-5) or the gradient of a population or an external signal (as
for ECs in Chapter 4). In Chapter 6, we analyze the effect of multiple cues influenc-
ing cell migration at the kinetic level. In line with [173], we propose a kinetic-based
model for the description of the influence of chemotaxis and contact guidance (driven
by the tissue fiber network) on the cell velocity changes and, thus, on cell migration.
The model includes non-local terms, that describe the sensing of the environment and
allow to incorporate the effects of the extension of cell protrusions for exploring the
neighborhood around a cell. At the kinetic level, we introduce two classes of models,
depending on whether the cells perform an independent sensing of the two cues or
average them with the same sensing kernel. According to the characteristic lengths
of variation of the cues and the adopted sensing strategy, we derive different macro-
scopic limits of the two transport models and simulate them to illustrate the behavior
of the solution in the various cases. The results highlight the impact of the double-
cue environment (with respect to a single cue) that, even for locally sensed and non-
oriented fibers, ensures a preferential sense of motion to the cells (Figure 6.1). The
simulations show how the model captures collaborative or competitive effects of the two
cues, which can sustain or contrast cell movement (Figures 6.9-6.10). Moreover, we an-
alyze how these effects are influenced by the angle between their relative orientations
and their relative strengths, in terms of degree of alignment of the fiber and steepness of the
chemoattractive gradient. Mono-directional cues (like chemotaxis) compete when this
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angle is p, whereas they collaborate when this angle is 0, while for bi-direction cues
(like contact guidance) competition requires an angle of p/2. Between these values,
many intermediate scenarios can happen (Figures 6.4-6.8).

The last part (Part III) accounts for the macroscopic setting proposed in Chapter 7.
We analyze the dynamics of the tumor invasion front and the biochemical and biome-
chanical aspects related to it, with a focus on the role of cell protrusions (called tumor
microtubes in the context of GB) in glioma progression. We model at the macroscopic
level the evolution of the tumor population, using nonlinear terms that allow an effec-
tive study of the propagation front, together with the equations for the description of
integrins, proteases, and ECM dynamics. The proposed framework integrates the mathe-
matical description of the population dynamics with experimental data about protein
distribution studies. The experiments are performed in a Drosophila model, which is
a suitable platform for the study of molecular and cellular mechanisms implicated in
GB progression. The results of the performed data analysis are useful to determine
the localization and the profile of protease and integrin distributions in different brain
regions. Precisely, integrins are divided into two subfamilies, whether these receptors
are actively bound to the ECM or not. The resulting macroscopic setting is character-
ized by flux-saturated descriptions of the diffusive fluxes that allow a direct control on
the front velocity and the emergence of a sharp front profile. This macroscopic model
shows a strong coupling between the different populations and it is simulated in a 1D
scenario, which enables the comparison with the experimental data. The numerical
results are in good agreement with experimental measurements and they show the
dynamical evolution of the GB front and the emergence of organized patterns in the
population profiles (Figure 7.12). We analyze the influence of the tactic processes and
of possible porosity changes in the appearance of front heterogeneities and separa-
tions. We propose and test two possible approaches for the description of heteroge-
neous proliferation, which can either enhance or reduce the front separation (Figures
7.13-7.17). These tests explore the potential of the proposed setting in reproducing
phenomena related to front heterogeneity, even though these aspects will better ex-
press their impact in a 2D extension of the model.

The proposed settings show several advances in the study of the processes driv-
ing glioma progression, especially from the viewpoint of cell migration. Nevertheless,
different extensions and improvements of these settings can be proposed (Chapter 8).
We are currently working on the definition of a stochastic extension of the model de-
scribed in Chapter 5 to study the efficacy of the therapeutic treatments on real patient
data. Concerning the framework defined in Chapter 6, we are going to extend it to the
case of external cues affecting also cell speed. Moreover, we are going to use the mod-
els as a platform to quantify directed cell migration and to set its efficiency in the case
of competitive cues on a realistic domain. This can mimic in-vivo or in-vitro cell migra-
tion in the extracellular matrix. Finally, we are going to extend the macroscopic model
of Chapter 7 in the 2D spatial case to study the effect of the fiber directions on the tu-
mor front dynamics and to analyze the phenomena described above (heterogeneous
proliferation and porosity changes) in a more complex and realistic environment.

We conclude this dissertation with three explicative appendices. Appendix A pro-
vides a basic introduction to the processing of MRI and DTI data, while Appendix
B gives a detailed overview about the main mathematical concepts behind the finite
element method, the time advancing method, and the numerical integration used to
solve the macroscopic models. Finally, Appendix C contains a description of the ex-
perimental procedures performed to obtain the experimental data included in Chapter
7 and the corresponding data analysis.
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Resumen

Los gliomas forman el subtipo más prevalente de tumores cerebrales primarios que
se originan a partir de mutaciones de las células gliales en el sistema nervioso cen-
tral. Clasificados por la Organización Mundial de la Salud en tres tipos principales y
cuatro grados según la evaluación de la diferenciación tumoral, su variedad maligna
más común y más agresiva se llama glioblastoma (GB). Los gliomas, y especialmente
los GB, se caracterizan por un rápido crecimiento celular, una marcada capacidad de
invasión y un sistema vascular bien desarrollado. Este sistema vascular se origina a
partir de mecanismos impulsados por la hipoxia y proporciona a las células de glioma
los nutrientes necesarios para mantener su proliferación y propagación. Aunque los
avances en la investigación y los ensayos clínicos, que evalúan la eficacia de nuevas
terapias combinadas, han permitido progresos significativos en la comprensión y en
el tratamiento de los gliomas, estos tumores se caracterizan por un mal pronóstico,
con una supervivencia media entre 9 y 12 meses. Por lo tanto, la investigación sobre
los mecanismos que impulsan la progresión de los gliomas sigue siendo un campo
emergente.

Motivaciones biológicas y objetivos principales

Los avances tecnológicos han creado una cantidad considerable de datos clínicos y
biológicos sobre los mecanismos que impulsan la evolución del glioma. Sin embargo,
la elevada complejidad del proceso de invasión sigue siendo un desafío a afrontar
en la investigación sobre el desarrollo del glioma, y varias preguntas importantes
aún siguen sin respuesta. Además, es necesario combinar los conocimientos teóri-
cos y empíricos adquiridos para desarrollar la investigación de los mecanismos que
contribuyen al crecimiento y a la invasión tumoral. En este contexto, los modelos
matemáticos emergen como una importante herramienta para afrontar estos desafíos,
ya que pueden proporcionar información significativa sobre los procesos que caracte-
rizan la progresión tumoral. En esta tesis, proponemos diferentes modelos matemáti-
cos para la descripción de algunos de los mecanismos más importantes implicados en
el crecimiento y en la diseminación del los gliomas en el cerebro, con un interés espe-
cial en integrar datos clínicos y biológicos en la estructura del modelo.

El principal objetivo de esta tesis es estudiar los procesos implicados en la mi-
gración y en la invasión celular, la angiogénesis en el tumor y la aplicación de posibles
tratamientos terapéuticos. La capacidad de invasión celular en el tejido cerebral sano
representa una de las características más relevantes del los gliomas y combina meca-
nismos intracelulares con intercelulares. En particular, la interacción entre las células
tumorales y la matriz extracelular (MEC) tiene un papel central en la guía de la pro-
gresión del tumor. La estructura anisotrópica de las fibras nerviosas influye en la direc-
ción de migración celular determinando rutas preferenciales a lo largo de las cuales
se mueven las células. Estas interacciones célula-MEC están mediadas por las pro-
trusiones celulares, que son extensiones de la membrana plasmática fuera del cuerpo
celular y que capturan los estímulos externos para activar las vías subyacentes de la

xix



migración. Concretamente, las señales externas son detectadas por receptores trans-
membrana ubicados en las protrusiones. Las integrinas son la familia más común de
receptores de membrana involucrados en la adhesión entre células de glioma y MEC
y se ha demostrado que estos receptores facilitan la infiltración tumoral en el tejido
normal. Además de los receptores de la membrana celular, otros mediadores de la
migración celular son las proteasas, enzimas localizadas en regiones tumorales especí-
ficas que modulan y remodelan la MEC. Este proceso de remodelación permite crear
espacio para que las células tumorales migren. Se ha demostrado que los niveles ele-
vados de proteasas se correlacionan con la agresividad y la invasividad del tumor.
La angiogénesis, que consiste en la formación de vasos sanguíneos nuevos a partir
de los vasos preexistentes, es otro mecanismo clave en la progresión del tumor. La
vasculatura del tumor, constituida por células endoteliales (CE), proporciona los nu-
trientes necesarios para que las células crezcan y se diseminen, y cuanto mayor es
el grado de vascularización, más avanzado es el grado del tumor. La proliferación
vascular se sostiene por factores de crecimiento angiogénicos secretados por las células
tumorales y principalmente sobreexpresados en el entorno de las regiones necróticas.
De hecho, la falta de nutrientes, así como una excesiva acidez del ambiente, determi-
nan la formación de tejido necrótico e impulsan una migración más activa de las células
hacia regiones cerebrales más favorables. En cuanto al tratamiento de pacientes con
gliomas, se han evaluado diferentes terapias multimodales que actualmente se apli-
can en la práctica clínica. La práctica estándar de resección quirúrgica de la mayor área
tumoral posible, radioterapia y quimioterapia con temozolomida (el agente quimiotera-
péutico más común) se combina con nuevos objetivos terapéuticos. En esta tesis, nos
centramos en las terapias emergentes dirigidas a influir en la actividad de las integri-
nas y en la angiogénesis tumoral. Los inhibidores de integrinas reducen la capacidad
de unión de las células y la MEC, mientras que la angiogénesis se ve afectada por fac-
tores anti-angiogénicos que disminuyen la proliferación vascular y la afinidad entre los
factores pro-angiogénicos y las células endoteliales.

Contexto matemático

El proceso de evolución de un glioma tiene un carácter intrínsico multiescala debido
a fenómenos peculiares que ocurren en diferentes escalas tanto espaciales como tem-
porales. Por lo tanto, en esta tesis, utilizamos un contexto matemático multiescala
basado en tres niveles de descripción específicos para caracterizar la progresión de los
gliomas. El nivel subcelular, comúnmente definido en términos de sistemas de EDO,
describe los procesos que tienen lugar a nivel de una sola célula, como las interac-
ciones entre moléculas y receptores de membrana. El nivel celular, modelado por ecua-
ciones cinéticas, describe las interacciones entre las células tumorales y el entorno ex-
tracelular. Estas interacciones influyen en la invasión celular (en términos de cambios
de velocidad), en la proliferación celular, en los cambios fenotípicos y en la forma-
ción de vasos sanguíneos. El nivel del tejido, formulado por EDP para las cantidades
macroscópicas, describe los fenómenos de difusión y de transporte, que guían la pro-
gresión del tumor, y refleja las principales características de la evolución del tumor
observadas en el contexto clínico. Las ecuaciones de este nivel pueden derivarse ade-
cuadamente de los niveles inferiores de descripción mediante métodos asintóticos o
pueden ser definidos directamente a la escala macroscópica cuando la complejidad de
los mecanismos involucrados no permite una derivación formal desde primeros prin-
cipios.

En esta tesis, proponemos diferentes modelos que se basan tanto en la deducción
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de los sistemas macroscópicos continuos a partir de una descripción cinética del com-
portamiento celular (Capítulos 3-6) como en su definición directa desde el punto de
vista macroscópico (Capítulo 7). Como los modelos presentados evalúan el problema
de la migración celular desde diferentes perspectivas, las descripciones de las dinámi-
cas celulares de difusión y de dispersión son componentes importantes de estos mo-
delos. La descripción de estas dinámicas puede ser formulada en forma lineal o no
lineal. Si bien la deducción de la forma lineal a partir de un nivel cinético está bien
establecida y extensamente investigada, una adecuada deducción para la forma no
lineal sigue siendo un tema abierto y está actualmente en desarrollo. Sin embargo,
el uso de términos difusivos no lineales (sobre todo en la versión de flujo saturado)
permite tener en cuenta propiedades adicionales de la solución, como una velocidad
finita de propagación, la definición de frentes de invasión y la preservación de las ca-
racterísticas del perfil inicial (compacidad del soporte o posibles discontinuidades de
tipo salto). Por lo tanto, en esta tesis, nos basamos en una descripción lineal de los
términos difusivos en los modelos con base cinética (Parte II), mientras que usamos
una descripción no lineal en el modelo macroscópico (Parte III).

Descripción del contenido de la tesis y los logros principales

Esta tesis está estructurada en siete capítulos principales divididos en tres partes. En
el Capítulo 1 se presenta una introducción a los conceptos biológicos y matemáticos de
esta tesis. Primero discutimos los aspectos biológicos relacionados con el estudio de la
progresión de los gliomas. Nos centramos en tres temas principales que representan
los núcleos de los modelos presentados: la invasión de un glioma en el tejido cerebral y
los principales mediadores de este mecanismo, es decir protrusiones celulares (tema
de los Capítulos 6 y 7), receptores de membrana (tema de los Capítulos 3-5 y 7), y pro-
teasas (tema del Capítulo 7); la angiogénesis tumoral, con sus características distintivas
asociadas con la hipoxia del tejido, la acidez y la necrosis (temas de los Capítulos 4 y
5); los tratamientos clínicos, que combinan agentes terapéuticos estándares y novedosos
(temas de los Capítulos 3 y 5). Además, discutimos los datos biológicos y clínicos que
incluimos en los modelos. Concretamente, describimos las técnicas de imágenes médi-
cas de uso común, con un enfoque particular en las imágenes por resonancia magnética
(IRM), en las imágenes por resonancia magnética con tensores de difusión (DTI), que per-
miten la reconstrucción de la geometría del cerebro y del tensor de difusión utilizados
en los Capítulos 3-5, y en las técnicas de inmunotinción, utilizadas en el Capítulo 7 y que
proporcionan información sobre la distribución de varias proteínas. Luego, presenta-
mos los aspectos matemáticos de la tesis. Discutimos el carácter intrínsico multiescala
de nuestro problema, presentamos los conceptos básicos de los dos marcos de mode-
lado en los que nos basamos, es decir modelos multiescala formulados en términos de
ecuaciones cinéticas y modelos macroscópicos, y recalcamos sus principales peculiari-
dades.

La parte I explica los estudios preliminares presentados en el capítulo 2 relativos a
las características del tejido cerebral. Los aspectos descritos en este capítulo se tienen
en cuenta posteriormente en todos los modelos formulados. Precisamente, discutimos
las características de anisotropía de la red de fibras nerviosas que son responsables de los
patrones macroscópicos heterogéneos observados en las imágenes de gliomas. Tener
en cuenta este aspecto de alineamiento de las fibras es fundamental para obtener mo-
delos matemáticos fiables. Proporcionamos información sobre la técnica de imagen
por resonancia magnética con tensor de difusión (DTI) y los datos que esta aporta, re-
lativos a la difusividad molecular en diferentes direcciones. En particular, discutimos
la cuantificación de estos datos utilizando mapas escalares (por ejemplo, la anisotropía
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fraccional (AF)). Luego, dado que el tensor que describe la difusividad celular se deriva
de los datos proporcionados por la DTI, comentamos algunas metodologías que se
han identificado para incluir la información de la DTI en los modelados macroscópico
y cinético. Con referencia al marco cinético, comentamos el uso de una función de
distribución para describir la red de fibras y construir el tensor que caracteriza la difu-
sividad celular. Además, realizamos una comparación entre las tres formulaciones princi-
pales utilizadas para esta función (distribución Peanut, distribución de von Mises-Fisher
(VMF) y función de distribución de orientación (ODF) [3, 216]), utilizando datos de
DTI y la anisotropía fraccional (Figuras 2.7-2.11). Los resultados subrayan los pun-
tos fuertes y débiles de cada una de estas distribuciones, proporcionando argumentos
adecuados para motivar la elección de una de ellas en lugar de otra. La distribución
Peanut es fácil de calcular, aunque falla parcialmente en preservar la información so-
bre la anisotrópia que se deduce de los datos de DTI, mientras que la distribución VMF
es más precisa, pero requiere un ajuste adecuado de los parámetros involucrados en
su formulación. El cálculo de la ODF es más complejo y costoso, pero esta distribución
muestra un mayor grado de precisión. Este análisis representa un estudio preparato-
rio para los modelos presentados en la Parte II, en la que las funciones de distribución
tienen un papel central en el modelado del fenómeno de la guía de contacto.

La Parte II comprende los modelos basados en una formulación cinética en los que
las configuraciones macroscópicas se derivan formalmente de sistemas de ecuaciones
cinéticas de transporte. Concretamente, los modelos presentados en los Capítulos 3-
5 se construyen utilizando una formulación micro-meso. Esta formulación combina
la descripción de la dinámica microscópica con ecuaciones cinéticas mesoscópicas a
partir de las cuales se derivan los modelos macroscópicos mediante el uso del límite
parabólico y del método de expansión de Hilbert. El capítulo 6 presenta una clase de
modelos cinéticos no locales que se formulan a nivel mesoscópico al que se aplican
límites tanto parabólicos como hiperbólicos para derivar las ecuaciones macroscópi-
cas en el régimen apropiado. Macroscópicamente, los modelos propuestos en estos
capítulos presentan difusión lineal y varios fenómenos de taxia que transmiten la in-
formación sobre la dinámica microscópica (cuando corresponda). La influencia de la
arquitectura del tejido cerebral en la migración de las células tumorales representa
el núcleo principal del modelo propuesto en el Capítulo 3 y basado en datos de DTI.
Sobre la base de los estudios en [74, 126], modelamos la función de las fibras nerviosas
como estímulo que guía la migración celular y describimos la dinámica de las integri-
nas como mediadoras de las interacciones célula-MEC. Estas interacciones son tam-
bién responsables de la proliferación del tumor. La ecuación macroscópica se deriva a
través de un limite parabólico y se simula en un dominio constituido por un corte 2D
de cerebro. Este se reconstruye a partir del procesamiento de imágenes de resonancia
magnética y tiene en cuenta la información de DTI. Las pruebas numéricas analizan
el impacto de las diferentes formulaciones de la función de distribución de las fibras.
También muestran el efecto de la dinámica microscópica sobre la manifestación de
patrones macroscópicos en la evolución tumoral debidos a la anisotrópia del tejido
(Figuras 3.3-3.5). Por ejemplo, cuando se incluye la distribución Peanut en el modelo,
notamos una extensión tumoral más homogénea, diferente a los patrones ramifica-
dos observados en el caso de la ODF. Se muestran diferencias análogas comparando
la inclusión y la exclusión de la dinámica microscópica en el modelo. Además, in-
corporamos en el modelo la descripción de una terapia combinada basada en inhibidores
de integrinas y radiación, que muestra numéricamente la reducción de la infiltración
tumoral debido a los inhibidores de integrinas y el impacto de la radiación en la den-
sidad celular (Figuras 3.6-3.7).

La primera extensión de este modelo multiescala se plantea en el Capítulo 4, donde
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la descripción de la evolución del tumor se combina con el modelado de la interdepen-
dencia entre acidez y vascularización, dos aspectos clave en el proceso de angiogéne-
sis tumoral. En este contexto, la evolución del tumor incluye, a nivel microscópico, la
dinámica de dos tipos de receptores de membrana que median las interacciones celu-
lares con la MEC y con los protones presentes en el espacio extracelular y que determi-
nan la acidez del ambiente. Además, introducimos un componente de heterogeneidad
intratumoral en la descripción de la evolución del glioma. Nos basamos en la hipótesis
de ir-o-crecer (go-or-grow hypothesis), afirmando que una célula puede moverse o proli-
ferar y el respectivo comportamiento es transitorio. La transición entre crecimiento y
migración depende de la disponibilidad de nutrientes (aportados por la vasculatura),
del pH extracelular (determinado por la acidez del ambiente) y del hacinamiento de
células en el ambiente. La angiogénesis es necesaria para mantener la proliferación
tumoral y se describe en términos de la evolución de la densidad de CE. Las CE se ca-
racterizan por un comportamiento migratorio hacia las células tumorales en respuesta
a los factores de crecimiento pro-angiogénicos producidos por el tumor para satisfacer
la demanda energética. Las ecuaciones macroscópicas del tumor y las CE se derivan
a través del límite parabólico de la formulación cinética, que involucra la dinámica
microscópica y presenta varios fenómenos de taxia. Primero, acoplamos el modelo
macroscópico con la dinámica de los protones, responsables del pH extracelular y,
en consecuencia, de la acidificación del microambiente tumoral. Para este modelo,
consideramos los dos mecanismos de hipoxia (debida a la baja oxigenación) y acidosis
(debido al cambio metabólico impulsado por la hipoxia), evaluando directamente el
nivel resultante de pH extracelular y modelando su influencia en la dinámica tumoral.
Las simulaciones numéricas muestran el carácter no lineal de la dinámica que surge
desde la formulación del termino de quimiotaxia pH-repelente (las células tumorales
tienden a evitar las regiones altamente ácidas) y también muestran la capacidad del
modelo de capturar las características histopatológicas relacionadas con la hipoxia (Figuras
4.3-4.4). Además, con estas simulaciones analizamos la influencia de la dicotomía ir-o-
crecer en el comportamiento macroscópico, notando una desaceleración generalizada
de la dinámica tumoral en comparación con el caso en el que se ignora esta dicotomía
(Figuras 4.5-4.6). Luego, ampliamos el modelo para incluir la dinámica de tejido sano
y del tejido necrótico, provocada por la acidez. Con estos dos elementos adicionales,
definimos una clasificación tumoral basada en el nivel de necrosis que nos permite analizar
la influencia de la heterogeneidad intratumoral y de la vasculatura en la evolución del
grado tumoral (Figura 4.10).

La influencia de la angiogénesis en la respuesta del tumor a la terapia es el enfoque
del Capítulo 5. En este capitulo, modelamos la dinámica de las células tumorales y de
las células endoteliales tanto a nivel microscópico como cinético, y luego acoplamos
las ecuaciones macroscópicas que se derivan con la descripción de la evolución de
factores de crecimiento endotelial vascular (VEGF). Estos factores de crecimiento, cuyo
efecto sobre las CE se incluyó indirectamente en el modelo descrito en el Capítulo
4, son producidos por células tumorales en condiciones hipóxicas para atraer las CE
hacia la masa tumoral y, así, proporcionar los nutrientes necesarios para mantener
la proliferación tumoral. Además, a nivel macroscópico, incluimos la descripción de
la degradación del tejido sano y el crecimiento del tejido necrótico. En este modelo,
describimos los efectos de un tratamiento que combina radiación y quimioterapia con
temozolomida y terapia anti-angiogénica. El primer tratamiento afecta al tumor, a las
CE y al tejido sano, cuya degradación también depende de la (acidez producida por
la) actividad de las células tumorales. La quimioterapia se administra en vena y solo
afecta a la población tumoral, mientras que la terapia anti-angiogénica afecta a las
CE. La terapia anti-angiogénica reduce la proliferación de CE y la afinidad entre CE y
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VEGF. Los resultados numéricos preliminares analizan los efectos de este tratamiento
multimodal, que principalmente disminuye la densidad tumoral y degrada el tejido
sano, con respecto a la situación sin terapias (Figuras 5.2 y 5.4). Además, estudiamos
el efecto de la única terapia anti-angiogénica en la disminución de la migración de CE
y la disponibilidad de vasculatura para el tumor (Figura 5.5). Este modelo asienta la
base para un estudio de la eficacia de la terapia basado en datos reales de pacientes con
glioma (que será el tema de un trabajo futuro).

En los capítulos anteriores, los modelos propuestos consideran una única señal
como impulso para los cambios de velocidad a nivel cinético. Esta señal puede ser
la red de fibras (como para las células tumorales en los Capítulos 3-5) o el gradiente
de una población o de una señal externa (como para las CE en el Capítulo 4). En el
capítulo 6, analizamos el efecto de diferentes señales que influyen al mismo tiempo
en la migración celular a nivel cinético. Partiendo de la base de [173], proponemos
un modelo basado en ecuaciones cinéticas para la descripción de la influencia de la
quimiotaxis y de la guía de contacto (impulsada por la red de fibras nerviosas) en los
cambios de dirección de velocidad de las células y, por tanto, en la migración celular.
El modelo incluye términos no locales, que describen el rastreo del ambiente alrededor
de las células y que permiten incorporar los efectos de la extensión de protrusiones
celulares para explorar este entorno. A nivel cinético, presentamos dos clases de mo-
delos, dependiendo de si las células realizan una detección independiente de las dos
señales o las promedian con el mismo núcleo que caracteriza el operador de detección.
Dependiendo de las longitudes características de variación de las señales y de la es-
trategia de detección adoptada, derivamos diferentes límites macroscópicos de los dos
modelos de transporte y los simulamos para ilustrar el comportamiento de la solución
en diferentes casos. Los resultados muestran el impacto sobre el comportamiento celu-
lar de una doble señal (con respecto al caso de una única señal) que, incluso para fibras
detectadas localmente y no orientadas, asegura un sentido preferencial de movimiento
a las células (Figura 6.1). Las simulaciones muestran cómo el modelo captura los efec-
tos colaborativos o competitivos de las dos señales, que pueden sostener o contrastar el
movimiento celular (Figuras 6.9-6.10). Además, analizamos cómo estos efectos es-
tán influenciados por el ángulo entre las orientaciones y las fuerzas relativas de las
dos señales, en términos de nivel de alineamiento de las fibras y pendiente del gradiente
quimioatractivo. Las señales unidireccionales (como la quimiotaxis) compiten cuando
este ángulo es p, mientras que colaboran cuando este ángulo es 0; en cambio, para
las señales bidireccionales (como la guía de contacto) la competición requiere un án-
gulo de p/2. Entre estos valores, pueden ocurrir muchos escenarios intermedios entre
competición y colaboración (Figuras 6.4-6.8).

La última parte (Parte III) explica el modelo macroscópico presentado en el Capí-
tulo 7. Analizamos la dinámica del frente de invasión tumoral y los aspectos bioquími-
cos y biomecánicos relacionados con ella, prestando particular atención a la influen-
cia de las protrusiones celulares (denominadas microtúbulos tumorales en el contexto
de GB) en la progresión del glioma. Modelamos a nivel macroscópico la evolución
del tumor, utilizando términos no lineales que permiten un estudio eficaz del frente
de propagación, junto con las ecuaciones para la descripción de las integrinas, las pro-
teasas y la MEC. El modelo propuesto integra la descripción matemática de la dinámica
de estas especies con datos experimentales sobre estudios de las distribuciones de
varias proteínas. Los experimentos se realizan en un modelo de Drosophila, que es una
plataforma adecuada para el estudio de los mecanismos moleculares y celulares im-
plicados en la progresión de GB. Los resultados del análisis de datos experimentales
realizado son útiles para determinar la localización y el perfil de las distribuciones de
proteasas e integrinas en diferentes regiones del cerebro. Precisamente, dividimos las
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integrinas en dos subgrupos, dependiendo de si estos receptores están activamente
unidas a la MEC o no. El modelo macroscópico resultante se caracteriza por la des-
cripción de los flujos difusivos por medio de flujos saturados que permiten un control
directo de la velocidad de frente y el desarrollo de un perfil frontal con una pendiente
muy elevada. Este modelo macroscópico muestra un fuerte acoplamiento entre las
diferentes especies y lo simulamos en el caso 1D, lo que permite la comparación con
los datos experimentales. Los resultados numéricos son coherentes con los datos ex-
perimentales y muestran la evolución dinámica del frente de GB y el desarrollo de pa-
trones en los perfiles de las diferentes especies (Figura 7.12). Analizamos la influencia
de los procesos de taxia y de posibles cambios en porosidad del tejido sobre la ma-
nifestación de heterogeneidades y separaciones en el perfil del frente. Proponemos y
estudiamos dos posibles formulaciones de la descripción de la proliferación heterogé-
nea, que pueden aumentar o reducir la separación del frente (Figuras 7.13-7.17). Estas
simulaciones exploran el potencial del modelo presentado en reproducir fenómenos
relacionados con la heterogeneidad del frente, aunque estos aspectos expresarán más
su impacto en la extensión 2D del modelo.

Los modelos presentados muestran varios avances en el estudio de los procesos
que impulsan la progresión del glioma, sobre todo desde el punto de vista de la mi-
gración celular. Sin embargo, se pueden proponer diferentes extensiones y mejorías de
estas formulaciones (Capítulo 8). Actualmente estamos trabajando en la definición de
una extensión estocástica del modelo descrito en el Capítulo 5 para estudiar la eficacia
de los tratamientos con datos de pacientes reales. Con respecto a los modelos presen-
tados en el Capítulo 6, la idea es extenderlos al caso de señales externas que afecten
también el modulo de velocidad celular y no simplemente su dirección. Además,
queremos utilizar estos modelos como una plataforma para cuantificar la migración
celular dirigida y establecer su eficiencia en el caso de señales que compiten en un
dominio realista. Esto podría imitar la migración celular in-vivo o in-vitro en la matriz
extracelular. Por ultimo, queremos extender el modelo macroscópico del Capítulo 7 en
el caso 2D para estudiar el efecto de la dirección de las fibras en la dinámica del frente
tumoral y analizar los fenómenos descritos anteriormente (proliferación heterogénea
y cambios de porosidad) en un contexto más complejo y realista.

Concluimos esta tesis con tres apéndices explicativos. El Apéndice A proporciona
una introducción básica al procesamiento de datos de IRM y DTI, mientras que el
Apéndice B ofrece una descripción detallada de los principales conceptos matemáticos
detrás del método de los elementos finitos, los métodos de avance en tiempo y de in-
tegración numérica utilizados para resolver numéricamente los modelos macroscópi-
cos. Por ultimo, el Apéndice C presenta una descripción de los métodos utilizados
para obtener los resultados experimentales incluidos en el Capítulo 7 y el análisis de
datos correspondiente.
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1Introduction
“Nothing in biology makes sense except in the light of evolution.”

T. Dobzhansky

The human body is composed of many millions of cells that interact and coor-
dinate to form tissues and organs. They grow and divide for a specific period of
time, reproducing themselves to replace defective or dying cells. Failure in the control
mechanism of cell reproduction is one of the fundamental peculiarity of cancer cells.
Unlike normal cells, in fact, cancer cells continuously grow and divide, in an uncon-
trolled, uncoordinated and abnormal cell division process, invading adjacent tissues
and, eventually, spreading to other organs. This ability to sustain chronic prolifera-
tion has been identified by Hanahan and Weinberg as one of the hallmarks of cancer
[109], together with five other distinctive characteristics that enable tumor growth and
dissemination. In the following, we briefly discuss these six hallmarks of cancer, rep-
resented in Figure 1.1.

FIGURE 1.1: Hallmarks of cancer. Schematic representation of the six hallmarks
of cancer, originally proposed by Hanahan and Weinberg. (Reprinted from [110]

by permission from Elsevier)

The first four hallmarks concern the alteration of the cell cycle. Cancer cells sustain
proliferative signaling with different strategies. One way to do so is to increase the
level of receptor proteins on their cell surface, making the cancer cell hyperresponsive
to growth factor ligands. Another strategy is to produce growth factor ligands them-
selves, resulting in an autocrine proliferative stimulation [220, 298]. These strategies
can result from somatic mutations of genes that initiate the proliferation process or

1



from the attenuation or inhibition of cell senescence mechanisms by oncogenic signals
[208, 306]. In addition to sustain proliferation, cancer cells circumvent powerful pro-
cesses that negatively regulate cell division, i.e., they typically evade growth suppres-
sors. These processes typically depend on tumor suppressor genes. Two well-known
tumor suppressors are retinoblastoma protein (RB) and tumor protein p53. The for-
mer regulates the growth-and-division cycle by integrating intra- and extracellular
signals. The latter controls the cell cycle progression in response to inputs from stress
and abnormality sensors, blocking the cell cycle if the degree of genome damage is
excessive [257]. Clearly, each of these pathways operates as part of a larger network.
Alterations of the apoptosis pathway represent a further hallmark of tumor develop-
ment, enabling resistance to cell death. In normal conditions, this pathway drives
the activation of protease, responsible for the cell progressive disassembling and con-
sumption [172]. Tumor cells, instead, develop several strategies to limit or circumvent
apoptosis, one among all is the loss of p53 function. The last hallmark related to the
alteration of the cell cycle describes the unlimited replicative potential of cancer cells,
as opposed to the finite number of division of a normal cell before reaching mortality.
This phenomenon is called replicative immortality and it enables tumor cells to con-
tinue dividing and prevent senescence and apoptosis [114].

Concerning cancer cell interactions with the extracellular environment, Hanahan
and Weinberg highlight the role of angiogenesis and active migration as hallmarks of
the tumor cells. Angiogenesis describes the formation of new blood capillaries from
existing blood vessels. This process provides substances, such as nutrients or oxy-
gen, to the cells and it enables the removal of metabolic waste. Cancer cells stimulate
nearby host stroma cell proliferation by releasing growth factors (mainly VEGFs, i.e.,
vascular endothelial growth factors). This way, the tumor is provided with the blood
vessels and the supplies needed for faster growth. A typical blood vessel produced
within a tumor is distorted and enlarged, with erratic blood flux or microhemorrhages
[200]. It has been shown that continuous activation and sprout of new vessels are char-
acteristics of advanced cancers. In particular, the switch from low vascularization to
high vascularization is considered an essential capability for tumor progression. An-
giogenesis is fundamental for active invasion and metastasis [11]. Cancer invasion,
with consequent growth of metastasis, is a complex process, involving several factors
[10, 42] and taking place as both an individual and a collective process. Among indi-
vidual cell migration mechanisms, for instance, we find the epithelial-mesenchymal
transition (EMT) process, which allows individual cells to acquire abilities to prevent
apoptosis, invade tissue, and disseminate. It can be activated transiently or stably,
and it involves transcription factors that orchestrate most of the steps of the invasion-
metastasis cascade [227]. Some mesenchymal cells remain in the tumor stroma to sus-
tain invasion by supplying matrix-degrading enzymes. Another example of individ-
ual cell invasion process is the amoeboid migration, characterized by individual cell
morphological plasticity that enables a cell to slither through existing interstices of the
extracellular matrix (ECM) rather than clearing a path for itself [91].

These six characteristics, firstly introduced in [109], provide a solid framework
for understanding the biology of cancer. In a later work [110], Hanahan and Wein-
berg added some additional elements to the list of features characterizing cancel cells:
two enabling characteristics, which allow the cancer cells to survive, proliferate, and
disseminate, and two emerging hallmarks, complementary to the six features above
described. The most prominent of the two enabling characteristics is the develop-
ment of genome instability, i.e., the acquisition of successive genome alterations that
provide a selective advantage to tumor cells [80]. The second enabling characteristic
concerns the tumor-promoting inflammation. The tumor area, in fact, is characterized
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by infiltrated cells of the immune system that have tumor-promoting effects. More
specifically, immune cells are able to supply bioactive molecules to the tumor microen-
vironment, such as growth and pro-angiogenic factors, or actively mutagenic chemi-
cals that accelerate the genetic evolution [104]. On the other hand, the two emerging
hallmarks are the ability of reprogramming the energy metabolism, the first, and of
evading the immune destruction, the second. Reprogramming the energy metabolism
is necessary to support continuous cell growth and proliferation. An example of this
reprogramming in cancer cells is the process of aerobic glycolysis. Already observed
by Otto Warburg in 1956 [291], even in the presence of oxygen cancer cells tend to
reprogram their glucose metabolism and their energy production performing anaer-
obic glycolysis. This glycolytic process converts glucose first to pyruvate and then
to lactate, released in the extracellular space, and it produces 2 molecules of ATP
(adenosine triphosphate). Despite the anaerobic glycolysis producing less ATP than
the other energy conversion processes (the complete cell respiration cycle produces
36-38 ATP molecules), the production is faster and allows cells to adapt at intermit-
tently hypoxic conditions, prevalently in poorly vascularized tumor or in presence
of unstable neovasculature [63]. It is not rare, for instance, to identify in the tumor
two subpopulations working in symbiosis: hypoxic cells, glucose-dependent and se-
creting lactate, and normoxic cells that utilize lactate as the main source of energy
[256]. The second emerging hallmark is the ability of cancer cells to evade immune
destruction. How this process can occur is still an open question. In fact, little is
know about the role of the immune system in tumor formation and the development
of deficiencies in some tumor-suppressors that underlie the mechanism. Furthermore,
downstream these hallmark capabilities of cancer cells, there are several circuits and
signaling pathways, both intracellular and intercellular, that constitute a large and
complex network [110], supporting cancer progression.

With this brief overview, we want to show why cancer is classified as a multifac-
torial and multistage disease that exhibits several structural, biochemical, molecular,
and genotypic alterations. The magnitude and nature of the consequences of such
modifications strongly depend on the affected tissue and on the subtype of cancer.
For these reasons, in this dissertation, we focus our study on a specific type of brain
tumor, which is, the glioma. This strategy enables to pay exclusive attention to its pe-
culiar characteristics, to develop more specific and targeted models, and to interpret
the results by comparing them with experimental data concerning glioma cells, when
this is possible.

We proceed to present in Section 1.1 the biological features that characterize glioma
cells and allow to distinguish between the different grades of tumor progression. With
regard to the mathematical content of the dissertation, we focus on the inherent mul-
tiscale nature of the processes of tumor growth and progression, developing different
model settings. Thus, in Section 1.2, we provide a general and introductory descrip-
tion of this mathematical multiscale modeling framework.

1.1 Biological aspects of gliomas

Brain tumors are neuroepithelial solid neoplasias that are classified depending on the
cells from which they derive [69]. Malignant gliomas are the most prevalent subtype
of primary malignant brain tumors, accounting for almost 80% of them [210]. They
originate from mutations of glia cells of the central nervous system (CNS). Glia cells
are supporting cells in the human brain, which means that they provide nourishment,
protection, and structural support to the neurons. Such cells are responsible for the
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electrical isolation of the nervous tissue, as well as for the digestion of dead cells and
pathogens. Depending on their main function, glia cells are divided into astrocytes,
oligodendrocytes, ependymal cells, and radial glia [263].

The widely used scheme for classifying gliomas is the World Health Organization
(WHO) classification [145]. Based on this classification, gliomas are sorted by type
and grade. The type (three in total) indicates whether the glioma displays features
of astrocytic, oligodendroglial, or ependymal cells. Whereas, the grade qualitatively
determines the degree of differentiation of the tumor:

• grade I brain tumors are biologically benign, with long-term survival, limited
invasive capacity, and possibly curable via surgery alone (e.g. pilocytic astrocy-
toma);

• grade I I brain tumors are low-grade malignancies that are not curable by surgery
alone and might recur as higher grade (e.g. diffuse astrocytoma or pure oligo-
dendroglioma);

• grade I I I brain tumors are malignant and infiltrative, often recurring as higher
grade and potentially leading to death within a few years (e.g. anaplastic astro-
cytoma);

• grade IV brain tumors are highly malignant, usually not well responding to
therapies, and lethal within 9-12 months (e.g. glioblastoma (GB), also known as
glioblastoma multiforme (GBM)).

Almost 70% of grade I I gliomas evolve into grade I I I and IV tumors within 5 to 10
years from diagnosis [180]. According to the WHO, the most common and aggres-
sive primary brain neoplasm is glioblastoma, a grade IV brain tumor with a median
survival range within 9 to 12 months [171]. It is characterized by rapid cell prolif-
eration, great infiltration capacity, and neurological impairment [120]. Typically, tu-
mors of this type present a radial growth rate of 10 times greater than the lower-grade
gliomas. Glioblastoma is characterized by a hypoxia-driven mechanism that deter-
mines the formation of a necrotic core surrounded by pseudopalisade cells (described
in the next section). These cells, in response to hypoxia, stimulate diffusion, migra-
tion, and angiogenesis [34]. In Figure 1.2, histological samples of brain tumors show
the main differences between the various tumor grades.

Recently, new research tools and refined experimental models have allowed great
progress in understanding and treating glioma. However, little is still known about
the mechanism used by glioma cells to grow, migrate, and spread in the tissue. In this
dissertation, we focus our study on the description of the intercellular mechanisms
that lead to glioma progression. Precisely, we analyze and model the processes driv-
ing glioma invasion, specifically relating to cell membrane dynamics and cell-ECM
interactions, and the processes involved in tumor angiogenesis.

The following sections are organized as follows. In Sections 1.1.1-1.1.3, we present
a detailed description of the mechanisms triggering tumor invasion and angiogene-
sis. These two processes, together with possible therapeutic approaches described in
Section 1.1.4 are the main focus of this dissertation. We continue, in Section 1.1.5, to
investigate the clinical aspect of this study by including a detailed description of the
biological and clinical data that are used in several proposed model settings.

1.1.1 Glioma invasion

Gliomas have a remarkable capacity of infiltrating surrounding brain tissues. The in-
vasive ability is present in low-grade as well as in high-grade tumors, implying that
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FIGURE 1.2: Histological samples of brain tumors. Panels A and B show cir-
cumscribed astrocytomas, specifically pilocytic astrocytomas (grade I tumors) in
A, and pleomorphic xanthoastrocytomas (grade I I tumor) in B. Both partially show
cellular pleomorphism - variations in cell size and shape - with limited invasion
capacity, and, for the case A, microvascular hyperplasia is also visible, despite
its designation as grade I. Panels C-F show diffuse-type astrocytomas: in C a
grade I I astrocytoma is shown with mild-to-moderate nuclear pleomorphism;
in D, a grade I I I astrocytoma presents the mitotic figures characteristic of a high
proliferation rate; E and F show the case of glioblastoma multiforme, (grade IV tu-
mor) with the distinctive features of palisading necrosis (E) and microvascular

hyperplasia (F). (Reprinted with permission from www.aboutcancer.com).

an invasive tumor phenotype is acquired early in tumorigenesis. Glioma invasion is a
multifactorial process driven by biochemical intracellular mechanisms, which support
the active cell movement, and by cell interactions with both the ECM and the adjacent
cells. In particular, glioma invasion can be viewed as a combination of the ability to
migrate and the ability to modulate the extracellular space, with a dynamical inter-
play between cell adhesion to the ECM and the remodeling of the ECM itself.

Brain tissue consists predominantly of closely apposed neurons and glia, leaving
little room for the extracellular matrix of the brain. Moreover, the ECM that is located
in the intercellular space between neurons and glia is substantially different from the
one present in other organs of the body. Brain ECM can be divided into two main
parts: the parenchymal ECM, which surrounds prevalently neurons and glia cells, and
the basal membrane, which is found around blood vessels and at the pial surface [239].
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The former is mainly composed of glycosaminoglycans (GAGs), glycosaminoglycan
hyaluronic acid (HA), proteoglycans of the lectican family, and other glycoproteins.
The latter consists of a mixture of specialized collagens, glycoproteins, and adhesion
molecules. Among them, collagen type IV, laminin, and entactin (a glycoprotein) are
the main components [307]. Tumor cells invade the brain parenchyma following pref-
erential routes [296]. Initially observed by Scherer [254], glioma cells follow preferen-
tially white matter tracts to migrate. Many tumors cross the corpus callosum to form
butterfly lesions, while others remain simply confined to the white matter; moreover,
they grow mostly around neurons and spread along vessels [84, 170, 207]. The influ-
ence of peculiar brain structures on tumor migration can be included in the modeling
framework, as discussed in Chapter 2.

The invasion process and, more generally, most of the tumor-ECM interactions are
mediated by cell protrusions, which are extensions of the plasma membrane outside
of the cell body. The cell protrusions are highly dynamic structures involved in sev-
eral fundamental processes, including collective cell migration and invasion through
the tissue matrix. Different types of protrusions have been identified to contribute
to cell spreading depending on context, cell type, and microenvironment [224, 246].
Protrusive structures formed by migrating and invading cells are named filopodia,
lamellopodia, podosomes, and invadopodia based on their morphological, structural,
and functional characteristics [5]. These protrusions have a significant role in mediat-
ing intercellular communications and in modulating cell-cell and cell-ECM adhesion
processes.

The most common receptors that allow glioma cells to adhere to the ECM are inte-
grins. Integrins are dimeric transmembrane glycoproteins that mediate dynamic inter-
actions of cells and ECM and, to a lesser extent, cell-to-cell adhesion [127], involving
the actin cell cytoskeleton. Integrins are composed of a and b subunits that initiate in-
tracellular signaling cascades by binding to adapter proteins. The binding specificity is
determined by the integrin extracellular domain, which allows integrins to recognize
different matrix ligands (fibronectin, collagen, laminin) or other cell surface receptors
[279]. In glioma cells, integrins are involved in cell motility and migration [73], but
affect also cell growth, division, and proliferation through the interaction with extra-
cellular proteins and enzymes controlling the cell cycle [64, 127]. Extensive data show
that the expression of integrins facilitates the infiltration of tumor cells through normal
brain tissue. For this reason, these transmembrane receptors are one of the major con-
tributors to the invasive phenotype of gliomas [61]. For instance, a3b1 integrins are
consistently over-expressed in invading glioma cells and is a key regulator of glioma
cell migration [311]. Therefore, integrins have emerged as a marker for brain tumor
malignancy [106], and a promising anti-glioblastoma target.

The modulation and remodeling of the ECM, which is directly involved in tumor
invasion, is mediated by several enzymes, known as proteases or proteinases [175,
191]. Proteases are enzymes that catalyze the breakdown of proteins into smaller
polypeptides or single amino acids (proteolysis), facilitating tumor cell dissemination.
To allow this process, proteases must be located extracellularly or concentrated in spe-
cialized regions of the plasma membrane [175]. In addition to ECM regulation, pro-
teases can also activate para- and autocrine growth and chemotactic factors, as well as
intracellular pathways related to glioma cell survival and invasion. Proteases can be
classified into several classes according to their catalytic site. The most common class
of proteases involved in the degradation of the ECM due to invading glioma cells con-
sists of matrix metalloproteinases (MMPs). In particular, increased MMP levels and
tumor invasiveness in human gliomas are strongly correlated [72, 238], highlighting
the role of proteases as a prerequisite for glioma malignant invasion. Like integrins,
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MMPs have acquired an emerging role as tumor markers. Several clinical studies have
shown promising beneficial effects in combining inhibitors of MMPs with other treat-
ments [191].

A schematic representation of the main mechanisms involved in glioma cells inva-
sion at the intercellular level is presented in Figure 1.3.

FIGURE 1.3: Intercellular invasion mechanisms. Schematic representation of
the mechanisms that drive glioma invasion. Processes involve glioma cells and
ECM, as well as connecting molecules, like integrins, proteases, soluble factors,
and surrounding cells. (Source [288]; used under the terms and permission of

MDPI and Creative Commons Attribution License).

The role of integrins in mediating glioma invasion along the white matter tracts of
the brain is the focus of the preliminary model described in Chapter 3. Further ex-
tensions of this study, including - among other mechanisms - the degradation of the
ECM, are presented in Chapter 4. Moreover, a direct analysis of the role of cell protru-
sions in glioma progression, and their interplay with integrins, proteases, and ECM is
presented in Chapters 6 and 7.

1.1.2 Angiogenesis in glioma

Angiogenesis is a key event in the progression of malignant gliomas. This term refers
to the formation of new blood vessels by rerouting or remodeling existing ones, and
it is believed to be the primary method of vessel formation in gliomas. Angiogen-
esis requires three distinct steps: blood vessel breakdown; degradation of the vessel
basement membrane and the surrounding ECM by proteases activity; migration of en-
dothelial cells toward tumor cells, which express pro-angiogenic compounds for the
formation of new blood vessels [207]. Vascular proliferation is a hallmark of tumor ag-
gressiveness, especially in the case of glioblastomas, and an increase in vascularization
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significantly worsens prognosis. Glioblastomas (GBs) are among the most vascular-
ized human tumors, displaying a high degree of vascular proliferation and endothelial
cell hyperplasia [84], which is a form of angiogenesis morphologically recognized as
endothelial proliferation within newly sprouted vessels. GBs show blood vessels of in-
creased diameter with high permeability, thickened basement membranes, and highly
proliferative endothelial cells. The most characteristic form of vascular proliferation
is microvascular proliferation with glomerular-like capillary loops. These formations
are complex structures composed of both proliferating endothelial and smooth muscle
cells [170]. They are unique to high-grade gliomas and are used as a histopathological
hallmark for these brain tumors [268]. Such intense vascularization has also been pro-
posed as responsible for the peritumoral edema, another pathological feature of GB.
Tumor vascular proliferation is sustained by many angiogenic growth factors. For
example, vascular endothelial growth factors and their receptors are secreted by tu-
mor cells, and they are especially upregulated in cells surrounding regions of necrotic
tissue. They bind with the corresponding VEGF receptors on the endothelial cell mem-
brane, playing a major role in angiogenesis.

Tissue hypoxia promotes and activates angiogenic mechanisms. One of these mech-
anisms is the HIF-1/VEGF-A pathway that drives endothelial cell proliferation and
migration [207]. Hypoxia-inducible factor (HIF)-1 is a nuclear transcription factor in-
fluencing cell adaptive response to low oxygen. The microvascular proliferation in
gliomas is characterized by the presence of pseudopalisade cells surrounding necro-
sis regions, protecting the cancer stem cells residing in these regions from therapeutic
agents. Pseudopalisades are known to be hypoxic, as they show strong upregulation
of HIF-1, and to affect hypoxia-mediated migration. Limitations in oxygen and nutri-
ent supply, in fact, determine the movement of tumor cells that, if located at the fur-
thermost distance from arterial supplies, become hypoxic and migrate towards viable
vessels. As a consequence, pseudopalisades, surrounding necrotic regions, appear as
a wave of actively migrating tumor cells moving away from areas of central hypoxia,
vaso-occlusion, or thrombosis [249].

Another characteristic configuration in glioblastoma is necrosis surrounded by
pseudopalisade cells. The necrotic areas are caused by many different factors, such
as high metabolic demands, that exceed supply, or vascular thrombosis. Necrosis is
determined by hypoxia that can encourage more active migration and result in a clear
central region more susceptible to necrosis. Although cancer cells can survive in rela-
tively acidic regions, which confers them an advantage against normal cells [293], they
cannot survive in an extremely low pH environment created by the large amounts of
lactate and alanine produced during anaerobic glycolysis. Thus, when the extracellu-
lar pH level goes below critical levels, necrotic areas form and cell migration towards
more favorable regions is initiated.

The main pathologic features characterizing glioma angiogenesis are shown in sev-
eral tissue samples collected in Figure 1.4. Angiogenesis in glioma is analyzed in
Chapter 4. In that chapter, we show that the proposed model is able to capture the
features of microvascular proliferation with glomerular-like capillary loops, and the
creation of pH-driven necrotic areas. Moreover, a deep analysis of the role of VEGFs
in driving tumor-endothelial cell dynamics is presented in Chapter 5.

1.1.3 Brain tumor microenvironment

The brain tumor microenvironment (TME) is a critical regulator of cancer progression
[232]. It is characterized by many different non-cancerous cell types, such as immune
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FIGURE 1.4: Pathologic features of glioma angiogenesis. In Panel A, pseu-
dopalisade tumor cells (arrow) accumulate around a central clear zone, while
in Panel B larger pseudopalisades contain regions of necrosis. In Panel
C microvascular hyperplasia (arrow) is induced by hypoxic pseudopalisade
cells (arrowhead), and in Panel D a low-magnification view of pseudopal-
isade necrosis (arrowhead) and microvascular hyperplasia (arrow) shows a
wave of tumor cells migrating toward the emerging vasculature (left to right).
(Reprinted from [249] by permission of Oxford University Press and the Amer-

ican Association of Neuropathologists).

cells, endothelial cells, pericytes, and fibroblasts, as well as several nutrients and un-
soluble macromolecules constituting the brain ECM. Each of these cell types has a
key role in tumor progression. The immune cell landscape of brain tumors consists of
several, different cells belonging to both neuronal and immune systems. It includes
tumor-associated macrophages (TAMs) and microglia, which have a significant bidi-
rectional crosstalk with tumor cells, supplying them with pro-tumorigenic and pro-
survival factors [107]. Several studies suggest that these factors regulate glioma stem
cell pools and they seem to be involved in angiogenesis and resistance to therapy.
Lymphoid cells are also part of this immune cell landscape and, together with den-
dritic cells (DCs), stimulate the anti-tumor immune response [217]. Moreover, neu-
trophils, a particular kind of white blood cells, are often associated with the devel-
opment of drug resistance and often appear reprogrammed in high-grade gliomas.
Endothelial cells and pericytes, instead, constitute the brain vasculature. Specifically,
they are involved in both tumor-associated vasculature and blood-brain barrier (BBB).
The latter is a unique feature of the brain, used to prevent solutes in the blood from
entering the central nervous system. The BBB blocks the transport of approximately
98% of molecules, representing a major challenge for treating brain tumors [1].

We want to remark that the different studies presented in this dissertation inves-
tigate the intercellular mechanisms influencing glioma invasion in the brain, with a
special focus on the interaction of the tumor cells with their microenvironment. How-
ever, we are aware that glioma progression is a much more complex phenomenon
that includes also a large variety of intracellular signaling pathways downstream the
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individual cell behaviors, and is influenced by several mutations in the cell genome
[180, 220]. For instance, one of the most commonly mutated pathways in GB tumori-
genesis is the p53 pathway, a well-known tumor suppressor, that normally responds
to DNA damage. Its loss is associated with GB progression and with more invasive
and proliferative phenotypes. Several growth factors (e.g. epidermal growth factor
(EGF) pathway) and transduction pathways (e.g. Wnt signaling or Hedgehog path-
way) are also responsible for driving the transformation process toward GB, mediat-
ing cell communication, and influencing neovascularization, increased proliferation,
and resistance to cell death. Moreover, the appearance of extensive hypoxic regions
within the tumor, which is associated with tumor aggressiveness, is driven by the
hypoxia-inducible factor (HIF) pathway. This phenomenon might explain the char-
acteristic intense vascular hyperplasia observed in GB and triggers VEGF activation,
proteases activity, and many other components involved in angiogenesis [220].

1.1.4 Clinical therapies for glioma

The treatment of gliomas for a human patient takes into account several aspects, such
as tumor location, potential symptoms, and potential benefits versus risks of differ-
ent treatment options. Over the past decades, the treatments have become more
multi-modal, combining the three most used interventions (surgery, radiation, and
chemotherapy) with new therapeutic targets.

The first approach to treat newly diagnosed gliomas is usually a maximal surgi-
cal resection, whose benefits, for both high- and low-grade gliomas, have been exten-
sively debated since it could cause neurologic deficits. As reported in [270], in the eval-
uation of resection quality with magnetic resonance imaging at 72 h post-operatively
of 143 GBs, patients with no visible residual disease had a median survival longer
than the follow-up period (24 months). For patients with residual disease (>1.5 cm)
the median survival time was 13.9 months. Thus, postoperative neurologic status has
been shown to be a good predictor for survival probability, even though any surgical
resection should be approached cautiously to preserve it. In this context, it is worth
mentioning that complete resection is often impossible. The highly infiltrative na-
ture of the tumor cells and the brain tissue characteristics lead to heterogeneous often
disconnected finger-like patterns and to an ’invisible’ outer border of the tumor, unde-
tectable with current medical imaging techniques. Magnetic resonance imaging (MRI)
is frequently used to evaluate tumor invasion. However, only the central, more com-
pact part of high-grade gliomas can be visualized in human glioma patients. The outer
rims of the tumor, composed of cells infiltrating the surrounding normal brain tissue
and protected by normal vasculature, are not visible. Although MRI is a powerful tool
for high resolution in-vivo imaging, sub-millimeter lesions are not always detected by
MRI and, consequently, they might not be removed by surgery. Therefore, alternative
supporting treatments are usually used in combination with surgical resection.

One of these treatments is the radiation therapy (RT) that is based on ionizing radi-
ation, normally delivered by a linear accelerator, used to control or kill malignant cells.
In high-grade gliomas, the standard dose is 60 Gy delivered in 30-33 fractions. Here,
Gy stands for gray that represents the ionizing radiation dose unit and is defined as
the absorption of one joule of radiation energy per kilogram of matter. Specifically,
the conventional RT refers to a daily radiation dose of 180-200 cGy, although other
treatment plans are often used to reduce the toxicity potential of the treatment. RT
in glioma patients is constantly evolving as a result of advances in imaging methods.
More advanced techniques help to establish the margins of the gross tumor volume
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(GTV) with higher accuracy and to better generate the planning treatment volume
(PTV, i.e., the area to treat).

The last treatment is chemotherapy. The term chemotherapy refers to the use of
intracellular drugs to inhibit or to slow down mitosis and cell division (both healthy
or tumor cells) for the treatment of several types of tumors. Because most normal cells
in an adult’s body are not actively growing, they are not affected by chemotherapy.
Exceptions are bone marrow cells, hair, and the lining of the gastrointestinal tract,
which hence are more prone to the side effects of the treatment. In the case of gliomas,
chemotherapy is standardly based on Temozolomide (TMZ), whose use was approved
in 1999 for recurrent GB and 2005 for primary GB. Several studies showed beneficial
effects of this therapy on decreasing the relative risk of death [51] and, compared with
other chemotherapy regimens, TMZ is causing fewer side effects. To date, it appears
to be the most efficacious alkylating agent for gliomas.

Together with the standard approaches, any of the hallmarks of glioma could virtu-
ally be a possible therapeutic target. New treatments are emerging to target molecules
involved in various signaling pathways, with the goal of maximize the clinical efficacy
and minimize toxicity (see [110, 253] and references therein). Among them, angiogen-
esis inhibitors have been tested as anti-migratory agents for GB. For instance, beva-
cizumab, a neutralizing monoclonal antibody against VEGFs, demonstrated promis-
ing responses in patients with recurrent malignant gliomas in combination with other
drugs [242]. However, the role and efficacy of bevacizumab are still debated and
a topic for ongoing research. Intravenous integrins inhibitors, such as cilengitide,
demonstrated efficacy in inducing apoptosis in U87, a particular type of glioma cells,
while a broad spectrum MMP inhibitors (e.g. marimastat that acts against MMP-1,-2,-
7,-9) combined with TMZ showed promising beneficial effects, whilst further investi-
gations on their side effects are still needed.

In the next chapter, we consider some possible modeling approaches of the stan-
dard therapies used in the clinical context to treat glioma patients. We model a combi-
nation of radio- and chemotherapy in Chapter 3. In this setting, chemotherapy is target
at inhibiting integrins activity, while radiotherapy is aimed at cell killing. Moreover, in
Chapter 5, we investigate the effect of anti-angiogenic therapies, targeted at reducing
VEGF beneficial effects, combined with chemotherapy and radiation treatment.

1.1.5 Biological and clinical data

Throughout this dissertation, we adopt the view that any mathematical model describ-
ing the evolution of a disease has to be connected in some way to the clinical setting.
For this reason, when biological and clinical data, pertinent to the mechanisms we are
interested in, are available, we extrapolate information from them use such informa-
tion to tune the model. Traditionally, diseases were understood at the organ level.
Advances in microscopy - including improved instruments and staining techniques -
and progresses in molecular biology and omics technologies allow in-depth studies at
all levels of the diseases. Therefore, it is now possible to study the biological organi-
zation, from organ systems, to the tissue and individual cell level, up to the molecular
level.

In this dissertation, we incorporate two different types of clinical data to inves-
tigate glioma from a clinical and biological perspective. First, we include data from
medical images in the modeling settings discussed in Chapters 3, 4 and 5 data from
medical images. In particular, we use magnetic resonance imaging and diffusion-
tensor imaging to realistically describe the brain geometry and its anisotropic features,
whose analysis will be proposed in Chapter 2. The second type of data is obtained by
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implementing immunostaining techniques, namely the immunofluorescence of sev-
eral protein distributions on the cell membrane, to evaluate protein levels and profiles
in specific regions of the tumor volume. We include the obtained information in the
model proposed in Chapter 7.

Medical imaging

Magnetic resonance imaging is nowadays the standard imaging modality in the evalu-
ation of brain tumors. It is a non-invasive medical imaging technique that uses strong
magnetic fields and radio waves to generate images of the brain, by exploiting the
sensitivity of water molecules in the body to magnetic fields. In the specific, sev-
eral images with varying contrasts can be created by changing the intensity, timing,
and duration of radiofrequency pulses and directional gradients. The two common
sequences that are collected are the T1- and T2-weighted images, which display dif-
ferently the features characterizing glioma progression. T1-weighted images, for in-
stance, can highlight some vasculature-related characteristics of glioblastoma by ac-
quiring the image after administration of gadolinium, a contrast agent that appears
bright on T1-weighted images [159, 283]. These sequences are most commonly used
for delineating tumor regions. However, as observed in Section 1.1.4, neither of them
can provide a precise visualization of tumor abnormality due to the extensive inva-
siveness of the tumor cells.

Other advanced imaging techniques include vascular perfusion imaging, diffusion-
weighted imaging (DWI) and diffusion tensor imaging (DTI), and proton magnetic
resonance spectroscopy (MRS). Vascular perfusion imaging technique highlights re-
gions of high vascularity and it is useful to predict the response to anti-angiogenic
therapies. DWI and DTI are commonly used to quantify the apparent diffusion coef-
ficient. Finally, MRS determines concentrations of selected water-soluble metabolites
and it is often used to detect mutations in tumors or to study the intratumor hetero-
geneity. In addition to these techniques, we should mention the positron emission to-
mography (PET) scans. It consists of a functional imaging technique that is becoming a
highly useful tool to provide deeper insights into metabolic and physiologic processes
of glioma progression. This medical imaging technique uses radioactive substances to
visualize the distribution of specific molecules in the human body at very high sensi-
tivity [159]. An illustrative example of some of the described techniques is provided
in Figure 1.5. None of the described techniques is designed to provide all the informa-
tion about glioma progression, but each of them can highlight some specific features,
while it can fail in others. Consequently, the complementary use of these techniques
is required and advised. All the collected information should be viewed, in fact, as an
ensemble and has to be combined to get the most comprehensive picture possible of
the tumor state.

Microscopy and Immunostaining

Immunostaining refers to an antibody-based method that is used to detect a specific
protein in a sample, and to study the distribution of protein signals in tissues [237].
The most commonly applied immunostaining technique is immunohistochemistry
(IHC) staining that can be based on fluorescent dyes (immunofluorescence) or other
non-fluorescent methods. Immunofluorescence relies on the usage of a fluorescence mi-
croscope, i.e., it analyzes the emission of light by a substance to study its properties.
In the body, each antibody targets a specific antigen. The immunofluorescence tech-
nique exploits this specificity to target fluorescent dyes to specific biomolecules within

12 1. Introduction



FIGURE 1.5: Medical imaging. Image of anaplastic astrocytoma (grade I I I
tumors). From left to right: T1-weighted MRI, after application of gadolin-
ium, T2-weighted MRI, and F-FET-PET (PET using the amino-acid O-(2-
[18F]fluoroethyl)-l-tyrosine). The last one, acquired 19 days after MRI, shows
a larger mass of metabolically active tumor. (Reprinted by permission from
Springer Nature Customer Service Centre GmbH: Springer Nature, Nature Re-

views Neurology [159].

a cell. As a result, the distribution of the target molecules through the sample can be
visualized. Figure 1.6 shows an example of the outcome of the immunofluorescence
technique for targeting the distribution of two proteins in a sample of tumor tissue
from a Drosophila brain.

FIGURE 1.6: Immunostaining of GB proteins. Fluorescent confocal images of
Drosophila 3rd instar larvae brain with GB: the GB cell membrane is marked in
red, cell nuclei are marked in blue, focal adhesion kinase (FAK) and MMP-1
protein are marked in green and magenta, respectively. Images were obtained

at Instituto Cajal CSIC, Madrid, Spain.

In contrast to that, non-fluorescent methods use enzymes that are capable of catalyzing
reactions and give a colored outcome, easily detectable by light microscopy. One of
the main difficulties with IHC staining is overcoming possible residual levels of im-
munofluorescence that are not directly emitted by the studied substance and can affect
the interpretation of the immunologic reactions.
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To this point, it is clear the need of mathematical models to extrapolate useful in-
formation from the large amount of data obtained with the most advanced imaging
techniques. On the clinical side, these techniques bring along benefits for both prog-
nosis, i.e., the estimation of the likely progression of a disease, and treatment.

As stated above, we mainly focus on these two described classes of clinical and bio-
logical data (medical imaging and immunostaining techniques), and we analyze them
to obtain useful information to be included in the models. However, we know that fur-
ther technological advances are available. In the last decades, several omics technolo-
gies have been largely applied. The term omics refers to the study of cancer as a whole
entity focusing on various micro- and macro-molecules. Omics technologies include
the study of DNA mutations, copy number variations, epigenetic changes, transcrip-
tome analysis, and whole-genome DNA/RNA sequencing, providing a broad range
of genomic information [309]. These techniques have unveiled some molecular mech-
anisms behind various cancers and assisted in the identification of next-generation
molecular markers. For instance, in the case of glioma diagnosis and classification,
IDH or TP53 mutations have been included as molecular signatures. Besides these
technologies, advances in histopathological analysis, namely the microscopic exam-
ination of tissue sections, have provided an important contribution to the study of
glioma progression, quantifying and classifying intra-tumoral heterogeneity, which is
useful to determine glioma grading and assessing disease progression.

1.2 Mathematical aspects of glioma modeling

Although there is a considerable amount of information about the clinical and biolog-
ical behavior of gliomas, the high complexity of the invasion mechanisms remains a
major challenge in clinical neuro-oncology. From a biological and medical perspective,
it is often difficult to investigate the connections between clinically observable glioma
behaviors and the underlying molecular and cellular processes. Therefore, an impor-
tant challenge consists in the integration of the theoretically and empirically acquired
knowledge for a better understanding of the mechanisms that contribute to tumor in-
vasion.

In this context, mathematical models emerge as powerful tools towards the in-
vestigation of how neoplasias become malignant - known as the carcinogenesis pro-
cess - how tumors grow, migrate, invade adjacent tissues, and metastasize, and how
this can be clinically managed. Ultimately, mathematical models could improve the
overall clinical outcome by predicting the results of specific combinations of treat-
ments, providing a theoretical and computational framework to perform in silico ex-
periments. Numerous mathematical studies have been developed to describe cancer
progression, and specifically glioma evolution. However, the exponential growth of
the number of such models precludes any attempt for a comprehensive and exhaus-
tive survey. A wide variety of modeling approaches has been proposed to investigate
the mechanisms of glioma growth and invasion, varying from discrete to continuous
methods, from the theory of dynamical systems to the study of models that include
space-dependent components.

The biology that characterizes glioma progression, and cancer dynamics in gen-
eral, is complex, and the evolution process is characterized by an inherently multi-
scale nature. It involves several phenomena that occur at different spatial and tem-
poral scales, ranging from processes at subcellular, up to cellular, and, finally, tissue
levels. Therefore, the need of understanding the various mechanisms expressed at the
different scales reflects on our choice of applying a multiscale mathematical approach
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to the study of glioma evolution. The intrinsic multiscale nature of the biological sys-
tem suggests focusing on the three natural scales related to the invasion dynamics.
Thus, we consider three specific levels of description: subcellular level, cellular level,
and tissue level.

• The subcellular level, or microscopic scale, refers to processes happening at the
level of a single cell. These are usually faster than the ones occurring at higher
levels, and involve membrane receptors and/or intracellular pathways. This
scale describes interactions between molecules and receptors on the cell mem-
brane, which drive cell migration in response to external factors, as well as al-
terations of signaling cascades. The cell membrane, in fact, is characterized by
a large number of receptors that interact with the external environment, receive
signals from it, and transmit them to the cell, inducing the activation or sup-
pression of downstream mechanisms. Depending on the nature of the involved
receptors, these interactions can affect, for instance, cell migration, cell prolifera-
tion, or the angiogenesis process. In our study, we limit the microscopic scale to
the description of the dynamics of some families of receptors triggering glioma
migration (e.g. the integrin family, and proton-sensing receptors) and angiogen-
esis (e.g. VEGF receptors).

• The cellular level, or mesoscopic scale, models the effect of several intercellular
interactions. These interactions can occur between tumor cells and the extra-
cellular environment (cell-ECM interactions), or among tumor cells themselves
(cell-cell interactions). This level can be used to describe how such interactions
affect cell invasion in terms of velocity changes, how they determine prolif-
erative or lethal effects on the tumor population, how they drive phenotypic
switches (due to crowded environments or to lack of nutrients) or blood vessel
formation. In this dissertation, we mainly consider at this level the processes
involved in the interactions between glioma cells and tumor microenvironment.
This choice is justified by our aim to achieve a deeper understanding of how
these mechanisms can explain features directly visible at the tissue level. One
example of a mechanism studied at the cellular level is the typical anisotropic
spreading. Observable at the macroscopic level, it characterizes glioma migra-
tion and is strongly related to the mesoscopic interactions between glioma cells
and underlying brain fibers.

• The tissue level, or macroscopic scale, directly describes the processes of prolifer-
ation and migration of tumor cells in terms of macroscopic density, reflecting the
major aspects of tumor evolution observable in the clinical context. At this level,
it is possible to describe the growth of avascular, or vascular, tumors with dif-
fusive or drift phenomena related to the availability of external resources, such
as fiber tracts on which cells can crawl, or nutrient and growth factor. More-
over, at this level tumor dynamics can be coupled with the evolution of other
tissue/cell types to model intratumor heterogeneity, blood vessel evolution, or
ECM remodeling.

Several mathematical approaches have been developed for the description of these
different scales. The subcellular level is generally described in terms of ordinary dif-
ferential equations (ODEs), modeling receptor dynamics in response to external fields
or their position gradients, which can implicitly include a time or space dependency.
The mesoscopic level can be modeled by linear or nonlinear integro-differential equations,
referring to the kinetic theory used in the context of gas dynamics, and describing
individual cell behaviors. For instance, in this dissertation, the mesoscopic settings,
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which are described in Chapters 3-6, are based on the description of cell movement by
means of kinetic equations. These equations can describe the so-called velocity-jump
process, which characterizes a cell that moves with constant velocity in a straight line,
stops after a certain time, chooses a new direction, and then continues running. This
mechanism is also known as run and tumble [22]. Alternatively, cell velocity changes
can be caused by contact guidance or other environmental cues. Macroscopic mod-
els, instead, are usually characterized by systems of nonlinear partial differential equa-
tions (PDEs). These can be derived with suitable scaling methods from lower lev-
els of description, since individual cell behaviors are crucial to drive the macroscopic
processes, stressing the need for connecting the multiple scales. Nevertheless, these
models can be also stated directly at the macroscopic scale, employing mechanical or
phenomenological assumptions. This possibility is often employed when the highly
complex and nonlinear nature of some mechanisms included in the models does not
allow for a properly stated and formal derivation of the macroscopic system from
lower levels of description. We adopt this approach in Chapter 7, as nonlinearity is an
intrinsic and essential feature of the modeling.

