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a b s t r a c t

Unsupervised anomaly discovery in stream data is a research topic with many practical applications.
However, in many cases, it is not easy to collect enough training data with labeled anomalies for
supervised learning of an anomaly detector in order to deploy it later for identification of real
anomalies in streaming data. It is thus important to design anomalies detectors that can correctly
detect anomalies without access to labeled training data. Our idea is to adapt the Online evolving
Spiking Neural Network (OeSNN) classifier to the anomaly detection task. As a result, we offer an
Online evolving Spiking Neural Network for Unsupervised Anomaly Detection algorithm (OeSNN-UAD),
which, unlike OeSNN, works in an unsupervised way and does not separate output neurons into disjoint
decision classes. OeSNN-UAD uses our proposed new two-step anomaly detection method. Also, we
derive new theoretical properties of neuronal model and input layer encoding of OeSNN, which enable
more effective and efficient detection of anomalies in our OeSNN-UAD approach. The proposed OeSNN-
UAD detector was experimentally compared with state-of-the-art unsupervised and semi-supervised
detectors of anomalies in stream data from the Numenta Anomaly Benchmark and Yahoo Anomaly
Datasets repositories. Our approach outperforms the other solutions provided in the literature in the
case of data streams from the Numenta Anomaly Benchmark repository. Also, in the case of real data
files of the Yahoo Anomaly Benchmark repository, OeSNN-UAD outperforms other selected algorithms,
whereas in the case of Yahoo Anomaly Benchmark synthetic data files, it provides competitive results
to the results recently reported in the literature.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Unsupervised anomaly discovery in stream data is a research
opic that has important practical applications. For example, an
nternet system administrator may be interested in recognition
f abnormally high activity on a web page potentially caused
y a hacker attack. Unexpected spiking usage of a CPU unit
n a computer system could be another example of anomalous
ehavior that may require investigation. Correct detection and
lassification of such anomalies may enable optimization of the
erformance of the computer system. However, in many cases, it
s not easy to collect enough training data with labeled anomalies
or supervised learning of an anomaly detector in order to use
t later for identification of real anomalies in streaming data. It
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is thus particularly important to design anomalies detectors that
can correctly detect anomalies without access to labeled training
data. Moreover, since the characteristic of an input data stream
may be changing, the anomaly detector should learn in an online
mode.

In order to design an effective anomaly detection system, one
can consider adaptation of evolving Spiking Neural Networks
(eSNNs) (Kasabov, 2014; Lobo et al., 2018, 2020b; Maciąg et al.,
2020) to the task. eSNN is a neural network with an evolv-
ing repository of output neurons, in which learning processes,
neuronal communication and classification of data instances are
based solely on transmission of spikes from input neurons to
output neurons (Kasabov, 2014). The spikes increase so called
post-synaptic potential values of output neurons, and directly
influence the classification results. The input layer of neurons in
eSNN transforms input data instances into spikes. Depending on
the type of input data, the transformation can be carried out by
means of the temporal encoding methods such as Step-Forward

or Threshold-Based (Maciąg et al., 2019; Petro et al., 2019) or,
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lternatively, with the use of Gaussian Receptive Fields (Lobo
t al., 2018). The distinctive feature of the eSNN is that its reposi-
ory of output neurons evolves during the training phase based
n candidate output neurons that are created for every new
nput data sample (Kasabov, 2015; Kasabov et al., 2013). More
pecifically, for each new input value, a new candidate output
euron is created and is either added to the output repository or,
ased on the provided similarity threshold, is merged with one
f the output neurons contained in the repository.
Recently, an online variant OeSNN of eSNN was proposed for

lassification of stream data (Lobo et al., 2018). Contrary to the
SNN architecture, the size of the evolving repository of output
eurons in OeSNN is limited. When the repository of output
eurons is full and a new candidate output neuron is significantly
ifferent from all of the neurons in the repository, an oldest
euron is replaced with the new candidate output neuron. It was
laimed in Lobo et al. (2018) that OeSNN is able to make fast
lassification of input stream data, while preserving restrictive
emory limits. Considering all the positive features of eSNN
nd OeSNN, in this article, we offer a novel Online evolving
piking Neural Network for Unsupervised Anomaly Detection
OeSNN-UAD) in stream data.

Our main contributions presented in this article are as follows:

• We offer a new OeSNN-UAD anomaly detector working on-
line in an unsupervised way. It adapts the architecture of
OeSNN, which also works in an online way, but, unlike
OeSNN-UAD, requires supervised training. The main dis-
tinction between our detector and OeSNN lies in applying
different models of an output layer and different meth-
ods of learning and input values classification. While out-
put neurons of OeSNN are divided into separate decision
classes, there is no such separation of output neurons in
our approach. Rather than that, each new output neuron is
assigned an output value, which is first randomly generated
based on recent input values and then is updated in the
course of learning of OeSNN-UAD.
• As a part of the proposed OeSNN-UAD detector, we offer

a new anomaly classification method, which classifies an
input value as anomalous only in the following two cases:

1. if none of output neurons in the repository fires, or
otherwise,

2. if an error between an input value and its OeSNN-UAD
prediction is greater than the average prediction error
plus user-given multiplicity of the standard deviation
of the recent prediction errors.

This two-step approach to classification of an input value
as anomalous or not enables more effective detection of
anomalies in input stream data and to the best of our knowl-
edge was not previously used in the literature.
• We derive the important theoretical property of the OeSNN

neuronal model that shows that the values of post-synaptic
potential thresholds of all output neurons are the same.
This property is inherited by our OeSNN-UAD detector. The
obtained result eliminates the necessity of recalculation of
these thresholds when output neurons of OeSNN, as well as
of OeSNN-UAD, are updated in the course of the learning
process, and increases the speed of classification of input
stream data. Moreover, we also prove that firing order val-
ues of input neurons do not depend on values of TS and
β parameters, which were previously used in OeSNNs for
input value encoding with Gaussian Receptive Fields.
• We prove experimentally that in the case of stream

data from the Numenta Anomaly Benchmark repository
(Ahmad et al., 2017a) as well as from the Yahoo
119
Anomaly Datasets repository (Webscope, 2015) the pro-
posed OeSNN-UAD detects anomalies in unsupervised way
more effectively than other state-of-the-art unsupervised
and semi-supervised detectors proposed in the literature.
• Eventually, we argue that the proposed OeSNN-UAD is able

to make fast detection of anomalies among data stream
input values and works efficiently in environments with
imposed restrictive memory limits.

The paper is structured as follows. In Section 2, we overview
he related work. In Section 3, we present the architecture of
nline evolving Spiking Neural Networks, whose adaptation pro-
osed by us will be then used in OeSNN-UAD. In Section 4,
e provide new theoretical properties of neuronal model and

nput layer encoding of OeSNN, which enable more effective and
fficient detection of anomalies in our OeSNN-UAD approach. In
ection 5, we offer our online method to unsupervised anomaly
etection in stream data OeSNN-UAD. Section 6 presents and dis-
usses the proposed OeSNN-UAD algorithm in detail. In Section 7,
e present the results of comparative experimental evaluation of
he proposed OeSNN-UAD detector and state-of-the-art unsuper-
ised and semi-supervised detectors of anomalies. We conclude
ur work in Section 8.

. Related work

A number of solutions to the task of unsupervised anomaly
etection in time series data was offered in the literature. The
tate-of-the-art algorithms for unsupervised and semi-supervised
nomaly detection are:

• Numenta and NumentaTM (Ahmad et al., 2017c) — two
slightly different algorithms that consist of the following
modules: (i) a Hierarchical Temporal Memory (HTM) net-
work for predicting the current value of an input stream
data, (ii) an error calculation module, and (iii) an anomaly
likelihood calculation module, which classifies the input
value as an anomaly or not based on the likelihood of
the calculated error. Both algorithms are implemented in
Python and are available as a part of the Numenta Anomaly
Benchmark repository. NumentaTM and Numenta differ in
implementation of the HTM network and its parameters
initialization.
• HTM JAVA (Hawkins & Ahmad, 2016) — a JAVA implemen-

tation of the Numenta algorithm.
• Skyline (Stanway, 2015) — an algorithm based on ensembles

of several outliers’ detectors, such as e.g. Grubb’s test for
outliers or a simple comparison of the current input value
of a data stream against the deviation from the average of
past values. In Skyline, a given input value of a data stream
is classified as an anomaly if it is marked as anomalous by
the majority of ensemble detectors. Skyline is implemented
in Python and is available as a part of the Numenta Anomaly
Benchmark repository.
• TwitterADVec (Kejariwal, 2015) — a method for anomaly

detection based on the Seasonal Hybrid ESD (S-H-ESD) algo-
rithm (Chandola et al., 2009). For given time series values,
the S-H-ESD algorithm first calculates extreme Student de-
viates (Rosner, 1983) of these values and then, based on
a statistical test, decides which of these values should be
marked as outliers. The TwitterADVec method is currently
implemented as an R language package and is a part of the
Numenta Anomaly Benchmark repository.
• Yahoo EGADS (Extensible Generic Anomaly Detection Sys-

tem) (Laptev et al., 2015) — an algorithm consisting of

the following modules: (i) a time-series modeling module,
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(ii) an anomaly detection module, and (iii) an alerting mod-
ule. Yahoo EGADS is able to discover three types of anoma-
lies: outliers, sudden changepoints in values and anoma-
lous subsequences of time series. To this end, the following
three different anomaly detectors were implemented in Ya-
hoo EGADS: (i) time series decomposition and prediction
for outliers’ detection, (ii) a comparison of values of cur-
rent and past time windows for changepoint detection, and
(iii) clustering and decomposition of time series for detec-
tion of anomalous subsequences.
• DeepAnT (Munir et al., 2019b) — a semi-supervised anomaly

detection method based on either convolutional neural net-
works or Long–Short Term Memories networks. DeepAnT
consists of a time series prediction module and an anomaly
detection module. DeepAnT uses the first part of a time se-
ries as a training and validation data and detects anomalies
in the remaining part of the time series.
• Bayesian Changepoint (Adams & MacKay, 2007) — an online

algorithm for sudden changepoint detection in time series
data by means of the Bayesian inference. This method is
particularly suited to such time series data, in which it is
possible to clearly separate partitions of values generated
from different data distributions. The algorithm is able to
detect the most recent changepoint in the current input
values based on the analysis of probability distributions of
time series partitions, which are created from changepoints
registered in the past values.
• EXPected Similarity Estimation (EXPoSE) (Schneider et al.,

2016) — an algorithm that classifies anomalies based on
the deviation of an input observation from an estimated
distribution of past input values.
• KNN CAD (Burnaev & Ishimtsev, 2016) — a method of

anomaly detection in univariate time series data based on
nearest neighbors classification. KNN CAD method first
transforms time series values into its Caterpillar matrix.
Such a matrix is created both for the most recent input
value (which is classified as an anomaly or not) and for a
sequence of past values, which are used as reference data.
Next, the Non-Conformity Measure (NCM) is calculated both
for the classified value and for the reference values using the
created Caterpillar matrix. Eventually, the anomaly score of
the classified input value is obtained by comparing its NCM
with NCMs of the reference values.
• Relative Entropy (Wang et al., 2011) — a method, which uses

a relative entropy metric (Kullback–Leibler divergence) of
two data distributions to decide if a series of input values
can be classified as anomalies.
• ContextOSE (Smirnov, 2016) — an algorithm that creates a

set of contexts of time series according to the characteristics
of its values. A subsequence of most recent input values
is classified as anomalous if its context differs significantly
from the contexts of past subsequences of values.

