
applied  
sciences

Article

Self-Tuning Algorithm for Tuneable Clamping Table for Chatter
Suppression in Blade Recontouring

Markel Sanz-Calle 1,* , Zoltan Dombovari 1,2 , Jokin Munoa 1,3 , Alexander Iglesias 1

and Luis Norberto López de Lacalle 3

����������
�������

Citation: Sanz-Calle, M.; Dombovari,

Z.; Munoa, J.; Iglesias, A.; López de

Lacalle, L.N. Self-Tuning Algorithm

for Tuneable Clamping Table for

Chatter Suppression in Blade

Recontouring. Appl. Sci. 2021, 11,

2569. https://doi.org/10.3390/

app11062569

Academic Editor: Paolo Neri

Received: 18 February 2021

Accepted: 12 March 2021

Published: 13 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dynamics & Control Department, Ideko, Elgoibar, 20870 Basque Country, Spain;
dombovari@mm.bme.hu (Z.D.); jmunoa@ideko.es (J.M.); aiglesias@ideko.es (A.I.)

2 MTA-BME Lendület Machine Tool Vibration Research Group, Department of Applied Mechanics,
Budapest University of Technology and Economics, Muegyetem rkp. 3, H1111 Budapest, Hungary

3 Mechanical Engineering Department, Faculty of Engineering of Bilbao, University of the Basque Country,
48013 Bilbao, Spain; norberto.lzlacalle@ehu.eus

* Correspondence: msanz@ideko.es

Abstract: The production and repair of blades for aerospace engines and energy turbines is a complex
process due their inherently low stiffness and damping properties. The final recontouring operation
is usually performed by milling operations where regenerative chatter is one of the main productivity
limiting factors. With the objective of avoiding specific stiffening fixtures for each blade geometry,
this paper proposes a semi-active tuneable clamping table (TCT) based on mode tuning for blade
machining. The active mode of the device can be externally controlled by means of a rotary spring
and eddy current damping modules. Its in-series architecture allows damping to be introduced
to the critical mode of the thin-walled part without any direct contact in the machining area and
enables a more universal clamping. Its chatter suppression capabilities are maximized by means of a
novel self-tuning algorithm that iteratively optimizes the tuning for the measured chatter frequency.
The benefits of the iterative algorithm are validated through semidiscretization and initial value
time-domain simulations, showing a clear improvement in blade recontouring stability compared to
regular broad-bandwidth tuning methods.

Keywords: blades; milling; chatter; damping; fixture

1. Introduction

The manufacturing and repair of fan, compressor and turbine blades constitute very
high added-value industrial processes with a high relevance in the aerospace manufac-
turing industry. Due to the continuous increase in raw material and manufacturing costs,
the specific weight of maintenance, repair and overhaul (MRO [1,2]) processes of engine
parts has been increasing in recent years, which in some applications can result in savings of
up to 70% of the total costs compared to disposal and replacement with a remanufactured
component [3].

Among the four main stages of the blade repair process (pre-inspection, welding,
machining and post-inspection [4]), the machining or recontouring stage is of particular
interest due to the specific problems that arise during these operations. The aim of the
recontouring stage is to remove, by machining operations, the excess material added in
the welding stage (see Figure 1a,b) using additive manufacturing technologies such as
laser cladding [5] or laser metal deposition [6] and achieve the final blade geometry. Al-
though these operations have traditionally been performed through manual belt grinding,
the need to automate the process to the extent possible has encouraged the engine part
maintenance industry to move towards milling-based recontouring (see Figure 1c), per-
formed on 5-axis machines or hybrid cells in which welding and machining operations are
performed in the same clamping [7,8].
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In any case, milling operations on thin-walled blades are always a complicated task
due to static deflections and, especially, the occurrence of regenerative chatter. The in-
herently low stiffness and damping properties of the thin-walled blades result in a large
dynamic flexibility at the points to be recontoured and largely promote the onset of chat-
ter. Chatter is a type of self-excited vibration caused by the regenerative effect, whereby
each cutting edge cuts the wavy pattern left by the vibration in the previous pass [9,10].
Under certain cutting parameters, this closed-loop relationship can become unstable and
result in deep surface marks that can lead to rejection of the machined blade, accelerated
tool wear and damage to machine tool components.