This dissertation aims to address questions related to glioma invasion in the tis-
sue in relation to the external environment. Therefore, we strongly emphasize the
multiscale nature of the biological problem and analyze processes belonging to dif-
ferent scales, making connections between them. Our approaches are all based on
continuous systems stated in terms of partial differential equations. These equations
describe the spatial and temporal evolution of the tumor population and additional
external agents interacting with it. In the first part of our work, namely Chapters 3-5,
we develop three-level multiscale models, where the macroscopic setting is formally
derived from an individual level of description, based on kinetic transport equations.
Macroscopically, these models characterize cell migration with a combination of lin-
ear diffusion and tactic terms, the latter carrying information about the subcellular
dynamics. Precisely, we first model the cell-ECM interactions. We analyze the lower
scale mechanisms taking into account the influence of fiber distribution on glioma
spread and potential treatments (Chapter 3). Then, this study is extended to include
the effect of vasculature and acidity on tumor proliferation and migration (Chapter 4),
and, eventually, possible therapeutic approaches affecting tumor angiogenesis (Chap-
ter 5). In the second part of this thesis, we dedicate our study to a deeper analysis of
the cell membrane dynamics and the biochemical and biomechanical aspects related
to it. In the specific, in Chapter 7 we present a macroscopic model to describe the
evolution of cell protrusions linked to integrin and protease dynamics, and how the
combination of these agents drives the propagation of the tumor invasion front. In
doing so, we merge diffusive and drift-driven mechanisms for the description of cell
migration. We assume that the drift-driven mechanism is governed by haptotactic and
chemotactic processes, i.e., directed migration of cells towards gradients of soluble or
unsoluble components of the ECM, induced by MMP and integrins, respectively. The
definition of a sharp and well-defined propagation front for the tumor population, ob-
served experimentally, requires the introduction of strong nonlinear operators for the
diffusive and advective terms, leading to a complex coupled multicellular system. For
these reasons, we directly state the model equations at the macroscopic level, relying
on a priori phenomenological assumptions supported by biological data. The model
deduction from lower scales and microscopic descriptions of the biological system is
a future challenge of our research. Furthermore, in this dissertation, we include a fur-
ther study, presented in Chapter 6. It illustrates an analysis of the relative relationship
between cell response to chemotaxis and contact guidance. In particular, it relies on a
kinetic framework (like the models described in Chapters 3-5), providing a mesoscopic
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description of the cell population. However, unlike the other settings, this model does
not include microscopic dynamics. Instead, it describes two distinct cues that simulta-
neously influence cell velocity changes. Moreover, it includes non-local terms, aimed
at describing the effects of cell protrusions on the migration. In Chapter 7, we address
the problems related to cell protrusion modeling at the macroscopic level in detail.
Thus, the work presented in Chapter 6 originates from the idea of understanding the
effect of a multi-cue environment on cell velocity in general, and it prepares the basis
for a future and more precise application at glioma case.

In the following Sections 1.2.1 and 1.2.2, we present the main, general aspects of the
mathematical formalisms in the modeling approaches that will be used in the forth-
coming chapters.

1.2.1 Multiscale models

Multiscale models belong to the class of spatially structured models based on the idea
of relating the macroscopic cell behavior with the dynamics at a subcellular and indi-
vidual cell level. As above stated, all temporal and spatial scales are crucial to achieve
a more comprehensive understanding of the glioma evolution. Therefore, the mathe-
matical description of glioma progression fits in the framework of multiscale models.
In this context, the macroscopic setting is derived from lower levels of description by
using suitable asymptotic methods.

The multiscale approach has been widely analyzed for the case of movements of
classical particles by asymptotic methods developed in kinetic theory. In particu-
lar, the asymptotic methods have been largely studied with respect to the so-called
parabolic and hyperbolic limits. The parabolic or low field limit of a kinetic equation
leads to a drift-diffusion type of system (or reaction-drift-diffusion system) in which
the diffusion processes dominate the overall behavior. In the hyperbolic or high field
limit, the influence of the diffusion terms is of lower (or equal) order of magnitude in
comparison with other convective terms. Therefore, different macroscopic models can
be obtained depending on the different scaling assumptions that are considered. The
literature on asymptotic methods for classical particles is vast and well-documented
(see [31, 222] and references therein), and numerous contributions apply the same
methodology for multicellular models related to different biological problems (e.g.
see [18, 43, 155, 213]). It is important to notice that some differences distinguish the
study of classical particles, which are elements of inert matter, and the study of cells
belonging to living organisms. While active particles are only characterized by posi-
tion and velocity, cells can also present an additional microscopic state representing
some biological functions at a subcellular level. Moreover, the microscopic interac-
tions within a single cell may also take into account non-conservative proliferative
and/or destructive phenomena.

In biological system in general, the distribution of cells is described at the meso-
scopic scale by the distribution function r(t, x, v, y), which depends on time t � 0,
space x 2 W ✓ Rd, microscopic velocity v 2 V ✓ Rd, and internal variables y 2 Y ✓
Rp. This kinetic approach is based on Boltzmann-type equations for the cell popula-
tion density. Here, the usual collision operator describes the cell velocity changes. In
particular, the cell movement is led by velocity jump processes, for which the cell’s po-
sition changes are subjected to dx = vdt, and the new velocity is chosen according to
a probability distribution, which depends on the cell’s previous velocity, position, and
internal variable. The internal variable dynamics are described using an evolutionary
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equation, generally defined as

dy
dt

= G(t, x, v, y) ,

where the vector field G(·) could also depend on the distribution function r(t, x, v, y),
as well as on the concentration of other mesoscopic or macroscopic quantities, and it
could directly or indirectly involve the dependency on time, position and velocity. At
the single cell level, the cell distribution density r(t, x, v, y) satisfies the general kinetic
transport equation

∂r

∂t
(t, x, v, y) + v ·rx r(t, x, v, y) +ry · (G(t, x, v, y) r(t, x, v, y))

= L[r](t, x, v, y) + C[r](t, x, v, y) +D[r](t, x, v, y) .

(1.1)

In this equation, C[r] and D[r] correspond to conservative and proliferative (or de-
structive) interactions, respectively, while L[r] represents a turning operator model-
ing the velocity changes. The application of an asymptotic method provides a macro-
scopic equation for the population density n(t, x) defined as

n(t, x) =
Z

Y

Z

V
r(t, x, v, y)dvdy .

Technically, an asymptotic method is based on the expansion of the distribution func-
tion r in terms of a small dimensionless parameter related to the spatial scale. The
specific form of the macroscopic equations depends on which biological mechanisms
are described at the individual cell level and which of them is assumed to be predom-
inant in the dynamics. The first paper that addresses the study of a cellular system in
the context of the kinetic theory is [211], followed by many contributions that apply
this approach to various other biological systems (e.g. see [16, 18, 43, 78, 155] and
references therein). The same modeling approach has been applied to the study of
gliomas, connecting the modeling of the subcellular processes with the mesoscopic
population-level description (e.g. see [57, 74, 75, 77, 216] and reference therein). The
use of a subcellular level, in addition to the classical mesoscopic one, allows us to
observe how the information emerging from this lower level introduces additional
terms, or dependency, at the mesoscopic level, which consequently are reflected in the
macroscopic equations.

1.2.2 Macroscopic models

Macroscopic models describe the evolution of the cell population at the tissue level,
modeling the progression of the tumor mass by means of proliferative or migrative
mechanisms. In this framework, an important and often-discussed aspect concerns
cell diffusion dynamics. Several macroscopic mathematical models have been devel-
oped to describe the evolution of tumor cells due to diffusion processes. These models
can be categorized primarily into two main classes depending on whether they rely-
ing on linear or nonlinear diffusion.

If we consider the macroscopic cell density n(t, x), the general diffusion equation
reads as

∂n
∂t

= �rx · (D J [n]) , (1.2)
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where J [n] is the diffusive flux and D 2 Rd⇥d the diffusion coefficient. Models for
linear diffusion rely on Fick’s law [85], which describes cell migration as a result of a
flux of cells moving at rate D along a density gradient, i.e.,

J [n] := �rxn .

This provides an evolution equation for the tumor density of the form

∂n
∂t

= rx · (Drxn) .

Introductory literature [39, 280] describing the evolution of the glioma cell popula-
tion is based on this approach. Relying on this framework, several models for tumor
progression have been developed and extended to describe various additional mor-
phological features characterizing glioma progression [275, 276], such as chemotactic
and haptotactic processes [141, 142], or cell-cell and cell-ECM adhesion [218].

The concept of nonlinear diffusion originates from the study of the flow of an ideal
gas in a homogeneous porous medium. Considering the density n and the pressure p,
the velocity V of the flow can be expressed using the Darcy’s law [286]

µV := �krx p ,

with µ representing the dynamic viscosity of the fluid and k the permeability of the
medium. Taking into account the relation given by the state equation for perfect gases,
namely

p = p0ng , (1.3)

and the mass balance equation

#
∂n
∂t

+rx · (n V) = 0 ,

we can derive one expression for the porous medium equation (PME)

∂n
∂t

= crx · (ng rxn) .

Here the coefficient c is given by c = kg
µ # p0

, where p0 is the reference pressure, # the
porosity of the medium, and g � 1 the so-called polytropic exponent [286]. The non-
linear diffusion equation allows the definition of stationary profiles, possibly traveling
waves, that have a sharp and finite front of propagation moving with constant speed
and separating the regions {n > 0} and {n = 0}. In contrast, in the linear diffusion
case, diffusion is characterized by an infinite speed of propagation that determines
the well-known infinitely long exponential tail. This feature is shown in a conceptual
example Figure 1.7. In the context of glioma modeling, nonlinear models have been
used to replicate the occurrence of these well-defined invasion fronts (e.g. see [181]
and references therein).

A more sophisticated approach to the problem of nonlinear diffusion describes the
diffusion operator using the so-called flux-saturated equation, where the diffusive
flux is given as

J [n] := �n
nm

q
n2 +

�
n
v
�2 |rxn|2

rxn . (1.4)
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FIGURE 1.7: Linear vs. Nonlinear Diffusion. Example of the evolution of the
cell density for linear (dashed line) and nonlinear (solid line) diffusion equation
at time t=10. The equations have been solved numerically, choosing D = Id in

the linear case and c = 1 and g = 1 in the nonlinear case.

Here n is the kinematic viscosity of the medium, v is the front propagation veloc-
ity, and the exponent m is connected to the polytropic exponent g in (1.3) and to the
porosity of the medium. These models with saturated flows appear in the literature
on wave propagation in a medium and in optimal mass transport as an alternative to
linear diffusion. The flux-saturated equation, obtained plugging (1.4) into (1.2), is an
equation in divergence form combining two nonlinear diffusion mechanisms: the one
of porous-media equations on one hand, and the one for the flux saturation mecha-
nism on the other. The latter component provides a flow that is saturated as long as
the size of the gradients is large enough. This type of equation is characterized by
an overall finite speed of propagation bounded by the explicit value of the velocity of
the propagation front v incorporated in the operator (1.4). In particular, the value of
the velocity of the front depends on the internal pressure and is exactly v for m = 1,
while it is limited by v for m > 1 [40, 41]. The flux-saturated equation preserves, in its
solution, the characteristics of the initial data, with respect to the compactness of the
support and possible jump discontinuities, enabling the emergence of sharp invasion
profiles.

In addition to the diffusive mechanisms leading to cell movement, several other
components can be included in a macroscopic setting to describe the effect of cell-
microenvironment interactions on the tumor population on proliferation and migra-
tion. For instance, a nonlinear description can be used to model the diffusive flux
governing the tactic process supporting tumor migration (e.g. see [139] and references
therein). A reasonable representation of this flux is given by

J [n, S] := n
aSp

1 + |rxS|2
rxS ,

with the tactic coefficient aS and the agent S whose gradient drives the taxis. This
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form reduces to the standard form J [n, S] = aS nrxS for a small gradient of S, while
it saturates for large gradients.

Although our focus is on empathizing the multiscale nature of glioma progression,
the mathematical literature in the oncologic field offers extensive and diverse mod-
eling frameworks. Due to the vastness of the field, we simply report some examples
of frameworks applied to the study of glioma progression: compartmental models are
usually used to usually describe the dynamics related to intratumor heterogeneity or
the tumor interplay with external agents (examples of this approach can be found in
[105, 163, 190, 245] for the context of population dynamics, and in [90, 113, 141, 185,
276] for the spatial-dependent system); multiphase mixture models, are characterized by
the description of the malignant mass as a saturated medium, with at least one liquid
phase (e.g. water) and one solid phase (e.g. glioma cells, ECM, etc.) [52, 119]; hybrid
models involve both discrete and continuous equations for the characterization of cell
migration and the evolution of external factors [97, 140].

1.3 Summary

Throughout the previous introductory sections, we gave a biological overview of the
peculiar features characterizing the development and evolution of brain tumors. We
provided a detailed description of the aspects characterizing glioma progression on
which we focus our study. In particular, we analyzed tumor invasion in the extra-
cellular space, its interaction with the microenvironment, peculiar mechanisms of tu-
mor angiogenesis, and some of the common therapeutic approaches used in the clinic.
We explained which biological and clinical data can be included in the modeling ap-
proach, e.g. DTI and MRI data applied to the study of cell diffusion, and immunos-
taining techniques to track protein distribution in the tumor domain. Moreover, we
discussed the mathematical purpose of developing models that describe tumor evo-
lution as a multiple level process, emphasizing the need of connecting the different
scales, and providing a general overview of the two frameworks on which our ap-
proaches are built.

In the following chapters, we present the analysis on the features characterizing the
brain structures (Chapter 2), develop and analyze the multiscale kinetic-based models
(Chapters 3-6), and describe the macroscopic setting (Chapter 7).
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2The brain structure

The human brain consists of 86 billion neurons and, in addition, a similar number of
other cells. Together with the spinal cord, it makes up the central nervous system. The
brain controls most activities in the human body, processing the incoming informa-
tion and sending instructions to the rest of the tissues and organs. The outer layer of
the brain is called cerebral cortex and is composed of neural cell bodies referred to as
grey matter. Internally, the myelinated axons of these cortical neurons extend into the
cerebral hemispheres and, because of their whitish appearance, they are referred to as
white matter. Consequentially, the grey matter is predominantly located on the cortical
surface of the brain, while the white matter runs deep inside the two hemispheres into
which the brain is divided. Topographically, the surface of the hemispheres has a se-
ries of elevations, called gyri, and infoldings, named sulci, that significantly increase
the surface area of the brain. Structurally, each hemisphere is divided into four ma-
jor anatomical lobes - frontal, parietal, occipital, and temporal - separated from each
other by several sulci. The cerebral cortex and the different internal brain regions are
connected through various white matter pathways. One example of an internal brain
region is the corpus callosum, which is formed by myelinated axons horizontally link-
ing the two hemispheres. Decades of anatomical studies have provided information
on the fiber pathways and fiber bundles that link the different components of the neu-
ral system, yielding a considerable body of literature on the biology and pathology of
myelinated axons (see [263] and references therein).

A deeper understanding of the white matter tracts is a pivotal step for further
elaborations of the knowledge about brain structure and function, as well as for clini-
cal purposes. In fact, tumor migration and dissemination in the brain largely depend
on the orientation and spatial distribution of the brain fibers. As introduced in Section
1.1.1, glioma cells invade the brain following preferential pathways determined by the
brain fibers. The structure and orientation of these brain fibers provide an anisotropic
character to the brain tissue, meaning that different tissue properties, e.g. the diffu-
sion of water molecules, change in different directions. This anisotropic property is
directly reflected in the migratory cell dynamics. In particular, anisotropic invasion
is a peculiarity of glioma cells, which crawl along the aligned structures in the brain
fibers. The resulting infiltrative and heterogeneous patterns contribute to generate the
glioma characteristic of not displaying well-delineated outer borders, as observed in
Section 1.1.4. Therefore, taking into account the presence of fiber tracts in the brain is
a central point for the development of realistic models. The reliability of mathematical
models is a crucial factor when they are used to compare the simulated tumor evolu-
tion with patient data, or they are used to predict tumor progression.

The development of diffusion tensor imaging (DTI) has made possible a clearer in-
vivo identification of some details related to the major white matter pathways [14],
in both normal and damaged brains. An illustrative example of white matter tracts
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originated from DTI data is given in Figure 2.1. Moreover, the development of MR
tractography [12] and diffusion spectrum imaging [255] has allowed a greater degree
of technical precision, although there are some important constraints upon tractogra-
phy, which can sometimes fail in reconstructed the true fiber tract trajectory because
of noise or cumulative error along the trajectory path.

FIGURE 2.1: Representation of white matter tracts. From left to right: sagittal,
coronal, and transversal plane. The colors refer to principal direction of the
fiber tracts: Red for left-right direction, green for anterior-posterior direction,

and blue for inferior-superior direction.

In the following sections, we introduce the basics of DTI imaging. In Section 2.1,
we provide a detailed description of the data collected using the DTI technique and
how they can be quantified. Thereafter, in Section 2.2 we specify how these data can be
incorporated in the model, providing different options for the macroscopic and mul-
tiscale modeling settings. One of the methods described in this section is based on the
idea that the information on tumor cell diffusivity can be extrapolated from the DTI
data by introducing a distribution function that specifies the brain fiber orientation.
Due to the relevance of such an approach to this thesis, we continue in Section 2.3
to present different well-known formulations of this fiber distribution function. We
describe and compare such characterizations, highlighting their differences and their
respective strengths and weaknesses.

2.1 Diffusion tensor imaging

Diffusion tensor imaging is a special type of diffusion-weighted imaging (DWI). DWI
uses specific MRI sequences (see Section 1.1.5) to trace the diffusion of water molecules
and to generate contrast in MR images. Since the diffusion of water within tissues is
altered by changes in tissue microstructure and organization, DWI methods, includ-
ing DTI, are potentially effective for characterizing the effects of diseases on the tissue
structure. DTI is mainly used to study the architecture of white matter in human
brains in-vivo. It allows us to map water molecule diffusion patterns, characterizing
their three-dimensional diffusion as a function of the spatial location and revealing mi-
croscopic details about the tissue architecture, both in normal and pathological states.
Therefore, the DTI method is a valuable instrument in the glioma prognosis since it
provides information about the local brain tissue structure that influences cell spread.
Moreover, it is used to estimate the white matter connectivity patterns, visualizing
aligned structures and neural tracts.

Technically, DTI measures the apparent diffusivity of water molecules in different
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directions per volume element, i.e. in each voxel of an image. The DTI technique re-
lies on the basic physiological concept that, in the brain, the random diffusion-driven
displacements of a molecule is influenced by the interaction with many tissue compo-
nents. In a free medium, the molecular displacements during a given time interval Dt
can be described with a three-dimensional Gaussian distribution P , and the traveled
distance is statistically well described by a diffusion coefficient, which can depend
on the molecule size, or the viscosity and temperature of the medium [6]. Using the
Einstein diffusion equation in n-dimension, the diffusion coefficient D (expressed in
mm2· s�1) reads

D =
hDr2i
2 n Dt

,

where hDr2i is the mean squared displacement, and the probability density P is given
by

P(Dr, Dt) =
1p

(2p DDt)3
exp

✓
� Dr2

4DDt

◆
.

Pure water molecules, for instance, at 20�C diffuse freely with a diffusion coefficient
of roughly 2 · 10�3 mm2· s�1. In other words, they diffuse over 17 µm in 50 ms [162].
In biological tissues, obstacles modulate the free diffusion process: the actual diffu-
sion distance is reduced and the displacement distribution is no longer Gaussian and
closely reflects the tissue microstructure. In this case, the water diffusion can be mea-
sured by a pair of magnetic field gradient pulses that make the MR signal sensitive to
diffusion. The first pulse dephases the magnetization across the sample (or voxel in
imaging), "labeling" water nuclei according to their spatial location. The second pulse,
introduced slightly later, rephases the magnetization to detect the changes in nuclei
location along the gradient direction. This way, the second pulse collects the displace-
ment history of nuclei occurring during the time interval (or diffusion time) between
the two pulses. By acquiring data for various gradient pulse amplitudes, it is possible
to obtain images with different degrees of sensitivity.

For raw DWI data, the signal intensity of an individual voxel in the image is essen-
tially the cube root of the multiplied signal intensities of the three individual images
acquired with a diffusion gradient in each of the three orthogonal directions. In the
specific case of DTI, a minimum of six non-collinear directions is required to fully sam-
ple the directional tensor in space. Then, six individual diffusion-weighted images are
generated and averaged to render the trace of diffusion or diffusion-weighted image.
The anisotropic features in the brain can be recognized by looking at the differences in
the signal intensity between brain regions in relation to the applied diffusion gradient.

2.1.1 DTI data

The DTI data used in this dissertation was acquired and published in [68] and pre-
viously used in [150]. Its acquisition was approved by the Ethics Committee at the
Cruces University Hospital and all the methods employed were in accordance with
approved guidelines. The DTI data was processed with the FSL software1. Specif-
ically, an Eddy Current Correction was first applied to correct the changes produced
by the variations in gradient field directions during the image acquisition, and possi-
ble head movements. Then, the non-brain tissue was removed from the images of the
whole head with the Brain Extraction Tool. Finally, using the information about the gra-
dient direction and diffusion weightings, for each voxel of the images, DTIFIT toolbox

1
https://fsl.fmrib.ox.ac.uk
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fitted a diffusion tensor model at each voxel, deriving the three eigenvectors - refer-
ring to the three principal directions - and the associated eigenvalues - referring to the
corresponding diffusivities - of the diffusion of water molecules within brain tissues.
A more detailed description of the DTI data processing can be found in Appendix A.

The tensor resulting from DTI data for a given voxel centered in x 2 R3 can be
represented by a 3 ⇥ 3 symmetric matrix

D(x) =

0

@
Dxx Dxy Dxz
Dyx Dyy Dyz
Dzx Dzy Dzz

1

A , (2.1)

where all the matrix elements are functions of x. Although D is traditionally called
diffusion tensor, in this chapter we refer to it as directional tensor2. Alternatively, the
directional tensor D can be defined by its three eigenvalues l1, l2, l3 2 R, and the
corresponding normalized and orthogonal eigenvectors v1, v2, v3 2 R3 at each grid
point as

D(x) = l1v1vT
1 + l2v2vT

2 + l3v3vT
3 . (2.2)

Eigenvalues and eigenvectors are space-dependent, i.e. li = li(x) and vi = vi(x)
for i = 1, 2, 3. With the above notation, we refer to eigenvectors sorted according to
the size of the corresponding eigenvalue (decreasing order), and we indicate with v1
the principal direction of the movement at point x. In the case of anisotropy, these
representations of the directional tensor provide a good approximation for the fiber
alignment direction. For instance, the corpus callosum usually shows high diffusion
in the Dxx direction and low diffusion on Dyy and Dzz. Considering that the x-axis is
aligned with the right-left direction, the y-axis with the anterior-posterior direction,
and the z-axis with the inferior-superior direction, this means that fibers in the corpus
callosum run mainly transversely from left to right. For simplicity in the notation, in
the following, we drop the dependency on x in the eigenvalues and eigenvectors of
the tensor.

The application of the directional tensor to describe anisotropic behaviors was in-
troduced in [14], where molecular diffusion in an anisotropic medium was represented
as a Brownian random process characterized by a macroscopic Gaussian conditional
probability density function P(x|x0, t)

P(x|x0, t) =
1p

(2p t)3|D|
exp

✓
�(x � x0)TD�1(x � x0)

2t

◆
, (2.3)

where |D| is the determinant of D. This equation describes the probability that a
molecule, located in x0 at t = 0, reaches position x at time t, where D = D(t, x).

To visualize tensor data, the concept of diffusion ellipsoids was introduced in [14].
An ellipsoid is a three-dimensional representation of the average displacement in
space of a molecule located in a particular spot in a given interval of time. The equa-
tion for the diffusion ellipsoid is built by considering a level set of the quadratic form
in the exponent of P(x|x0, t), i.e.,

�(x � x0)TD�1(x � x0)
2t

= 1 .

2In the mathematical literature that employs a multi-dimensional tensor in the description of the
diffusive flux, this tensor is traditionally named diffusion tensor; however, it has much more implication
than the simple modification of the constant diffusion coefficient. In particular, it is fundamental for the
description of the spatial orientation of the movement. Therefore, as we are interested in the effect of the
tissue orientation on the tumor behavior, we refer to it as directional tensor.
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Considering the representation of D in (2.2), the ellipsoid equation results in

✓
v2

1p
2tl1

◆2

+

✓
v2

2p
2tl2

◆2

+

✓
v2

3p
2tl3

◆2

= 1 .

The main axes of the ellipsoid represent the mean effective diffusion distances, i.e.,
q
hx2

i i =
p

2tli

in the three principal directions in the time t. In the case of isotropic diffusion, as
for homogenous media, the ellipsoid is simply a sphere, whose size is proportional
to the unique diffusion coefficient. In the case of anisotropic diffusion, the ellipsoid
becomes elongated if one direction predominates, or flat if one direction contributes
less than the others. An illustrative example of the diffusion ellipsoids for isotropic
and anisotropic scenarios is provided in Figure 2.2.

v" 2$%"v& 2$%&

v' 2$%'

v" 2$%"
v& 2$%&

v' 2$%'

FIGURE 2.2: Diffusion ellipsoids. On the left, the sphere representing the
isotropic case, where l1 = l2 = l3; on the right, the ellipsoid of an anisotropic
case, where l1 � l2, l3. At the bottom of the two plots the main axis of the

ellipsoids, indicated with vi, and their lengths are represented.

2.1.2 Quantitative DTI information

Diffusion ellipsoids are a meaningful way to display the DTI data and instantly get
visual information from them. However, to provide information on tissue structures
and, eventually, make comparisons, a quantification of the image information is neces-
sary. This is commonly done by translating the information into simpler scalar maps.
Three well-established ways to extract tissue microstructure and architecture infor-
mation for each image voxel are based on the mean diffusivity, the main direction of
diffusivities, and the degree of anisotropy.

The mean diffusivity (MD) characterizes the overall mean squared displacement
of molecules and the magnitude of diffusion. This measure relates to the average ellip-
soid size through the trace of the local tensor D in (2.1), or the mean of the eigenvalues
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of D in (2.2):

MD(x) =
Dxx + Dyy + Dzz

3
=

1
3

3

Â
i=1

li . (2.4)

For a generic point x, MD represents the mean of the eigenvalues of the directional ten-
sor D, that we also denote as l̄. Physically, the trace of D measures intrinsic properties
of the tissue and it is inherently insensitive to fiber orientation or gradient directions.
Thus, changes in this measure can be ascribed to changes in the tissue’s physiological
state. The main direction of diffusivities relates to the main ellipsoid axes, i.e., to the
mapping of the tissue structure orientation in space. In fact, the underlying assump-
tion is that the direction of the fibers is coaligned with the direction of the eigenvector
associated with the largest eigenvalue. Finally, the degree of anisotropy quantifies the
spatial variation of the molecular displacement, namely the ellipsoid eccentricity, and,
therefore, it relates to the presence of oriented structures.

Many measures for the degree of anisotropy have been proposed. They are called
diffusion anisotropy indexes (DAIs) and can be calculated from the eigenvalues of
D. The three main DAIs to which we refer are the fractional anisotropy, the relative
anisotropy, and the volume ratio. We focus on these indices, even though other DAIs
have been suggested in literature, including the ultimate anisotropy indices and the g-
variate anisotropy index. However, their expression can be recovered in terms of the
three previously introduced DAIs [143]. Fractional anisotropy (FA) represents the
fraction of the magnitude of the tensor that can be ascribed to anisotropic diffusion; it
expresses the normalized variance of the eigenvalues as

FA(x) =
r

3
2

p
(l1 � l̄)2 + (l2 � l̄)2 + (l3 � l̄)2

q
l2

1 + l2
2 + l2

3

.

FA is a positive quantity with values in the interval [0, 1], where 0 represents a fully
isotropic condition (l1 = l2 = l3) and 1 a fully anisotropic condition. Relative
anisotropy (RA) is a normalized standard deviation representing the coefficient of
variation of the eigenvalues

RA(x) =
p
(l1 � l̄)2 + (l2 � l̄)2 + (l3 � l̄)2

p
3l̄

.

RA can also be interpreted as the ratio of the standard deviation of the eigenvalues to
their mean, and it varies between 0 (full isotropy) and

p
2 (full anisotropy). Finally,

the volume ratio (VR) is defined as

VR(x) =
l1l2l3

l̄3

and it represents the ratio of the ellipsoid volume to the volume of a sphere of radius
l̄. As for FA, the volume ratio takes values in the interval [0, 1], but in this case, the
volume of the ellipsoid approaches 0 as anisotropy increases, i.e., 0 indicates the high-
est anisotropy and 1 represents complete isotropy. These three DAIs (FA, RA, and VR)
are rotationally invariant, i.e., independent of the orientation of the anisotropic struc-
ture with respect to the rotation of the coordinate system, and they are insensitive to
the scheme by which the eigenvalues are ordered. The main application of DAIs is to
determine whether two tissues have the same degree of anisotropy. In this regard, an
important parameter for DAI comparisons is the contrast-to-noise ratio (CNR). Con-
trast is the difference between two measurements (DAIi) of the same DAI, and the

30 2. The brain structure



noise is the square root of the sum of the variances (s2
i ) in the two individual measure-

ments. CNR is defined as

CNR =
DAI2 � DAI1q

s2
1 + s2

2

.

Several studies (e.g. see [112, 143]) have shown that there are significant differences
between DAIs, especially in terms of sensitivity to the anisotropy and noise. In par-
ticular, FA seems to provide the most detailed representation of the anisotropy char-
acterizing the tissue. It reveals well the various anisotropic structures, even for areas
of mild and low anisotropy, providing good anatomical details of the anisotropic re-
gions, even with increasing noise in the area of low anisotropy. On the contrary, VR
has increasing noise contamination and a decreasing resolution for middle and low
anisotropic regions, despite the fact that it provides the strongest contrast between low
and high anisotropy areas. RA takes an intermediate position. It shows a significantly
reduced intensity of the isotropic background when compared to the FA map, but bet-
ter anatomical details and identification of the anisotropic region when compared to
the VR map. In terms of noise, FA has a higher CNR between white matter tracks,
neighboring cerebrospinal fluid, and grey matter compared to the RA map, while VR
seems to be the index most susceptible to noise. However, these differences are not so
evident, especially for small anisotropy variation, to justify an intrinsic advantage of
one index on the others. All DAIs can be derived from a complete knowledge of the
directional tensor or of its components.

In the following sections, we use the fractional anisotropy index for the compar-
isons of the fiber distribution functions specifying brain fiber orientation. In Figure
2.3 an example of visualization of the FA index on a transversal plane of the brain is
presented. The degree of anisotropy of the tissue increases with the colors going from
red to white, and, therefore, the brighter areas represent brain regions characterized
by highly aligned fibers.

FIGURE 2.3: Fractional anisotropy. An illustrative example of FA on a real
brain slice.
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2.2 Modeling anisotropic diffusion

Previously, we have observed that the invasive pathways of glioma migration are
largely dependent on white matter architecture. A variety of mathematical models
for cell migration has been developed (e.g. see [30, 129, 148, 198]), where DTI data
are incorporated to include the information about the brain structures and to simulate
the directional movement of glioma cells in response to the anisotropy of the envi-
ronment. In particular, this mechanism is called contact guidance. We provide a brief
overview of some approaches proposed in the literature for including anisotropic in-
formation through DTI tensors into the mathematical setting for tumor evolution, ei-
ther in macroscopic models or in kinetic-transport equations. More precisely, in the
following description we refer to the DTI tensor, describing water molecule displace-
ment, as DW , while we identify with DT the tumor directional tensor related to cell mi-
gration. In general, DT is not identify directly with DW , but it is calculated using the
information that DW provides. For our purpose, and considering the data available
for our study, these tensors are space-dependent, but constant in time, i.e., Di = Di(x),
i = T, W.

In the context of macroscopic models, as introduced in equation (1.2), a general
way to describe the diffusion of glioma cell density n(t, x), with t � 0, x 2 W ✓ Rd for
d  3, is

∂

∂t
n(t, x) = �rx · (DT(x)J [n])

where J [n] is the flux, which can be written in either a linear or a nonlinear form, as
generally described in Section 1.2.2. In the case describe by equation 2.2, the diffu-
sion rate is not a constant coefficient, but rather it is described with the tensor DT(x),
which directly models the impact of the complex tissue orientation on cell migration.
The first attempt to include tissue anisotropy in a macroscopic model was proposed in
[275], where the heterogeneity between grey and white matter is included by setting a
significantly higher value for DT in white than in grey matter. Specifically DT(x) = dg
in grey matter, while DT(x) = dw > dg in white matter, describing the faster invasion
in white matter regions. Later on, further expansions of this model have been pro-
posed; these connect directly DT(x) to the anisotropic tensor DW informed by DTI.
One possible choice for DT is described in [148], where the directional tensor is de-
fined as

DT(x) =
⇢

dgI for x 2 grey matter
dwDW for x 2 white matter .

The authors of this paper use a brain atlas and real patient data to show the appli-
cability of their model. However, no biological justifications are provided for such a
relationship between the diffusion of water molecules and the diffusion of tumor cells.
In [129], DTI data are used to connect DW with DT by means of a geometric argument.
Specifically, the authors propose to modify the eigenvalues of the DTI tensor li, but
not its eigenvectors vi, preserving tensor orientation while changing the diffusivity.
This modification is governed by a parameter r: r = 1 keeps the tensor unchanged;
r < 1 decreases the anisotropy; r > 1 increases it. In particular, defining the linear,
planar and spherical indices

cl =
l1 � l2

l1 + l2 + l3
, cp =

2(l2 � l3)
l1 + l2 + l3

, cs =
3l3

l1 + l2 + l3
, (2.5)
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for which the eigenvalues are sorted in decreasing order, they introduce the vector
a(r) as 0

@
a1
a2
a3

1

A =

0

@
r r 1
1 r 1
1 1 1

1

A

0

@
cl
cp
cs

1

A

and defined l̄i(r) = ai(r)li. Using these definitions, DT(x) is given as

DT(x) = l̄1(r)v1vT
1 + l̄2(r)v2vT

2 + l̄3(r)v3vT
3 .

In [198], DT is estimated as DT(x) = aFA(x)DW(x) where FA represents the fractional
anisotropy computed from DTI tensor data and a is a parameter (usually a = 1500).
By using this definition, the authors introduce an acceleration of the diffusion in white
matter, while keeping the shape of the tensors (directionality distribution) the same as
for DW , following the assumption that tumors evolve preferentially along white mat-
ter fibers.

An alternative has been developed for kinetic models, which describe cell invasion
at the individual level, to connect the tensor DT with the DTI data encoded in DW at
the derived macroscopic scale (see [116, 216] and references therein). Considering a
kinetic representation of the cell distribution r(t, x, v, y), with t � 0, x 2 W ✓ Rd,
for d  3, v 2 V = [s1, s2] ⇥ Sd�1, where the minimum (s1) and maximum (s2) cell
speeds satisfy 0  s1  s2 < • (Sd�1 is the unit sphere in Rd), and y 2 Y ✓ Rp

an interval variable, cell migration can be model as in equation (1.1). In this equation
L[r] represents the turning operator that describes the velocity changes of the indi-
vidual cells. The influence of the brain fiber network on the velocity changes - the
so-called contact guidance phenomenon - is modeled by introducing the distribution
of fiber orientations at time t and location x by a probability density q(t, x, v̂), where
v̂ 2 Sd�1 denotes the normalized fiber orientation (specifically, v̂ = v/||v||). Defining
the weight parameter w as

w :=
Z

V
q(t, x, v̂)dv =

8
><

>:

s2
2 � s2

1
d

for s1 < s2

sd�1 for s1 = s2 = s ,
(2.6)

a candidate expression for the turning operator describing velocity changes due to the
fiber network is given by

L[r](t, x, v, y) = �µr(t, x, v, y) + µ
Z

V

q(t, x, v̂)
w

r(t, x, v
0
, y)v

0
dv0 (2.7)

with turning rate µ. Under the assumption of a constant cell speed s that refers to a
population-averaged rate, i.e., V = s⇥Sd�1, and a time-independent fiber distribution
function, i.e., q = q(x, v̂), a macroscopic scaling of equation (1.1) with (2.7) leads to an
advection-diffusion equation, whose tensor for the tumor population is given by

DT(x) =
s2

µ

Z

Sd�1
v̂v̂Tq(x, v̂)dv̂ . (2.8)

It is worth noticing that this expression integrates the DTI information through the
function q(x, v̂). A proper description of the model characteristics and of the asymp-
totic method used for the derivation of the macroscopic equation will be addressed
in the forthcoming Chapter 3. At this stage, we focus on the function q(x, v̂), pro-
viding a more detailed description of its specificities and of the expressions used to
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characterized it, pointing out how DTI-data are involved.

2.3 Fiber distribution functions

The last approach studied in the previous section describes how to map the informa-
tion contained in DW into the tumor cell tensor DT by using the fiber distribution
function related to the cell turning. This approach, which was first described in [216],
yields to the definition of DT described in equation (2.8). In this expression, the func-
tion q(x, v̂) that represents the turning distribution function is left general. In this
section, we investigate the nature of this distribution function. In particular, we study
how such a function incorporates in the model the information about the diffusivity in
the brain and how it describes the anisotropic characteristics of the nervous tissue. It
is important to notice that to obtain reliable simulations of tumor dynamics from both
qualitative and quantitative point of view, we need a detailed analysis on how the DTI
data are processed and included in the model and how the information derived from
these data is taken into account at the macroscopic level.

The fiber distribution density function q(x, v̂) describes the probability of turning
at point x and into a velocity of direction v̂. It represents the link between the raw
DTI data, collected in the tensor DW(x), and the information encoded in the tensor
DT(x), which describes tumor orientation and diffusivity at the macroscopic level.
We assume the function q to be time-independent, leaving the generalization to the
time-dependent case as a future task to address. We investigate how DT(x) is derived
from DW(x) according to different possible expression of the underlying distribution
function q. The three main choices of the fiber distribution most commonly used in
the literature are the Peanut distribution, the von Mises-Fisher distribution (VMF), and
the orientation distribution function (ODF).

In Sections 2.3.1, 2.3.2 and 2.3.3 we present an analysis of some theoretical aspects
of these three distributions. Then, in Section 2.3.4 we compare them using synthetic
data on a single spatial point x first, and then, using real brain data. In the last case,
we analyze 1D and 2D scenarios, i.e., the comparison is done on brain slices obtained
from transversal sections or coronal sections of the brain, respectively. We analyze
and compare the results to better understand their main differences and drive a more
informed choice between them.

2.3.1 Peanut distribution

The definition of the Peanut distribution relies on the concept of the apparent diffusion
coefficient (ADC). This coefficient reflects the average diffusion coefficient in a voxel
and is defined by taking the ratio of the mean squared displacement measured along
a particular direction to the diffusion time of the experiment. In the case of the clas-
sical diffusion described with the use of a directional tensor DW , the mean-squared
displacement in a given direction v̂ belonging to the unit sphere Sd�1 is given by

hx2i = 2t v̂TDW v̂

where t is the diffusion time. Thus, the apparent diffusion coefficient in the direction
v̂ is defined as

ADCv̂ :=
hx2i
2t

= v̂TDW v̂ .

As ADC is an indicator for the anisotropy of the tissue, the most straightforward idea
presented in [216] is to define the fiber distribution function proportional to ADC.
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More specifically, the fiber distribution function q(x, v̂), called Peanut distribution, is
given by

q(x, v̂) :=
d

|Sd�1|Tr (DW(x))
ADCv̂(x) . (2.9)

This way, the cell turning results directly correlated to the apparent diffusion coeffi-
cient. Using (2.9) into equation (2.8), it is possible to generate an explicit expression of
DT in terms of DW :

DT(x) =
s2

(d + 2)µ

✓
Id +

2
Tr(DW(x))

DW(x)
◆

. (2.10)

This general expression in d-dimensions was derived in Lemma 1 of [216]. This ex-
pression reveals the direct relationship between the DTI-generated tensor DW and
the tumor tensor DT. The latter results in a combination of an isotropic component
proportional to the identity matrix Id, and an anisotropic part proportional to DW .
Theoretically, even in the case of a totally anisotropic background (e.g. the limit case
of only one DW eigenvalue different from 0), DT would always keep an isotropic part,
leading to a partial homogenization of the environment. Considering the particular
case of d = 2 and fixing spatial point x 2 R2, it is possible to visualize the two ten-
sors DW and DT as ellipses and immediately grasp the difference between the way
they reproduce the anisotropic information. Figure 2.4 illustrates an example of DW
with bigger diffusion along the y-axis direction than along the x-axis direction and the
resulting DT in the same point x.

FIGURE 2.4: Single point comparison for the Peanut distribution. DW (left
plot) and DT with the Peanut distribution (right plot) in a single data point.

The ellipse shown in the left plot of Figure 2.4 has a more elongated shape than the
ellipse in the right plot. The partial homogenization of the anisotropy characterizes
the Peanut distribution and can be mathematically shown by looking at the analytical
relation between FA(DW) and FA(DT). In [216], it was proven that FA(DT(x)) 
FA(DW(x)) 8x 2 Rd, for the spatial dimensions d = 2 and d = 3 (Lemma 2). The
inequality shows that the anisotropy index of the tumor tensor is always lower than
the one calculated from the DTI tensor. Moreover, referring to the linear, planar and
spherical indices introduced in (2.5), the same Lemma shows that c̃l =

2
3 cl , c̃p = 2

3 cp,
and c̃s = 1 + 2

3 cs, i.e., the tumor ellipsoids are less anisotropic and more spherically
shaped (c̃l , c̃p, and c̃s are the indices of DT, while cl , cp, and cs are those of DW). This
result suggests that DT partially fails in reproducing the brain structure with sufficient
details, especially in the case of crossing fiber tracts.
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2.3.2 von Mises-Fisher distribution

The von Mises-Fisher distribution belongs to a class of distributions used for describ-
ing data on the circle or on the sphere from the standpoint of statistical inference [182].
Considering the unit vector v̂ 2 Sd�1, we denote by Md(µ, k) the (d � 1)-dimensional
von Mises-Fisher distribution with probability density function

f (v̂, µ, k) =
k

d
2�1

(2p)
d
2 I d

2�1(k)
exp

⇣
kµT v̂

⌘
. (2.11)

The parameters k � 0 and µ 2 Sd�1 represent the concentration parameter and the
vector of mean direction, respectively, with ||µ|| = 1, while In is the modified Bessel
function of the first kind and of order n. In the equation, the fraction kd/2�1

(2p)d/2 Id/2�1(k)
is

a normalizing constant. The von Mises-Fisher distribution is symmetrical in µ and its
mean value reads

E[v̂] =
I d

2
(k)

I d
2�1(k)

µ .

This distribution is also rotationally symmetric in µ and, for k > 0, the distribution has
mode at µ and antimode at �µ. Moreover, the larger the value of the concentration
parameter, the greater is the clustering around this direction, explaining the reason
beyond naming k concentration parameter. For k = 0, Md(µ, 0) reduces to a uniform
distribution for all d. In the planar case (d = 2), the distribution is simply called
von Mises distribution M2(µ, k). In this case, the density function f in equation (2.11)
reduces to

f (v̂, µ, k) =
1

2pI0(k)
exp (k cos(v̂ � µ)) . (2.12)

This distribution is unimodal and symmetric in v̂ = µ; the mode is at v̂ = µ, while the
antimode at v̂ = µ+p. Once again, the concentration parameter regulates the cluster-
ing around the mode. In the spherical case (d = 3), the von Mises-Fisher distribution
is also called Fisher distribution F (µ, k) (or M3(µ, k)). Starting from equation (2.11),
it is possible to simplify the normalizing constant, obtaining the probability density
function

f (v̂, µ, k) =
k

sinh k
exp

⇣
kµT v̂

⌘
. (2.13)

The planar distribution was introduced by von Mises in 1918 [195] for the study of the
deviation of measured atomic weights from integral values. R. A. Fisher extended it
to the spherical case in the context of statistical mechanics to describe the distribution
of the energies of weakly interacting dipoles [87]. The extension to d > 3 is based on
the work of Watson and Williams [292].

The von Mises-Fisher distribution can be used for the definition of the fiber distri-
bution function. Starting from the planar case d = 2 in equation (2.12) and considering
the expression of the DTI tensor DW in (2.2), one can consider the mean direction µ as
referring to the leading eigenvector v1 of DW . In fact, it is natural to assume that cell
turning is more concentrated in the dominant direction of anisotropy. Since the brain
fiber network is naturally non-polarized, i.e., there is no preferential sense of motion
along a fiber, it is reasonable to consider the symmetric version of the distribution
(2.12), namely the bimodal von Mises distribution. Thus, in this case, the function q(x, v̂)
can be defined as

q(x, v̂) :=
1

4 p I0(k)

�
e k v1·v̂ + e�k v1·v̂

�
. (2.14)
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With this definition, the fiber distribution function satisfies q(x, v̂) = q(x,�v̂) 8x 2 R2

and 8v̂ 2 S1, and it has two maxima in the directions v1 and �v1, respectively. The
concentration parameter k, related to the level of concentration around the domi-
nant direction, can be chosen to be proportional to FA(DW). Intuitively, cells should
become more aligned along the direction of greater anisotropy of the environment.
Therefore, one can define the function k(x) := k FA(DW(x)), where the constant fac-
tor k describes the sensitivity of the cells to the directional information given by the
environment, and use it as the concentration function in (2.14). Plugging (2.14) into
equation (2.8) with these choices of the parameters, we obtain

DT(x) =
s2

µ

 
1
2

✓
1 � I2(k(x)

I0(k(x)

◆
I2 +

I2(k(x)
I0(kx)

v1vT
1

!
. (2.15)

The function k(x) allows to control the relative weights of the isotropic and anisotropic
components of the tensor. In fact, in the isotropic case (FA(DW) = 0), the von Mises
distribution reduces to a uniform distribution. The same happens for cells that are not
responding to the environmental anisotropy (k = 0). For FA(DW) = 1, k(x) = k and
DT(x) preserves only the anisotropic component when k ! •„ i.e.,

DT(x) =
s2

µ

✓
I2(k(x))
I0(k(x))

v1vT
1

◆

since I2(k)
I0(k)

! 1 for k ! •. Introducing a further parameter d 2 [0, 1] to describe the
inherent degree of randomized turning of the cell, it is possible to have an additional
partial control on the size of the isotropic component in DT. In particular, the pa-
rameter d represents the weight of the uniform distribution included in the following
modified expression of q(x, v̂):

q(x, v̂) =
d

2p
+ (1 � d)

1
4 p I0(k(x))

⇣
ek(x)v1·v̂ + e�k(x)v1·v̂

⌘
. (2.16)

Plugging (2.16) into equation (2.8) gives

DT(x) =
s2

µ

 
1
2

✓
d + (1 � d)

✓
1 � I2(k(x))

I0(k(x))

◆◆
I2 + (1 � d)

I2(k(x))
I0(k(x))

v1vT
1

!
.

As for the concentration function k(x), the parameter d influences the contribution of
the isotropic and anisotropic components in DT. In particular, if d = 1 (or k(x) = 0),
DT simply describes an isotropic environment

DT(x) =
s2

2µ
I2 .

On the contrary, when d ! 0, it reduces to (2.15). Similarly to what we did for the
Peanut distribution, we consider anisotropic data at one particular spatial point x 2
R2, and we visualize DT as an ellipse, analyzing how the variation of the parameters k
and d in (2.16) affects size and shape of it, also with respect to the ellipse representing
the DTI-tensor DW . The results are shown in Figures 2.5. As highlighted above, DT
has a higher degree of anisotropy for increasing value of k or for decreasing value of
d. Analytically, if we compute directly the tensor DT in the planar case, it is possible
to obtain an explicit expression of its eigenvalues li =

s2

2µ (1 + (�1)i+1g), for i = 1, 2,
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FIGURE 2.5: Single point comparison for the von Mises-Fisher distribution.
DW in a single data point (top row). DT(x) in a single data point (bottom row).

DT(x) is calculated for different values of k (left plot) and d (right plot).

where g = (1 � d) I2(k)
I0(k)

, and, therefore, of the FA index

FA(DT(x)) =
2(1 � d) I2(k(x))

I0(k(x))r
2 + 2(1 � d)2

⇣
I2(k(x))
I0(k(x))

⌘2
.

Unlike in the case of Peanut distribution, there is a larger possibility of control on
the anisotropy of the tumor tensor. In fact, for d = 1 or k(x) = 0, FA(DT) ! 0,
while for d ! 0 and k ! •, FA(DT) ! 1. On the one side, this means that DT
can be calibrated in order to better reproduce the DTI data encoded in DW , but on
the other side this makes DT strongly dependent on k (and eventually on d), whose
identification from the data is not totally clear. Although it seems reasonable to choose
these two parameters by fitting the original data, their biological estimation remains
uncertain. In the study presented in Section 2.3.4 we use a least square optimization
to deduce their estimation from the fitting of FA(DT) with FA(DW) data.

The bimodal version of the VMF distribution in the spherical case d = 3 can be
derived from equation (2.13), assuming the leading eigenvector v1 as mean direction.
The fiber distribution in this case can be defined as

q(x, v̂) :=
k

4p sinh k
(cosh(k)v1 · v̂) .
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This equation, together with (2.8), provides

DT(x) =
s2

3µ

✓
coth(k)

k
� 1

k2

◆
I3 +

✓
1 � 3 coth(k)

k
+

3
k2

◆
v1vT

1

�
.

The same modifications previously discussed for the two-dimensional case concern-
ing the introduction of the concentration function k(x) and the parameter d reflecting
the predominance of random over oriented turning, can be considered in this spher-
ical case. With respect to the changes in k and d, DT in the spherical case behaves
similar to the planar case.

2.3.3 Orientation distribution function

We recall that the probability density function (PDF) of diffusion P introduced in
equation (2.3) gives the displacement probability for a molecule in x0 to reach the
point x located inside a fiber bundle described by the generic tensor D in the time of
the experiment t. Here, the ODF represents the marginal probability of movement in
a given direction and it is used for mapping the orientation architecture of the tissue
[3]. Assuming that the PDF is a symmetric function that does not depend on time and
considering the standard spherical coordinates system, the probability of movement
in a direction v̂ is given by

ODF(v̂) =
Z •

0
P(rv̂)r2dr . (2.17)

Precisely, being v̂ the direction of the vector x � x0 and r is magnitude, the ODF is
computed by integrating the displacement probabilities over all possible magnitude
r, keeping the direction v̂ constant. The application of this distribution to fiber ori-
entation analysis originates from experimental results that show the correspondence
between the peaks of the ODF and the principal directions of the underlying fibers
[221]. These studies also show a nonlinear, monotonically increasing, relationship be-
tween FA(DW) and the mean principal curvature of the ODF at the principal direction
of the fibers [29]. Therefore, considering the probability density function given in (2.3)
with the above assumptions, and integrating it like in (2.17), the resulting orientation
distribution function reads

ODF(x, v̂) =
1

4 p |D(x)| 1
2 (v̂TD(x)�1v̂)

3
2

. (2.18)

Thus, setting the fiber distribution function

q(x, v̂) := ODF(x, v̂)

with D(x) = DW(x), we obtain the expression for the fiber distribution function ap-
plied to the study of DTI data. Unlike the previous cases, we do not calculate analyt-
ically the expression of DT. Instead, we substitute in equation (2.8) the fiber distribu-
tion function defined by the ODF in (2.18) and we obtain DT by numerically approxi-
mating the integral term. Details about the applied quadrature schemes are provided
in Appendix B. Following the approach used in Sections 2.3.1 and 2.3.2, we provide
an visual example of the comparison between DW and DT in one spatial point x in
Figure 2.6. The two ellipses have reasonably similar shape and proportions, showing
good preservation of the anisotropic characteristics of the underlying tissue.
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FIGURE 2.6: Single point comparison for the ODF. DW (left plot) and DT (right
plot) with ODF in a single data point.

2.3.4 Comparison of the fiber distribution functions

For the sake of simplicity in visualization, we first consider the case of a single spatial
point x 2 R2. We visualize and compare the ellipses related to the three distribution
function q(x, v̂) from the previous sections to the ellipsis related to DW . The overall
comparison is shown in Figure 2.7.

FIGURE 2.7: Single-point comparison. DW and DT at the point x. For the VMF
distribution we fix d = 0.05 and k = 46.

It is evident that with the Peanut distribution (2.9) the anisotropy of DW is in large
part lost in DT, due to its strong isotropic component (see equation (2.10)). On the
other hand, the tensor DT obtained with the VMF distribution (2.16) shows a degree of
anisotropy more similar to that of the original DW . The similarity also depends on the
particular choice of the two parameters, k and d. Precisely, d has been set at d = 0.05
(according to [216]), allowing a small effect of the randomized turning; instead, for
k we consider a least square optimization to fit FA(DT) to the data from FA(DW).
In particular, the optimization procedure provides the value k = 46 for the single-
point case (Figure 2.7), and the value k = 5.775 for the coronal and transversal section
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(Figures 2.8 and 2.10). In both cases, the values minimize the norm of the residual

kFA(DT)� FA(DW)k2 =

vuut
N

Â
i=1

(FA(DT)i � FA(DW)i)2 ,

with N being the number of data points. Finally, with the ODF (2.18), the resulting DT
has similar shape and proportions to the original DW , with more pronounced preser-
vation of the anisotropic feature compared to the Peanut distribution case, and also
independently from any further parameter selection. This choice of fiber distribution
function can be considered beneficial in lack of real patient data that can be used for
accurate parameter estimations.

As it is sufficiently representative for the proposed analysis, we consider real DTI
data on a 2D slice obtained from a horizontal section of an entire brain DTI dataset
and we compare the effect of the three fiber distribution functions computing the FA
index. The results are shown in Figure 2.8.

FIGURE 2.8: FA comparison on a real brain slice. FA(DW) (top row). From
left to right (bottom row): FA(DT) with Peanut distribution, VMF distribution

with d = 0.05 and k = 5.7753, and ODF.

This example stresses again that the Peanut distribution identifies quite accurately the
locations where the fibers are aligned or not, but it also provides some issues related to
the degree of anisotropy emerge. In fact, the resulting tensor DT has a generally lower
degree of anisotropy than the original DW , with values for the fractional anisotropy al-
most halved in the areas of greater alignment. For the VMF distribution, provided that
a suitable tuning of its parameters is performed, the results show a good preservation
of FA. In particular, in Figure 2.9 we can observe how changing the values of k and d in
the VMF distribution affects FA(DT) on this 2D brain slice. Finally, although the use
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of the ODF provides a general under-estimation of the degree of anisotropy, this distri-
bution improves the results compared to the Peanut distribution, and it preserves with
sufficient accuracy the description of the location of aligned and non-aligned fibers. A

FIGURE 2.9: Effect on FA of changing k and d on a real brain slice. FA(DT)
built with the VMF on a brain slice for different values of d (top row, k = 7) and

k (bottom row, d = 0.05).

closer look at the differences between the three distribution is done by considering
different coronal sections of this 2D slice and looking at the variation of the fractional
anisotropy along them. Figure 2.10 illustrates the output for a representative coronal
section.
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FIGURE 2.10: FA comparison on a coronal plane. Comparison between
FA(DW) and FA(DT) along a coronal plane of the 2D brain slice with the
Peanut distribution, the VMF distribution (d = 0.05 and k = 5.7753), and the

ODF.
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Peanut distribution and ODF have an almost identical trend. As expected, the Peanut
distribution almost halves the degree of anisotropy with respect to the DTI data, while
the ODF preserves the information significantly better. VMF distribution, on the other
hand, often provides an under-estimation of the fractional anisotropy at local max-
ima of FA(DW) and an over-estimation of FA(DW) at local minima. Changing the
considered coronal section, the qualitative results do not change, and the highlighted
differences in the fractional anisotropy remain essentially the same. These differences
can be more clearly observed from a global perspective considering the relative differ-
ence R(D) between the FA(DW) and FA(DT)

R(D) :=
FA(DW)� FA(DT)

FA(DW)
. (2.19)

Notice that in equation (2.19) we are not considering the absolute value of the numer-
ator in order to visualize situations of both under-estimation and over-estimation of
the fractional anisotropy. The results of this analysis are shown in Figure 2.11.

FIGURE 2.11: R(D) comparison. From left to right, R(D) for Peanut distribu-
tion, VMF distribution (d = 0.05 and k = 5.7753), and ODF.

In line with the results of Figure 2.10, we observe that the VMF distribution is the
only one with a mixed trend. The only exceptions are given by some isolated blue
areas in the ODF plot, possibly related to errors in the DTI measurements and/or to
oscillations in the calculations. R(D) for this distribution indicates that FA(DT) pass
from areas of over-estimation of the original anisotropy (colors from green to blue) to
areas of under-estimation of the original FA (colors from green to red). An additional
piece of information emerging from the comparison between the top row of Figures 2.8
and 2.11 is that in the highly anisotropic areas, where FA(DW) is bigger (the brighter
regions in Figure 2.8), the relative error made with any of the three distributions is
generally smaller with respect to more isotropic regions. Moreover, in these highly
anisotropic areas, the error is reduced as we pass from Peanut distribution to ODF
and, even more, when we consider the VMF distribution.

Some of the simulations shown above involve very heavy computation. Therefore,
it is worth discussing the computational cost of each of the three distributions. The
cost for calculating of the fiber distribution functions and the resulting tensor DT is
almost identical for the Peanut and the VMF distribution. However, the construction
of DT via the Peanut distribution does not require any matrix multiplication, while
one matrix product is needed for the calculation of DT in each voxel with the VMF
distribution. The ODF, on the other hand, requires more calculations and, therefore,
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has a higher computational cost. For each voxel, it requires the numerical approxima-
tion of a spherical integral, whose cost depends on the chosen numerical method. In
all cases, independently from the particular approximation used, the evaluation of the
integrand function involves several matrix products and matrix inversions. If, for in-
stance, the Gauss-Legendre quadrature formula for computing the integral is chosen,
the computational cost for the calculation of DT in each voxel of the 3D mesh grid is
O(m2), where m indicates the number of points of the quadrature formula.

2.4 Summary

Brain structures and mainly white matter tracts are critical factors involved in the
highly anisotropic migratory dynamics of glioma cells. These structures enable the
glioma cells to extensively invade the brain tissue. On the one side, this causes the
macroscopic heterogeneous patterns of tumor mass observed in the images. On the
other, it determines the formation of a not well-delineated outer tumor borders, i.e.,
regions of low glioma cell density outside the main tumor body that are not detectable
with standard imaging techniques. These problems in detecting the actual tumor bor-
der often translate into negative effects on the outcome of clinical treatments. There-
fore, it is essential to account for the characteristics of brain fibers in the development
of reliable models for glioma progression in order to improve treatment strategies.

In this chapter, we discussed the details of the DTI technique for medical imaging,
which allow an in-vivo identification of the features related to the major white matter
pathways and to the cell diffusivity along them. We described the tensor represen-
tation of the DTI data and different scalar maps (FA, RA, and VR) that are used for
the quantification of the DTI information. Many methods have been defined for both
macroscopic and the kinetic-based frameworks to infer the anisotropic tumor tensor
from the information obtained with the DTI technique. Among these approaches, we
discussed the use of a distribution function to characterize the brain network. The ad-
vantage of this approach is that different DT can be derived from the same expression
simply changing the fiber distribution. We analyzed the main peculiarity of this func-
tion and carried out a comparison between the most common fiber distribution func-
tions, namely the Peanut, the VMF, and the ODF distribution. We highlighted how
the DTI information is translated by each of the distribution functions into the ten-
sor DT(x) characterizing tumor orientation and diffusion, and which are their main
differences. This study represents the basis for the forthcoming models based on the
kinetic framework that will be discussed in Chapters 3-5.
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3Tissue influence on glioma progression

Glioma progression is a highly complex process that involves several biological as-
pects already introduced and discussed in Section 1.2. In this dissertation, we ap-
proach this problem introducing some of such features step by step. We define a first
model focusing only on the evolution of glioma cells with the aim of investigating
the impact of the brain fibers in the tumor overall dynamics. Cell interactions with
the ECM are one of the mechanisms supporting active cell movement along the pre-
existing brain structures. In particular, we consider the family of integrin receptors as
only mediators of this process [61, 64, 127], and we rely on DTI data to identify the
aligned structures along which cell migration is more likely to occur since this tech-
nique provides information about the microscopic tissue architecture [281].

The model presented in this chapter is based on a multiscale modeling approach
for glioma cell migration and proliferation, relying on kinetic equations. The internal
variable characterizing the tumor population is used to describe the binding process
between cells and brain fibers, while the mesoscopic equation, modeling cell turn-
ing and proliferation in response to the underlying tissue structure, carries the micro-
scopic information up to the macroscopic level. Moreover, we include in the model an
integrated therapeutic treatment, a combination of radiation and chemotherapy based
on integrins inhibitors. We incorporate this treatment at both microscopic and meso-
scopic level. The macroscopic setting is derived via a parabolic limit and the Hilbert
expansion method applied to the moment equations. More precisely, in Section 3.1 we
elaborate on the transport model, its basic concepts, and its macroscopic limits, while
in Section 3.2 we describe the model setting at the different scales. Finally, Section 3.3
is dedicated to the numerical results for different scenarios.

Some of the results presented in Chapter 2 and the content of this chapter have
been published in the paper by Conte, Gerardo-Giorda, and Groppi [54].

3.1 Preliminaries

The multiscale framework described in this section is proposed for modeling biolog-
ical systems using the characteristic methods of the kinetic theory [222]. This frame-
work is essentially based on the definition of the microscopic state of the cells, the dis-
tribution function over that state, and the derivation of an evolution equation for this
distribution. Cell migration is modeled by using kinetic transport equations featuring
an integral operator for the characterization of velocity changes and additional terms
for modeling proliferative/destructive dynamics. This framework originates from the
so-called kinetic theory of active particles (KTAP) largely described in [19]. It was first
applied in [8, 211] to describe the movement of organisms under the influence of a
chemotactic signal and it was further extended in [116, 216] to model mesenchymal
tumor invasion.
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Recalling notation (1.1) introduced in Section 1.2.1, the distribution of tumor cells
is described at the mesoscopic scale by the function r(t, x, v, y), which is parametrized
by the time t � 0, the position x 2 W ✓ Rd, the microscopic velocity v 2 V ✓ Rd, and
the internal state, or internal activity, y 2 Y ⇢ Rp. The mesoscopic model consists of
the following transport equation for the cell distribution:

∂r

∂t
(t, x, v, y) + v ·rr(t, x, v, y) +ry · (G(t, x, v, y)r(t, x, v, y))

= L[r](t, x, v, y) + I [r](t, x, v, y) .
(3.1)

From now on, with the notation r we indicate the spatial gradient, unless otherwise
indicated. The term I [r] := C[r] +D[r] include both to conservative (C[r]) and prolif-
erative or destructive (D[r]) interactions. The dynamics of the internal state variable
y are described by the ODE introduced in Section 1.2.1, namely

dy
dt

= G(t, x, v, y) .

These dynamics determine the second transport term on the left hand side of the trans-
port equation. Moreover, the right hand side of (3.1) is characterized by the presence
of the turning operator L[r](t, x, v, y) describing the velocity changes. These velocity
changes can originate from the classical run and tumble behaviors or result from a
contact guidance phenomena, as introduced in (2.7). The general form of the turning
operator implementing cell velocity changes as velocity jump process reads

L[r](t, x, v, y) = G[r](t, x, v, y)� L[r](t, x, v, y) , (3.2)

where the gain term G and the loss term L are given by

G[r](t, x, v, y) =
Z

V
µ(x, v0, y)T[S](x, v|v0)r(t, x, v0, y)dv0 (3.3)

L[r](t, x, v, y) =
Z

V
µ(x, v, y)T[S](x, v00|v)r(t, x, v, y)dv00 , (3.4)

respectively. Here, v0 is the pre-turning velocity of the gain term and v00 is the post-
turning velocity of the loss term, while µ is a turning frequency that can depend on
position, velocity, or internal state. T[S](x, v|v0) is the turning kernel describing the
probability for a cell in x to choose the velocity v after a reorientation biased by an
eventual external field S and given the pre-turning velocity v0. This kernel is a condi-
tional probability satisfying

Z

V
T[S](x, v|v0)dv = 1 , 8x 2 W , 8v0 2 V (3.5)

and
T[S](x, v|v0) � 0 8x 2 W , 8v, v0 2 V .

Therefore, depending on the choice of the turning kernel, several environmental fac-
tors governing velocity changes and, consequently, cell migration can be described. In
this chapter and in the forthcoming ones, we present the turning kernels describing
either contact guidance or tactic processes. Considering the transport equation (3.1)
and taking into account the dependency of the distribution function r on both micro-
scopic velocity and internal state variable, the zero-th and first order moments of r
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with respect to y are defined as

m(t, x, v) :=
Z

Y
r(t, x, v, y)dy

my(t, x, v) :=
Z

Y
yr(t, x, v, y)dy .

The equations for m and my can be calculated from (3.1) by integration with respect
to the internal variable y. These equations form the basis for the derivation of the
macroscopic setting with the cell density

n(t, x) :=
Z

V

Z

Y
r(t, x, v, y)dydv .

In particular, to establish the connection between the mesoscopic and the macroscopic
level and derive the equations for the latter, several scaling arguments, based on bio-
logical assumptions and depending on the problem at hand, for the operators L and I
are considered. These scaling arguments are used together with asymptotic methods.
These methods highlight whether the driving macroscopic phenomenon is related to
diffusion or convection processes.

As introduced in Section 1.2.1, the classical and commonly used asymptotic meth-
ods for multicellular system rely on parabolic (also called diffusive) or hyperbolic (also
called hydrodynamic) limits, resulting from a proper non-dimensionalization of the
model equations. Diffusive and hydrodynamic limits for transport equations with
velocity jump processes have been widely analyzed (e.g. see [18, 43, 213] and refer-
ence therein). Formally, a small parameter # ⌧ 1 is introduced to rescale the spatial
variable as

x = #x . (3.6)

According to the other characteristic quantities of the system at hand, the macroscopic
time scale t is defined as

t = #2t, (3.7)

in the case of the parabolic scaling representing a diffusion dominated phenomenon,
or

t = #t, (3.8)

in the case of the hyperbolic scaling representing a drift driven phenomenon. After the
spatial scaling (3.6) of the moments equation, we have that the transition probability
can be expanded as

T[S](x, v|v0) = T0[S](x, v|v0) + #T1(x, v|v0) +O(#2) . (3.9)

In both limits, the distribution function r (and its moments) is expanded in the form

r = r0 + #r1 +O(#2) . (3.10)

The functional solvability condition that is necessary for performing a diffusive limit
(i.e., for choosing (3.7)) is that

Z

V
T0[S](x, v|v0)v dv = 0 . (3.11)
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This equation mean that the leading order of the drift vanishes, coherently with the
diffusive time because the phenomenon macroscopically is diffusion-driven. If equa-
tion (3.11) does not hold, the hyperbolic scaling (3.8) is required, which gives a macro-
scopic advection equation modeling a drift driven phenomenon. In both cases, the
macroscopic settings are derived by plugging the expansions of the different quanti-
ties in the moments equations, and comparing the equal orders of #.

We describe, for the model introduced in Section 3.2 and for those of Chapters 4-6,
the expressions of the operators involved in the kinetic equations and the modeling
assumption for performing the macroscopic limits.

3.2 Modeling setting

The first modeling setting relying on the introduced kinetic framework is aimed at
describing the growth and spread of glioma cells in the brain with a major focus on
the influence of the underlying nervous fibers on the tumor evolution. In particular,
we are interested in how the information about the fiber structure, obtained from the
clinical data, is translated and encoded in the model to achieve a realistic description
of glioma cell spread and migration. We connect the extracellular environment to the
processes of cell proliferation and migration, describing the role of some membrane
receptors in glioma evolution, and considering the tumor response to a possible com-
bined treatment, affecting the tumor cell at both microscopic and macroscopic level.

Our setting is built on the framework proposed in [74, 126] and represents an ex-
tension of them. To briefly introduce our approach, we consider the three different
levels to formulate the multiscale setting.

• At the microscopic scale, accounting for processes taking place at the subcellular
level, we describe the dynamics of receptors on the tumor cell membrane, al-
lowing cells to bind with the ECM fibers, by an ODE for their mass action kinet-
ics. This approach involving cell receptor dynamics was first proposed in [136],
where a multiscale model for tumor cell migration accounting for the receptor-
mediated cell movement is described. This work was followed by several others
in line with the above-mentioned KTAP and first directly applied to the study of
glioma evolution in [77]. At this scale, the novelty with respect to [74, 77] is the
addition of therapeutic effects on the receptor dynamics. In particular, follow-
ing the idea in [126], we include at this level a specific chemotherapy treatment,
based on integrins inhibitors, aimed at reducing the receptor capability to medi-
ate the cell-ECM binding process, thus affecting cell migration.

• At the mesoscopic scale, the individual cell behavior is described using a kinetic
transport equation, considering cell interactions with the surrounding tissue as
mediators of the proliferation process, as well as a loss term, accounting for both
natural cell death and the cell death due to the radiation treatment. In fact, inte-
grin inhibitors are combined with radiotherapy, but, if the former is aimed only
at reducing cell motility, the latter is directly aimed at cell killing.

• The macroscopic level is derived via parabolic scaling of the mesoscopic equa-
tion, yielding an evolution equation for the macroscopic cell density. At this
stage, tumor progression is governed by anisotropic diffusion along the direc-
tions characterized by the fiber orientation, haptotaxis, i.e., migration in the di-
rection of the gradient of the extracellular matrix, and tissue-mediated prolifer-
ation together with cell death.
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In the following sections, we describe in detail the model derivation at the different
scales.

3.2.1 Subcellular level

Here, we focus on the microscopic dynamics of cell surface receptors, belonging to the
family of integrins. To understand the influence of integrin dynamics on the macro-
scopic movement, we denote by y(t) 2 Y ⇢ R the concentration of bound integrins,
depending on time t. We assume that the binding between integrins and tissue occurs
preferentially in regions of highly aligned tissue [77]. This process can be described as

(R̄0 � y) + Q
k+⌦
k�

y ,

where R̄0 is the total amount of receptors on a cell membrane, Q is a density field
describing ECM components, and k+ and k� are reaction rates. Therefore, the mass
action kinetics for the concentration y(t) is governed by the following ODE

dy
dt

= k+(dc)(R̄0 � y)Q(x)S(a2, dr)� k�(dc)y . (3.12)

Precisely, Q(x) is a time-invariant density field depending on the position x 2 Rd and
representing the fraction of the insoluble component of the ECM involved in the inte-
grin binding [75, 77]. The therapy effect is modeled through the terms k+(dc), k�(dc),
and S(a2, dr). As in [126, 164], dc(t) denotes the dose of chemotherapeutic agent for in-
tegrin inhibition that affects cell invasion influencing the interaction between integrins
and ECM. This is modelled through the attachment and detachment rates k+(dc) and
k�(dc). In particular, dc(t) reduces the capability of the cells to bind with the ECM.
Moreover, dr(t) represents the dose of radiotherapy, directly aimed at cell killing. In
line with the well-established linear-quadratic radiobiological model (L-Q) [36, 88],
the surviving fraction of cells after radiotherapy is described as

S(a, dr) := exp(�adr � bd2
r ) ,

where a and b represent the lethal lesions produced by a single radiation track or
by two radiation tracks, respectively. Therefore, in the binding process of the cell
receptor with the ECM, we account only for the fraction of healthy tissue surviving
the radiation, i.e., Q(x)S(a2, dr), that is available to the cells for attaching to it. We use
different values for the parameters a and b to refer to the radiation effects on tumor
cells (a1 and b1) or on healthy tissue (a2 and b2). In particular, we use the notations
S1(dr) := S(a1, dr) and S2(dr) := S(a2, dr). Additionally, we assume dc(t) and dr(t)
to be at least piecewise continuous functions of time, dc(t), dr(t), k+(dc), k�(dc) � 0,
and the parameters a, b � 0.