The above presented methods and algorithms are directly
compared to our approach in the experimental evaluation pro-
vided in Section 7. In addition to these approaches, other non-
online unsupervised methods of anomaly detection in time
series data were proposed. In Munir et al. (2019a), an unsuper-
vised detector of anomalies in time series, which combines the
ARIMA (Auto-regressive Moving Average) method and convolu-
tional neural networks, was provided. Ergen and Kozat (2019)
introduced an unsupervised anomaly detection method integrat-
ing Long–Short Term Memory networks and One-class Support
Vector Machines. Yet another non-online unsupervised approach
to anomaly detection was offered in Lin and Su (2019). It uses
a sliding window data stream sampling algorithm based on data
120
elements to sample the sensor network data stream. The sam-
pling result is used as the sample set of the clustering algorithm
to detect anomalies in the data stream.

A supervised eSNN approach to anomaly detection, called
HESADM, was proposed in Demertzis and Iliadis (2014). In this
approach, the eSNN network is first taught based on a training
part of data, and then is used for detection of anomalies in the re-
maining part of data. In Demertzis et al. (2019), a semi-supervised
approach to anomaly detection with one-class eSNN was offered
and dedicated to intrusion detection systems. Contrary to the
approaches presented in Demertzis and Iliadis (2014), Demertzis
et al. (2019), OeSNN-UAD approach offered in this work learns to
recognize anomalies in an unsupervised mode, in which anomaly
labels are not assigned to data samples.

The distinguishing feature of our proposed OeSNN-UAD
anomaly detector compared to the above-mentioned methods
and algorithms is that it is the only eSNN-based detector oper-
ating both in an online and unsupervised way.

The anomaly detectors proposed in Zhang et al. (2019) and
Bovenzi et al. (2011) are also online unsupervised ones. They
detect whether a current data stream value is an anomaly or not
based only on a given number of recent input values.

• The SPS algorithm, presented in Bovenzi et al. (2011), uses
a window of recent values to calculate statistics that enable
dynamic determination of a lower bound and an upper
bound on the expected value of the current data point. The
real current value is defined as anomalous if it is outside the
current bounds. The SPS algorithm was found in Zoppi et al.
(2019) as inferior to non-online unsupervised algorithms
kMeans and kHOBS on all datasets tested there (KDD Cup 99
(1999), NSL-KDD (2009), ISCX (2012), UNSW-NB15 (2015)).
• The algorithm offered in Zhang et al. (2019) splits the win-

dow of recent values into disjoint subwindows. A vector
(PDD) of Probability Density-based Descriptors is calculated
for each subwindow. Checking if the current value is an
anomaly or not is based on the distances between PDDs of
each of two consecutive subwindows. The algorithm was
tested in Zhang et al. (2019) on a number of data streams
from the Numenta Anomaly Benchmark repository and was
found an effective anomaly detector there. In the experi-
mental evaluation provided in Section 7, we compare its
quality with the quality of OeSNN-UAD.

An important feature distinguishing OeSNN-UAD from the
two above mentioned algorithms is that the predictions made
by OeSNN-UAD are not only based on the contents of a sliding
window of recent input values, but also on the state of an evolv-
ing spiking neural network, which plays a role of an adaptable
memory of historical input values.

Overview of anomaly detection techniques for stream data can
be found in Chalapathy and Chawla (2019), Chandola et al. (2009,
2012, 2008), Izakian and Pedrycz (2013), Izakian and Pedrycz
(2014), Kwon et al. (2017), Pimentel et al. (2014) and Ergen and
Kozat (2019).

3. Online evolving Spiking Neural Networks

Our approach to unsupervised anomaly detection adapts the
architecture of OeSNN networks previously introduced in Lobo
et al. (2018). Thus, the presentation of our approach is preceded
with an overview of the architecture of OeSNN network and
its classification principles. Input values encoding method and
output neuronal model used in that type of network are given
as well.
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Fig. 1. OeSNN architecture introduced in Lobo et al. (2018).
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.1. Architecture of Online evolving Spiking Neural Networks

OeSNN networks were designed to perform classification tasks
n streaming data. OeSNN extends eSNN architecture, which was
esigned for classification of batch data with separate training
nd testing parts (Kasabov, 2007). Both eSNN and OeSNN archi-
ectures consist of input and output layers, however the number
f output neurons in OeSNN is limited, while in eSNN it is un-
imited. The limitation on the number of neurons in OeSNN is
otivated by requirements for the classification of data stream
alues, where usually a large number of input data is processed
nd strict memory requirements exist. Both eSNN and OeSNN
reate a candidate output neuron for each new data sample and
ither insert it to the output repository when the candidate out-
ut neuron is significantly different from all output neurons in the
epository or, otherwise, merge it with the most similar output
euron in the repository. However, OeSNN unlike eSNN, controls
he size of the repository and when the repository is full, OeSNN
nserts the candidate output neuron into it only after the removal
f an oldest output neuron from the repository. The input layer
f OeSNN consists of so-called Gaussian Receptive Fields (GRFs)
nd input neurons. The aim of GRFs is to encode input values
nto firing times and firing order values of input neurons (Lobo
t al., 2020a).1 The firing order values of input neurons are further

used to initialize synapses weights between each input neuron
and a candidate output neuron and then to classify an input data
sample. The classification in OeSNN is performed by calculation of
so-called Post-synaptic Potential (PSP) values of output neurons
in the output repository. For each input sample to be classified,
first GRFs are initialized, and then they are used for calculation of
order values of input neurons. Next, given that encoding the PSP

1 Several published studies have widely agreed on the suitability of the
aussian Receptive Fields encoding (and its variants) for streaming scenarios
please see, for example, (Lobo et al., 2020a) or (Petro et al., 2019)). Other
lternatives include temporal encoding techniques, such as Threshold-based
epresentation algorithm, Bens Spiker algorithm or Moving Window algorithm,
hich were reviewed e.g. in Petro et al. (2019) and in Maciąg et al. (2019).
he temporal encoding techniques can be especially useful in the case of time
eries data with significant changes of input values, such as EEG or fMRI time
eries data. Recently, a new encoding technique was proposed in Maciąg et al.
2020). This encoding technique directly calculates firing order values of input
eurons (without calculation of exact firing times of input neurons).
121
values of output neurons are updated. A decision class assigned to
the output neuron whose PSP value first exceeds PSP threshold is
returned as a decision class of the input sample. The architecture
of OeSNN is presented in Fig. 1.

OeSNN network enables classification of both univariate as
well as multivariate time series data. The OeSNN classifies each
new input sample of data, which consists of only the newest value
of each time series. However, the encoding of an input sample is
carried out by the input layer using the contents of windows with
predefined number of recent values of respective time series.

In the following subsections, we overview the input values
encoding technique used in OeSNN as well as its output neu-
ronal model, as the OeSNN-UAD approach proposed in this article
adopts both of these principles in its learning and classification
working schema.

3.2. Input layer of the OeSNN network

Since our approach to anomaly detection, which is presented
in the following sections, operates on a single time series (that
is, a single data stream of values), in this subsection we recall
the encoding technique of OeSNN for a single time series, as it
was presented in Lobo et al. (2018). Please note however, that
the notions presented here can be easily extended for more than
one time series.

The OeSNN network consists solely of an input layer and
an output layer. The input layer contains a fixed number of
input neurons and their Gaussian Receptive Fields (GRFs). The out-
ut layer, called an evolving repository, contains output neurons,
hose maximal number is limited. The set of input neurons

s denoted by NI, while the set of output neurons by NO. The
umber of input neurons is determined by user-given parameter
Isize, whereas the maximal number of output neurons is given
y NOsize, which is also a user-specified parameter value. Each
nput neuron is linked by a synapse to each output neuron.
et X denote an input stream of values to be classified and xt
enote the newest value of that stream, which will be subject to
lassification.
By W we denote a window containing the newest value xt of

ata stream X, as well as previous Wsize − 1 values of that data
tream. Wsize is a user given parameter, which denotes the size of
indow W . Clearly, W contains [x , x , . . . , x ]
t−(Wsize−1) t−(Wsize−2) t
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Fig. 2. The encoding and the input layer of the proposed network architecture. Wsize denotes the size of window W . Current values in W are used to construct
RFs, while only xt value is encoded and propagated to neurons in the output repository NO.
alues of data stream. Two values in the window denoted by
W
min and IWmax play an important role in the classification of the
nput value xt . IWmin is defined as the minimal value in window
, whereas IWmax is defined as the maximal value in W . The

wo values are used to initialize NIsize distinct GRFs excitation
unctions — one function per one input neuron. The values of
xcitation functions obtained for xt are used to calculate firing
imes and firing order values of input neurons, and thus influence
he classification result.

The excitation function of j-th GRF, where j = 0 . . . ,NIsize − 1,
or input value xt is denoted by ExcGRFj (xt ) and is defined as the
ollowing Gaussian function:

xcGRFj (xt ) = exp
(
−

1
2

(xt − µGRF
j

σ GRF
j

)2)
, (1)

where µGRF
j stands for j-th GRF’s mean which is expressed by

Eq. (2), and σ GRF
j stands for j-th GRF’s standard deviation which

s expressed by Eq. (3):

GRF
j = IWmin +

2j− 3
2

(
IWmax − IWmin

NIsize − 2

)
, (2)

GRF
j =

1
β

(
IWmax − IWmin

NIsize − 2

)
,where β ∈ [1, 2]. (3)

he parameter β that occurs in the equation defining σ GRF
j is used

o control the degree to which Gaussian Random Fields overlap.
GRF
j is also called a center value of jth GRF, while σ GRF

j is also
alled its width.
Please note that the excitation function ExcGRFj (xt ) takes great-

st values for those GRFs whose center values are closest to xt .
Input neurons associated with such GRFs will have the greatest
impact on prediction results. In an approach in which, e.g. for
efficiency reasons, only some of input neurons should be used
for prediction rather than all, a subset of input neurons related
to GRFs with highest excitation values will be fired. A firing
time function defined in Eq. (4) assigns earlier firing time values
to input neurons associated with GRFs having higher excitation
values.

The firing time function for input neuron nj, where j = 0 . . . ,

NIsize − 1, is denoted by Tnj (xt ), and is defined as follows:

Tnj (xt ) = TS ·
(
1− ExcGRFj (xt )

)
, (4)

where TS is a user-given basic synchronization time of firings of
input neurons in OeSNN and TS > 0.
122
The firing times of input neurons imply their distinct firing
order values; namely, input neurons with shorter firing times
are assigned smaller firing order values, which are integers in
{0, . . .NIsize − 1}. The firing order value of input neuron nj is
denoted by order(nj).

Example 1. Given the window of input values and the input
layer as shown in Fig. 2, let us consider an example of encoding
of value xt = 0.5 into excitation values of GRFs and then into
firing times and firing order values of input neurons associated
with corresponding GRFs. We assume that the size of window
W is Wsize = 14 and the GRFs parameters IWmin and IWmax are
equal to 0.1 and 1.0, respectively. The input layer contains seven
neurons each of which is associated with one distinct Gaussian
Random Field. The excitation values of GRFs are determined with
GRF overlapping parameter β = 1.0 and the firing times of input
neurons are calculated with synchronization time TS equal to
1.0. The resulting encoding of input value xt = 0.5 is presented
beneath:

• ExcGRF0 (0.5) = 0.001→ Tn0 (0.5) = 0.999→ order(n0) = 6,
• ExcGRF1 (0.5) = 0.024→ Tn1 (0.5) = 0.976→ order(n1) = 5,
• ExcGRF2 (0.5) = 0.227→ Tn2 (0.5) = 0.773→ order(n2) = 3,
• ExcGRF3 (0.5) = 0.770→ Tn3 (0.5) = 0.230→ order(n3) = 1,
• ExcGRF4 (0.5) = 0.962→ Tn4 (0.5) = 0.038→ order(n4) = 0,
• ExcGRF5 (0.5) = 0.442→ Tn5 (0.5) = 0.558→ order(n5) = 2,
• ExcGRF6 (0.5) = 0.074→ Tn6 (0.5) = 0.926→ order(n6) = 4.