Chatter suppression can be tackled in different ways [11], such as spindle speed tuning
based on a stability lobe diagram (SLD), optimized tool geometries [12] or continuous
spindle speed variation [13]. However, the difficult-to-cut titanium, nickel and cobalt
alloys commonly used for the blades and the uneven and varying dynamics of blades
greatly restrict the applicability of process parameter tuning techniques. The optimization
of tool or process parameters may not be effective when the dynamics of the part are
altered, or a severe decrease in tool life may occur if the spindle speed is outside the narrow
recommended cutting speed range. Increasing the dynamic stiffness of the blade by means
of stiffening devices or dampers provides a different approach to reduce the tendency to
regenerative chatter without actually changing the process parameters.

Figure 1. Blade repairing process. (a) Laser metal deposition for blade tip repair [6]. (b) Excess of
material to be removed [6]. (c) Recontouring by means of 5-axis milling. (d) Clamping fixture for
blade recontouring operations.

The application of stiffening devices based on the clamping of the blade near the tip
(see Figure 1d) is the most widespread technique at industrial level to prevent chatter in
blade MRO processes. To cope with different blade geometries and dimensions, a wide
set of fixtures is required, which must also have a certain level of flexibility to cope with
the shape deviation of the damaged blade and not to cause an excessive static deflection.
In this regard, the use of low melting point alloys as pinpoint has also been investigated as
a more flexible stiffening alternative [14].

On the other hand, active and passive dampers can also be implemented to increase
the dynamic stiffness of the blades. Active dampers can improve the dynamic stiffness of
the part by counteracting the measured vibration by means of an actuator. This idea has
recently been implemented to successfully damp flexible parts during heavy duty milling
operations on thin walls [15]. Besides, passive damping solutions in the form of tuned
mass dampers (TMDs) [16] or Lanchester dampers [17], have lately been applied for chatter
avoidance in blade and similar thin-walled part milling. Nevertheless, the application
of the technologies developed so far to blade recontouring may not be feasible, as they
require direct attachment of the device close to the machining point, which may interfere
with the machining trajectory or pose a major difficulty when dealing with blades with
complex geometries.
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As opposed to the in-parallel architecture of regular TMDs, the tuneable clamping
table (TCT [18]) is an application case of mode tuning with an in-series architecture, which
can increase the damping of the critical mode by tuning a highly damped and controlled
mode close to the targeted mode in the frequency band. Its in-series architecture provides
the capability to achieve the tuning between the controlled mode and the critical mode
of the blade with a universal clamping system and without any direct intervention in the
cutting zone.

Nevertheless, in mode tuning devices fine tuning is essential to achieve a maximum
increase in dynamic stiffness. To this effect, the algebraic expressions for optimal H∞ tuning
for a TCT have already been developed [18], which are the equivalent—but different—to
classical TMD amplitude tuning methodologies [19,20]. When the aim is to maximize
milling stability, the aforementioned strategies are no longer optimal [21], and specific
tuning procedures based on the optimization of the real part of the receptance function have
to be applied [22,23]. In any case, whatever the objective function, the aim of these strategies
is to achieve a wide-bandwidth tuning, considering that neither the part dynamics nor the
frequency of the external excitation are subject to change during normal operation.

In an industrial environment where a wide variety of parts—and therefore, dynamics—
exists and therefore a high degree flexibility and automation is sought, the TCT provides
a blade clamping solution to mitigate chatter vibrations with a universal clamping sys-
tem and minimal interference with the cutting process. This paper presents a self-tuning
algorithm for the tuneable clamping table for efficient blade manufacturing and repair.
Benefiting from the possibility of externally tuning the frequency and damping of its active
mode, its iterative nature allows the device’s chatter suppressing capability to be exploited
to the maximum extent and also provides the capacity to adapt to blades with uneven
dynamics. The analytical expressions for iterative tuning are introduced, which are imple-
mented in an algorithm running in real-time during the milling process. The algorithm
is then validated through semidiscretization and initial value time-domain simulations,
showing a superior performance compared to regular wide-bandwidth tuning methods.

2. Semi-Active Tuneable Clamping Table: Concept and Benefits

Similarly to TMDs, the tuneable clamping table proposed for blade recontouring is
based on mode tuning. When tuning the controlled mode close in the frequency band to
the lowly-damped critical mode of the blade, the two modes interact and the shapes of
the neighboring modes are combined. Due to the existence of the damping of the device,
a partial transfer of damping between the ideal (stand-alone) modes is achieved, which
can be used to increase the dynamic stiffness of the system.