Since the microscopic integrin dynamics are much faster than the macroscopic time
scale, they are assumed to equilibrate rapidly [74]. Rescaling y/R̄0  y to simplify the
notation, we consider the unique steady state y⇤ of equation (3.12), namely

y⇤ =
k+(dc)S2(dr)Q(x)

k+(dc)S2(dr)Q(x) + k�(dc)
=: f

�
k+(dc), k�(dc), Q(x), S2(dr)

�
.

Introducing a new internal variable z(t) := y⇤ � y, which measures the deviation of
y(t) from the steady state [77], we consider the path of a single cell moving from an
initial position x0 with velocity v through the field Q(x). With the notation x = x0 + vt,
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equation (3.12) can be rewritten in terms of the deviation z(t)

dz
dt

= �z(t)(k+S2Q + k�) + F(t) +
∂ f
∂Q

v ·rQ =: G(z, Q, dc, dr) .

Here, F(t) represents the derivative of f (k+(dc), k�(dc), Q(x), S2(dr)) with respect to
k+(dc), k�(dc), and S2(dr), i.e.,

F(t) :=
∂ f

∂k+
∂k+

∂dc
ḋc +

∂ f
∂k�

∂k�

∂dc
ḋc +

∂ f
∂S2

∂S2

∂dr
ḋr ,

where the dot indicates the time derivative. The derivative of f with respect to Q reads

∂ f
∂Q

=
k+k�S2

(k+S2Q + k�)2 .

To simplify the notation, we define

Br(Q) := k+S2Q + k�.

We recall that in the model description and derivation we use the notation r to indi-
cate the spatial gradient unless otherwise indicated.

3.2.2 Mesoscopic level

Using the above characterization of the microscopic dynamics, we describe the cell
behavior with the aid of velocity-jump processes. At this level, we base the description
of the proliferation on the model formulated in [74], and we add an overall loss term
taking into account natural and induced cell death.

Letting r(t, x, v, z) be the glioma density function at time t, in position x 2 W ✓ Rd,
with velocity v 2 V ⇢ Rd, and the internal state z 2 Z ✓ (y⇤ � 1, y⇤), the kinetic
transport equation for tumor dynamics reads

∂r

∂t
+rx · (vr)� ∂

∂z
[G(z, Q, dc, dr)r] = L[l]r + P(r)� L(M, R1, dr)r . (3.13)

Here, L[l]r, P(r), and L(M, R1, dr)r stand for the turning operator, the proliferation
term, and the overall loss term, respectively. Precisely, L[l]r denotes the turning op-
erator for the description of the cell velocity changes due to contact guidance. This
process describes the oriented motility response of cells to the anisotropy of the envi-
ronment. As we analyzed in Chapter 2, in the case of glioma cells, the movement and
spread are especially associated with white matter tracts, acting as highways for cell
migration. L[l]r is here defined via an integral operator of Boltzmann type

L[l]r = �l(z)r + l(z)
Z

V
K(x, v)r(v0)dv0 , (3.14)

where l(z) is the turning rate and K(x, v) is the turning kernel. Precisely, l(z) :=
l0 � l1z � 0 depends on the microscopic variable z(t), while l0 and l1 are positive
constants. Due to the rescaling of y, we have Y = (0, 1) and, consequently, y⇤ < 1
and |z| < 1. To ensure a positive turning rate, we assume that l0 � l1. The term
l(z)r represents the rate at which cells change their velocity v to any other velocity.
The integral term denotes the cell changing from any previous velocity v0 to a new
velocity v as a consequence of interacting with the tissue fibers. In order to model
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the turning kernel K(x, v) in (3.14), we assume that the dominating directional cue is
given by the oriented environment of the brain fibers and, consequently, cells choose
their new direction according to the given fiber network. Moreover, we assume K(x, v)
to be independent from the incoming velocity v0. To describe the oriented structure
of the environment we use the directional distribution q(x, v̂) described in Section
2.3. In particular, we assume a constant cell speed s, namely V = sSd�1, s � 0, and,
being v̂ 2 Sd�1, we have v = sv̂. We also assume the tissue to be undirected, hence
q(x, v̂) = q(x,�v̂) for all x 2 Rd. Therefore, the turning kernel is modelled as

K(x, v) =
q(x, v̂)

w
, (3.15)

with the scaling constant w :=
R

V q(x, v̂)dv = sd�1 introduced in (2.6) [77, 216]. For
later reference we introduce the notations

Eq(x) :=
Z

Sd�1
v̂q(x, v̂)dv̂ (3.16)

Vq(x) :=
Z

Sd�1
(v̂ � Eq)⌦ (v̂ � Eq) q(x, v̂)dv̂ (3.17)

for the mean fiber orientation and the variance-covariance matrix for the orientation
distribution of tissue fibers, respectively. Notice that the above symmetry of q implies
Eq(x) = 0. If we associate integrin activation with cell binding to the tissue, we can
see the binding as the onset of proliferation and also of reorientation. In fact, the
turning rate of the cells depends on the integrin state on the cell membrane. If many
integrins are already bound, the cells will need to change their direction more often in
order to escape from the densely packed fibers surrounding them [272], resulting in
an increased rate l(z).

Following [74], we model proliferation as an effect of cell-tissue interactions via
integrin binding. A way to include proliferation at the mesoscopic level is to consider
in (3.13) the proliferation term P(r) in the form

P(r) = µ(M)
Z

Z
c(x, z, z0)r(t, x, v, z0)Q(x)dz0 ,

where M = M(t, x) denotes the macroscopic cell density and is defined as

M(t, x) =
Z

V

Z

Z
r(t, x, v, z)dzdv ,

while µ(M) is a general growth rate. We will specify the expression of µ(M), as well
as the other coefficient function involved in the model formulation in the following
Section 3.3. In the integral operator, the kernel c(x, z, z0) characterizes the transition
from state z0 to state z during the proliferative process at position x. No particular
conditions are required for c. We only assume that the nonlinear proliferative operator
P(r) is uniformly bounded in the L2-norm, a reasonable biological condition linked to
the space-imposed bounds on the cell division.

The overall loss is modeled by the last term in equation (3.13), as a combination
of two parts: one term is related to the natural cell death l(M) and the other term is
related to the induced death due to radiotherapy R1(dr). Thus, the overall loss term
reads:

L(M, R1, dr)r = (l(M) + R1(dr))r .
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In the clinical practice, the total dose of radiation is given in smaller fractions, to avoid
toxic effects on healthy tissue. If V is the number of fractions, the total effect of the
radiation therapy protocol can be expressed as:

R(a, dr) =
V

Â
i=1

(1 � S(a, dr))hd(t � ti) ,

where hd is a C•
0 function with unit mass and support in (�d, d), d ⌧ 1, and ti denotes

the time instants at which ionizing radiation are applied to the patient. Following
the notation for the survival fraction introduced above, we indicate with R1(dr) =
R(a1, dr). Global existence of a unique solution for equation (3.13) can be proved fol-
lowing the arguments in [169], under suitable growth conditions for the rate µ with
respect to its third argument v.

3.2.3 Derivation of the macroscopic setting

Considering the above description of the subcellular and mesoscopic dynamics for
the tumor cell density r(t, x, v, z), we introduce proper scaling arguments in order
to apply the parabolic limit method and deduce the macroscopic density equation.
Specifically, we consider the moments of the cell density r

m(t, x, v) =
Z

Z
r(t, x, v, z)dz , M(t, x) =

Z

V
m(t, x, v)dv ,

mz(t, x, v) =
Z

Z
zr(t, x, v, z)dz , Mz(t, x) =

Z

V
mz(t, x, v)dv .

We do not consider higher order moments of r, as the subcellular dynamics is much
faster than the events on the other scales, so that the deviation z is close to zero. We
also assume the data to be compactly supported in the phase space Rd ⇥ V ⇥ Z. We
first integrate equation (3.13) with respect to z, obtaining the following equation for m

∂

∂t
m +rx · (vm) =� l0m + l0

q
w

M + l1mz � l1
q
w

Mz

+ µ(M)
Z

Z

Z

Z
c(x, z, z0)r(z0)Q dz0dz � L(M, R1, dr)m .

We then multiply all terms in (3.13) by z and repeat the integration procedure, obtain-
ing the equation for mz

∂

∂t
mz +rx · (vmz) =� mzBr(Q) + F m +

k+k�S2

Br(Q)2 v ·rQ m � l0mz + l0
q
w

Mz

+ µ(M)
Z

Z

Z

Z
zc(x, z, z0)r(z0)Q dz0dz � L(M, R1, dr)mz .

We consider a parabolic scaling x ! #x and t ! #2t for the space and time variables,
respectively, as described in Section 3.1. In particular, F(t), which accounts for fast
dynamics and involves the time derivatives of dc, dr ,and the cell survival fraction S,
is scaled with #2. With a similar argument we scale the growth rate µ(M) and the loss
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term L(M, R1, dr). Therefore, we collect the equations for the moments m and mz:

#2 ∂

∂t
m + #rx · (vm) = �l0m + l0

q
w

M + l1mz � l1
q
w

Mz

+ #2µ(M)
Z

Z

Z

Z
c(x, z, z0)r(z0)Q dz0dz

� #2L(M, R1, dr)m , (3.18)

#2 ∂

∂t
mz + #rx · (vmz) = �mzBr(Q) + #2F m + #

k+k�S2

Br(Q)2 v ·rQ m � l0mz + l0
q
w

Mz

+ #2µ(M)
Z

Z

Z

Z
zc(x, z, z0)r(z0)Q dz0dz

� #2L(M, R1, dr)mz . (3.19)

At this point, we apply the asymptotic Hilbert method [44, 212]. Proposed by D.
Hilbert at the beginning of the last century, this method to resolve Boltzmann equa-
tions is based on the use of asymptotic series. It considers the Hilbert expansions of the
moments of r, namely their expansions in power series of #:

m =
•

Â
k=0

#kmk , M =
•

Â
k=0

#k Mk ,

mz =
•

Â
k=0

#kmz
k , Mz =

•

Â
k=0

#k Mz
k .

(3.20)

Hilbert’s approach is to insert the expressions (3.20), called Hilbert series, into (3.18)
and (3.19) and to determine the unknown variables, namely mk, mz

k, Mk, and Mz
k for

k = 0, 1, 2, by sorting the equations into #-powers and using the identity principle.
This upscaling strategy is aimed at obtaining the macroscopic equation for the leading
coefficient M0 of the Hilbert expansion of the macroscopic glioma density function
M(t, x). In order to obtain a closed form for the macroscopic equation, we need to
Taylor expand some terms involved in the moment equations. Precisely, concerning
the proliferation term µ(M) and its dependency on the macroscopic cell density M,
we expand it with respect to M around M0, i.e.,

µ(M) = µ(M0) + ∂M µ(M0)(M � M0) +O(|M � M0|2) . (3.21)

In addition, we assume that c(x, z, z0) is a probability kernel with respect to z and for
all (x, z0). This means that there exists a probability distribution, independent of the
space variable and the integrin binding, that describes the state of the cell before a
proliferation event. This allows us to write

Z

Z

Z

Z
c(x, z, z

0
)r(z

0
)Q dz

0
dz = Q

Z

Z
r(z0)dz0 = Q m0 +O(#) . (3.22)
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Analogously, for the overall loss term L(M, R1, dr), we expand it with respect to M
around M0:

L(M, R1, dr) = l(M0) + ∂Ml(M0)(M � M0) +O(|M � M0|2) + R1(dr)

= L(M0, R1, dr) +O(#) .
(3.23)

Therefore, taking into account (3.21), (3.22), and (3.23), and substituting (3.20) into
(3.18) and (3.19) and collecting the coefficients of the different powers of #, we obtain

#0 :

0 = �l0

⇣
m0 �

q
w

M0

⌘
+ l1

⇣
mz

0 �
q
w

Mz
0

⌘
, (3.24)

0 = �l0

⇣
mz

0 �
q
w

Mz
0

⌘
� mz

0 Br(Q) , (3.25)

#1 :

rx · (vm0) = �l0

⇣
m1 �

q
w

M1

⌘
+ l1

⇣
mz

1 �
q
w

Mz
1

⌘
, (3.26)

rx · (vmz
0) = �l0

⇣
mz

1 �
q
w

Mz
1

⌘
� mz

1 Br(Q) +
k+k�S2

Br(Q)2 m0 v ·rQ , (3.27)

#2 :

∂

∂t
m0 +rx · (vm1) = �l0(m2 �

q
w

M2) + l1(mz
2 �

q
w

Mz
2) ,

+ µ(M0)Q m0 � L(M0, R1, dr)m0 . (3.28)

We start integrating (3.25) with respect to the velocity v. Considering the definition
(2.6) of the parameter w, we get Mz

0 = 0 and, then, plugging this into the equations
(3.25) and (3.24), we have

0 = mz
0(�l0 � Br(Q)) =) mz

0 = 0

and
0 = �l0

⇣
m0 �

q
w

M0

⌘
=) m0 =

q
w

M0 .

Then, we consider (3.27) and integrate it with respect to v obtaining

0 = �l0Mz
1 + l0Mz

1 � Mz
1Br(Q) +

k+k�S2

Br(Q)2 rQ ·
Z

V
m0vdv

= �Mz
1Br(Q) +

k+k�S2

Br(Q)2 rQ ·
Z

V

q
w

M0vdv = �Mz
1Br(Q) .
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We use here the symmetry assumption on the fiber distribution function q(x, v̂). There-
fore, we have Mz

1 = 0 that, plugged into (3.27), gives

0 = �mz
1(l0 + Br(Q)) +

q
w

M0
k+k�S2

Br(Q)2 v ·rQ

=) mz
1 =

1
Br(Q) + l0

✓
q
w

M0
k+k�S2

Br(Q)2 v ·rQ
◆

.

Considering (3.26) with the above deduction leads to

rx · (vm0) = �l0

⇣
m1 �

q
w

M1

⌘
+ l1mz

1 = L[l0]m1 + l1mz
1 .

In order to deduce an expression for m1, we need to invert L[l0]. For this, we recall
the definition of the functional space Lp

J(W) and of the Hilbert-Schmidt operator.

Definition 3.1. A weighted Lp-space, with weight function J, indicated with Lp
J(W),

is defined as

Lp
J(W) :=

(
f : W ! R

���� f is measurable and
✓Z

W
| f (w)|pJ(w)dw

◆ 1
p

< •

)
.

Definition 3.2. A bounded operator T defined on an Hilbert space H is called Hilbert-
Schmidt operator if and only if trace(T ⇤T ) < •, where T ⇤ is the self-adjoint operator.
Notice that every Hilbert-Schmidt operator is compact [243].

For our purpose, we consider p = 2, J := (q/w) and W := V, such that the space
L2

q(V) is also a function of the space-time point (t, x). For each pair (t, x), we analyze
the kernel of the operator L[l0], which is a compact Hilbert-Schmidt operator [212]:

L[l0]m1 = 0 () m1 =
q
w

M1 .

This kernel is the linear subspace of L2
q(V) spanned by q/w, i.e. hq/wi. Therefore, we

can write L2
q(V) = hq/wi � hq/wi?. Restricting L to the subspace hq/wi?, we can

define its pseudo-inverse F :

F :=
⇣
L|hq/wi?

⌘�1
.

Assuming y 2 hq/wi? and solving L[l0](m1) = y, we get

L[l0](m1) = y , m1 = � 1
l0

y +
q
w

M1 .

Since m1 2 hq/wi?, we obtain

M1 = 0 and m1 =
1

l0


l1

l0 + Br(Q)
k+k�S2

Br(Q)2 rQ · v
q
w

M0 �rx · (v m0)

�
.
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Finally, we integrate (3.28) with respect to v, resulting in

∂

∂t

Z

V
m0 dv +

Z

V
rx · (vm1) dv =

Z

V
�l0

⇣
m2 �

q
w

M2

⌘
+ l1

⇣
mz

2 �
q
w

Mz
2

⌘
dv

+
Z

V
µ(M0) Q m0 dv �

Z

V
L(M0, R1, dr)m0 dv .

In view of M1 = 0, the #-correction terms for M can be neglected and, ignoring the
higher order terms, we get the following evolution equation characterizing the macro-
scopic glioma density M

∂

∂t
M = rx · (DT(x)rM)�rx · ((g(Q(x))DT(x)rQ � u(x))M)

+ µ(M)Q(x)M � L(M, R1, dr)M .

(3.29)

Here, we denote by

g(Q(x)) :=
l1

l0 + Br(Q)
k+k�S2

Br(Q)2

the function carrying the information about the influence of the subcellular dynamics.
The macroscopic tensor for the tumor population is expressed, analogously to (2.8), as

DT(x) :=
1

wl0

Z

V
v ⌦ v q(x, v̂)dv ,

while the tumor drift velocity is given by

u(x) :=
1

wl0

Z

V
v ⌦ vrq(x, v̂) dv .

It is important to stress that, even though the similarity between the macroscopic set-
ting proposed in [74] and equation (3.29) is evident, there are substantial differences
in the modeling of the therapeutic approach. More precisely, therapy has been intro-
duced at the microscale, as explained in Section 3.2.1, and its effects on the macro-
scopic equation (3.29) are collected in the terms L(M, R1, dr) and g(Q(x)). Equation
(3.29) can written in the equivalent form

∂

∂t
M�rr : (DT(x)M)+r · (g(Q(x))DT(x)rQ M) = µ(M)Q(x)M � L(M, R1, dr)M ,

where the operator rr : is a short form of the full second derivative. When expanded,
this operator gives rise to a Fickian diffusion part (second term on the left-hand side of
(3.29)) plus an additional advection term (fourth term on the left-hand side of (3.29))
related to the tumor drift velocity. This form of the diffusive operator is also referred to
as the fully-anisotropic advection-diffusion model. In fact, this expression is derived from
individual cell-movement and, as such, is a more biologically relevant form compared
to Fickian diffusion only [74, 216, 274]).

Well-posedness of the macroscopic setting

Using the theory of monotone operators for nonlinear parabolic equations and follow-
ing a well-known approach [251, 258], it is possible to prove the existence, uniqueness
and non-negativity of the solution of the parabolic problem (3.29) with homogeneous
Neumann boundary conditions.
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Let W ⇢ R3 be a Lipschitz domain and n̂ the normal vector to ∂W. Let T̄ > 0 be
finite and consider the following nonlinear parabolic initial-boundary-value problem
related to equation (3.29):

8
>>>><

>>>>:

∂

∂t
M �r · (DT(x)rM) +r · (Y(Q, DT)M) + G(M) = 0 in [0, T̄]⇥ W

rM · n̂ = 0 on [0, T̄]⇥ ∂W

M(0, x) = M̄0(x) in W

(3.30)

where

Y(Q, DT) = g(Q(x))DT(x)rQ � u(x)

G(M) = ((l(M) + R1(dr))� µ(M)Q(x)) M .

Adapting the proof proposed in Appendix A.1 of [74], it is possible to prove the fol-
lowing theorem.

Theorem 3.1. Assume:

A.1 The tensor DT(x) is uniformly positive definite, it belongs to the Sobolev space
W1,•(W) and its smallest eigenvalue is larger than a constant a > 0;

A.2 G(M) is continuous in time and M and it satisfies the growth condition

|G(s)|  c (1 + |s|r�1)

for some r � 1 (with a constant c independent of time and space) and the coer-
civity condition inf

s2R+
G(s)s > �•;

A.3 The function Q(x) belongs to the space W1,•(W);

A.4 The rates k+ and k� are continuous in the variable dc (which in turn has to be
continuous in time) and uniformly bounded;

A.5 The term Y(Q, DT) is in L•(W).

Let U = H1(W), H = L2(W), X = L2(0, T; U) and define the functional space

W := {w 2 L2(0, T; U) : ∂tw 2 L2(0, T; U⇤)} ✓ X .

Let M̄0 2 H and let G : R ! R be a continuous function that satisfies the condition
A.2 above with 1  r < 10

3 . Then, there exists a weak solution M 2 W of the problem
(3.30), i.e., there exists M 2 W such that for all j 2 C•

0 ([0, T]⇥ W):

Z T

0
h∂t M, jiH1(W) dt+

Z T

0

Z

W
(DTrM�Y(Q, DT)M)rjdxdt+

Z T

0

Z

W
G(M)jdxdt = 0 .

It is also possible to prove uniqueness and non-negativity of the solution, using clas-
sical estimates, parabolic comparison principle [83] and theorems from Section III.4.1.
in [258].

Proposition 3.1. The solution of the macroscopic problem (3.30) is unique if G(M) is
strictly monotone. In addition, if M̄0 � 0, the solution of (3.30) is non-negative.
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3.3 Numerical results

The macroscopic setting (3.29) consists of an advection-diffusion-reaction equation for
the description of glioma cell growth and migration in the brain. In this section, we
show some numerical experiments representing various scenarios that the model is
able to reproduce. First, in Section 3.3.1, we specify the expressions of the coefficient
functions involved in the macroscopic setting and the value for the constant param-
eters. Then, in Section 3.3.2, we briefly describe how the data on the computational
domain and the DTI information are taken into account. Finally, the numerical results
of the model simulations are shown in Section 3.3.3.

3.3.1 Assessment of the coefficients

First, we define the expression we consider for the function Q(x) describing the frac-
tion of unsoluble components of the ECM interacting at point x with the tumor popu-
lation, as introduced in Section 3.2.1. We choose it to be proportional to the fractional
anisotropy of the tissue itself. This approach, introduced in [77], is motivated by the
fact that the fractional anisotropy is a measure for the alignment of the brain fibers
and, since in this setting the fiber alignment is guiding cell migration, the function
Q(x) expresses higher values where the tissue is strongly aligned. Hence, we set

Q(x) := FA(DW(x)) .

However, other possible choices can be considered and we will address one of them
in the forthcoming chapter.

The growth rate µ(M), which we assumed to depend on the macroscopic tumor
density, can be defined following different growth models and its choice should be
motivated by biological evidence. A logistic term, as well as Gompertzian or expo-
nential growth, can be a reasonable choice in the absence of biological data. Following
several previous works (see for instance [74, 129]), we employ a logistic growth term,
defined as

µ(M) := cg

✓
1 � M

KM

◆
,

with a constant growth coefficient cg and the tumor carrying capacity KM. For the
natural death term we set l(M) = c̄l M, with tumor death rate c̄l .

The integrin binding and unbinding rates, k+ and k�, respectively, are modelled to
satisfy the assumption made on the chemotherapeutic term in Section 3.2.1. Namely,
we consider the function k+ monotonically decreasing with respect to the given dose
dc, while the function k� is monotonically increasing with dc. In this way, the chemother-
apy treatment, by modeling integrin inhibitors, directly affects cell migration, reduc-
ing the cell capability of binding with the ECM. Precisely, we set

k+(dc) := 0.1
✓

1 +
dc

1 + d2
c

◆

k�(dc) := 0.1 (1 + dc) .

In Table 3.1 we report the range of the values for the constant parameters involved
in the macroscopic setting (3.29). In particular, the simulations shown in Section 3.3.3
are performed using the average values of the reported intervals.
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Parameter Description Value (unit) Source

s speed of tumor cells 0.21 · 10�3 (mm· s�1) [49]

l0 turning frequency in Lr[l(z)] 0.1 (s�1) [259]

l1 turning frequency in Lr[l(z)] 0.01 (s�1) [77]

cg tumor proliferation rate [0.32, 0.72] · 10�5 (s�1) [193]

c̄l tumor death rate [0.32, 0.72] · 10�7 (s�1) estimated, based on [75]

KM tumor carrying capacity ⇡ 106 (cells· mm�3) [81]

a1 one radiation track tumor lesions [0.018, 0.401] (Gy�1) [27]

a2 one radiation track tissue lesions [0.373, 0.389] (Gy�1) [27]

b1 two radiation tracks tumor lesions [0.023, 0.091] (Gy�2) [27]

b2 two radiation tracks tissue lesions [0.016, 0.052] (Gy�2) [27]

TABLE 3.1: Tissue influence on glioma progression: model parameters.

3.3.2 Reconstruction of the computational domain

In Section 1.1.5 we stressed the importance of including patient data in the model (if
available) to which extend they can be useful to obtain realistic outcomes and, eventu-
ally, contribute to reliable predictions based on this model. In the context of the setting
presented in this chapter, we processed data from an MRI scan of a healthy brain and
used this data to derive a realistic description of the computational domain. Moreover,
for the same tissue, the given DTI data provided information about the diffusivity and
the fiber tracts.

We process the brain geometry with the FreeSurfer Software Suite1, an open-source
software for the analysis and visualization of structural and functional neuroimaging
data from cross-sectional or longitudinal studies [86]. The processing of MRI data
with FreeSurfer provides surface and volume information about the two hemispheres
of the brain. From this information, we extract a 2D slice that constitutes the compu-
tational domain. A completed and detailed description of the MRI data processing
is provided in Appendix A. Examples of the processing outputs are shown in Figure
3.1, where both the entire surface of the left hemisphere and the outer border of the
considered 2D slice are visualized.

          
 

FIGURE 3.1: Brain slice reconstruction. The left hemisphere visualized with
Paraview2(left); contour of a 2D slice of the hemisphere (right).

1
https://surfer.nmr.mgh.harvard.edu
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This computational domain was, then, triangulated with the mesh generator Gmsh3.
It is important to mention that this spatial mesh does not coincide with the voxel mesh
of the DTI dataset. In particular, the former is much finer than the latter and, thus, a
registration between the two meshes is required. This registration is performed with
different visualization programs (Paraview and FSLeyes4, the FSL image viewer), al-
lowing to combine different data and obtaining the overall brain information on the
computational domain. Further details on the mesh registration are provided in Ap-
pendix A. In Figure 3.2, the fractional anisotropy values of the DTI data, FA(DW(x)),
and the underlying fiber structures are visualized on the 2D brain slice of the left
hemisphere. The latter, which highly influences tumor dynamics, is visualized in a

        

FIGURE 3.2: FA and fiber representation. Fractional anisotropy of DW(x) (left)
and visualization of the fiber tracts in a selected subdomain (right).

selected subdomain, where the leading eigenvector of the tensor DW(x) is plotted in
each point x. The processing of this DTI data allows the calculation of the macroscopic
tensor DT(x) with the three fiber distribution functions introduced in Section 2.3. We
will use the different macroscopic tensors obtained with the three distributions for
comparing the evolution of the tumor mass in the next section.

The simulation presented in Section 3.3.3 refers to the 2D version of the macro-
scopic setting (3.29). For simplicity in the visualization, the simulations are performed
on one hemisphere only. However, no constraints exist to extend the numerical cal-
culations to the entire brain slice. The numerical simulations are performed with a
self-developed code in Matlab (MathWorks Inc., Natick, MA), where a Galerkin finite
element scheme for the spatial discretization is considered, together with an implicit
Euler scheme for the time discretization. Details about the numerical schemes are
provided in Appendix B.

3.3.3 Numerical experiments

Considering the parameters given in Table 3.1 and the functions defined in Section
3.3.1, we simulate different scenarios on the computational domain shown in Figure
3.1. We recall the macroscopic setting (3.29) in its equivalent form

∂

∂t
M =rr : (DT(x)M)�rx · (g(Q(x))DT(x)rQ M)

+ µ(M)Q(x)M � L(M, R1, dr)M .

(3.31)

2
https://www.paraview.org

3
http://gmsh.info

4
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes
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For the initial conditions we take a constant distribution of tumor cells on the circle
with radius r0,M = 0.5 and centered at (x0,M, y0,M) = (�36,�32), situated in the left-
bottom part of the brain slice representing the illustrative computational domain, i.e.,

M(x, y) = 1 for
�
(x � x0,M)2 + (y � y0,M)2� < r0,M .

We present the numerical results of these different scenarios:

(A) we consider the model without therapy and we compare the tumor evolution
obtained with the three different fiber distribution functions;

(B) after selecting one of the distributions, we compare the model outputs in the
cases with and without the advective term;

(C) we add the therapeutic term and simulate its effects on the tumor evolution with
the same fiber distribution used in (B).

Figure 3.3 shows the comparison of scenario (A): the tumor evolution over time with
the three different fiber distribution functions, in the absence of a therapeutic strategy.
Columns in this figure refer to three different time instants: the solution is shown after
40 days, 80 days, and 120 days. On the other hand, rows refer to the three different
fiber distribution functions: Peanut distribution, VMF distribution, and ODF. Some
similarities can be observed between the tumor dynamics with the different fiber dis-
tribution functions, especially in qualitative terms. For all the three distributions, cell
displacement inside the tissue covers an area of comparable extension and similarly
reflects the underlying fiber orientation. Nevertheless, we see that the ODF distribu-
tion can reproduce anisotropic pattern and branched structures of tumor evolution
arising from the underlying tissue structure, in contrast to the smoothed effect ob-
served for VMF and Peanut distribution. This smoothing effect is mainly due to the
isotropic component in the tensor DT (2.10).

For our second set of numerical experiments, scenario (B), we select the ODF for
the description of the fiber. With this choice, we avoid on the one hand the isotropic
component independent from the DTI data that characterized the Peanut distribu-
tion, and on the other hand, the estimation of the parameters k and d necessary for a
proper use of the VMF distribution, as done for instance in [274]. Unfortunately, for
this study, we did not have access to data from oncologic patients in order to run a
patient-specific estimation. Therefore, we decided to rely on the fiber description pro-
vided by the ODF. In Figure 3.4 we illustrate case (B), i.e., the numerical simulations of
the tumor evolution with and without the advective term and in the absence of ther-
apy. The advective term originates from the subcellular dynamics and involves also a
component related to the divergence of DT, which differentiates the fully anisotropic
model for the simpler Fickian diffusion, named in the following as the pure diffusive
model. Significant anisotropic behaviors, which are evident in the simulations of the
model with advection (bottom row), are not reproduced by the pure diffusive model
(top row). In the purely diffusive case, the tumor evolution still shows the influence
of the anisotropic diffusion in driving cell movements preferentially along the major
fiber tracts, but it is not able to reproduce branched patterns and more heterogeneous
distribution of the tumor density in the domain. On the other hand, the introduction
of the haptotactic drift leads to more branched structures, closer to the ones observed
in clinical imaging (e.g. see [312]). The mechanism that drives cell migration along
the tissue structure is visualized in detail in Figure 3.5, where the leading eigenvec-
tor of the tensor DT(x) is plotted together with the tumor density at 140 days in the
two cases. The figure shows the aligned structures characterizing the brain tissue, by
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FIGURE 3.3: Scenario (A). Simulation of the evolution equation (3.31) without
therapy, with the three different choices for the fiber distribution function.

means of the DT(x) eigenvector, and their influence on the tumor dynamics. The dif-
fusion in both cases is anisotropic, due to the presence of tensor DT(x), and along the
main fiber tracts the diffusion seems to be similarly fast, although slightly faster in
the pure diffusion case. However, the cells in the purely diffusive model seem to be
slower or less able to change direction and adapt to the tissue, especially in the region
with crossing fibers and at the tumor edges. To conclude scenario (B), Figures 3.4 and
3.5 show that taking subcellular processes into account leads to a non-negligible influ-
ence on the spatial distribution of the tumor cells. However, real patient data would
be necessary to clarify which of the modeling approaches better explains the clinically
observed tumor behavior.

In our third and final set of simulations, scenario (C), we test our model consid-
ering a therapeutic strategy used in the case of newly diagnosed malignant glioma. It
is based on a combination of chemotherapy and radiotherapy for a period of 6 weeks.
Radiotherapy at a dose dr = 2 Gy is given once per day, 5 days per week from weeks 1
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FIGURE 3.4: Scenario (B). Simulation of the pure diffusion model (top row) and
of the complete model (3.31) without therapy (bottom row). In both cases, the

ODF is used for the fiber description.

FIGURE 3.5: Details of scenario (B). Tumor evolution after 140 days in the
case of the pure diffusion model (left) and the complete model (3.31) without

therapy (right), together with the fiber direction.

3.3. Numerical results 65



to 6, with a total dose of 60 Gy, while chemotherapeutic agents for integrins inhibition
at a normalized dose of dc = 5 [126] is administered once per day from weeks 1 to 6. In
particular, concerning chemotherapy, as we described in Section 3.2.1, we concentrate
on the reduction of tumor invasion affecting the integrin/ECM bindings [73, 271]. Dif-
ferent types of integrin inhibitors, such as cilengitide (targeting the families of avb3 or
avb6 integrins) or ATN 161 (targeting a5b1 integrins), have been evaluated in preclin-
ical or clinical studies. We consider the action of such chemotherapeutic agents, mo-
tivated by different reported trials ( e.g., see trials NCT00689221 and NCT011653335).
As initial condition for the simulation with therapy, we consider the tumor density
obtained running the model without therapy for 5 weeks. We first observe the effect
of chemotherapy as the only applied treatment, setting the dose of radiation to dr = 0.
Results are shown in Figure 3.6 where we plot the difference between the solution for
the model without any therapeutic treatment and the one with chemotherapy.

FIGURE 3.6: Scenario (C). Difference between the tumor density in the model
without therapy and in the case of chemotherapy. The difference is plotted
together with the fiber direction. For the construction of DT the ODF is used.

In both cases, DT is calculated using the ODF. As chemotherapy does not aim at killing
cells, but at reducing their mobility, no changes in the tumor mass are observed. On
the other hand, the tumor cells are less invasive than in the case without therapy, and
at the end of the simulation, namely after the 6 weeks of therapy, they show a larger
concentration in the neighborhood of their initial location. In Figure 3.6 also the main
fiber direction is shown. We observe that, when chemotherapy is considered, the cells
tend to remain clustered in the area of high alignment of the fibers, being less able
to change direction and spread inside the brain due to the effect of the therapy on
the integrin/ECM binding. Finally, we test the effect of radiotherapy, whose objective
is killing cells. The results are shown in Figure 3.7, where the difference in the cell
density between the model without any therapy and the complete model with both
chemo- and radiotherapy is considered. After 6 weeks one can observe a stronger re-
duction of the tumor density with respect to the situation 3 weeks before, represented
by larger areas of positive difference. This is particularly evident in the areas where,
due to the chemotherapy effects observed in Figure 3.6, the cells are more concentrated
(i.e., the blue areas of Figure 3.6).

5Reports on the clinical trials are provided at https://clinicaltrials.gov
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FIGURE 3.7: Scenario (C). Difference between the tumor density in the no-
therapy model and in the case in which both chemo- and radiotherapy are con-

sidered. For the construction of DT the ODF is used.

3.4 Summary

The influence of the brain tissue architecture on tumor cell migration, described in
Chapter 2, represents the central focus of the DTI-based multiscale model setting pro-
posed in this chapter. Starting from the works proposed in [74, 126], we described
the influence of brain fibers on glioma growth and spread and elaborated on the ef-
fects of combined treatments of chemo- and radiotherapy on tumor evolution. The
multiscale formulation integrates, within the same framework, the dynamics of inte-
grins receptors, the mesoscopic description of cell-ECM interactions as the onset of
tumor proliferation, and a specific therapeutic approach including inhibitors of cell-
tissue bindings. The macroscopic equation for the tumor cell density - derived from
the mesoscale via a parabolic scaling - accounts for real data of the brain structure
through the tensor DT that depends on a local fiber distribution function. In partic-
ular, the comparison between the different fiber distribution functions, performed in
Section 2.3.4, was here further investigated, analyzing the response of the tumor cells
to the different descriptions of the fiber network.

The simulations show how different choices of this distribution can influence the
results, in terms of extension of the neoplastic area, shape, tumor infiltration, and
emergence of heterogenous patterns (as shown in Figures 3.3 and 3.4). The role of
the fibers in guiding cell movement and glioma invasion clearly emerges, as shown
in Figure 3.5. In line with previous approaches based on a multiscale framework (see
for instance [74, 75, 77]), this figure also shows the importance of including in the
model the microscopic dynamics that allow the emergence of evident anisotropic be-
haviors as the tumor progresses. The resulting tumor evolution reflects the features
(e.g. branched patterns or heterogeneous distribution) that are often observed in the
clinic. Moreover, the proposed multiscale framework gives the possibility of includ-
ing, at various levels in the model formulation, emerging treatments, related to inte-
grins inhibition, combined with standard approaches, whose effect on tumor invasion
and migration in the tissue are clearly shown in Figures 3.6 and 3.7.

The validation of the results related to the fiber distribution choice, via comparison
of the simulated tumor evolution with longitudinal clinical data, as well as of the re-
sults from combined treatments remains a future objective since only data for healthy
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brain structures were available for this study. In fact, the acquisition of the desired data
presents several issues, mainly related to the fast evolution characterizing this dis-
ease, often discovered already at a late stage of progression. However, for the global
aim of this dissertation, the proposed setting in this chapter represents an important
base, on which the following models will be built. In fact, several processes have not
been included so far, such as intratumor heterogeneity or micro-environmental factors
evolving together with cancer cells. In the forthcoming Chapters 4 and 5, we will see
how this setting can be extended to include some of these aspects, mainly related to
intratumor heterogeneity and tumor-associated angiogenesis.
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4Intratumor heterogeneity, vasculature,
and acidity

Glioma development, growth, and invasion are influenced by a multitude of intrinsic
and extrinsic factors. In Chapter 3, we mainly focused on the contribution of the fiber
network to the contact guidance phenomenon driving cell migration. Conversely, in
this chapter we describe the impact of tumor heterogeneity, tissue acidity, and the vas-
culature component of the tumor microenvironment on the cell growth and migration.

The phenotypic heterogeneity of the glioma population is a highly debated topic.
Several experiments with cultures of glioma cells suggest mutual exclusion of migra-
tory and proliferative behavior, as reviewed e.g. in [21, 100, 303]; this characteristic is
known as go-or-grow dichotomy [98, 99]. Biological evidence indicates that migratory
and proliferative processes share common signaling pathways, suggesting a unique
intracellular mechanism that regulates both phenotypes [100]. However, the biologi-
cal community is divided, and this issue is still under investigation, especially for the
case of neoplasms at an advanced stage. Concerning tumor microenvironment, hy-
poxia is one of its prominent traits, especially for glioma neoplasms, as we described
in Section 1.1.2. It has been suggested (see e.g. [123, 303] and references therein) that
hypoxia is putatively influencing the phenotypic switch between migrating and pro-
liferating behavior along with other regulating factors, like angiogenesis or ECM pro-
duction and degradation. Inconsistent intratumor oxygenation, caused by capillary
occlusion, leads to the formation of highly hypoxic sites, acidosis, and necrosis [197].
Hypoxia is responsible for inducing acidosis through a shift in cellular metabolism
generating a high acid load in the tumor microenvironment. Acidification of the tu-
mor microenvironment from abnormal metabolism along with angiogenesis are both
hallmarks of malignant brain tumors [103, 122, 290]. Acidosis (and the consequent
low pH conditions) facilitate tumor invasion by producing growth factors, angiogenic
factors, and proteases that degrade the extracellular matrix and promote tumor cell
migration. Moreover, highly hypoxic sites determine the formation of the so-called
pseudopalisade patterns, typical especially in the case of glioblastoma [33, 34, 297].
These patterns have garland-like shapes exhibiting central necrotic zones surrounded
by stacks of tumor cells, most of which are actively migrating. As tumor cell prolifera-
tion is impaired at lower pH level, this seems to endorse the antagonistic relationship
between (transiently) migratory and proliferative phenotypes [196]. Even though can-
cer cells can survive in relatively hypoxic regions by anaerobic glycolysis[63, 293], the
large amounts of lactate and alanine produced during this process decrease the pH
below critical levels. As a consequence, cancer cells initiate re-vascularization by ex-
pressing pro-angiogenic factors, in order to provide an adequate supply with blood-
transported nutrients [207, 290]. Cancer cells can deter proliferation for migration
towards more favorable areas [186, 293], and the above mentioned pseudopalisade
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formation represents one aspect of this complex behavior.
In this chapter, we develop a multiscale model for the description of glioma in-

vasion relying on the go-or-grow dichotomy, representing intratumor heterogeneity,
and the influence of vasculature, acidity, and brain tissue anisotropy on tumor pro-
gression. In the previous chapter (Chapter 3), we proposed a mesoscopic description
of glioma density in interaction with the anisotropic brain tissue that took into ac-
count the subcellular dynamics of receptor binding to tissue fibers. In what follows,
we extend this setting by including two tumor phenotypes, the dynamics of endothe-
lial cells developing vasculature and the acidity (caused by hypoxia), where the two
latter are responsible for the phenotypic switch. The microscopic dynamics of tumor
membrane receptors responsible for the interaction with both tissue and extracellular
protons are included in a system of kinetic transport PDEs for glioma and endothelial
cells, whose upscaling of the kinetic transport PDEs leads, in the parabolic limit, to
a system of advection-diffusion-reaction equations. These equations feature several
types of taxis, nonlinear myopic diffusion of glioma, and elaborate coupling between
the variables of the model. The multiscale character of the setting is clearly shown in
the taxis coefficients, which encode information from the lower modeling levels.

Concerning the mechanisms related to intratumor heterogeneity, tumor angiogen-
esis, and the emergence of hypoxic and necrotic regions, the mathematical literature
mainly characterizes to model types, purely macroscopic or multiscale models. Some
examples of the macroscopic models describing the evolution of glioma cell density
in relation to angiogenic events, and consequently hypoxia-driven phenomena can
be found e.g. in [185, 276], while proper references on mathematical models for can-
cer invasion and patterning under acidic conditions were introduced in [94, 189, 261].
Tumor heterogeneity in the continuous setting has been modeled by defining the dy-
namics of the corresponding subpopulations of cells, e.g. hypoxic/normoxic/necrotic
cells [185, 276] or moving/proliferating cells [96, 225]. The main multiscale settings
proposed for addressing the problem of the intratumor heterogeneity are described
in [75, 126, 192, 265, 310], while analysis of acid-mediated tumor development, di-
rectly related or applicable to pH-influenced glioma spread, as well as some aspects
of tumor-associated hypoxia, can be found in [76, 152, 192, 264].

The content of this chapter is organized as follows. In Section 4.1, we describe
the setup of the model on the subcellular and mesoscopic scales and the deduction
of the macroscopic PDEs. Then, in Section 4.2, we concretize the coefficient functions
involved in the macroscopic setting, providing a proper estimation of the model pa-
rameters and the non-dimensionalization of the setting. In Section 4.3, we present the
numerical simulations of the macroscopic model analyzing different scenarios. The
goal of these simulations is to study the sensitivity of the models to special parame-
ters and the influence of the go-or-growth dichotomy on the overall system dynamics.
Moreover, to facilitate the evaluation of the tumor burden in relation to the necrotic
and the normal tissue, in Section 4.4 we include a model extension accounting for the
dynamics of the latter. In particular, the model extension is helpful for the analysis
of a necrosis-based tumor grading scheme, which we is used for the evaluation of the
tumor stage in different conditions.

The results of this chapter have been collected in the paper by Conte and Surulescu
submitted for publication [56].
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4.1 Modeling setting

Relying on the go-or-grow dichotomy, which states that a single cell can either pro-
liferate, without moving, or migrate, and can switch between the two phenotypes,
we consider a tumor containing these two mutually exclusive subpopulations of cells,
named as migrating cells and proliferating cells. The respective states are transient
and the tumor can change dynamically its composition, according to the signals re-
ceived by the cells from their surroundings. From the large variety of chemical and
physical cues present in the extracellular space [110], we investigate the association be-
tween microenvironment acidification and angiogenesis, both hallmarks of malignant
glioma [122, 290]. Since acidity and angiogenesis are tightly interrelated and crucial
for the tumor evolution, we also model vascularization, by way of endothelial cell dy-
namics. Starting on the framework presented in the previous chapter, the extension
proposed here considers three different levels.

• The microscopic level, where we recall the dynamics of the integrin receptors
on the tumor cell membrane, mediating cells binding with the brain fibers, and
we couple them with a second class of receptors responsible for the interaction
with the extracellular protons. In particular, the interactions between cells and
soluble as well as unsoluble ligands follow the idea of building a micro-meso
model for tumor invasion with multiple tactic terms revisited in several works
for cell-tissue interactions (see e.g. [54, 74, 75, 169] and references therein) and
for cell-proton interactions [152].

• The mesoscopic level, where the corresponding kinetic transport equations for
glioma cells of the two phenotypes and endothelial cells are described; these
equations model the interactions between the two subpopulations of tumor cells
as well as between tumor, vasculature, pH levels, and tissue.

• The macroscopic level, which is deduced via the parabolic limit of the meso-
scopic equation, leading to a macroscopic system of advection-diffusion-reaction
PDEs for the involved quantities: total tumor burden (moving and proliferating
cells), endothelial cells, and pH level (expressed through the concentration of
protons). The resulting system includes anisotropic diffusion along the direc-
tions characterized by the fiber orientation, several types of taxis, such as hap-
totaxis or pH-taxis. The latter is a repellent mechanism describing the tendency
of tumor cells to move away from hypoxic regions, where the cellular metabolic
shift determines a decrease in the pH level. The macroscopic setting also features
the phenomena of tissue- and acid-mediated proliferation and death processes.

4.1.1 Subcellular level

On the microscopic scale, we describe the interaction of glioma cells with the extra-
cellular space, more precisely with tissue fibers and protons. As we described in the
introductory chapter, cells exchange information with their environment through var-
ious transmembrane entities, e.g. cell surface receptors and ion channels. In particular,
in the modeling, the former is used to account for cell-tissue interactions, while both
are employed for the cell-proton exchange. In addition to ion channels and mem-
brane transporters which have been extensively studied in the context of intra- and
extracellular pH regulation, there also exist proton-sensing receptors [121], e.g. the G
protein-coupled receptors (GPCRs) involved among others in regulating the migra-
tion and proliferation of cells in tumor development and wound healing [133, 294].
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We neglect here the details of the intracellular machinery activated by receptor bind-
ing and channel opening and closing. Instead, we see the events of occupying such
transmembrane units as triggering the cellular processes leading to migration, prolif-
eration, and phenotypic switch.

We denote by y1(t) the amount of receptors bound to tissue fibers and by y2(t) that
of transmembrane entities (ion channels, pH-sensing receptors) occupied by protons.
The corresponding binding/occupying dynamics are characterized by simple mass
action kinetics:

R̄0 � (y1 + y2) +
Q
Q⇤

k+1⌦
k�1

y1

R̄0 � (y1 + y2) +
S

Sc,0

k+2⌦
k�2

y2.

Here, R̄0 is the total amount of receptors on a cell membrane, Q(x) denotes the macro-
scopic tissue density, depending on the position x 2 Rd, Q⇤(x) is the reference tissue
density, while S(t, x) is the macroscopic concentration of protons and Sc,0(x) the refer-
ence proton concentration. Accordingly, we get the ODE system

ẏ1 =
k+1
Q⇤ Q (R̄0 � (y1 + y2))� k�1 y1

ẏ2 =
k+2
Sc,0

S (R̄0 � (y1 + y2))� k�2 y2 ,

where k+1 and k�1 represent the attachment and detachment rates of cells to tissue,
respectively, while k+2 and k�2 are the corresponding rates in the process of proton
binding. As in [76], we define the activity variable y := y1 + y2 as the total amount
of transmembrane entities occupied by tissue or protons, which allows us to lump
together the two ODEs into

ẏ =

✓
k+1
Q⇤ Q +

k+2
Sc,0

S
◆
(R̄0 � y)� k�1 y1 � k�2 y2 .

Assuming that k�1 = k�2 = k�, we obtain the microscopic equation for the subcellular
dynamics

ẏ =

✓
k+1
Q⇤ Q +

k+2
Sc,0

S
◆
(R̄0 � y)� k�y .

Since processes on this scale are much faster than those happening on the macroscopic
time scale, they can be assumed to equilibrate rapidly. Moreover, on this scale we
can ignore the time dependence of S. Rescaling y/R̄0  y will further simplify the
notation. Then, the unique steady state of the above equation is given by:

y⇤ =
k+1
Q⇤ Q + k+2

Sc,0
S

k+1
Q⇤ Q + k+2

Sc,0
S + k�

=: f̄ (Q, S) .

In line with the first setting introduced in Chapter 3, the activity variable y can be seen
as characterizing the overall cell internal state. In the sequel, we consider the meso-
scopic densities r(t, x, v, y) and r(t, x, y) of migrating and respectively non-moving
and proliferating glioma cells, hence both depending on such activity variable y.
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Further, we assume that the glioma cells follow the tissue gradient, but move away
from highly acidic areas. Therefore, we look at the path of a single cell starting at posi-
tion x0 and moving to position x with velocity v in the (locally) time-invariant density
fields Q and S, so that Q(x) = Q(x0 + vt), while S(x) = S(x0 � vt). Defining by
z := y⇤ � y the deviation of y from its steady state, we have:

ż =
∂ f̄
∂Q

v ·rQ � ∂ f̄
∂S

v ·rS � z
✓

k+1
Q⇤ Q +

k+2
Sc,0

S + k�
◆

,

with

∂ f̄
∂Q

=
1

Q⇤
k+1 k�

⇣
k+1
Q⇤ Q + k+2

Sc,0
S + k�

⌘2

∂ f̄
∂S

=
1

Sc,0

k+2 k�
⇣

k+1
Q⇤ Q + k+2

Sc,0
S + k�

⌘2 .

Thus the equation for z is given by:

ż = �z
✓

k+1
Q⇤ Q +

k+2
Sc,0

S + k�
◆
+

k�
⇣

k+1
Q⇤ Q + k+2

Sc,0
S + k�

⌘2

✓
k+1
Q⇤ v ·rQ � k+2

Sc,0
v ·rS

◆

=: G(z, Q, S) .

For reason of simplicity we define B(Q, S) :=
✓

k+1
Q⇤ Q +

k+2
Sc,0

S + k�
◆

.

4.1.2 Mesoscopic level

We model the mesoscale behavior of glioma and endothelial cells with the aid of ki-
netic transport equations (KTEs) taking into account the subcellular dynamics. Con-
cretely, we consider the following cell density functions:

• r(t, x, v, y) for moving glioma cells;

• r(t, x, y) for non-moving, hence (in virtue of the go-or-grow dichotomy) prolif-
erating glioma cells;

• w(t, x, J) for endothelial cells (ECs) forming capillaries,

with the time and space variables t > 0 and x 2 Rd, velocities v 2 V = sSd�1 and
J 2 Q = sSd�1, and the activity variable y 2 Y = (0, 1). These choices mean that we
assume for glioma and ECs constant speeds s > 0 and s > 0, respectively, where Sd�1

denotes the unit sphere in Rd. As in the previously introduced model, in the sequel
we work with the deviation z = y⇤ � y 2 Z ✓ (y⇤ � 1, y⇤) rather than with y. The
corresponding macroscopic cell densities are denoted by M(t, x), R(t, x) and W(t, x),
respectively, and we use the notation N(t, x) := M(t, x) + R(t, x) for the space-time
varying macroscopic total tumor burden.

The kinetic transport equation for the motile glioma phenotype is given by:

∂r

∂t
+r · (vr) +

∂

∂z
(G(z, Q, S)r) = Lr[l(z)]r + b(S)

q
w

r � a(w, S)r � lm(N)r , (4.1)
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where Lr[l(z)] is the turning operator, while b(S) q
w , a(w, S), and lm(N) are the terms

describing the phenotypic switches. Precisely, Lr[l(z)]r denotes the turning operator
describing velocity changes. As for the previous model, the dominating directional
cue is related to the contact guidance phenomenon, given by the orientation of tissue
fibers: the cells have a tendency to align to the white matter tracts, mainly associated
with the brain tissue anisotropy. Lr[l]r is a Boltzmann-like integral operator of the
form

Lr[l(z)]r = �l(z)r + l(z)
Z

V
K(x, v) r(v0) dv0 ,

where l(z) := l0 � l1z � 0 is the cell turning rate depending on the microscopic
variable z, while l0 and l1 are positive constants. The integral term, describing the re-
orientation of cells, is controlled by the turning kernel K(x, v), whose expression (3.15)
has been provided in Section 3.2.2. We recall that v̂ = v

|v| 2 Sd�1 and q(x, v̂) is the ori-
entational distribution of the fibers; moreover, we still assume the tissue network to be
unpolarized and, in the subsequent, we use the symmetry property on q(x, v̂) together
with the notations (3.16) and (3.17) introduced in the previous chapter.

The term b(S)
q
w

r in (4.1) describes the phenotypic switch from the proliferation to
the motile state, namely the transition r ! r; the rate b depends on S, since hypoxic
and, consequently, too acidic environment the cells are supposed to stop prolifera-
tion and migrate towards regions with higher pH. Therefore, we assume that b(S) is
an increasing function of the proton concentration S and we require b(S) > 0, since
there will always be some proliferating cells switching into a migratory regime, other-
wise the tumor would stay confined, which is not the case for gliomas, and especially
glioblastomas.

The terms a(w, S)r and lm(N)r model the phenotypic switch r ! r due to envi-
ronmental signals. Thus, the former depends on the proton concentration S and on
the mesoscopic EC density w and describes the adoption of a proliferative phenotype
when there are enough oxygen and nutrient supplies, while the pH level remains be-
low a certain threshold. The latter models the switch to proliferation caused by the
glioma cell population being too crowded to allow effective migration (but still allow-
ing some limited proliferation).

The evolution of proliferating tumor cells is characterized by the integro-differential
equation

∂r
∂t

=(a(w, S) + lm(N))
Z

V
r(t, x, v, z) dv + µ(W, N, S)

Z

Z
c(x, z, z0)

Q(x)
Q⇤ r(t, x, z0)dz0

� (b(S) + g(S))r ,
(4.2)

where, additionally to the already described switch terms, we model intrinsic prolif-
eration and death. In particular, the growth term

P(r) := µ(W, N, S)
Z

Z
c(x, z, z0)

Q(x)
Q⇤ r(z0)dz0

describes, as in the previous setting, proliferation triggered by cell receptor binding
to tissue. The kernel c(x, z, z0) has the same properties as described in Section 3.2.2,
but, in this model, the proliferation rate µ(W, N, S) depends on the total macroscopic
tumor density N, on the concentration of protons S, and on the vasculature W.

The last term �g(S)r describes acid-induced death of glioma cells when the pH
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value drops below a certain threshold. Even if cancer cells have developed a strong re-
sistant phenotype that allows them to survive in an acidic environment, where healthy
cells normally die, below a much lower pH threshold also cancer cells undergo apop-
tosis and consequently death. In particular, while in normal circumstances cells start
to die when the pH drops below values of approximately 6.7, cancer cells are able to
survive until pH-values of 6.4-6.5. The precise threshold values is discussed in Section
4.2.

The KTE for endothelial cells is given by:

∂w
∂t

+r · (Jw) = Lw[h]w + µW(W, Q)w , (4.3)

where the turning operator Lw[h]w describes changes in the orientation of ECs. It is
well-established (see e.g. [110]) that tumor cells produce angiogenic signals acting as
chemoattractants for ECs. Less known is whether such signals are expressed by prolif-
erating rather than moving cells or by both phenotypes. There is, however, evidence
that hypoxia induces the production of VEGF and other angiogenic cytokines (see e.g.
[50, 207, 304] and references therein). Since cancer cells are highly glycolytic - which
leads to acidification - and increased glucose metabolism is selected in proliferating
cells [176], we assume that pro-angiogenic signals are mainly produced by proliferat-
ing cells. Intending to avoid the introduction of a new variable for the concentration of
such chemoattractants, we let the ECs be attracted by the proliferating glioma cells as
main sources therewith. This translates into the following form of the turning operator
acting on the right-hand side in (4.3):

Lw[h]w = �h(x, J, R)w(t, x, J) +
Z

Q

1
|Q|h(x, J0, R)w(J0)dJ0 ,

where, for the turning kernel modeling ECs reorientations, we simply take a uniform
density function over the unit sphere Sd�1 and

h(x, J, R) = h0(x)e�a(R)DtR (4.4)

represents the turning rate of ECs. It depends on the macroscopic density of prolif-
erating tumor cells R and on the pathwise gradient DtR = ∂tR + J ·rR, where DtR
denote the total derivate of R with respect to time. The coefficient function a(R) is re-
lated to the interactions between ECs and proliferating glioma, more precisely ECs and
pro-angiogenic signals produced by the latter. This can be described for instance via
equilibrium of EC receptor binding. This way to include directional bias provides an
alternative to that using a transport term with respect to the activity variable z in (4.1)
and it has been introduced in [213] in the context of bacteria movement. Under cer-
tain conditions, the relation between the two approaches was established rigorously
for bacteria chemotaxis in [223] and investigated more formally for glioma repellent
pH-taxis in [152].

Finally, µW(W, Q)w is the proliferation term for ECs. Besides the total population
of ECs irrespective of their orientation, µW is supposed to depend on the available
macroscopic tissue Q. The concrete choices of the coefficient functions involved in
(4.1), (4.2), and (4.3) are provided in Section 4.2.

4.1. Modeling setting 75



4.1.3 Parabolic scaling of the mesoscopic model

Considering that clinicians are interested in the macroscopic evolution of the tumor
along with its vascularization and acidity profile, we decide to deduce effective equa-
tions for the macroscopic dynamics of ECs and the total tumor burden N = R + M,
instead of considering the simulations of the high dimensional KTE system (4.1), (4.2),
and (4.3). In particular, we assume that the PDE for the proton concentration S is
already macroscopic and, therefore, does not need to be upscaled. In fact, it is not
necessary to include microscopic or mesoscopic variables (such as the microscopic ve-
locity) in the protons equation, since the protons do not undergo particular velocity
dynamics.

First we define the moments for the mesoscopic variables r, r, and w as

m(t, x, v) =
Z

Z
r(t, x, v, z)dz , mz(t, x, v) =

Z

Z
zr(t, x, v, z)dz ,

R(t, x) =
Z

Z
r(t, x, z)dz , Rz(t, x) =

Z

Z
zr(t, x, z)dz ,

M(t, x) =
Z

V
m(t, x, v)dv , Mz(t, x) =

Z

V
mz(t, x, v)dv ,

W(t, x) =
Z

Q
w(t, x, J)dJ ,

and we neglect the higher order moments with respect to the variable z, in virtue of
the subcellular dynamics being much faster than the events on the higher scales, hence
z ⌧ 1. We assume the functions r and r to be compactly supported in the phase space
Rd ⇥ V ⇥ Z and w to be compactly supported in Rd ⇥ Q.

We first integrate equation (4.1) with respect to z, obtaining the following equation
for m(t, x, v):

∂m
∂t

+r · (vm)=�l0

⇣
m � q

w
M
⌘
+l1

⇣
mz � q

w
Mz

⌘
+b(S)

q
w

R � a(w, S)m � lm(N)m .
(4.5)

Then, integrating equation (4.2) with respect to z we get

∂R
∂t

=(a(w, S)+lm(N)) M+
Z

Z
µ(W, N, S)

Z

Z
c(z, z0, x)r(z0)

Q
Q⇤ dz0dz� (b(S) + g(S)) R .

Using the fact that c(z, z0, x) is a probability kernel with respect to z, the previous
equation for R(t, x) reduces to:

∂R
∂t

= (a(w, S) + lm(N)) M + µ(W, N, S)
Q
Q⇤ R � (b(S) + g(S)) R . (4.6)

We proceed by multiplying equation (4.1) by z and integrating with respect to z, ob-
taining

∂mz

∂t
=�r · (vmz)+

Z

Z
z

∂

∂z

✓
zB(Q, S)+

k�

B(Q, S)2

✓
k+1
Q⇤ v ·rQ � k+2

Sc,0
v ·rS

◆◆
r(z)

�
dz

+
Z

Z
zLr[l(z)]r(z)dz + b(S)

q
w

Rz � (a(w, S) + lm(N))mz .
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The calculation of the integral terms leads to the following equation for mz(t, x, v):

∂mz

∂t
=�r · (vmz)� B(Q, S)mz +

k�

B(Q, S)2

✓
k+1
Q⇤ v ·rQ � k+2

Sc,0
v ·rS

◆
m

� l0mz + l0
q
w

Mz + b(S)
q
w

Rz � (a(w, S) + lm(N))mz .

(4.7)

Applying the same procedure to equation (4.2) we obtain the following equation for
Rz(t, x):

∂Rz

∂t
= (a(w, S) + lm(N)) Mz + µ(W, N, S)

Q
Q⇤

Z

Z

Z

Z
zc(x, z, z0)r(z0)dz0dz

� (b(S) + g(S)) Rz .

(4.8)

Considering, now, the derived equations (4.5), (4.6), (4.7), (4.8), and the KTE for ECs
(4.3), we rescale the time and space variables as t ! #2t and x ! #x. In particular,
the proliferation terms in (4.2) and (4.3) and the death term in (4.2) are scaled by #2

in order to account for the mitotic and apoptotic events taking place on a much larger
time scale than migration and switching from moving to non-moving regimes. Hence,
collecting the resulting equations we have:

#2 ∂m
∂t

+ #r · (vm) = �l0

⇣
m � q

w
M
⌘
+ l1

⇣
mz � q

w
Mz

⌘
+ b(S)

q
w

R

� a(w, S)m � lm(N)m , (4.9)

#2 ∂R
∂t

= (a(w, S) + lm(N)) M + #2µ(W, N, S)
Q
Q⇤ R �

�
b(S) + #2g(S)

�
R , (4.10)

#2 ∂mz

∂t
= �#r · (vmz)� B(Q, S)mz +

#k�

B(Q, S)2

✓
k+1
Q⇤ v ·rQ � k+2

Sc,0
v ·rS

◆
m

+
Z

Z
zLr[l(z)]r(z)dz + b(S)

q
w

Rz � (a(w, S) + lm(N))mz , (4.11)

#2 ∂Rz

∂t
= (a(w, S) + lm(N)) Mz + #2µ(W, N, S)

Q
Q⇤

Z

Z

Z

Z
zc(x, z, z0)r(z0)dz0dz

�
�

b(S) + #2g(S)
�

Rz , (4.12)

#2 ∂w
∂t

+ #r · (Jw) = Lw[h
#]w + #2µW(W, Q)w , (4.13)

with

h#(x, J, R) = h0(x) exp
⇣
� a(R)(#2∂tR + #J ·rR)

⌘
.

4.1. Modeling setting 77



Considering the Hilbert expansions for the introduced moments:

m(t, x, v) =
•

Â
k=0

#kmk, mz(t, x, v) =
•

Â
k=0

#kmz
k, R(t, x) =

•

Â
k=0

#kRk,

M(t, x) =
•

Â
k=0

#k Mk, Mz(t, x) =
•

Â
k=0

#k Mz
k, Rz(t, x) =

•

Â
k=0

#kRz
k,

w(t, x, J) =
•

Â
k=0

#kwk, W(t, x) =
•

Â
k=0

#kWk,

we first define the Taylor-expansion of the coefficient functions involving any of w, W,
R, M or N in the scaled equations (4.9), (4.10), (4.11), (4.12), and (4.13):

a(w, S) = a(w0, S) + ∂wa(w0, S) (w � w0) +
1
2

∂2
wwa(w0, S) (w � w0)

2 +O(|w � w0|3),

lm(N) = lm(N0) + l0m(N0) (N � N0) +
1
2

l00m(N0) (N � N0)
2 +O(|N � N0|3),

µ(W, N, S)=µ(W0, N0, S)+∂Wµ(W0, N0, S)(W�W0)+∂Nµ(W0, N0, S)(N�N0)+O(#2),

µW(W, Q) = µW(W0, Q) + ∂WµW(W0, Q)(W � W0) +O(|W � W0|2),

h#(x, J, R) = h0(x)
h
1 � #a(R)J ·rR + #2

⇣
� a(R)∂tR +

1
2
(a(R))2(J ·rR)2

⌘
+O(#3)

i
,

a(R) = a(R0) + a0(R0)(R � R0) +
1
2

a00(R0)(R � R0)
2 +O(|R � R0|3).

Then, equating the powers of # in the scaled equations (4.9), (4.10), (4.11), (4.12), and
(4.13), we obtain:

#0 terms:

0 = �l0

⇣
m0 �

q
w

M0

⌘
+ l1

⇣
mz

0 �
q
w

Mz
0

⌘
+ b(S)

q
w

R0 � a(w0, S)m0

� lm(N0)m0, (4.14)

0 =
⇣

a(w0, S) + lm(N0)
⌘

M0 � b(S)R0, (4.15)

0 = �
⇣

B(Q, S) + l0 + a(w0, S) + lm(N0)
⌘

mz
0 + l0

q
w

Mz
0 + b(S)

q
w

Rz
0, (4.16)

0 =
⇣

a(w0, S) + lm(N0)
⌘

Mz
0 � b(S)Rz

0, (4.17)

0 = h0(x)(Ss
dW0 � w0), (4.18)

where Ss
d :=

1
|Q| =

s1�d

|Sd�1| .
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#1 terms:

r·(vm0)= �l0

⇣
m1 �

q
w

M1

⌘
+l1

⇣
mz

1 �
q
w

Mz
1

⌘
+ b(S)

q
w

R1�
⇣

a(w0, S)+lm(N0)
⌘

m1

�
⇣

∂wa(w0, S)w1 + l0m(N0)N1

⌘
m0, (4.19)

0 =
⇣

a(w0, S) + lm(N0)
⌘

M1 +
⇣

∂wa(w0, S)w1 + l0m(N0)N1

⌘
M0 � b(S)R1, (4.20)

r · (vmz
0) = �B(Q, S)mz

1 +
k�

B(Q, S)2

✓
k+1
Q⇤ v ·rQ � k+2

Sc,0
v ·rS

◆
m0 � l0

⇣
mz

1 �
q
w

Mz
1

⌘

+ b(S)
q
w

Rz
1 �

⇣
a(w0, S) + lm(N0)

⌘
mz

1 �
⇣

∂wa(w0, S)w1 + l0m(N0)N1

⌘
mz

0,

(4.21)

0 =
⇣

a(w0, S) + lm(N0)
⌘

Mz
1 +

⇣
∂wa(w0, S)w1 + l0m(N0)N1

⌘
Mz

0 � b(S)Rz
1, (4.22)

r · (Jw0) = h0(x)
⇣

Ss
dW1 � w1

⌘
+ h0(x)a(R0)J ·rR0 w0

� Ss
d h0(x)a(R0)

Z

Q
w0(J

0)J0dJ0 ·rR0. (4.23)

#2 terms:

∂m0

∂t
+r · (vm1) = �l0

⇣
m2 �

q
w

M2

⌘
+ l1

⇣
mz

2 �
q
w

Mz
2

⌘
+ b(S)

q
w

R2

� (a(w0, S) + lm(N0))m2 �
�
∂wa(w0, S)w1 + l0m(N0)N1

�
m1

�
�
∂wa(w0, S)w2 + l0m(N0)N2

�
m0

� 1
2
�
∂2

wwa(w0, S)w2
1 + l00m(N0)N2

1
�

m0, (4.24)

∂R0

∂t
= (a(w0, S) + lm(N0)) M2 +

�
∂wa(w0, S)w1 + l0m(N0)N1

�
M1

+
1
2
�
∂2

wwa(w0, S)w2
1 + l00m(N0)N2

1
�

M0 +
�
∂wa(w0, S)w2 + l0m(N0)N2

�
M0

+ µ(W0, N0, S)
Q
Q⇤ R0 � b(S)R2 � g(S)R0, (4.25)

∂w0

∂t
+r · (Jw1) = h0(x)

✓
a(R0)∂tR0 + a(R0)J ·rR1 + a0(R0)R1J ·rR0

� 1
2
(a(R0)J ·rR0)

2
◆

w0 + a(R0)J ·rR0 w1 � w2

�

+ Ss
d h0(x)


W2 � a(R0)

Z

Q
J0w1(J

0)dJ0 ·rR0 � a(R0)∂tR0W0

�
Z

Q
J0w0(J

0)dJ0 ·
�
a(R0)rR1 + a0(R0)R1rR0

�
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+
1
2

Z

Q
(a(R0)J

0 ·rR0)
2w0(J

0)dJ0
�
+ µW(W0, Q)w0 . (4.26)

We start the deduction of the macroscopic setting considering (4.15) that gives

R0(t, x) =
a(w0, S) + lm(N0)

b(S)
M0(t, x) , (4.27)

and (4.17), from which we get

Rz
0(t, x) =

a(w0, S) + lm(N0)
b(S)

Mz
0(t, x) . (4.28)

Then, integrating equation (4.16) with respect to the velocity v, we have

0 = �B(Q, S)Mz
0 + b(S)Rz

0 � a(w0, S)Mz
0 � lm(N0)Mz

0,

from which, by using (4.28), we obtain

Mz
0 = 0 , (4.29)

Rz
0 = 0 .

Plugging them into (4.16) leads to
mz

0 = 0 . (4.30)

Using (4.27), (4.29), and (4.30) into (4.14), we obtain:

0 = �l0m0 + l0
q
w

M0 +
⇣

a(w0, S) + lm(N0)
⌘ q

w
M0 �

⇣
a(w0, S)� lm(N0)

⌘
m0

) 0 =
⇣ q

w
M0 � m0

⌘ ⇣
l0 + a(w0, S) + lm(N0)

⌘
.

Since l0 > 0 and the functions a(w0, S) and lm(N0) are nonnegative for any N0, S, w0,
we have (l0 + a(w0, S) + lm(N0)) 6= 0 and, thus, we obtain

m0 =
q
w

M0 . (4.31)

From equation (4.18) we see that

w0 = Ss
dW0, (4.32)

thus, w0 depends on the (constant) speed s, but not on the direction q 2 Sd�1.
Now, turning to the equations stemming from the #1-terms, from (4.22) we get:

Rz
1(t, x) =

a(w0, S) + lm(N0)
b(S)

Mz
1(t, x) . (4.33)

Integrating, (4.21) with respect to the variable v and using (4.31) and (4.30), we obtain

0 =� B(Q, S)Mz
1 +

k�

B(Q, S)2 M0 sd Eq ·
✓

k+1
Q⇤rQ � k+2

Sc,0
rS

◆
+ b(S)Rz

1

� (a(w0, S) + lm(N0)) Mz
1.
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Recalling that we assume the fiber network to be unpolarized, i.e., Eq = 0, and (4.33),
the previous equation leads to:

Mz
1 = 0 (4.34)

and hence
Rz

1 = 0 .

Now plugging these results into (4.21) we get

0 = �B(Q, S)mz
1 +

k�

B(Q, S)2

✓
k+1
Q⇤ v ·rQ � k+2

Sc,0
v ·rS

◆
m0 � l0mz

1

�
⇣

a(w0, S) + lm(N0)
⌘

mz
1

) mz
1 [B(Q, S) + l0 + a(w0, S) + lm(N0)] =

k�

B(Q, S)2

✓
k+1
Q⇤ v ·rQ � k+2

Sc,0
v ·rS

◆
m0 .