3.3. Neuronal model of output neurons and network learning

The distinctive feature of OeSNN is the creation of a candidate
output neuron for each value xt of the input data stream. When
a new candidate output neuron nc is created for xt , weights of its
synapses are initialized according to input neurons’ firing order
values obtained as a result of the xt encoding. The initial weights
of synapses between each input neuron nj in NI and the candidate
output neuron nc are calculated according to Eq. (5):

wnjnc = modorder(nj), (5)

where mod is a user-given modulation factor within range (0, 1)
and order(nj) is nj’s firing order value obtained as a result of the
xt encoding.

Vector [wn0nc , . . . , wnNIsize−1nc
] of weights of synapses connect-

ing the input neurons in NI with candidate output neuron nc will
be denoted by w .
nc
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A candidate output neuron, say nc , is characterized also by two
additional attributes: the maximal post-synaptic potential PSPmax

nc
and the post-synaptic potential threshold γnc . The definition of
PSPmax

nc is given in Eq. (6):

PSPmax
nc =

NIsize−1∑
j=0

wnjnc ·modorder(nj), (6)

where order(nj) is nj’s firing order value obtained as a result of
the xt encoding.

Property 1 follows immediately from Eqs. (5) and (6).

Property 1. PSPmax
nc =

∑NIsize−1
j=0 mod2·order(nj).

The definition of the post-synaptic potential threshold γnc is
given in Eq. (7):

γnc = PSPmax
nc · C, (7)

where C is a user fixed value from the interval (0, 1).

Example 2. Let us consider again Example 1, which illustrates
encoding of input value xt = 0.5 with seven input neurons, as
presented in Fig. 2. We will show now how synapses weights
of a new candidate output neuron are calculated given neuronal
model parameters: mod = 0.5 and C = 0.8. As calculated in
Example 1: order(4) = 0, order(3) = 1, order(5) = 2, order(2) =
3, order(6) = 4, order(1) = 5, order(0) = 6. In consequence, the
weights of synapses between input neurons and candidate output
neuron nc would be initialized as follows:

• wn4nc = 0.50
= 1,

• wn3nc = 0.51
= 0.5,

• wn5nc = 0.52
= 0.25,

• wn2nc = 0.53
= 0.125,

• wn6nc = 0.54
= 0.0625,

• wn1nc = 0.55
= 0.03125,

• wn0nc = 0.56
= 0.015625.

Given these weights of synapses of candidate output neuron
nc , the value of its maximal post-synaptic potential PSPmax

nc calcu-
lated according to Eq. (6) is 12

+0.52
+0.252

+0.1252
+0.06252

+

0.031252
+ 0.0156252

= 1.333251953.

In OeSNN, each candidate output neuron, say ni, is either
added to the repository NO or is merged with some output
neuron in NO. In fact, each output neuron in NO is either an
extended copy of a candidate output neuron or is an aggregation
of a number of candidate output neurons. In comparison with
candidate output neurons, output neurons in NO are character-
ized by one more attribute — update counter Mni , which provides
the information from how many candidate output neurons ni was
created. If Mni = 1, then the values of the remaining attributes of
ni are the same as of a former candidate output neuron. Now, each
time when an output neuron ni built from Mni former candidate
output neurons is merged with a current candidate output neuron
nc , weight wnjni of the synapse between output neuron ni and
each input neuron nj is recalculated as shown in Eq. (8), PSPmax

ni is
recalculated as shown in Eq. (9) and γni is recalculated according
to Eq. (10):

wnjni ←
wnjnc +Mni · wnjni

Mni + 1
, (8)

PSPmax
ni ←

PSPmax
nc +Mni · PSP

max
ni

Mni + 1
, (9)

γni ←
γnc +Mni · γni . (10)
Mni + 1
123
In addition, Mni is increased by 1 to reflect the fact that one more
candidate output neuron was used to obtain an updated version
of output neuron ni.

In the remainder of the article, vector [wn0ni , . . . , wnNIsize−1ni
]

of weights of synapses connecting the input neurons in NI with
output neuron ni in NO will be denoted by wni .

In the OeSNN approach, which uses a simplified Leaky Inte-
grate and Fire (LIF) neuronal model of output neurons, output
neuron ni fires for xt only when its, so called, post-synaptic poten-
tial is not less than its post-synaptic potential threshold γni (Lobo
et al., 2018).

The post-synaptic potential of output neuron ni in repository
NO for input value xt is denoted by PSPni and is defined by
Eq. (11):

PSPni =
NIsize−1∑

j=0

wnjni ·modorder(nj), (11)

where wnjni represents the weight of the synapse linking input
neuron nj ∈ NI with output neuron ni ∈ NO, and order(nj) is nj’s
firing order value obtained as a result of the xt encoding.

Classification of an input value, say xt , in OeSNN is performed
based on output neurons’ post-synaptic potentials obtained for
xt . As presented in Fig. 1, output neurons of the output layer
are organized into decision classes. Input value xt is assigned the
decision class of the first output neuron whose post-synaptic po-
tential value exceeded its own post-synaptic potential threshold.

4. Properties of an OeSNN neuronal model

In this section, we derive theoretical properties of input and
output layers of the OeSNN neuronal model based on definitions
provided in Sections 3.2 and 3.3, respectively:

• The obtained properties of input layer show that firing order
values of input neurons depend neither on values of Gaus-
sian Random Fields overlapping parameter β nor on values
of basic synchronization time TS of firing of input neurons,
and, in consequence, the selection of output neurons to fires
does not depend on values of these parameters.
• The derived properties related to output neurons show that

for any recent input value xt , the values of maximal post-
synaptic potential of all output neurons are the same and
equal to

∑NIsize−1
k=0 mod2k = 1−mod2·NIsize

1−mod2
and, in consequence,

the values of post-synaptic potential thresholds of all output
neurons are the same and equal to C ·

∑NIsize−1
k=0 mod2k =

C · 1−mod2·NIsize
1−mod2

. The latter finding enables calculation of the
values of the two parameters of output neurons only once;
namely, at the beginning of the whole detection anomaly
process rather than for each input value of the data stream.
As a result, the anomaly detection becomes faster.

In fact, the obtained properties are used in our proposed
OeSNN-UAD model for efficient detection of anomalies in a data
stream (please see the next two sections).

Let us start the presentation of the obtained theoretical results
with Proposition 1, which concerns properties of GRFs and input
neurons.

Proposition 1. For any most recent value xt of window W and any
input neurons j1, j2 ∈ {0, . . . ,NIsize − 1}, the following hold:

(i) σ GRF
j1
= σ GRF

j2
for any values of parameters β and TS.

(ii) µGRF
j1

does not depend on values of parameters β and TS.
(iii) The truth value of statement ‘‘ExcGRFj1

(xt ) is greater than or
equal to ExcGRFj2

(xt )’’ does not depend on values of parameters
β and TS.



P.S. Maciąg, M. Kryszkiewicz, R. Bembenik et al. Neural Networks 139 (2021) 118–139

f
c

C

d
v
s
t
(
n
a
r

(iv) The following statements are equivalent for any values of
parameters β and TS:

• ExcGRFj1
(xt ) ≥ ExcGRFj2

(xt ).
• Tnj1 (xt ) ≤ Tnj2 (xt ).
• order(nj1 ) ≤ order(nj2 ).

(v) Firing order values of input neurons do not depend on values
of parameters β and TS.

Proof.

Ad (i). Follows trivially from Eq. (3).
Ad (ii). Follows trivially from Eq. (2).
Ad (iii). Follows from Eq. (1), Proposition 1.(i) and Proposition 1.

(ii).
Ad (iv). By Eq. (1), ExcGRFj (xt ) takes values from interval [0, 1], and

by definition of the firing time function for input neuron
(see Eq. (4)), parameter TS may take only a value greater
than 0. Hence:

ExcGRFj1 (xt ) ≥ ExcGRFj2 (xt ) ⇐⇒

1− ExcGRFj1 (xt ) ≤ 1− ExcGRFj2 (xt ) ⇐⇒

TS ·
(
1− ExcGRFj1 (xt )

)
≤ TS ·

(
1− ExcGRFj2 (xt )

)
⇐⇒

Tnj1 (xt ) ≤ Tnj2 (xt ) ⇐⇒

order(nj1 ) ≤ order(nj2 ).

Ad (v). Follows immediately from Proposition 1.(iii) and
Proposition 1.(iv). ■

In Lemma 1, we provide properties of candidate output neu-
rons.

Lemma 1. For each candidate output neuron nc , the following hold:

(i) Vector wnc = [wn0nc , . . . , wnNIsize−1nc
] of synapses weights

of candidate output neuron nc is a permutation of vector
[mod0,mod1, . . . ,modNIsize−1].

(ii) The sum of all synapses weights of nc equals
∑NIsize−1

k=0 modk.
(iii) nc ’s maximal post-synaptic potential PSPmax

nc =
∑NIsize−1

k=0
mod2k.

(iv) nc ’s post-synaptic potential threshold γnc = C ·
∑NIsize−1

k=0
mod2k.

Proof. Let nc be a candidate output neuron.

Ad (i). By Eq. (5), the weight of the synapse linking nc with input
neuron nj equals modorder(nj), where order(nj) is a firing
order value of nj. Taking into account that at any time
firing order values of input neurons are integers from the
set {0, 1, . . . , NIsize − 1} and are distinct for each input
neuron, vector wnc = [wn0nc , . . . , wnNIsize−1nc

] of synapses
weights of candidate output neuron nc is a permutation
of vector [mod0,mod1, . . . ,modNIsize−1].

Ad (ii). By Lemma 1.(i), the sum of all synapses weights of can-
didate output neuron nc equals

∑NIsize−1
k=0 modk.

Ad (iii). By Property 1, PSPmax
nc is the sum of the squares of all

synapses weights of candidate output neuron nc . Hence,
and by Lemma 1.(i), PSPmax

nc =
∑NIsize−1

k=0 mod2k.
Ad (iv). By Eq. (7) and Lemma 1.(iii), threshold γnc = C ·∑NIsize−1

k=0 mod2k. ■

In the remainder of Section 4, we focus on properties of output
neurons in repository NO. The derivation of these properties was
based on the fact that each output neuron is in fact constructed
from one or more candidate output neurons.
 p
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Theorem 1. Let ni be an output neuron ni in repository NO that was
constructed from Mni , where Mni ≥ 1, candidate output neurons: nc1 ,
nc2 , . . . , ncMni

. The following hold for output neuron ni:

(i) Vectorwni = [wn0ni , . . . , wnNIsize−1ni
] of synapses weights of ni

is the average of the vectors of synapses weights of candidate
output neurons nc1 , nc2 , . . . , ncMni

; that is,

wni =
[∑Mni

l=1 wn0ncl

Mni
, . . . ,

∑Mni
l=1 wnNIsize−1ncl

Mni

]
.

(ii) The sum of synaptic weights of ni equals
∑NIsize−1

k=0 modk.
(iii) ni’s maximal post-synaptic potential PSPmax

ni =
∑NIsize−1

k=0
mod2k.

(iv) ni’s post-synaptic potential threshold γni = C ·
∑NIsize−1

k=0
mod2k.

Proof.

Ad (i). It follows from Eq. (8) that the weight wnjni of the
synapse linking output neuron ni with input neuron nj is
the average of the weights of synapses
linking candidate output neurons nc1 , nc2 , . . . , ncMni

with input neuron nj; that is, wnjni =

∑Mni
l=1 wnjncl
Mni

. Hence,

wni = [wn0ni , . . . , wnNIsize−1ni
] =

[∑Mni
l=1 wn0ncl

Mni
, . . . ,∑Mni

l=1 wnNIsize−1
ncl

Mni

]
.

Ad (ii). By Theorem 1.(i) and Lemma 1.(ii), the sum of synapses
weights of output neuron ni is equal to

∑NIsize−1
k=0 wnkni

=
∑NIsize−1

k=0

(∑Mni
l=1 wnkncl

Mni

)
=

1
Mni

∑Mni
l=1

(∑NIsize−1
k=0 wnkncl

)
=

1
Mni

∑Mni
l=1

(∑NIsize−1
k=0 modk

)
=

∑NIsize−1
k=0 modk.