Nevertheless, the classical TMD and TCT concepts present significant differences.
Figure 2 shows the differences in architecture between the well-known tuned mass damper
and the tuneable clamping table. As opposed to the TMDs, where the controlled mode
is placed in-parallel to the excitation force flow (Figure 2a), the TCT approach adopts an
in-series configuration (Figure 2b), clamping the blade from below. In this way, mode
tuning and the subsequent increase of the dynamic stiffness at the machining point can be
achieved without physically attaching any device to the blade near the machining zone
that could interfere with the cutting process. Moreover, this permits the development of a
universal clamping system for the entire blade set without the need for an array composed
by specific fixtures or dampers for every blade geometry.

In order to cope with a wide set of blades with different dynamics, the TCT concept
is implemented in a semi-active form in this paper. Semi-active damping devices, first
introduced in [24] for chatter suppression, require external energy to achieve the tuning,
but unlike active devices, the dissipation of vibration energy takes place without any
external energy input. The alteration of the stiffness, damping or mass properties of
the device mode can be achieved by multiple means. Purely mechanical assemblies
based on preloaded elastomers [24], position-adjustable moving masses [25,26] or rotary
springs [27–30] have been proposed to control the stiffness of the damper. Regarding the
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damping, eddy current modules have been proven to be a reliable alternative for obtaining
a nearly-ideal and adjustable viscous damping [18,28,29]. The use of electrorheological
and magnetorheological fluids to simultaneously control the stiffness and damping of
the device has also been investigated [31], with application over vibration attenuation in
thin walled part milling as well [32,33]. Finally, it is also worth mentioning the use of
piezoelectric shunts for semi-active damping purposes [34–36].

Figure 2. Passive damping concepts based on mode tuning for blade manufacturing and repair and
their associated 2-degree of freedom (DOF) lumped-mass models. (a) Traditional tuned mass damper
(TMD). (b) Tuneable clamping table (TCT).

Indeed, regardless of how the mode is controlled, semi-active devices require a control
strategy to achieve the tuning of the device mode to the critical mode to be damped. In this
sense, velocity [34] or force [37] feedback control strategies, as well as fuzzy control algo-
rithms [38,39], can be found in the literature. Nonetheless, when it comes to suppressing
regenerative chatter —rather than general vibration problems—iterative algorithms based
on the measured chatter frequency show a higher degree of effectiveness [29,40].

In the case of the semi-active TCT presented here, the controlled mode is materialized
as a dominant translational mode with a fixed moving mass m1 guided by flexures of
stiffness kf. The table features a rotary spring (see Figure 3) with unequal stiffnesses ks,1
and ks,2 in its two main directions and driven by a motor-encoder assembly. This permits
externally modifying the stiffness k1 and, consequently, the natural frequency ω1 of the
device with the angular position of the spring θ as

k−1
1 = k−1

f +
(

ks,1 cos2 θ + ks,2 sin2 θ
)−1

. (1)

In this manner, blade modes within the frequency range [ω1,min, ω1,max], as shown
in Figure 3, can be tuned with the TCT. The viscous damping of the table is provided by
the eddy current damping modules under the table, whose damping level can be adjusted
by modifying the immersion of the conductive plates inside the magnetic field created by
permanent magnets. Further details on its mechanical design and conception can be found
in [18].

Finally, once the design and construction of the TCT has been defined, the objective is
to develop a control strategy seeking for the maximization the chatter suppression capa-
bilities of the TCT. Similar to the aforementioned strategies for TMDs [29,40], an iterative
self-tuning algorithm for the in-series architecture based on the measured chatter frequency
is proposed here. The development and implementation of said algorithm is explained in
the following sections.
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Figure 3. Frequency tuning of the TCT by means of the angular position θ of the rotary spring.

3. Unidirectional Milling Model with Tuneable Clamping Table

Tip recontouring processes mostly consist of one or several milling passes parallel to
the so-called chord line of the blade. Like many other parts with thin wall characteristics,
blades usually present a dominant modal direction normal to the chord line and perpendic-
ular to the feed motion of the cutter, along which the active direction of the TCT is placed
for maximum efficiency of the mode tuning. Accordingly, the whole milling dynamics can
be accurately described in this case by a unidirectional milling model as in Figure 4.

Figure 4. Regenerative planar milling model with the tuneable clamping table.