We define
F(Q, S) :=

k�

B(S, Q)2 [B(Q, S) + l0 + a(w0, S) + lm(N0)]
(4.35)

and obtain therewith the following expression for mz
1:

mz
1 = F(Q, S)

✓
k+1
Q⇤ v ·rQ � k+2

Sc,0
v ·rS

◆
m0. (4.36)

From equation (4.20) we have

R1 =
a(w0, S) + lm(N0)

b(S)
M1 +

∂wa(w0, S)w1 + l0m(N0)N1

b(S)
M0. (4.37)

Using (4.19) with (4.34) and (4.37) we derive

r · (vm0) =� l0

⇣
m1 �

q
w

M1

⌘
+ l1mz

1 + (a(w0, S) + lm(N0))
q
w

M1

+
�
∂wa(w0, S)w1 + l0m(N0)N1

�
m0 � (a(w0, S) + lm(N0))m1

�
�
∂wa(w0, S)w1 + l0m(N0)N1

�
m0,

thus, we can write

L̄m[l0 + a(w0, S) + lm(N0)]m1 :=�
⇣

l0 + a(w0, S) + lm(N0)
⌘

m1

+
⇣

l0 + a(w0, S) + lm(N0)
⌘ q

w
M1

= r · (vm0)� l1mz
1 . (4.38)

In order to get an explicit expression for m1, we would like to invert the operator
L̄m[l0 + a(w0, S) + lm(N0)]. As explained in the model derivation of Section 3.2.3,
we define this operator on the weighted L2-space L2

q(V), in which the measure dv is
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weighted by q(x, v̂)/w. In particular, L2
q(V) can be decomposed as

L2
q(V) =< q/w > � < q/w >? .

Due to the properties of the chosen turning kernel, L̄m[l0 + a(w0, S) + lm(N0)] is a
compact Hilbert-Schmidt operator with kernel < q/w >. We can, therefore, calculate
its pseudo-inverse on < q/w >?. Thus, to determine m1 from (4.38) we need to check
the solvability condition

Z

V
[r · (vm0)� l1mz

1] dv = 0 .

This condition holds thanks to (4.36) and to the symmetry of q(x, v̂). Therefore, we
obtain from (4.38) the expression m1

m1 = � 1
l0 + a(w0, S) + lm(N0)


r · (vm0)� l1F(Q, S)

✓
k+1
Q⇤ v ·rQ � k+2

Sc,0
v ·rS

◆
m0

�

and
M1 = 0 . (4.39)

On the other hand, (4.23) and (4.32) give:

r · (Jw0) = �h0(x)w1 + h0(x)a(R0)J ·rR0w0 + Ss
d h0(x)W1 . (4.40)

Likewise, we observe that the operator L̄w[h0]w1 := �h0(x)w1 + Ss
d h0(x)W1 can be

inverted, so that (4.40) leads to

w1 = � 1
h0(x)

r · (Jw0) + w0a(R0)J ·rR0 (4.41)

and
W1 = 0 . (4.42)

From (4.25), we derive the following expression for
b(S)

w
R2:

b(S)
w

R2 =
1
w

⇣
a(w0, S) + lm(N0)

⌘
M2 +

1
2w

⇣
∂2

wwa(w0, S)w2
1 + l00m(N0)N2

1

⌘
M0

+
1
w

⇣
∂wa(w0, S)w2+l0m(N0)N2

⌘
M0+

µ(W0, N0, S)
w

Q
Q⇤ R0�

g(S)
w

R0�
1
w

∂R0

∂t
.

Plugging the previous equation into (4.24) we get

∂m0

∂t
=�r · (vm1)� l0

⇣
m2 �

q
w

M2

⌘
+l1

⇣
mz

2 �
q
w

Mz
2

⌘
+

q
w

(a(w0, S) + lm(N0)) M2

+
q

2w

�
∂2

wwa(w0, S)w2
1 + l00m(N0)N2

1
�

M0 +
q
w

�
∂wa(w0, S)w2 + l0m(N0)N2

�
M0

+
q
w

µ(W0, N0, S)
Q
Q⇤ R0 �

q
w

g(S)R0 �
q
w

∂R0

∂t
� (a(w0, S) + lm(N0))m2

�
�
∂wa(w0, S)w1 + l0m(N0)N1

�
m1 �

�
∂wa(w0, S)w2 + l0m(N0)N2

�
m0

82 4. Intratumor heterogeneity, vasculature, and acidity



� 1
2
�
∂2

wwa(w0, S)w2
1 + l00m(N0)N2

1
�

m0.

Integrating with respect to v we get

∂M0

∂t
+
Z

V
r · (vm1)dv =

1
2
�
∂2

wwa(w0, S)w2
1 + l00m(N0)N2

1
�

M0

+
�
∂wa(w0, S)w2 + l0m(N0)N2

�
M0 + µ(W0, N0, S)

Q
Q⇤ R0

� g(S)R0 � ∂tR0 �
�
∂wa(w0, S)w2 + l0m(N0)N2

�
M0

� 1
2
�
∂2

wwa(w0, S)w2
1 + l00m(N0)N2

1
�

M0

) ∂M0

∂t
+
Z

V
r · (vm1)dv = µ(W0, N0, S)

Q
Q⇤ R0 � g(S)R0 �

∂R0

∂t
, (4.43)

where

Z

V
r·(vm1)dv =

Z

V
r ·


v
✓
� 1

l0 + a(w0, S) + lm(N0)

✓
r · (vm0)
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w
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⌘�
dv

+r·
"

l1F(Q, S)
w(l0+a(w0, S)+lm(N0))

Z

V
v⌦vq(x, v̂)dv

✓
k+1
Q⇤rQ� k+2

Sc,0
rS

◆
M0

#
.

(4.44)

With the notation

DT(x) :=
1
w

Z

V
v ⌦ v q(x, v̂)dv = s2

Z

Sd�1
v̂ ⌦ v̂ q(x, v̂)dv̂ = s2Vq(x) , (4.45)

where Vq(x) is provided in (3.17), and recalling that N0(t, x) = M0(t, x) + R0(t, x), i.e.,

N0 =

✓
1 +

a(w0, S) + lm(N0)
b(S)

◆
M0 ,

from (4.43) and (4.44), we obtain the following macroscopic equation for N0(t, x):

∂N0

∂t
= r ·


1

l0 + a(w0, S) + lm(N0)
r ·

⇣ b(S)
b(S) + a(w0, S) + lm(N0)

DT(x)N0

⌘�

�r ·

2

4 l1F(Q, S)b(S)
l0 + a(w0, S) + lm(N0)

DT(x)
k+1
Q⇤ rQ � k+2

Sc,0
rS

b(S) + a(w0, S) + lm(N0)
N0

3

5
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+
a(w0, S) + lm(N0)

a(w0, S) + lm(N0) + b(S)
N0

⇣
µ(W0, N0, S)

Q
Q⇤ � g(S)

⌘
. (4.46)

We denote

j(w0, N, S) :=
b(S)

b(S) + a(w0, S) + lm(N)
, (4.47)

$(w0, N, S) := (l0 + a(w0, S) + lm(N)). (4.48)

It is important to notice that, due to (4.18), these are, in fact, purely macroscopic quan-
tities. Moreover, because of (4.18), equation (4.26) can be written as

∂w0

∂t
+r · (Jw1) = h0(x)

✓
a(R0)∂tR0 + a(R0)J ·rR1 + a0(R0)R1J ·rR0

� 1
2
(a(R0)J ·rR0)

2
◆

w0 + a(R0)J ·rR0 w1 � w2

�

+ Ss
d h0(x)


W2 � a(R0)

Z

Q
J0w1(J

0)dJ0 ·rR0 � a(R0)∂tR0W0

+
1
2

Z

Q
(a(R0)J

0 ·rR0)
2w0(J

0)dJ0
�
+ µW(W0, Q)w0 . (4.49)

Integrating (4.49) with respect to J 2 Q gives

∂W0

∂t
+r ·

Z

Q
Jw1dJ = µW(W0, Q)W0,

Recalling the deduced expression for w1 in (4.41), we calculate the expression of the
integral term on the left hand side as
Z

Q
r · (Jw1)dJ =

Z

Q
r ·


J

✓
� 1

h0(x)
r · (Jw0)

◆
+ J w0 a(R0) J ·rR0

�
dJ

= �r ·
✓Z

Q

1
h0(x)

J ⌦ J rw0 dJ

◆
+r ·

✓Z

Q
J ⌦ J w0 dJ (a(R0)rR0)

◆

= �r ·


s2

d h0(x)
Id rW0

�
+r ·

hs2a(R0)
d

Id W0rR0

i
.

This leads to the following macroscopic equation for the density W0 of endothelial
cells:

∂W0

∂t
� r ·

⇣
DECrW0

⌘
+r ·

⇣
ca(R0)W0rR0

⌘
= µW(W0, Q)W0, (4.50)

where

DEC(x) :=
s2

dh0(x)
Id

and

ca(R0) :=
s2a(R0)

d
In = h0(x)a(R0)DEC(x) .
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The two macroscopic equations obtained in (4.46) and (4.50) for the evolution of the
tumor and ECs, respectively, are coupled with the diffusion-reaction equation for pro-
ton concentration dynamics:

∂S
∂t

= DSDS + g(S, N0, W0, Q) , (4.51)

where DS 2 R denotes the diffusion coefficient of protons and g(S, N0, W0, Q) is a re-
action term. This term involves the processes of proton production by tumor cells and
the buffering by vasculature and normal tissue and it will be defined in the next sec-
tion. We do not explicitly account for the dynamics of the oxygen in order to maintain
a low number of solution components and we rather focus on environmental acidifi-
cation and pH level. However, the influence of oxygen on glioma cells is indirectly
included, as ECs are responsible to provide nutrient and oxygen to the tumor cells
and influence the phenotypic switch. Moreover, the consequence of low oxygen con-
ditions (i.e., hypoxia) are also taken into account, as hypoxia determines the described
acidosis [48] and the reductions in the pH level (described by means of the proton
concentration).

Considering the results in (4.27), (4.37), (4.39), and (4.42), the #-correction terms
for N and W can be neglected. Ignoring the higher order terms, we get the following
closed PDE system characterizing the macroscopic evolution of the tumor under the
influence of tissue, vasculature, and acidity:

8
>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>:

∂N
∂t

= r ·

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$(W, N, S)
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�r ·


l1
F(Q, S) j(W, N, S)

$(W, N, S)
DT(x)

✓
k+1
Q⇤rQ � k+2

Sc,0
rS

◆
N
�

+j(W, N, S)
a(W, S) + lm(N)

b(S)
N

✓
µ(W, N, S)

Q
Q⇤ � g(S)

◆
,

∂W
∂t

= r · (DECrW)�r · (h0a(R)DECWrR) + µW(W, Q)W,

∂S
∂t

= DSDS + g(S, N, W, Q),

(4.52)

with F(Q, S) given in (4.35), the tensor DT from (4.45), and with the coefficients j and
r from (4.47) and (4.48), respectively. For the derivation of this macroscopic system we
use w = W

|Q| , in virtue of (4.32).
For the numerical simulations of Section 4.3, this system has to be supplemented

with adequate initial and boundary conditions. Although the deduction of the PDE
system has been carried out for x 2 Rd, we consider it to be set in a bounded, suffi-
ciently regular domain W ⇢ Rd and endow it with no-flux boundary conditions.

4.2 Assessment of coefficients and parameters

We dedicate this section to the definition of the coefficient functions involved in the
macroscopic setting and to the estimation of the constant parameters. In addition to
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that, we introduce the non-dimensionalization of the macroscopic system. In particu-
lar, the large number of constant parameters involved in the model and the difficulties
in getting a clear estimation for some of the parameters from biological experiments re-
quire particular attention. For this reason, we dedicate Section 4.2.2 to the description
of the parameter estimation and, in Sections 4.2.1 and 4.2.3 we address the assessment
of the coefficient functions and the details of the non-dimensionalization procedure,
respectively.

4.2.1 Definition of the coefficient functions

First, we determine the expression for DT(x) in (4.45) providing a concrete form for
the (mesoscopic) orientational distribution of tissue fibers q(x, v̂). Considering the
analysis performed in Chapter 2, we use the orientation distribution function (ODF):

q(x, v̂) =
1

4p|DW(x)| 1
2 (v̂T(DW(x))�1v̂)

3
2

, (4.53)

where DW(x) is, as usual, the water diffusion tensor obtained from processing the
patient-specific DTI data.

Concerning the macroscopic tissue density Q(x), for the simulations shown in
Chapter 3 we rely on the assumption that Q is proportional to FA(DW); this is reason-
able for highly anisotropic regions, but some issues might arise in regions of isotropic
and dense tissue. Therefore, here we consider the idea introduced in [74] and based
on the definition of the characteristic diffusion length lc. This length is defined as an
estimation of the free path length of a molecule diffusion in a medium and, generally,
lc relates to the diffusion coefficient D and the characteristic (diffusion) time tc. For the
assessment of D, a possible option is to consider the trace Tr(DW), or alternatively, to
choose the mean diffusivity defined in (2.4). To deduce an estimation for tc, as intro-
duced in Chapter 2, we discuss about the process beyond the measurements of DW .
This process is the Brownian motion. It has been shown [205] that the expected exit
time from a ball with radius r in a three-dimensional space is given as r2

3 . Therefore,
for the minimal ball containing a DTI voxel with side length h, i.e., of radius h

p
3

2 , this
exit time is h2

4 . However, this estimation is valid for N (0, t� s)-distributed increments
and, here as in [74], the increments are N (0, s(t � s))-distributed for some diffusion
speed s, thus a rescaling is necessary. Setting s := l̄1, where l̄1 is the leading eigen-
value of DW , we define the characteristic diffusion length as

lc(x) :=

s
Tr(DW(x))h2

4l̄1(x)
.

Since lc(x) is aimed at estimating the length of the mean free space in every direction,
we get the occupied volume as

Q(x) := 1 � l3
c (x)
h3 . (4.54)

For the rate a(w, S) describing the cell phenotypic switch r ! r from migration to
proliferation, we choose a combination of an increasing function of w and a decreas-
ing function of S. As explained in Section 4.1.2, this rate is influenced by the pH of
the environment and by the availability of nutrient, provided by vasculature for sus-
taining the processes involved in the cell cycle. The dynamical balance of these factors
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decides the migratory or mitotic state of a cell. Recalling (4.32), we set

a(W, S) := a0
Ss

n
W

Wc,0

Ss
n + Ss

n
W

Wc,0

1
1 + S

Sc,0

, (4.55)

where Wc,0 and Sc,0 are reference values for EC density and proton concentration, re-
spectively.

The second rate of the phenotypic switch r ! r, namely lm(N), describing the
influence of a crowed environment on cell phenotype changes, is chosen as

lm(N) := lm,0

✓
1 + tanh

✓
N

Nc,0
� N⇤

Nc,0

◆◆
,

where N⇤ represents a threshold value for glioma density: when it is exceeded, the
cells are not able to move anymore. The constant Nc,0 denotes a reference value for the
density of (moving and proliferating) glioma cells.

The switching rate r ! r given by the function b(S) controls the acidity-triggered
motility enhancement of formerly proliferating cells. We set

b(S) := b0

✓
e +

✓
S

Sc,0
� ST,1

Sc,0

◆

+

◆

with e ⌧ 1 used to endorse the positivity of b(S) and (·)+ denotes the positive part.
ST,1 is the pH threshold which, when underrun, induces the cells to switch from a
proliferative to a migrative phenotype.

Although tumor cells can live in an environment with substantially lower pH than
that for normal tissue [94, 293], when the pH value drops below a certain threshold
(which in terms of proton concentration we denote by ST,2) the cancer cells become
necrotic [95, 293]. This suggests the following cell death coefficient g(S):

g(S) := g0

✓
S

Sc,0
� ST,2

Sc,0

◆

+
.

The growth rate µ(W, N, S) can be defined in different ways and the choice should
be motivated by biological evidence. As stated for the previous model, we choose a
logistic-like function to describe the growth. We include an growth-enhancing factor
depending on the vascularization W and a growth-limiting term related to environ-
mental acidity, like that employed in (4.55). Thus, µ(W, N, S) is defined as

µ(W, N, S) := µN,0

✓
1 � N

KN
� ce

Ne

KNe

◆
W

Wc,0

1
1 + S

Sc,0

.

Here, KN is the tumor carrying capacity and µN,0 is the constant proliferation rate.
The term �ce

Ne
KNe

is related to the extension of the model described in Section 4.4. In
particular, ce = 0 when we consider the evolution of system (4.52), while ce = 1 when
the dynamics of healthy tissue and necrotic matter (Ne) are included. KNe represents
the carrying capacity for the necrotic component.

Similarly, for the term µW(W, Q) describing the proliferation of ECs we take

µW(W, Q) := µW,0

✓
1 � W

KW

◆
Q
Q⇤ ,

with constant proliferation rate µW,0 and carrying capacity for ECs KW .
For the tactic sensitivity ca(R) = h0a(R)DEC of ECs towards proliferating glioma
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cells, we specify the function a(R) involved in the definition (4.4) of the EC turning
rate as

a(R) := ca0

KN

(KN + R)2 .

This function corresponds to the rate of change of the expression z(R) = R
R+KN

repre-
senting the equilibrium of the interactions between ECs and proliferating glioma cells
R, scaled by a constant ca0 that is used to account for changes in the turning rate per
unit of change in dz/dt. Thereby, we assume that the attachment and the detachment
of ECs and R-cells happen with the same rates.

The reaction term in the PDE for acidity dynamics is chosen as

g(S, N, W, Q) := gs
N

Nc,0
� gd

✓
W

Wc,0
+

Q
Q⇤

◆
S .

This reaction term consists of a source term for the production of protons by the tumor
at rate gs and a decay term with rate gd, as the protons are buffered by healthy tissue
and also uptaken by the capillary network.

4.2.2 Parameter estimation

In this section, we provided a detailed description of the estimation of the parameters
involved in the PDF system (4.52). In particular, the highly nonlinear and coupled
structure of this system requires a careful analysis.

Turning rates and diffusion related parameters: l0, l1, s, s, h0, DS

l0, l1: In [259] the authors presented experiments on the migratory behavior
and turning frequency of metastatic cancer cells from rat mammary adenocarcinoma
cell line, reporting values for l0 in the range [0.01, 0.1] s�1. Considering the highly
aligned brain structures which influence cell migration enhancing cell persistence in
the favorable direction of motion, we assume a reduction of the turning likelihood and
take the range [10�4, 10�2] s�1 for the parameter l0. The choice of l1 is, unfortunately,
rather imprecise, due to the lack of data and references. In [77] variations of this pa-
rameter by ±50% were tested in a similar context. As proposed there, we consider the
same order of magnitude for l0 and l1.

s: Different references are available for the tumor cell speed. In a recent work
[65], four types of typical GBM cell lines were cultured in a microfabricated 3D model
to study their in-vitro behavior. According to this study, we consider for glioma cell
speed the range [10.2, 30] µm · h�1. A further upper limit for this parameter can be
found in [230], where a maximum speed of 54 � 60 µm · h�1 was reported for glioma
cells.

s: For the average speed of ECs, in [60] the range s 2 [10, 50] µm · h�1 was
reported for individual cells in several culture conditions. In-vivo, the registered mean
speed for motile endocardial and endothelial cells is of approximately 20 µm · h�1.

h0: For reason of simplicity, we assume a constant coefficient h0 for the turn-
ing rate in (4.4) for ECs. In [277], the authors analyzed the statistical properties of the
random streaming behavior for endothelial cell cultures. In particular, they estimated
a period of T = 5 min to alter cell polarity and influence the cell turning. With this
value, they obtained a cell speed estimation in the range of [20, 40] µm · h�1 within
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monolayers of ECs. Following their results, we consider h0 2 [0.0001, 0.003] s�1.

DS: From [168], we get an average value of [0.3, 10] · 10�3 mm2· s�1 estimation
of the diffusion coefficient for different ions. We test the model for different values
of this parameter and we chose DS = 0.5 · 10�3 mm2· s�1. DS was rescaled in the
simulations in order to account for the fast dynamics characterizing proton evolution.

Phenotypic switch related parameters: a0, b0, lm,0, N⇤, ST,1, ST,2, g0

a0, b0, lm,0: For the estimation of reasonable ranges for the values of the pheno-
typic switch parameters a0 and b0 there are no specific data or measurements avail-
able. However, considering the experiments performed in [146, 219], it is possible
to define a wide range for the duration of the glioma cell cycle that translates into
a0, b0 2 [0.09, 1] · 10�4 s�1. Analogous arguments apply for the rate lm,0, for which
there are not estimations directly derived from biological data. For this reason we test
the model for several values of a0, b0, lm,0 of order of magnitude 10�4 to fix the value
of lm,0.

N⇤: Due to the lack of biological data, for the estimation of this parameter
related to the total tumor density level that still allows cell movement, we choose
it to be proportional to the estimated tumor carrying capacity, namely in the range
[0.6, 0.9] · KN proposed in [28, 225].

ST,1, ST,2: Following the pH range [6.4, 7.3] proposed in [285, 293] for the brain
tumor microenvironment, we choose the threshold values that determine the pheno-
typic switch from proliferating to migrating cells (ST,1) and the acid-mediated death
of the resting cells (ST,2) as ST,1 = 1.995 · 10�7 M (referring to a pH = 6.7), and
ST,2 = 3.98 · 10�7 M (referring to a pH = 6.4).

g0: In [276], the authors assumed the cell necrosis rate to be proportional to the
metabolic rate µN,0. This estimation appears reasonable, considering also our assump-
tion in the parabolic scaling procedure about having similar time scales for birth and
death processes. Therefore, we set g0 = µN,0/50.

Adhesion related parameters: k+1 , k+2 , k�, ca0

k+1 , k+2 : For the estimation of the attachment rates between tumor cell and ECM
or protons, we refer to [161]. In particular, for both the cell-ECM attachment rate and
the cell-protons interaction rate, we set k+1 = k+2 = 104 (M · s)�1. Then, assuming that
the main ECM component is collagen, with a molecular weight of approximately 300
kDa, and taking into account the reference value Q⇤ in Table 4.2, we deduce k+1 = 0.034
s�1. Analogously, considering the reference value for the protons concentration Sc,0 in
Table 4.2, we get k+2 = 0.01 s�1.

k�: For the estimation of the cells-ECM and cells-protons detachment rate, re-
ferring to [161], we set k� = 0.01 s�1.

ca0 : We estimate the parameter ca0 by considering the values reported in [267]
and [266] for the chemotactic sensitivity. In particular, in [267] the authors analyzed
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the chemotactic coefficient of migrating endothelial cells in gradients of growth fac-
tors, measuring a maximum chemotactic response of 2600 cm2· (M · s)�1 at a concen-
tration of growth factors around 10�10 M. In the work [266], the authors analyzed the
changes of this parameter in response to cell speed and persistence time. Taking into
account the above-described range for the EC speed, we set ca0 2 [3.09, 4.5] d.

Proliferation related parameters: µN,0, KN, µW,0, KW

µN,0: For the estimation of glioma growth rate, we analyze the doubling times
reported in [135] for several glioma cell lines. Therein, the authors reported a range
of variability between 21.1 h and 46 h for the doubling time, which translates into
µN,0 2 [0.42, 0.9] · 10�5 s�1.

KN , KW : Considering that the mean diameter of a glioma cell is around [12, 14]
µm [81], we estimate a value for the tumor carrying capacity KN of approximately 106

cells · mm�3. In the same way, considering a mean diameter for an endothelial cell of
[10, 20] µm [82], we set KW approximately to 106 cells · mm�3.

µW,0: The doubling time of EC density has been estimated in several experi-
ments to vary between the different phases of an endothelial colony growth until the
formation of a monolayer. In [7, 203], the authors gave a range of variability for the
value of the EC doubling time of [0.5, 13] d. This leads to µW,0 2 [0.62, 5.7] · 10�6 s�1.

Production and consumption related parameters: gs, gd, d0,Q, ST,Q

gs: In [94], the authors estimated the rate of proton production due to tumor cell
activity by fitting their equation for proton dynamics (analogous to our PDE (4.51))
to a converted form of the data in [183]. In particular, in [183] pH measurements
were taken at a variety of points within both the tumor and surrounding healthy
tissue for four composite cases, giving a geometric mean for the production rate of
2.2 · 10�20 M · mm3 · (s · cell)�1.

gd: Following [94, 184], for the rate of proton uptake by tissue and vasculature
we consider the range of variability given by [0.66, 1.1] · 10�4 s�1. As we did for DS,
proton production and consumption rates were rescaled in the simulations to account
for the fast dynamics characterizing proton evolution.

d0,Q: For the rate of tissue degradation due to the acidic environment, in [276]
the authors proposed an estimation choosing the parameter d0,Q such that 10% necro-
sis allow the tissue for 50-day half-life. Starting from the value proposed in [276], we
test a wider range of possible estimations, which translates into d0,Q 2 [0.005, 0.07]
d�1.

ST,Q: In [285], tissue pH values in normal brain tissue and in brain tumors were
reported. Specifically, considering that these values vary depending on the type of
brain tissue (i.e., grey matter, white matter, cerebellum), the minimum pH required
for the normal cell activity is in the range of [6.94, 6.74]. For these reasons, we set
ST,Q = 1.995 · 10�7 M (referring to pH = 6.7). In particular, these last two parameters,
i.e., d0,Q and ST,Q, are involved in the model extension described in Section 4.4.
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We resume in Table 4.1 the values for the constant parameters we use in system
(4.52), as well as the main references to which we refer.

Parameter Description Value (unit) Source

l0 turning frequency in Lr[l(z)] 0.001 (s�1) [259]

l1 turning frequency in Lp[l(z)] 0.001 (s�1) [77, 259]

a0 phenotype switch rate p ! r 0.0001 (s�1) [146, 219]

b0 phenotype switch rate r ! p 0.0002 (s�1) [146, 219]

lm,0 overcrowding switch rate p ! r 0.0005 (s�1) [146, 219]

N⇤ optimal N-value for cell movement 0.75 · KN [28, 225]

s speed of tumor cells 0.0084 · 10�3 (mm · s�1) [65]

k+1 cell-ECM attachment rate 0.034 (s�1) [161]

k+2 cell-protons interaction rate 0.01 (s�1) [161]

k� detachment rate 0.01 (s�1) [161]

µN,0 tumor proliferation rate 9.26 · 10�6 (s�1) [135]

KN tumor carrying capacity ⇠ 106 (cells · mm�3) [81]

g0 acid-induced death rate for tumor cells 0.19 · 10�6 (s�1) [276]

ST,1 S-concentration threshold for r ! p 1.995 · 10�7 (M) [285, 293]

ST,2 S-concentration threshold for tumor cell death 3.98 · 10�7 (M) [285, 293]

h0 turning frequency of ECs in Lw[h] 0.001 (s�1) [277]

ca0 duration between R-damped EC turnings 4.5 (d) [266, 267]

s speed of ECs 0.0056 · 10�3 (mm · s�1) [60]

KW carrying capacity for ECs ⇠ 106 (cells · mm�3) [82]

µW,0 EC proliferation rate 0.58 · 10�6 (s�1) [7, 203]

DS diffusion coefficient of protons 0.5 · 10�3 (mm2· s�1) [168]

gs proton production rate 2.2 · 10�20 (M · mm3· (cells · s)�1) [183]

gd proton removal rate 0.8 · 10�4 (s�1) [184]

TABLE 4.1: Intratumor heterogeneity, vasculature and acidity: model param-
eters.

4.2.3 Non-dimensionalization

This last section, before presenting the numerical results of the model, concerns the
non-dimensionalization of system (4.52). In particular, we first observe that the vari-
ables N, W, and Ne involved in system (4.52) (and in its extension (4.56), presented
in the following Section 4.4) are expressed in cells · mm�3, the tissue density Q in g ·
mm�3, while the concentration of protons S is given in mol · l�1(=:M). The reference
values we use for the non-dimensionalization are listed in Table 4.2. In particular, we
rescale the variables accounting for tumor cell, EC cell, and necrotic matter (including
dead cells and tissue) densities with respect to their carrying capacities, i.e., Nc,0 = KN ,
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Wc,0 = KW , and Ne,0 = KN , assuming a similar carrying capacity for tumor cells and
necrotic s.

Parameter Description Value (unit) Source

T time 1 (d)

L length 0.875 (mm)

Nc,0 tumor cell density 106 (cells · mm�3) this work

Wc,0 EC density 106 (cells · mm�3) this work

Sc,0 proton concentration 10�6 (M) [285]

Q⇤ healthy tissue density 10�3 (mg · mm�3) [134]

Ne,0 density of necrotic matter 106 (cells · mm�3) this work

TABLE 4.2: Intratumor heterogeneity, vasculature and acidity: reference vari-
ables for the non-dimensionalization.

We non-dimensionalize the partial differential equations as follows:

t̃ =
t
T

, x̃ =
x
L

, Ñ =
N

KN
, W̃ =

W
KW

, S̃ =
S

Sc,0
, Q̃ =

Q
Q⇤ , Ñe =

Ne

KN
.

The proper scaling of the parameters involved in the macroscopic setting then reads

ã0 =
a0

l0
,

Ñ⇤ =
N⇤

KN
,

k̃+2 =
k+2
l0

,

k̃� =
k�

l0
,

g̃0 = g0 T,

l̃m,0 =
lm,0

l0
,

b̃0 =
b0

l0
,

k̃+1 =
k+1
l0

,

S̃T,Q =
ST,Q

Sc,0
,

µ̃N,0 = µN,0 T,

l̃1 =
l1

l0
,

D̃EC =
T
L2 DEC,

c̃a0 =
ca0

KN
,

g̃s = gs
T

Sc,0
,

d̃0,Q = d0,Q T,

D̃T =
1

l0

T
L2 DT,

D̃S =
T
L2 DS,

S̃T,j =
ST,j

Sc,0
(j = 1, 2),

g̃d = gd T,

µ̃W,0 = µW,0 T .

Dropping the tilde in the new variables and parameters, the differential equations in
system (4.52) maintain the same form, with the following rescaled functions:

µ̃(W̃, Ñ, S̃) = µ̃N,0
�
1 � Ñ � Ñe

�
W̃

1
1 + S̃

,

µ̃W(W̃, Q̃) = µ̃W,0
�
1 � W̃

�
Q̃,

B̃(Q̃, S̃) =
�
k̃+1 Q̃ + k̃+2 S̃ + k̃�

�
,

g̃(Ñ, S̃, W̃, Q̃) = g̃s Ñ � g̃g(W̃ + Q̃)S̃,

$̃(W̃, Ñ, S̃) = 1 + ã(W̃, S̃) + l̃m(Ñ),

ã(W̃, S̃) = ã0
W̃

1 + W̃
1

1 + S̃
,

b̃(S̃) = b̃0(e + (S̃ � S̃T,1)+),

g̃(S̃) = g̃0(S̃ � S̃T,2)+,

l̃m(Ñ) = l̃m,0(1 + tanh(Ñ � Ñ⇤)),

ã(R̃) =
c̃a0

(1 + R̃)2 ,
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j̃(W̃, Ñ, S̃) =
b̃(S̃)

b̃(S̃) + ã(W̃, S̃) + l̃m(Ñ)

and

F̃(Q̃, S̃) =
k̃�

B̃(S̃, Q̃)2
⇥
B̃(Q̃, S̃) + 1 + ã(W̃, S̃) + l̃m(Ñ)

⇤ .

4.3 Numerical simulations

Considering the parameters given in Table 4.1 and the functions defined in Section
4.2.1, we perform 2D simulations of the resulting macroscopic setting of coupled ad-
vection - diffusion - reaction equations (4.52). For the initial conditions we take a Gaus-
sian - like aggregate of proliferating tumor cells centered in (x0,N , y0,N) = (�17, 5),
situated in the upper-left part of the brain slice representing our illustrative computa-
tional domain W (in the following, (x, y) 2 W ✓ R2)

R0(x, y) = e�
(x�x0,N )2+(y�y0,N )2

8 ,

and a ring-like profile for the migrating tumor cells centered at the same location:

M0(x, y) = 0.5 e�
⇣p

(x�x0,N)2+(y�y0,N)2�2
⌘2

.

The initial distribution of the total tumor population is given by N0 = R0 + M0. For
the ECs we consider x0,W = �6 and

W0(x, y) = 0.5 e�
(x�x0,W )2

0.2 sin6
⇣p

8
y
⌘

8 y 2 [�5, 15] ,

reproducing the representative situation of three blood vessels close to the neoplastic
region. Finally, for the acidity profile we consider a Gaussian distribution, centered
in the same point as tumor cells (x0,S, y0,S) = (�17, 5), as a capillary occlusion would
have caused acidification of the extracellular space around the glioma cell. This distri-
bution is given by:

S0(x, y) = 0.65 e�
(x�x0,S)

2+(y�y0,S)
2

10 .

The initial pH distribution is calculated considering that pH0 = � log10(S0). We are
more interested in visualizing the changes in the pH level rather than in the proton
concentration as advanced techniques have been recently developed to obtain high-
resolution pH-weighted images [111] and study tumor acidity and vascularity associ-
ation. Figure 4.1 shows the plots for the initial conditions on the entire 2D brain slice,
zooming then on the region W̄ = [�35, 5]⇥ [�15, 25] ✓ W. Figure 4.2 shows the initial
tissue density estimated with (4.54).

The numerical simulations are performed with a self-developed code in Matlab
(MathWorks Inc., Natick, MA). The computational domain is a horizontal brain slice
reconstructed from the processing of an MRI scan. The macroscopic tensor DT(x)
is precalculated using DTI data and the ODF for the fiber distribution function (4.53).
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FIGURE 4.1: Initial conditions for system (4.52). The five columns refers to to-
tal tumor density, proliferating cells, migrative cells, ECs, and pH level, respec-
tively. The bottom row shows a close up of the initial densities on the domain

W̄ = [�35, 5]⇥ [�15, 25].

FIGURE 4.2: Healthy tissue density for system (4.52).

We consider a Galerkin finite element scheme for the spatial discretization of the equa-
tions for tumor cells, ECs, and proton concentration, together with an implicit Euler
scheme for the time discretization. More detail descriptions and definitions of the nu-
merical methods are provided in Appendix B.

We present a series of simulations addressing several aspects of the system dy-
namics:

(A) we study the behavior of species involved in system (4.52) for the parameters
listed in Table 4.1;

(B) we compare the model behaviors upon varying some of the parameters: the
turning rate of glioma cells l0 and the two speeds for tumor and endothelial
cells (s, s);

(C) we study the effect of the go-or-grow dichotomy, comparing the evolution of
the system (4.52) with a setting in which the tumor cells migrate and prolifer-
ate without deterring one of these phenotypes for the other. We referee to this
setting as Model NGG.
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The simulation results for study (A) are shown in Figure 4.3, where the five columns
report the evolution of the whole tumor mass (N), the two subpopulations of pro-
liferating (R) and migrating (M) tumor cells, the endothelial cells (W), and the pH
(computed from S). The tumor spread, which seems to mainly depend on EC evolu-

FIGURE 4.3: Scenario (A). Numerical simulation of system (4.52) with parame-
ters listed in Table 4.1.

tion and on the parameters l0 and s, is rather slow, with a partial exchange between
the two subpopulations of tumor cells in relation to the pH values at the center of the
tumor mass, where proliferating cells are more initially concentrated. The tumor cells
increasingly adopt the proliferating phenotype when they approach ECs, as these pro-
vide the necessary nutrient and oxygen to sustain glioma proliferation. ECs diffuse
and grow, with a higher accumulation around the first of the three vessels situated
in the upper part of the domain and where there is more healthy tissue available to
sustain proliferation (as can be observed in Figure 4.2). They clearly exhibit a tactic
behavior towards the (pro-angiogenic growth factors released by) proliferating tumor
cells. The subplots for the evolution of ECs at later times (e.g. the last two rows of
Figure 4.3) show an increasing amount of high EC aggregates developing towards the
tumor. This behavior can be associated with the phenomenon of microvascular hy-
perplasia and glomeruloid bodies. The latter are tumor-associated vascular structures
that develop in the presence of high levels of VEGF and are important histopatho-
logical features of glioblastoma [248, 268]. Globally, Figure 4.3 shows the strong de-
pendency of tumor evolution on EC dynamics. The chosen illustrative initial condi-
tion for ECs (shown in Figure 4.1) is effective to demonstrate how the model is able
to reproduce the phenomena of microvascular hyperplasia and glomeruloid bodies,
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typical of GB, although the limited amount of vessels provided initially affects the tu-
mor extension. However, it has been proved that tumor volume has no influence on
the overall survival (OS) in GB patients, while there is a high significance of necrosis
and hypoxia-related histopathological features (like microvascular hyperplasia and
glomeruloid bodies) for OS (see [115] and references therein) and, thus, we focus on
these latter aspects.

Figure 4.4 show the comparison described in (B) between the simulations per-
formed for different values of the parameter l0, referring to the turning rate of glioma
cells, and different values of the two speeds (s, s) for tumor and ECs with the aim to
illustrate how sensitive the model predictions are with respect to these parameters.
The tumor and EC densities are plotted after 80 weeks of evolution for three different
values of l0 (expressed in s�1), i.e., 10�4, 10�3 and 10�2, and for four pairs (s, s) of
speed values (expressed in µm · h�1), i.e., (15, 20), (20, 15), (30, 20), and (30, 25). The
simulations suggest that vascularization at the tumor site requires a sufficiently large
glioma turning rate l0 accompanied by relatively large EC speed s. Too small values
of l0 trigger the tumor cells to shift from their original location to the site of blood
vessels, where they switch to the proliferative phenotype. The faster the glioma cells
are, the more this behavior occurs, obviously dominated by migration during the first
stage and subsequent proliferation. Increasing l0 by one or two orders of magnitude
leads to more realistic behaviors of tumor cells and ECs, with less sensitivity towards
variations in l0. Naturally, wide-spread hyperplasia and strong tumor invasion occur
for higher cell speeds.

Moreover, to test the effect of the go-or-grow dichotomy on the evolution of the cell
populations involved in system (4.52), we compare the model with a setting in which
the tumor cells migrate and proliferate without deterring one of these phenotypes for
the other, namely the Model NGG described in (C). In particular, we do not differenti-
ate between proliferating and migrating cells and accordingly let the ECs be biased by
the density gradient of the whole tumor. Using a scaling argument similar to the one
described in Section 4.1.3, we obtain a system of three partial differential equations
for tumor cells (N1), ECs (W1), and protons (S1), which is analogous to (4.52) with
a0 = 0 and lm,0 = 0. This choice of parameters reduces the former coefficient func-
tions to j(w0, N, S) = 1 and $(w0, N, S) = l0. Figure 4.5 shows the solution behavior
for this new setting. The initial conditions for the three populations are the same as
those shown in Figure 4.1. Comparing Figures 4.3 and 4.5 we observe that the go-or-
growth model predicts - as expected - a slower tumor spread, with lower cell density,
which, consequently, induces lower acidity concentrations in the environment, and
the differences between the two settings become more accentuated with time. More-
over, the tactic phenomenon driving ECs towards the tumor mass is stronger for the
case shown in Figure 4.5, and accumulations of ECs indicating microvascular hyper-
plasia are now earlier formed and become larger. To enable a direct assessment of the
two settings we plot in Figure 4.6 the differences (at 57 and 80 weeks) between the
(overall) densities of tumor and endothelial cells for the model with go-or-grow and
its NGG counterpart (the quantities for the latter are marked by the index 1), as well
as between the respective pH distributions, the latter illustrated on a larger domain
W̃ = [�40, 10]⇥ [�20, 30]. The described features concerning tumor/EC spread and
aggregation along with acidity distribution can be clearly observed. The larger tumor
spread in the NGG model with respect to the go-or-growth model is highlighted by the
presence of extensive blu-areas in the corresponding plots (first columns); in turn, the
tactic force driving EC migration is stronger, leading to an earlier and more enhanced
accumulation of ECs in the core region of the tumor mass (indicated by the central
dark blue spot in the second column). Due to the higher production of protons for
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FIGURE 4.4: Scenario (B). Comparison between the evolution of tumor (first
row of each box) and endothelial cells (second row of each box) for three dif-
ferent values of l0 (s�1): 10�4, 10�3 and 10�2, and four pairs (s, s) of speed
values (µm · h�1): (15, 20), (20, 15), (30, 20), and (30, 25). All values belong to

the parameter ranges reported in Section 4.2.2.
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FIGURE 4.5: Scenario (C). Numerical simulation of Model NGG, i.e., with si-
multaneously moving and proliferating cancer cells. The employed parameter

values are listed in Table 4.1, except for a0 = 0 and lm,0 = 0.

the NGG model, the difference in the pH level is nonnegative everywhere, indicating
a less acidic environment.

4.4 Model extension: tissue degradation, necrosis, and tumor grading

In the last step, we extend our model by considering the evolution of the macroscopic
tissue density Q and that of necrotic matter Ne, the latter including tissue as well as
glioma cells degraded by hypoxia. The whole system consists of the equations of
system (4.52) together with the following ODEs:

8
><

>:

∂tQ = �dQ(S)Q

∂tNe = dQ(S)Q + j(w, N, S)
a(w, S) + lm(N)

b(S)
g(S) N,

(4.56)

98 4. Intratumor heterogeneity, vasculature, and acidity



FIGURE 4.6: Detail of scenario (C). Differences between the respective solution
components of system (4.52) and of Model NGG at 57 (top row) and 80 (bottom

row) weeks.

where the coefficient dQ(S) models the pH-triggered tissue degradation occurring
when a certain acidity threshold ST,Q is exceeded, namely

dQ(S) = d0,Q

✓
S

Sc,0
� ST,Q

Sc,0

◆

+
.

Thereby d0,Q > 0 describes the tissue degradation rate and (·)+ denotes as usual the
positive part. In particular, the details on the estimation of dQ,0 and ST,Q have been
provided in Section 4.2.2.

The numerical simulations for the model (4.52) extended with (4.56) are shown in
Figure 4.8, corresponding to the initial conditions of Figure 4.7.
In Figure 4.9 we illustrate the evolution of proliferating and migrating glioma cells.
Although the qualitative behavior of glioma and endothelial cells is comparable with
the one shown in Figure 4.3, the degradation of tissue due to the environmental acid-
ity affects both tumor and EC proliferation, as less healthy tissue is available to sustain
growth. Therefore, the simulations in Figures 4.8 and 4.9 show lower densities for both
species and, particularly, tumor cell growth is affected by the reduction of vasculature
and the depletion of healthy tissue, as clearly shown by the evolution of the prolifer-
ating tumor cells in Figure 4.9 (first row). As stated above, we remark our attention
for the necrosis significance on the tumor progression and the patient OS, rather than
on the reproduced tumor volume.

The above model extension enables us to perform necrosis-based tumor grading,
which is essential for assessing patient survival and treatment planning. Other indica-
tors of tumor aggressiveness can be employed as well (e.g. histological patterns [297]
or tumor size [226]). Here, we rely on the grading based on the amount of necrosis
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FIGURE 4.7: Initial conditions for system (4.52) extended with (4.56). The five
columns refers to total tumor density, ECs, necrotic matter, healthy tissue, and
pH level, respectively. The bottom row shows a close up of the initial densities

on the domain W̄ = [�35, 5]⇥ [�15, 25].

FIGURE 4.8: Evolution of system (4.52) extended with (4.56). The parameters
used in this simulation are listed in Table 4.1 and the value of ECs speed is here

set to s = 0.0069 · 10�3 mm · s�1.

relative to the whole tumor volume in view of [108, 115], where the authors show that
the tumor volume by itself has no influence on the overall survival. Following [58],
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FIGURE 4.9: Evolution of proliferating and of the migrating tumor cells for
the system (4.52) extended with (4.56).

we define the time-dependent grade G(t) 2 [0, 1] of the simulated tumor via:

G(t) :=
VNe(t)

VNe(t) + VN(t)
, (4.57)

where VNe(t) and VN(t) denote the fraction of necrosis and the fraction of living cell
densities in the visible tumor volume, respectively. They are defined as the integrals of
the densities Ne and N over the domain defined by the level sets of the tumor popula-
tion for a detection threshold of 80% of the carrying capacity, which corresponds to the
detection threshold for T1-Gd images [276]. We represent in Figure 4.10 the temporal
evolution of G, guided by the percentage classification in [108], i.e., 0 < G < 25%:
grade 1, 25%  G < 50%: grade 2, and G � 50: grade 3. The highest grade cor-
responds to the most aggressive tumor and the poorest survival prognosis. With the
word grade, we do not refer to the WHO scheme for classifying gliomas, which di-
vides them into four grades depending on the degree of tumor differentiation. We use
this terminology following the work in [108], where the grade indicates the amount of
necrosis measured mainly from the T1 images. In particular, we compare the effect of
four different scenarios on the necrosis-based tumor grading: the grey curves therein
refer to the model (4.52) extended with (4.56) involving vascularization, i.e., with the
population W (solid line: go-or-grow (GoG in the legend of Figure 4.10), dotted line:
Model NGG), while the red curves illustrate the evolution of the grade G for the corre-
sponding variants of the extended model without EC dynamics (i.e., without W). First,
Figure 4.10 shows that assuming the go-or-grow dichotomy leads to slower progres-
sion of neoplasia, due to the cells deterring one phenotype for the other. In the long
run, the full go-or-grow model with vascularization predicts a slower advancement
towards high tumor grades. When considering EC dynamics, the differences between
the model with or without go-or-grow are rather small; when ECs are not included,
these differences increase. The vascularization seems to have a significant impact on
the evolution of the grade: focusing e.g. on Model NGG (dotted curves) we see that
during the first simulated 14-15 weeks the vascularization ensures a higher percentage
of necrosis, after which the situation reverses, with differences becoming larger while
time is advancing. The early phase (which is supposed to correspond to a lower tumor
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FIGURE 4.10: Tumor grading. Evolution of the grade function G(t) given in
(4.57). Grey curves relate to the extended full model (i.e., including dynamics
of endothelial cells) in the case with go-or-grow (solid line, model (4.52), (4.56))
and without the migration-proliferation dichotomy (dotted line, Model NGG).
The red curves refer to the same model variants, but without vascularization.

In both cases we set µN,0 = 5.79 · 10�6 s�1.

grade) can seem somehow paradoxical when thinking about blood capillaries buffer-
ing the acidity and reducing necrosis. It is, however, well-known that a tumor usually
develops angiogenesis when it has reached a more advanced phase in its development
and begun to get increasingly hypoxic, which leads to enhanced VEGF expression and
capillary formation. The small amount of vessels prior to such stage is on the one side
supporting the growth of tumor cells, while on the other side it is not able to buffer
the ever-increasing proton concentration triggered by the exuberant growth. Without
a substantial enhancement of angiogenesis, the tumor will develop a larger necrotic
component, thus receiving a higher grade. Therefore, omitting the dynamics of en-
dothelial cells from the model can overestimate the tumor growth and spread, which
for brain tumors can have a significant therapeutic impact.

4.5 Summary

On the basis of the multiscale framework set up in Chapter 3 concerning the influence
of the brain tissue on tumor progression, we extended in this chapter this description
to include intratumor heterogeneity aspects and the impact of the tumor microenvi-
ronment. Precisely, we defined a multiscale mathematical model - to our knowledge,
the first one of this type - with pH- and vasculature-induced phenotypic switch be-
tween moving and proliferating tumor cells that analyze the interdependency of tu-
mor acidity and vascularity. In particular, intratumor heterogeneity, describing two
tumor cell types, is modeled by means of two tumor subpopulations evolving under
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mutual, direct, and indirect interactions. As such, it can be seen as a further devel-
opment of the models in [75, 126], but several novelties have been introduced here,
leading to a highly nonlinear and coupled system.

Starting from the description of single-cell dynamics for glioma, we formulated
the corresponding kinetic transport equations for glioma and EC density distribution
functions on the mesoscopic scale (Section 4.1.2) and employed a parabolic scaling
to deduce the population-level behavior for the model variables (Section 4.1.3), i.e.,
glioma density, acid concentration (that determines the pH level), EC density, and -
for the extended model - densities of normal tissue and necrotic matter. We consid-
ered a heterogeneous tumor and, using the go-or-grow dichotomy, we asserted that
glioma cells can either move or proliferate and the respective behavior is transient
and switches according to nutrient availability (supplied by vasculature), to pH (de-
termined by proton production and buffering), as well as to crowded environments.
In particular, the differences in relying on the go-or-growth dichotomy or assuming a
uniform tumor population were analyzed in the simulations and the results are shown
in Figures 4.5 and 4.6.

The microscopic dynamics, together with the mesoscopic description of the tu-
mor and ECs velocity changes, allowed for the derivation of a macroscopic setting,
which addresses multiple tactic phenomena. The macroscopic scale is characterized
by nonlinear, myopic self-diffusion, involving the anisotropic tensor DT which takes
into account the local tissue structure, and also by multiple taxis (haptotaxis, chemo-
taxis, repellent pH-taxis) for both tactic populations, i.e., glioma cells and ECs. In
particular, the haptotactic and pH-tactic processes, carrying information from the mi-
croscopic scale, direct glioma migration towards increasing tissue gradients, and away
from highly (hypoxic and, thus,) acidic regions. Furthermore, ECs migrate by a com-
bination of diffusion and drift terms, described indirectly the response of ECs to pro-
angiogenic growth factors (e.g. VEGFs). In particular, in order not to maintain a low
number of solution components, we described this response biasing EC migration to-
wards proliferating tumor cells, which are assumed to produced VEGF. For the same
reason, we implicitly include the effect of oxygen dynamics through EC-sustained tu-
mor proliferation and the (hypoxia-caused) tumor acidosis. Analytically, ECs bias was
described in an alternative manner with respect to the bias leading glioma cell migra-
tion. In particular, the effect of the multiple taxis and their dependency on the model
parameters were shown and analyzed in Figures 4.3 and 4.4. The nonlinear nature of
the dynamics arises also from the modeling of the chemorepellent taxis. In fact, the
chemorepellent is produced by glioma cells which, in turn, try to avoid it. At the same
time, the chemorepellent is degraded by the other tactic actor (ECs), which is direc-
tionally biased by a subpopulation of the glioma cells, namely the proliferating tumor
cells. These mechanisms render the repellent acidity taxis of glioma cells both direct
and indirect and make the coupling of the equations nonlinear. Moreover, Figures 4.3
and 4.4 highlight the capability of the model to reproduce hypoxia-related histopatho-
logical features typical of GB evolution. This aspect, together with the choice of a more
realistic initial condition for ECs (preferably taken from vascular perfusion imaging
data), would allow to improve our results and replicate the typical GB dynamics, in
terms of both tumor extensions, hypoxia-related features, and acidosis.

The extension of the model, introduced in the last Section 4.4 and involving dy-
namics of tissue and necrotic matter, determined an additional indirect kind of hapto-
taxis, with even more complex coupled equations. In particular, this extension opened
the way for necrosis-based tumor grading, which we used for determining the evolu-
tion of the tumor in different scenarios and the influence of the tumor heterogeneity
and the vasculature supply on it, as shown by Figure 4.10. In particular, this extension
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is highly relevant for diagnosis and therapy planning, several aspects of which will be
discussed in detail in the forthcoming chapter.
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5Vasculature, VEGFs, and therapy effects

The development of a glioma in the brain and, especially, of its more advanced sub-
type (glioblastoma) is accompanied by strong angiogenic processes. Angiogenesis,
driven by hypoxia-dependent and independent mechanisms, is primarily mediated
by vascular endothelial growth factors (VEGFs) expressed by tumor cells. The an-
giogenic process generates blood vessels that are often distorted, enlarged, and with
erratic blood flux or microhemorrhages. These features of the blood vessels determine
leaky and unstable blood flow, despite increased vessel density. The vessel network is
essential to supply the tumor cells with oxygen and nutrients necessary, among oth-
ers, for cell growth and migration. In Chapter 4, we focused on some aspects involved
in the relationship between tumor and endothelial cells, the latter being responsible
for the capillary formation. In the specific, we analyzed intratumor heterogeneity and
acidity dynamics in response to endothelial cell evolution, while the role of VEGFs
was indirectly accounted for by the EC chemotactic term. In this chapter, we look
closely at the VEGF-driven angiogenesis and at the possible effects of combined treat-
ments affecting tumor, ECs, and tissue.

The standard treatments for glioma patients includes, after the maximum safe re-
section, radiation therapy, and chemotherapy with temozolomide. This protocol usu-
ally achieves a median progression-free survival varying from 6.9 to 14.7 months. An-
giogenesis is a complex and critical feature involved in tumor progression and, thus,
offers several potential strategies for therapeutic exploitation. In the last decades, clin-
ical studies in glioma patients have shown improved progression-free survival in re-
sponse to combined treatments of radiation, chemotherapy with temozolomide, and
anti-angiogenic therapy with bevacizumab, a humanized monoclonal antibody target-
ing vascular endothelial growth factors [92, 149]. VEGFs typically localize adjacent to
necrotic regions and within glioma pseudopalisades [207, 249], and their expression
increases with the tumor grade. Many strategies are under clinical evaluation to thera-
peutically target multiple aspects of VEGF activation. For instance, direct suppression
of VEGF receptor activation can be achieved by targeting either the corresponding lig-
and or the receptor, and ligand inactivation can be achieved by sequestering VEGF
to either antibodies or soluble decoy receptors, preventing effective receptor binding
[242]. More than 50 clinical trials1 are evaluating bevacizumab alone or in combina-
tion with other treatments for patients with recurrent glioblastoma (see [242] and ref-
erences therein). These studies with bevacizumab show that VEGF/VEGFR-targeting
agents can be safely used in patients with glioblastoma. Moreover, anti-VEGF an-
tibody treatment has been shown to inhibit angiogenesis and glioblastoma growth.
However, many additional aspects of anti-angiogenic therapy require further insights.
There are still several difficulties in assessing the body response after anti-VEGF ther-
apies and in identifying effective treatments after bevacizumab failure. For instance, a

1
www.clinicaltrials.gov
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better understanding of the mechanisms of resistance to VEGF/VEGFR therapeutics
is paramount to implementing more effective strategies and to improve patient sur-
vival.

The content of this chapter is organized as follows. In Section 5.1, we describe the
model setup and the deduction of the macroscopic PDEs from the lower scales. Then,
in Section 5.2, we provide the explicit expressions of the coefficient functions involved
in the macroscopic setting along with a proper assessment of the model parameters
and non-dimensionalization. Finally, in Section 5.3, we present the numerical simula-
tions of both scenarios (without and with therapy) in order to understand the therapy
effects on tumor progression.

5.1 Modeling setting

Aiming at understanding the efficacy of combinations of standard therapies used for
treating glioma patients with new anti-angiogenic agents, we consider here a new
multiscale framework describing the evolution of the tumor population in interaction
with several environmental factors. On the basis of the extended model proposed in
Section 4.4, we modify some of the assumptions previously stated, moving the central
focus on the therapy modeling and the consequent effects on tumor progression.

Glioma cells, considered as one tumor population, migrate along tissue fibers and
blood vessels. In order to meet nutrient and oxygen supply demands, a tumor pro-
duces and releases in the extracellular environment growth factors, such as VEGFs,
that attract endothelial cells. These cells, in turn, enhance tumor growth and lead
to a more vascularized and advanced neoplasm. Standard therapy with radiation is
usually combined with chemotherapy. Here, we consider chemotherapy with temo-
zolomide, which is administered by blood and is directly aimed at killing cells. This
choice for the chemotherapy differs from the model proposed in Chapter 3, where the
chemotherapeutic agent consists of integrin inhibitors, affecting tumor-ECM interac-
tions. Recently, the combination of radio- and chemotherapy has been studied in asso-
ciation with several complementary treatments. In this context, anti-angiogenic factors,
such as bevacizumab, have been used to reduce the affinity between VEGF and endothe-
lial cells and, consequently, to affect the tumor vasculature supply. Thus, starting from
the general multiscale framework described in the previous chapters, we specify here
the three scales of the new model setting.

• The microscopic level describes the interactions that drive both tumor and en-
dothelial cell migration. Tumor cells bind with tissue and vasculature through
the integrin receptors located on their cell membrane and they use these bind-
ings to crawl along fibers and vessels. Similarly, endothelial cells respond to the
chemotactic cue determined by the tumor-produced growth factors upon bind-
ing such ligands to their corresponding membrane receptors. We model these
two processes by also including the effects of two treatment components. We
consider the role of the anti-angiogenic therapy on the VEGF-EC interactions
and the effect of radiation on the available healthy tissue and vessels with which
the glioma cells interact. Thus, for this setting, we follow the idea of building a
micro-meso model for both tumor and EC populations.

• On the mesoscopic level, we describe the corresponding kinetic transport equa-
tions for the density function of glioma and endothelial cells. These equations
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model the interactions between tumor cells, vasculature, tissue, and growth fac-
tors. Moreover, we include the description of the effects of radio- and chemother-
apy on glioma and ECs, as well as the effect of anti-angiogenic therapy on the
EC proliferation ability.

• The macroscopic level, deduced via a parabolic limit of the mesoscopic equa-
tions, consists of a macroscopic system of advection-diffusion-reaction PDEs for
the involved quantities: density of glioma and endothelial cells, and VEGF con-
centration. The resulting system includes anisotropic diffusion along the direc-
tions of the brain fibers, several types of taxis, tissue-mediated proliferation, and
death processes due to the treatment. Moreover, we include at this level the for-
mation and evolution of necrotic regions due to the treatment and the dynamics
of the healthy tissue. The latter degrades due to the acidity produced by tumor
cells and due to the effect of the radiotherapy, which affects tumor and healthy
matter, although to different extents.

5.1.1 Subcellular level

On the microscopic scale, we describe the interactions of glioma cells with the unsol-
uble components of the ECM and the vessels. Moreover, we consider the interactions
between ECs and VEGFs, which diffuse in the extracellular space. As we described
in the introductory chapter, for both tumor and ECs the exchange of information be-
tween the cells and their extracellular microenvironment is mediated by through var-
ious transmembrane entities. In this model, these are integrin receptors for the tumor
population and VEGF receptors for the exchange between VEGFs and ECs. We ne-
glect the details about the intracellular machinery activated by receptor binding, as
we assume that the events of occupying such transmembrane units trigger the cellu-
lar processes, which lead to migration and proliferation. This assumption follows the
idea revisited in the previous chapters and in a large series of works in the literature,
especially for the case of cell-tissue interactions (e.g. see [77, 136, 169]).

We denote by y1(t) the amount of glioma receptors bound to the tissue fibers and
by y2(t) that receptors bound to the vessels, irrespective of how these are oriented.
Concerning endothelial cells, we denote by z(t) the amount of EC receptors bound
to VEGF molecules. The corresponding binding dynamics is characterized by simple
mass action kinetics:

(R̄0 � y1 � y2) +
W

Wc,0

k+W⌦
k�W

y1

(R̄0 � y1 � y2) +
Q
Q⇤

k+Q⌦
k�Q

y2

(R̄z � z) +
H

Hc,0

k+H⌦
k�H

z .

(5.1)

Here, R̄0 and R̄z represent the total amount of receptors on a tumor cell and on an
endothelial cell, respectively. Both values are assumed to be constant. Q(t, x) de-
notes the macroscopic brain tissue density, W(t, x) the macroscopic density of ECs,
and H(t, x) the concentration of VEGFs. These three populations depend on the posi-
tion x 2 Rd and the time t > 0. Further, Wc,0, Q⇤, and Hc,0 denote the reference den-
sity/concentration values for ECs, tissue, and VEGFs, respectively. The corresponding
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equations for the microscopic dynamics read

ẏ1 = k+W
W

Wc,0
SW(dr, aW) (R̄0 � y1 � y2)� k�Wy1 ,

ẏ2 = k+Q
Q
Q⇤ SQ(dr, aQ)(R̄0 � y1 � y2)� k�Qy2 ,

ż = k+H(db)
H

Hc,0
(R̄z � z)� k�H(db)z ,

where k+W and k�W , k+Q and k�Q represent the attachment and the detachment rates of
glioma cells to vessels and tissue, respectively, while k+H and k�H are the corresponding
coefficient functions in the process of VEGF-EC binding. As stated above, at this level,
we include the effect of the anti-angiogenic therapy on the EC receptors and, also, the
effect of radiotherapy on the tumor receptor dynamics. Precisely, we model the effect
of radiotherapy, which reduces the available healthy tissue and vasculature to which
glioma cells interact by way of their receptors. We recall the L-Q model introduced in
Chapter 3 defining the function

S(dr, a) := exp (�adr � bd2
r )

that is used to describe the fraction of cells that survive to a dose dr of radiotherapy.
Each population affected by radiotherapy has different values for the parameters a
and b, referring to the lethal lesions produced by a single radiation track or by two ra-
diation tracks. The parameter pairs (aW , bW) and (aQ,bQ) refer to the effects of radio-
therapy on the vasculature W and on the brain tissue Q, respectively. In the following,
we indicate with SW and SQ the survival fractions of W and Q, neglecting in the writ-
ing their dependency on the parameters a, b, and dr. The interactions between ECs
and VEGFs are influenced by the anti-angiogenic drug, delivered at a dose db. This
drug reduces the binding affinity of VEGF molecules with its corresponding recep-
tors on the EC membrane. Thus, we model this effect in the attachment/detachment
coefficient functions, i.e.,

k+H(db) := k̄+H l+(db) ,

k�H(db) := k̄�H l�(db) ,

where l+(db) and l�(db) are a decreasing and an increasing function of db, respectively.
As we did in the previous chapter, we define y := y1 + y2 to be the total amount

of transmembrane entities on the tumor cells occupied by tissue or ECs. With this we
can lump together the two ODEs for the tumor receptors, obtaining

ẏ =

✓
k+W

SW
Wc,0

W + k+Q
SQ

Q⇤ Q
◆
(R̄0 � y)� k�Wy1 � k�Qy2 .

Assuming that k�W = k�Q = k�, we get the following microscopic equation for the
subcellular dynamics

ẏ =

✓
k+W

SW
Wc,0

W + k+Q
SQ

Q⇤ Q
◆
(R̄0 � y)� k�y . (5.2)
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Rescaling y/R̄y  y and z/R̄z  z we can further simplify the notation. Thus, the
unique steady states of equations (5.2) and (5.1) are given by:

y⇤ =

⇣
k+W

SW
Wc,0

W + k+Q
SQ
Q⇤ Q

⌘

k+W
SW

Wc,0
W + k+Q Q SQ

Q⇤ + k�
,

z⇤ =
k+H

H
Hc,0

k+H(db)
H

Hc,0
+ k�H(db)

.

In line with the models proposed in the previous chapters, the variable y characterizes
the overall internal tumor state, while z characterizes the internal EC state. In the
following sections, we consider the mesoscopic densities r(t, x, v, y) and w(t, x, J, z)
of tumor and endothelial cells, that are hence depending on such internal variables
y and z. Moreover, we assume that glioma cells follow the gradients of tissue and
vasculature. Thus, we look at the path of a single cell starting at position x0 and
moving to position x with velocity v in the density fields Q(t, x) and W(t, x), so that
Q(t, x) = Q(t, x0 + vt) and W(t, x) = W(t, x0 + vt). Denoting by z := y⇤ � y the
deviation of y from its steady state, we have:

ż =
k�

⇣
k+W

SW
Wc,0

W + k+Q
SQ
Q⇤ Q + k�

⌘2

✓
k+W

SW
Wc,0

v ·rW + k+Q
SQ

Q⇤ v ·rQ + F̄W(t) + F̄Q(t)
◆

� z
✓

k+W
W

Wc,0
SW + k+Q

SQ

Q⇤ Q + k�
◆
=: G(z, W, Q)

with

F̄W(t) := k+W
SW

Wc,0
∂tW,

F̄Q(t) := k+Q
SQ

Qc,0
∂tQ .

To simplify the notation, we define

Br(W, Q) :=
✓

k+W
SW

Wc,0
W + k+Q

SQ

Q⇤ Q + k�
◆

.

With an analogous argument, denoting by u := z⇤ � z the deviation of z from its
steady state, we assume that ECs follow the gradient of the growth factors. Thus, we
look at the path of a single cell starting at position x0 and moving to position x with
velocity J in the density fields H, so that H(t, x) = H(t, x0 + Jt). The equation for u is
given by:

u̇ =

k+H
Hc,0

k�H
⇣

k+H
Hc,0

H + k�H
⌘2 (∂t H + J ·rH)� u

✓
k+H
Hc,0

H + k�H

◆
=: G(u, H) .
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To simplify the notation, we define

Bw(H) :=
✓

k+H
Hc,0

H + k�H

◆
.

5.1.2 Mesoscopic level

We model the behavior of glioma and endothelial cells at the mesoscopic level with
the aid of kinetic transport equations (KTEs) describing velocity-jump processes and
taking into account the subcellular dynamics proposed in the previous section. In the
specific, we consider the following cell density functions:

• r(t, x, v, y) for glioma cells;

• w(t, x, J, z) for endothelial cells (ECs) forming capillaries and blood vessels.

These density functions depend on the time and the space variables t > 0 and x 2 Rd,
the velocities v 2 V = sSd�1 and J 2 Q = sSd�1 (Sd�1 denotes the unit sphere in
Rd), and the internal variables y 2 Y = (0, 1) and z 2 Z = (0, 1). These choices
mean that we assume for glioma and ECs constant speeds s > 0 and s > 0, re-
spectively. As in the previous chapters, for the derivation of this model we work
with the deviations z = y⇤ � y 2 Z ✓ (y⇤ � 1, y⇤) rather than y for glioma cells and
u = z⇤ � z 2 U ✓ (z⇤ � 1, z⇤) rather than z for ECs. We denote by M(t, x) and W(t, x)
the corresponding space-time varying macroscopic cell densities for tumor and ECs,
respectively.

The kinetic transport equation for glioma cells is given by

∂r

∂t
+r · (vr) +

∂

∂z
(G(z, W, Q)r) = Lr[l(z)]r + P (r)� RM(dr)r + CM(dc)r , (5.3)

where Lr[l(z)] denotes the turning operator, P (r) is the proliferation term, and RM(dr)
and CM(dc) are therapy-related terms. Precisely, the turning operator describes the
tumor velocity changes. Such changes are due to contact guidance, determined by
orientation of the underlying brain network of fibers. As in the previous models of
this type, Lr[l(z)]r is a Boltzmann-like integral operator of the form

Lr[l(z)]r = �l(z)r + l(z)
Z

V
K(x, v) r(v0) dv0 ,

with the cell turning rate l(z) := l0 � l1z � 0 depending on the microscopic variable
z, while l0 and l1 are positive constants. The integral term describes the reorientation
of cells from any previous velocity v0 to a new velocity v after interacting with the
tissue. The turning kernel K(x, v), describing the likelihood of the cells to adopt the
velocity v after being in the velocity regime v0, has the same properties we discussed
in Chapters 2-4. We simply recall that its expression is given in (3.15), with the orien-
tational distribution of the undirected fiber network q(x, v̂). In the sequel, we use the
symmetry property of q(x, v̂) together with the notations (3.16) and (3.17) previously
introduced.

The proliferation process, described with the term P (r), is triggered by glioma
cell receptor binding with the brain tissue and it also depends on the availability of
nutrients and oxygen (supplied by ECs). The proliferation term reads

P (r) := µM(M, W, Ne)
Z

Z
c(x, z, z

0
)

Q(t, x)
Q⇤ r(t, x, v, z

0
)dz

0
.
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The proliferation rate µM(M, W, Ne) depends on the macroscopic densities of tumor
cells M and endothelial cells W, as well as on the necrotic matter Ne. In the integral
operator, the kernel c(x, z, z0) characterizes the transition from state z0 to state z during
a proliferation event originating from the interaction at position x. This kernel satisfies
the same properties as described in Section 3.2.2.

The last terms in equation (5.3) describe the negative effects of radiotherapy and
chemotherapy on the tumor population. In the specific, RM(dr) describes the radiation
effect on tumor cells by means of the L-Q model. RM(dr) is expressed in terms of the
survival fraction S(dr, a) introduced above, i.e.,

RM(dr) = 1 � S(dr, aM) (5.4)

with dr being the dose of radiotherapy and aM a parameter referring to the lesions
caused by the radiation on the neoplastic tissue. Chemotherapy is modeled using the
coefficient function CM(dc), with mortality rate dc. Several cell-kill models have been
proposed in the literature and applied to the study of the chemotherapy effects on
tumor growth (e.g. see [147] and references therein). Here, we rely on the log-kill
hypothesis stating that cell killing is proportional to the tumor population [260], i.e., a
given dose of chemotherapy kills a fixed fraction of cells. Therefore, a linear increase
in the dose causes a log increase in the cell death. A standard treatment plan for
glioma patients consists in a phase of concurrent radio- and chemotherapy, followed
by a resting period and, then, one or more phases of adjuvant chemotherapy alone.
Usually, the dosages in the different phases are not equal. We choose the mortality
rate dc to be proportional to a chemotherapy dose of 75 mg · m�2 (the standard dose
of the concurrent phase) and, then, the other dosages will be appropriate fractions of
dc [229]. For instance, if we assume three different phases of administration of the
treatment ([t0, t1],[t2, t3] and [t4, t5]) and two resting periods [t1, t2] and [t3, t4], then
CM(dc) can be modeled as

CM(dc) := dc(t) =

8
>><

>>:

dc1 t0  t  t1
dc3 t2  t  t3
dc5 t4  t  t5
0 t not in the intervals .

Here, the parameters dci , for i = 1, 3, 5 represents the mortality rate of the chemother-
apy administrated in [ti�1, ti].In the following, we indicate with

LM(dr, dc) := RM(dr) + CM(dc)

the overall tumor loss term due to the combination of radio- and chemotherapy.
The KTE for endothelial cells is given by:

∂w
∂t

+r · (Jw) +
∂

∂u
(G(u, H)w) = Lw[g(u)]w + Pw(w)� RW(dr)w . (5.5)

In this equation, the turning operator Lw[g(u)]w describes the changes in the orien-
tation of ECs due to their chemotactic response to the concentration of the growth
factors H produced by the tumor cells. Differently from Chapter 4 where we indi-
rectly described the EC response to VEGFs modeling their tactic motion towards the
tumor cells producing these growth factors, we directly include here the VEGF dy-
namics. These growth factors determine an angiogenic signal, which stimulates the
nearby host stroma cells to proliferate. These cells provide the tumor with vasculature
and, hence, with the means for a faster growth. For the description of the EC turning
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dynamics, we consider here a Boltzmann-like integral operator similar to the one used
for tumor cells, but with a different turning kernel, namely

Lw[g(u)]w = �g(u)w + g(u)
Z

Q

1
|Q|w(J

0
)dJ

0
,

where |Q| represents the measure of the set Q = sSd�1. For the turning kernel mod-
eling EC reorientations, we use here for simplicity a uniform distribution. The EC
turning rate g(u) := g0 � g1u � 0 depends on the microscopic variable u and, conse-
quently, on the concentration of VEGFs. g0 and g1 are positive constants.