Ad (iii). It follows from Eq. (9) that PSPmax of output neuron ni is
the average of PSPmax of candidate output neurons nc1 ,
nc2 , . . . , ncMni

. Hence, and by Lemma 1.(iii), PSPmax
ni =

1
Mni

∑Mni
l=1(PSP

max
nil

) =
∑NIsize−1

k=0 mod2k.

Ad (iv). It follows from Eq. (10) that γni is the average of γ
thresholds of candidate output neurons nc1 , nc2 , . . . , ncMni

.

Hence, and by Lemma 1.(iv), γni =
1

Mni

∑Mni
l=1(γnil

) =
1

Mni

∑Mni
l=1(C · PSP

max
nil

) = C ·
∑NIsize−1

k=0 mod2k. ■

Corollary 1 follows immediately from Theorem 1 and the
act that

∑NIsize−1
k=0 modk and

∑NIsize−1
k=0 mod2k are sums of NIsize

onsecutive elements of geometric series.

orollary 1. For each output neuron ni ∈ NO, the following hold:

(i) the sum of synaptic weights of ni equals 1−modNIsize
1−mod ,

(ii) ni’s maximal post-synaptic potential PSPmax
ni =

1−mod2·NIsize
1−mod2

,

(iii) ni’s post-synaptic potential threshold γni = C · 1−mod2·NIsize
1−mod2

.

As follows from Lemma 1, Theorem 1 and Corollary 1, all can-
idate output neurons and output neurons in NO have the same
alues of the sum of their synaptic weights, their maximal post-
ynaptic potentials, and their maximal post-synaptic potential
hresholds, respectively. The first two attributes characterizing
candidate) output neurons depend only on the number of input
eurons NIsize and the value of parameter mod, while their third
ttribute depends also on the value of parameter C. The property
elated to post-synaptic potential thresholds will be used in our
roposed algorithm for detecting anomalies.
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Fig. 3. The proposed OeSNN-UAD architecture.
t
a

. OeSNN-UAD — the proposed anomaly detection model based
n Online evolving Spiking Neural Networks

In this section, we offer our online OeSNN-UAD approach to
nsupervised anomaly detection in stream data. We strove to
esign it in such a way so that the following postulates were
ulfilled:

• Whenever possible, each new input value of a data stream
should be correctly classified as either anomalous or non-
anomalous.
• Each new input value should be used to train OeSNN-UAD

for better future classification of input values.

he following subsections present the architecture and working
rinciples of OeSNN-UAD. A step by step presentation of the
eSNN-UAD algorithm is given in Section 6.

.1. The architecture of OeSNN-UAD

The proposed architecture of OeSNN-UAD, which is presented
n Fig. 3, consists of a modified version of OeSNN and the follow-
ng three new modules: Generation of output values of candidate
utput neurons, Anomaly classification and Value correction.
As it can be noted in Fig. 3, the output layer of our adapted

ersion of OeSNN network consists of output neurons, which,
nlike in OeSNN, are assigned output values, rather than decision
lasses. In OeSNN-UAD, an output value of each candidate output
euron is first randomly taken from a normal distribution, which
s created based on values of the average and standard deviation
f input values of window W and then, in the course of learning
f OeSNN-UAD, such candidate is used to update the repository
f output neurons. The output value of an output neuron may be
odified in the course of learning of the network in up to two
ossible ways:

• it may be corrected in order to be better adjusted to a
current input value of the data stream,
• it may be updated with the output value of a current candi-

date output neuron.

he main idea behind this approach is to store the output neurons
hose output values correspond to previous non-anomalous val-
es in the output repository NO of OeSNN-UAD. In consequence,
hen non-anomalous input value xt occurs in a data stream,
etwork prediction value y is expected to be similar to value x ,
t t
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while when anomalous input value xt occurs, network prediction
value yt is expected to be significantly different from xt .

The OeSNN-UAD anomaly detector works in two phases: in
he anomaly detection phase and in the learning phase, which
re performed for each input value xt of the data stream:

1. In the anomaly detection phase, window W is updated
with value xt and GRFs of input neurons are initialized. The
value xt of W is used to calculate firing times and firing
orders of input neurons in NI. Next, the input value xt is
classified as anomalous or not in the following steps. First,
output neuron nf ∈ NO that fired as first is obtained. If
none of output neurons fired, then input value xt is im-
mediately classified as an anomaly. Otherwise, the output
value of the output neuron that fired as first is reported
as network prediction value yt for input value xt . Finally,
the Anomaly classification module classifies input value xt
as anomalous or not using a prediction error being the
absolute difference between xt and yt and a threshold value
calculated based on errors of recent Wsize prediction values.

2. In the network learning phase, new candidate output neu-
ron nc corresponding to value xt is created and initialized.
The initialization procedure of nc is performed in three
steps: first, the synapses linking nc with all input neu-
rons in NI are created and their weights are calculated
according to Eq. (5). Next, update time τnc of the candidate
output neuron is set to value t . Finally, the Generation
of values of candidate output neurons module assigns ini-
tial output value vnc to the candidate output neuron and
update counter Mnc is set to 1. Additionally, if xt is not
classified as anomalous, then the generated initial output
value vnc of the candidate output neuron is corrected by
the Value correction module.
After initialization of nc , it is used to update repository
NO of OeSNN-UAD in a similar (but not identical) way
as OeSNN repository is updated. nc is merged with the
most similar output neuron ns already present in NO for
which the Euclidean distance between vectors of synapses
weights wnc and wns is minimal and less than or equal
to the user given threshold sim, provided such an output
neuron exists. If so, the vector of synapses weights, output
value, update time and update counter of ns are modified
according to the formulae given in Eq. (12):

wns ← (wns ·Mns +wnc )/(Mns + 1),
v ← (v ·M + v )/(M + 1),
ns ns ns nc ns
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τns ← (τns ·Mns + τnc )/(Mns + 1),

Mns ← Mns + 1. (12)

Otherwise, if current size of NO is less than NOsize, then nc is
simply added to NO. However, if NO is full, then nc replaces
the output neuron in NO whose update time is minimal.

More detailed description of the modules: Generation of out-
ut values of candidate output neurons, Anomaly classification and
alue correction specific to OeSNN-UAD is provided in the follow-
ng subsections.

.2. Anomaly classification

Given input value xt of the data stream and its prediction
t made by OeSNN-UAD, the aim of the Anomaly classification
odule (see Fig. 3) is to decide whether xt should be classified
s an anomaly or not. The approaches proposed in the literature,
uch as those presented in Malhotra et al. (2015), Munir et al.
2019b) and Munir et al. (2019a), simply calculate an error be-
ween the predicted and the real value, compare it against a fixed
hreshold value and decide if an anomaly occurred. Alternatively,
window of recent predictions errors is used to construct a sta-
istical distribution and obtain the probability of actual prediction
rror for value xt (Ahmad et al., 2017c). If the probability of the
ctual prediction error is low, the observation is classified as
n anomaly. Carrera et al. (2019) take a different approach and
ropose to adapt an error threshold for anomaly classification
ccording to the changing characteristic of the stochastic process
enerating input data.
In our approach, a vector of error values calculated between

redicted values (network responses) and input values of window
is used to decide if observation xt should be classified as

nomalous or not. The error et between xt and its prediction yt is
alculated as the absolute difference between these two values:
t = |xt − yt |. Let e be a subset of set {et−(Wsize−1), . . . , et−1} of
hose Wsize prediction error values that were obtained for input
alues classified as non-anomalous. If e is not empty, then the
ean xe and the standard deviation se of error values in e are

calculated and used to classify xt as either an anomaly or not. If
he difference between et and xe is greater than ε · se, where ε is
user-specified anomaly classification factor, then xt is classified
s an anomaly, otherwise it is not.
If e is empty, then xt is classified as non-anomalous. This

lassification can be justified as follows. Empty set e indicates that
ll previous Wsize input values were classified as anomalies. This
ase may indicate the presence of a long anomaly window or the
ccurrence of a new trend in input values of the data stream. After
lassifying all values of previous W window as anomalies, the de-
ector should no longer assume that input values are anomalies,
ut instead should treat them as normal values and should not
ndicate the presence of anomalies.

The crucial step of the above procedure is the selection of the
alue of parameter ε. Usually, the value of that parameter should
e experimentally adjusted to the domain of the input data
tream. In our experimental evaluation, we performed tuning of
alues of that parameter.

.3. Generation of an initial output value of a candidate output
euron

The module called Generation of initial output value of a can-
idate output neuron in Fig. 3 is responsible for generating initial
utput values of candidate output neurons when they are created.
he proposed method of generating output values is based on
he assumption that network prediction y for non-anomalous
t
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input value xt should be relatively similar to xt , whereas network
prediction yt for anomalous xt should differ from xt significantly.
Following this assumption, we propose to generate initial output
values of candidate output neurons based on recent window W of
input values. More specifically, in our approach, the initial output
value of the candidate output neuron created for xt is taken
randomly from a normal distribution whose mean and standard
deviation are determined based on input values present in W . The
aim of this approach is to generate values, which will correspond
to the current fluctuations in the data stream.

5.4. Correction of an output value of an output neuron

The Value correction module (see Fig. 3) is responsible for
correcting the output value of the candidate output neuron nc
created for input value xt . The value correction is performed
only when that input value was classified as non-anomalous.
Intuitively, one can perceive nc as a neuron representation of xt ,
since initial synapses weights of nc were determined based on
firing order values of input neurons for value xt . When xt is not
classified as an anomaly, the initial output value of the candidate
neuron nc is adjusted as follows: vnc ← vnc + (xt − vnc ) · ξ . In this
formula, ξ is a user given value correction factor within the range
0, 1]. If ξ = 0, the initial output value of nc will not change. If

ξ = 1, then vnc value will be equal to xt .
Let us assume that output neuron nc with its output value

corrected as described above became output neuron ni in NO or
was merged with output neuron ni in NO and that new input
value xt1 arrives at time t1 slightly later than time t and becomes
ubject to classification. If xt1 is similar to previously classified xt
alue, then output neuron ni corresponding to xt is very likely
o fires as first and its output value vni will be reported as
etwork prediction yt1 . Since that vni output value was previously
djusted to non-anomalous xt value, then also xt1 value will be
ikely classified as non-anomalous provided prediction error et1
is relatively small in comparison with the errors present in e.

Overall, the aim of correcting an output value of candidate
output neuron nc is to prevent future incorrect classification of
input values that could be caused by possible fluctuations of input
values in a data stream.

6. The OeSNN-UAD algorithm for unsupervised anomaly de-
tection

In this section, our proposed OeSNN-UAD algorithm (please
refer to Table 1 for notation used in it), working principles of
which were described in Section 5, is presented and discussed
in detail. The main procedure of OeSNN-UAD is presented in
Algorithm 1. All OeSNN-UAD input parameters, that is Wsize,
NIsize, NOsize, mod, C , sim, ξ , ε are constant during the whole
process of anomaly detection and learning. First, the current
counter CNOsize of output neurons in output repository NO is set
to 0. Next, based on the fact that the values of post-synaptic
potential thresholds γni are the same for all output neurons ni
in NO and depend only on constants NIsize, mod and C (as follows
from Theorem 1.(iv) and Corollary 1.(iii) provided in Section 4),
their common post-synaptic potential threshold, denoted by γ , is
calculated only once. Then, window W is initialized with input
values x1, . . . , xWsize from data stream X. These values are not
classified as anomalies (the assumption that the first Wsize values
of the data stream are not treated as anomalies is similar to the
approach taken in the Numenta Anomaly Benchmark repository,
which we use in our experimental evaluation).