3.1. Structural Dynamics

Similarly to other thin-walled parts, the presence of very lowly-damped modes that
are well-separated over the frequency band is usually expected, which results in a neg-
ligible level of coupling between the different blade modes. Under these circumstances,
the dynamic behavior of the blade at the machining point nearby a targeted (dominant)
mode can be accurately represented by a 2-degree of freedom (DOF) lumped mass model
as in Figure 4. m1, k1 and c1 represent the standalone active mode of the device and m2, k2
and c2 define the standalone targeted mode of the blade at the machining point, leading to

M ẍ(t) + C ẋ(t) + K x(t) = F(t), (2)

where

M =

[
m1 0
0 m2

]
, C =

[
c1 + c2 −c2
−c2 c2

]
,

K =

[
k1 + k2 −k2
−k2 k2

]
, x =

[
x1(t)
x2(t)

]
and F =

[
0

F2(t)

]
.

(3)
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3.2. Regenerative Milling Force

For simplicity, a cylindrical and straight fluted end mill with Z regularly spaced teeth
rotating at a constant spindle speed Ω is considered. Assuming a cutting force model with
linear characteristics with respect to the chip thickness h, the specific cutting force vector
f = F/a in the tangential-radial plane (t, r) can be defined as

ftr,i(t) = −(Ke + Kc hi(t)), (4)

where Ke = [Kte, Kre]ᵀ and Kc = [Ktc, Krc]ᵀ are respectively the so-called edge and cutting
coefficient vectors resulting from the linear fitting to the experimentally measured mean
cutting forces [41]. Due to the regenerative effect, each cutting edge cuts the wavy surface
left by the vibration of the previous tooth. Hence, the momentary chip thickness can be
calculated by approximating the tool edge kinematics to a circular motion as

hi(t) ≈ ( fZ sin ϕi(t) + ((x2(t)− x2(t− τ)) cos ϕi(t)), (5)

where τ is the regenerative delay, which is equal to the tooth passing period TZ = 2π
ZΩ in

this case, and where

ϕi(t) = Ωt + 2π
i− 1

Z
(6)

stands for the angular position of the ith tooth at the instant t. The total cutting force F2
to which the blade is subjected to for an axial depth of cut a can be hence calculated by
summing the projections onto the flexible direction of all the Z teeth as

F2(t) = −a
Z

∑
i=1

g(ϕi(t))((Kte + Ktc hi(t)) sin ϕi(t)− (Kre + Krc hi(t)) cos ϕi(t)), (7)

where g(ϕ) represents the screen function

g(ϕ) =

{
1, if ϕen < ϕ mod 2π < ϕex,
0, otherwise,

(8)

which determines whether the tooth is in or out of cut.
The total cutting force can be divided into two terms as F2(t) := F2(t, x2(t), x2(t−

τ)) = G(t)+∆F(t, x2(t), x2(t− τ)). The former is the time-periodic stationary forcing term

G(t) ≡ G(t + TZ) = −a
Z

∑
i=1

g(ϕi(t))((Kte + Ktc fZ sin ϕi(t)) sin ϕi(t)

−(Kre + Krc fZ sin ϕi(t)) cos ϕi(t)),

(9)

which represents the cutting forces of the equivalent undeformed milling model. This term
induces an unavoidable forced vibration xs(t). The latter is the state-dependent variational
term of the cutting force. It arises due to the regenerative nature of the cutting force and is
calculated as

∆F(t, x2(t), x2(t− τ)) = −a Ktc B(t)((x2(t)− x2(t− τ)), (10)

where

B(t) = B(t + TZ) :=
Z

∑
i=1

g(ϕi(t))
(

Krc

Ktc
cos2 ϕi(t)− sin ϕi(t) cos ϕi(t)

)
=

Z

∑
i=1

g(ϕi)b(ϕi)
(11)
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is the time-periodic directional milling coefficient, which concentrates the projection of
the cutting force onto the mode direction and the projection of the vibration onto the chip
thickness direction.

The presence of the regenerative—or dynamic—term of the cutting force makes the
governing equation a time-periodic delay differential equation (DDE [42]). Under a certain
set of cutting parameters, the DDE can undergo Hopf or period-doubling (flip) instabilities,
which actually correspond to the large amplitude chatter vibrations.