The proliferation term Pw(w) related to ECs describes proliferation as the result of
the interactions between the endothelial cells and growth factors:

Pw(w) := µW(W, Q, db)
Z

U
cW(x, u, u

0
)

H(t, x)
Hc,0

w(t, x, J, u
0
)du

0
.

The source rate µW(W, Q, db) depends on the macroscopic density of ECs W and on the
unsoluble component of the brain tissue Q(t, x). Moreover, we include at this level an
additional effect of the anti-angiogenic therapy. Besides affecting the EC affinity with
the VEGFs, this treatment influences the proliferation of ECs, reducing or inhibiting
the mitotic capability of these cells. Thus, we include the dependency of the prolifer-
ation rate on the anti-angiogenic dose db.

Finally, the last term RW(dr) of equation (5.5) describes the death of ECs due to
radiation. In fact, capillaries and tumor cells have similar cell cycle time scale and, for
this reasons, they are similarly affected by radiotherapy treatments. In this case,

RW(dr) := 1 � S(dr, aW) ,

with aW a parameter related to the lesions caused by radiation on the capillaries. The
concrete choices for the coefficient functions involved in (5.3) and (5.5) are provided
in Section 5.2.

5.1.3 Parabolic scaling of the mesoscopic model

We deduce the effective equations for the macroscopic dynamics of ECs W and glioma
cells N, since clinicians are typically interested in the analysis of the macroscopic
evolution of the tumor mass along with vasculature and necrotic matter. We cou-
ple the equations deduced from the mesoscale with PDEs for VEGF concentration H,
tissue degradation Q, and necrotic tissue Ne. These equations are stated directly at the
macroscopic level and do not need to be upscaled. In fact, as we already mentioned
in Chapter 4 for the proton dynamics, it is not necessary to include microscopic or
mesoscopic variables (such as the microscopic velocity) in the VEGF equation, since
the VEGF concentration does not undergo velocity changes; same applies to the equa-
tions for the healthy tissue and necrotic matter.

We first define the moments for the mesoscopic variables r and w as

m(t, x, v) =
Z

Z
r(t, x, v, z)dz, mz(t, x, v) =

Z

Z
zr(t, x, v, z)dz ,

M(t, x) =
Z

V
m(t, x, v)dv, Mz(t, x) =

Z

V
mz(t, x, v)dv ,

w̄(t, x, J) =
Z

U
w(t, x, J, u)du, w̄u(t, x, J) =

Z

U
u w(t, x, J, u)du ,
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W(t, x) =
Z

Q
w(t, x, J)dJ, Wu(t, x) =

Z

Q
wu(t, x, J)dJ ,

neglecting the higher order moments with respect to the variables z and u, as the sub-
cellular dynamics is assumed to be much faster than the events on the higher scales,
hence z ⌧ 1 and u ⌧ 1. We assume the functions r and w to be compactly supported
in the phase spaces Rd ⇥ V ⇥ Z and Rd ⇥ Q ⇥ U, respectively.

We integrate equation (5.3) with respect to z, getting the following equation for
m(t, x, v):

∂m
∂t

+r · (vm) =� l0

⇣
m � q

w
M
⌘
+ l1

⇣
mz � q

w
Mz

⌘

+
Z

Z
µM(M, W, Ne)

Z

Z
c(x, z, z0)r(z0)

Q
Q⇤ dz0dz � LM(dr, dc)m .

Using the fact that c(x, z, z0) is a probability kernel with respect to z for all pairs (x, z0
),

the previous equation for m(t, x, v) reduces to:

∂m
∂t

+r · (vm)=�l0

⇣
m� q

w
M
⌘
+l1

⇣
mz� q

w
Mz

⌘
+µM(M, W, Ne)

Q
Q⇤ m�LM(dr, dc)m .

(5.6)
Then, we multiply equation (5.3) by z and integrate it with respect to z, obtaining

∂mz

∂t
= �r · (vmz) +

Z

Z
z

∂

∂z
⇥
zBr(W, Q) r(z)

⇤
dz

�
Z

Z
z

∂

∂z


k�

Br(W, Q)2

✓✓
k+W

SW
Wc,0

v ·rW + k+Q
SQ

Q⇤ v ·rQ
◆
+ (F̄W + F̄Q)

◆
r(z)

�
dz

+
Z

Z
zLr[l(z)]r(z)dz +

Z

Z
z µM(M, W, Ne)

Z

Z
c(x, z, z0)r(z0)

Q
Q⇤ dz0dz � LM(dr, dc)mz.

The integral terms can be calculated, leading to the following equation for mz(t, x, v):

∂mz

∂t
=�r · (vmz)� Br(W, Q)mz

+
k�

Br(W, Q)2

✓✓
k+W

SW
Wc,0

v ·rW + k+Q
SQ

Q⇤ v ·rQ
◆
+ (F̄W + F̄Q)

◆
m

� l0

⇣
mz � q

w
Mz

⌘
+µM(M, W, Ne)

Z

Z

Z

Z
zc(x, z, z0)r(z0)

Q
Q⇤ dz0dz�LM(dr, dc)mz.

(5.7)

Applying the same procedure to equation (5.5) considering the integration with re-
spect to u, we obtain the following equation for the moment w̄:

∂w̄
∂t

+r · (Jw̄) = �g0 (w̄ � Ss
dW)+g1 (w̄u � Ss

dWu)+µW(W, Q, db)
H

Hc,0
w̄�RW(dr)w̄ ,

(5.8)
assuming cW(x, u, u0

) to be a probability kernel with respect to u for all (x, u0
). Multi-

plying by u and integrating again (5.5) with respect to u, we get the following equation
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for w̄u:

∂w̄u

∂t
= �r · (Jw̄u)+

Z

U
u

∂

∂u

✓
uBw(H)�

k+H
Hc,0

k�H
Bw(H)2 (J ·rH + ∂tH)

◆
w(u)

�
du (5.9)

+
Z

U
uLw[g(u)]w(u)du+

Z

U
uµW(W, Q, db)

Z

U
cW(x, u, u0)

H
Hc,0

w(u0)du0du�RW(dr)w̄u .

After calculating the integral term, equation (5.9) reduces to

∂w̄u

∂t
=�r · (Jw̄u)� Bw(H)w̄u +

k+H
Hc,0

k�H
Bw(H)2 (J ·rH + ∂tH)w̄ � g0 (w̄u � Ss

dWz)

+ µW(W, Q, db)
Z

U

Z

U
ucW(x, u, u0)

H
Hc,0

w(u0)du0du � RW(dr)w̄u .

(5.10)

Considering the derived equations (5.6), (5.7), (5.8), and (5.10), we rescale the time
and space variables as t ! #2t and x ! #x. In particular, the proliferation and death
terms in (5.3) and (5.5) are scaled by #2 in order to account for mitotic and apoptotic
events taking place on a much slower time scale than migration. Hence, the resulting
rescaled equations read

#2 ∂m
∂t

+ #r · (vm) = �l0

⇣
m � q

w
M
⌘
+ l1

⇣
mz � q

w
Mz

⌘
+ #2µM(M, W, Ne)

Q
Q⇤ m

� #2LM(dr, dc)m , (5.11)

#2 ∂mz

∂t
= �#r · (vmz)� Br(W, Q)mz � #2LM(dr, dc)mz

+
k�

Br(W, Q)2

✓
#

✓
k+W

SW
Wc,0

v ·rW + k+Q
SQ

Q⇤ v ·rQ
◆
+ #2 (F̄W + F̄Q)

◆
m

� l0

⇣
mz � q

w
Mz

⌘
+ #2µM(M, W, Ne)

Z

Z

Z

Z
zc(x, z, z0)r(z0)

Q
Q⇤ dz0dz , (5.12)

#2 ∂w̄
∂t

+ #r · (Jw̄) = �g0 (w̄ � Ss
dW) + g1 (w̄u � Ss

dWu) + #2µW(W, Q, db)
H

Hc,0
w̄

� #2RW(dr)w̄ , (5.13)

#2 ∂w̄u

∂t
= �#r · (Jw̄u)� Bw(H)w̄u +

k+H
Hc,0

k�H
Bw(H)2 (#J ·rH + #2∂tH)w̄ � g0 (w̄u � Ss

dWz)

+ #2µW(W, Q, db)
Z

U

Z

U
ucW(x, u, u0)

H
Hc,0

w(u0)du0du � #2RW(dr)w̄u . (5.14)
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We recall that Ss
d :=

1
|Q| =

s1�d

|Sd�1| . We consider the Hilbert expansions for the previ-

ously introduced moments:

m(t, x, v) =
•

Â
k=0

#kmk, mz(t, x, v) =
•

Â
k=0

#kmz
k

M(t, x) =
•

Â
k=0

#k Mk, Mz(t, x) =
•

Â
k=0

#k Mz
k

w̄(t, x, J) =
•

Â
k=0

#kw̄k, w̄u(t, x, J) =
•

Â
k=0

#kw̄u
k ,

W(t, x) =
•

Â
k=0

#kWk, Wu(t, x) =
•

Â
k=0

#kWu
k .

Moreover, for the subsequent calculations it is useful to define the Taylor-expansion of
the coefficient functions involving W or M in the scaled equations (5.11), (5.12), (5.13),
and (5.14):

µM(M, W, Ne) = µM(M0, W0, Ne) + ∂MµM(M0, W0, Ne)(M � M0)

+ ∂WµM(M0, W0, Ne)(W � W0) +O(#2) ,

µW(W, Q, db) = µW(W0, Q, db) + ∂WµW(W0, Q, db)(W � W0) +O(|W � W0|2) .

Moreover, we observe that

Br(W, Q) = Br(W0, Q) + k+W
SW

Wc,0
(W � W0) +

k+W
2

SW
Wc,0

(W � W0)
2 +O(|W � W0|3)

and

1
Br(W, Q)2 =

1
Br(W0, Q)2 � 2k+W

SW
Wc,0

1
Br(W0, Q)3 (W � W0)

+ 3
✓

k+W
SW

Wc,0

◆2 1
Br(W0, Q)4 (W � W0)

2 +O(|W � W0|3) .

Therefore, equating the powers of # in the scaled equations (5.11), (5.12), (5.13), and
(5.14), we obtain:

#0 terms:

0 = �l0

⇣
m0 �

q
w

M0

⌘
+ l1

⇣
mz

0 �
q
w

Mz
0

⌘
, (5.15)

0 = �Br(W0, Q)mz
0 � l0

⇣
mz

0 �
q
w

Mz
0

⌘
, (5.16)

0 = �g0(w̄0 � Ss
dW0) + g1(w̄u

0 � Ss
dWu

0 ) , (5.17)

0 = �Bw(H)w̄u
0 � g0 (w̄u

0 � Ss
dWu

0 ) . (5.18)
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#1 terms:

r · (vm0) = �l0

⇣
m1 �

q
w

M1

⌘
+ l1

⇣
mz

1 �
q
w

Mz
1

⌘
, (5.19)

r · (vmz
0) = �Br(W0, Q)mz

1 � k+W
SW

Wc,0
W1mz

0 � l0

⇣
mz

1 �
q
w

Mz
1

⌘

+
k�

Br(W0, Q2

✓
k+W

SW
Wc,0

v ·rW0 + k+Q
SQ

Q⇤ v ·rQ
◆

m0 , (5.20)

r · (Jw̄0) = �g0(w̄1 � Ss
dW1) + g1(w̄u

1 � Ss
dWu

1 ) , (5.21)

r · (Jw̄u
0 ) + Bw(H)w̄u

1 �
k+H
Hc,0

k�H
Bw(H)2 J ·rHw̄0 = �g0 (w̄u

1 � Ss
dWu

1 ) . (5.22)

#2 terms:

∂m0

∂t
+r · (vm1) = �l0

⇣
m2 �

q
w

M2

⌘
+ l1

⇣
mz

2 �
q
w

Mz
2

⌘

+ µM(M0, W0, Ne)
Q
Q⇤ m0 � LM(dr, dc)m0 , (5.23)

∂w̄0

∂t
+r · (Jw̄1) = �g0(w̄2 + Ss

dW2) + g1(w̄u
2 � Ss

dWu
2 )

+ µW(W0, Q, db)
H

Hc,0
w̄0 � RW(dr)w̄0 . (5.24)

We start the deduction of the macroscopic setting by integrating (5.16) with respect to
v and obtaining

0 = �Mz
0Br(W0, Q) ,

i.e.,
Mz

0 = 0 (5.25)

as Br(W0, Q) 6= 0 for k� > 0. Plugging this result into (5.16) leads to

mz
0 = 0 . (5.26)

Using (5.25) and (5.26) in equation (5.15), we obtain:

0 = �l0m0 + l0
q
w

M0 =) m0 =
q
w

M0 (5.27)

since l0 > 0. Integrating equation (5.18) with respect to J, we get

0 = �Wu
0 Bw(H) ,

i.e.,
Wu

0 = 0 . (5.28)
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as Bw(H) 6= 0 for k�H > 0. Then, plugging this result back into equation (5.18), we
obtain

w̄u
0 = 0 . (5.29)

Considering equations (5.17), (5.28), and (5.29) we obtain:

0 = �g0w̄0 + g0Ss
dW0 =) w̄0 = Ss

dW0 , (5.30)

since g0 > 0. Thus, w̄0 depends on the (constant) speed s, but not on the direction
J 2 Sn�1.

Now, we focus on the equations stemming from the #1-terms. Integrating equation
(5.22) with respect to J and using (5.29) and (5.30), we obtain

0 = �Bw(H)Wu
1 +

k�H
k+H
Hc,0

Bw(H)2

Z

Q
J w̄0 rH dJ ,

i.e.,
Wu

1 = 0 . (5.31)

due to (5.30). Plugging this result into equation (5.22) we get

0 = �(Bw(H) + g0)w̄u
1 +

k�H
k+H
Hc,0

Bw(H)2 J ·rH w̄0

) w̄u
1 =

k�H
k+H
Hc,0

(Bw(H) + g0) Bw(H)2 J ·rH w̄0 .

(5.32)

Considering equation (5.21) and the result from (5.31), we derive

r · (Jw̄0) = �g0 (w̄1 � Ss
dW1) + g1w̄u

1

) �g0w̄1 = r · (Jw̄0)� g0Ss
dW1 � g1w̄u

1

) L̄w[g0]w̄1 := �g0w̄1 + g0Ss
dW1 = r · (Jw̄0)� g1w̄u

1 . (5.33)

In order to get an explicit expression for w1, we would like to invert the operator
L̄w[g0]. As described in previous chapters, we define this operator on the weighted
L2-space L2

Ss
d
(Q), in which the measure dJ is weighted by Ss

d (J). In particular, L2
Ss

d
(Q)

can be decomposed as
L2

Ss
d
(Q) =< Ss

d > � < Ss
d >? .

Due to the properties of the the turning kernel of L̄w[g0]. this turning operator is a
compact Hilbert-Schmidt operator with kernel < Ss

d >. We can therefore calculate
its pseudo-inverse on < Ss

d >?. To determine w̄1 from equation (5.33) we check the
solvability condition, which holds thanks to the results obtained above for w̄0. Thus,
from equations (5.32) and (5.33) we obtain

w̄1 = � 1
g0

2

4r · (Jw̄0)� g1

k+H
Hc,0

k�H
(Bw(H) + g0)Bw(H)2 J ·rH w̄0

3

5

and
W1 = 0 . (5.34)
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Concerning equation (5.20), we integrate it with respect to v and, upon using (5.26),
and (5.27) we obtain

0 = �Br(W0, Q)Mz
1 +

k�

Br(W0, Q)2 M0sdEq ·
✓

k+W
SW

Wc,0
rW0 + k+Q

SQ

Q⇤rQ
◆

.

Recalling that the fiber network is assumed to be unpolarized, i.e., Eq = 0 (with Eq
defined in (3.16)), the previous equation leads to

Mz
1 = 0 .

Plugging these results into equation (5.20) we obtain

0 = �(Br(W0, Q) + l0)mz
1 +

k�

Br(W0, Q)2

✓
k+W

SW
Wc,0

v ·rW0 + k+Q
SQ

Q⇤ v ·rQ
◆

m0 ,

i.e.,

mz
1 =

k�

(Br(W0, Q) + l0) Br(W0, Q)2

✓
k+W

SW
Wc,0

v ·rW0 + k+Q
SQ

Q⇤ v ·rQ
◆

m0 .

Using equation (5.19), we derive

r · (vm0) = �l0

⇣
m1 �

q
w

M1

⌘
+ l1mz

1

) �l0m1 = r · (vm0)� l0
q
w

M1 � l1mz
1

) L̄M[l0]m1 := �l0m1 + l0
q
w

M1 = r · (vm0)� l1mz
1 .

Likewise, we observe that the operator L̄M[l0]m1 can be inverted, thanks to the sym-
metry properties of q(x, v̂). Thus, we have

m1 =� 1
l0

r · (vm0)

� l1

l0

k�

(Br(W0, Q) + l0)Br(W0, Q)2

✓
k+W

SW
Wc,0

v ·rW0 + k+Q
SQ

Q⇤ v ·rQ
◆

m0

and
M1 = 0 . (5.35)

Finally, integrating equation (5.23) with respect to v we get

∂M0

∂t
+
Z

V
r · (vm1)dv = µM(M0, W0, Ne)

Q
Q⇤ M0 � LM(dr, dc)M0 (5.36)

where
Z

V
r·(vm1)dv =

Z

V
r ·

✓
� 1

l0
vr · (vm0)

◆
dv
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+
Z

V
r·

✓
l1

l0

k�

(Br(W0, Q)+l0)Br(W0, Q)2 v
✓

k+W
SW

Wc,0
v ·rW0 + k+Q

SQ

Q⇤ v ·rQ
◆

m0

◆
dv

= r ·
"Z

V
� 1

l0
v ⌦ vr ·

⇣ q
w

M0

⌘#
dv

+r·
"

l1k�

wl0(Br(W0, Q) + l0)Br(W0, Q)2

Z

V
v ⌦ vqdv

✓
k+W

SW
Wc,0

rW0 + k+Q
SQ

Q⇤rQ
◆

M0

#
.

Defining

DT(x) :=
1
w

Z

V
v ⌦ v q(x, v̂)dv = s2

Z

Sd�1
v̂ ⌦ v̂ q(x, v̂)dv̂ = s2Vq(x) , (5.37)

with Vq given in (3.17), we obtain from equation (5.36) the following macroscopic
equation for M0(t, x):

∂M0

∂t
=r ·


1

l0
r · (DT(x)M0)

�

�r·
"

l1k�

l0(Br(W0, Q)+l0)Br(W0, Q)2 DT(x)
✓

k+W
SW

Wc,0
rW0 + k+Q

SQ

Q⇤rQ
◆

M0

#

+

✓
µM(M0, W0, Ne)

Q
Q⇤ � LM(dr, dc)

◆
M0 .

(5.38)

Then, for the EC dynamics, we integrate (5.24) with respect to J 2 Q, obtaining

∂W0

∂t
+
Z

Q
r · (Jw̄1)dJ = µW(W0, Q, db)

H
Hc,0

W0 � RW(dr)W0 ,

where

Z

Q
r · (Jw̄1)dJ =

Z

Q
r · J

✓
� 1

g0
r · (Jw̄0)

◆
dJ

+
Z

Q
r · J

✓
g1

g0

k+H
Hc,0

k�H
(Bw(H) + g0)Bw(H)2 J ·rH w̄0

◆
dJ

= r ·
 Z

Q
� 1

g0
J ⌦ J rw̄0

�
dJ

+r ·
 g1

k+H
Hc,0

k�H
g0(Bw(H) + g0)Bw(H)2

Z

Q
J ⌦ J dJ rH W0

�
.
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Recalling (5.30),we obtain the following macroscopic equation for the density W0 of
endothelial cells:

∂W0

∂t
=r · (DECrW0)�r ·

✓
DEC

g1k+Hk�H
Hc,0(Bw(H) + g0)Bw(H)2rH W0

◆

+

✓
µW(W0, Q, db)

H
Hc,0

� RW(dr)

◆
W0 .

(5.39)

The tensor related to the ECs is given by

DEC :=
s2

dg0
Id. (5.40)

The two macroscopic equations obtained in (5.38) and (5.39) for the evolution of
glioma cells and ECs, respectively, are coupled with the equations for the dynamics of
VEGF, healthy tissue, and necrotic matter. In the specific, the evolution of the VEGF
concentration H(t, x) is described as

∂H
∂t

= DHDH + f (M0, W0, H) ,

where DH 2 R is the VEGF constant diffusion coefficient, while f (M0, W0, H) is a
reaction term describing the processes of VEGF production by tumor cells and its con-
sumption by ECs. The concrete form of the reaction term is defined in the next section.
The degradation of the healthy tissue (of density Q(t, x)) is due to both the (acidity
produced by) tumor cells activity and the effects of the radiotherapy treatment. Thus,
we describe the evolution of the healthy tissue by means of the following ODE

∂Q
∂t

= �dQ
M0

Mc,0
Q � RQ(dr)Q ,

where Mc,0 denotes the reference density for tumor cells and dQ the tissue degradation
rate. RQ(dr)Q collects the effects of the radiation on the healthy tissue and is described
with the L-Q model like defined in Chapter 3 (and also in equation (5.4)) as

RQ(dr) := 1 � S(dr, aQ) .

Finally, the ODE describing the evolution of the necrotic tissue (of density Ne(t, x))
takes into account both tissue degradation and therapy effects on tumor, endothelial
cells, and tissue i.e.,

∂Ne

∂t
= LM(dr, dc)M + RW(dr)W0 + dQ

M0

Mc,0
Q + RQ(dr)Q .

In view of (5.34)and (5.35), the #-correction terms for M and W can be left out and,
ignoring the higher order terms, we get the following PDE system characterizing the
macroscopic evolution of the tumor under the influence of tissue, vasculature, and
growth factors:
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8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

∂M
∂t

= r ·


1
l0

r · (DT(x)M)

�

�r ·


l1k�

l0(Br(W, Q) + l0)Br(W, Q)2 DT(x)
✓

k+W
SW

Wc,0
rW + k+Q

SQ

Q⇤rQ
◆

M
�

+

✓
µM(M, W, Ne)

Q
Q⇤ � LM(dr, dc)

◆
M ,

∂W
∂t

= r · (DECrW)�r ·
✓

DEC
g1k+Hk�H

Hc,0(Bw(H) + g0)Bw(H)2rH W
◆

+

✓
µW(W, Q, db)

H
Hc,0

� RW(dr)

◆
W ,

∂H
∂t

= DHDH + f (M, W, H) ,

∂Q
∂t

= �dQ
M

Mc,0
Q � RQ(dr)Q ,

∂Ne

∂t
= LM(dr, dc)M + RW(dr)W + dQ

M
Mc,0

Q + RQ(dr)Q .

(5.41)
Here, the tumor tensor DT is given by (5.37) and the EC diffusion tensor DEC by
(5.40). For the numerical simulations, the macroscopic system needs to be supple-
mented with adequate initial and boundary conditions. Although the deduction has
been carried out for x 2 Rd, the numerical simulations presented in Section 5.3 are
performed in a bounded, sufficiently regular domain W ⇢ Rd. We endow the system
with no-flux boundary conditions.

5.2 Assessment of coefficients and parameters

The definition of the coefficient functions involved in the macroscopic setting, the esti-
mation of the constant parameters, and the non-dimensionalization of the macroscopic
system are the three aspects addressed in this section. Most of the constant are taken
from the parameter study we performed in Chapter 4. In the sequel, we collect the
parameter values in Table 5.1. Sections 5.2.1 and 5.2.2 are dedicated to assess the coef-
ficient functions involved in the macroscopic equations and to describe the details of
the non-dimensionalization procedure, respectively.

5.2.1 Definition of the coefficient functions

To determine the tumor tensor DT(x) in (5.37) we provide a concrete form for the
(mesoscopic) orientational distribution of tissue fibers q(x, v̂). Following the analy-
sis performed in Chapter 2 (specifically, in Section 2.3.4), here we use the orientation
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distribution function:

q(x, v̂) =
1

4p|DW(x)| 1
2 (v̂T(DW(x))�1v̂)

3
2

, (5.42)

where DW(x) is the water diffusion tensor obtained from processing the DTI data.
Concerning the growth rate µ(M, W, Ne) we consider a logistic-like function to de-

scribe the growth of tumor cells. In the specific, tumor proliferation is limited by the
tumor cells themselves and the necrotic tissue Ne, and it is influenced by the vascula-
ture availability:

µ(M, W, Ne) := µM,0

✓
1 � M

KM
� Ne

KNe

◆
g(W) .

Here, KN and KNe are the carrying capacities of tumor cells and of the necrotic matter,
respectively, while µM,0 is the constant proliferation rate. We model vasculature effects
on the tumor growth by means of the function g(W). We assume

g(W) :=
✓

1 +
W

Wc,0

◆
,

describing the ECs enhancing tumor proliferation in the region where the vasculature
is developing. Other choices of the function g(W) are possible. For instance, one can
assume g(W) := W

Wc,0
that describes tumor proliferation as an effect of the binary in-

teractions between tumor and ECs, as we did in the setting proposed in Chapter 4.
In this way, tumor proliferation would be completely dependent on the availability of
vasculature.

Similarly, the EC proliferation term µW(W, Q, db) is described by means of a logistic-
like function for ECs in which we include the influence of the healthy tissue on EC
proliferation. The availability of healthy tissue allows, in fact, EC growth. The prolif-
eration term is described as

µW(W, Q, db) := µW,0(db)

✓
1 � W

KW

◆
Q
Q⇤ ,

where we include the effect of the anti-angiogenic therapy at dose db on EC prolif-
eration. In the proliferation term, KW represents the carrying capacity of ECs, while
µW,0(db) is the proliferation rate. This proliferation rate is modeled as a decreasing
function in db, as the anti-angiogenic treatment limits EC affinity to VEGF and reduces
EC capability to growth. We set

µW,0(db) := µ̄W,0

 
1
2
+

1
2(1 + d2

b)

!
.

Similar expressions are considered to describe the effects of the anti-angiogenic
therapy on the attachment/detachment functions, which read

k+H := k̄+Hl+(db) := k̄+H

 
1
2
+

1
2(1 + d2

b)

!
,

k�H := k̄�Hl�(db) := k̄�H (1 + db) .
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Concerning the radiation treatment, we recall from the previous section the general
expression related to the L-Q model, i.e.,

S(dr, a) = exp (�adr � b2dr) ,

where dr is the total dose of radiation. In clinical practice, radiotherapy is usually ad-
ministered in daily smaller fractions of dr, in order to avoid excessive toxic effects on
the healthy tissue. For this reason, the radiation death terms for tumor cells, endothe-
lial cells, and tissue fraction are described as

Ri(dr) :=
x

Â
k=1

(1 � S(d̄r, ai))hd(t � tk)

for i = M, W, Q. d̄r is the fraction of the total dose dr administered at time instants tk
at which an ionizing radiation is applied to the patient. In the expression of Ri(dr),
x represents the number of administered fractions and hd is a C•

0 function with unit
mass and support in (�d, d), with d ⌧ 1. We describe the therapy plans tested in the
simulations in the next section.

Finally, the reaction term in the PDE for the VEGF dynamics is chosen as

f (M0, W0, H) := c1
M0

Mc,0
� c2

W0

Wc,0
H ,

where the parameters c1 > 0 and c2 > 0 represent the production and uptake rates
of VEGFs, respectively. VEGFs are produced by tumor cells in order to enhance the
vascularization and the nutrient and oxygen supplies. Then, ECs are attracted by the
VEGF gradient and consume VEGFs to sustain the growth of the capillary network.

In Table 5.1 we report the ranges of the constant parameters involved in system
(5.41), as well as the references they are drawn from.

5.2.2 Non-dimensionalization

Before presenting the numerical results, we perform the non-dimensionalization of
system (5.41). Recalling that we express the variables N, W, Ne, and Q involved in
system (5.41) in cells · mm�3, while the concentration H of VEGFs is given in mol
· l�1(=:M), we list the reference values used for the non-dimensionalization in Table
5.2. In the specific, we rescale the tumor, EC, necrotic matter, and tissue densities
with respect to their carrying capacities, i.e., Mc,0 = KM, Wc,0 = KW , Ne,0 = KM, and
Q⇤ = KQ, assuming a similar carrying capacity for tumor cells and necrotic tissue. We
non-dimensionalize the partial and ordinary differential equations introduced above
as follows:

t̃ =
t
T

, x̃ =
x
L

, M̃ =
M

Mc,0
, W̃ =

W
Wc,0

, Ñe =
Ne

Ne,0
, Q̃ =

Q
Q⇤ , H̃ =

H
Hc,0

.

A proper scaling of the parameters involved in the macroscopic setting leads to:

k̃+W =
k+W
l0

,

k̃+Q =
k+Q
l0

,

k̃�H =
k̄�H
g0

,

l̃1 =
l1

l0
,

D̃T =
1

l0

T
L2 DT,

D̃EC =
T
L2 DEC,
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Parameter Description Value (unit) Source

l0 turning frequency in Lp[l(z)] 10�3 (s�1) [56, 259]

l1 turning frequency in Lp[l(z)] 10�3 (s�1) [56, 259]

s tumor cells speed [0.0042, 0.0084] · 10�3 (mm · s�1) [56, 65]

k+Q tumor-ECM attachment rate 0.034 (s�1) [56, 161]

k+W tumor-EC attachment rate 0.034 (s�1) [161]

k� detachment rate 0.01 (s�1) [161]

µM,0 tumor proliferation rate [0.35, 0.9] · 10�5 (s�1) [135]

KM tumor carrying capacity ⇠ 105 (cells · mm�3) [81]

KNe necrotic matter carrying capacity ⇠ 105 (cells · mm�3) [81]

KQ healthy tissue carrying capacity ⇠ 105 (cells · mm�3) [276]

aM single radiation track lesion on tumor [0.04, 0.11] (Gy�1) [13, 231]

aQ single radiation track lesion on tissue 0.001 (Gy�1) [151]

aW single radiation track lesion on ECs 0.0025 (Gy�1) [151]

bM two radiation tracks lesions on tumor [0.004, 0.011] (Gy�2) [13, 231]

bQ two radiation tracks lesions on tissue 0.0001 (Gy�2) [151]

bW two radiation tracks lesions on ECs 0.0003 (Gy�2) [132, 151]

dc chemotherapy killing rate 0.023 · 10�6 (s�1) [229]

dr radiotherapy dose 60 (Gy) this work

g0 turning frequency in Lw[g(u)] 2 · 10�4 (s�1) [56, 277]

g1 turning frequency in Lw[g(u)] 0.001 (s�1) this work

s ECs speed [0.0028, 0.0069] · 10�3 (mm · s�1) [56, 60]

k̄+H EC-VEGF attachment rate 0.03 (s�1) [177, 278]

k̄�H EC-VEGF detachment rate [0.001, 0.01] (s�1) [177, 178]

KW EC carrying capacity ⇠ 105 (cells · mm�3) [82]

µ̄W,0 EC proliferation rate [0.62, 5.7] · 10�6 (s�1) [7, 203]

db anti-angiogenic therapy dose 10 (mg · kg�1) this work

DH VEGF diffusion coefficient [10�7, 10�5] (mm2· s�1) [9, 167]

c1 VEGF production rate [0.21, 8.34] · 10�4 (s�1) [4, 97, 138]

c2 VEGF consumption rate 2.28 · 10�7 (s�1) [97]

dQ tissue degradation rate (by acidity) 0.58 · 10�7 (s�1) [56]

TABLE 5.1: Vasculature, VEGFs and therapy effects: model parameters.

k̃� =
k�

l0
,

k̃+H =
k̄+H
g0

,

d̃Q = dQ T,

g̃1 =
g1

g0
,

µ̃M,0 = µ̃M,0T,

µ̃W,0 = µ̄W,0 T,

D̃H =
T
L2 DH,

c̃1 = c1
T

Hc,0
,

c̃2 = c2 T
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Parameter Description Value (unit) Source

T time 1 (d)

L length 0.875 (mm)

Mc,0 tumor cell density 105 (cells · mm�3) this work

Wc,0 ECs density 105 (cells · mm�3) this work

Ne,0 necrotic matter density 105 (cells · mm�3) this work

Q⇤ healthy tissue density 105 (cells · mm�3) this work

Hc,0 VEGF concentration 10�9 (M) [278]

TABLE 5.2: Vasculature, VEGFs and therapy effects: reference variables for
the non - dimensionalization.

and d̃c = dc T. Dropping the tildes in the new variables and parameters, the dif-
ferential equations in system (5.41) keep the same form, however with the following
rescaled functions:

µ̃(M̃, W̃, Ñe) = µ̃M,0
�
1 � M̃ � Ñe

�
g(W̃),

µ̃W(W̃, Q̃, d̃b) = µ̃W,0(db)(1 � W̃)Q̃,

B̃r(W̃, Q̃) =
⇣

k̃+WSWW̃ + k̃+QSQQ̃ + k̃�
⌘

,

B̃w(H̃) = (k̃+H H̃ + k̃�H),

k̃�H = k̃�Hl�(db),

k̃+H = k̃+Hl+(db),

f̃ (M̃, W̃, H̃) = c̃1M̃ � c̃2 W̃H̃,

µ̃W,0(db) = µ̃W,0

 
1
2
+

1
2(1 + d2

b)

!
.

5.3 Preliminary numerical simulations

We perform numerical simulations in 2D of the non-dimensionalized macroscopic set-
ting (5.41) with the parameters listed in Table 5.1. For the initial conditions we choose
a Gaussian-like aggregate of tumor cells centered in (x0,M, y0,M) = (�17, 5), in the
upper-left part of the brain slice representing our illustrative computational domain
W (in the following, (x, y) 2 W ✓ R2):

M0(x, y) = e�
(x�x0,M)2+(y�y0,M)2

8 .

For the initial distribution of the healthy tissue, we consider

Q0(x, y) = 1 � l3
c (x, y)

h3 .

This configuration was introduced in the previous chapter for the description of the
macroscopic tissue density. We recall that lc(x, y) represents the estimation of the
length of the mean free space in every direction, while h is the side length of a DTI
voxel. For the ECs, we consider the situation of several blood vessels located in the
regions close to the tumor and where there is a high tissue density. From MRI and DTI
scans it is not possible to distinguish between vessels and ECM. Therefore, we assume
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the vasculature to be located in the areas where more tissue is available. Defining

W1(x, y) = 2 e�
(x+2)2

0.5 sin6
⇣p

8
y
⌘

8 y 2 [�5, 15] ,

W2(x, y) = 2 e�
(x+12)2

0.5 sin4
⇣p

8
y
⌘

8 y 2 [�35,�15] ,

W3(x, y) = 2 e�
(x+5)2+(y�15)2

0.75 + 2 e�
(x+5)2+(y�20)2

0.75 + 2 e�
(x+10)2+(y�20)2

0.75 ,

we set W0(x, y) = W1(x, y) +W2(x, y) +W3(x, y). For the VEGF initial profile, we con-
sider a Gaussian distribution, centered in the same point as tumor cells (x0,H, y0,H) = (�17, 5)
and given by:

H0(x, y) = 0.5 e�
(x�x0,H )2+(y�y0,H )2

4 .

Finally, we do not initially consider any necrotic matter, setting the initial value to zero
everywhere in the domain. Figure 5.1 shows the initial conditions on the zooming
region W̄ = [�35, 5]⇥ [�15, 25] ✓ W of the entire 2D brain slice.

FIGURE 5.1: Initial conditions of system (5.41). The five columns refer to tu-
mor density, ECs, VEGFs, necrotic matter, and healthy tissue, respectively. The
initial densities are visualized on the zoomed domain W̄ = [�35, 5]⇥ [�15, 25].

The numerical simulations are performed with a self-developed code in Matlab (Math-
Works Inc., Natick, MA). The computational domain is a horizontal brain slice recon-
structed from the processing of an MRI scan. The macroscopic tensor DT(x) is pre-
calculated using DTI data and the ODF for the fiber distribution function (5.42). We
consider a Galerkin finite element scheme for the spatial discretization of the equa-
tions and an implicit Euler scheme for the time discretization. More details about the
numerical methods are provided in Appendix B. We present two main sets of simula-
tions:

(A) we study the dynamics of the five species involved in the macroscopic setting
(5.41) in the absence of treatment. This means that the therapy doses (dr and db)
and the chemotherapy killing rate (dc) are set to zero and the tumor is letting
grow and spread without any external impediment.

(B) we include the three described treatment components in the population dynam-
ics and analyze the effects of the different therapies on the overall evolution.

We start with scenario (A), simulating system (5.41) for the parameters listed in Table
5.1. Starting to investigate the behavior of the involved populations in the absence
of therapy, we preliminary set dc = dr = db = 0. This choice allow us to observe
the tumor evolution over time without external intervention and to study the possible
progression of the disease. The corresponding simulation results are shown in Figure
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5.2, where the five columns report the evolution of the whole tumor mass M, the
endothelial cells W, the VEGFs H, the necrotic matter Ne, and the healthy tissue Q.

FIGURE 5.2: Scenario (A). Numerical simulation of system (5.41) with the pa-
rameters listed in Table 5.1 and without any treatment.

Tumor growth and spread, which mainly depend on the choice of the parameters l0
and s, as observed in Chapter 4, seem to be reasonably fast, as we are not relying
on the go-or-growth hypothesis in this setting to describe any intratumor heterogene-
ity. Moreover, the influence of the EC evolution on the tumor proliferation is highly
related to the choice of the function g(W), which, in this setting, describes ECs as sim-
ply enhancing tumor proliferation and not directly controlling it. In Figure 5.2, ECs
grow and diffuse, showing an evident migration toward the tumor population, due
to the produced VEGFs. These factors are expressed by tumor cells and represent the
chemotactic agent guiding ECs migration and, thus, mediating the vasculature supply
to the tumor. In this case, since no therapy is included, the healthy tissue (last column
of Figure 5.2) is degraded due to the (acidity produced by the) tumor cell activity, and
the necrotic compartment only collects this portion of degraded tissue. We remark
that in this setting we infer the degrading effect of excessive environmental acidity on
the healthy tissue without directly including the evolution of the protons. However,
the tissue degradation shows an overall behavior comparable to the one in Figure 4.8,
where we explicitly included proton dynamics.

Then, in scenario (B), we analyze the effects of the different therapeutic compo-
nents on the tumor population. We let the tumor grow and spread for 34 weeks, al-
lowing it to form a considerable neoplastic mass. Afterwards, we apply a therapeutic
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plan consisting of a combination of radiation, chemotherapy with temozolomide, and
anti-angiogenic therapy with bevacizumab for 6 weeks. This choice is motivated by
different reported trials (e.g., see trials NCT01209442 and NCT013909482). Precisely,
chemotherapy is administered intravenously every day at a standard constant dose of
75 mg · m�2. Radiotherapy is applied 5 days per week (from Monday to Friday) for 6
weeks, and the total dose of 60 Gy is fractionated into smaller doses of 2 Gy per day.
Anti-angiogenic therapy is usually administered at dose 10 mg · kg�1 intravenously
on Monday every 2 weeks, thus, providing a total of 3 doses in the whole treatment
period of 6 weeks. For the anti-angiogenic treatment, we test a slightly different ther-
apeutic plan, dividing the dose of 10 mg · kg�1, administered every 2 weeks, into 10
smaller fractions of 1 mg · kg�1 administered at the same time as radiotherapy. This
choice would not change the total amount of anti-angiogenic drugs administered to
the patient. At the end of the treatment, we let the patient rest for 4 weeks and analyze
how the tumor eventually reorganizes and evolves. A schematic representation of the
therapy plan is provided in Figure 5.3.

Five days per week for 6 weeks

Radiotherapy: 2*30 Gy
Bevacizumab: 1 mg/kg

Temozolomide: 75 mg/m2

Every day for 6 weeks
4 weeks of rest

Week 34 Week 37 Week 40 Week 44

FIGURE 5.3: Schematic representation of the therapeutic plan.

With the same choice of parameters considered in Figure 5.2 for scenario (A), we test
the effect of the therapeutic treatment illustrated in Figure 5.3. The results of this sce-
nario (B) are shown in Figure 5.4. The first row of Figure 5.4 (that also corresponds to
the second row of Figure 5.2) represents the state of the five populations at the begin-
ning of the treatments, while the second and third rows correspond to the situation af-
ter 3 and 6 weeks, respectively. Precisely, the third row represents the population state
at the end of the combined treatment. In the last row, we show the system evolution
after the resting period of 4 weeks, during which no therapies are applied. Comparing
Figures 5.2 and 5.4, we immediately grasp the effects of the radio- and chemotherapy
on the tumor population, whose density highly decreases during the treatment pe-
riod, while the density of the necrotic matter increases, as this component collects the
effects of the therapy on tumor, ECs, and healthy tissue. The reduction in the tumor
density consequently affects VEGF production, with a decrease in the expression of
these factors. The impact of radiation is also evident in the evolution of the healthy
tissue. In turn, the reduction of tissue density affects tumor and endothelial cell pro-
liferation processes. Tumor and EC proliferation, in fact, depend on the availability of
healthy tissue and, when the latter is excessively degrades, proliferation is impaired.
This effect can be observed by comparing the last two row of Figures 5.2 and 5.4 that
relate to the system evolution at 40 (at the end of the treatment) and 44 (follow-up)

2
https://www.clinicaltrials.gov
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FIGURE 5.4: Scenario (B). Numerical simulation of system (5.41) with the pa-
rameters listed in Table 5.1 and for the therapeutic plan schematized in Figure

5.3.

weeks, respectively. ECs seem to proliferate slower, after having been affected by the
multi-modal treatment, and the surviving tumor cells do not show strong growth dy-
namics. The anti-angiogenic therapy has also an impact on EC migration. To better
evaluate the effect of the single anti-angiogenic drug, we simulate system (5.41) when
only this treatment is applied. We consider the therapy plan illustrated in Figure 5.3,
but we set dr = 0 and dc = 0. We focus on the evolution of tumor cells, ECs, and
VEGFs, as these are the species more affected by anti-angiogenic therapy. To better
appreciate the changes in their evolution, we plot the differences between the solu-
tion of system (5.41) without any therapy, i.e., dr = db = dc = 0 (whose variables are
indicated by MNT, WNT, and HNT) and the solution of the model where only anti-
angiogenic treatment is included (whose variables are indicated by MAT, WAT, and
HAT). The results are shown in Figure 5.5. We notice that the most affected specie are
the endothelial cells. The positivity of the difference WNT � WAT highlights the nega-
tive effect of the anti-angiogenic drug on the EC proliferation, which appears reduced
during the treatment. When the drug is suspended and the dynamics is let evolve
without intervention during the next 4 weeks, we observe that the ECs start again to
proliferate and the difference WNT � WAT reduces. This is more evident in the upper-
right and bottom-left areas of the domain, where ECs are initially located (as shown
in Figure 5.1) and where, during the treatment period, they tend to remain more con-
centrated rather than spreading towards tumor cells, as shown by the EC evolution
during treatment (37-40 weeks) in Figure 5.4. This EC behavior can be explained con-
sidering that, apart from impaired proliferation, anti-angiogenic drugs also affect the
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FIGURE 5.5: Detail of scenario (B). Differences between the solution compo-
nents of system (5.41) without any therapy (MNT , WNT , and HNT) and the so-
lution component with only anti-angiogenic therapy administered (MAT , WAT ,
and HAT). The results are shown after 3 weeks of treatment (top row), at the
end of the treatment (middle row), and at the follow-up after 4 weeks without

therapy (bottom row).

mobility of ECs upon inhibiting the VEGF/EC affinity. Thus, the chemotactic phe-
nomenon characterizing ECs is less evident. These changes in the EC dynamics also
affect the VEGFs. The angiogenic factor concentration is reduced where, due to the
limitation in the EC migration, ECs tend to remain more concentrated and to uptake
VEGFs. However, the differences in the VEGF concentration are not as strong as in
the EC density. As for as tumor cells are concerned, they are not directly affected by
the drug but feel its effects in a rather indirect manner. The reduction of EC migration
towards glioma cells determines a decrease in the tumor proliferation in the regions
around its outer rim having a better access to ECs. Thus, the difference MNT � MAT is
positive in those areas.

5.4 Summary

On the basis of the results concerning the influence of the vasculature on tumor pro-
gression obtained from the model in Chapter 4, we presented in this chapter a comple-
mentary study centered on the tumor and ECs response to multi-modal therapies. In

130 5. Vasculature, VEGFs, and therapy effects



the specific, we modified the previous model taking into account several new features.
We first included a micro-meso formulation for the EC population, describing the dy-
namics of the membrane receptors on ECs mediating VEGF-EC interactions. Then,
we directly modeled the dynamics of VEGFs, which are produced by the tumor cells
to attract new vasculature towards the tumor mass and, thus, to provide nutrients to
sustain proliferation. Tumor, EC, and VEGF dynamics were coupled with the evolu-
tion equations for healthy tissue and necrotic matter, in line with the extended model
presented in Section 4.4. In this model, we did not directly describe acidity evolution,
but we indirectly accounted for its impact on tissue degradation. This degradation
was described as a consequence of (the acidity produced by) tumor activity. Similar
to Chapters 3 and 4, the macroscopic equations for tumor and ECs were derived via
parabolic scaling of the kinetic transport equations including the microscopic receptor
dynamics. The central focus of this study was on including in the model a multi-
modal treatment based on a combination of standard radiation, chemotherapy with
temozolomide, and anti-angiogenic therapy with bevacizumab. While chemo- and ra-
diotherapy are directly aimed at killing the tumor cells, affecting also healthy tissue
and vasculature by the ionizing radiation, anti-angiogenic therapy influences ECs and
VEGFs dynamics. Specifically, anti-angiogenic therapy reduces the affinity between
the VEGFs and the corresponding receptors on the EC membrane, decreasing their
binding capability and, thus, affecting the migratory behavior of ECs. Moreover, we
modeled the effect of this treatment on the reduction of EC proliferation.

We compared the macroscopic outcomes of the setting when no treatment was
considered and when the multi-modal therapy described above was applied. In Fig-
ure 5.4 we showed the response of the different species to the combined therapy, with
a detailed discussion about the effects of the anti-angiogenic therapy on tumor, ECs,
and VEGFs dynamics (Figure 5.5).

The numerical results proposed in Section 5.3 represent a preliminary study of
the macroscopic solution behavior and a stochastic extension of the model aimed at
evaluating the efficacy of the treatment is work in progress. In this context, we will
introduce a stochastic variable in the tumor equation of the model in order to calcu-
late three common quality measures that quantify the success of a treatment schedule,
namely the tumor control probability (TCP), the normal tissue complication proba-
bility (NTCP), and uncomplicated tumor control probability (UTCP). Moreover, we
plan to simulate the therapy outcome based on clinical data. We will use glioma pa-
tient data to define the domain geometry, the tumor tensor, and the initial conditions
of the tumor population and we will reproduce the administered treatment (possibly
different from the one we used in the preliminary simulations) to analyze its possible
outcome.
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6Non-local sensing in a multi-cue
environment

Cell migration is a fundamental mechanism and a key aspect of tumor progression.
We have seen across the different settings proposed in the previous chapters that cell
migration, and in particular, glioma migration, can be led by several different guid-
ance cues with biochemical or biophysical characters. In Chapter 3, the biophysical
phenomenon of tissue fiber alignment has been shown to stimulate contact guidance,
i.e., the mechanism by which cells tend to migrate crawling on the fibers, thus follow-
ing the directions imposed by the network structure of the ECM. Nevertheless, several
biochemical cues have been shown to guide chemotactic movements of tumor cells to-
wards, for instance, sources of nutrients or growth factors (Chapter 5) or less acidic
regions (Chapter 4). These directional cues can have either a mono-directional or a bi-
directional nature: for example, the assumption of considering an unpolarized fiber
network, on which there is not a preferential sense of migration, makes contact guid-
ance a bi-directional cue, while the stimuli governing chemotaxis are usually mono-
directional. In this chapter, we illustrate a deeper analysis of possible relationships
between mono- and bi-directional stimuli in driving cell migration. The framework
we rely on is defined in terms of kinetic-based models, and we introduce some nov-
elties that were not included in the previous settings, one among all the role of cell
protrusions. As briefly introduced in Section 1.1.1, cell protrusions have an important
role in driving the migration. Precisely, these extensions of the cell membrane outside
of the cell body can reach the dimension of several cell diameters and are involved in
a large variety of mechanisms. Here, we focus on the description of how cells mea-
sure the external signals by transmembrane receptors located on their protrusions and
use the captured stimuli to activate downstream pathways leading to migration. We
particularly refer to the cell polarization process by which a cell chooses its direction
of motion. This polarization process determines the formation of a head and a tail in
the cell body and the activation of adhesion molecules and traction forces leading to
motion [2]. In the framework of kinetic models, we consider the hypothesis of having
an environmental sensing of the cells (i.e., the cell’s ability to recognize and respond to
external cues) over a finite radius in their neighborhood to model these protrusions-
mediated mechanisms. Recalling the decomposition of cell velocity into the direction
of motion and the speed, we analyze chemotaxis and contact guidance as non-local
directional cues guiding cell polarization and, thus, influencing the cell’s choice of the
motion direction. Although the analysis is described for the general process of cell
migration, the application to the case of glioma cell movement is straightforward.

There exists an extensive literature on mathematical models for cell migration con-
cerning chemotaxis and contact guidance. The most famous example of a macroscopic
models for chemotaxis was proposed by Keller and Segel [137]. Their model is based
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on a drift-diffusion setting and several approaches to derive it from a lower scale have
been proposed (see e.g [117, 213, 215] and references therein). In the context of meso-
scopic models, examples of settings for the description of cell chemotactic motion can
be found in [43, 71], while the two major contact guidance settings were proposed in
[116] and [66]. These last two models are both local in the physical space. Interest-
ingly, few models describing a multiple cues setting have been published. In [289],
the authors propose one of the first models for both contact guidance and chemotaxis,
derived from microscopic dynamics, while a recent review for macroscopic PDEs in-
cluding multiple-taxis was proposed in [199].

As already stated, in this chapter, we want to include chemotaxis and contact guid-
ance as directional cues guiding cell polarization, and we analyze two possible sensing
strategies that a cell could apply to explore its neighborhood. A possibility for the cell
is to measure the guidance cues independently, and, then, choose the new orientation
using the collected information, eventually weighted in different ways. Another op-
tion is to measure the two-directional stimuli, weighting them equally, and assuming
a conditioning of one cue on the other. It is evident that the cell response is related to
the choice of the sensing strategy implemented and the macroscopic overall effect of
the two cues would also be affected. On the basis of the non-local kinetic model with
a double biasing cue proposed in [173], we model here - for the first time - non-local
sensing of the fibers distribution, together with a chemotactic cue, both defined at a
mesoscopic level. This allows us to study many intermediate scenarios in the analysis
of the collaborative or competitive effect of the cues, depending also on the cell size
and, thus, on the maximum protrusion length. Precisely, in Section 6.1, we describe
the mathematical framework and the characteristic aspects of the non-local transport
model. In Sections 6.2 and 6.3, we describe and analyze the two classes of models
related to the different strategies for the sensing of the two cues, along with the corre-
sponding macroscopic limits in various regimes, depending on the cell size and on the
variability of the external cues. Finally, in Section 6.4, several numerical simulations
of the kinetic models are presented to qualitatively investigate various scenarios in a
two-dimensional setting.

The results of this chapter have been collected in the paper by Conte and Loy sub-
mitted for publication [55].

6.1 Mathematical framework

In many cellular processes, there are involved several directional cues that may in-
duce different simultaneous stimuli. While the cell response to each of them has been
largely studied, from both intracellular and a migrative points of view, cell responses
to a multi-cue environment are less understood. The combination of chemotaxis and
contact-guidance happens in-vivo in a variety of situations, for instance, the spread of
cancer cells in the metastatic process. The fundamental issue is the way cells rank,
integrate or hierarchize multiple cues, especially when these give conflicting stimuli,
because, for example, they are not co-aligned [235]. Some studies have shown that
there may be competition or cooperation between different stimuli. Moreover, many
intermediate scenarios may happen and guidance stimuli submit or prevail according
to other factors. Among these factors we highlight the role of the average concentra-
tion and intensity of the cues (fiber density or molecule concentration), which relate to
the steepness of the gradient for taxis processes or to the degree of alignment for con-
tact guidance. Unfortunately, there are only a few experimental and quantitative stud-
ies concerning chemotaxis and contact guidance (a few examples are provided in [37,
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273, 295]), as well as other combinations of directional guidances cues [247]. One of
the latest works concerning the competition between chemotaxis and contact guidance
shows that less contractile cells are dominated by chemotaxis, while contact guidance
might dominate in more contractile cells [244]. Considering that amoeboid cells are
less contractile, while mesenchymal cells are more contractile, and that there can be a
switching between amoeboid and mesenchymal migration, the result in [244] suggests
that there can also be a switching between the dominance of chemotaxis (amoeboid
migration) and contact guidance (mesenchymal migration) [300]. This large window
of opened questions motivates our deep study on the understanding of multi-cue mi-
grational responses.

In line with the approach from the previous chapters, we consider cells moving by
contact guidance: cells encounter the fiber and then move along the direction of the
fiber itself. It has been shown experimentally, for example in the case of glioma cancer
cells [131], that randomly disposed fibers imply isotropic movement of cells, while
aligned fibers cause anisotropic movement of cells along the preferential direction of
the fibers themselves, as we described in details in Chapter 2. This was translated
into mathematical models firstly for contact guidance in [116] and, then, applied to
the study of glioma in several works (see the settings proposed in Chapters 3-5 and
the corresponding references).

We first recall the notation for the distribution of fibers on the space of directions,
given by the unit sphere Sd�1 ⇢ Rd,

q = q(x, v̂), x 2 W, v̂ 2 Sd�1

that satisfies

Q1: q(x, v̂) > 0, 8x 2 W, v̂ 2 Sd�1 ,

Q2:
Z

Sd�1
q(x, v̂) dv̂ = 1, 8x 2 W ,

Q3: q(x, v̂) = q(x,�v̂), 8x 2 W, v̂ 2 Sd�1 .

The the mean direction of the fibers is given by

Eq(x) =
Z

Sd�1
q(x, v̂) v̂ dv̂,

and the tensor related to the fibers, determined by the variance-covariance matrix of
q, is

Vq(x) =
Z

Sd�1
q(x, v̂) (v̂ � Eq)⌦ (v̂ � Eq) dv̂ .

As we consider a non polarized fiber network, we have

Eq(x) = 0, (6.1)

meaning that there is no mean direction in the dynamics. Concerning chemotaxis,
we consider a chemoattractant in the domain W defined by a strictly positive definite
function

S : W 7�! R+.

6.1.1 The transport model

For our analysis, we describe the cell population at a mesoscopic level through the dis-
tribution density r = r(t, x, s, v̂) that, for every time t > 0 and position x 2 W ✓ Rd,
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gives the statistical distribution of the speeds s 2 [0, U], where U is the maximal
speed a cell can achieve, and of the polarization directions v̂ 2 Sd�1, being Sd�1 the
unit sphere in Rd. Thus, the velocity vector is given by v = sv̂. Differently to what
we did in Chapters 3-5, here we exclude the microscopic internal variable for the cell
population density, but we consider the variation of both cell speed s and orienta-
tion v̂, without assuming the former to be constant. Recalling the general modeling
framework described in Section 3.1, and specifying it for the special case of a distri-
bution function that does not depend on any internal variable y, we can write the
corresponding transport equation for the cell distribution as

∂r

∂t
(t, x, s, v̂) + v ·rr(t, x, s, v̂) = L[r](t, x, s, v̂) . (6.2)

Compared to the general equation proposed in (3.1), here we do not consider any con-
servative or non-conservative interaction (modeled in (3.1) with the term I [r]), but
only the velocity changes described with the turning operator L[r](t, x, s, v̂). This
operator describes the scattering of the microscopic velocity in direction and speed,
related to the typical microscopic dynamics of the cell and described with the run and
tumble phenomenon [22]. L[r] is classically modeled by a velocity jump process [269],
characterized by a turning frequency µ and a transition probability T. The general form
of the turning operator which implements a velocity jump process at a kinetic level
was provided in (3.2) with (3.3) and (3.4). Assuming the turning rate to be indepen-
dent of the velocity variable and explicitly expressing the dependence of the turning
probability on cell speed and orientation, the turning operator reads

L[r](t, x, s, v̂) = µ(x)
Z

Sd�1

Z U

0

h
T[q,S ](x, s, v̂|s0, v̂0)r(t, x, s0, v̂0)

� T[q,S ](x, s0, v̂0|s, v̂)r(t, x, s, v̂)
i

ds0dv̂0 .

The turning kernel T[q,S ](x, s, v̂|s0, v̂0), which now depends on the two directional
cues for chemotaxis S and contact guidance q, respectively, satisfies the condition
(3.5), for all x 2 W, s0 2 [0, U], and v̂0 2 Sd�1. We also assume that the transition
probability only depends on the post-tumbling velocity, i.e., T[q,S ](x, s, v̂|s0, v̂0) =
T[q,S ](x, s, v̂), which is in line with the pioneering work concerning kinetic equa-
tions for velocity jump processes [8, 116, 269]. This assumption is due to the fact that
we consider directional cues which are sensed non-locally, and, therefore, the most
relevant aspect will be the measured preferential direction instead of the incoming
velocity. With this assumption, the turning operator reduces to

L[r](t, x, s, v̂) = µ(x) (n(t, x)T[q,S ](x, s, v̂)� r(t, x, s , v̂)) (6.3)

where, n(t, x) denotes again the macroscopic cell population density, namely

n(t, x) =
Z

Sd�1

Z U

0
r(t, x, s, v̂) ds dv̂ . (6.4)

For later reference, we introduce the notations for the mean macroscopic velocity after
a tumble event, as

UT(x) =
Z

Sd�1

Z U

0
v T[q,S ](x, s, v̂) ds dv̂ , (6.5)
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that is the average of T, and for the corresponding tensor

DT(x) =
Z

Sd�1

Z U

0
T[q,S ](x, s, v̂)(v � UT)⌦ (v � UT)ds dv̂ , (6.6)

which is the variance-covariance matrix of T. To link these notations with the no-
tations in the previous settings, where the turning kernel T describing the contact
guidance phenomenon was given by (3.15), the mean macroscopic velocity (6.5) cor-
responds to (3.16) and (6.6) reduces to (3.17). As remarked in [173], T is the local
asymptotic equilibrium steady state of the system (6.2) with (6.3) and, therefore, UT
and DT are the mean velocity and macroscopic tensor of the cell population at equi-
librium.

In order to investigate the overall trend of the system (6.2) with (6.3), we analyze
the macroscopic behavior. To obtain a closed evolution equation for n(t, x) in the
emerging regime of the system, we consider diffusive or a hydrodynamic scaling of
the transport equation (6.2) with (6.3), resulting from a proper non-dimensionalization
of the system. In particular, we discussed these limits and the procedure to get a
closed macroscopic equation (or system of equations) in Section 3.1, and we used the
parabolic scaling for the settings of Chapters 3-5. In addition to the notation intro-
duced for the expansion of the turning kernel (3.9) and of the distribution function
(3.10), for later reference we also define the expansions of UT(x) and DT(x)

Ui
T(x) =

Z

Sd�1

Z U

0
Ti[S , q](x, s, v̂)v dsdv̂

and
Di

T(x) =
Z

Sd�1

Z U

0
Ti[S , q](x, s, v̂)(v � Ui

T)⌦ (v � Ui
T)ds dv̂ ,

where i = 0, 1, 2, .. and x = #x. The functional solvability condition introduced in
Section 3.1 and necessary for performing a diffusive limit, here, reads

U0
T = 0 for a.e. x.

6.1.2 Non-local aspects

We consider that the sensing performed by the cells is non-local, as they may extend
their protrusions, through which they sense the environment, up to several cell di-
ameters [23]. The maximum length R of a protrusion is called sensing radius and it
has been first introduced in [213] for modeling a non-local gradient of a chemical and,
then, used in a number of works (see [45, 173] for a review and references therein)
for describing the sensing of macroscopic quantities. In the present model, both S
and q are sensed non-locally by a cell that, starting from its position x, extends its
protrusions in every direction v̂ 2 Sd�1 up to the distance R. Assuming a non-local
sensing of the fiber network allows to reproduce a wider range of migration strategies
(with respect to a local sensing) that a cell can perform in order to cleverly reach the
chemoattractant. Therefore, we consider the quantities:

S(x + lv̂), q(x + lv̂, v̂), 8 x 2 W, 8 v̂ 2 Sd�1, l 2 R, l  R.

We notice that, next to the border of the domain W, we consider l such that x + lv̂ 2
W.

In order to analyze qualitatively the impact of the non-locality at the macroscopic
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level, we study, in the spirit of [173], the impact of the directional cues S and q with
respect to the size of the cell. This size is related to the cell sensing radius R. Thus, we
introduce the characteristic length of variation of S as

lS :=
1

max
x2W

|rS(x)|
S(x)

.

This notation allows to approximate S(x + lv̂) with a positive quantity

S(x + lv̂) ⇠ S(x) + lrS(x) · v̂ � 0 8l  R if R < lS , (6.7)

where we neglect higher order terms in l.
Beside the above defined characteristic length of variation lS of the chemoattrac-

tant lS , we analogously define a quantity for the fibers distribution. We choose

lq :=
1

max
x2W

max
v̂2Sd�1

|rq(x,v̂) · v̂|
q(x,v̂)

.

In this case, we can approximate q(x + lv̂, v̂) with a positive quantity

q(x + lv̂, v̂) ⇠ q(x, v̂) + lrq(x, v̂) · v̂ � 0 8l < R if R < lq . (6.8)

This definition of lq takes into account the variation of directionality of the fibers in
space, which influences the cell orientation, more than the spatial variation of the den-
sity of the extracellular matrix.

We analyze the possible scenarios depending on the relation between R, lS and lq.
For this we introduce the parameters

hS :=
R
lS

(6.9)

and
hq :=

R
lq

, (6.10)

that quantify the cell capability to measure the guidance cues q and S with respect
to their characteristic lengths of variation. In particular, hi < 1, i = S , q, means that
the sensing radius is smaller than the characteristic length of variation of S (or q, re-
spectively), meaning that a single instantaneous sensing of the cell is not capable of
catching the total spatial variability of S (or q, respectively). In turn, if hi > 1, i = S , q,
the sensing radius is large enough in order to capture the spatial variability of S (or
q, respectively). If we consider only one of the two cues at the time, in the first case
(hi < 1) we expect that the sensing of S (or q, respectively) induces a diffusive be-
havior, while in the second scenario (hi > 1) the overall behavior induced by S (or q,
respectively) is drift-driven.

As we are considering the two guidance cues simultaneously affecting the cell po-
larization, we take into account four limit cases:

i) hS , hq � 1;

ii) hS , hq ⌧ 1;

iii) hS ⌧ 1, hq � 1;

iv) hS � 1, hq ⌧ 1.
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In order to quantify the relative contribution of chemotaxis to contact guidance, we
introduce a further parameter

h :=
hq

hS
, (6.11)

that is larger than 1 if contact guidance prevails, whilst it is smaller than 1 if chemotaxis
dominates. Due to (6.9) and (6.10), we have that, despite its definition, h does not
depend on the size and sensing capability of the cell, as h =

hq
hS

= lS
lq . In particular, if

lS is larger than lq, i.e., h > 1, this implies that the gradient of q is steeper than the one
of S , thus forcing a stronger effect of contact guidance on the dynamics. We can also
observe that in case iii) we always have h > 1 while in case iv) we always have h < 1,
i.e., contact guidance is weaker than chemotaxis.

6.1.3 Definition of the turning probability

We propose two different transition probabilities that model the changes in the cell
polarization, in order to describe two different sensing strategies of the cells: in a first
model the sensings of q and S are independent, while in a second model their sensing
are dependent.

For the first model, we define the transition probability as the product of two dif-
ferent independent sensings, namely

T[q,S ](x, s, v̂) = c(x)y(s)
Z

R+

gS(l)S(x + lv̂) dl
Z

R+

gq(l) q(x + lv̂, v̂) dl . (6.12)

This transition probability models a cell located in position x that measures along
the direction v̂ the field S(x + lv̂) weighted by gS , and, independently, the quantity
q(x + lv̂, v̂), weighted by gq. The sensing functions gS and gq have compact support
in [0, R] and can be Dirac delta functions centered in R, if the cell only measures the
guidance cues on its membrane (only on x + Rv̂ for every v̂). Another possible choice
for the sensing functions can be Heaviside functions if the cell gives the same weight
to q and S from x to x + Rv̂ in every direction. Formally the transition probability
can be seen as the product of the independent probabilities of q and S , i.e., T[q,S ] =
T̂[q] T̂[S ].

The second model prescribes a simultaneous averaging of the guidance cues S and
q, i.e.,

T[q,S ](x, s, v̂) = c(x)y(s)
Z

R+

g(l)S(x + lv̂) q(x + lv̂, v̂)dl . (6.13)

This transition probability describes a cell in position x that measures in the direction v̂
the two quantities S(x+ lv̂) and q(x+ lv̂), weighting both with g, which is a sensing
function. Formally, as the two sensings are not independent and, thus, factorized, we
have a conditioning of S given q and viceversa, i.e., T[q,S ] = T̃[S|q] T̃[q] = T̃[q|S ] T̃[S ].

In (6.12) and (6.13), c(x) is a normalization coefficient, while y(s) is a probability
density. This probability density is the distribution of the speed in the interval [0, U]
and satisfies Z U

0
y(s)ds = 1 ,

with the mean speed

Ū =
Z U

0
s y(s) ds
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and the second moment
D =

Z U

0
s2 y(s) ds , (6.14)

such that the variance of y is given by 1
2 (D � Ū2).

We refer to the transport model (6.2)-(6.3) with (6.12) as non-local independent sens-
ing model, in which the cell averages the two cues independently according to two
different sensing functions gS and gq. In turn, the transport model (6.2)-(6.3) with
(6.13) is refereed to as non-local dependent sensing model, describing cells that sense the
two cues at the same time and average them with one sensing kernel g. In the next
sections, we analyze the macroscopic limits of the two models for the cases i) � iv)
and we compare the two sensing strategies.

6.2 Non-local independent sensing model

We first consider the non-local independent sensing case (6.2)-(6.3) with (6.12). We
recall the expression of the transition probability

T[q,S ](x, s, v̂) = c(x)y(s)
Z

R+

gS(l)S(x + lv̂) dl
Z

R+

gq(l) q(x + lv̂, v̂) dl .

The average of T, which is the equilibrium velocity of the cell population, is given by

UT(x) = c(x) Ū
Z

Sd�1
v̂
✓Z

R+

gS(l)S(x + lv̂) dl
Z

R+

gq(l) q(x + lv̂, v̂) dl

◆
dv̂ .

(6.15)

Case i)

In this case, we choose the scaling parameter as

# = min
⇢

1
hq

,
1

hS

�
.

As a consequence of the fact that T cannot be expanded in powers of #, after the re-
scaling (3.6), we have that U0

T = UT given by (6.15). Therefore, we have to perform
the hyperbolic scaling (3.8) that leads to the following macroscopic equation for the
cells macroscopic density:

∂

∂t
n(t, x) +r · (n(t, x)UT(x)) = 0 , (6.16)

with UT(x) given by the re-scaling of (6.15) with (3.6).

Case ii)

In this case, we can expand both S(x + lv̂) and q(x + lv̂, v̂) and consider the approx-
imations (6.7) and (6.8) for l < min{lq, lS}. Therefore, we approximate the transition
probability by substituting (6.7) and (6.8) in (6.12), and, thus, we obtain the following
approximation for the turning kernel T[q,S ], which reads

T[q,S ](x, s, v̂) =c(x)y(s)
h
GS

0 Gq
0 S(x) q(x, v̂) + GS

0 Gq
1S(x)rq · v̂ + GS

1 Gq
0 q(x, v̂)rS · v̂

i
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where we neglected higher orders terms in l. In the previous equation for the turning
kernel we set

c(x) =
1

S(x) GS
0 Gq

0

and define
Gq

i :=
Z

R+

ligq(l) dl i = 0, 1 ,

GS
i :=

Z

R+

ligS(l) dl i = 0, 1 .

The quantities Gq
0, GS

0 are the weighted (by gq, gS) measures of the sensed linear tracts
in every direction, while Gq

1, GS
1 are the averages of gq, gS on [0, R]. Then, we introduce

the small parameter
# = min{hq, hS}

and re-scale the space variable with (3.6), getting at the order zero

T0[q,S ](x, s, v̂) = q(x, v̂)y(s) (6.17)

meaning that the equilibrium is determined by the fibers distribution, and at the first
order

T1[q,S ](x, v, v̂) =


Gq rq · v̂ + GS q(x, v̂)
rS
S(x) · v̂

�
y(s) ,

where

Gq :=
Gq

1

Gq
0

, GS :=
GS

1
GS

0
.

Because of (6.1) and (6.17), we have that U0
T(x) = 0, meaning that we are in a diffusive

regime, and the diffusive limits (3.7) leads to the advection-diffusion equation

∂

∂t
n +r ·

⇣
U1

Tn
⌘
= r ·


1
µ
r ·

�
D0

Tn
��

,

with zero-order macroscopic tensor given by

D0
T(x) = D

Z

Sd�1
q(x, v̂)v̂ ⌦ v̂ dv̂ = D Vq(x) , (6.18)

and macroscopic first-order velocity

U1
T(x) = Ū

Z

Sd�1

✓
Gq rq · v̂ + GS rS

S(x) · v̂ q(x, v̂)
◆

v̂dv̂

= Ū Gq
Z

Sd�1
(rq · v̂) v̂dv̂ + Ū GS rS

S

Z

Sd�1
v̂ ⌦ v̂ q(x, v̂)dv̂

= Ū


Gq r · Vq + GS Vq
rS
S

�
.

(6.19)

We recall that D is defined in (6.14), while Vq (namely, the variance-covariance matrix
for the orientation distribution of tissue fibers) is defined in (3.17). Therefore, the
complete advection-diffusion equation reads (dropping the dependencies)

∂

∂t
n +r ·

h⇣
cS VqrS + cqr · Vq

⌘
n
i
= r ·


1
µ
r ·

�
D Vq n

��
, (6.20)
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where

cS (x) :=
Ū GS

S(x) , cq := Ū Gq (6.21)

are the sensitivities related to chemotaxis and contact guidance. The diffusion repre-
sented by the tensor (6.18) only depends on the fibers distribution, while the advective
term has two contributions differently weighted by the sensitivities (6.21). We remark
that, in this regime, we obtain the same macroscopic behavior as postulated by Keller
and Segel [137], with the logarithmic chemotactic sensitivity cS given in (6.21). The
term VqrS depends on both the fibers distribution and the chemotactic field; it never
vanishes if rS is not the null vector, since it can be proved that the matrix Vq is invert-
ible. In the case of randomly disposed fibers, corresponding to the isotropic case, i.e.,
when Vq is proportional to the identity matrix, then VqrS is parallel to rS , which,
thus, represents the anisotropy direction. Conversely, when Vq is anisotropic, if rS
is not parallel to the eigenvector corresponding to the highest eigenvalue of Vq, then
the migration does not follow the dominant direction of the fibers, but rather its pro-
jection on rS . Moreover, the second part of the drift term, i.e., r · Vq, is a measure
of the velocity field induced by the spatial variation of the fiber direction distribution,
which determines the microscopic cell velocities. This term vanishes if the fiber distri-
bution is homogeneous in space. Therefore, if q is homogeneous in space, even in case
of competing cues, i.e., Eq ? rS , in general the advective term U1

T does not vanish.
While, in case of cooperating cues, i.e., rS is an eigenvector of Vq with eigenvalue
lrS , migration is in direction rS with a kinetic factor cSlrS . In intermediate scenar-
ios, i.e., when there is not complete cooperation or competition, migration happens in
the projection VqrS , but, if q is not homogeneous, the dynamics is more complex and,
even in case of cooperation, we cannot conclude anything about additivity effects.