The detection of anomalies among input values xt of X, where
t ≥ Wsize + 1, starts in step 7 of Algorithm 1 and for each of
these input values is carried out as follows. First, window W is
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Table 1
Notations and parameters used in OeSNN-UAD.
Notation Description Value

X Stream of input data
W Window of recent input values
Wsize Window size (the number of recent input values in W)
xt Input value at time t
yt OeSNN-UAD prediction of xt
Y Vector of predicted values
ut Boolean value indicating anomaly presence or absence for input value xt
U Vector of results of anomaly detection for input values

NI Set of input neurons
NIsize Number of input neurons
TS Synchronization time of input neurons firings
nj jth neuron in the set NI of input neurons
µGRF

j GRF center for input neuron nj

σ GRF
j GRF width for input neuron nj

IWmax Maximal input value in window W
IWmin Minimal input value in window W
ExcGRFj (xt ) Excitation of jth GRF for value xt
Tnj (xt ) Firing time of input neuron nj for value xt
xW , sW Mean and standard deviation of input values in W
N Normal distribution

NO Repository of output neurons
NOsize Number of output neurons in repository NO
mod Modulation factor of weights of synapses (0, 1)
sim User-given similarity threshold
ni ith output neuron from repository NO
wni Vector of synaptic weights of output neuron ni
wnj,ni Weight of a synapse between nj ∈ NI and ni ∈ NO
γ Post-synaptic potential threshold of output neurons
vni Output value of output neuron ni
τni Update time of output neuron ni
Mni Number of updates of output neuron nk
PSPmax Maximal post-synaptic potential of output neurons
C Fraction of PSPmax

ni for calculation of γni (0, 1]
nc New candidate output neuron
Dnc ,ni Euclidean distance between weights vectors wnc and wni
ξ Error correction factor [0, 1]

et Error between input value xt and its prediction yt
E Vector of error values between X and Y
ε Anomaly classification factor ≥ 2
h

P
n

1
n

updated with input value xt which becomes subject to anomaly
classification, and GRFs as well as firing order values of input
neurons are determined based on the content of window W , as
presented in Algorithm 2. Next, output neuron nf ∈ NO that fires
as first is obtained (see Algorithm 3).

The determination of the first output neuron nf to fires is car-
ried out according to our proposed procedure FiresFirst, which
is presented in Algorithm 3. To this end, for efficiency reasons,
the algorithm uses lower approximation PSPni

of post-synaptic
otential PSPni for each output neuron ni ∈ NO instead of PSPni .
ower approximation PSPni

differs from PSPni in that PSPni is
btained after firing all input neurons, while PSPni

sufficiently
pproximates PSPni after firing only a few most significant input
eurons, whose firing order values are lowest.
Specifically, output neuron nf firing as first is obtained as

ollows: initially, PSPni
of each output neurons in NO is reset to

. Next, in the loop in which variable j iterates over identifiers of
nput neurons starting from the one with the least order value (0)
o the one with the greatest order value (NIsize− 1), PSPni

of each
utput neuron ni in NO is calculated in an incremental way. As a
esult, after k iterations, where k ∈ {1, 2, . . .NIsize}, PSPni

is equal
o wnj0ni

·modorder(j0)+wnj1ni
·modorder(j1)+· · ·wnjk−1

ni ·modorder(jk−1),
here njl is the input vector whose order is equal to l, l = 0 . . . k−
; that is, PSPni

= wnj0ni
·mod0+wnj2ni

·mod1+· · ·wnjk−1ni
·mod(k−1),

nd order(j0) = 0, order(j1) = 1, . . . , order(jk−1) = k− 1.
After the first iteration, in which PSP (and by this, PSP) of

t least one output neuron is greater than the γ threshold, no
ther iterations are carried out. In such a case, each output
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neuron whose current PSP value is greater than γ is added to
the ToFire list. nf is found as this output neuron in ToFire that
as the greatest value of PSP , and is returned as the result of the

FiresFirst function. Please note that the method we propose to
calculate more and more precise lower approximations of PSP of
output neurons guarantees that nf is found in a minimal number
of iterations. If within NOsize iterations no output neuron with
SP > γ is found, the FiresFirst returns NULL to indicate that
o output neuron in NO was fired.
If FiresFirst returns NULL, then, in steps 12 to 14 of Algorithm

, value xt is classified as being anomalous and the prediction of
etwork yt as well as error value et are set to NULL and +∞,

respectively. Otherwise, in steps 16 to 18 of Algorithm 1, the
prediction of network yt is assigned output value vnf , error et is
set to the absolute difference between xt and yt , and our proposed
ClassifyAnomaly procedure is invoked.

ClassifyAnomaly is given in Algorithm 4. Its description was
provided in Section 5.2. The procedure returns Boolean value ut
indicating presence or absence of an anomaly for input value xt .

In step 22 of Algorithm 1, new candidate output neuron nc
is created, and then initialized in our proposed InitializeNeu-
ron procedure, which is presented in Algorithm 5. InitalizeNeu-
ron first creates synapses between candidate output neuron nc
and each input neuron in NI. Then, the weights of the created
synapses are calculated according to the firing order values of
input neurons in NI obtained for input value xt . Next, output
value vnc of nc is generated from a normal distribution created

based on input values currently falling into window W (as it was
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Algorithm 1 OeSNN-UAD
Input: X = [x1, x2, . . . , xT ] - stream of input data.

Assure constant:
Wsize, NOsize, NIsize,mod, C , sim, ξ , ε

Output: U - a vector with classification of each x ∈ X as an anomaly or
not.

1: CNOsize ← 0
2: γ ← C · 1−mod2·NIsize

1−mod2

3: Initialize W with x1, . . . , xWsize ∈ X
4: Initialize y1, . . . , yWsize with random values from N (xW , s2W ) and add

to Y
5: Intialize E with el ← |xl − yl| , l = 1, . . . ,Wsize
6: Set u1, . . . , uWsize to False and add to U
7: for t ←Wsize + 1 to T do

{*——————— OeSNN-UAD anomaly detection ———————*}
8: Update window W with value xt
9: InitializeGRFs(W)
0: nf ← FiresFirst(CNOsize)
1: if nf is NULL then ▷ If none of output neurons fired
2: yt ← NULL; append yt to Y
3: et ←+∞; append et to E
4: ut ← True ▷ Immediately classify xt as anomaly
5: else
6: yt ← vnf ; append yt to Y
7: et ← |xt − yt |; append et to E
8: ut ← ClassifyAnomaly(E,U)
9: end if
0: Append ut to U

{*—————————— OeSNN-UAD learning ————————–*}
1: Create a candidate output neuron nc
2: nc ← InitializeNeuron(W, t)
3: if ut = False then ▷ Anomaly for xt not detected
4: vnc ← vnc + (xt − vnc ) · ξ ▷ Correct generated output value of

nc
5: end if
6: ns ← FindMostSimilar(nc )
7: if Dnc ,ns ≤ sim then
8: UpdateNeuron(ns, nc )
9: else if CNOsize < NOsize then
0: Insert nc to NO; CNOsize ← CNOsize + 1
1: else
2: noldest ← an output neuron in NO such that

τnoldest = min{τni | i = 0, . . . ,NOsize − 1}
3: Replace noldest with nc in NO
4: end if
5: end for
6: return U

presented in Section 5.3), and finally the update time τnc is set to
urrent input time t . Additionally, if the anomaly is not detected
ut is False), then the value correction operation is performed
hich adjusts output value vnc of the candidate output neuron nc .
pecifically, the value vnc is increased or decreased by the factor
∈ [0, 1] of the difference xt − vnc (please see Section 5.4 for

details).
In step 26 of Algorithm 1, the FindMostSimilar procedure,

presented in Algorithm 6, is called. The procedure finds an output
neuron ns ∈ NO, such that the Euclidean distance Dnc ,ns between
vectors of synapses weights of nc and ns is the smallest. If Dnc ,ns is
less than or equal to the similarity threshold value sim, then ns is
merged with nc according to the UpdateNeuron procedure, pre-
sented in Algorithm 7. The updated values of synapses weights,
output value, update time and update counter of output neuron
n are calculated according Eq. (12).
s
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Algorithm 2 InitializeGRFs(W)

Input: W = {xt−(Wsize−1), . . . , xt} window of input values of X.
1: Obtain current IWmin and IWmax from W

2: Calculate σ GRF
←

IWmax − IWmin

NIsize − 2
3: for j← 0 to NIsize − 1 do ▷ For all input neurons in NI
4: σ GRF

j ← σ GRF
▷ By Eq. (3) and Proposition 1.(i)

5: Calculate µGRF
j ▷ By Eq. (2)

6: Calculate excitation ExcGRFj (xt ) ▷ By Eq. (1)
7: Calculate firing time Tnj (xt ) ▷ By Eq. (4)
8: end for
9: for j← 0 to NIsize − 1 do

10: Calculate order(j)
11: end for
12: return

Algorithm 3 FiresFirst(CNOsize)
Input: CNOsize - current size of output repository NO
Output: nf - an output neuron ∈ NO which fires first
1: ToFire← ∅
2: SNIID← the list of identifiers of input neurons in NI obtained by

sorting input neurons increasingly according to their order value
3: for i← 0 to CNOsize − 1 do
4: PSPni

← 0
5: end for
6: for j← first to last input neuron identifier on

list SNIID do
7: for i← 0 to CNOsize − 1 do ▷ output neuron ids
8: PSPni

← PSPni
+ wnjni ·modorder(j)

9: if PSPni
> γ then

10: Insert ni to ToFire
11: end if
12: end for
13: if ToFire ̸= ∅ then
14: nf ← an output neuron in ToFire such that

PSPnf
= max{PSPni

|ni ∈ ToFire}
15: return nf
16: end if
17: end for
18: return NULL

Algorithm 4 ClassifyAnomaly(E,U)
Input: E = [e1, . . . , et ] - vector of error values; U = [u1, . . . , ut−1]

- vector of input values classified as anomalies or not; et - error
between predicted yt and input xt values.

utput: ut - a Boolean value being classification of xt as either an
anomaly or not.

1: e← ∅
2: Append to e all ek such that:

k = t − (Wsize − 1), . . . , t − 1 and uk is False
3: if e = ∅ then
4: ut = False
5: else
6: Calculate xe and se over e
7: if et − xe ≥ ε · se then
8: ut = True
9: else
0: ut = False

11: end if
12: end if
13: return ut

Otherwise, if the number of output neurons in repository NO
is still below NOsize, then nc is added to NO and counter CNOsize is

incremented.
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Algorithm 5 InitializeNeuron(W)
Input: W - current window of input values, t - time of current input

value xt
Output: nc - a newly created and initialized candidate output neuron
1: Create new neuron nc
2: for j← 0 to NIsize − 1 do
3: Create synapse between nj ∈ NI and nc
4: end for
5: for j← 0 to NIsize − 1 do ▷ Calculate wnc
6: wnjnc ← modorder(nj)
7: end for
8: vnc ← Generate output value from N (xW , s2W )
9: τnc ← t
10: Mnc ← 1
11: return nc

If both the similarity condition is not fulfilled and the NO
repository is full, then candidate output neuron nc replaces the
oldest neuron noldest in NO (that is, neuron noldest in NO whose
update time τnoldest is minimal).