3.3. Zeroth-Order Milling Stability

The asymptotic linear stability of the stationary solution of (2) can be assessed by
introducing a perturbation p(t) around the stationary solution x(t) = xs(t) + p(t). For the
case that the perturbed solution p(t) is not influenced by the stationary cutting solution,
the stability of (2) can be evaluated by studying the stability of the perturbed equation:

M p̈(t) + C ṗ(t) + K p(t) = ∆F(t, p2(t), p2(t− τ)). (12)

Numerical methods such as semidiscretization [43] or full-discretization [44] are well-
established and efficient techniques for assessing the stability properties of time-periodic
DDEs. However, like other numerical methods, they often hide the direct relations between
process parameters and system stability that could serve as a core function for a stability
maximization algorithm. Instead, the stability of (12) can be studied in the frequency
domain by considering the marginal case where the system has a critical dominant vibration
(chatter) frequency ωc and its modulations ωc + k ωZ related to the tooth passing frequency
ωZ = 2π/TZ as

p(t) =
∞

∑
k=−∞

pk ei(ωc+k ωZ)t, (13)

together with the Fourier decomposition of the time-periodic milling coefficient

B(t) =
∞

∑
k=−∞

Bk ei k ωZ t :=
Z
2π

∞

∑
k=−∞

βk ei k ωZ t, where βk =
∫ ϕex

ϕen
b(ϕ) ei k Z ϕ dϕ. (14)

In case of only being interested in Hopf-type instabilities, (13) can be truncated to
k = 0 and the directional milling coefficient approximated by is averaged value B(t) ≈
B0 := Z

2π β0, where

β0 =
∫ ϕex

ϕen
b(ϕ)dϕ =

1
4

[
cos 2ϕ +

Krc

Ktc
(2ϕ + sin 2ϕ)

]ϕex

ϕen

(15)

is the mean directional factor [45]. This approximation—commonly known as the zeroth-
order algorithm (ZOA [46])—leads to an eigenvalue problem from which the critical
stability curves can be parametrically computed. ZOA provides accurate results in non-
interrupted milling processes where only Hopf bifurcations are expected and the effect of
machining mode coupling is negligible [47].

In a unidirectional milling case like this, the eigenvalue problem is reduced to the
following scalar characteristic equation:

p2,0 = a Ktc β0
Z
2π

H22(ωc)(e−i ωc τ − 1)p2,0, (16)

where H22 refers to the direct receptance function at the blade tip originated from

H(ω) = (−ω2 M + i ω C + K)−1 =
[
Hi,j(ω)

]
, where i, j = 1, 2. (17)
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In this way, a semi-analytical expression of the parametric root crossing (Ωl(ωc),
a(ωc)) curves can be raised as

a(ωc) = −
2π

Z Ktc β0 Re(H22(ωc))
and Ωl(ωc) =

2π
Z(2ψ22(ωc) + (2l + 3)π)

, (18)

where l = 1, 2, 3, ... stands for the lobe number and Re H22 and ψ22 are, respectively, the real
part and phase of the aforementioned direct receptance function at the blade tip.

3.4. Semidiscretization Based Milling Stability

Alternatively to ZOA, the stability of the time-periodic DDE in (12) can be studied by
means of time-discrete methods such as semidiscretization. Through the application of the
Floquet theory, the semidiscretization method provides the finite-dimensional version of
the monodromy matrix [48] for discrete values of Ω and a, whose eigenvalues—Floquet
multipliers—are used as a measure of the system stability. If all characteristic multipliers
remain inside the unit circle (modulus less than one), then the stationary solution is
asymptotically stable, otherwise, it is unstable. In this manner, by setting a fine mesh of a
and Ω pairs, stability maps of highly interrupted milling cases exhibiting Hopf and period
doubling instabilities can be constructed.

4. Chatter Suppressing Strategy for the TCT Architecture

In the previous section, the semi-analytical expressions relating the system dynamics
and milling stability for a blade recontouring case with unidirectional dynamics have been
introduced. Taking this relation into account, the objective of the present section is to
develop a tuning strategy for the tuneable clamping table to get the most out of the mode
tuning for maximum milling chatter suppression.

4.1. Dimensionless Formulation of the System Dynamics

As observed in (18), in milling processes with a dominant flexible direction, the lim-
iting depth of cut without chatter is approximately given by the inverse of the oriented
receptance function β0 Re H22 [21]. Therefore, the mean directional factor β0 determines
whether the negative real part of H22 (positive directional factor, β0 > 0) or the positive
real part (negative directional factor, β0 < 0) describes the limiting depth of cut curves.
In milling β0 is most likely to be positive, although negative cases are also possible depend-
ing on the radial engagement limits [ϕen, ϕex].