Case iii)

In this case, we can only expand the chemoattractant, approximated in (6.7), with
Taylor series and can, thus, rewrite the turning kernel (6.12) as

T[q,S ](x, s, v̂) =y(s)


c0(x) S(x) GS

0

Z

R+

gq(l)q(x + lv̂, v̂) dl

+ c1(x) GS
1 (rS · v̂)

Z

R+

gq(l)q(x + lv̂, v̂) dl

�

where we neglect higher order terms in l. Here, the normalization coefficients are
given by

c0(x) :=
✓

2
Z

Sd�1
GS

0 S(x)
Z

R+

gq(l)q(x + lv̂, v̂) dl dv̂
◆�1

and

c1(x) :=
✓

2
Z

Sd�1
GS

1 (rS · v̂)
Z

R+

gq(l)q(x + lv̂, v̂) dl dv̂
◆�1

,

both different from zero. In this case, we choose

# = min
⇢

1
hq

, hS

�
,
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and, re-scaling the space variable as in (3.6),we get T[q,S ] = T0[q,S ]. Let us now
define

Vl
q (x) =

Z

Sd�1
q(x + lv̂, v̂) v̂ ⌦ v̂ dv̂ ,

that, for each point x, is the diffusion tensor of the fibers on a circle of radius l, and

V̄0
q(x) =

1
Gq

0

Z

R+

gq(l)V
l
q (x) dl ,

that is a weighted directional tensor of the fibers in the whole neighbourhood sensed
by the cells. Analogously we define

El
q (x) =

Z

Sd�1
q(x + lv̂, v̂) v̂ dv̂ ,

that, for each point x, is the mean direction of the fiber on a circle of radius l, and

Ē0
q(x) =

1
Gq

0

Z

R+

gq(l)El
q dl ,

the mean fiber direction in the whole neighbourhood sensed by the cells. Hence, in
this case, U0

T(x) does not vanish in W, as it is given by

U0
T(x) = c0(x) Ū GS

0 S(x)
Z

R+

gq(l)
Z

Sd�1
v̂ q(x + lv̂, v̂) dv̂ dl

+ c1(x) Ū GS
1 rS

Z

R+

gq(l)
Z

Sd�1
v̂ ⌦ v̂ q(x + lv̂, v̂) dv̂ dl,

= c0(x) Ū GS
0 Gq

0 S(x) Ē0
q + c1(x) Ū GS

1 Gq
0 rS V̄0

q .

(6.22)

The macroscopic equation is given by the drift equation (6.16) with mean velocity
(6.22). Precisely, the advection velocity is related to a non-local average of the diffusion
tensor of the fibers V̄l

q projected on rS , and a non-local average of the mean fiber
velocity depending on the local chemoattractant S . In this case the additivity effect of
the two cues is not evident and there are several possible scenarios.

Remark 6.1. If we consider gq = d(l � 0) we obtain a local sensing of fibers. In this
case, U0

T(x) would vanish in W and we get a diffusion-advection equation with macro-
scopic velocity induced by both the spatial variation of the chemoattractant rS and
the diffusion tensor of the fiber Dq and with the same sensitivity cS as in (6.21). With-
out chemotaxis, this case would reduce to the classical model for contact guidance
[116].

Case iv)

The last case allows only a Taylor expansion of the distribution function q, as in (6.8).
Therefore, the turning kernel can be approximated as

T[q,S ](x, s, v̂) =y(s)


c0(x) Gq

0 q(x, v̂)
Z

R+

gS(l)S(x + lv̂) dl

+ c1(x)G
q
1 (rq · v̂)

Z

R+

gS(l)S(x + lv̂) dl

�
,

(6.23)
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where the coefficient functions are defined as

c0(x) :=
✓

2
Z

Sd�1
Gq

0 q(x, v̂)
Z

R+

gS(l)S(x + lv̂) dl dv̂
◆�1

and

c1(x) :=
✓

2
Z

Sd�1
Gq

1 (rq · v̂)
Z

R+

gS(l)S(x + lv̂) dl dv̂
◆�1

,

both different from zero. In this case, we choose

# = min
⇢

1
hS

, hq

�

and, by re-scaling (6.23) with (3.6), we get T[q,S ] = T0[q,S ]. Hence U0
T(x) does not

vanish in W, as it is given by

U0
T(x) = c0(x) Ū Gq

0

Z

Sd�1
v̂ q(x, v̂)

Z

R+

gS(l) S(x + lv̂) dl dv̂

+ c1(x) Ū Gq
1

Z

Sd�1
v̂ ⌦ v̂rq

Z

R+

gS(l) S(x + lv̂) dl dv̂ ,
(6.24)

and the macroscopic drift equation is given by (6.16) with mean velocity (6.24). This is
a linear combination of a non-local measure of the chemoattractant S over the fibers
network and a non-local measure of S weighted by the directional average of the
spatial variability of the fiber direction.

Remark 6.2. If we consider a local sensing for the chemoattractant, i.e., gS = d(l � 0),
we obtain a macroscopic advection-diffusion equation, where the macroscopic veloc-
ity is induced by the spatial variation of the distribution of fiber directions r ·Vq, and
the measure of S does not affect the choice of the direction. In this case, if rq vanishes,
the model reduces to a fully anisotropic diffusive equation [116].

6.3 Non-local dependent sensing model

Concerning the non-local dependent sensing case (6.2)-(6.3) with (6.13), we recall the
expression of the transition probability

T[q,S ](x, s, v̂) = c(x)y(s)
Z

R+

g(l)S(x + lv̂) q(x + lv̂, v̂)dl ,

with
c(x) :=

Z

Sd�1

Z

R+

g(l)S(x + lv̂) q(x + lv̂, v̂)dl .

The macroscopic velocity is here given by

UT(x) = c(x) Ū
Z

Sd�1
v̂
Z

R+

g(l)S(x + lv̂) q(x + lv̂, v̂)dl dv̂ . (6.25)

The macroscopic limits can be performed as in the previous section and the choice of
the parameter # will be the same for the cases i)� iv), since it does not depend on the
type of model (independent or dependent sensing), but only on hS and hq.
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Case i)

In this case, we cannot consider the expansions (6.7) and (6.8), and, thus, we cannot
expand the turning kernel, whose nonvanishing average is given by (6.25). There-
fore, we perform a hyperbolic limit leading to an equation analogous to (6.16) with
macroscopic velocity (6.25).

Case ii)

When the maximum sensing radius R is smaller than both characteristic lengths, we
may consider the positive expansions (6.7) and (6.8) and substitute them in (6.13).
Neglecting the higher order terms in l, we get the approximation

T[q,S ](x, s, v̂) = c(x)y(s)
h
S(x) G0 q(x, v̂) + S(x) G1 rq · v̂ + G1 q(x, v̂)rS · v̂

i

with
c(x) =

1
S(x) G0

and
Gi :=

Z R

0
lig(l) dl , i = 0, 1 .

Re-scaling the space variable as in (3.6), we find

T0[q,S ](x, v, v̂) = q(x, v̂)y(s)

and
T1[q,S ](x, s, v̂) = G y(s)

h
rq · v̂ + q(x, v̂)

rS
S · v̂

i

with
G :=

G1

G0
.

Therefore, U0
T(x) = 0 because of (6.1), and we can perform a diffusive scaling that

leads to the zero-order macroscopic tensor

D0
T(x) = D Vq(x) ,

and to the macroscopic first-order velocity

U1
T(x) = Ū Gr · Vq(x) + Ū G Vq(x)

rS
S . (6.26)

The macroscopic advection-diffusion equation reads (dropping the dependencies)

∂

∂t
n +r ·


c

✓
r · Vq + Vq

rS
S

◆
n
�
= r ·


1
µ
r ·

�
D Vq n

��

where
c := ŪG .

Here, we can make observations about the macroscopic model similar to those dis-
cussed in case ii) of the non-local independent sensing model. The only difference is
that, in this non-local dependent sensing model, there is only one sensitivity c that
weights the two contributions equally in the drift term (6.26).
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Case iii)

In this case, we expand only the chemoattractant S(x + lv̂), as defined in (6.7), so that
the turning kernel (6.13) can be approximated as

T[q,S ](x, s, v̂) =y(s)


c0(x) S(x)

Z

R+

g(l)q(x + lv̂, v̂) dl

+ c1(x) (rS · v̂)
Z

R+

l g(l)q(x + lv̂, v̂) dl

�

with

c0(x) :=
✓

2
Z

Sd�1
S(x)

Z

R+

g(l)q(x + lv̂, v̂) dl dv̂
◆�1

and

c1(x) :=
✓

2
Z

Sd�1
(rS · v̂)

Z

R+

lg(l)q(x + lv̂, v̂) dl dv̂
◆�1

,

both different from zero. Re-scaling the space variable as in (3.6), we find T[q,S ] =
T0[q,S ]. Hence, in this case, U0

T(x) does not vanish in W, as it is given by

U0
T(x) = c0(x) Ū S(x)

Z

R+

g(l)
Z

Sd�1
v̂ q(x + lv̂, v̂) dv̂ dl

+ c1(x) Ū rS
Z

R+

l g(l)
Z

Sd�1
v̂ ⌦ v̂ q(x + lv̂, v̂) dv̂ dl,

= c0(x) Ū G0 S(x) Ē0
q(x) + c1(x) Ū G0 rS V̄1

q(x) .

(6.27)

where we defined
V̄1

q(x) =
1
G0

Z

R+

l Vl
q (x) g(l)dl

as an average of the weighted diffusion tensor of the fibers in the whole neighborhood
sensed by the cells, differently form the case iii) of the non-local independent model.
Therefore, the macroscopic advection equation has an expression analogous to (6.16)
with macroscopic velocity (6.27).

Case iv)

In this case, again, we can only consider the positive approximation (6.8), and the
transition probability rewrites as

T[q,S ](x, s, v̂) =y(s)


c0(x)q(x, v̂)

Z

R+

g(l) S(x + lv̂) dl

+ c1(x)rq · v̂
Z

R+

l g(l) S(x + lv̂) dl

� (6.28)

where

c0(x) :=
✓

2
Z

Sd�1
q(x, v̂)

Z

R+

g(l)S(x + lv̂) dl dv̂
◆�1
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and

c1(x) :=
✓

2
Z

Sd�1
(rq · v̂)

Z

R+

l g(l)S(x + lv̂) dl dv̂
◆�1

,

both different from zero. As before, by re-scaling (6.28) with (3.6), we get T[q,S ] =
T0[q,S ] and we have that the average velocity U0

T = UT 6= 0. In the specific, the aver-
age velocity is given by

UT(x) = c0(x) Ū
Z

Sd�1
v̂ q(x, v̂)

Z

R+

g(l) S(x + lv̂) dl dv̂

+ c1(x) Ū
Z

Sd�1
v̂ ⌦ v̂rq(x, v̂)

Z

R+

l g(l)S(x + lv̂) dl dv̂
(6.29)

and, thus, we perform a hyperbolic limit leading to (6.16) with mean velocity (6.29).
The mean velocity is a linear combination of a non-local measure of the chemoattrac-
tant S over the fibers network and a non-local average of S weighted by the directional
average of the spatial variability of the fiber direction.

We summarize the macroscopic equations for the two sensing strategies in the four
cases in Table 6.1.
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Remark 6.3. We can observe that, if gq = gS = g = d(l � R), the two non-local
transport models for independent and dependent sensing are the same, while, if the
sensing kernels are not Dirac deltas (even if gq = gS = g), the transport models are
always different. At the macroscopic level, with any choice of the sensing functions
the models coincide only in case ii). In this case, the macroscopic limits are different
only if gq 6= gS , while in the cases iii) and iv) they are different if the sensing kernels
are not Dirac deltas (even if gS = gq = g). The relevant difference concerns the
macroscopic transport velocities (see (6.22) and (6.27) for the case iii), and (6.24) and
(6.29) for the case iv)). In fact, in the cases iii) and iv), for the non-local dependent
sensing model, as only one cue is considered non-locally and both cues are averaged
with the same sensing function g, we have a weighted average on l of the non-local
quantities, which results in the weighted averages in the second terms of (6.27) and
(6.29). These results are summarized in Table 6.2.

gq = gS = g = d gq = gS = g 6= d gq 6= gS

Meso models (6.2)-(6.3) with (6.12) or (6.13) 3 7 7

Macro models case i) 3 7 7

Macro models case ii) 3 3 7

Macro models case iii) 3 7 7

Macro models case iv) 3 7 7

TABLE 6.2: Summary of the comparison between the models for different
choices of the sensing functions. The symbol 3 indicates the cases in which the
models coincide, while the symbol 7 the ones in which the models are different.

6.4 Numerical tests

On the basis of the models derived in the previous sections and summarized in Table
6.1, we propose here two-dimensional numerical simulations to illustrate the behav-
ior of the kinetic transport models for non-local independent sensing and non-local
dependent sensing, i.e., (6.2)-(6.3) with (6.12) or (6.13). In contrast to the previous
chapters, we here integrate numerically the transport equation, in line with [173] and,
then, we compute the macroscopic density (6.4).

Concerning the boundary conditions, since we are going to consider 2D bounded
domains without loss of cells and no cells coming in, we assume conservation of mass.
Therefore, we choose no-flux boundary conditions:

Z

Sd�1

Z U

0
r(t, x, s, v̂)v̂ · n(x) ds dv̂ = 0, 8x 2 ∂W, t > 0 ,

where n(x) is the outward normal to the boundary ∂W in point x. This class of bound-
ary conditions is part of the wider class of non-absorbing boundary conditions. Pre-
cisely, in this analysis, we consider specular reflection boundary conditions, i.e.,

r(t, x, s0, v̂0) = r

✓
t, x, s,

v̂ � 2(v̂ · n)n
|v̂ � 2(v̂ · n)n|

◆
, n · v̂  0,
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that means that cells are reflected with an angle of p/2 when they reach the domain
boundary.

With respect to the fibers network, we decide here to rely on the von Mises dis-
tribution described in detail in Section 2.3.2. In fact, its expression with the concen-
tration coefficient k(x) allows us to perform simulations for several different scenarios
and compare them. We recall the expression of q in its bimodal version, since we are
dealing with cell migrating on a non-polarized network of fibers (see assumption Q3
in Section 6.1)

q (x, v̂) =
1

4p I0(k(x))

⇣
ek(x) u(x)·v̂ + e�k(x) u(x)·v̂

⌘
, (6.30)

where In(k) is the modified Bessel function of first kind of order n and

u(x) := (cos(qq(x)), sin(qq(x))) (6.31)

where qq(x) is the mean direction, belonging to the interval [0, 2p), of the fibers located
at point x . Moreover, its variance can be calculated as in [118] and it reads

Vq(x) =
1
2

✓
1 � I2(k)

I0(k)

◆
I2 +

I2(k)
I0(k)

u ⌦ u,

where I2 is the identity matrix in R2⇥2, while k and u are functions of x. Moreover, the
variance in [0, 2p) is the scalar

Dq(x) =
1
2

Z 2p

0
q(q � qq)

2 dq =

✓
1 � I1(k)

I0(k)

◆

that represents the degree of alignment of the fibers at point x.
We perform four different sets of numerical tests on the bounded domain W = [0, 5]2.

Test 1. We present the case in which the sensing of the tissue architecture, described by
q, is local, showing only the effect of having two directional cues driving cell
polarization.

Test 2. We consider non-local sensing of both cues and we compare the non-local inde-
pendent sensing model and the non-local dependent sensing model for different
expressions of the sensing functions gS and gq.

Test 3. We consider the non-local independent sensing model and we perform a com-
parison of the macroscopic behaviors of the cells in the cases i)-iv), i.e., depend-
ing on the relation between R, lS , and lq.

Test 4. Still considering the non-local independent sensing model, we divided the com-
putational domain W into several regions, each of them characterized by a dif-
ferent average direction of the fibers, and we analyze the overall cell behavior.

6.4.1 Test 1: local ECM sensing and non-local chemotaxis

As a first test, we present the particular case in which the sensing of q is local. This case
illustrates the effect of a second directional cue when dealing with a cell population
migrating by contact guidance and evaluating the local alignment of the fibers over a
non-polarized network. Formally, we are dealing with (6.12) with gq = d(l � 0). We

150 6. Non-local sensing in a multi-cue environment



consider the region

Wq = {x = (x, y) 2 W s.t. x1  x  x2}

with x1 = 1.8 and x2 = 3.2 in which the fibers are strongly aligned along the direction
identified by qq = p/2. In particular, for (x, y) 2 Wq we set k(x, y) = 700, such that
Dq = 5 · 10�3. In the rest of the computational domain W � Wq fibers are uniformly
distributed. The chemoattractant has a Gaussian profile

S(x, y) =
mSp
2ps2

S

e
� (x�xS )2+(y�yS )2

2s2
S . (6.32)

In the simulations shown in Figure 6.1, we choose (xS , yS ) = (4, 4), mS = 10, s2
S = 0.1.

The initial condition for the cell population is also a Gaussian

r0(x, y) = r0e
� (x�x0)

2+(y�y0)
2

2s2
0 (6.33)

with r0 = 0.1 and s2
0 = 0.1. In this first test, the initial condition for the cell population

is centered in (x0, y0) = (2.5, 2.5), i.e., the center of the region Wq, as shown in Figure
6.1(a), and we set R = 0.5. The dynamics of the cell population is shown in Figure
6.1, together with the evolution of cell polarization and the trajectory of the center of
mass.

Without chemoattractant, because of the presence of highly aligned fibers, we
would expect that cells diffuse anisotropically in the preferential direction of the fibers
(i.e., ±p/2), forming the well-known ellipsis [214], which represents cells moving
with the same probability along direction p/2 and �p/2. Here, due to the presence
of a chemoattractant, the symmetry is broken, and, even if q describes a non-polarized
fiber network, there is a preferential sense of motion (see Figures 6.1(d)-6.1(f)). Pre-
cisely, cells migrate along the fibers in the direction identified by qq = p/2, corre-
sponding to the preferential sense imposed by the presence of the chemoattractant in
the upper-right corner of the domain W. Given this directional setting, the cell popu-
lation dynamics is also greatly affected by the strength of the chemoattractant, which
depends on mS and s2

S , the degree of the alignment Dq, which depends on k(x, y), and
by the sensing radius R. Another important aspect is the sensing function gS , which
influences the transient dynamics and, especially, the relaxation time. This relaxation
time appears to be double in the case of a Heaviside function since the kernel gS dou-
bles when computed with a Heaviside function instead of a Dirac delta (see [173] for
more details). We also analyzed the average polarization of the cells at every position
x in Figures 6.1(b) and 6.1(g)-6.1(i), which is given by the momentum

n(t, x)U(t, x) =
Z

Sd�1

Z U

0
v r(t, x, s, v̂) ds dv̂ .

The microscopic directions of cells are initially randomly distributed and they start
from a vanishing initial speed, as shown in Figure 6.1(b). Then, they start to align
along the fibers and to migrate in the direction identified by the mean direction qq(x) =
p/2, since cells sense the chemoattractant (see Figures 6.1(g)-6.1(h)). Eventually when
cells reach the position identified by y = 4, the microscopic directions polarize to-
wards the chemoattractant (see Figure 6.1(i)). The center of mass plotted in Figure
6.1(c) stays in the region Wq during the migration of cells along the fibers bundle in
Wq, and this center moves out of Wq only when it reaches the position identified by
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(a) Initial cell distribution (b) Initial average polarization (c) Center of mass: trajectory

(d) t = 1.25 (e) t = 3.75 (f) t = 12.5

(g) t = 1.25 (h) t = 3.75 (i) t = 12.5

FIGURE 6.1: Test 1. Evolution of the initial distribution given in (a) for the case of local q and
non-local chemoattractant S with sensing function gS = d(l � R). The chemoattractant is a
Gaussian centered in (4, 4), with mS = 10 and s2

S = 0.1. The sensing radius of the cells is set
to R = 0.5. (b): the initial average polarization of the cells. (c): trajectory of the center of mass
of the cell population, where each black dot is plotted every Dt = 1. (d)-(f): evolution of the

macroscopic density. (g)-(i): evolution of the polarizations of the cells.

y = 4. The black dots are plotted every Dt = 1 and it is clear that the highest accel-
eration happens when cells are on the bundle of fibers, while they are slowed down
when they start to move out of the fibers stripe Wq.

6.4.2 Test 2: non-local ECM sensing and chemotaxis

As a second test, we present both the non-local independent sensing model and the
non-local dependent sensing model. Differently from the previous test, we now con-
sider a non-local sensing of the distribution of fibers. We assume fibers distributed
similarly to the previous test, i.e., the fibers are highly aligned in the region Wq charac-
terized by x1 = 2.1 and x2 = 2.9 and illustrated in Figure 6.2(b). Here, for (x, y) 2 Wq,
we set k(x, y) = 100, which corresponds to Dq = 0.0025, and qq(x, y) = p/2. In the

152 6. Non-local sensing in a multi-cue environment



region W � Wq fibers are uniformly distributed. The initial condition of the cell pop-
ulation is (6.33) with r0 = 0.1, s2

0 = 0.1, and centered in (x0, y0) = (1, 0.5), as shown
in Figure 6.2(a), while the chemoattractant is located as in Test 1, with mS = 10 and
s2
S = 0.05. We compare the dynamics of the cells in four settings:

1. local fiber distribution and non-local chemoattractant, as in Test 1, i.e., (6.12)
with gq = d(l � 0) and gS = d(l � R);

2. non-local sensing with a Dirac delta for both q and S ; this corresponds to both
(6.12) and (6.13) with gq = gS = g = d(l � R);

3. non-local independent sensing with Heaviside sensing functions for both S and
q, i.e., (6.12) with gq = gS = H(R � l);

4. non-local dependent sensing for q and S , dealing with (6.13) and g = H(R � l).

The results of the simulations for setting 1-4 are shown in Figure 6.2.
We can observe that, in the 1-4 settings, cells start from (1, 0.5), they are attracted

by the chemoattractant and, on their way towards S , they cross the aligned fibers re-
gion Wq and climb up this region in the direction p/2. Eventually, in all the cases, cells
reach the chemoattractant, but the dynamics, as well as the transient time, are influ-
enced by the different sensing kernels, even though the differences are not extremely
appreciable, and by the local or non-local sensing strategy. Although settings 3 and
4 in Figure 6.2, which are related to the case of independent and dependent cues, re-
spectively, do not show very strong differences, in setting 3 (see Figures 6.2(k)-6.2(n))
the tendency of moving in both the directions p/2, determined by the fibers, and p/4,
determined by the chemoattractant, appears more evident because of the independent
sensing. This behavior is the least evident when cells deal with a local sensing of the
fibers (setting 1), resulting also in a general slow down of the dynamics.

6.4.3 Test 3: comparison of the cases i)� iv)

In this section, we present a comparison of the macroscopic behaviors of the cells
depending on the relation between the parameters R, lS and lq, which define the dif-
ferences between the models obtained in the cases i), ii), iii) and iv). For this com-
parison we consider the non-local independent sensing model (6.2)-(6.3) with (6.12)
and we choose gq = gS = H(R � l), as this is the case in which the transport model
is different from the dependent sensing model. We simulate the independent-case
model because the independence of the two sensings allows to visualize more effi-
ciently the two distinct directional effects (contact guidance and chemotaxis), as we
observed with the comparison performed with the Test 2.

The initial distribution of cells for all the tests presented in Figures 6.4-6.8 is given
by (6.33) with (x0, y0) = (1.5, 1.5), r0 = 0.1, and s2

0 = 0.1. The chemoattractant pro-
file is given by (6.32) with (xS , yS ) = (4.5, 4.5) and mS = 10. In the simulations, we
consider three different values for the variance of the chemoattractant s2

S in order to
obtain different values of lS . We choose s2

S = 0.05 that corresponds to lS = 0.002 in
Figure 6.3(a), s2

S = 0.25 that corresponds to lS = 0.055 in Figure 6.3(b) and s2
S = 1.8

corresponding to lS = 0.25 in Figure 6.3(c). In order to have a direct control on the
strength of fiber alignment and to modulate its relation to the other parameters, we
consider the turning kernel describing contact guidance lead by q with mean direction
qq = 3p/4 and the coefficient function k(x, y) given by a Gaussian distribution as

k(x, y) = mke
� (x�xk)

2+(y�yk)
2

2s2
k . (6.34)

6.4. Numerical tests 153



(a) Initial condition for cells (b) Initial fiber distribution

(c) t = 1.25 (d) t = 3.75 (e) t = 5 (f) t = 6.25

(g) t = 1.25 (h) t = 3.75 (i) t = 5 (j) t = 6.25

(k) t = 1.25 (l) t = 3.75 (m) t = 5 (n) t = 6.25

(o) t = 1.25 (p) t = 3.75 (q) t = 5 (r) t = 6.25

FIGURE 6.2: Test 2. Time evolution of the initial distribution given in 6.2(a) in the settings 1-4.
The sensing radius of the cells is R = 0.5 and the chemoattractant is defined in (6.32) with
mS = 10, s2

S = 0.05 and (xS , yS ) = (4, 4). Setting 1 is represented in Figures (c)-(f): local
q and non-local chemoattractant, gS = d(l � R). Setting 2 is represented in Figures (g)-(j):
non-local q and S with sensing functions gq = gS = d(l � R). Setting 3 is represented in
Figures (k)-(n): non-local q and S , independent sensing with gq = gS = H(R � l). Setting 4
is represented in Figures (o)-(r): non-local q and S , dependent sensing with g = H(R � l).
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Here, we choose (xk, yk) = (2.5, 2.5) and s2
k = 0.15. The function k(x, y) driving the

strength of the alignment is represented in Figure 6.3(d). This function mimics the
situation of fibers more aligned in the central circular region and uniformly disposed
in the rest of the domain. Besides, we consider different values of mk in order to obtain
different values of lq: mk = 10 corresponds to lq ⇡ 0.031 and mk = 100 corresponds to
lq ⇡ 0.0031. We derive the estimation for the range of variability of the characteristic
length lq of the corresponding bimodal Von Mises Fisher q (given in (6.30)) in the
case of a general concentration function k(x) 2 C1(W). Details are provided in the
following observation.

Observation 6.1. Estimation of lq
We recall the definition of the characteristic length lq:

lq :=
1

max
x2W

max
v̂2Sd�1

|rq(x,v̂) · v̂|
q(x,v̂)

.

Since ∂I0
∂k = I1(k)

I0(k)
, we have that

rq = r
✓

1
4p I0(k(x))

◆⇣
ek(x) u·v̂ + e�k(x) u·v̂

⌘
+

1
4p I0(k(x))

r
⇣

ek(x) u·v̂ + e�k(x) u·v̂
⌘

=
ek(x) u·v̂ � e�k(x) u·v̂

4p I0(k(x))
rk (u · v̂)� ek(x) u·v̂ + e�k(x) u·v̂

4p I2
0 (k(x))

∂I0

∂k
rk

=
ek(x) u·v̂ � e�k(x) u·v̂

4p I0(k(x))
rk (u · v̂)� ek(x) u·v̂ + e�k(x) u·v̂

4p I0(k(x))
I1(k(x))
I0(k(x))

rk

Since q(x, v̂) > 0 and ||v̂|| = 1, we have:

rq · v̂
q

=

�����
ek(x) u·v̂ � e�k(x) u·v̂

ek(x) u·v̂ + e�k(x) u·v̂ (u · v̂)� I1(k(x))
I0(k(x))

����� ||rk|| cos(rk · v̂) ,

where || · || denotes the L2-norm. Thus,

����
rq · v̂

q

���� =

�����
ek(x) u·v̂ � e�k(x) u·v̂

ek(x) u·v̂ + e�k(x) u·v̂ (u · v̂)� I1(k(x))
I0(k(x))

����� ||rk|| |cos(rk · v̂)| .

Recalling that |a � b|  |a|+ |b|, �1  ek(x) u·v̂�e�k(x) u·v̂

ek(x) u·v̂+e�k(x) u·v̂  1, and | cos (·)|  1, we get

����
rq · v̂

q

���� 
✓

1 +
����

I1(k(x))
I0(k(x))

����

◆
||rk|| .

Using the results from [156] (see equation (1.12) for n = 1), we obtain that
��� I1

I0

��� < 1,
and, therefore, ����

rq · v̂
q

���� < 2||rk||

which implies

max
x2W

max
v̂2Sd�1

����
rq(x, v̂) · v̂

q(x, v̂)

���� < 2 max
x2W

||rk(x)||.
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This inequality translates into

lq �
1

2 max
x2W

||rk(x)|| . (6.35)

In particular, if there exists x such that rk(x) · v̂ = 1 and, at the same time, also
satisfies rk(x) k u, where u is defined in (6.31), then (6.35) is true with the equal sign.
For the symmetry of (6.32) and (6.34) in our numerical test we assume

lq ⇡
1

2 max
x2W

||rk(x)|| .

In this section we present five different simulations that are summarized in Table
6.3.

lS lq R Case h Figure

0.002 0.0031 0.7 i) < 1 6.4

0.25 0.0031 0.7 i) � 1 6.5

0.055 0.031 0.02 ii) > 1 6.6

0.25 0.0031 0.02 iii) � 1 6.7

0.002 0.031 0.02 iv) < 1 6.8

TABLE 6.3: Summary of the five simulations presented in Test 3. The param-
eter choices for lS , lq, and R, the corresponding case number, the parameter h,

and the figure number of the visualization are indicated.

In Figure 6.4, we consider the case i) in which hS , hq � 1. The macroscopic be-
havior is strongly hyperbolic with the macroscopic velocity given by (6.15). In fact,
in Figure 6.4 we can observe that the behavior is not diffusive and the cluster of cells
is quite compact. Moreover, when cells reach the region in which fibers are strongly
aligned in the direction 3p/4 (as shown in Figure 6.3(d)), which is perpendicular to
the favorable direction p/4 induced by the chemoattractant, they surround that region
inducing strong alignment and move towards the chemoattractant. In this setting, the
parameter h defined in (6.11) is slightly smaller than 1 and, thus, chemotaxis prevails
in the overall dynamics, as the stationary state is clearly peaked on the chemoattrac-
tant profile, but the fibers structure influences the transient cell behavior.

In Figure 6.5, we consider S with s2
S = 1.8, as shown in Figure 6.3(c), and, con-

sequently, lS = 0.25. Concerning the fibers, we have mk = 100, so that lq ⇡ 0.0031,
and the sensing radius is R = 0.7. This setting belongs to case i), but the behavior is
different with respect to the previous simulation in Figure 6.4. The chemoattractant in
Figure 6.3(c) is spread out across the whole domain and the quantity lS is almost 102

times the value of lS considered in Figure 6.3(a) and used for the simulation in Figure
6.4. Even though this is a strongly hyperbolic case and cells are guided by the strong
drift term (6.15), as R is slightly larger then lS and lS is large, the cell cluster diffuses a
bit more in the domain. When it reaches the region of strongly aligned fibers, it starts
to surround that region (as shown in Figures 6.5(a)-6.5(c)), but, as hS = 2.8 = O(1),
some cells, which do not surround the region, are slowed down and partially tend
to align along the fibers. In Figure 6.5(d) we have a high density of cells both in the
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(a) Chemoattractant S with s2
S = 0.05 (b) Chemoattractant S with s2

S = 0.25

(c) Chemoattractant S with s2
S = 1.8 (d) Fibers distribution

FIGURE 6.3: Test 3. Three different chemoattractants used for comparing cases
i)-iv). The chemoattractant profile is given by (6.32) with mS = 10 and (a)
s2
S = 0.05, corresponding to lS = 0.002, (b) s2

S = 0.25, corresponding to lS =
0.055, and (c) s2

S = 1.8, corresponding to lS = 0.25. The fibers distribution is
visualized in (d).

(a) t = 1.25 (b) t = 1.875 (c) t = 2.5

(d) t = 3.75 (e) t = 5 (f) t = 6.25

FIGURE 6.4: Test 3. Case i) with non-local q and S , sensed independently with gq = gS =
H(R � l). S is given in Figure 6.3(a) with mS = 10 and s2

S = 0.05, so that lS = 0.002. The
fibers distribution q has a space dependent parameter k given by (6.34) with mk = 100, so that

lq ⇡ 0.0031. The sensing radius of the cells is R = 0.7.
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(a) t = 2.5 (b) t = 5 (c) t = 10

(d) t = 15 (e) t = 22.5 (f) t = 27.5

FIGURE 6.5: Test 3. Case i) with non-local q and S , sensed independently with
gq = gS = H(R � l). S is given in Figure 6.3(c), which corresponds to lS = 0.25, while for
the fiber distribution mk = 100, so that lq ⇡ 0.0031. The sensing radius of the cells is R = 0.7.

strongly aligned fiber region and in the region of high density of chemoattractant.
Eventually, the cells manage to overcome the area of highly aligned fibers and they
converge to the chemoattractant profile (as in Figures 6.5(e)-6.5(f)). This demonstrates
that the overall dynamics is greatly affected by the fibers and, in fact, this is expressed
by the fact that the value of the parameter h in this case is h � 1.

The second scenario, illustrated in Figure 6.6, refers to the case ii), since the sens-
ing radius R = 0.02 is smaller than both lS = 0.055 and lq ⇡ 0.031. At the macroscopic
level, the behavior of the system is described by the advection-diffusion equation
(6.20) with macroscopic velocity (6.19). In Figure 6.6, we observe a highly diffusive
behavior, as the macroscopic density of cells has invaded almost the half of the do-
main before even starting to be influenced by the fibers. If we compare the same time
step in Figures 6.6(b) and 6.5(b), we see that the cells are in both cases reaching the
fibers and reacting to the region in which fibers are aligned the most. However, in
Figure 6.5(b) the cell cluster is much more compact than in Figure 6.6(b), where cells
already occupy half of the domain, because of diffusion. In addition, we can observe a
high density of cells both close to the strongly aligned fiber region and around the ini-
tial position. Therefore, cells start surrounding the central region of strongly aligned
fibers, because they already sense the chemoattractant, and, once they have passed
this area, they are attracted to the chemoattractant profile (see Figures 6.6(c)-6.6(f)).
In the transient time, cells accumulate the most at the sides of the region with highly
aligned fibers. In this specific setting, we observe that the parameter h > 1 that is
characteristic of a scenario in which contact guidance highly affects the dynamics.

The third scenario, illustrated in Figure 6.7, refers to the case iii), where the sensing
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(a) t = 2.5 (b) t = 5 (c) t = 7.5

(d) t = 10 (e) t = 15 (f) t = 20

FIGURE 6.6: Test 3. Case ii) with non-local q and S , sensed independently with
gq = gS = H(R � l). S is given in Figure 6.3(b), which corresponds to lS = 0.055, while

mk = 10, so that lq ⇡ 0.031. The sensing radius of the cells is R = 0.02.

radius R = 0.02 is smaller than lS = 0.25 but it is larger then lq ⇡ 0.0031. The macro-
scopic setting is described by an advection equation with macroscopic velocity given
by (6.22). As hS < 1, the chemoattractant induces a strong diffusivity, but because of
hq > 1, the alignment of fibers strongly affects the dynamics, as illustrated in Figures
6.7(c)-6.7(d). Comparing Figures 6.6(b) and 6.7(b), we can observe that the highest cell
concentration is in the mean fiber direction qq = 3p/4 in the region surrounding the
center of the domain, where the fibers are aligned with a higher degree. As already
observe in Section 6.1.2, this scenario prescribes h � 1 that characterizes the situation
in which contact guidance dominates the dynamics.

Eventually, for a sensing radius R = 0.02 smaller than lq ⇡ 0.031, but larger than
lS = 0.002, the macroscopic behavior is approximated by a hyperbolic equation with
drift velocity given in (6.24). Results of the simulation are presented in Figures 6.8.
Here, the chemoattractant has the profile shown in Figure 6.3(a). Cells diffuse in the
domain because hq is smaller than 1, and they start moving in a region with randomly
disposed fibers (see Figure 6.8(a)). Then, they mainly follow the preferential direction
p/4 due to the presence of the chemoattractant. In fact, the chemoattractant induces a
strong drift because of the high non-locality, determining hS � 1. Here, chemotaxis is
slightly dominating the dynamics and this scenario is characterized by values for the
parameter h such that h < 1.

6.4.4 Test 4: heterogeneous ECM environment

As last numerical test, we consider the domain W divided in several regions, each
of them characterized by a different average direction of the fibers. We analyze this

6.4. Numerical tests 159



(a) t = 2.5 (b) t = 5 (c) t = 10

(d) t = 20 (e) t = 30 (f) t = 60

FIGURE 6.7: Test 3. Case iii) with non-local q and S , sensed independently with
gq = gS = H(R � l). S is given in Figure 6.3(c), so that lS = 0.25, while for the fiber dis-
tribution mk = 100, corresponding to lq ⇡ 0.0031. The sensing radius of the cells is R = 0.02.

(a) t = 1.25 (b) t = 2.5 (c) t = 5

(d) t = 7.5 (e) t = 10 (f) t = 15

FIGURE 6.8: Test 3. Case iv) with non-local q and S , sensed independently with
gq = gS = H(R � l). S is given in Figure 6.3(a), which corresponds to lS = 0.002, while

mk = 10, so that lq ⇡ 0.031. The sensing radius of the cells is R = 0.02.
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scenario in the case of independent sensing model (6.2)-(6.3) with (6.12), choosing
gq = gS = H(R � l), similar to Test 3. As observed above, the independence of the
two sensings allows to visualize more efficiently the two distinct directional effects.

As a first scenario, we consider the domain characterized by two regions of dif-
ferent fiber orientation and schematized in Figure 6.9(a). In each subdomain we have
k(x, y) = 50, which corresponds to Dq = 0.005. The initial condition of the cells is rep-
resented in Figure 6.9(c), with initial density r0 = 0.1, while the chemoattractant has
the Gaussian profile (6.32) centered in (xS , yS ) = (4, 4), with mS = 10 and s2

S = 0.5,
as shown in Figure 6.9(b).

(a) Fibers distribution (b) Chemoattractant S (c) Initial condition for the cell

(d) t = 0.04 (e) t = 1.6 (f) t = 2.904

(g) t = 18.4 (h) t = 44 (i) t = 67.2

FIGURE 6.9: Test 4. Migration of cells in a heterogenous domain as illustrated in (a). The
sensing radius of the cells is R = 0.8. The chemoattractant (b) is (6.32) with mS = 10 and

s2
S = 0.5. The initial cell profile (c) evolves in time as illustrated in (d)-(i).
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We observe that the cells do not migrate collectively towards the chemoattractant, but
they divide into two main separated clusters, as illustrated in Figures 6.9(f)-6.9(h). Al-
though the sensing radius R = 0.8 is quite large, the cells that are closer to the left
boundary remain trapped in the first subdomain, showing a loss of adhesion with the
rest of the cell population. As shown in Figure 6.9(i), even though the cells that are in
the left subdomain horizontally align to the chemoattractant, the high degree of align-
ment of the fiber does not allow them to escape this region, even for large times.

As a second scenario, we consider the domain represented in Figure 6.10(a); in
each subdomain, we set the parameter k(x, y) = 50. The initial condition of the cell
population is given in (6.33) with (x0, y0) = (4, 0.5) and r0 = 0.1, while the chemoat-
tractant has the Gaussian profile (6.32) centered in (xS , yS ) = (2, 4.5) with mS = 10
and s2

S = 0.05, as shown in Figure 6.10(c) and 6.10(b), respectively.

(a) Fibers distribution (b) Chemoattractant S (c) Cells initial condition

(d) t = 0.5 (e) t = 1 (f) t = 1.5

(g) t = 2.5 (h) t = 3.5 (i) t = 4.5

FIGURE 6.10: Test 4. Migration of cells in a heterogenous domain as illustrated in (a). The
sensing radius of the cells is R = 0.7. The chemoattractant (b) is (6.32) with mS = 10 and

s2
S = 0.05. The initial cell profile (c) evolves in time as illustrated in (d)-(i).
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We observe that the cells do not migrate directly towards the chemoattractant, as they
sense the heterogeneous fiber environment and, consequently, adapt their migration
to the fiber network. In particular, cells that are able to reach and sense the isotropic
subdomain where the fibers are uniformly distributed (for 1  x  3 and 0  y  3),
move in the direction imposed by the gradient of the chemoattractant. In the subdo-
main, 3  x  5, and 1  y  2, cells follow the direction of the fiber alignment,
which is p/4, perpendicular to the favorable direction imposed by S . However, the
sensing radius R = 0.7 allows the cells that are closer to the right boundary to escape
quite fast the disadvantageous (in terms of preferential direction) subdomains and,
following first the direction p/2 in 2  y  3 and, then, 3p/4 in 3  y  4, they reach
the chemoattractant.

6.5 Summary

In this chapter, we proposed a kinetic-based model for the description of cell migra-
tion in a multi-cue environment. Although we considered a general cell population,
leaving the idea of specifying this analysis at the concrete case of glioma migration
as a future task, prominent and novel aspects emerged in relation to the effects of
the two cues, the non-locality of the sensings and their characterization. If in the
previous chapters we assumed at the kinetic level a single cue driving the velocity
changes and consisting either in the fiber network (as for tumor cells in Chapters 3-5)
or in a chemotactic gradient (as for ECs in Chapter 4), here we analyzed the com-
bined effect of two cues simultaneously guiding cell migration. Precisely, these two
guidance cues, affecting cell polarization, and, thus, the direction of motion, consist
of the fiber network, which is a bi-directional cue inducing contact guidance, and a
chemical gradient, which is a mono-directional cue. Moreover, complementary to the
previous chapters, we included here the mechanism of cell protrusion extension driv-
ing cell migration. Cells extend protrusions up to several cell diameters to mediate
their interaction with the extracellular environment, for instance, the crawling along
brain fibers or the tactic movement toward a chemoattractant source. Here, the effects
of cell protrusion extension on cell migration were described by means of non-local
terms characterizing the sensing of the environment. Therefore, we combined these
non-local aspects with the description of two guidance cues and, for the first time, we
considered a non-local sensing in the physical space of the mesoscopic distribution of
fibers.

We introduced two classes of models: in the first one, cells performed an indepen-
dent sensing of the fibers and the chemical in its neighborhood, while in the second
class of models cells average the chemical and the fibers with the same sensing ker-
nel. In the two cases, particular attention was devoted to the identification of the
proper macroscopic limit according to the properties of the turning operator. We de-
tected two parameters, hq and hS , that measure the relationship between the cell sens-
ing radius and the characteristic lengths of variation, lS and lq, of the two cues, and
discriminate between a diffusion-driven regime with an advective correction and a
drift-driven regime. In particular, when the sensing radius does not exceed the char-
acteristic length of the chemoattractant, the bi-directional nature of the fibers allows
for a diffusive regime; otherwise, the hyperbolic scaling leads to macroscopic drift.
A common feature in the different cases is the dependency of the macroscopic ve-
locity on both the fiber network and the chemoattractant. This aspect highlights the
non-trivial influence of contact guidance on the cell drift, although we considered a
non-polarized fiber network. This interdependence is in accordance with the model
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proposed in [289]. Moreover, in the absence of a chemoattractant, this impact on the
drift term can persist for spatial heterogeneous fiber distributions. This is in accor-
dance to what is observed in [116] and it represents a step forward with respect to
[289], in which the drift is a function of contact guidance only depending on the pres-
ence of a chemical gradient, i.e., without chemoattractant, there will be no drift.

The numerical simulations of the transport model pointed out the main features
characterizing the two classes of models and the possible scenarios that they are able
to reproduce. We observed that, even when the fibers are sensed locally (like in the
models presented in the previous chapters), the presence of two cues influencing cell
polarization ensures a preferential sense of motion for cells laying in regions of highly
aligned non-oriented fibers, as shown in Figure 6.1. The results in Figures 6.4-6.8
showed the importance of deriving the macroscopic equations from an underlying
microscopic dynamics: a directly postulated drift-diffusion equation could not cap-
ture the exact dynamics in all the possible regimes. Moreover, these results showed
the importance of performing the model derivation in the appropriate regime. The
competitive or collaborative effects of the cues depend, in a first instance, on the an-
gle between their relative orientations, i.e., the direction of fiber alignment qq and the
gradient of the chemoattractant. Especially for the cases of competitive cues, deter-
mining which one is the dominant cue depends on their relative strengths, in terms
of both concentration and intensity (degree of alignment of the fiber k(x) or steepness
of the chemoattractive gradient). Moreover, we introduced the parameter h = lS/lq
that, independently of the cell size or the cell’s sensing capability, quantifies the rel-
ative contribution of guidance to chemotaxis and provides a first classifier between
the cases of fiber-dominating and chemotaxis-dominating dynamics (h � 1 or h ⌧ 1,
respectively).

The non-locality, which is used for the mesoscopic description of cell protrusion
effects and differentiates this setting from the previous ones, brought a further level of
detail to the model, allowing us to obtain different macroscopic behaviors depending
on the characteristics of the two sensings. In the previous chapters, the macroscopic
settings were all derived in a diffusion-driven regime due to the symmetry properties
of the cue guiding the velocity changes and the local interactions. Here, the presence
of non-local terms and the combination of the two cues allow to capture drift-driven
phenomena (e.g. see Figures 6.4 or 6.8), where we observed the migration of compact
groups of cells in response to the guiding cues. We did not observe strong differences
between the independent and the dependent sensing models, when we assumed in
the former the same sensing kernel for fibers and chemoattractant, i.e., when gq = gS

(as shown in Test 2). However, if there are biological observations sustaining the pos-
sibility that a cell can implement different strategies for sensing the underlying fiber
network and the chemoattractant, it would be possible to use the proposed frame-
work, in its independent sensing version, to investigate this scenario and to compare
the possible outcomes of this sensing approach with the case of a unique and com-
mon sensing strategy. Potentially, the case of competitive cues, combined with the
non-local aspect of the model, could lead to interesting further analysis. As observed
in the last numerical tests in Figures 6.9 and 6.10, the combination of heterogeneous
landscapes of fibers (characteristic of the brain tissue) with chemoattractive agents
shows how the cell density can divide and cross the domain using different migration
strategies, while in the previous settings the diffusive dynamics induced by the fiber
network had a stronger impact. This naturally leads to questions about the deeper
mechanisms leading the competition between the two cues, considering, for instance,
the possible role of cell adhesion in recovering collective migration.
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This model setting constitutes a bridge between the kinetic-based model of Chap-
ters 3-5, based on local interactions and a single cue driving velocity changes, and the
macroscopic setting of Chapter 7, where the description of cell protrusions will be one
of the core aspects we will analyze.
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7Dynamics at the leading edge of
glioblastomas

So far in this dissertation, we have analyzed several aspects of glioma progression in
a multiscale framework: from the influence of tissue anisotropy and membrane recep-
tors on cell migration (Chapter 3) to the role of vasculature, acidity, and intratumor
heterogeneity in the tumor evolution (Chapter 4), including the analysis of combined
treatments (Chapter 5) and of the effect of protrusion dynamics (Chapter 6). Our next
step is to explore the biochemical and biomechanical mechanisms that regulate the
development of invasion fronts of glioma, the role of cell protrusions in this process,
and the possibility of spatial heterogeneity characterizing the tumor activity.

In this chapter, we propose a novel multidisciplinary approach, based on a macro-
scopic mathematical model and in-vivo experiments in Drosophila, for the description
of protein dynamics at the tumor front. The coordination of metalloprotease expres-
sion, extracellular matrix degradation, and integrin activity results in the extension of
cell protrusions (known as tumor microtubes TMs), and emerges as the leading mech-
anism of glioma expansion and infiltration in healthy brain regions. Precisely, after
providing in Section 7.1 the biological motivation that encouraged the study, in Sec-
tion 7.2 we describe the novel mathematical elements used in the model and related
to the flux terms. Then, in Section 7.3, we present the model setting together with the
experimental results that sustain the modeling hypothesis. Finally, we provide some
numerical results in Section 7.4.

The results of this chapter have been collected in the paper by Conte, Casas-Tintò,
and Soler submitted for publication [53].

7.1 Motivation

GB growth and migration is driven by specific signaling pathways as well as inter-
actions between the tumor cells and their extracellular microenvironment. Our main
interest is to study the dynamics of the tumor cell membrane as driving factors of
tumor progression involved in both the cell response to signaling gradients and the
interplay with the ECM. The dynamics of tumor cell protrusions, in fact, are funda-
mental in several processes, particularly in cell transport and in the cell exposure to
interactions with different molecular substrates during the tumor evolution.

As we briefly introduced in Section 1.1.1, cell protrusions are highly dynamic ex-
tensions of the plasma membrane, involved in cell migration and invasion through
the ECM. Different types of protrusions have been identified; for instance, filopodia
- thin, finger-like membrane extensions - have a significant role in mediating inter-
cellular communication and in modulating cell adhesion. Cell protrusions appear to
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be required for haptotaxis and chemotaxis [128]. We remind that these two mecha-
nisms represent the cell response to the gradient of insoluble (haptotaxis) and soluble
(chemotaxis) components of the tumor microenvironment. Cytonemes are one type of
filopodia, first observed in the Drosophila wing imaginal disc [236] (see also [101, 102,
125, 287] for a detailed description), and they have a diameter of approximately 0.2
µm and an average length of 80 µm. Also known as TMs in the context of glioblas-
toma, cell protrusions have an important role in tumor development [228]. We focus
our study on TM involvement in the progression of the tumor front and on TM rela-
tionship with integrins and proteases. Tumor propagation is characterized by sharp
invasion fronts located in the front area of cell progression, where TMs are mostly
concentrated. The tumor front represents the parts of the tumor region, in contact
with the healthy tissue, that collect a wide activity related to cellular communication
signals and cell-ECM interactions. The agents involved in GB invasion, such as inte-
grins, proteases, or the tumor cells themselves, are not scattered or randomly moving,
but rather there is self-organization between these agents that determines invasion
patterns around the tumor front. This organization is important in the description of
tumor progression and it can be observed in Figure 7.6, where proteases and integrins
are shown to co-localize with the TMs in the region of the GB front. Thus, the majority
of the tumor activity is concentrated in this area. We analyze the formation of these
expansion patterns in order to predict GB dynamics. The integrin role in mediating
the dynamic interactions between the ECM and the actin cell cytoskeleton during cell
motility has been largely described in Section 1.1.1 and in Chapters 3-5. These recep-
tors, generally present on the cell membrane, concentrate the most of their activity at
the tumor front, where they are directly in contact with the ECM. In the Drosophila
model we used for the experimental results, integrin function was studied consider-
ing the distributions of focal adhesion kinase (FAK) and talin. Details about these
proteins and the experimental procedures are provided in Appendix C. Proteases,
enzymes that catalyze the proteolytic process, are also localized around the cell mem-
brane and play a key role in promoting tumor invasion and tissue remodeling. They
induce proteolysis of ECM components [305] and maintain a microenvironment that
facilitates tumor cell survival. As observed in Section 1.1.1, increased MMP levels
have been observed in high-grade astrocytoma and they have shown a strong correla-
tion with GB invasiveness [228, 238]. Several studies reported their localization in the
TM membrane [187, 204]. We schematize in Figure 7.1 the dynamics between these
factors, which represent the core of this model.

Our interest in the TM role in glioma migration arises prevalently from studies
on the effect of different drugs on TM structure and dynamics [25, 26]. It has been
shown that the inhibition of TMs leads to a decrease in cell migration and prolifera-
tion, with obvious consequences on GB treatment [24–26]. The process of growth and
retraction of TMs is an important binding platform for essential proteins that regulate
tumor dynamics [93]. For instance, among these proteins, the presence of microtubule
plus end-binding protein EB1 correlates with GB progression and poor survival [24,
46]. This has led to a great interest in the development of drugs aimed at affecting EB1
expression [26].

Therefore, with this model, we focus on the evolution of the tumor propagation
front and we analyze the emergence of a strong nonlinear coordination between the
self-organized collective processes characterizing the different agents involved in tu-
mor progression. We exploit the ability of mathematical models to predict and guide
biological experiments, supporting the mathematical hypothesis with the provided
data on protein signaling, and we integrate this data in the modeling.
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A) B)

FIGURE 7.1: Diagram of GB and protein dynamics. Diagram of the inter-
actions between the proteins involved in GB progression that give rise to the
mathematical model. A): GB cells produce and release in the extracellular space
MMPs that proteolyze the ECM components. B): Magnification of TMs. Inte-
grins are activated in the TMs upon interaction with ECM. Active integrins,
interacting with actin filaments and the talin adaptor protein, activate the FAK

protein and promote cytoplasm dynamics.

7.2 Preliminaries: the flux-saturated model

Different mathematical models have been proposed to describe the invasion of tumors
at the macroscopic level. As we briefly introduced in Section 1.2.2, these models can
be divided into two main classes, whether they rely on linear or nonlinear diffusion.
We recall that the former type of diffusion is based on the Fick’s law and describes cell
migration as a result of the flux from regions of higher to lower cell densities, while the
latter can be derived from the application of the Darcy’s law. We described in the pre-
vious chapters how to obtain a linear description of cell diffusion at the macroscopic
scale from the mesoscopic scale of a two or a three-level setting. More complicated
issues arise for deducing a nonlinear form of the diffusion term from a lower level of
description. This is still an open and debated topic and a lot of effort has been recently
focused on a formal and well-defined mathematical theory for this problem (e.g. see
[20, 59] and reference therein). Here, we are interested in the analysis of sharp inva-
sion profiles, not compatible with movements induced by linear diffusion. Moreover,
the diffusive dynamics are coupled with several additional mechanisms. Thus, we
define our setting directly at the macroscopic level, leaving the study of its derivation
from a lower scale as a future task to address.

The core of the mathematical model presented in the next section is based on the
description of the diffusion process by means of a more sophisticated form of the non-
linear diffusion operator, namely the flux-saturated diffusion operator for the density
n(t, x)

J [n] = n
nm

q
n2 +

�
n
v
�2 |rn|2

.

In this definition, n is the kinematic viscosity of the medium, v is the front propagation
velocity, and the exponent m is connected to the porosity of the medium. To the best
of our knowledge, models with saturated flows were introduced in the literature on
Astrophysics [165, 166] in relation to particular instances of closure problems for ra-
diative transfer theories. A further step in the use of these models was in the context of
wave propagation [47, 154, 250], for deriving a model able to restore the finite speed
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of propagation of signals in a medium and to sustain initially imposed sharp fronts
(for instance, a jump discontinuity at the edge of the support). Besides this derivation
of the flux-saturated operator, it was also formally derived, for the special case m = 1,
in the context of optimal transport theory [35, 188], where the resulting flux-saturated
equation was called a relativistic heat equation. For a extensive historical overview of
the flux-saturated operator, we direct the reader to [40, 41].

The applications for this operator are divers. Several of them are applied in the
biological context, as it has been suggested that flux-saturated mechanisms have the
potential to reproduce some of the emerging behaviors that happen at the macroscopic
level [17]. It is also important to understand how the saturation of the flux can com-
pete or cooperate with other mechanisms involved in the dynamics, such as the porous
media effect or reaction terms [40]. For instance, in [287] the authors show how the
combination of different mechanisms can determine the gradient formation in mor-
phogenesis and the development of propagation fronts. Flux-saturated models offer
a novel dynamical framework to describe finite speed diffusion and front propaga-
tion phenomena in real media. The classical Gaussian-type traveling wave solutions
of linear diffusion-reaction systems, in fact, are characterized by infinite tails which
prevent the creation of fronts and by the phenomenon of infinite speed of propaga-
tion. In the context of this glioma model, a linear diffusion operator can be interpreted
as an instantaneously reach and contamination of the healthy tissue by the neoplasia,
to a greater or lesser extent. Therefore, to recover the concept of tumor front and to
model the dynamics related to it, we develop our macroscopic setting on the basis of
flux-saturated equations. In this context, the basic flux-saturated equation reads

∂n
∂t

= nr

0

@ nmrnq
n2 +

�
n
v
�2 |rn|2

1

A , (7.1)

where the parameter n, v, m 2 R, although this equation can be extend to the case in
which some of these parameters depend on time or space. This equation arises from
the combination of the porous-media equation with the flux saturation mechanism
and provides a flow that is saturated as long as the size of the gradient is large enough.
The flux-saturated equation enables a direct control on the finite speed of propagation
of the front: this speed is bounded by v for m > 1, while it is exactly v for m = 1.

To practically understand the behavior of the solution of (7.1) we considering a 1D
scenario, whose domain is defined by the interval [0, 1]. We assume no-flux boundary
conditions and we center the initial concentration of n in the point x0 = 0.5. The
qualitative behavior of the solution of equation (7.1) for n = 1 and v = 0.1 is shown
in Figure 7.2. In this example the preservation of the steepness of the initial profile
is evident while the invasion front is advancing. We can better observe the direct
control on the characteristic speed of front propagation in Figure 7.3. Here, the x-
axis refers to the space variable x measured in mm, while the density n(t, x) on the
y-axis is normalized. n is expressed in mm · h�2 and v in mm · h�1. Precisely, we
choose v = 0.006 mm · h�1 so that we can appreciate an exact displacement of 0.06
mm after 10 h of simulation. This well-defined distinction between the tumor internal
region (left-side of the domain with respect to the front) and the external region (right-
side of the domain with respect to the front) is important in our setting in order to
define the TM region, where most of the tumor activity is localized. Moreover, we
observe how changes in the speed v or in the viscosity n determine modifications
in the characteristics of the front, as shown in Figure 7.4. Precisely, in the left plot
of Figure 7.4 we observe how decreasing or increasing the cell speed slows down
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FIGURE 7.2: Evolution of the solution of the flux-saturated equation. Behavior of the solu-
tion of the 1D version of the flux-saturated equation (7.1) with n = 1, v = 0.1, and m = 1. The

x-axis refers to the space variable x, while the y-axis describe the density n(t, x).
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FIGURE 7.3: Front speed. Detail of the front speed for the solution of the 1D
version of the flux-saturated equation (7.1) with n = 1, v = 0.006, and m = 1.

or accelerates the front propagation, respectively. In particular, since we use m = 1
in all the simulations, v represents the exact propagation speed and we can easily
calculate the exact displacement of the invasion front. The right plot of Figure 7.4
shows how the changes in the viscosity coefficient affect the shape and the curvature
of the solution profile. More distinct changes in the solution profile can be observed
by considering the ratio n

v : for n
v � 1 (in Figure 7.4, the cases n = 1 and n = 0.1),

the profiles are very similar, while for n
v < 1 (in Figure 7.4, the cases n = 0.01 or

n = 0.0005) the profiles show significant different shapes. These results suggest that
the ratio n

v is the main parameter governing the shape of the solution, rather than the
single value n.

In line with the description of the diffusion operator, we adopt a similar approach
for the description of the transport term Jtras[n, S] related to the signal pathway of
an external source S(t, x) (such as a chemoattractant). This transport term is usually
assumed to be linear in the concentration gradient of the source, i.e., it can be described
with the classical Keller-Segel model [137] as cnrS, with a constant tactic sensitivity
c � 0. However, this approach is not optimal in the optimal transportation sense.
Thus, we include a modification in the transport term, which reads

Jtras[n, S] = cn
rSp

1 + |rS|2
. (7.2)
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FIGURE 7.4: Variation of the speed v and the viscosity n. Solution of the 1D
flux-saturated model at t = 1 h for different values of v, while n = 1 is fixed
(left). Solution of the 1D flux-saturated model at t = 1 h for different values
of n, while v = 0.1 is fixed (right). In the two plots the black dot is located
at x = 0.55 mm and represents the front position at t = 0, while the values
indicated on the x-axis represent the location of the front of the corresponding

curve at t = 1 h. n is expressed in mm · h�2 and v in mm · h�1.

Similar to the the flux-saturated diffusion term, this expression is motivated by opti-
mal transportation criteria, important for the propagation phenomena at hand from a
qualitative viewpoint. This expression was proposed as a possible modification of the
classical Keller-Segel model in order to optimize the density of the particles along the
trajectory induced by the chemoattractant, namely to minimize the functional

Z
cn(t, x)dS =

Z
cn(t, x)

q
1 + |rS(t, x)|2dx

with respect to S, where dS is the measure of the curve defined by S. The term (7.2)
coincides with the classical expression cnrS for very small |rS| [20].

In the following section, we describe how these flux-saturated operators are em-
ployed for the description of the transport terms characterizing the different popula-
tions involved in the dynamics.

7.3 Model setup: theory and experiments

We present here a novel mathematical model that covers specific evolutionary aspects
that drive the dynamics at the leading edge of GB. From the modeling side, the most
relevant novelties include the description of the tumor front evolution through the
characterization of the TM region and the link of cell membrane movements with spe-
cific protein dynamics. In particular, this link involves both the protein concentration
and the protein location in the TM region. In our setting, tumor evolution is gov-
erned by nonlinear diffusion and chemotactic and haptotactic phenomena, induced
by proteases and integrin activity, respectively. All the tumor transport processes
are described using flux-saturated operators that allow the incorporation of biolog-
ical parameters related to tumor dynamics - namely, the viscosity of the medium and
the propagation speed - and the definition of sharp invasion profiles [41]. The same
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flux-saturated mechanisms are used in the description of proteases diffusion in the
extracellular space, after the production of these enzymes by tumor cells. The inte-
grin population is divided into two subpopulations accounting for active and inactive
receptors: this distinction divides the receptors already bound to the ECM from the
ones still not bound. In addition to the attachment/detachment processes with the
ECM, active integrins are also subordinated to a transport term, as these receptors are
constantly linked to the cell membrane and, thus, move with the cell. We complete the
setting considering the description of ECM degradation driven by the protease prote-
olytic activity.

The positive (!) and negative (a) feedbacks of each population on the others is
illustrated in the following scheme

I

N

A

E

P

We notice that, both active integrins A(t, x) and proteases P(t, x) influence the process
of tumor migration, and, in turn, GB cells N(t, x) support integrin activation and pro-
teases production. The mutual exchange between the active and the inactive I(t, x)
subpopulations of integrins is influenced by the presence of the ECM E(t, x), which
supports the activation at the expenses of the inactive integrins. Moreover, the ECM
supports the MMP production and, eventually, it is degraded by proteases. All the
population involved in the macroscopic setting are functions of time t and space x.

In the following, we explore the dynamics of the active front of glioma cells. Pre-
cisely, we experimentally study the distributions of MMPs, integrins, and focal adhe-
sions and analyze their localization in relation to the tumor membrane density. We
hypothesize a spatial heterogeneity in the activity of tumor cells, referring to both
proteolysis and binding receptor activation. This spatial heterogeneity determines the
accumulation of MMPs and the activation of the integrins receptors at the tumor front.

7.3.1 Description of the TM region

Considering that the objective of our analysis is the study of the tumor front evolu-
tion, as first step we formulate the differential equations for the involved populations
and we perform the numerical simulations in a 1D scenario. Therefore, we assume
(t, x) 2 [0, T]⇥ W, with T > 0 and W = [0, bW], bW 2 R. For reasons of simplicity, we
change the notation for the spatial variable from x to x, as x 2 R.

We first define and characterize the tumor microtubes region LTM, where we ex-
pect to notice the well-defined tumor invasion front and the increased tumor activ-
ity. With in-vivo microscopy of different GB lines an abundant formation of ultra-long
membrane protrusions has been shown to infiltrate the normal brain tissue at the inva-
sive front. These membrane tubes have a unique composition and are a potent motility
machinery [209] for glioma cells. In Figure 7.5 we can observe the extension of TMs at
the tumor front and their invasion into the healthy tissue. Defining the tumor support
as Sup(N) = [0, bN ] ✓ W, with bN  bW, the TM region is described as:

LTM = {x 2 W : 9a 2 [0, hp] such that x � a = bN} , (7.3)
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FIGURE 7.5: Distinct microtubes of brain tumor cells. In-vivo multiphoton
laser-scanning microscopy of GBs growing in the mouse brain over 60 days (D)
(top row). The arrows indicate thin cell protrusions extending into the normal
brain tissue, while the arrowheads show long intratumoral protrusions. In-
vivo microscopy (3D) reveals the abundant formation of ultra-long membrane
protrusions in the mouse brain (bottom row). The inset shows the boxed areas
in the corresponding images in higher magnification, covering a proportion
of the z-dimension from 200 � 500 µm depth. Reprinted by permission from

Springer Nature Customer Service Centre GmbH: details in [209].

where hp � 0 represents the maximum length of a microtube. Then, we define the
functional F (N) describing the tumor activity across the tumor domain as

F (N) =
1�

N ⇤ I[�hp, hp] + eF
�aF . (7.4)

Here, ⇤ indicates the convolution operator, I[�hp, hp] the identity function on the in-
terval of the semi-amplitude hp, and eF , aF 2 R are two parameters used to modulate
the tumor activity. These parameters are incorporated into the model on the basis of
experimental results and they allow for a better fitting of the model results to the bio-
logical data. The presence of such differences in the levels of tumor activity across the
domain, which motivate the definition of F (N), is shown in Figure 7.6.

7.3.2 GB dynamics and localization of the front

Initially, we focus on the description of glioma cell dynamics. The first experiments
were performed in order to confirm the hypothesis on the co-localization of MMPs
and active integrins with the tumor invasion front. These experiments were based on
immunostaining with different antibodies of dissected third-instar larval brains with
a genetically induced GB. We used anti-MMP antibodies the for proteases analysis,
anti-FAK antibodies for the study of integrin activity, and anti-talin antibodies for the
analysis of the inactive integrin distribution. To delimitate the front of the tumor, we
induced the co-expression of a membrane bound version of the red fluorescent protein
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(UAS-myrRFP) and, accordingly, all GB cell membranes were marked in red. Details
on the experimental procedure and the materials used are provided in Appendix C.
The results of this first immunostaining are shown in Figure 7.6.

A1)

B1)

A2) A3)

B2) B3)
GB

GB FAK

MMP GB MMP

GB FAK

FAK

C1)

MMP

C2) C3)

FAK MMPGB .

FIGURE 7.6: Co-localization of MMP and FAK proteins at the GB front. Flu-
orescent confocal images of a Drosophila third instar larval brain with GB. A)
Glial membrane is shown in red (A1), and MMP protein in green (A2). MMP
accumulation at the GB front is observed in the merged image A3. B) Glial
membrane (B1, red) and FAK distribution (B2, green) signals are shown in the
brain sample. FAK accumulation at the GB front is detailed in the merged image
B3. C) Co-staining of FAK (C1, green) and MMP (C2, magenta) in the merged
image (C3). FAK and MMP signals accumulate in the same region of GB front
(inset in C1 in red). White arrows in the glial membrane images indicate the

tumor front, where protein accumulation is observed

In Figures 7.6-A1, 7.6-B1, and in the inset of 7.6-C1, the tumor membrane is marked
in red. MMP proteins are represented in Figure 7.6-A2 in green. The confocal mi-
croscopy images show that the MMP signal is heterogeneous throughout the brain
and is stronger in specific regions around the GB front, where the marker for the tu-
mor membrane is more expressed1. Then, we visualize the integrin activity with a
marker for the FAK distribution, as shown in Figure 7.6-B2 in green. As for MMP, the
confocal images show that FAK staining concentrates mostly in the GB front. Finally,

1We recall that the red signal marks the cell membrane. Considering that the majority of the TMs are
concentrated at the tumor front and they are large extension of the cell membrane, we expect to see a
stronger red signal in the tumor front (region of higher tumor membrane density) than in the bulk tumor
(region of higher tumor density).
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we visualize on the same sample both MMP and FAK distribution to analyze their
respective localization. Thus, we co-stain for FAK (Figure 7.6-C1, green) and MMP
(Figure 7.6-C2, magenta) proteins, and visualize the active front of GB cells (Figure
7.6-C1, red inset). The confocal fluorescent images show that MMP and FAK signals
coincide at the tumor front. These results are compatible with our hypothesis that
MMP and FAK are characteristic features of the leading edge of migrating cells, with
a central role in the process of GB expansion. Thus, tumor activity results stronger in
the TM region.

From the modeling side, we characterize the dynamics of glioma cells using the
following equation:

∂N
∂t

= � ∂

∂x
J tot

N (N, P, A) + PN(N) ,

where J tot
N indicates the total flux of GB cells, and PN refers to the proliferation term.

In the specific, we model the total flux of tumor cells by a combination of three main
factors, i.e., J tot

N (N, P, A) = Jflux-sat(N) + Jchemo(N, P) + Jhapto(N, A). First, the dy-
namics that J tot

N exerts on the cells include a flux-saturated mechanism, allowing to
define the movement of a sharp profile [41] and to control propagation speed and
porosity of the medium. As we described in Section 7.2,

Jflux-sat(N) := �nN
Nm

s

N2 +

✓
nN

vN

◆2 ����
∂N
∂x

����
2

∂N
∂x

. (7.5)

Here, vN stands for tumor speed, while nN relates to the viscosity of the medium with
respect to the movement of tumor cells. All the parameters vN , nN , m 2 R. More-
over, J tot

N collects the information about cell response to the gradient of soluble and
insoluble components of the tumor microenvironment. We consider the gradient of
MMPs as driving force for the chemotactic process and the gradient of active integrins
for the haptotactic process. In fact, MMPs degrade the ECM and create space for the
tumor to migrate, while active integrins mediate the attachment process between tu-
mor cells and the ECM. The corresponding fluxes are described in the saturated form
introduced in Section 7.2, i.e.,

Jchemo(N, P) = N
a1s

1 +
✓

∂P
∂x

◆2

∂P
∂x

, (7.6)

with chemotactic sensitivity a1 2 R, and

Jhapto(N, A) = N
a2s

1 +
✓

∂A
∂x

◆2

∂A
∂x

, (7.7)

with haptotactic sensitivity a2 2 R. Following the idea in [181], here integrins pro-
duce an explicit effect on the direction of motion, describing the migration toward the
gradient of recognized adhesion sites. However, in contrast to [181], we use a nonlin-
ear form of the haptotactic gradient. This choice permits to optimize the influence on
cell dynamics of the measurements of the tactic force along the trajectories, providing
nonlinear terms in the corresponding Euler-Lagrange equations (7.6) and (7.7). The
proliferation term PN(N) describes a logistic growth of glioma cells at rate a3 and up
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to the maximum carrying capacity KN . This term reads

PN(N) = a3N
✓

1 � N
KN

◆
. (7.8)

Different improvements of this growth term can be taken into account. In Section
7.4.2, we numerically analyze the effects of heterogenous cell proliferation on the dy-
namical evolution of the front. Moreover, further improvement such as the influence
of morphogenic signaling pathways on tumor proliferation, for instance Sonic Hedge-
hog (Shh) or Wnt (see [102, 125, 228, 287] for further details) are left as future tasks
to address. Combining the described fluxes (7.5)-(7.7) and the proliferation term (7.8)
leads to the following equation governing glioma cell evolution:
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1 � N
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(7.9)

Using this modeling approach, we want to show not only the role of MMPs and in-
tegrins in glioma motility, but also their co-localization and spatial distributions with
respect to the location of the tumor front.