Algorithm 6 FindMostSimilar(nc)
Input: nc - a candidate output neuron.
Output: ns - the neuron in NO such that Euclidean distance between

wns and wnc is least.
1: for i← 0 . . . CNOsize − 1 do
2: Dnc ,ni ← dist(wnc ,wni )
3: end for
4: ns ← an output neuron in NO such that Dnc ,ns =

min{(Dnc ,ni ) | i = 0, . . . , CNOsize − 1}
5: return ns

Algorithm 7 UpdateNeuron(ns, nc)
Input: ns - a neuron from NO to be updated; nc - a newly created

candidate output neuron
1: wns ← (wnc +Mns ·wns )/(Mns + 1)
2: vns ← (vnc +Mns · vns )/(Mns + 1)
3: τns ← (τnc +Mns · τns )/(Mns + 1)
4: Mns ← Mns + 1
5: return

7. Experiments

In this section, we present the results of the comparative
xperimental evaluation of the proposed OeSNN-UAD method
nd state-of-the-art methods and algorithms for unsupervised
nomaly detection. For comparison, we use the following meth-
ds and algorithms: Numenta (Ahmad et al., 2017c), Numen-
aTM (Ahmad et al., 2017c), HTM JAVA (Hawkins & Ahmad, 2016),
kyline (Stanway, 2015), TwitterADVec (Kejariwal, 2015), Yahoo
GADS (Extensible Generic Anomaly Detection System) (Laptev
t al., 2015), DeepAnT (Munir et al., 2019b), Bayesian Change-
oint (Adams & MacKay, 2007), EXPected Similarity Estimation
EXPoSE) (Schneider et al., 2016), KNN CAD (Burnaev & Ishimt-
ev, 2016), Relative Entropy (Wang et al., 2011) and Contex-
OSE (Smirnov, 2016) and the unsupervised anomaly detection
ethod offered in Zhang et al. (2019). The experiments were
arried out on two anomaly benchmark repositories: Numenta
nomaly Benchmark (Ahmad et al., 2017a) and Yahoo Anomaly
ataset (Webscope, 2015). The experimental results concerning
oth our proposed OeSNN-UAD and all other anomaly detectors
sed for comparative assessment were obtained after tuning their
arameters.
The section starts with an overview of both of the afore-

entioned benchmark repositories. Then, it is followed by the
escription of the experimental setup. The OeSNN-UAD param-

ter tuning method is presented as well. Next, we present the
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extensive experimental evaluation of the compared methods and
algorithms is provided. Finally, we provide and discuss the results
of the experiments examining influence of different values of
Wsize and ε parameters on the quality of the anomaly detection.

7.1. Anomaly benchmark repositories used in the experiments

Both repositories (Numenta Anomaly Benchmark and Yahoo
Anomaly Dataset), which we use for experiments, contain time
series with labeled anomalies. Both of them are commonly used
to asses the quality of unsupervised anomaly detection for various
methods and algorithms (please see, for example (Ahmad et al.,
2017c; Munir et al., 2019b; Zhang et al., 2019)).

7.1.1. The Numenta Anomaly Benchmark repository
The Numenta Anomaly Benchmark (NAB) repository contains

7 categories of datasets, both artificial and real, each of which has
multiple CSV data files. Each CSV data file consists of two time
series, one of them being a series of timestamp values and the
second one being a series of input values. The number of input
values in data files varies between 1000 and 22000. Overall, there
are 58 data files in NAB. All time series in the NAB repository
are imbalanced with the average percentage of input values being
anomalies in a time series less than 10% on average. In the current
version (1.0) of NAB, the following categories of data files are
distinguished:

• artificialNoAnomaly — contains data files artificially
generated, which do not have anomalies;
• artificialWithAnomaly — contains data files which con-

sist of artificial data with anomalies;
• realAdExchange — contains data files with online adver-

tisements clicks recordings;
• realAWSCloudwatch — contains data files with metrics

from AWS servers;
• realKnownCauses— contains real data files, such as hourly

registered taxi schedules in New York City or CPU utiliza-
tion;
• realTraffic — contains data files with freeway traffic

recordings, such as speed or travel time;
• realTweets — contains data files with Tweeter volume

statistics.

Only data files in artificialNoAnomaly category do not
ontain anomalies. The data files in the remaining categories
ontain at least one anomaly window. Each anomaly window
onsists of multiple input values and each data file can have
everal anomaly windows. The labeling of anomaly windows
n the data files was conducted manually or by means of al-
orithms (Ahmad et al., 2017b). However, as follows from the
ocumentation of NAB, it is not guaranteed that all anomalies in a
ata file are labeled (Ahmad et al., 2017b). In fact, potential users
f NAB are encouraged to perform additional anomaly labeling
f data files (Ahmad et al., 2017b), which can be released in
uture versions of NAB. It was also reported in Singh and Olinsky
2017) that some data files in NAB contain missing values or
ifferences in input values distributions. For these reasons, NAB
s particularly challenging for anomaly detection algorithms. In
ig. 4, we illustrate data file ec2_cpu_utilization_ac20cd
rom realAWSCloudwatch category. It can be noted that input
alues around timestamp 500, which can intuitively be perceived
s anomalous, are not labeled as such, whereas all input values
n window starting at timestamp 3375 and ending at timestamp
777, which are labeled in the dataset as anomalies, in the ma-
ority of cases seem not to be anomalous. This kind of incorrect
nomaly labeling or its lack can negatively influence the measures
escribing anomaly detection quality, as well as make learning of
detector less effective.
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Fig. 4. Input values and labeled anomalies in data file
ec2_cpu_utilization_ac20cd of RealAWSCloudwatch category in
Numenta Anomaly Benchmark. Anomalous input values, which occur around
timestamp 500 are not labeled as such, whereas anomaly window around
timestamp 3500 incorrectly identifies input values as anomalies.

7.1.2. The Yahoo Anomaly Dataset repository
The Yahoo Anomaly Dataset (Webscope, 2015) repository con-

sists of four categories of data files:

• A1Benchmark — contains 67 data files with real input time
series values. Both single anomalous values and windows of
anomalies occur in these data files. Each data file consists of
three time series: timestamps, input values and a label for
each input value as being either anomalous or not.
• A2Benchmark — consists of 100 synthetic data files, which

contain anomalies in the form of single anomalous values.
Most of input time series values in this category have their
own periodicity. Similarly to A1Benchmark, each data file
contains only three time series: timestamp, input values and
labels indicating the presence or absence of anomalies.
• A3Benchmark — has 100 synthetic data files with anomalies

in the form of single anomalous values. In comparison to
A2Benchmark, input values time series in this category
are more noisy. In addition to three standard time series
(timestamps, input values and anomalies labels), data files
in this category contain also other time series (trend, noise,
seasonality and changepoint), which are not used by our
OeSNN-UAD model either for anomaly detection or for the
calculation of the detection quality.
• A4Benchmark — contains 100 synthetic data files with

anomalies. The majority of the anomalies correspond to
sudden transitions from an input data trend to another sig-
nificantly different input data trend. A4Benchmark consists
of the same time series types as A3Bechnmark. Again, in
our detector we used only first three time series in each
data file: timestamp, input values and anomalies labels. The
former two are used for anomaly detection by OeSNN-UAD,
while the third time series is used for calculation of its
detection quality.

All time series in the Yahoo repository are imbalanced or
strongly imbalanced with the average percentage of input values
being anomalies in a time series less than 1% on average. Similarly
to the NAB repository, data files in the Yahoo Anomaly Dataset
repository are provided as CSV files.
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7.2. Experimental setup and optimization

To run our OeSNN-UAD detector one has to provide values of
the following parameters: NIsize — number of input neurons, NOsize
— the maximal number of output neurons, mod — modulation
factor, C — fraction of PSPmax required to fires an output neuron,
sim — threshold value for similarity between a candidate output
neuron and an output neuron in terms of their weights vectors,
which is required for merging these neurons, ξ — output value
correction factor, Wsize — window size, ε — anomaly classification
factor. The values of the β and TS parameters do not need to be
determined, because the classification result does not depend on
them (please see, Proposition 1.(v)). In the reported experiments,
values of the first 6 parameters were set as follows: NIsize = 10,
NOsize = 50, sim = 0.17, mod = 0.6, C = 0.6, ξ = 0.9. In our
preliminary experiments, we observed that values of parameters
Wsize and ε have the greatest impact on anomaly detection (simi-
lar observation follows from the experiments reported in Ahmad
et al. (2017c) and Munir et al. (2019b), in which approaches
to anomaly detection that also use window size and anomaly
classification threshold are proposed). Hence, the selection of
Wsize and ε parameters values of OeSNN-UAD was optimized. In
the case of data files from the Numenta Anomaly Benchmark
repository, OeSNN-UAD was run multiple times with Wsize ∈

{100, 200, . . . , 600} and ε ∈ {2, 3, . . . , 7}, while in the case of
data files from the Yahoo Anomaly Datasets repository, it was
executed with Wsize ∈ {20, 40, . . . , 500} and ε ∈ {2, 3, . . . , 17}.

Following Kasabov (2014), Maciąg et al. (2019), Tu et al.
(2017), we implemented the grid search procedure to find the
best values of parameters Wsize and ε for each data file separately.
The grid search procedure iterates over all given combinations
of input learning parameters to find a set of parameters values
(in particular, Wsize and ε), which provides the best anomaly
detection results for an input data file.

The implementation of OeSNN-UAD is prepared in C++ and
its source code is publicly available (https://github.com/piotrM
aciag32/eSNN-AD). The compiled executable file is lightweight
(it consumes around 2 MB of RAM memory), which makes it
additionally suitable for environments with very strict memory
constraints, such as sensor microcontrollers or IoT devices.

7.3. Obtained anomaly detection results

In the experimental phase, we compare anomaly detection
quality of our approach to the other state-of-the-art methods
and algorithms provided in the literature. To this end, we use
five measures of detection quality: precision, recall, F-measure,
balanced accuracy (BA) and Matthews correlation coefficient (MCC).

Precision provides information on how many of the input
values detected as anomalies by the detector are actually labeled
as anomalies in data files, while recall indicates how many of
the labeled anomalies in the data file are properly detected by
the detector. F-measure (F1) is a harmonic mean of precision
and recall. Moreover, since most of the datasets in the NAB
and Yahoo repositories are strongly imbalanced, we additionally
computed balanced accuracy. Balanced accuracy (BA) is defined
as the average of recall and the equivalent of recall calculated
with respect to the category of non-anomalous input values.
This measure is typically used when dealing with imbalanced
datasets, such as time series in the NAB and Yahoo repositories.
Matthews correlation coefficient (MCC) is defined as a correlation
coefficient between real and predicted labels of both anomalous
and non-anomalous input values.

In Eqs. (13), (14), (15), (16), (17) we give formulae for preci-
sion, recall, F-measure, balanced accuracy and Matthews correla-
tion coefficient. In these equations, |TP| (True Positives) denotes
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the number of input values that were both classified as anomalies
by the detector and labeled as being such in the data file, |FP|
(False Positives) denotes the number of input values that were
classified as anomalous by the detector, but were not labeled as
anomalies in the data file, while |FN| (False Negatives) denotes
the number of input values labeled as anomalous in the data file,
but not classified as anomalies by the detector.

Precision =
|TP|

|TP| + |FP|
. (13)

ecall =
|TP|

|TP| + |FN|
. (14)

1 = 2 ·
Precision · Recall
Precision+ Recall

. (15)

A =
1
2
·

(
|TP|

|TP| + |FN|
+

|TN|
|TN| + |FP|

)
. (16)

CC =
|TP| · |TN| − |FP| · |FN|

√
(|TP| + |FP|)(|TP| + |FN|)(|TN| + |FP|)(|TN| + |FN|)

.

(17)

In Fig. 5, we present charts showing anomaly detection re-
ults obtained for example data files in categories artificial-
ithAnomaly, realAdExchange and realTraffic of the NAB
epository. Fig. 6 shows similar charts for example datasets in
ategories A1Benchmark, A2Benchmark of the Yahoo Anomaly
ataset repository. The charts present the occurrences of true
ositives (TP), false positives (FP), false negatives (FN) and true
egatives (TN) found by the proposed OeSNN-UAD algorithm. It
an be observed on the charts, especially in the case of the data
iles from the NAB repository, that there are some input values
n these data files that are not correctly labeled as anomalies.
or example, it can be seen on the first chart of Fig. 5, which
resents anomaly detection in art_daily_jumpsdown data file
rom artificialWithAnomaly, that many input values that
ccur around time period 2800–3200 are labeled in the data file
s anomalies, while they should be perceived as non-anomalous
please see the green groups of input values). In this case, OeSNN-
AD classifies them, as we believe, correctly as non-anomalous,
ut they are treated as false negatives with respect to available
abeling of the data file. On the other hand, it may happen that
rue anomalous input values are not labeled as anomalies in these
ata files. Such a phenomenon may result in the decrease in the
alue of the detection quality measures, such as F-measure, even
hough a detector correctly classifies input data as anomalous or
on-anomalous, respectively.
 c
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Our proposed OeSNN-UAD is able to detect point anomalies
see e.g. Fig. 6: synthetic_13 and synthetic_44), contextual
nomalies and collective anomalies (see e.g. Fig. 6:real_19).2
roper detection of these types of anomalies, however, is often
ependent on the used values of parameters (especially on win-
ow size Wsize and anomaly factor ε). When it is possible, one
hould adjust the values of these parameters based on analysis of
subset of available data stream.
In Table 2, we show the results of OeSNN-UAD anomaly detec-

ion for the Numenta Anomaly Benchmark repository as well as
or the other unsupervised anomaly detection methods and algo-
ithms. As in Munir et al. (2019b), we report the mean F-measure
btained for each category of data files for each compared detec-
or. As follows from Table 2, OeSNN-UAD outperforms the results
btained by the other detectors in terms of F-measure for each
ategory of data files.
Table 3 presents the obtained precision and recall values for

he selected data files from the Numenta Anomaly Benchmark
epository. For some data files, OeSNN-UAD is able to provide
uch higher values of both precision and recall than the other
etectors. Most of the detectors compared with OeSNN-UAD,
or which the results are presented in Table 3, have very high
alues of precision, but very low values of recall. High values of
recision imply that very few cases which were not labeled as
nomalies are detected as anomalous. Low recall, on the other
and, implies that these detectors do not discover a large number
f cases labeled as anomalies. In fact, the recall values below
.01 obtained for many data files presented in Table 3 by these
etectors indicate their very limited ability to detect anomalies.
o the contrary, our OeSNN-UAD detector, in the majority of
ases, is characterized by much larger values of the recall, and
hus it is much more efficient in detecting anomalies than the
ompared detectors. The only case, when OeSNN-UAD has low re-
all value can be observed for exchange-2-cpc-results data
ile. Nevertheless, as follows from Fig. 7, which presents this data
ile and the results of anomaly detection obtained with OeSNN-
AD, a number of input values in this data file were labeled in a
ounter-intuitive way. For example, the majority of input values
n the time interval 245–407 were found by OeSNN-UAD as non-
nomalous (namely, input values marked as green, which seem
ot to be real anomalies). Surprisingly, these values are labeled
s anomalies in the data file. This incoherence between given
abeling of input values and their expected labeling results in
ncrease in the number of false negatives and, in consequence,

2 The characteristics of point, collective and contextual types of anomalies

an be found in Chandola et al. (2009).
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Fig. 5. Anomaly detection results for selected data files from the Numenta Anomaly Benchmark repository with OeSNN-UAD.
in decrease in the recall value for OeSNN-UAD. In addition, high
input values (marked as blue ones) in the time interval 1000–
1600 were found by OeSNN-UAD as anomalies (and seem to be
real anomalies), but are not labeled as such in the data file. This
results in an increase in the number of false positives and, in
consequence, in a decrease in the precision value for OeSNN-UAD.

In Table 4, we present the obtained optimal values of Wsize and
nomaly classification factor ε of OeSNN-UAD for data files, which
ere used in the experiments the results of which are presented

n Table 3.
In Table 5, we present the comparison of the obtained

-measure values for each category of data files in the Yahoo
nomaly Dataset repository. For the real data files category
A1Benchmark), the proposed OeSNN-UAD approach provides
132
higher values of the F-measure than the recent results reported
in the literature (Munir et al., 2019b), while for the other three
categories of data files, OeSNN-UAD’s results are competitive to
the results reported there.

In Table 6, we provide average values of precision, recall,
F-measure (F1), balanced accuracy (BA) and Matthews correlation
coefficient (MCC), obtained with OeSNN-UAD for all categories of
data files in the NAB and Yahoo repositories.

Table 7 presents a comparison of precision, recall, F-measure,
balanced accuracy and MCC for OeSNN-UAD and the unsuper-
vised anomaly detection method offered in Zhang et al. (2019)
for the data files in Real Known Cause and Real Tweets categories
of the NAB repository which were used there for validation. The
results presented in Table 7 were derived from the information
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Fig. 6. OeSNN-UAD anomaly detection results for selected Yahoo data files. The triangles on the chart real_19 present collective anomalies (timestamp ∼1000) as
ell as both collective and contextual anomalies (timestamps ∼800 and ∼1400); the triangles on the other two charts present point anomalies.
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rovided in Zhang et al. (2019) about the number of true positives
nd false positives that were discovered by the anomaly detec-
or offered there and based on the number of anomalous and
on-anomalous input values in data files of the NAB repository.

.4. Experiments with different values of window size and anomaly
lassification factor

In this subsection, we analyze the impact of different values
f window size Wsize and classification factor ε on the anomaly
etection results obtained by OeSNN-UAD for the data files that
ere presented in Figs. 5 and 6, as well as the rds_cpu_uti
e47b3b data file (see Fig. 10) from the NAB repository. The
 (
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irst six examined data files contain anomalies of different nature,
s discussed in Section 7.3, while the last data file contains a
ime series covering four data trends and anomalies. In these
xperiments, the values of all parameters of OeSNN-UAD, except
or Wsize and ε, are set as given in Section 7.2.

In Fig. 8, we present the example plots of the obtained values
for the selected performance measures (precision, recall, F1, BA
and MCC) for anomaly detection using different values of the
window size Wsize for data files presented in Figs. 5 and 6. Anal-
gous plots for different values of the ε parameter are presented
n Fig. 9.

Data files art._daily_jumpsdown (Fig. 5), synthetic_13
Fig. 6) and synthetic_44 (Fig. 6) can be conceived as periodic
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Fig. 7. Anomaly detection for data file exchange-2-cpc-results in realAdExchange category of data files of NAB with OeSNN-UAD.
able 3
recision and recall values obtained for Numenta Anomaly Benchmark stream data using the selected unsupervised anomaly detectors (marked with *) presented in
unir et al. (2019b) and using our proposed OeSNN-UAD detector. The results for the detectors marked with * were reported in Munir et al. (2019b).
Time series ContextOSE* NumentaTM* Skyline* ADVec* DeepAnT* OeSNN-UAD

Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.

Real AWS
Cloud Watch

ec2-cpu-utilization-5f5533 1 0.005 1 0.01 1 0.002 1 0.002 1 0.01 0.18 0.51
rds-cpu-utilization-cc0c53 1 0.005 1 0.002 1 0.1 0.62 0.012 1 0.03 0.50 0.75

Real Known
Cause

ambient-temperature-
system-failure

0.33 0.001 0.5 0.006 0 0 0 0 0.26 0.06 0.21 0.75

cpu-utilization-asg-
misconfiguration

0.12 0.001 0.52 0.01 0 0 0.74 0.01 0.63 0.36 0.32 0.49

ec2-request-latency-
system-failure

1 0.009 1 0.009 1 0.014 1 0.02 1 0.04 0.38 0.40

machine-temperature-
system-failure

1 0.001 0.27 0.004 0.97 0.01 1 0.02 0.8 0.001 0.39 0.50

nyc-taxi 1 0.002 0.85 0.006 0 0 0 0 1 0.002 0.17 0.47

rouge-agent-key-hold 0.33 0.005 0.5 0.005 0 0 0 0 0.34 0.05 0.13 0.23

rouge-agent-key-updown 0 0 0 0 0 0 0.11 0.002 0.11 0.01 0.25 0.43

Real Traffic

occupancy-6005 0.5 0.004 0.2 0.004 0.5 0.004 0.5 0.004 0.5 0.004 0.18 0.41
occupancy-t4013 1 0.008 0.66 0.008 1 0.04 1 0.02 1 0.036 0.50 0.44
speed-6005 0.5 0.004 0.25 0.008 1 0.01 1 0.01 1 0.008 0.36 0.34
speed-7578 0.57 0.03 0.6 0.02 0.86 0.16 1 0.01 1 0.07 0.64 0.30
speed-t4013 1 0.008 0.8 0.01 1 0.06 1 0.01 1 0.08 0.31 0.78
TravelTime-387 0.6 0.01 0.33 0.004 0.62 0.07 0.2 0.004 1 0.004 0.22 0.34
TravelTime-451 1 0.005 0 0 0 0 0 0 1 0.009 0.82 0.11

Real Ad
Exchange

exchange-2-cpc-results 0.5 0.006 0 0 0 0 0 0 0.03 0.33 0.07 0.02
exchange-3-cpc-results 0.75 0.02 1 0.007 0 0 1 0.02 0.71 0.03 0.21 0.23

Real Tweets Twitter-volume-GOOG 0.75 0.002 0.38 0.005 0.59 0.02 0.81 0.01 0.75 0.01 0.25 0.43
Twitter-volume-IBM 0.37 0.002 0.22 0.005 0.22 0.01 0.5 0.009 0.5 0.005 0.24 0.28
time series with a few anomalies. All selected anomaly detection
measures obtain optimal values of Wsize values approximately
qual to:

• 1 × the time series period length in the case of
art._daily_jumpsdown,
• 0.5 × the time series period length in the case of data file
synthetic_44,
• m × the time series period length, where m ∈ {0.5, 1, 2, 3},

and for some even greater values in the case of data file
synthetic_13.

In the case of data files real_19 (Fig. 6) and speed_7578
(Fig. 5), in which collective anomalies occur, the best results
of our anomaly detection approach were obtained for W not
size f
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less than the cardinality of the most numerous maximal clus-
ter of collective anomalies (see Fig. 8). In particular, data file
real_19 contains three maximal clusters of collective anomalies
(see Fig. 6), the first of which is most numerous. Thus, Wsize is
recommended to be set to the cardinality of this cluster for data
file real_19.

In the case of data file exchange_4_cpm_results (Fig. 5),
multiple values of Wsize allowed obtaining comparably good qual-
ity measures (see Fig. 8). Unlike the data files discussed earlier
in this subsection, exchange_4_cpm_results contains non-
periodic time series with mainly single point anomalies rather
than collective anomalies. The proper determination of the value
of Wsize for this data file is challenging, especially due to the
act that the current labeling of what is an anomaly and what
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Fig. 8. The plots of the obtained measures (precision, recall, F1, BA and MCC) for anomaly detection experiments with OeSNN-UAD using different window sizes Wsize
or data files presented in Figs. 5 and 6. The applied values of ε for data files: art_daily_jumpsdown, 4_cpm_results, speed_7578, real_19, synthetic_13
nd synthetic_44 are as follows: 5, 3, 4, 4, 4 and 7, respectively.
s not happens to be counter-intuitive (this labeling issue was
reviously discussed in Sections 7.3 and 7.1.1 ).
In Fig. 9, we present the plots of obtained values of the selected

uality measures when only the anomaly classification factor ε
is subject to changes. As it can be noticed from the plots in
this figure, the best values of the selected measures are usually
obtained for smaller values of ε, such as 3, 4 or 5. However,
in the case of 4_cpm_results data file, the best values of the
precision and MCC measures are obtained for larger values of the
ε parameter (the best values of the other measures in the case of
this data file were obtained for ε = 2).

Furthermore, in order to better assess the impact of Wsize and ε
on the anomaly detection results, we carried out experiments on
rds_cpu_uti.e47b3b, which consists of four data trends and
anomalies (see Fig. 10). Please note that input values marked
as false negatives at the end of the first two trends presented
in this figure are not proper anomalies, but were labeled by
the NAB authors as such. Thus, the values of recall for anomaly
detection using this data file are understated. Nevertheless, the
first input values corresponding to newly observed trends are
correctly recognized as anomalies.