7.3.3 Protease distribution and ECM dynamics

MMPs facilitate the tumor invasion process by degrading the extracellular matrix.
These enzymes are produced by the tumor cells and released in the extracellular space,
mostly in the area around the tumor invasion front where TMs are present in large
numbers. This results in an enhanced proteolytic activity in the TM regions. Thus, we
propose the localization of the MMP production on the TMs and we model the MMP
evolution in relation to the tumor front.

Experimentally, to analyze the MMP distribution in the tumor region, we quantify
the MMP signal in the inner GB mass and at the GB border. We visualize Drosophila
brains with induced GBs (Figures 7.7-A1 and 7.7-B1) and immunostained with anti-
MMP antibodies (Figures 7.7-A2 and 7.7-B2). We quantify the marker signals using
a self-developed code in Matlab based on the curve fitting toolbox (further details
are provided in Appendix C). The results of these experiments are shown in Figures
7.7-A3 and 7.7-B3. Figure 7.7-A refers to a front region of the tumor mass, where the
values of the cell membrane density are high (red curve in Figure 7.7-A3). We observe
from the green curve in Figure 7.7-A3 that MMPs accumulate, showing a peak of con-
centration in the region corresponding to the TMs. Interestingly, this MMP maximum
appears slightly shifted in the direction of GB migration with respect to the peak of
the GB membrane density. Figure 7.7-B refers to the analysis of an inner region of the
GB mass. The confocal images related to the measurements of MMP and GB densities
show homogeneous lower levels of the GB membrane and the MMP protein in this
inner region (Figure 7.7-B1-B3) compared to the front region (Figure 7.7-A1-A3). In the
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FIGURE 7.7: MMP accumulation at the GB front and in the inner GB mass.
Fluorescent confocal images of a Drosophila third instar larval brain with GB
marked with myristoylated-RFP in red (A1 and B1), and stained with anti-MMP
in green (A2 and B2). A3 and B3 show the quantification and the graphical
representation of the fluorescent intensity for GB and MMP signals along the
white lines in A1, A2, B1 and B2. In A3 and B3 the dots represent the data and
the lines represent the fitting. A1-A3 refer to a front region, while B1-B3 to an

inner region.

following, we refer to these levels as basal levels. The results of these experiments en-
forces the idea of an enhanced protein accumulation in the front region of GB and this
accumulation correlates with the peaks of the GB cell membrane density. Moreover,
we notice that this phenomenon is not observed in inner tumor areas.

To mathematically model the dynamics and the distribution of MMPs, we take into
account three main phenomena, collected in the following equation

∂P
∂t

= � ∂

∂x
JP(P) + PP(N, E)�DP(P, N) .

We describe MMP production by tumor cells with the term PP, which is used to lo-
calize the production in the TM region, where the neoplastic tissue is in contact with
the healthy tissue. Moreover, the proliferation term is directly dependent on the func-
tional (7.4) describing the heterogeneous proteolytic activity of tumor cells. Precisely,

PP(N, E) = a4 EF (N)cLTM ,

where a4 is the production rate and the functional F (N) is used to spatially weight
the proliferation term. Moreover, cLTM is the characteristic function of the TM region.
After MMP production and release in the extracellular space, these enzymes diffuse
in the ECM. In order to limit the MMP flux to the areas surrounding the tumor mass
and to generate a sharp front of MMP ahead of the tumor, we model JP by means of
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a flux-saturated mechanism analogous to the flux term used for the cancer cells, i.e.,

JP(P) = �nP
Pm

s

P2 +

✓
nP

vP

◆2 ����
∂P
∂x

����
2

∂P
∂x

.

Here, vP is the speed of MMPs and nP the viscosity related to MMP diffusion. As the
tumor front advances, the proteases that remains inside the tumor mass are degraded,
but a basal level of MMP is maintained in the inner tumor regions. This degradation,
with rate a5, is described as

DP(P, N) = �a5 P N .

In particular, the preserved inner basal level of these proteins is related to the normal
proteolytic activity of the cells in the inner tumor and is not directly aimed at sus-
taining the migration process. The overall equation governing the evolution of MMPs
reads

∂P
∂t

= nP
∂

∂x

0

BBBB@
Pm

s

P2 +

✓
nP

vP

◆2 ����
∂P
∂x

����
2

∂P
∂x

1

CCCCA
+ a4 EF (N)cLTM � a5 P N . (7.10)

MMP evolution is strictly connected to the dynamics of the ECM and we describe the
ECM degradation process due to the MMP proteolytic activity as

∂E
∂t

= �DE(E, P) , (7.11)

where, the degradation term is described as DE(E, P) = a6 E P with the degradation
rate a6. Since, after the degradation process, some residual ECM material partially
remains in the inner tumor region, we include in the model a basal level of ECM
inside the main tumor mass.

7.3.4 Integrin dynamics and distribution

Integrins are transmembrane receptors located on the cell membrane. After activation,
integrins mediate cell migration. If the receptors are not bound to the ECM, we refer to
them as inactive integrins, otherwise we call them active integrins. In the tumor cells,
the activation process occurs predominantly in the TM region, and active integrins are
homogeneously distributed throughout the TMs. Moreover, the conversion into the
inactive (not bound) state occurs in the proximal region of the TMs with respect to the
main GB mass, as shown by our experimental and mathematical results.

To determine the molecular changes at the GB front in relation to the activity of
integrins, we immunostained GB brain samples with talin, a mediator of integrin ad-
hesion [144], and with FAK, a kinase involved in cytoskeleton dynamics associated
to integrin activity [89, 179]. We analyze confocal microscopy images of different GB
front regions, comparing fronts with low or high GB membrane signal. The results of
this analysis are shown in Figure 7.8. Here, the top row refers to a low GB membrane
signal, while the bottom row refers to a high GB membrane signal. The quantification
of the signals for anti-talin and anti-FAK in Figure 7.8 shows that talin (black curve in
Figures 7.8-A4 and 7.8-B4) decreases in the TM region, i.e., where the GB membrane
signal is higher, while FAK (magenta in Figures 7.8-A4 and 7.8-B4) increases. This
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FIGURE 7.8: Talin and FAK dynamics in the transition between GB front and
healthy tissue. Fluorescent confocal images of a Drosophila third instar larval
brain with GB marked with myristoylated-RFP in red (A1 and B1), and stained
with anti-talin (in green) and anti-FAK (in magenta) (A2, A3, B2 and B3). A4
and B4 show the quantification of the fluorescent signals and the graphical rep-
resentation of the fluorescent intensity for GB, talin, and FAK signals along the
white lines shown in the images A1-A3 and B1-B3. In A4 and B4 the dots repre-

sent the data and the lines represent the fitting.

means that talin and FAK expressions are inverted at the front, which is consistent
with the relation between the two integrin subpopulation of active and inactive re-
ceptors. Additionally, GB membrane signal and FAK signal correlate. The GB/FAK
correlation is maintained in different fronts, irrespective of their low (Figure 7.8-A) or
high (Figure 7.8-A) level of GB membrane signal.

To confirm the inverse correlation between talin and FAK, we compared the mea-
surements preformed in the inner GB mass and in GB front areas. The results are
shown in Figure 7.9. The inner region of the GB mass in Figure 7.9-A has a higher
talin levels (Figure 7.9-A2) and lower FAK signal (Figure 7.9-A3), as quantified in Fig-
ure 7.9-A4. In line with our previous results, the relative concentration of talin and
FAK is inverted in the front region of the GB samples, represented in Figure 7.9-B. The
results indicate that talin concentration drops significantly (Figure 7.9-B2 and B4) and
correlates with an increase of the FAK signal at the GB front (Figure 7.9-B3 and B4).
These observations confirm that talin and FAK maintain an inverse correlation and
they can be considered indicators of the migratory status of the GB cells.

Mathematically, we split the integrin population into two subpopulations, refer-
ring to the active A(t, x) and the inactive I(t, x) state of the integrin receptors. It is
worth noticing that the former subfamily is responsible for the haptotactic movement
of tumor cells. The corresponding dynamics for active integrins takes into account
integrin activation, integrin inactivation and a flux term and reads

∂A
∂t

= A(E, I, N)� I(A, N) + JA .

We model the binding between GB cells and the ECM through binary interactions of
inactive integrins and the ECM at rate a7. The binding depends on the heterogenous
tumor activity and, thus, we weight this process with the functional F (N) defined in

182 7. Dynamics at the leading edge of glioblastomas



GB

GB

Talin

Talin

FAK

FAK

A1) A2) A3)

B1) B2) B3)
10.0 µm

10.0 µm 0 4 8 12
0

4

8

104
0 4 8 12
0

4

8

104

A4)

0 4 8
0

1

2

105

B4)

0 4 8
0

1

2

105

FIGURE 7.9: Talin and FAK dynamics: comparison between the inner GB
mass and the GB front. Fluorescent confocal images of a Drosophila third instar
larval brain with GB marked with myristoylated-RFP in red (A1 and B1), and
stained with anti-talin in green and anti-FAK in magenta (A2, A3, B2 and B3).
A4 and B4 show the quantification of the fluorescent signals and the graphical
representation of the fluorescent intensity for GB, talin and FAK signals along
the white lines shown in A1-A3, B1-B3. In A4 and B4 the dots represent the data

and the lines represent the fitting.

(7.4), which supports the activation in the TM region, where tumor cells are in contact
with the ECM. The term modeling integrin activation reads

A(E, I, N) = a7 E I F (N) .

Once the tumor has crawled on the ECM and moved forward, inactivation occurs at
rate a8, namely

I(A, N) = a8 AcSup(N) .

Here, cSup(N) represents the characteristic function of the support of N. Integrins are
also subjected to a flux term describing the transport process due to the movement of
GB cells. In fact, since integrin receptors are locate on the cell membrane, the recep-
tors themselves are also transported during the process of cell migration, determining
a flux of active and inactive integrins with estimated velocities (vA and vI) depending
on the tumor one. Precisely, since we model the dynamics of the bulk tumor, these
transport terms allow us to translate the tumor dynamics to the front, where the in-
teraction between integrins and the ECM occurs. This transport term for the active
subpopulation is given by

JA = vA
∂A
∂x

. (7.12)

The transport velocity vA is defined through a nonlinear functional relationship that
depends on the evolution of N, i.e., vA = vA[N]. This functional describes the propa-
gation rate of the support of N by means of its evolution equation.

Concerning inactive integrins, apart from the attachment and detachment terms
characterizing the dynamic interactions between the two subpopulations, we model
the process of integrin production by exocytosis and the transport term JI . Assum-
ing that, initially, the inactive integrins on the cell membrane have not reached their
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saturation value KI , integrin production is described with the following term PI

PI = a9 (KI � A � I)(cLTM + cSup(N)) ,

with the proliferation rate a9, while the transport term JI in the dynamics of inactive
integrins that reads

JI = vI
∂I
∂x

.

This term is analogous to (7.12) and we assume that vI = vA. Therefore, the equation
for inactive integrin dynamics reads

∂I
∂t

= �A(E, I, N) + I(A, N) + JI + PI .

With this choice, the dynamics of the whole population of integrin receptors (A + I)
will be governed by a transport term, with velocity corresponding to the front prop-
agation rate, and the exocytosis process. In addition, considering the experimental
results shown in the Figure 7.9, we include a basal level of active integrins in the inner
tumor regions and a basal level of inactive integrins along the microtubules.

As we introduced in Chapter 1 and in Section 7.1, our interest in the role of in-
tegrins and proteases as key mechanisms of tumor progression arises from a series
of experiments [106, 191, 201]. To confirm the functional contribution of integrins to
GB progression, we used specific RNAi constructs to knockdown myospheroid (mys),
the Drosophila integrin B subunit, or rhea, the Drosophila talin. The results are shown
in Figure 7.10. The data show that GB cells require integrins to progress and expand
(Figure 7.10 A-C). Moreover, mys or rhea knockdown reduces the lethality caused by
GBs, as it can be noticed in Figure 7.10-D.

184 7. Dynamics at the leading edge of glioblastomas



A)

B)

C)

D)

FIGURE 7.10: Functional integrins are required for GB progression. Low
magnification confocal images of a Drosophila GB larval brain in A) and rhea
knockdown (UAS-rhea RNAi) in B), and mys knockdown (UAS-mys RNAi) in
C). The GB cell membrane is marked with myristoylated-RFP (in red) and neu-
rons nuclei are marked with DAPI (in blue). The images show that rhea or mys
knockdown prevents the expansion of GB and reduces the lethality. The per-

centage of cell survival with the different knockdowns is shown in D).
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7.3.5 Motility features of GB cells at the front

We perform further analysis to characterize in more details the motility features of the
tumor cells at the front in relation to the distribution of proteases and integrins. This
analysis is aimed at supporting our hypothesis on the processes leading cell motility.
Thus, experimentally, we analyze MMP concentration and focal adhesions distribu-
tion as cues for cell motility, invasiveness, and migration [62, 124]. We co-stained GB
brain samples with anti-MMP and anti-FAK (Figure 7.11) and quantified the inten-
sity of the fluorescent signals, comparing them for low and high tumor density fronts,
shown in Figures 7.11-A and 7.11-B, respectively.
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FIGURE 7.11: FAK and MMP dynamics in the transition between GB front
and healthy tissue. Fluorescent confocal images of a Drosophila third instar lar-
val brain with GB marked in red (A1 and B1), and stained with anti-FAK (green)
and anti-MMP (magenta) (A2, A3, B2 and B3). A4 and B4 show the quantifica-
tion of the fluorescent signals and the graphical representation of the fluores-
cent intensity for GB, FAK, and MMP signals along the white lines shown in
the images A1-A3 and B1-B3. In A4 and B4 the dots represent the data and the

lines represent the fitting.

The results quantified in Figures 7.11-A4 and 7.11-B4 show that, at the GB front (Fig-
ures 7.11-A1 and 7.11-B1), the maximum signal for FAK (Figures 7.11-A2 and 7.11-B2)
occurs before the peak of MMP (Figures 7.11-A3 and 7.11-B3). This correlation occurs
for both types of GB fronts, suggesting that this phenomenon is not a consequence
of higher or lower GB membrane density. These results point towards a coordinated
function between MMP activity and FAK dynamics and suggest that, at the front, FAK
acts closer to GB mass than MMP. In contrast to that, MMP plays its role further away
from the front. Mechanistically, these results indicate that MMP activity in the prote-
olysis of the ECM is prior to the increase of integrin dynamics, it is associated with the
presence of FAK, and, thus, together they contribute to the motility of GB cells.
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7.4 Modeling results

The whole system of five coupled differential equations we built on the basis of the
experimental results reads:
8
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(7.13)

The evolution of the tumor population is coupled with the dynamics of proteases,
integrins and ECM and, while GB cells, proteases, and active integrins are assumed to
have both a temporal and a spatial evolution, ECM and inactive integrins only evolve
temporally, with ODEs characterizing their dynamics. We analyze the evolution of the
system and the emergence of specific evolutionary patterns in the TM region in Section
7.4.2. We also show additional numerical results focused on possible improvements
of the model setting. Before presenting the numerical simulations of (7.13), in the next
section we provide a detailed analysis of the parameter estimation.

7.4.1 Parameter estimation

We scale the five populations of system (7.13) with respect to their carrying capacities
(KN for tumor cells and KI for integrins) or with respect to their typical concentra-
tions/densities (P̂ for proteases and Ê for ECM). We estimate the values for the pa-
rameters involved in the macroscopic setting. Keeping in mind that the experimental
data we use for the comparison of our results are performed in a Drosophila model of
GB, we adapt some of the values found in the literature to our particular cases. We
dedicate a particular attention to the estimation of the parameters involved in the flux-
saturated terms, i.e., speed and viscosity for both tumor cells and proteases, and to the
carrying capacities of tumor cells and integrin receptors.
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Speed and viscosity parameters: vN, vP, nN, nP

The maximum value reported in the literature for glioma cell speed in humans is
50 µm · h�1 [194]. Considering that our biological experiments are performed in a
Drosophila model of GB, we need to deduce the value for the tumor speed vN from
the reported value. Therefore, we use the Stokes law that describes the frictional force
Fd exerted on spherical objects of radius R with very small Reynolds numbers in a
viscous fluid of dynamic viscosity µ. We recall that the Reynolds number represents
the ratio of inertial forces to viscous forces within a fluid subjected to internal move-
ment due to different fluid velocities. This number quantifies the relative importance
of these two types of forces for given flow conditions. The Stokes law reads

Fd = 6pµ R v (7.14)

with the flow velocity v relative to the spherical object. Consequence from this is the
relation between velocity v and radius R

v =
2(np � n f )

9µ
g R2 ,

where np and n f are the mass densities of the particles and the fluid, respectively, and
g the gravitational field strength [157]. Considering that the average size of a human
GB cell is 12 � 14 µm [81], while for a GB cell in Drosophila this value drops to 5 µm
(measurements taken from our experiments), we deduce the range [6.4, 8.7] µm · h�1

for the parameter vN . We notice that our model is built assuming a strong relation
between MMPs and GB cells, in terms of their respective locations and the influence
of one population on the other, and there is a lack of experimental data about protease
propagation speed in the brain. For these reasons, we assume vP = vN .

For the tumor viscosity nN , we refer to [287], where an analogous description of
the flux-saturated mechanism is used to model the dynamics of the protein Shh in
Drosophila. In [287], the authors consider Shh aggregates moving along a protrusion.
They consider the speed vShh = 4.68 · 10�3 mm · h�1 and the kinematic viscosity
nShh = 1.8 · 10�3 mm2 · h�1 for these Shh aggregates. We observed in Section 7.2 that,
apart from the propagation speed, in the development of the invasion profiles charac-
terizing the flux-saturated operator the ratio n

v plays a key role. Thus, from [287] we
deduce the information that nShh

vShh
= 0.4 mm and we obtain nN 2 [0.256, 0.348] · 10�2

mm2· h�1.
To deduce the protease viscosity nP, considering the similarity in size between

the two proteins MMP and Shh, we use the Stokes-Einstein equation for diffusion
of spherical particles [70]. For a spherical particle of radius R moving with uni-
form velocity in a continous fluid of viscosity µ, the frictional coefficient is given by
f0 = 6 p µ R, such that the Stokes law in (7.14) reads Fd = f0 v. Assuming that this
result applies also to spherical molecules, the kinematic viscosity reads

n =
K T

6 pµ R
(7.15)

with the Boltzmann constant K and the temperature T (in K). Moreover, consider-
ing that a vesicle containing Shh and moving along a cell protrusion has a radius of
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RShh 2 [10, 100] nm and inserting this information in equation (7.15), we get the fol-
lowing estimation

KT
6 pµ

= nShh RShh = 0.18 · [10�7, 10�6] mm3 · h�1 .

One molecule of MMP has a radius of RP = 0.066M1/3
P [79], with RP expressed in nm

and the mass MP in Da. From [193], we know that MP 2 [72, 92] kDa, therefore

RP 2 [2.75, 2.98] · 10�6 mm

and

nP =
K T

6 p µ RP
=

0.18 · [10�7, 10�6] mm3 · h�1

[2.75, 2.98] · 10�6 mm

= [0.34, 0.36] · [10�2, 10�1] mm2 · h�1 .

We set nP = 0.035 mm2· h�1.

Carrying capacities: KN, KI, nN, nP

The carrying capacity of tumor cells is estimated considering the mean diameter of a
GB cell in Drosophila, i.e., 5 µm. This leads to an order of magnitude for the carrying
capacity of KN of approximately 106 cells · mm�3.

For the integrin capacity, considering that there are approximately 105 integrin re-
ceptors per cell [15], we estimate a maximum of almost 1010 integrins · mm�3.

Table 7.1 reports the values of the model parameters and the reference values used
for the scaling. For some of the parameters, for which a large range of possible values
is available, we indicate both the range and the exact value used in the simulations.

7.4.2 Numerical results

From the numerical viewpoint, we solve the whole system of partial differential equa-
tions (7.13) coupled with no flux boundary conditions and suitable initial conditions
for the five populations. The initial conditions are displayed in Figure 7.12-A and are
described below. The model was numerically solved with a self-developed code in
Matlab (MathWorks Inc., Natick, MA). For the spatial discretization, we considered
the Galerkin method on a spatial grid of 500 points. In particular, the flux-saturated
terms were discretized using an IMEX version of the Galerkin scheme. Moreover, for
the time discretization, we used an implicit Euler scheme for proteases and tumor
equations, while a fourth-order Runge-Kutta method for the other involved popula-
tions over a total of 15 · 106 time points, with dt = 10�6. This allows us to simulate
the system evolution over 15 h. Details about the employed numerical methods are
provided in Appendix B. For the numerical simulations presented in this section, we
set the value m = 1 for the parameter involved in the flux-saturated terms.

The numerical tests are focused on showing specific features that characterize the
developed setting:

(1) we numerically solve (7.13), with the parameters listed in Table 7.1 and we com-
pare the numerical and the experimental results in term of development of inva-
sion profiles for GB cells, integrins, and proteases;

7.4. Modeling results 189



Parameter Description Value (unit) Source

nN tumor viscosity [0.256, 0.348] · 10�2 (mm2· h�1) see description
used value: 0.00348

vN tumor speed [0.64, 0.87] · 10�2 (mm · h�1) see description
used value: 0.0087

a1 chemotactic sensitivity 0.001 (mm2· h�1) [139]

a2 haptotactic sensitivity 0.0036 (mm2· h�1) [139]

a3 tumor proliferation rate 0.0345 (h�1) [193]

KN tumor carrying capacity 106 (cells · mm�3) see description

nP MMPs viscosity 0.035 (mm2· h�1) see description

vP MMPs speed [0.64, 0.87] · 10�2 (mm · h�1) see description
used value: 0.0087

a4 MMPs production rate [3.6, 180] (h�1) [153]
used value: 3.6

a5 MMPs degradation rate [0.18, 18] (h�1) [142]
used value: 18

a6 ECM degradation rate 4.5 (h�1) [206, 252]

a7 integrin activation rate [1, 3] · 36 (h�1) [161]
used value: 108

a8 integrin inactivation rate 36 (h�1) [161]

a9 integrin exocytosis rate [0.36, 36] (h�1) [67]
used value: 0.72

KI integrins carrying capacity 1010 (integrins · mm�3) see description

Ê ECM reference value 10�3 (mg · mm�3) [142]

P̂ protease reference value 10�7 (mg · mm�3) [142]

TABLE 7.1: Dynamics at the leading edge of glioblastomas: model parame-
ters.

(2) we analyze the influence of the chemotactic process on the development of the
invasion front and we show possible divisions of this front into two separated
parts;

(3) we hypothesize two possible mechanisms of heterogeneous proliferation, testing
them in a scenario with two separated invasion fronts;

(4) we analyze the effects on the tumor profile of possible changes in the porosity of
the medium.

Starting from the analysis in (1), we present the results of the evolution of system
(7.13) after t = 15 h in Figure 7.12. The results show how the model is able to pre-
dict that the region of greatest interest for the whole GB development process is the
front area where TMs are located (marked with a thick red line in Figure 7.12). These
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FIGURE 7.12: Test (1): simulation results of system (7.13). A), B), C) and D)
are four snapshots of the numerical solution of our model at the initial state,
after 5, 10, and 15 hours, respectively. The images show the evolution of tumor
density (N), ECM (E), active (A) and inactive (I) integrins and MMPs (P). The
thick red line below the figures indicates the front area with the highest con-
centration of TMs. Images AE1), AE2), BE), CE) and DE) show the results of
the analysis of the experimental data. Peaks in the RFP distribution indicate
areas with high tumor membrane density, i.e., the TM regions, while analogous
peaks in the numerical simulations refer to high tumor density areas, i.e., the
main tumor mass. The images B1) and C1) are a magnification of the indicated
regions and these images are correlated with the experimental data BE and CE,
respectively. The parameters used in these simulations are listed in Table 7.1.

results also support the hypothesis that there is a collaborative relationship between
the different agents for the generation and evolution of the migratory patterns char-
acterizing the TM region. Precisely, Figure 7.12-A shows the initial conditions of the
system. In particular, we choose a constant initial level for proteases, active and in-
active integrins, taking these values from the experimental results shown in Sections
7.3.3 and 7.3.4. Figure 7.12-A is accompanied by the quantifications of the basal lev-
els of MMPs with respect to the tumor density (Figure 7.12-AE1), and the analogous
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quantification of the active versus the inactive integrins (Figure 7.12-AE2). In both
cases, as we described previously, the measurements are taken in areas inside the bulk
tumor (see Figure 7.7-B1 and 7.9-A1 for the localizations of the measurements). Fig-
ures 7.12-B and 7.12-C show the evolution after 5 and 10 hours, respectively. These
numerical simulations show how the model predicts specific invasion profiles for the
front evolution of each agent involved in the migration process. Precisely, Figures
7.12-B and 7.12-C first illustrate how the model collects the exchange between the ac-
tive and inactive integrins (magenta and black curve, respectively) at the beginning
of the tumor front area. This feature corresponds to the experimental results shown
in Figure 7.12-BE. Moreover, a plateau-like profile arises for the active integrin pop-
ulation in the TM region. This reflects the idea that, along the TMs actively involved
in the migration process, we expect to notice a homogenous distribution of active re-
ceptors. In addition, comparing Figure 7.12-B1 with Figure 7.12-BE, we notice that
the numerical results show a good agreement with the experimental data. Moreover,
in Figures 7.12-B and 7.12-C the model predictions regarding the MMP front show a
good correlation with the results obtained experimentally and shown in Figure 7.12-
CE. MMP evolution is characterized, in fact, by an increased concentration along the
TM region, indicating an enhanced tumor proteolytic activity in this area. Besides,
MMPs show a steep profile in the direction of tumor migration. Besides, we observe
that the MMP external front is slightly shifted with respect to the tumor front region.
Although MMPs are produced along the protrusions, they are not located on the mem-
brane (as the integrin receptors), but they are released in the extracellular space and
can spread in the areas around the tumor front. Finally, in Figure 7.12-D we show
the situation of the invasion patterns after 15 hours of tumor evolution. Figures 7.12-
B, 7.12-C and 7.12-D show how the MMP and integrin invasion patterns are main-
tained over time. Moreover, we compare the experimental results in Figure 7.12-DE,
about the motility features characterizing the GB front, with the simulation in Figure
7.12-D. Both numerical and experimental results show the distributions of GB, active
integrins, and protease and highlight how these agents co-localize in the TM region.
The results also show a displacement of the MMP distribution with respect to active
integrin and tumor membrane distribution. We remark that the peaks in the GB mem-
brane distribution in the experimental data indicate areas with high tumor membrane
density, i.e., the TM regions, while analogous peaks of the red curve (for the tumor
population) in the numerical simulations refer to high tumor density areas, i.e., the
main tumor mass. In these simulations, the TM region is accentuated by the thick red
line below the different plots. The previous considerations about the relative positions
of GB front, MMP, and integrins can be seen as an indicator of the direction of tumor
migration. In Figure 7.12-A-D we also indicate the position of the tumor front at the
different time steps. We can notice that the tumor front speed never exceeds the esti-
mated value vN . For the simpler equation (7.1), when m = 1, we analytically know
that the propagation speed is exactly v. For system (7.13), although we keep m = 1 in
the simulations, the propagation speed is slightly lower than vN . However, we notice
that in our equations several additional terms are influencing the overall speed. We
will address the issues of obtaining an analytical estimation of the relation between
vN and the overall tumor speed as future work.

As a second test, we analyze the influence of the chemotactic mechanism on the
evolution of the invasion front, as described in (2). Precisely, we reduce the system
(7.13) to take into account only the evolution of tumor cells, proteases, and ECM,
and also neglect the proliferation term in the tumor equation. Thus, we work with
a diffusion-transport equation for N, where chemotaxis alone controls the drift, and
the two equations (7.10) and (7.11) for proteases and ECM, respectively. We carry out
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this analysis focusing on the chemotactic mechanisms, but analogous results can also
be obtained considering the haptotactic process. In Figure 7.13 we analyze how dif-
ferent values of the chemotactic sensitivity a1 can provide a different evolution of the
invasion front and lead to a possible separation of the latter.
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0

0.2

0.4

FIGURE 7.13: Test (2): effects of chemotaxis strength on tumor profile. The
evolution of the tumor profile is shown after 5 hours of simulation for different

values of the chemotactic sensitivity a1.

Since the proteolytic activity and, consequently, the concentration of MMP is enhanced
in the front area, the stronger the parameter a1, the more evident the localization of the
tactic effect. Tumor cells closer to the front acquire an increased overall speed (due to
both Jflux-sat and Jchemo fluxes) which leads to a heterogenous front. Eventually, this
process can determine the break of the tumor in two separated masses. This hetero-
geneity in the front can be observed experimentally, as shown in Figure 7.14. In this
figure, neuron nuclei are marked in blue with DAPI, while the GB cell membrane is
marked with mystoylated-RFP in red. Higher intensities of the GB membrane marker
indicate areas of strong tumor invasion. We notice how there are regions where two
parallel fronts evolve. Thus, depending on the concentration of MMPs, even in case
of constant tumor cell speed, the front of the tumor can loose regularity and can split
into two propagation fronts.

Several biological observations have suggested that within the areas occupied by
the tumor mass, cell proliferation is not homogenous, but tumor cells can acquire a
strong proliferative phenotype in specific regions. Thus, it is reasonable to suggest
that a description of a heterogeneous proliferation could better reproduce the real cell
behavior. Moreover, if the tumor growth is not homogeneous and there is a certain
heterogeneity in the growth of the invasion fronts, modifications and splittings of the
frontal structure can arise, similar to the results shown in Figure 7.13 and in agree-
ment with the experimental evidence in Figure 7.14. When the front is separating into
two parts, we hypothesize two possible mechanisms of heterogeneous proliferation
that can happen. Cells closer to the inner front start to proliferate more in order to fill
and reduce the distance between the two developed tumor fronts or cells closer to the
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FIGURE 7.14: Front heterogeneity. GB membrane and cell nuclei are marked
in red and blue, respectively. The arrowheads indicated the region where the

front presents heterogeneities.

outer front proliferate more in order to create an autonomous front. As described in
(3), we simulate these two mechanisms. The numerical results of the former strategy
are provided in the left plot of Figure 7.15, while the latter strategy is analyzed in the
right plot of Figure 7.15.
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FIGURE 7.15: Test (3): effects of heterogeneous proliferation on tumor pro-
file. The two plots show the evolution of the tumor profile after 5 hours in two
specific cases of heterogeneous proliferation. We compare the proposed model
with classical homogenous proliferation with the two possible models for het-

erogeneous proliferation. In both cases we set a1 = 0.005 mm2· h�1.

The heterogeneous proliferation will be further investigated in future works since this
phenomenon has a major impact and relevance in the case of higher spatial dimen-
sions.

The last tests (4) concerns the role of the tissue porosity on the evolution of the
tumor front. The MMP activity modifies, in general, the porosity of the medium, fa-
cilitating cell spreading and, thus, the transport and progression of the tumor cells.
This facilitation implies a modification in the tumor cell speed. This speed should not
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be constant, but linearly dependent on the porosity of the medium. We study in a
1D setting this possibility and the resulting modifications of the front profile. As the
proteases degrade the ECM, the porosity of the medium increases. This process can
be modeled in two different ways. Using an equation for the degradation of the ECM
(as (7.11)) and considering its influence on the dynamics of the protease in (7.10) and
on the spread of the tumor described with (7.9) (which is the modeling approach we
chose in the presented setting). Otherwise, an alternative way consists of modifying
directly the porosity of the medium e and modeling the effect of the porosity changes
on the cell speed. Several experiments [301, 308] have shown the relation between the
cell speed and the size of the pores of the ECM. Especially in the absence of prote-
olytic activity, too dense ECM does not allow cells to move inside it, since the pores
are too narrow with respect to the cell capability of squeezing its nucleus and passing
through the pores. At the same time, too large pores do not allow for cell migration
either, since cell protrusions still need a certain amount of extracellular matrix around
them in order to attach to it. Following the results of [308] (see, for instance, Figure
2.b in there), we consider a variability range for e 2 [0.5, 0.75], and we define a law
of variability for vN , assuming an optimal value for the tumor cell speed when e has
a value of approximately 0.67. Using an evolutionary law for e analogous to the one
proposed in [202], namely

e(t, x) = emax � (emax � e0) e�
R t

0 a6P(t,x) dt

with the initial porosity value e0 = 0.54, and emax = 0.75, we test the flux-saturated
model for a scenario of non-constant vN . The function representing the relation be-
tween e and vN is represented in Figure 7.16.
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FIGURE 7.16: Function describing the dependency of vN on e.

Following [308], the minimum value for the speed relates to a porosity value of 0.5,
while the maximum speed occurs around the porosity value of 0.66. The results of
the study about the effects of the porosity changes on the front profile evolution are
shown in Figure 7.17. For the simulation in Figure 7.17 we consider the tumor cell
dynamics alone and driven only by the flux-saturated mechanism, without any trans-
port term, i.e., ∂N

∂t = �Jflux-sat(N). The red curve shows how cells closer to the front
start moving faster than inner cells when the speed changes due to the ECM degrada-
tion process, which increases the medium porosity. These cell dynamics determine a
heterogeneous modification of the invasion front, which slightly exceeds the homoge-
nous front related to the constant speed case (black curve). Eventually, the entire main
tumor mass feels the changes in the speed, and a unique front is recovered. If there
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FIGURE 7.17: Test (4): effects of porosity changes on tumor profile. The results
show the comparison between the tumor density profile in the case of flux-
saturated model with constant speed vN (in black) and with vN = vN(e) (in

red) after 3, 6, and 9 hours of tumor evolution.

is heterogeneity in the growth of the front, as we simulate in the previous test (3), the
profile might not unify and a new front can emerge from this disturbance.

7.5 Summary

Following the idea introduced in the kinetic-based model in Chapter 6, where non-
local interactions were used to describe the contribution of cell protrusion in the mi-
gration, here we specifically focus on the key role played by tumor microtubes in me-
diating the dynamics of the glioblastoma front. We propose a novel multidisciplinary
approach where data from protein signaling studies are integrated into a macroscopic
mathematical setting. These data are used, on one side, to sustain the modeling hy-
pothesis on MMP and integrin localization and, on the other side, to validate the nu-
merical results about the invasion patterns that arise in the TM region and the rele-
vance of these dynamics in the overall tumor progression process.

We started from the definition of the front region, named also TM region, where
cell protrusions are localized and where we consider that the tumor activity, driving
cell migration, is enhanced (Section 7.3.1). In the specific, for our analysis, with tu-
mor activity we referred to the proteolytic activity leading to ECM degradation and
to the binding processes between ECM and cell membrane receptors. We defined the
functional F to describe the heterogeneous tumor activity within the tumor domain.
We built the macroscopic setting in continuous feedback with the experimental results
obtained from a Drosophila model, which represents a suitable platform to analyze the
molecular and cellular mechanisms implicated in GB progression. Our mathematical
model is based on the dynamical evolution of the agents involved in the front progres-
sion, as described in Section 7.3. In the specific, we described the dynamics of tumor
cells with a combination of the proliferative process and the diffusive and tactic terms.
The tactic phenomena are driven by protease and active integrin concentrations. Pro-
teases, produced by tumor cells and releases in the extracellular space, where they
freely diffuse, induce the degradation of the ECM. Active integrins operate in close
relation with inactive integrins, mediating the binding/unbinding process with the
ECM and, thus, driving the tumor’s haptotactic mechanism. Tumor, active integrins,
and proteases are described in terms of PDEs, while ODEs are used for the dynam-
ics of inactive integrins and the ECM. The whole macroscopic system of differential
equations shows highly nonlinear characteristics due to the strong coupling between
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the different populations. The nonlinear nature is mainly due to the flux-saturated de-
scription of the fluxes leading GB cell and protease diffusion, as well as to the limited
tactic terms. We described in detailed the characteristics of the basic flux-saturated
equation, in terms of front profile and the influence of the parameters involved in its
formulation (namely the propagation velocity and the medium viscosity) in Section
7.2. It is important to remark that the entire model derivation was performed in con-
stant and strict relation with the experimental data shown in Figures 7.6-7.9.

The numerical tests first demonstrate that the tumor front is sharp and harbors a
considerable biochemical activity. The relationship between inactive integrins, pro-
teases, and focal adhesions drives GB dynamics and the front evolution and, more-
over, the resulting patterns are in agreement with the experimental data (Figure 7.12).
We also analyzed, even if with preliminary tests, the potential of the proposed model
and some possible future directions of development. Precisely, we studied how the
highly localized nature of the interactions can determine front heterogeneities and
separations, as shown in Figure 7.13. Then, we explored the possibility of a heteroge-
neous description of the proliferation process of tumor cells, which can enhance the
tumor front separation or restore the homogeneity (Figure 7.15). Moreover, the pro-
cess of ECM degradation, which is essential for cell movement inside the matrix, at
the same time produces biomechanical changes in the porosity and stiffness of the tis-
sue. These changes affect the infiltration capacity of the tumor cells located closer to
the TM area. We investigated this aspect considering a dynamic relation between cell
speed and tissue porosity, as shown in Figure 7.16. The flux-saturated description of
the diffusive term allows to directly include cell speed changes in the model and, thus,
we noticed how the evolution of the tissue porosity can determine changes and het-
erogeneities in the tumor front progression. In conclusion, our results point out some
of the main agents characterizing the leading edge of glioblastoma and also describe
how mathematical models are able to predict the front dynamics. However, we want
to remark that the features linked to front heterogeneity and tissue porosity modifi-
cations would express better their impact on tumor progression in a two-dimensional
case that we will implement as a future extension of this work.
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8Conclusions and future perspectives

Throughout this dissertation, we presented several settings that address different as-
pects of the process of glioma growth and migration inside the brain. We relied on
two major modeling frameworks: kinetic-based and macroscopic models, both fea-
turing various aspects of tumor progression. In this final chapter, we summarize the
contributions of this thesis (Section 8.1) and we discuss the main directions for future
developments of the work (Section 8.2).

8.1 Summary

The central problem addressed in this thesis concerns the modeling of the complex
dynamics driving tumor cell progression inside the brain. Specifically, referring to the
case of gliomas, we analyzed cell growth and migration in relation to several factors,
such as the brain fiber network, the brain vasculature, the membrane dynamics, and
therapeutic treatments. We dedicated Chapter 1 to the description of the biology of
gliomas, the most common therapeutic strategies, and the biological data we included
in the models. Moreover, we introduced the two main mathematical frameworks used
for our analysis, i.e., multiscale (kinetic-based) models and macroscopic model, and
we described their fundamental characteristics. In Chapter 2, we presented a detailed
study of the brain fiber network and its properties. We focused on the anisotropic char-
acteristics of the brain tissue, showing how the information on the fiber alignment can
be obtained from the DTI data and quantified. Following the theoretical description,
we presented several approaches available in the literature to include DTI information
in both macroscopic and multiscale settings in order to construct the tensor account-
ing for directed cell migration. In the multiscale setting, we focused on the distribu-
tion function to describe the fiber network. We introduce three different distribution
functions, and for each of them we compute the degree of anisotropy in the result-
ing tensor. We then compare the three outputs in relation to the original information
contained in the DTI data. This study represents a groundwork for all the settings
presented in this thesis, especially for the kinetic-based models, where the introduced
fiber distribution functions have an active role in describing the contact guidance phe-
nomenon. The kinetic-based models (Chapters 3-5) follow the idea of building micro-
meso models for glioma invasion with multiple taxis terms. Precisely, each of these
settings represents an extension of the previous and considers additional, but differ-
ent, mechanisms involved in tumor progression. In Chapter 6, the setting is still de-
fined on the kinetic basis, but does not include details on the microscopic dynamics.
We described the migration of the cells in a double-cue environment where the con-
tact guidance phenomenon, characterizing the first three models, is combined with a
chemotactic agent, both cues influencing cell velocity changes. Moreover, this setting
contains a non-local description of the mesoscopic interactions to mimic the effects of
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the extension of cell protrusion. Including the description for cell protrusions repre-
sents a bridge between the kinetic-based model and the macroscopic setting (Chapter
7). The latter, which provides a macroscopic description of the glioma cell migration,
is focused on the dynamics of cell protrusions and is based on the integration of the
model equations with biological measurements performed in a Drosophila model. Par-
ticular attention was devoted to the evolution of the tumor propagation front and the
emergence of invasion patterns characterizing the different agents involved in tumor
progression (i.e., ECM, proteases, and integrin receptors).

8.1.1 Kinetic-based models

The first kinetic-model we developed (Chapter 3) describes the influence of the brain
tissue structure on tumor cell migration. Starting from the DTI-based approaches pro-
posed in [74, 126], we built a multiscale model that integrates the microscopic dynam-
ics of integrin receptors, a mesoscopic description of cell-ECM interactions (consid-
ered as the onset of cell proliferation), and the brain fibers driving contact guidance.
Moreover, we included the description of a possible therapeutic treatment: radiother-
apy, which aims to kill tumor cells, is combined with chemotherapy based on integrin
inhibitor agents, which instead reduce the affinity between cell receptors and ECM.
The macroscopic equation for the glioma cell density was derived via a parabolic scal-
ing. The corresponding numerical simulations highlight how different fiber distribu-
tion functions determine differences in the emergence of heterogeneous patterns in the
tumor dynamics (Figures 3.3 and 3.4) and how brain fibers influence the direction of
cell migration (Figure 3.5). The numerical results show the effects of the modeled treat-
ments in terms of reduction of both tumor invasion (due to integrin inhibitors, Figure
3.6) and tumor density (due to radiation, Figure 3.7). Despite its ability to reproduce
some of the characteristic features of glioma progression, such as the spreading along
the brain fibers, this setting has several limitations. For instance, it does not include
the influence of the brain vasculature or the degradation of the healthy tissue due to
the tumor activity. Nonetheless, this first setting represents a solid base on which we
built the subsequent extensions.

In the first refinement of the model (Chapter 4) we add two populations to the
setting: endothelial cells (ECs), which constitute the brain vasculature, and protons,
which are produced by tumor cells and determine the acidification of the environment.
Under hypoxic conditions, there is a shift in the cellular metabolism generating a high
acidity in the tumor microenvironment. The resulting acidification together with an-
giogenesis is one of the hallmarks of malignant brain tumors and it facilitates tumor
invasion and degrades the extracellular matrix. We derived the macroscopic setting
from a micro-meso formulation of the population dynamics. At the microscopic level,
we coupled the descriptions of integrin and proton-sensing receptors, considering
both types of receptors located on the tumor cell membrane. Tumor and endothe-
lial cell evolution were described at the mesoscopic level. Precisely, the description of
the former is similar to the first model, but we characterized intratumor heterogeneity.
Following the go-or-growth hypothesis, we split the tumor population into migrating
and proliferating (and resting) cells. These behaviors are transient and the switch be-
tween these subpopulations happens according to the pH level (determined by the
proton concentration), the vasculature availability, and the environmental crowding.
The evolution of the EC population is mainly characterized by a tactic phenomenon
towards pro-angiogenic factors (mainly vascular endothelial growth factors VEGFs)
that are produced by the tumor cells. The effect of these factors on ECs was indirectly
modeled as a biased migration of ECs towards tumor cells. The derived macroscopic
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setting consists of a system of coupled advection-diffusion-reaction equations, charac-
terized by anisotropic, nonlinear, myopic self-diffusion (for the tumor, in the model of
Chapter 3) and multiple taxis (haptotaxis and pH-taxis for tumor cells, chemotaxis for
ECs), which increase the level of complexity of the setting with respect to the previous
model. To the best of our knowledge this is the first continuous mathematical model
with pH- and vasculature-induced phenotypic switch between moving and proliferat-
ing cells where the two cell types are seen as distinct tumor subpopulations evolving
under mutual, direct and indirect interactions. The numerical simulations highlight
the nonlinear nature of the population dynamics, arising from the effect of the multi-
ple taxis (especially the chemotaxis) and depending on the model parameters (Figures
4.3 and 4.4). Tumor evolution shows several different aspects compared to the previ-
ous setting. These differences are mainly related to the coupling between tumor and
ECs, which have a strong impact on tumor proliferation, and to the modeled pheno-
typic heterogeneity (based on the go-or-growth mechanism), which makes the overall
tumor evolution slower than the case where the tumor is considered as one popula-
tion. This effect of the go-or-growth hypothesis on the tumor progression was analyzed
(Figures 4.5 and 4.6). In Section 4.4, a further extension of the setting was introduced,
involving the dynamics of the tissue and the necrotic matter due to the acid-mediated
degradation. This extension allowed us to define a necrosis-based tumor grading that
we used to determine the progression of the tumor stage in different scenarios and the
influence of the tumor heterogeneity and the vasculature supply (Figure 4.10).

The tumor grading scheme can be particularly relevant for diagnosis and therapy
planning and it provides the basis for the analysis proposed in Chapter 5. For the
setting developed in this chapter, we mainly focused on the angiogenic process that
characterizes glioma progression and on the effects of combined treatments directly
affecting both tumor and endothelial cells. The model was built combining micro-
scopic dynamics and mesoscopic descriptions for both tumor and vasculature. Unlike
in Chapter 4, where VEGF effects were taken into account without including an evo-
lution equation for this population, in this setting we directly described the evolution
of the VEGFs. In our model, these factors are produced by the tumor cells, sustain the
EC growth, and constitute also a chemotactic cue for the ECs themselves. Moreover,
in this setting, we indirectly include the effect of the acidity produced by the tumor
in hypoxic conditions. The derived macroscopic model for tumor, ECs, and VEGFs
was coupled with evolution equations describing the healthy tissue degradation and
the growth of the necrotic matter. The core of this study concerned the analysis of
a therapeutic plan that combines radiation, affecting tumor, ECs, and healthy tissue,
chemotherapy with temozolomide, and anti-angiogenic therapy with bevacizumab.
The latter is specifically aimed at reducing EC growth and the affinity between VEGFs
and EC, consequently affecting the supply of nutrients to the tumor cells. Preliminary
simulations show the model dynamics both in the absence and presence of therapy
(Figures 5.2, 5.4 and 5.5). In particular, the effect of integrin inhibitors on tumor mi-
gration (described in Chapter 3) is similar to the effect of anti-angiogenic drugs on EC
migration (described in Chapter 5). Both treatments, in fact, reduce the motility of the
affected population. However, the anti-angiogenic therapy is also able to indirectly
affect the tumor evolution, reducing the availability of oxygen and nutrients that sus-
tain its progression. Moreover, contrary to the previous setting (Chapter 4), we did
not consider any intratumor heterogeneity, we initially provided more blood vessel to
sustain tumor growth, and we reduced the dependence of tumor proliferation on ECs.
The combination of these features determines a faster growth of the tumor mass with
respect to the previous setting, as demonstrated in the numerical simulations. The
model described in Chapter 5 represents a base to address the problem of studying
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the efficacy of the multi-modal treatments, described in detail in Section 8.2.
The study proposed in Chapter 6 belongs to the family of kinetic-based models,

but it slightly differs from both the previous settings (Chapters 3-5) and the forth-
coming one (Chapter 7). In fact, the work presented in Chapter 6 was not directly
applied to glioma migration. Nonetheless, it presents an extensive analysis of the ef-
fects of multiple cues guiding cell motion, whose specification in the case of glioma
cells would be easy to achieve. Instead of describing the cell velocity changes in the
transport equation due to a single cue, we considered the novelty of having the two
mechanisms of contact guidance and chemotaxis as directional cues simultaneously
driving cell polarization. A similarity with Chapter 7 is the inclusion of the effect of
the cell protrusion extension for exploring the neighborhood around the cell. Based
on the non-local kinetic model with a double biasing cue proposed in [173], this effect
was described by means of non-local terms. We introduced two classes of models,
analyzing two possible sensing strategies that a cell could apply. A cell can measure
the guidance cues independently, and, then, choose the new orientation integrating
the collected information, eventually weighted in different ways. Otherwise, it can
measure the two-directional stimuli, weighting them equally, and assuming a condi-
tioning of one cue on the other. To the best of our knowledge, this is the first time that a
non-local sensing of the fibers distribution describing contact guidance is considered.
The numerical simulations of the transport model show the effects of a double cue
environment on cell polarization: even for locally sensed and non-oriented fibers, the
influence of the chemotaxis on the polarization ensures a preferential sense of motion
to the cells (Figure 6.1). The numerical tests displayed the effects of the implementa-
tion of different sensing strategies (Figure 6.2). We analyzed how these strategies affect
the macroscopic dynamics of the system, determining different macroscopic limits de-
pending on the strength of one cue on the other one (Figures 6.4-6.8). From these sim-
ulations, we observed the impact of the macroscopic adopted regime (derived from
the choice of hydrodynamic or parabolic limit) on cell migration, while in the pre-
vious setting the derivation of the macroscopic models was always performed in the
parabolic case. In contrast to the previous settings, for this study we only modeled cell
migration, without any influence of proliferation processes. Finally, we built two het-
erogeneous landscapes of fibers and we observed how cells cross the domain and tend
to reach the chemoattractant location. In the case of a stronger contact guidance cue
compared to the chemotactic one, the two cues polarized the cells towards different
directions and can failed to reach the chemoattractive agent (Figures 6.9 and 6.10).

8.1.2 Macroscopic models

The second framework we considered was the macroscopic models. In line with the
idea introduced in Chapter 6 about the role of cell protrusions in driving cell migra-
tion, we developed a macroscopic model (Chapter 7) to identify the biochemical and
biomechanical mechanisms involved in the tumor front progression and to investi-
gate the role of cell protrusions (called tumor microtubes in the context of glioma) in
this process. We proposed a novel multidisciplinary approach in which data collected
in-vivo experiments in Drosophila are incorporates into the macroscopic mathematical
model to provide a realistic description of the tumor evolution in relation to the dy-
namics of the proteins acting at the tumor front. In the specific, we introduced the
concept of a tumor front and analyzed the dynamical evolution of proteases, active
and inactive integrins, and the ECM. Proteases, produced by tumor cells and released
in the extracellular space, diffuse in the area surrounding the tumor front and degrade
the ECM, while integrins mediate the binding/unbinding process with the ECM. The
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modeling assumptions were supported by biological experiments measuring the pro-
tein distributions in different regions of the brain (Figures 7.6-7.11). From the math-
ematical standpoint, the macroscopic setting of differential equations shows highly
nonlinear characteristics due to the strong coupling between the different populations.
This nonlinearity is greatly dependent on the flux-saturated model (Section 7.2). Used
for the description of the fluxes characterizing glioma cell and proteases, this model
allows to obtain sharp and well-defined invasion fronts and to directly control the
front velocity. We performed several 1D in-silico experiments to test the model, each
set-up describing a different scenario. Precisely, we first compared the evolution of
our system with the results of the biological experiments, showing a good agreement
between the patterns that arose at the front and the measured protein distributions
(Figure 7.12). Then, we explored the potential of the proposed model to reproduce
front heterogeneities or splittings due to both tactic cues leading cell migration and
to the proliferation process (Figures 7.13 and 7.15, respectively). We also studied the
effect of changes in the ECM porosity on the capacity of the tumor cells to invade the
tissue (Figure 7.17), defining a dynamic relation between cell speed and tissue poros-
ity. The two last aspects we analyzed (heterogeneous proliferation and tissue porosity)
would better express their potential in a 2D extension of the setting. This extension
would also allow us to make a comparison between the effects of the flux-saturate
mechanisms used in Chapter 7 and the effects of the other dispersive dynamics intro-
duced in Chapters 3-6. Although just in 1D, the numerical results highlighted how
this model can represent a suitable platform for the study of the mechanisms driving
the dynamics at the leading edge of GB progression.

8.2 Future work

The diverse settings proposed in this dissertation (the micro-meso models of Chapters
3-5, the non-local kinetic model of Chapter 6, and the macroscopic model of Chapter
7) show considerable advances in the glioma modeling field, being able to capture key
reported experimental evidence of glioma progression. However, several extensions
and improvements of these settings can be formulated and implemented. Here, we
describe three main directions for future research.

Considering the multiscale model developed in Chapter 5, we performed prelim-
inary numerical simulations showing the overall dynamics of the system and the ef-
fects of the different treatments on the populations involved. This analysis can be en-
riched by a stochastic extension to evaluate the efficacy of the treatment. A common
quality measure for the success of a treatment schedule is the tumor control probabil-
ity (TCP), which computes the probability that no clonogenic cells survive a radiation
treatment. This measure takes into account complex interactions between tumor bi-
ology, tumor microenvironment, radiation dosimetry, and patient-related variables.
Normal tissue complication probability (NTCP) and uncomplicated tumor control probability
(UTCP) are other two measures of the success of a treatment, addressing its damaging
influence on the normal tissue alone (NTCP) and jointly on tumor cells and normal
tissue (UTCP). The former represents the probability that the functioning of normal
tissues is impaired by radiation, while the latter generally gives the probability of
achieving complication-free tumor control. Several approaches have been proposed
to calculate these measures of therapy quality. As the tumor population is supposed
to shrink drastically under the effect of the treatments, we plan to include in the equa-
tion for the tumor population a stochastic variable accounting for uncertainties in the
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therapy outcomes. This stochastic extension will allow us to evaluate the quality mea-
sures described above. Moreover, we will consider patient-specific data and, for each
patient, we will simulate the administered therapy treatment using the tumor segmen-
tation obtained from the clinical data as the initial condition for the tumor population.
This way, it will be possible to theoretically calculate the efficacy of the treatment and
to compare the model outcomes with the real therapy results.

Concerning the non-local model presented in Chapter 6 and its general formula-
tion, several further investigations are possible. This model represents a good plat-
form to quantify directed cell migration and to assess its efficiency. For instance, mean
square displacement, persistence time, directional persistence, or mean speed can be
calculated [211] and compared with biological measurements of cell migration. Fol-
lowing the results of the last numerical test (Figures 6.9 and 6.10) it would be interest-
ing to analyze in detail the case of competitive cues when a heterogeneous landscape
of fibers is considered. This approach will allow us to investigate the mechanisms
governing the competition between the two cues (such as the possible role of cell-cell
adhesion). Moreover, similar to [174], we can enrich the model by introducing a non-
constant sensing-radius, varying according to the spatial and directional variability
of the external guidance cues, or by including the effect of the external cues on the
cells speed (considered uniformly distributed in the setting of this thesis). As already
mentioned, we are interested in the concrete application of this model to the study of
tumors on a realistic domain for mimicking in-vivo or in-vitro cell migration in the ex-
tracellular matrix. For this purpose, the development of more sophisticated numerical
approximation methods of the transport equation will be necessary.

The model described in Chapter 7 presents several characteristic features that, due
to their spacial nature, would be better expressed in a 2D configuration. In the spe-
cific, we refer to the aspects related to the heterogeneous proliferation and the porosity
changes. Thus, the first step will be the formulation and implementation of the setting
in the 2D case. From the modeling side, the extension to a 2D scenario requires the
introduction of the directional tensor describing both the fluxes that characterize the
tumor population (defined in (7.5)-(7.7)) and the tumor microtube region (defined in
(7.3)). From the numerical viewpoint, the implementation of the 2D extension requires
to resort to more complex numerical methods to approximate of the flux-saturated
terms, to preserve the characteristics of the invasion front, and to trace the front po-
sition. The first step in this direction will involve the implementation of an adaptive
mesh refinement that can increase the accuracy of the system solution around the front
region, where most of the dynamics are concentrated. The processes of cell protrusion
extension and retraction as well as tumor proliferation are also influenced by several
morphogenic signaling pathways. For instance, sonic hedgehog or Wnt pathways
have been studied in relation to protrusion dynamics in both healthy and diseased
cases. Therefore, a further development for this work will include the mathematical
modeling of some signaling pathways and their coupling with the proposed macro-
scopic setting. Finally, we will analyze our system from a theoretical viewpoint. The
idea is to define a kinetic formulation of the proposed macroscopic setting and for-
mally derive this setting from a kinetic level. This approach will also define a stronger
connection between this setting and the models presented in Chapters 3-6.
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AA basic introduction to MRI and DTI
data processing

MRI techniques use the resonance of protons to generate images. Protons are excited
by a radiofrequency pulse of an appropriate frequency and then, returning to their
original state, they release energy that is recorded by sensors. Each tissue returns to its
equilibrium state after excitation by the independent relaxation processes of T1 signal,
a magnetization in the same direction as the static magnetic field, and T2 signal, a mag-
netization transverse to the static magnetic field. In particular, T1-weighted sequences
allow distinguishing the tumor from the surrounding edema, while on T2-weighted
sequences they cannot be distinguished. However, the latter sequence provides the
most accurate measure of the outer margin of the neoplasia. DTI or diffusion tensor
imaging is a special kind of diffusion-weighted magnetic resonance imaging that al-
lows recording water molecule diffusion patterns, revealing microscopic details about
tissue architecture, like the white matter neural tracts, either in a normal or a diseased
state of the brain.

This appendix is conceived as a brief and basic introduction to the processing of
MRI and DTI data to extract information on the brain geometry and the brain structure
orientation. The purpose is to provide the essential information about the different
processing steps and the proper references for in-depth studies of the presented topics
and techniques. In particular, in Section A.1, we comment on the available data and
their possible formats, which can require a preprocessing step. Then, in Section A.2.1,
we describe the procedure to extract the brain geometry with the FreeSurfer Software
Suite1. The DTI data extraction is based on the use of FSL2 (FMRIB Software Library)
and it is described in Section A.2.2. Finally, in Section A.3, we describe how we deal
with the processed data within the Matlab environment.

A.1 Raw data

The raw data at hand encode different types of information. The anatomical details
about the brain, derived from the MRI scans, are provided in the form of T1 or T2
images in the NIfTI (Neuroimaging Informatics Technology Initiative) format. They
can be stored as a single file (.nii) or as dual file (.hdr & .img), including a header,
that stores meta-information, and an image, i.e., the actual data. NIfTI is a common
file format for neuroimages, commonly used in imaging informatics for neuroscience
and neuroradiology research. In particular, when it is available, the meta-information
file provides several details about the images, such as the brain orientation, the three
spatial dimensions - x, y, and z -, the time points, the voxel dimensions, and other
voxel-specific distributional parameters.

1
https://surfer.nmr.mgh.harvard.edu

2
https://fsl.fmrib.ox.ac.uk
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The DTI measurements are also provided as NIfTI files. They are accompanied
with the information about the gradient directions (.bvecs) and the diffusion weight-
ing (.bvals). Precisely, the .bvecs file is a text file providing information about the
gradient direction applied during diffusion-weighted volumes. The .bvals file con-
tains the list of b-values applied during each volume acquisition, i.e., it measures the
degree of diffusion weighting applied. The b-values vary between 750-1500 s · m�2

and it is usually set to 1000 s · m�2. The number of entries in this file has to match
the entries of the .bvecs file, as well as the entry order, has to match the order of the
volumes in the input data.

An alternative format for DTI and MRI raw data is the DICOM (Digital Imag-
ing and Communications in Medicine) format, most commonly used for storing and
transmitting medical images.

A.1.1 Preprocessing steps

If the raw data are provided in the DICOM format, a preprocessing step is required to
convert the data into a standard file format, normally into NIfTI images, before apply-
ing any structural imaging method. The conversion into the NIfTI format can be done
using the dcm2nii3 software, a stand-alone program that converts images from the
proprietary scanner format to the NIfTI format used by several brain imaging tools.
Moreover, this program allows the modification of NIfTI file: with the option Modify
NIfTI, choosing the output format FSL(4D NIfTI nii) and loading the .hdr data, we
get a compressed file .nii.gz directly usable with FSL for the following steps of the
DTI analysis.

A second preliminary control concerns the alignment between MRI and DTI raw
data. It consists in checking if there is a coherent alignment between MRI and DTI
in terms of image orientation. Information about the orientation can be obtained by
loading the images with the viewer FSLeyes4 and opening the image information win-
dow. An illustrative example of a non-aligned situation is given in Table A.1.

MRI (T1 or T2) DTI
Storage order Radiological Radiological

X voxel orientation Anterior - Posterior Right - Left
Y voxel orientation Inferior - Superior Posterior - Anterior
Z voxel orientation Left - Right Inferior - Superior

TABLE A.1: Orientation of MRI and DTI data: an example of non-aligned
data.

In the case of not aligned images, we need to fix their orientation before the process-
ing step with the FreeSurfer suit. In particular, it is possible to use the fslswapdim5

command from the FSL toolbox. With respect to the example illustrated in Table A.1,
the command line in the terminal of the FSL environment reads

fslswapdim T1.nii.gz -z -x y T1_reoriented.nii.gz

3
https://people.cas.sc.edu/rorden/mricron/dcm2nii.html

4
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes

5
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Fslutils
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where T1.nii.gz refers to the T1-weighed image. Besides, using FSLeyes, it is also
possible to get information about the number of voxels of the image and their dimen-
sions. This information is useful for the definition of the computational mesh and for
setting the spatial reference scale in our models. Once the MRI and DTI data are in
the standard NIfTI format and coherent in their orientations, it is possible to start the
FreeSurfer processing for the reconstruction of the brain geometry.

A.2 Brain geometry reconstruction and DTI data

The brain geometry reconstruction is based on the use of a T1 contrast image of the
whole brain obtained from an MRI scan. This data shows white and grey matter, the
former brighter than the latter. The overall processing consists of two main parts: the
first one is based on the FreeSurfer software and processes the MRI files in the NIfTI
format, while the second one uses FSL software to process the raw DTI data.

A.2.1 FreeSurfer processing

FreeSurfer is an open source software for the analysis and visualization of structural
and functional neuroimaging data from MRI scans, developed by the Laboratory for
Computational Neuroimaging in Charlestown, MA (for further details see [86]). To
start working in the FreeSurfer environment, we first set the working directory and
the directory for the FreeSurfer application itself. The corresponding line of code in
the terminal reads:

tcsh
setenv ACT_DATA "<path to the data>"
setenv SUBJECTS_DIR $ACT_DATA
echo "SUBJECTS_DIR $SUBJECTS_DIR"
setenv FREESURFER_HOME "</Applications/freesurfer>"
source ${FREESURFER_HOME}/SetUpFreeSurfer.csh

In particular, the paths to the data and to the FreeSurfer application have to be spec-
ified by the user, while the variables SUBJECTS_DIR and FREESURFER_HOME are
environment variables that have to be defined before using any FreeSurfer commands
in order to find the right data for the processing. They represent the direction where
the subject data are stored and the location where FreeSurfer is installed, respectively.
The next step consists in the creation of an output folder with the command:

recon-all -s <output folder name> -i $SUBJECTS_DIR/<input file name.nii>

This defines an output folder with the name specified in <output folder name>, tak-
ing as input data the ones specified after -i, which are loaded in the directory of
FreeSurfer. To start the whole process we use the following code in the terminal:

recon-all -s <output folder name> -all

The entire process creates 8 folders in the output folder. Among them, we are mainly
interested in the ones collecting the data related to the volumetric processing (stored
into subjid/mri) and to the surface processing (stored into subjid/surf). We briefly
recall the main steps characterizing the acquisition process:
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! mri:

- Motion correction, correcting for
small motions between multiple
source volumes (orig.mgz);

- Talairach, computing the affine
transform from the orig volume to
the MNI305 atlas (talairach.xfm);

- Nu intensity correction, correct-
ing non-uniformity in MR data
(nu.mgz);

- Normalization, performing intensity
normalization of the orig volume
(T1.mgz);

- Skullstrip, removing the skull from
T1.mgz (brainmask.mgz);

- EM registration, aligning nu.mgz
volume to the default GCA atlas
(talairach.lta);

- CA normalize, a further normaliza-
tion (norm.mgz);

- CA register, a further nonlin-
ear alignment with GCA atlas
(talairach.m3z);

- CA label, labeling subcortical struc-
tures (aseg.mgz);

- Normalization 2, performing
a second intensity correction
(brain.mgz);

- Mask brain final surface, apply-
ing brainmask.mgz to brain.mgz
(brain.finalsurfs.mgz);

- WM segmentation, separating white
matter (wm.mgz);

- Cut and Fill, cutting the mid brain
from the cerebrum and dividing the
two hemispheres (filled.mgz).

! surf:

- Tessellation, creating the orig sur-
face for the two hemispheres
(?h.orig.nofix);

- Orig surface smoothing 1, adjusting
the vertex position on the surfaces
(?h.smoothwm.nofix);

- Inflation 1, minimizing metric dis-
tortion (?h.inflated.nofix);

- Qsphere, fixing an automatic topol-
ogy (?h.qsphere.nofix);

- Automatic topology fixer, mapping
the unit sphere on the surface
(?h.orig);

- Final surfs, generating surface
files and curvature files (?h.curv,
?h.area, and ?h.cortex.label);

- Orig surface smoothing 2, performing
a second smoothing (?h.smoothwm);

- Inflation 2, performing a second
minimization of the metric distor-
tion (?h.inflated);

- Curve HK and Curve statistics, cal-
culating mean curvature and gaus-
sian curvature of the cortical surface
(?h.curv.stats);

- Spherical inflation, inflating the orig
surface into a sphere (?h.sphere);

- Ipsilateral surface registration, regis-
tering the orig surface to the spheri-
cal atlas (?h.sphere.reg);

- Jacobian, computing white surface
distortion (?h.jacobian_white);

- Average curvature, resampling the
average curvature (?h.avg_curv);

- Cortical parcellation 1, 2 and 3,
assigning neuroanatomical labels
(?h.aparc.annot);
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- Pial and T2 pial, generates surface
files and curvature file (?h.pial,
?h.curv.pial, ?h.area.pial and
?h.thickness);

- Cortical ribbon mask, creating binary
volume masks (ribbon.mgz);

- Parcellation statistics 1, 2 and
3, creating a summary table
of cortical parcellation statistics
(?h.aparc.stats);

- APARC to ASEG, adding informa-
tion in the volume parcellation
(aseg.mgz);

- Seg Stats, computing statistics on
the segmented subcortical struc-
tures (aseg.stats);

- White matter parcellation, adding
white matter parcellation info
into the aseg (wmparc.mgz and
wmparc.stats);

- Brodmann Area Maps and Hinds V1
Atlas, labeling the different area of
the brain with respect to a spe-
cific atlas (?h.BA*_exvivo.label,
?h.perirhinal_exvivo.label, and
?h.entorhinal_exvivo.label).

For each step, the output files are indicated between brackets. In particular, for the
output of the surface processing ?h. stays for lh. or rh. referring the left and right
hemisphere, respectively.

When the processing ends, we can visualize some output files with the image
viewer software FreeView6. In particular, this is useful for checking possible errors
in the results of FreeSurfer. One example relates to the check of the output of the
Talaraich registration that computes on the orig volume file a linear Talairach trans-
formation: under some circumstances, the alignment can fail. To visualize the data in
FreeView we use the following commands:

freeview -v $SUBJECTS_DIR/<output folder name>/mri/T1.mgz
-v $SUBJECTS_DIR/<output folder name>/mri/brainmask.mgz:
reg=$SUBJECTS_DIR/<output folder name>/mri/transforms/talairach.xfm

tkregister2 --mgz --s <output folder name> --fstal --surf orig

In FreeView we check the registration of the subject’s volume and the Talairach vol-
ume and try to identify possible distortions and stretching of the latter from the po-
sition of the subject. If any misalignment is detected, it is necessary to correct the
Talairach volume, stretching or rotating it until obtaining the correct alignment. A
second example of errors during the processing is related to the construction of the
pial surface. This surface is created by expanding the white matter surface so that it
closely follows the grey matter-cerebrospinal fluid (CSF) intensity gradient, as found
in the brainmask.mgz volume. The pial surface boundary and white matter surface
boundary should not cross. This can be visually checked by loading the pial surface
into FreeView and visualizing it together with the brainmask.mgz volume:

freeview -v $SUBJECTS_DIR/<output folder name>/mri/T1.mgz \
$SUBJECTS_DIR/<output folder name>/mr/brainmask.mgz \
-f $SUBJECTS_DIR/<output folder name>/surf/lh.white:edgecolor=blue \
$SUBJECTS_DIR/<output folder name>/surf/lh.pial:edgecolor=yellow \
$SUBJECTS_DIR/<output folder name>/surf/rh.white:edgecolor=blue \
$SUBJECTS_DIR/<output folder name>/surf/rh.pial:edgecolor=yellow

6
https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/OutputData_freeview
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If the surface appears not to follow the grey matter-CSF boundary in the volume, edits
may be required. An example of a good construction of the pial surface is shown in
Figure A.1.

FIGURE A.1: Visualization of volume and surface outputs of FreeSurfer. Left
plot: lh.pial and rh.pial surfaces in a 3D view. Right plot: lh.pial and
rh.pial surfaces (in yellow) visualized together with lh.white and rh.white

surfaces (in blue).

A.2.2 FSL processing

FSL is a comprehensive library of analysis tools for MRI, functional MRI, and DTI
brain imaging data created by the FMRIB Group in Oxford, UK [130, 262, 302]. As
explained for the MRI raw data, for the processing of the DTI data with FSL the NIfTI
format is required. Moreover, it is also necessary to have access to the gradient direc-
tion (.bvecs) and b-values (.bvals) information. For our purpose, the processing of
the DTI data includes

• the correction of eddy current distortions and simple head motions;

• the brain extraction from the DTI data;

• the application of the function DTIFIT;

• the registration of the DTI data with the T1 (MRI) space.

• the application of the inverse transformation to the DTI data and the check for
alignment.

Therefore, after opening the FSL software in the terminal and setting the directory into
the data folder (SUBJECTS_DIR), it is possible to use its interface to process the data
or to directly type the following commands on the terminal window.

The first step consists in the correction of imaging distortion, using the eddy_correct
toolbox function, which corrects for eddy current-induced distortions and subject move-
ments [130]:

eddy_correct ${SUBJECTS_DIR}/DTI.nii ${SUBJECTS_DIR}/DTI_correct.nii 0

This command defines an output file named DTI_correct.nii from the original data,
which we name here DTI.nii. In particular, the setting 0 at the end of the command
line indicates that we are using the reference volume, i.e. the volume with a b-value
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of 07. The corrected data are used as the input file for the brain extraction step.
This step is based on the brain extraction tool (BET) [262] of FSL that deletes non-

brain tissue from the image of the whole head. The corresponding command in the
terminal, which produces the output file DTI_bet.nii, reads:

bet ${SUBJECTS_DIR}/DTI_correct.nii ${SUBJECTS_DIR}/DTI_bet.nii -m -f 0.3

Here, -f indicates the fractional threshold and -m generates the binary brain mask.
Precisely, the fractional intensity threshold is a parameter that controls the threshold of
tissue distinction between what is considered part of the brain and what is not. Its
default value is 0.5 and, changing it in the interval (0,1), causes the overall segmented
brain estimation to become larger (< 0.5) or smaller (> 0.5).

The DTIFIT function consists in a diffusion tensor model that, for each voxel, fits
a tensors to the previously processed diffusion weighed images. It typically runs on
the data pre-processed with eddy current correction. Precisely, it uses the DTI data
corrected with eddy (DTI_correct.nii), the BET binary brain mask (DTI_bet.nii),
and gradient direction (.bvecs) and b-value (.bvals) information. The output file is
DTI_dtifit.nii, whose name can be chosen by the user. The corresponding com-
mand line reads:

set bvecs=$SUBJECTS_DIR/*bvecs
set bvals=$SUBJECTS_DIR/*bvals
dtifit --data=$SUBJECTS_DIR/DTI_correct.nii
--out=$SUBJECTS_DIR/DTI_dtifit.nii
--mask=$SUBJECTS_DIR/DTI_bet.nii
--bvecs=$bvecs --bvals=$bvals

The output of this process consists of different files. The main ones we are interested
in are:

• DTI_dtifit_FA for the fractional anisotropy;

• DTI_dtifit_Li and DTI_dtifit_Vi for the sorted eigenvalues and eigenvectors
of the DTI tensor, respectively, with i = 1, 2, 3 (L1/V1 refers to the leading eigen-
value/eigenvector);

• DTI_dtifit_MD for the mean diffusivity.

Some of the output files (e.g. the tensor eigenvectors) are provided as a multi-volume
(4D) file that can be visualize with FSLeyes. Entering the viewer software and select-
ing the desired image from the list, it is possible to open the image information win-
dow and to change the DTIDisplay options for the visualization. For instance, we
can choose between None, Lines and RGB visualization. In particular, with the Lines
option, the direction of each DTI eigenvector is represented as a small line for each
voxel. For the DTI display option RGB, different colors express the different orienta-
tions: red is used for x-direction, green for y-direction, and blue for z-direction, while
mixed colors refer to vector with significant non-zero components in more than one
direction. This option allow also to modulate the intensity of the eigenvectors by the
fractional anisotropy (FA). Examples of these visualization options are given in Figure
A.2.

7dcm2nii should automatically ensure that the initial volume is the volume with b-value 0, although
it is appropriate to verify this by viewing the volumes with MRIcron.
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FIGURE A.2: Visualization of the processed DTI images. Leading eigenvector
of DTI represented with RGB (left). Leading eigenvector represented with RGB

and with intensity modulated by FA (middle). Leading eigenvector represented
with Lines (right)

.

The registration of DTI data and T1 image is performed with a linear or a nonlinear
transformation. An example of a software that performs linear registration is FLIRT8

(FMRIB’s Linear Image Registration Tool), an accurate and robust tool for the registra-
tion of two single volumes together. Its main options are the input (syntax:-in) and
the reference (syntax:-ref) volumes. The outputs consist in the affine transformation
that registers the input to the reference, stored as a 4⇥ 4 affine matrix (syntax:-omat),
and the output align volume (syntax:-out). Optional features, which might be set
as options, are the number of degrees of freedom (syntax:-dof <number of transform
dofs>) and the cost functions (syntax:-cost). The options for the latter include the pre-
defined functions Least Squares (leastsq) and Normalized Correlation (normcorr),
as well as the between-modality functions Correlation Ratio (corratio, by default),
Mutual Information (corratio) and Normalized Mutual Information (normmi). The
syntax of the transformation with FLIRT reads:

flirt [options] --in=${SUBJECTS_DIR}/MRI_data.nii
--ref=${SUBJECTS_DIR}/DTI_data.nii

We use the illustrative names MRI_data.nii and DTI_data.nii to refer to the MRI
and DTI data, respectively. A nonlinear transformation can be performed with the
software FNIRT and is usually employed when the linear transform is not sufficient
to achieve a good registration. Thus, the local deformations permitted by a nonlinear
method may improve the results:

fnirt [options] --in=$SUBJECTS_DIR/<MRI_data.nii>
--ref=$SUBJECTS_DIR/<DTI_data.nii>
--cout=$SUBJECTS_DIR/struct2diffusion_warp

In this case, the options include an -aff file, containing the affine transformation ob-
tained from the flirt command, an -inwarp file, containing initial nonlinear warps, or
-refmask, the binary brain mask. Then, the function invwarp is used to reverse the
nonlinear mapping. The corresponding command line reads

8https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/UserGuide
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invwarp --warp=$SUBJECTS_DIR/struct2diffusion_warp
--ref=$SUBJECTS_DIR/<MRI_data.nii>
--out=$SUBJECTS_DIR/struct2diffusion_warp_inv

where the -warp volume is obtained as output from the fnirt command. The output
of invwarp is necessary for the following transformation of the DTI data to the T1
space. This transformation is performed with the function applywarp, which applies
the transformation estimated by FNIRT to the DTI image in order to align it with the
MRI structural scan:

applywarp [options] --in=$SUBJECTS_DIR/<DTI_data.nii>
--out=$SUBJECTS_DIR/<output DTI file.nii>
--ref=$SUBJECTS_DIR/<MRI_data.nii>
--warp=$SUBJECTS_DIR/struct2diffusion_warp_inv

It is possible to specify, with the option -interp, the interpolation method (possibili-
ties are nn, trilinear, sinc, spline). At this step it is important to check the registra-
tion and the alignment between DTI and MRI data, whose raw file are created with
different systems of reference. Visualizing the MRI and DTI images the alignment can
be confirmed, as shown in Figure A.3.

FIGURE A.3: Example of correctly aligned data after the registration process.

A.3 Conversion to Matlab format

Considering that we want to perform numerical simulations within the Matlab envi-
ronment, we need to make the results of the raw data processing with FreeSurfer and
FSL accessible with Matlab. In particular, we first have to extract the 2D boundary
of the computational domain and define a fine mesh on it. Then, we need the cor-
responding DTI information on the chosen 2D slice and, finally, we have to define a
way for matching the natural mesh of the DTI data, determined by its voxels, with the
finer mesh defined on the domain. In fact, we do not use the former as a mesh for the
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computational domain due to the voxel sizes9.
We start from the data of the brain geometry, considering the two pial surface files

lh.pial and rh.pial from the Pial and T2 Pial step of the FreeSurfer processing, which
contain the information about the brain surface. The code for loading the data into the
Matlab environment reads:

Algorithm 1.1 ?h.pial loading in Matlab.
[vertices_l, faces_l] = freesurfer_read_surf(’lh.pial’);
[vertices_r, faces_r] = freesurfer_read_surf(’rh.pial’);

In particular, the function freesurfer_read_surf.m reads the vertex coordinates (ex-
pressed in mm) and the face list from the surface files and stores this information in
the new variables vertices_? and faces_?, respectively, where _? stands for _l or
_r and refers to the left and right hemisphere, respectively. These variables are de-
fined as matrices containing vertex and face coordinates of the surface mesh defined
by FreeSurfer. They also allow to visualize the surface in Matlab with the following
code:

Algorithm 1.2 ?h.pial visualization in Matlab.
Hp = patch(’vertices’, vertices, ’faces’, faces(:, [1 3 2]), ’facecolor’,....
.... [.5 .5 .5], ’edgecolor’, ’none’);
camlight(’headlight’, ’infinite’);

An example of the brain surface visualization in Matlab is provided in Figure A.4.

FIGURE A.4: Illustrative example of the Matlab visualization of the brain
surface. 3D view of two hemisphere (left) and 2D superior view (right). In both
plots, the axis labels refer to the orientation of the MRI data aligned with the

DTI orientation of Table A.1. The three dimensions are expressed in mm.

To perform numerical simulations on a 2D slice of the brain, we need to extract from
these data about the entire brain surface the information on the external contour of
the 2D slice we are interested in. This procedure is performed with Paraview10, a gen-
eral open-source, multi-platform data analysis, and visualization application. This
software reads .vtk files, which can be obtained from the above-defined matrices
vertices_? and faces_?. In particular, once the files for the two hemispheres (left_
hemisphere_new.vtk and right_hemisphere_new.vtk) are created, these are loaded

9The voxel dimensions of the DTI image are 1.5 mm ⇥ 1.5 mm ⇥ 1 mm. Considering the average
speed of a glioma cell between 30 � 50 µm · h�1, we require a finer mesh for the computational domain
to properly trace the cell movements.

10
https://www.paraview.org
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in Paraview and visualized. Using the Contour tool available in Paraview (from the
drop-down menu Filters/Alphabetical/Contour), it is possible to extract the exter-
nal contour of the chosen slice11. An example of visualization of the brain surface in
3D and the 2D contour with Paraview is provided in Figure A.5.

FIGURE A.5: Illustrative example of the Paraview visualization. 3D view of
the brain (left) and contour plot of the chosen 2D slice (right).

The information about the contour is saved into an ASCII file, which provides the
number of points, their coordinates, how many segments constitute the external bound-
ary, and which points they connect. We store this information in two separate text files:
POINTS.txt, with the number of boundary points and their coordinates; SIDES.txt,
with the information about the segments. These files are read in Matlab and, once
the points have been ordered, are used to create the file for the external boundary
(external_boundary.txt). They can be visualized in Matlab with the simple code:

Algorithm 1.3 Visualization of the extracted contour in Matlab.
load external_boundary.txt
points = external_boundary;
plot (points(:, 1), points(:, 2), ’r*’)

To mesh this 2D computational domain we use Gmsh12, a free 3D finite element mesh
generator, which provides a fast, light and user-friendly meshing tool with parametric
input and advanced visualization capabilities. With the help of Gmsh, we define a
fine unstructured mesh on the 2D domain we extracted. For this purpose, we use the
code:

Algorithm 1.4 Preliminary step for Gmsh.
[IN,ON] = inpolygon(x_internal, y_internal, x_boundary, y_boundary);
j = 1;
for i = 1 : size(x_internal) do

if ( IN(1,i) == 1 && ON(1,i) == 0 ) then
C_in(1 : 2, j) = C_new(1 : 2, i);

11Since the DTI data have a different resolution than the MRI-T1 data, i.e., they differ in terms of the
number of voxels and their dimensions, we need to ensure that we are extracting the same 2D slice
from DTI and MRI processed data. Thus, one can visualize with FreeView both the DTI registration
and the FreeSurfer output files ?h.pia and, fixed in the desired slice on the DTI registration, read the
corresponding value of the z-coordinate on the FreeSurfer outputs. Then, this information is used for the
extraction of the external contour of the 2D slice with the Contour tool.

12
https://gmsh.info
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j = j+1;
end if

end for

where the coordinates x_boundary and y_boundary are taken from the text file external
_boundary.txt, while x_internal and y_internal originate from the processing of
the DTI data (they correspond to the first two row of the matrix C_new, which we will
introduce later on and that contains information about the DTI voxel mesh). Algo-
rithm 1.4 allows us to define the matrix C_in, containing the coordinates of the inner
points of the DTI voxel mesh. Together with external_boundary.txt, this matrix is
necessary to convert the .txt files in .geo format, the common format in Gmsh. The
output of Gmsh is a Matlab structure that contains a series of information: the num-
ber of nodes of the new defined mesh (.nbNod), their coordinates (.POS), the maximum
and minimum value between all the points of each of the coordinates (.MAX and .MIN),
the segments that connect the points (.LINES) and the triangles constituting the mesh
(.TRIANGLES).

Similarly to the processed MRI data, we have to make the FSL output files accessi-
ble in the Matlab environment. Thus, considering the files for the tensor eigenvalues
(DTI_dtifit_ Li) and eigenvectors (DTI_dtifit_Vi), we first build a 5D structure col-
lecting the DTI information. Precisely, for each voxel identified by (i, j, k), the structure
DTI(i, j, k, :, :) is a 3⇥ 3 matrix representing the DTI tensor corresponding to this voxel
and built using the related eigenvalues l(i,j,k),l and eigenvectors v(i,j,k),l , for l = 1, 2, 3,
i.e.,

DTI(i, j, k, :, :) =
3

Â
l=1

l(i,j,k),l v(i,j,k),l vT
(i,j,k),l .

The corresponding algorithm to build this structure in Matlab reads:

Algorithm 1.5 DTI structure construction.
V1 = load_nii(’ABU02_dti_V1.nii’, [], 1);
V2 = load_nii(’ABU02_dti_V2.nii’, [], 1);
V3 = load_nii(’ABU02_dti_V3.nii’, [], 1);
L1 = load_nii(’ABU02_dti_L1.nii’, [], 1);
L2 = load_nii(’ABU02_dti_L2.nii’, [], 1);
L3 = load_nii(’ABU02_dti_L3.nii’, [], 1);
v1 = V1.img;
v2 = V2.img;
v3 = V3.img;
l1 = L1.img;
l2 = L2.img;
l3 = L3.img;

dim = size(v1);
Gamma1 = zeros(dim(1), dim(2), dim(3), 3, 3);
Gamma2 = zeros(dim(1), dim(2), dim(3), 3, 3);
Gamma3 = zeros(dim(1), dim(2), dim(3), 3, 3);

for i = 1 : dim(1) do
for j = 1 : dim(2) do

for k = 1 : dim(3) do
w1 = squeeze(v1(i, j, k, :));
w2 = squeeze(v2(i, j, k, :));
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w3 = squeeze(v3(i, j, k, :));

Gamma1(i, j, k, :, :) = abs(l1(i, j, k))*w1*w1’;
Gamma2(i, j, k, :, :) = abs(l2(i, j, k))*w2*w2’;
Gamma3(i, j, k, :, :) = abs(l3(i, j, k))*w3*w3’;

end for
end for

end for
DTI = Gamma1 + Gamma2 + Gamma3;

save (’DTI_constr.mat’, ’DTI’)

where the function load_nii is used to read a NIfTI file in Matlab. From this 5D struc-
ture, we extract the DTI information concerning the 2D slice for which we obtained
the outer border with Paraview and that we meshed with Gmsh. As explained above,
we do not use the natural and regular mesh provided by the DTI voxels because of
its low resolution. Thus, we need to define a way to match the meshes and get, for
each point x of the domain mesh the corresponding tensor. Referring to the chosen 2D
slice with the index k, firstly we use the result of BET, i.e., DTI_correct_brain.nii, to
build a reference geometry as:

Algorithm 1.6 Reference geometry extraction.
BET = load_nii(’DTI_correct_brain.nii’);
Bet = BET.img;
Bet = Bet(:, :, k);
save (’refer_geo_slicek.mat’, ’Bet’)

Using the function slice_mesh, we obtain the nodes (points) and the triangulation
(tri_new) of the corresponding voxel mesh on this k-slice:

Algorithm 1.7 Algorithm for the function slice_mesh.
function [tri_new,points] = slice_mesh()
bet = load(’refer_geo_slicek.mat’);
bet = bet.Bet;
points = [];

for i = 1 : 128 do
for j = 1 : 128 do

if ( bet(i,j) > 0 ) then
points = [points [i; j] ];

end if
end for

end for

Point_type = [];

level = 0;
a = find(points(1, :) == max(points(1, :)) & points(2, :) >= level);
Point_type = [Point_type; points(1, a)’ points(2, a)’ a’];
level = points(2, a(end));

for i = max(points(1, :))-1 : -1 : min(points(1, :))+1 do
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a = find(points(1, :) == i & points(2, :) >= level);
if ( length(a) > 1 ) then

a = a(2 : end);
end if
if ( length(a) == 0 ) then

b = find(points(1, :) == i-1);
a = find(points(1, :) == i & points(2, :) >= points(2, b(end)));
if ( length(a) > 1 ) then

a = a(end : -1 : 2);
else if ( length(a) == 0 ) then

a = find(points(1, :) == i);
a = a(end);

end if
end if
Point_type = [Point_type; points(1, a)’ points(2, a)’ a’];
level = points(2, a(end));

end for

level = 0;
a = find(points(1, :) == min(points(1, :)) & points(2, :) >= level);
a = a(end : -1 : 1);
Point_type = [Point_type; points(1, a)’ points(2, a)’ a’];
level = points(2, a(end));

for i = min(points(1, :))+1 : max(points(1, :))-1 do
a = find(points(1, :) == i & points(2, :) <= level);
if ( length(a) > 1 ) then

a = a(end-1 : -1 : 1);
end if
if ( length(a) == 0 ) then

b = find(points(1, :) == i+1);
a = find(points(1, :) == i & points(2, :) <= points(2, b(1)));
u = points(2, a(2: end)) - points(2, a(1: end-1));
if ( length(a) > 1 ) then

a = a(1: end-1);
end if

end if
Point_type = [Point_type; points(1, a)’ points(2, a)’ a’];
level = points(2, a(end));

end for
bordo = Point_type(:, 3);
indexes = 1 : size(points, 2);
interni = setdiff(indexes, bordo);

tri = delaunay(points(1, :), points(2, :));
rubbish = [];
for i=1: size(tri,1) do

if ( any(tri(i, 1) == bordo) | any(tri(i, 2) == bordo) | any(tri(i, 3) == bordo) ) then
x = 0;
for j=1 : 3 do

if ( any(tri(i, j) == bordo) ) then
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x = x + 1;
end if

end for
if (x == 3) then

rubbish = [rubbish; tri(i, 1) tri(i, 2) tri(i, 3)];
end if

end if
end for

tri_new = setdiff(tri, rubbish, ’rows’, ’stable’);

From this voxel mesh we define the 5 ⇥ N matrix C_new, with N total number of voxel
mesh points, built with the following algorithm:

Algorithm 1.8 Construction of the structure containing the voxel mesh and the DTI
tensor information.

C = points;
L = tri_new;
N = size(C, 2);
s = size(L);

DTI_2D = squeeze(DTI(:, :, k, 1:2, 1:2));
C_new = zeros(5, N);

for i=1 : N do
x = C(1, i);
y = C(2, i);
DTI_temp = squeeze(DTI_2D(x, y, :, :));
C_new(1:2, i) = C(1:2, i);
C_new(3, i) = DTI_temp(1, 1);
C_new(4, i) = DTI_temp(1, 2);
C_new(5, i) = DTI_temp(2, 2);

end for

In particular, the first two rows of C_new contain the coordinates of each voxel mesh
point, while the third, fourth and fifth rows contain respectively the values of DTI1,1,
DTI1,2 and DTI2,2 at the corresponding point. As the DTI tensor is symmetric, these
values are sufficient. Once we have the unstructured mesh of the computational do-
main built with Gmsh and the voxel mesh and DTI information contained in C_new, for
each point of the former mesh we look for the right voxel in which it falls and we as-
sign the corresponding tensor values to it. This is done with the function find_voxel
that used the Pix matrix defined as:

Algorithm 1.9 Construction of the Pix matrix.
N = size(C_new, 2);
Pix = zeros(2, N);
A = 0;
B = 0;

for i=1 : N do
A = C_new(1, i)/h_vox;
B = C_new(2, i)/h_vox;

A.3. Conversion to Matlab format 221



Pix(1, i) = A;
Pix(2, i) = B;

end for

The find_voxel function determines in which voxel is located the point of (x, y)-
coordinates, returning the number of the C_new column referring to the voxel in which
the point falls. This function reads

Algorithm 1.10 Algorithm for the find_voxel function.
function [col] = find_voxel(x, y, Pix, h_vox)

pos_A = find( Pix(1, :) >= x/h_vox-1 & Pix(1, :) <= x/h_vox+1 );
i = 1;
flag = false;

while ( i <= size(pos_A, 2) & flag == false ) do
j = pos_A(i);
if ( Pix(2, j) >= y*2/h_vox-1 & Pix(2, j) <= y*2/h_vox+1 ) then

col = j;
flag = true;

end if
i = i + 1;

end while
if (flag == false) then

col = 0;
end if

return

In both cases, h_vox indicated the x (or y)-dimension of the voxel. These algorithms
provide a way to match the DTI and the MRI information within the Matlab environ-
ment.
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BMathematical compendium

Throughout this dissertation, we referred to some mathematical concepts and numer-
ical methods used in the approximation of the solution of the PDE systems, in the
numerical integration of the directional tensors as well as in the data analysis. In
this appendix, we first comment, in Section B.1, on the finite element approximation
method for a PDE system and on the space and time approximations used in Chapters
3-5 and 7. Then, in Section B.2, we describe the numerical integration methods, mainly
used in Chapter 2 for the construction of the directional tensor DT.

B.1 Introduction to the finite element method

For the numerical solution of the PDE systems describing the evolution of tumor cells
and eventual additional populations coupled with them, we use the finite element ap-
proximation method. We provide here a short introduction to the mathematical the-
ory of the finite element method for the space approximation of macroscopic systems.
Moreover, we describe some possible techniques for their temporal discretization. In
the following, we mainly refer to [160, 234].

B.1.1 Triangulation, finite-dimensional subspace, and shape functions

The three basic aspects characterizing the finite element method consist in the defini-
tion of a triangulation, the construction of a finite dimensional subspace of piecewise-
polynomials, and the description of its basis of shape functions.

Let the set W 2 Rd be a polygonal domain, i.e., an open bounded connected subset
of Rd such that its closure W̄ is the union of a finite number of polyhedra. A triangu-
lation, or mesh, Th of W̄ is a set of polyhedra such that

W̄ =
[

K2Th

K .

It satisfies the following assumptions:

• each K is a polyhedron with K̊ 6= ∆;

• K̊1
T K̊2 = ∆ for distinct elements K1, K2 2 Th;

• if F = K1
TK2 6= ∆ (K1 and K2 distinct elements of Th), then F is a common

face, side, or vertex of K1 and K2;

• dK  h for each K 2 Th, with dK diameter of the circle inscribed in K.

In particular, each element K of Th can be obtained as K = TK(K̂), where K̂ is a
reference polyhedron and TK is a suitable invertible affine map, i.e., TK(X) = BKX +
bK, BK being a non-singular matrix. In our case, we consider triangular elements K,
for which the reference polyhedron K̂ is the unit d-simplex, i.e., the triangle of vertices
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(0,0), (1,0), (0,1) (for d = 2). The corners of the triangles are called the nodes, while its
sides are called edges. The size of a triangle K, i.e., hK is defined as the length of its
longest edge. In particular, defining the chunkiness parameter as

cK := hK/dK ,

a triangulation is called shape regular if there is a constant c0 > 0 such that cK � c0
8 K 2 Th. This condition means that the shape of the triangles can not be too extreme,
e.g. the angles of any triangle can neither be very wide nor very narrow. The global
mesh size is defined as

h := max
K2Th

hK.

The standard way of representing a triangular mesh with np nodes and nt triangular
elements is to store it in the form of two matrices, the point matrix C and the connec-
tivity matrix L. The point matrix C is of size 2 ⇥ np and the j-th column contains the
coordinates (xj, yj) of the node Nj. The connectivity matrix L is of size 3 ⇥ nt and the
j-th column contains the numbers of the three nodes (with respect to the ordering of
C matrix) constructing the triangle Kj.

A second basic aspect of the finite element method consists in determining a finite-
dimensional space Xh to use as a suitable approximation of the infinite-dimensional
space X to which the solution of the PDE system belongs. In particular, for our case,
we consider the subspace Xh such that every vh 2 Xh is a piecewise polynomial. Pre-
cisely, defining Pk, for k � 0 as the space of polynomials of degree less than or equal
to k, we set

Xk
h := {vh 2 C0(W̄) | vh|K 2 Pk 8K 2 Th} ,

which is called space of triangular finite elements of order k. Here, C0(W̄) denotes the
space of all continuous functions on W̄. In particular, it is worth to note that

Xk
h ⇢ H1(W) 8k � 1 .

The last step is to construct a basis for the space Xk
h. For our bidimensional case

d = 2, we have to choose three degrees of freedom on each element K to identify vh|K,
with the additional constraint that vh 2 C0(W̄). The simplest choice is to pick k = 1
and, thus, to fix the values at the vertices of each K. If we consider k = 2, we might
assume that the degrees of freedom of the element are given by the value at the vertices
and in the middle point of each side. In particular, the validity of this choice can be
proven [234] and can be also extended to the definition of the degrees of freedom for
k = 3. These degrees of freedom are given by the values at the three vertices, two
other nodes on each side (dividing it into three subintervals of equal length), and the
center of gravity. The situation for the three cases k = 1, 2, 3 is illustrated in Figure B.1.
Denoting by Nj, j = 1, ..., np, the global set of nodes in W̄, to construct a basis of Xk

h it
is sufficient to choose functions fi 2 Xk

h such that

fi(Nj) = dij, i, j = 1, ..., np ,

with the Kronecker symbol dij. These basis functions fi are called shape functions
and each of these functions has a "small" support. The identification of degrees of
freedom and shape functions leads to the definition of the interpolation operator
pk

h : C0(W̄) ! Xk
h defined on the space of continuous functions and the finite element
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FIGURE B.1: Degrees of freedom for triangular elements.

space Xk
h. Precisely, for each v 2 C0(W̄) the operator pk

h is defined as

pk
h(v) :=

np

Â
i=1

v(Nj)fi .

The interpolant pk
h(v) is a unique function in Xk

h which assumes the same values of
the given function v at all nodes Nj. Similarly, it is possible to introduce a local in-
terpolation operator pk

K(v) defined for functions restricted to K. It can be verified
that

pk
h(v)|K = pk

K(v|K) .

The interpolation operator gives optimal error estimates in Sobolev norms whenever
the function to be interpolated satisfies the minimal requirements for the continuity.
Other approximation operators can also be introduced, such as the L2(W) and H1(W)-
orthogonal projection operators. If H is a Hilbert space and S is a closed subspace of
H, the orthogonal projection operator PS of over S is defined as

PS(v) 2 S : (PS(v), f)H = (v, f)H 8f 2 S.

B.1.2 Space-discretization: the Galerkin method

Before referring to the specific case of parabolic initial-boundary value problems, we
present a short overview of the classical Galerkin method for the discretization of a
general (initial-) boundary value system. We comment on the reformulation of the
problem in a weak, or variational, form and introduce the space approximation based
on the Galerkin method.

Considering the bounded domain W 2 Rd and denoting its boundary with ∂W, a
boundary value problem can be written in the form

(
L u = f in W

B u = 0 on ∂W ,
(B.1)

where f is a given function, u the unknown variable, L a linear differential operator,
and B an affine boundary operator. Often, L is an unbounded operator in a space H
that can be either L2(W) or L2

w(W), where, the latter is a weighted Hilbert space. The
objective is to find for the solution u in a space X ⇢ H, such that L and B are well
defined for functions in X. System (B.1) can be reformulated in a weak form, the vari-
ational formulation. Formally, this formulation can be derived after multiplication of
the differential equation by a suitable set of test functions v. After performing an in-
tegration over the domain W and applying the Green formula of integration by parts,
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the variational formulation of (B.1) reads
Z

W

∂u
∂xi

vdx = �
Z

W
u

∂v
∂xi

dx +
Z

∂W
u v nidg i = 1, ..., d

where n = (n1, ..., nd) is the unit outward normal vector on ∂W. The resulting problem
reads:

find u 2 W : A(u, v) = F (v) 8 v 2 V . (B.2)

Here, W is the space of admissible solutions and V is the space of test functions. Both
spaces can be assumed to be Hilbert spaces. F is a linear functional on V that ac-
counts for the right hand side f as well as for possible non-homogeneous boundary
terms and A(·, ·) is a bilinear form corresponding to the differential operator L. Be-
fore considering the numerical approximations for (B.2), we recall two fundamental
functional theorems about the existence and the uniqueness of the solution.

Theorem B.1. (Lax-Milgram lemma). Let V be a Hilbert space, equipped with the norm
|| · ||, A(u, v) : V ⇥ V ! R a bilinear form, and F (v) : V ! R a linear continuous
functional, i.e., F 2 V 0, where V 0 denotes the dual space of V. Assume that A(·, ·) is
continuous, i.e.,

9g > 0 : |A(w, v)|  g||w|| ||v|| 8w, v 2 V ,

and coercive, i.e.,
9a > 0 : A(v, v) � a||v||2 8v 2 V .

Then, there exists a unique solution u 2 V of (B.2) that satisfies

||u||  1
a
||F ||V0 .

Theorem B.2. Let W and V be two Hilbert spaces, with norms || · ||W and || · ||V ,
respectively. Assume that there exist two positive constants a and g such that the
bilinear form A : W ⇥ V ! R satisfies

• |A(w, v)|  g||w||W ||v||V 8w 2 W, v 2 V

• sup
v2V, v 6=0

A(w, v)
||v||V

� a||w||W 8w 2 W

• sup
w2W

A(w, v) > 0 8v 2 V, v 6= 0 .

Then, for any F 2 V 0, there exists a unique solution u 2 W which satisfies

||u||W  ||F ||V0

a
.

For the proofs we direct the reader to [234].
Focusing on the particular case W = V, let h > 0 be the mesh size for the finite

elements introduced above, || · || the norm on V, and {Vh | h > 0} a family of finite
dimensional subspaces of V ( that corresponds to the generic space Xh in the previous
section). We assume that

8 v 2 V , inf
vh2Vh

||v � vh|| ! 0 as h ! 0 .
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Under this condition, the Galerkin approximation of (B.2) reads

given F 2 V 0 find uh 2 Vh : A(uh, vh) = F (vh) 8vh 2 Vh . (B.3)

Considering {fj | j = 1, ..., Nh} a basis for the vector space Vh, the unknown uh 2 Vh
can be rewritten as

uh(x) =
Nh

Â
j=1

x jfj(x)

with x j unknown coefficients. This translates (B.3) into the following linear system of
dimension Nh:

Ax = F

with x = (x j), Fi := (F (fi)), Aij := A(fj, fi) for i, j = 1, ..., Nh. Precisely, the ma-
trix A is called stiffness matrix and is positive definite, i.e., for any h 2 RNh , h 6= 0,
(Ah, h) > 0, where (·, ·) the euclidean scalar product. Moreover, when the bilinear
form A is symmetric, it follows immediately that A is also symmetric.

Together with the Galerkin method, there are other families of space approxima-
tions for the weak form of (B.1), such as the Petrov-Galerkin method, the collocation
method and generalized Galerkin methods. In this appendix, we focus only on the
Galerkin method that we use for the space discretization of our systems. However,
we direct the reader to [234] for detailed descriptions of the other methods.

B.1.3 Time-advancing methods

After describing the setting of the space discretization with the Galerkin method, in
this section we address the issue of time discretization for initial-boundary value prob-
lems. Starting from the abstract framework of the previous section, we now define the
time-dependent problem

8
>>><

>>>:

∂u
∂t

+ L u = f in (0, T)⇥ W

B u = 0 on (0, T)⇥ ∂W

u = u0 on W, for t = 0 .

(B.4)

Here, T > 0 is a fixed time-level, u and f are functions of t 2 (0, T) and x 2 W, and
u0 = u0(x) is the initial value. The differential operator L and the boundary operator
B can also depend on t. The weak formulation of this problem can be stated assuming
that there exist three Hilbert spaces V, W, H such that W and V are contained in H
with dense, continuous inclusion. The scalar product of H is denoted by (·, ·). We
assume that u0 2 H, f 2 L2(0, T; H), and the bilinear form A(·, ·) is continuous on
W ⇥ V. The weak formulation of (B.4) reads: find u 2 L2(0, T; W) \ C0([0, T]; H) such
that

d
dt
(u(t), v) +A(u(t), v) = F (t, v) 8v 2 V (B.5)

with u = u0 at t = 0. In particular, the compact notation on the right hand side stands
for ( f (t), v) plus another possible term depending on non-homogeneous boundary
conditions. The functional space L2(0, T; H) is a particular case of

Lq(0, T; Ws,p(W)) :=
�

v : (0, T) ! Ws,p(W) | v is measurable and
Z T

0
||v||qWs,p(W) dt < •
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for 1  q < • and endowed with the norm

||v||Lq(0,T;Ws,p(W)) :=
✓Z T

0
||v||qWs,p(W) dt

◆
,

where Ws,p(W) describes the Sobolev space on W of the order s 2 N. The general prob-
lem (B.5) has to be discretized with respect to both time and space variables. For the
space discretization, we rely on the Galerkin approximation described in the previous
section. Thus, the resulting problem reads: for each t 2 [0, T] find uh(t, x) 2 Vh ⇢ V
such that

d
dt
(uh(t), vh) +A(uh(t), vh) = F (t, vh) 8 vh 2 Vh, t 2 (0, T) (B.6)

with uh(0) = u0,h, a suitable element of Vh that approximates the initial value u0. This
is called semi-discrete approximation of (B.5). Then, considering {fj | j = 1, ..., Nh}, a
basis of Vh, and

uh(t, x) =
Nh

Â
j=1

x j(t)fj(x) for t � 0 , u0,h(x) =
Nh

Â
j=1

x0,jfj(x) ,

with x0,j = x j(0), the problem (B.6) can be translated into the following system of
ordinary differential equations

8
<

:
M

dx(t)
dt

+ Ax(t) = F(t)

x(0) = x0

(B.7)

where x(t) = (x j(t)), F(t) := (F (t, fj)), and x0 = (x0,j), for j = 1, ..., Nh. The
stiffness matrix A was introduces in the previous section, while Mij := (fi, fj), for
i, j = 1, ..., Nh is called mass matrix. This matrix is symmetric, positive definite, and
always independent of t.

The time discretization can be achieved with several methods. We consider a par-
tition of the time-interval [0, T] into Nt subintervals [tn, tn+1] of length Dt = T

Nt
, with

t0 = 0 and tNt = T. Then, we denote by un
h the finite dimensional function approx-

imating uh(t) at each time-level tn. In particular, u0
h represents the approximation of

u0. First, we describe the q-scheme, a finite difference scheme according to which (B.6)
is discretized as

1
Dt

⇣
un+1

h � un
h , vh

⌘
+A(qun+1

h + (1 � q)un
h , vh) = qF (tn+1, vh) + (1 � q)F (tn, vh)

for all vh 2 Vh. In particular, n = 0, ..., Nt � 1 and q 2 [0, 1]. The extreme cases q = 0
and q = 1 define the well-known forward and backward Euler methods, respectively,
while, for q = 1

2 , the scheme is known as the Crank-Nicolson (CN) method. Recalling
the algebraic formulation (B.7), its time discretization reads

Mxn+1 + qDt Axn+1 = hn+1 n = 0, ..., N � 1

with
hn+1 := qDt F(tn+1) + (1 � q)Dt F(tn) + Mxn � (1 � q)Dt Axn

and x0 = x0. At each time step, it is necessary to solve a linear system associated
with the matrix M + qDt A. In particular, for q = 1, the backward Euler method is
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first-order accurate, i.e, the norm of the truncation error x(tn)� xn is O(Dt), and it is
unconditionally stable. The forward Euler method obtained for q = 0, which is also
first-order accurate, is conditionally stable. To be precise, a time-advancing method is
stable with respect to the spatial norm || · || of Vh if

||un
h ||  C eltn ||u0

h|| , n � 0

for 0 < Dt  dh, where C, l, and dh are independent of Dt and both C and l are
independent of h. If dh is bounded from below and independently of h, the method
is unconditionally stable. Otherwise, the functional dependence of dh from h is called
the stability limit of the numerical method. This means that the method comes with
a restriction on the time step Dt, which should be small enough compared to h, the
spatial mesh size. The CN scheme is only conditionally stable, but it is second order
accurate, i.e., the norm of the truncation error is O(Dt2).

Another possibility for the time discretization of the ODE subsystem of the model
described in Chapter 7 are the Runge-Kutta (RK) methods. These are a family of im-
plicit and explicit iterative methods that use the information on the ’slope’ at more
than one point to extrapolate the solution for future time steps. To provide a more
clear introduction to RK methods, we consider the initial value problem

8
<

:

dy
dt

(t) = f (t, y(t)) t 2 (0, T)

y(0) = y0

with an unknown function y depending on time and y0 its corresponding value at
t = 0. Considering the time partition previously defined and let yn = y(tn) be the
approximation of y(t) at time step tn, for the family of explicit RK methods the ap-
proximation of y at tn+1 reads

yn+1 = yn + Dt
s

Â
i=1

biki for n = 0, ..., Nt � 1 ,

where

k1 = f (tn, yn) ,

k2 = f (tn + c2Dt, yn + Dt a21k1) ,

k3 = f (tn + c3Dt, yn + Dt(a31k1 + a32k2)) ,
.
.
.
.
ks = f (tn + csDt, yn + Dt(as,1k1 + ... + as,s�1ks�1)) .

In particular, to choose a specific method, it is necessary to provide the integer s, which
represents the number of stages, and the coefficients aij, for 1  j < i  s, bi, and ci, for
i = 1, ..., s. The matrix (aij)ij is called Runge-Kutta matrix, while bi and ci are known
as the weights and nodes, respectively [158]. These data are usually arranged in the
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Butcher tableau
0
c2 a21
c3 a31 a32
...

... . . .
cs as1 as2 . . . as,s�1

b1 b2 . . . bs�1 bs

The RK method is consistent if and only if Âs
i=1 bi = 1. For our discretization in Chap-

ter 7 we use the fourth-order RK method (RK4), whose Butcher tableau reads:

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

Therefore, the approximation reads

yn+1 = yn +
1
6

Dt (k1 + 2k2 + 2k3 + k4)

with

k1 = f (tn, yn) ,

k2 = f
✓

tn +
Dt
2

, yn + Dt
k1

2

◆
,

k3 = f
✓

tn +
Dt
2

, yn + Dt
k2

2

◆
,

k4 = f (tn + Dt, yn + Dtk3) .

Here, yn+1 is the RK4 approximation of y(tn+1), determined by y(tn) plus the weighted
average of four increments. Each of them is the product of the size of the interval, Dt,
and an estimated slope ki depending on the function f on the right-hand side. The RK4
method is conditionally stable and fourth order accurate, meaning that the truncation
error is of the order O(Dt4). We want to remark that this is a brief presentation, with
the only purpose of giving the reader an idea of some of the many possible ways
to face this problem; there are many other space and time discretization that can be
implemented.

B.1.4 Discretization of an advection-diffusion-reaction PDE

The models in Chapters 3-5 and 7 consist in systems of advection-diffusion-reaction
PDEs. Their general formulation reads

∂u(t, x)
∂t

�r · [A(x)ru(t, x)] +r · (b(x)u(t, x)) + a0(x)u(t, x) = f (t, x) .

In this section, we first introduce a semidiscrete approximation of the PDE by dis-
cretizing with respect to the space variable x using the Galerkin method. Then, we
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present a total discretization procedure, based on a q-scheme, for the time derivative.
We point out that the generalization to a system of PDEs is a straightforward proce-
dure.

Starting from (B.4) and considering the bounded domain W 2 R2, with Lipschitz
boundary, the differential operator L now reads

Lu := �
2

Â
i,j=1

Di(aijDju) +
2

Â
i=1

Di(biu) + a0u , (B.8)

where the operator Di denotes the partial derivative with respect to xi, while aij = aij(x)
the components of the diffusion tensor A(x), bi = bi(x) refers to the components of
the drift vector b(x), and a0 = a0(x) is a given function. In particular, we observe
that A and~b can also depend on the unknown u. Moreover, we assume the boundary
operator to be of homogenous Neumann type:

Bu =
∂u
∂n

:=
2

Â
i,j=1

aijDjuni �
2

Â
i=1

biniu = 0

with ni describing the components of the outward normal vector n = (n1, n2). To
provide the weak formulation, let V be a closed subspace of H1(W) such that H1

0(W) ⇢
V ⇢ H1(W). The bilinear form associated to the operator L is given by

A(u, v) :=

Z

W

"
2

Â
i,j=1

aijDiuDjv �
2

Â
i=1

(biuDiv) + a0uv

#
(B.9)

obtained by multiplying (B.8) by v and integrating over W, with the use of the Green
formula and accounting for the boundary terms. The weak formulation reads as in
(B.5) with the specification for the bilinear form given in (B.9). By approximating the
space V with a finite dimensional space Vh, this variational formulation naturally leads
to the semi-discrete problem (B.6) specified with (B.9). Defining the matrices as

(Mij) :=
Z

W
fi(x)fj(x)dx mass matrix ,

(Sij) :=
Z

W
A(x)rfi(x)rfj(x)dx stiffness matrix ,

(Cij) :=
Z

W
b(x)fj(x)rfi(x)dx convection matrix ,

(Fi) :=
Z

W
f (x)fi(x)dx load vector ,

(M̄ij) :=
Z

W
a0(x) fi(x)fj(x)dx ,

the corresponding algebraic system reads

M
dx(t)

dt
+ Sx(t)� Cx(t) + M̄x(t) = F . (B.10)

Here, the matrix M̄ relates to the reaction term a0(x)u, while the vector F depends on
the given function f , independent of u. To provide an example of this discretization,
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we recall the macroscopic equation deduced in Chapter 3:

∂

∂t
u =r · (DT(x)ru)�r · ((g(Q(x))DT(x)rQ � w(x))u)

+ µ(u)Q(x)u � L(u, R1)u .

In this case, for the definition of the matrices, we have

A(x) := DT(x) ,

b(x) := g(Q(x))DT(x)rQ � w(x) ,

a0(x) := µ(u)Q(x) � L(u, R1) .

Applying the q-scheme to the semi-discrete approximation encoded in the algebraic
system (B.10) we finally get

⇥
M + qDt(S � C + M̄)

⇤
xn+1 =Dt(qF(tn+1) + (1 � q)F(tn))

+
⇥
M � (1 � q)Dt(S � C + M̄)

⇤
xn.

We apply this spatial and temporal discretization for the systems described in Chap-
ters 3-5. In particular, we use triangular elements and linear shape functions also
called hat functions. For the model of Chapter 7, this discretization, in its 1D formu-
lation, is used on the subsystem of PDEs, while the subsystem of ODEs is discretized
using the RK4 method introduced in the previous section. We do not refer to Chapter
6 since, in this case, we solve numerically the mesoscopic transport equation, instead
of the macroscopic one. For the simulations presented therein, we use the numerical
scheme proposed in [284] and described in [173] in which a kinetic model for chemo-
taxis is simulated in two-dimensions using a van Leer scheme for the space transport
(see [173] for further details).

B.2 Quadrature formula and numerical integration

In this dissertation, we use different quadrature rules for the numerical approxima-
tion of the integrals involved in the finite element discretization (introduced in the
previous section) as well as in the construction of the tensor DT described in Chapter
2. We provide a brief introduction to some of the most commonly used methods for
numerical integration. In the following, we mainly refer to [233].

Let f be a real integrable function over the interval [a, b]. A quadrature formula,
also called numerical integration formula, is an explicit procedure that permits a suitable
approximation of the integral

I( f ) :=
Z b

a
f (x)dx .

The classical approach consists in replacing f with an approximation fn, depending
on the integer n � 0, in order to obtain

In( f ) =
Z b

a
fn(x)dx n � 0 (B.11)
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as an approximation for I( f ). For instance, fn can be chosen as an interpolating poly-
nomial of degree n, i.e., fn 2 Pn. When the function f is replaced by its interpolating
polynomial, we refer to these procedures as interpolatory quadrature formulae. Thus,
considering a set of n + 1 points {xi}, with i = 0, .., n, (B.11) can be calculated as a
weighted sum of the values of f at the points xi, i.e.,

In( f ) =
n

Â
i=0

ai f (xi) .

The points {xi} are called nodes of the quadrature formula, while the coefficients ai 2
R are its weights. Both weights and nodes depend in general on n. For instance, a
natural approach consists in the use of the interpolating Lagrange polynomial over
the set of n + 1 nodes {xi}. In this case, the coefficients ai are a linear combination ofR b

a li(x)dx, with li characteristic Lagrange polynomial of degree n associated with the
node xi. The degree of exactness of a quadrature formula is defined as the maximum
integer r � 0 for which

In( f ) = I( f ) 8 f 2 Pr .

Any interpolatory quadrature formula that makes use of n + 1 distinct nodes has de-
gree of exactness equal to n, at least. In particular, the degree of exactness is related to
the quadrature error, defined as

En( f ) := I( f )� In( f ) .

In the following, we discuss the three most common quadrature formulae with n =
0, 1, 2, namely the midpoint formula, the trapezoidal formula, and the Cavalieri-Simpson
formula. We also present the composite versions of the interpolating formulae used to
improve the quadrature errors.

B.2.1 The midpoint formula

The most basic case is the midpoint formula with n = 0, obtained by replacing f over
the interval [a, b] with the constant function equal to the value of f at the midpoint of
the integration interval, i.e., in a+b

2 . This formula reads

I0( f ) = (b � a) f
✓

a + b
2

◆
. (B.12)

In this case, the weight is chosen as a0 = b � a and the node as x0 = a+b
2 . In particular,

the quadrature error for the function f 2 C2([a, b]) is given by

E0( f ) =
(b � a)3

24
f
00
(x) , x 2 (a, b) .

Therefore, the midpoint formula (B.12) is exact for constant and affine functions and
has degree of exactness equal to 1. The quadrature error, which depends on the width
of the integration interval, can be improved considering the composite version of the
interpolating formula. The composite formula consists in using the composite inter-
polating polynomial of f constructed on m subintervals of [a, b] of width H = b�a

m , for
m � 1, and defining the quadrature nodes as xk = a + (2k + 1) H

2 , for k = 0, .., m � 1.
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In this case, the composite midpoint formula reads

I0,m( f ) = H
m�1

Â
k=0

f (xk) , m � 1 ,

and the quadrature error reduces to

E0,m( f ) =
b � a

24
H2 f

00
(x)

under the same assumptions on f and x. Algorithm 2.1 computes an approximation
of the integral of the function f over the interval (a, b) via the composite midpoint
formula on m equispaced subintervals.

Algorithm 2.1 Composite midpoint formula.
function [int] = CompMidPnt (a, b, m, f)

h = (b-a)/m;
x = [a+h/2 : h : b];
dim = length(x);
y = eval(f);
if ( size(y) == 1 ) then

y = diag(ones(dim))*y;
end if
int = h*sum(y)

return

B.2.2 The trapezoidal formula

The trapezoidal formula is obtained by replacing f over the interval [a, b] with its
Lagrange interpolating polynomial of degree 1 at the nodes x0 = a and x1 = b. The
resulting quadrature rule has the weights a0 = a1 = b�a

2 and reads

I1( f ) =
b � a

2
[ f (a) + f (b)] .

For f 2 C2([a, b]), the quadrature error is given by

E1( f ) = � (b � a)3

12
f
00
(x) , x 2 (a, b) .

The composite counterpart of this quadrature rule is obtained, as for the case of the
midpoint rule, by replacing f with its composite Lagrange polynomial of degree 1 on
m subintervals (m � 1). Introducing the quadrature nodes xk = a + kH, for k = 0, .., m
and H = b�a

m , the composite formula reads

I1,m( f ) =
H
2

m�1

Â
k=0

[ f (xk) + f (xk+1)]
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with a quadrature error of

E1,m( f ) = �b � a
12

H2 f
00
(x) .

The degree of exactness of this formula, in either its normal and composite version, is
again equal to 1. Algorithm 2.2 computes an approximation of the integral of the func-
tion f over the interval (a, b) via the composite trapezoidal formula on m equispaced
subintervals.

Algorithm 2.2 Composite trapezoidal formula.
function [int] = CompTrp (a, b, m, f)

h = (b-a)/m;
x = [a : h : b];
dim = length(x);
y = eval(f);
if ( size(y) == 1 ) then

y = diag(ones(dim))*y;
end if
int = h*(0.5*y(1) + sum(y(2 : m)) + 0.5*y(m+1));

return

B.2.3 The Cavalieri-Simpson formula

A further option of interpolatory quadrature formula, with a higher degree of exact-
ness, is the Cavalieri-Simpson formula. It is obtained by replacing f over [a, b] with its
interpolating polynomial of degree 2. The quadrature nodes are x0 = a, x1 = a+b

2 and
x2 = b, while the weights are given by a0 = a2 = b�a

6 and a1 = 4 b�a
6 . The resulting

formula reads
I2( f ) =

b � a
6


f (a) + 4 f

✓
a + b

2

◆
+ f (b)

�
. (B.13)

The quadrature error is provided by

E2( f ) = � (b � a)5

32
1

90
f (4)(x) ,

where f 2 C4([a, b]) and x 2 (a, b). This quadrature formula has degree of exactness
equal to 3. Considering the composite polynomial of degree 2 interpolating f over
[a, b], the quadrature nodes xk = a + k H

2 , for k = 0, .., 2m, and letting H = b�a
m (m � 1),

the composite counterpart of (B.13) reads

I2,m( f ) =
H
6

"
f (x0) + 2

m�1

Â
r=0

f (x2r) +
m�1

Â
s=0

f (x2s+1) + f (x2m)

#
.

The associated quadrature error, for f 2 C4([a, b]), is given by

E2,m( f ) = �b � a
180

H4

16
f (4)(x) .
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Algorithm 2.3 computes an approximation of the integral of the function f over the
interval (a, b) via the composite Cavalieri-Simpson formula on m equispaced subin-
tervals.

Algorithm 2.3 Composite Cavalieri-Simpson formula.
function [int] = CompCS (a, b, m, f)

h = (b-a)/m;
x = [a : h/2 : b];
dim = length(x);
y = eval(f);
if (size(y) == 1) then

y = diag(ones(dim))*y;
end if
int = (h/6)*(y(1) + 2*sum(y(3 : 2 : 2*m-1)) + 4*sum(y(2 : 2 : 2*m)) + y(2*m+1));

return

Midpoint, trapezoidal and Simpson formulae are special cases (for n = 0, 1, 2) of the
closed Newton-Cotes formulae. These are Lagrange interpolation formulae with equally
spaced nodes in [a, b], i.e., for a fixed n � 0, xk = x0 + kh, k = 0, .., n and h = b � a. In
particular, Newton-Cotes formulae are defined in a closed or opened version:

• closed formulae are characterized by x0 = a, xn = b, and h = b�a
n , n � 1;

• open formulae are characterized by x0 = a + h, xn = b � h, and h = b�a
n+2 , n � 0.

The Newton-Cotes formulae can also be constructed in a composite version.

B.2.4 The Gauss formulae

The Gauss quadrature formulae were introduced to increase the degree of exactness
of the quadrature rules. In fact, it was proven (see Theorem 10.1 and Corollary 10.2
in [233]) that a suitable choices of the nodes could provide a formula with maximum
degree of exactness r = n + m and m = n + 1. These integration methods are based
on the concept of approximation of a function by orthogonal polynomials:

Definition B.1. Let w = w(x) be a weight function on the interval (�1, 1), i.e., a
nonnegative integrable function defined on this interval. {pk, k = 0, 1, ..} is a system
of mutually orthogonal algebraic polynomials on the interval (�1, 1) with respect to
w, with pk of degree equal to k for each k � 0, if

Z 1

�1
pk(x)pm(x)w(x)dx = 0 for k 6= m .

There are several families of orthogonal polynomials. Two relevant examples are
the Chebyshev polynomials and the Legendre polynomials. The former, denoted by Tk(x),
considers the weight function w(x) = (1 � x2)1/2 and is defined as

Tk(x) = cos (kq) ,

with q = arccos x and k � 0. In particular, for any k � 0, we notice that Tk 2 Pk,
i.e., Tk(x) is an algebraic polynomial of degree k with respect to x. The Legendre
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polynomials, denoted by Lk(x), are orthogonal polynomials over the interval (�1, 1)
with respect to the weight function w(x) = 1. They are defined as

Lk(x) =
1
2k

[k/2]

Â
l=0

(�1)l
✓

k
l

◆✓
2k � 2l

k

◆
xk�2l (B.14)

where [k/2] is the integer part of k/2. For every k � 0, Lk 2 Pk.
As introduced above, these orthogonal polynomials are used for deriving quadra-

ture formulae with maximal degrees of exactness. Denoting by {xi, i = 0, ..., n} the
set of n + 1 distinct points in the interval [�1, 1], we introduce the definition of a nodal
polynomial of degree n + 1 as

wn+1(x) =
n

’
i=0

(x � xi) .

In particular, it has been proved that
Z 1

�1
wn+1(x)p(x)w(x)dx = 0 8p 2 Pn

for a weighting function w(x). Therefore, wn+1 is a polynomial of degree n+ 1 orthog-
onal to all the polynomials of lower degree. Its roots {xj} are called the Gauss nodes
associated with the weight function w(x). Thus, the quadrature formula

In,w( f ) =
n

Â
i=0

ai f (xi)

with nodes {xj} and coefficients

ai =
Z 1

�1
li(x)w(x)dx

has degree of exactness 2n + 1 and is called the Gauss quadrature formula. Here,
li(x) 2 Pn is the i-th characteristic Lagrange polynomial of f with li(xj) = dij for
i, j = 0, 1, ..., n. If Gaussian quadratures are considered with respect to the Chebyshev
weight w(x) = (1 � x2)�1/2, the Gauss nodes and coefficients are given, respectively,
by

xj = �cos
(2j + 1)p
2(n + 1)

0  j  n ,

aj =
p

n + 1
0  j  n .

Considering the Legendre weight w(x) = 1, for n � 0, the Gauss coefficients are given
by

aj =
2

(1 � x2
j )[L

0
n+1(xj)]2

0  j  n ,

while the Gauss nodes {xj} are the roots of Ln+1(x), the (n + 1)-th Legendre polyno-
mial defined in (B.14). Algorithm 2.4 computes the ak (a in the algorithm) and bk (b in
the algorithm) coefficients for the Legendre polynomial of degree n, while Algorithm
2.5 computes the nodes (x in the algorithm) and the weights (w in the algorithm) of
the Gauss-Legendre formula with n nodes. In particular, we use this Gauss-Legendre
quadrature formula for the numerical integration of the tensor DT obtained with the
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orientation distribution function (see Chapter 2 for the corresponding details).

Algorithm 2.4 Coefficients of Legendre polynomials.
function [a, b] = coeflege(n)

if (n <= 1) then
error(’n must be > 1’);

end if
a = zeros(n,1);
b = a;
b(1) = 2;
k = [2 : n];
b(k) = 1./(4 - 1./(k-1).^2);

return

Algorithm 2.5 Coefficients of Gauss-Legendre formula.
function [x, w] = zplege(n)

if (n <= 1) then
error(’n must be > 1’);

end if
[a, b] = coeflege(n);
JacM = diag(a) + diag(sqrt(b(2 : n)), 1) + diag(sqrt(b(2 : n)), -1);
[w, x] = eig(JacM);
x = diag(x);
scal = 2;
w = (w(1, :)’.^2)*scal;
[x, ind] = sort(x);
w = w(ind);

return

Multidimensional numerical integration

All the methods proposed in this section can be extended to a multidimensional case.
Considering the bidimensional case, we assume that W is a convex polygon on which
we introduce a triangulation Th of NT triangles, or elements, with mesh size h. Similar
to the one-dimensional case, the idea of the interpolatory quadrature rule consists in
substituting the function f = f (x, y) in the integral with its composite interpolating
polynomial on the triangulation Th. Denoting by aT

j , for j = 1, 2, 3, and aT, the vertices
and the center of gravity of the triangle T 2 Th, respectively, and with |T| the area
of the triangle T, we provide here some examples of bidimensional composite quadrature
formulae:

Ic
0( f ) = Â

T2Th

|T| f (aT) composite midpoint formula ,

Ic
1( f ) =

1
3 Â

T2Th

|T|
3

Â
j=1

f (aT
j ) composite trapezoidal formula .

The multidimensional counterpart of the Gaussian formula on triangles is provided by
the so-called symmetric formula. Considering a generic triangle T 2 Th and denoting
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by aT
(j), for j = 1, 2, 3, the midpoints of the edges of T, two examples of symmetric

formulae read:

I3( f ) = Â
T2Th

|T|
3

3

Â
j=1

f (aT
(j)) ,

I7( f ) = Â
T2Th

|T|
60

 
3

3

Â
j=1

f (aT
j ) + 8

3

Â
j=1

f (aT
(j)) + 27 f (aT)

!
.

Several other numerical methods for the approximation of integrals in higher di-
mensions are available in the literature. For instance, referring to the Gauss formula,
choosing a different kind of interpolating polynomial (such as the Hermite or Laguerre
polynomials), other Gauss quadrature formulae can be derived. Moreover, other ap-
proximation procedures, such as the Richardson extrapolation method can be used. How-
ever, we remark that with this appendix we just provide a brief presentation of the
methods we implement in our computations, referring the reader to more detailed
descriptions and other options available in the literature. In the specific, the multidi-
mensional symmetric formula I7 is used for the approximation of the integral involved
in the stiffness and convection matrices and in the load vector of the finite element
method used in Chapters 3-5 and 7. The one-dimensional Gauss-Legendre quadra-
ture formula is implemented for the construction of the tensor DT for the orientation
distribution function described in Chapter 2.
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CDrosophila model and data analysis

The biological experiments briefly introduced in Chapter 7 and used for the analysis of
the protein distribution in the different tumor regions were performed in a Drosophila
model of glioblastoma. In this appendix, we first comment in Section C.1 on the main
biological features characterizing the Drosophila model and on the proteins involved
in the study of tumor migration. Then, in Section C.2, we describe the experimental
procedures and, finally, in Section C.3, we briefly introduce the main aspects related
to the data analysis.

C.1 Drosophila model and GB

Drosophila melanogaster has been a significant model organism throughout the 20th
century and into the 21st century. Many of its internal organ systems are function-
ally analogous to those in vertebrates, including humans. Although there are great
differences in terms of gross morphological and cellular features, many of the molec-
ular mechanisms that govern the development and drive cellular and physiological
processes are conserved [282]. Therefore, the Drosophila model provides a power-
ful platform to perform molecular and cellular analysis of human genes and their
disease variants and offers several advantages, including easy handling, rapid gener-
ation time, low cost, and a wide armamentarium of genetic techniques. In particular,
concerning the study of the function of specific genes in the central nervous system,
this model organism can be used to address questions related to human brain tumors.

The larval brain of a Drosophila is composed of two hemispheres and the ventral
ganglion where the peripheral nerves originate from [299]. In its central nervous sys-
tem, approximately 10% of the cells are of glial nature and are classified as either
midline glia or lateral glia, the latter being positive for the glial marker reversed
polarity (repo). The Drosophila melanogaster model of a brain tumor is based on ge-
netic mutations in EGFR and PI3K pathways equivalent to the ones found in patients
[241]. The most frequent genetic lesions in human glioblastoma include the consti-
tutive mutation or amplification of phosphatidylinositol 3-kinase (PI3K) and Epider-
mal Growth Factor Receptor (EGFR) pathways. In particular, glioma-associated EGFR
mutant forms show a constitutive kinase activity that chronically stimulates Ras sig-
naling to drive cell proliferation and migration [241]. In Drosophila, glial cells respond
to this oncogenic combination of EGFR and PI3K mutations that effectively causes a
glioma-like condition. In particular, Drosophila glia cells show many features of hu-
man gliomas, including glia expansion, brain invasion, neuron dysfunction, synapse
loss, and neurodegeneration [240]. Moreover, this model has proved to be useful in
finding new kinase activities relevant to glioma progression [228].

To generate a glioma in Drosophila melanogaster adult flies, we use the Gal4/UAS
system [32], constituted by two parts: the gene Gal4 and the sequence UAS (Up-
stream Activation Sequence), promoting Gal4 activation. This system is a biochemical
method used to study gene expression and function in organisms such as the fruit
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fly. We over-express constitutively active forms of EGFR and PI3K under the control
of UAS sequences. To restrict this expression to glial cells, we use the specific en-
hancer repo, a paired-like homeodomain protein expressed exclusively in glial cells
and required for the migration and differentiation of embryonic glial cells (genotypes:
repo-Gal4>UAS-EGFRl, UAS-dp110). In particular, this Drosophila model has been
used for drug and genetic screenings and the results have been validated in human
GB cells (see [228] and references therein).

The study of integrin and protease distribution across the tumor domain and in the
healthy tissue (presented in Chapter 7) is performed using specific antibodies and im-
munofluorescent dyes. In the specific, the study of protease distribution is performed
with a specific monoclonal antibody for the MMP1 protein. To study the integrin
distribution and activity two main elements are considered: Talin and FAK. Talin is a
high-molecular-weight cytoskeletal protein concentrated in regions of cell–substratum
contact. It has emerged as the key cytoplasmic protein that mediates integrin adhe-
sion to the extracellular matrix. Therefore, it is considered as a mediator of the integrin
adhesivity required for integrin function. Talin co-distributes with concentrations of
integrins in the plasma membrane and it links clusters of integrins bound to the ECM
and the cytoskeleton. Therefore, it is essential for the formation of focal adhesion-
like clusters of integrins [38]. The gene rhea encodes Talin in Drosophila [144]. FAK,
focal adhesion kinase, is a cytoplasmic tyrosine kinase involved in signaling and cy-
toskeleton dynamics associated with integrin activity. It influences cellular adhesion
and spreading processes [89, 179]. In particular, we use the gene myospheroid (mys) to
control the adhesion/signaling process related to the b subunit of the integrin dimer.
We use Rhea and mys knockdown to study the effects of integrin activity during GB
expansion. It was shown in Figure 7.10 of Chapter 7, where specific RNA interferences
(RNAi) tools were used to inhibit these two key players for integrin function.

C.2 Experimental procedures

All the experiments analyzed and used for the modeling set proposed in Chapter 7
were performed at the Instituto Cajal CSIC (Madrid, Spain) by Sergio Casas Tintó,
principal investigator of the group Glia-Neuron molecular signaling. We provide here a
brief description of the materials and the experimental procedures employed.

• The flies were raised with standard fly food at 25oC. In particular, different
fly stocks were used, i.e., from the Bloomington stock Centre: UAS-myr-RFP
(BL7119), repo-Gal4 (BL7415), tub-gal80ts (BL7019), form Vienna Drosophila Re-
source Center (VDRC): UAS-mys RNAi (BL33642), UAS-rhea RNAi (BL28950),
while UAS-dEGFRl, UAS-PI3K92E (dp110CAAX) were kindly provided by R.
Read (from the Emory University School of Medicine, USA).

• For the study of the distribution of the proteins in the tissue, we use an im-
munostaining procedure. As we briefly mentioned in the introduction, this tech-
nique is based on the use of antibodies to detect a specific protein in a sample
and to visualize protein distribution. First, we generate Drosophila brain sam-
ples with a genetically induced GB (genotypes: repo>PI3K; EGFR). We induce
the co-expression of a membrane bound version of the red fluorescent protein
(UAS-myrRFP) in order to obtain a red marker for GB cell membranes. Then, we
dissect third-instar larval brains in phosphate-buffered saline (PBS), fixed in 4%
formaldehyde for 25 min, washed in PBS + 0.3% Triton X-100 (PBT), and blocked
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in PBT + 5% BSA (bovine serum albumin). We use different antibodies for pro-
teases and integrins: mouse anti-MMP1 (dilution 1:50), mouse anti-FAK (dilu-
tion 1:50), rabbit anti-Talin (dilution 1:50). The former, mouse anti-MMP1, was
provided by the DSHB (Developmental Studies Hybridoma Bank), while the
latter, mouse anti-FAK and rabbit anti-Talin, was kindly provided by I. Guerrero
from Centro de Biología Molecular “Severo Ochoa” (Madrid, Spain). Instead,
the secondary antibodies, which bind to primary antibodies (directly bound to
the target antigen) and necessary for signal detection and amplification, are anti-
mouse Alexa 488, 568, 647, anti-rabbit Alexa 488, 568, 647 (form Thermofisher,
dilution 1:500).

• The imaging process for the visualization of the brain sample consists of mount-
ing the Drosophila brain images in Vectashield mounting media with DAPI (Vec-
tor Laboratories) and analyzing by Confocal microscopy (LEICA TCS SP5) with
a 63x oil immersion objective and three-fold magnification. In particular, we
process the images using the Image J 1.52t1, a Java-based image processing pro-
gram. Examples of the visualization of a brain sample, marked with different
antibodies, are provided in Figures C.1 and C.2.

FIGURE C.1: Examples of visualizing immunostaining images. Drosophila
brain samples with genetically induced GB and stained with mouse anti-MMP1
antibody (left, green) and with mouse anti-FAK antibody (right, green). Both
samples are marked with a membrane bound version of the red fluorescent

protein to visualize the neoplastic tissue.

• In the end, we determine the quantifications of the signals for FAK, MMP1, and
Talin from images taken at the same confocal settings. In the specific, the pixel
intensity is measured using the plot profile tool from the processing package Fiji
1.52t2. An example of a plot profile derived from the quantification of MMP1
and GB membrane signals is provided in Figure C.3.

• An additional step in the experiments is performed for the study of the animal
survival presented in the analysis of rhea and mys knockdown (see Figure 7.10
of Chapter 7). In particular, animal survival is represented as the percentage of
flies with GB induction (genotypes: repo-Gal4>UAS-EGFRl, UAS-dp110) that
reach adulthood compared to control siblings. n>100 samples analyzed per ex-
periment.

1
https://imagej.nih.gov/ij/index.html

2
https://imagej.net/Fiji
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FIGURE C.2: Examples of visualizing co-stained immunostaining images.
Drosophila brain sample with genetically induced GB and co-stained with
mouse anti-FAK (middle, magenta) and rabbit anti-Talin (right, green) antibod-
ies. The three images refer to the same sample where the two proteins were
co-expressed together with a membrane bound version of the red fluorescent

protein to visualize the neoplastic tissue.

FIGURE C.3: Example of the signal quantification. In the brain sample on the
left, where MMP (in green) and GB membrane (in red) are visualized, the pixel
intensity along the white line was measured with the plot profile tool of Image

J. The graphs on the right show the raw quantifications of the two signals.

C.3 Data analysis

For the analysis of the experimental data concerning the distributions of MMPs, ac-
tive and inactive integrins, we work in the Matlab environment using the curve fitting
toolbox. In particular, we start with the data obtained from the quantification of the
marker signals. The plot profile tool provides the values of the pixel intensity of the
signals along the chosen line. These values provide information about the position
of the point along the line and the corresponding intensity of the marker. Loading
this data into Matlab, we use the Curve Fitting Toolbox3 for their analysis and in-
terpolation. In the specific, this toolbox provides several functions for fitting curves

3
https://uk.mathworks.com/products/curvefitting.html
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and surfaces to data. The toolbox permits the performance of exploratory data anal-
ysis, preprocessing and post-processing of the data, comparison of candidate models,
and the removal of outliers. It uses linear and nonlinear models for regression anal-
ysis, providing optimized solver parameters and starting conditions. In particular,
several fitting models are available, such as regression models, interpolation methods, in-
cluding linear interpolation, cubic splines, or piecewise cubic Hermite interpolation,
and smoothing models, including the smoothing spline method. The latter is the proce-
dure we choose for the data at hand.

The smoothing spline method is particularly recommended for noisy data. Denot-
ing with {xi, yi} 2 X ✓ R2 the set of points and the corresponding signal values, for
i = 1, ..., Ne , this fitting model consists in the construction of a smoothing spline s
for the specified smoothing parameter p and weights {wi}. In particular, the smoothing
spline minimizes

p
Ne

Â
i=1

wi(yi � s(xi))
2 + (1 � p)

Z

X

✓
d2s
dx2

◆2

dx .

If the weights are not specified, they are assumed to be wi = 1 for all data points.
The smoothing parameter is defined in the interval [0, 1]. With p = 0 we obtain a
least-squares straight-line fit to the data, while for p = 1 we obtain a cubic spline in-
terpolant, i.e., a piecewise cubic polynomial fit that passes through all the data points
{xi, yi}. When the smoothing parameter is not directly specified, the system auto-
matically selects it, usually near the value 1

1+h3/6 , being h the average spacing of the
data. Smoothing splines can be considered as parametric fitting, as the smoothing
parameter is associated with them. However, they belong to the class of piecewise
polynomials, like cubic splines, and to the class of shape-preserving interpolants. The
smoothing spline fit can be obtained interactively through the curve fitting interface
or directly using the fit functions.

• Using the curve fitting interface form the Curve Fitting Toolbox, the user has to
load the data points {xi, yi}, and eventually the weights {wi}. Then, selecting
smoothing spline from the model type list, it is possible to specify the value of
the smoothing parameter, which makes the fit smoother or rougher. The toolbox
attempts to select a default value appropriate for the data. Finally, it is possible
to extract the plot as well as to save the output of the fitting and the goodness
parameters in the workspace. The toolbox determines the goodness of fit cal-
culating the sum of squares due to error (SSE), the R-square value, the adjusted
R-square value, and the root mean squared error (RMSE)4. In Figure C.4, an illus-
trative example of the interactive window of the curve fitting interface is shown.

• Considering directly the fit function form the Curve Fitting Toolbox on the
data point {xi, yi}, to use the smoothing spline model the user has to specify
’smoothingspline’ when calling the fit function. Moreover, it is possible to
obtain several outputs for the model in order to visualize not only the fitting (f),
but also the goodness parameters (gof) and other output values (out), like the
calculated smoothing parameter (out.p). Defined the structure data_point con-
taining the point set {xi, yi}, we provide the corresponding code in Algorithm
3.1.

4For further details about how to evaluate the goodness of the fit see https://uk.mathworks.com/

help/curvefit/evaluating-goodness-of-fit.html.
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FIGURE C.4: Interactive interface of the Curve Fitting Toolbox.

Algorithm 3.1 Fit a smoothing spline model.
load data_point

[f, gof, out] = fit(x_point, y_value, ’smoothingspline’);

plot(f, x_point, y_value) . Plot the data point and the model fitting them.
out.p . Visualize the calculated smoothing parameter.

Alternatively, using fitoptions it is possible to specify the values of the smooth-
ing parameter before the fitting, as well as many other options. In particular,
some of these options are: Method; SmoothingParam; Normalize, centering and
scaling the data; Weights; Exclude, specifying the points to exclude from the fit-
ting; Lower and Upper, for eventually lower and upper bounds on the coeffi-
cients to be fitted; MaxIter, for the maximum number of iterations allowed for
the fit. Many other options can be added, depending also on the chosen fitting
method. In Matlab, to specification these options we have to call fitoptions
(e.g. options=fitoptions(’Method’,’Smooth’,’SmoothingParam’,0.07)) be-
fore the fit function.

After creating a fit, a variety of post-processing methods for plotting, interpolation,
and extrapolation can be applied, as well as for estimating confidence intervals, or
calculating integrals and derivatives. In our analysis, an additional step in the pro-
cessing of the data consists of the evaluation of the residual level of fluorescence in
the images. In fact, during the imaging and quantification processes, we observe that
a low constant level of the membrane bound red fluorescent protein, marking the GB
membrane, almost everywhere in the domain. This is due to the used immunostain-
ing and imaging technique that could not eliminate this residual level of the GB marker.
In particular, this noise affects not only the GB marker but also all the other protein
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markers. Therefore, for each image that is analyzed, we quantify both the measure-
ments for the protein distributions in the specific regions we are interested in and the
residual marker levels. This residual level is then analyzed and, thus, the calculated
average estimation is subtracted from the corresponding protein quantifications.

For the study proposed in Chapter 7, we ensure the robustness of the obtained re-
sults concerning the protein distributions, i.e., we check that these results are not char-
acteristics of a specific fly or brain sample, but are generally applicable. Therefore, for
each protein distribution study, we analyzed several biological images. In total, for
the study of the MMP1 distribution, we analyzed 35 measurements of this distribu-
tion taken from brain images of 11 different animals; for the distribution of Talin and
FAK, we analyzed 14 measurements from brain images of 6 different animals; finally,
for the combined distribution of FAK and MMP1, we analyzed 23 measurements from
brain images of 13 different animals.
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