The obtained values of anomaly detection quality measures for
data file rds_cpu_uti.e47b3b and for different values of the
Wsize and ε parameters are presented in Fig. 11. We note that the
best values of the selected measures were obtained in particular
for Wsize equal to 100, which corresponds to the number of input
values labeled as anomalous that are present at the beginning of
135
each new trend. In the case of ε, the best values for precision, F1
and MCC as well as values close to the best ones for the recall
and BA measures were obtained for both ε = 4 and ε = 6.

The experiments conducted in this subsection suggest that:
(i) in the case of a periodic time series, the best anomaly detection
results are likely to be obtained for Wsize parameter equal to a
multiple of the period length of input values or of its half; (ii) in
the case of a data file containing different data trends, it seems
reasonable to set the value of Wsize to the maximum number of
consecutive atypical input values that alone are not treated as
constituting a new trend in data, but as anomalies; (iii) in the
remaining considered types of data files, it seems reasonable to
set the value of Wsize to not less than the cardinality of the most
numerous maximal cluster of collective anomalies; (iv) the best
anomaly detection results can be obtained for relatively small
values of the ε parameter.

8. Conclusions

In this article, we offered a new detector of anomalies in
data streams. Our proposed OeSNN-UAD detector is designed for
univariate stream time series data and adapts Online evolving
Spiking Neural Networks OeSNN. The distinctive feature of our
proposed OeSNN-UAD anomaly detector is that it is the only
detector based on (Online) evolving Spiking Neural Networks

which operates in an online and unsupervised way.
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Fig. 9. The plots of obtained measures (precision, recall, F1, BA and MCC) for anomaly detection experiments with OeSNN-UAD using different values of anomaly
classification factor ε for data files presented in Figs. 5 and 6. The applied values of Wsize for data files: art_daily_jumpsdown, 4_cpm_results, speed_7578,
real_19, synthetic_13 and synthetic_44 are as follows: 300, 300, 100, 180, 480 and 80, respectively.
Fig. 10. Anomaly detection results for data file rds_cpu_uti.e47b3b (the results were obtained with parameters Wsize = 100, ε = 6.
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OeSNN-UAD adapts the architecture of OeSNN for anomaly
etection purposes. Nevertheless, unlike OeSNN, OeSNN-UAD ap-
lies a different model of an output layer and different methods
f learning and input values classification. In particular, OeSNN-
AD does not separate output neurons into known in advance
ecision classes. Instead, each new output neuron on OeSNN-UAD
s assigned an output value, which is randomly generated based
 O

136
n recent input values and then is updated in the course of learn-
ng of OeSNN-UAD to better adapt to changes in a data stream.
s a part of the proposed OeSNN-UAD detector, we offered a
ew two-step anomaly classification method. Our method treats
n input value as anomalous if either none of output neurons
ires or, otherwise, if an error between the input value and its
eSNN-UAD prediction is greater than the average prediction
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Fig. 11. The plots of obtained measures (precision, recall, F1, BA and MCC) for anomaly detection experiments with OeSNN-UAD using different values of window
ize Wsize (left plot) and anomaly classification factor ε (right plot) obtained for data file rds_cpu_util_e47b3b. The left plot was obtained using constant value
of ε = 4, while the right plot was obtained with constant value of Wsize = 180.
Table 4
Optimal window sizes and anomaly classification factors used by OeSNN-UAD
for data files from Table 3.

Time series Wsize ε

Real Ad
Exchange

exchange-2-cpc-results 100 2
exchange-3-cpc-results 100 4

Real AWS
Cloud Watch

ec2-cpu-utilization-5f5533 300 2
rds-cpu-utilization-cc0c53 600 7

Real Known
Cause

ambient-temperature-
system-failure

500 6

cpu-utilization-asg-
misconfiguration

600 3

ec2-request-latency-
system-failure

400 5

machine-temperature-
system-failure

300 4

nyc-taxi 100 3

rouge-agent-key-hold 100 5

rouge-agent-key-updown 300 6

Real Traffic

occupancy-6005 300 2
occupancy-t4013 600 2
speed-6005 600 2
speed-7578 100 4
speed-t4013 400 3
TravelTime-387 100 2
TravelTime-451 100 5

Real Tweets Twitter-volume-GOOG 200 3
Twitter-volume-IBM 100 5

error plus user-given multiplicity of the standard deviation of
recent prediction errors.

In the article, we proved that all candidate output neurons,
s well as all output neurons in the repository, have the same
alues of the sum of their synaptic weights, their maximal post-
ynaptic potentials, and their post-synaptic potential thresholds,
espectively. The last property eliminates the necessity of recal-
ulation of these thresholds when output neurons of OeSNN-UAD
re updated in the course of the learning process, and thus
t allows increasing the speed of classification of input stream
ata. Moreover, we also proved that firing order values of input
eurons do not depend on values of TS and β parameters, which
ere previously used in OeSNNs for input value encoding with
aussian Receptive Fields.
In the experimental part, we compared the quality of the

roposed OeSNN-UAD detector with 14 other anomaly detec-
ors provided in the literature. The experiments were conducted
137
on data files from two anomaly benchmark repositories: Nu-
menta Anomaly Benchmark and Yahoo Anomaly Dataset. These
two repositories cumulatively contain more than 500 data files
grouped into several categories. For the assessment of the qual-
ity of anomaly detectors, we used five indicators: F-measure,
precision, recall, balanced accuracy and Matthews correlation
coefficient. For the Numenta Anomaly Benchmark repository,
OeSNN-UAD is able to provide significantly better results in terms
of F-measure for all categories of data files. The detailed analysis
of the experimental results obtained for the data files in the
Numenta Anomaly Benchmark repository that were considered
in Munir et al. (2019b) also shows that OeSNN-UAD outperforms
other compared detectors in terms of recall. In the case of the
Yahoo Anomaly Dataset repository, OeSNN-UAD achieves higher
F-measure values for the real data files category, while for the
other three synthetic data categories the obtained values of
the F-measure are competitive to the results reported in the
literature (Munir et al., 2019b). In addition, in terms of recall,
F-measure, balanced accuracy and MCC measures, OeSNN-UAD
outperforms the method proposed in Zhang et al. (2019) on all
NAB data files which were used there for evaluation.

As we discuss in Section 7.4, the quality measures of the
OeSNN-UAD algorithm depend on properly selected values of its
parameters, in particular, the window size Wsize and classification
factor ε. An inaccurate selection of these parameters can nega-
tively affect the anomaly detection quality. Especially, too large
values of the ε parameter could result in an increase in false
negatives (which would result in low recall scores). Conversely,
too small values of the ε parameter could increase the number of
false positives (which would entail low precision values). Thus,
the value of ε should be adjusted according to the observed dis-
persion of at least some representative subset of input values. The
selection of proper values for Wsize can be even more challenging,
as shown in Section 7.4. The best value of this parameter can
be linked to such factors as the periodicity of time series data,
trends present in input values or the cardinalities of collective
anomalies clusters. Thus, it is critical to conduct a proper tuning
of this parameter that takes into account available characteristics
of the input data file under study.

In the performed experiments, we used the OeSNN-UAD de-
tector whose Online evolving Spiking Neural Network contained
as few as 10 input neurons and at most 50 output neurons, and
thus occupied very little operating memory. In spite of such a
small number of neurons, OeSNN-UAD was able to outperform
the compared detectors for most data files in each category of
the Numenta Anomaly Benchmark repository and most real data
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able 5
verage F-measure values obtained for Yahoo Anomaly Dataset stream data using the unsupervised anomaly detectors (marked with *) presented in Munir et al.
2019b) and using our proposed OeSNN-UAD detector. The bolded results are the best for each data files category. The results for the detectors marked with * were
eported in Munir et al. (2019b).
Dataset category Yahoo

EGADS*
Twitter Anomaly
Detection, α = 0.05*

Twitter Anomaly
Detection, α = 0.1*

Twitter Anomaly
Detection, α = 0.2*

DeepAnT
(CNN)*

DeepAnT
(LSTM)*

OeSNN-UAD

A1Benchmark 0.47 0.48 0.48 0.47 0.46 0.44 0.70
A2Benchmark 0.58 0 0 0 0.94 0.97 0.69
A3Benchmark 0.48 0.26 0.27 0.3 0.87 0.72 0.41
A4Benchmark 0.29 0.31 0.33 0.34 0.68 0.59 0.34
Table 6
Average values of F-measure, balanced accuracy (BA) and Matthews correlation coefficient (MCC) obtained with OeSNN-UAD for the
NAB and Yahoo repositories.
Dataset category Prec. Rec. F1 BA MCC

Numenta
Anomaly
Benchmark

Artificial with Anomaly 0.500 0.457 0.427 0.690 0.391
Real Ad Exchange 0.224 0.255 0.234 0.584 0.154
Real AWS Cloud 0.358 0.445 0.342 0.683 0.369
Real Known Cause 0.263 0.469 0.324 0.652 0.244
Real Traffic 0.433 0.387 0.340 0.646 0.299
Real Tweets 0.267 0.412 0.310 0.633 0.225

Yahoo
Anomaly
Dataset

A1Benchmark 0.657 0.791 0.697 0.869 0.706
A2Benchmark 0.616 0.929 0.690 0.957 0.715
A3Benchmark 0.557 0.374 0.409 0.686 0.432
A4Benchmark 0.467 0.373 0.342 0.683 0.369
Table 7
Precision, recall, F-measure (F1), balanced accuracy, and Matthews correlation coefficient obtained for OeSNN-UAD and the method of Zhang et al. (2019) for the
selected data files in the NAB repository. The results for the latter method were derived from the information provided in Zhang et al. (2019) about the number of
true positives and false positives that were discovered by their anomaly detector and based on the number of anomalous and non-anomalous input values in the
NAB data files.
Time series The method of Zhang et al. (2019) OeSNN-UAD

Prec. Rec. F1 BA MCC Prec. Rec. F1 BA MCC

Real
Known
Cause

ambient-temperature-
system-failure

0.833 0.007 0.014 0.503 0.07 0.207 0.752 0.325 0.716 0.27

cpu-utilization-asg-
misconfiguration

0.5 0.001 0.003 0.501 0.022 0.318 0.494 0.387 0.699 0.328

ec2-request-latency-
system-failure

1 0.006 0.011 0.503 0.073 0.38 0.402 0.39 0.67 0.332

machine-temperature-
system-failure

0.294 0.002 0.004 0.501 0.018 0.395 0.5 0.441 0.707 0.374

nyc-taxi 0.722 0.013 0.025 0.506 0.087 0.166 0.471 0.245 0.604 0.138

rouge-agent-key-hold 0.667 0.011 0.021 0.505 0.075 0.126 0.232 0.164 0.526 0.04

rouge-agent-key-updown 0.667 0.008 0.015 0.504 0.064 0.251 0.432 0.317 0.645 0.23

Real
Tweets

TV-AAPL 0.333 0.004 0.007 0.501 0.026 0.454 0.491 0.472 0.713 0.411
TV-AMZN 0.233 0.004 0.009 0.501 0.019 0.17 0.41 0.24 0.594 0.132
TV-CRM 0.615 0.005 0.01 0.502 0.049 0.313 0.551 0.399 0.708 0.328
TV-CVS 0.6 0.002 0.004 0.501 0.03 0.201 0.543 0.293 0.656 0.21
TV-FB 0.375 0.002 0.004 0.501 0.021 0.261 0.18 0.213 0.562 0.146
TV-GOOG 0.4 0.003 0.006 0.501 0.027 0.248 0.429 0.314 0.65 0.236
TV-IBM 0.429 0.002 0.004 0.501 0.023 0.241 0.284 0.261 0.592 0.172
TV-KO 0.286 0.004 0.007 0.501 0.023 0.132 0.339 0.19 0.546 0.063
TV-PFE 0.25 0.007 0.013 0.502 0.026 0.188 0.463 0.267 0.62 0.168
TV-UPS 0.389 0.009 0.017 0.504 0.046 0.463 0.428 0.445 0.687 0.387
A

files in the Yahoo Anomaly Dataset repository. This proves that
OeSNN-UAD is effective and suitable also for environments with
restrictive memory limits.
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