In any case, the complex receptance function of the TCT-blade assembly at the ma-
chining point H22 can be expressed as a function of the lumped-mass parameters of the
2-DOF system in Figure 4 as

H22(ω) =
k1 + k2 + c1iω−m1ω2

(k2 −m2ω2)(k1 + k2 −m1ω2)− k2
2 + c1(k2 −m2ω2)iω

. (19)

As can be noticed, the internal viscous damping of the blade c2 has been neglected,
which leads to a good approximation due to the inherently low damping properties of
thin-walled parts. In order to obtain a general tuning formulation for whatever mass and
stiffness of both TCT and blade, the receptance function in (19) is transformed into its
complex dimensionless form

h22 := h22(g) ≡ H22(ω2g) k2 =
g2 − f 2 − µ− 2 f ζ1ig

( f 2 − g2)(g2 − 1) + µg2 + 2 f ζ1(g2 − 1)ig
, (20)

through the dimensionless parameters collected in Table 1. Then, the real part of the
dimensionless receptance function, which is the one driving the stability limit, can be
obtained as follows:
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Re h22 =
(g2 − f 2 − µ)

(
( f 2 − g2)(g2 − 1) + µg2)− 4 f 2ζ2

1(g2 − 1)g2

(( f 2 − g2)(g2 − 1) + g2µ)
2 + 4 f 2ζ2

1(g2 − 1)2g2
. (21)

Table 1. Definition of the dimensionless dynamic and tuning parameters of the structure.

Part/Structure

nat. frequency dimless frequency

ω2 :=
√

k2
m2

g := ω
ω2

TCT/Tuning

nat. frequency frequency ratio mass ratio damping ratio

ω1 :=
√

k1
m1

f := ω1
ω2

µ = m2
m1

ζ1 = c1
2m1ω1

4.2. Excitation Frequency Dependent Tuning for the TCT

At this point, there are different optimization procedures to maximize the negative part
of (21)—or minimize its positive part. The traditional approach, in which constant device
tuning is provided no matter what the frequency of the external excitation g is, benefits
from the presence of three invariant points in (21). In this manner, a wide-bandwidth
optimization of either negative or positive real parts can be achieved as follows: first,
the two neighbouring invariants of the corresponding side of the curve are matched and,
then, a device damping for a zero-tangent at the mentioned invariants is set. The application
of this strategy to the TCT architecture leads to the analytical expressions

fo,± =

√
1− µ±

√
2µ

2
and ζ1,o,± =

√
3µ

8

√√√√ √
2±√µ√

2± (3− 2µ)
√

µ
, (22)

for constant frequency ratio and device damping tunings, respectively. A more detailed
explanation of the procedure for obtaining these expressions can be found in [23].

Constant parameter tuning strategies offer a good solution for fixed dampers or for
dampers whose stiffness and damping cannot be externally altered in real-time. However,
in semi-active devices like the TCT, the stiffness of the controlled mode can be externally
controlled in real-time by means of a rotary spring driven by a motor and an encoder.
Therefore, if the frequency of the external excitation g is known, a more efficient tuning
strategy based on that frequency can be devised [29,40].

Attending to (18), the arising dominant chatter frequency ωc can be considered as
sampling on the real part of the receptance function. Thus, a general chatter frequency-
dependent optimal tuning can be developed by optimising the negative or positive real
part of h22 for every dimensionless frequency g = ωc/ω2. This can be achieved by simply
deriving Re h22 with respect to the frequency tuning f and setting it equal to zero as

d Re h22(g, f )
d f

=

−2 f µ(( f 2 − g2)(g2 − 1) + g2µ)2 + 8 f g4µζ2
1(g2 − 1)(g2 − µ− 1)

((( f 2 − g2)(g2 − 1) + g2µ)2 + 4 f 2g2ζ2
1(g2 − 1)2)2

≡ 0
(23)

for every value of the dimensionless frequency g and standalone table damping ζ1.
Solving (23) leads to computing five roots: one at f0 = 0 and four others symmetrically ar-
ranged with respect to f0. By just considering the positive tuning values, the dimensionless
(chatter) frequency-dependent tuning formula
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f d Re h22
d f =0,±

(g) =

√
g2(g4 + 1 + µ− (µ + 2)g2 ± 2ζ2

1

√
(g2 − 1)3(g2 − 1− µ)

(g2 − 1)2 (24)

for positive (β0 > 0) and negative (β0 < 0) directional factors is attained. The expression (24)
presents the tuning limits

glim,− = 1 and glim,+ =
√

1 + µ, (25)

outside of which the tuning can actually be applied. When machining close to the resonance
of the standalone blade system, dimensionless chatter frequencies close to g = 1 are
expected. This would require an unreachable frequency tuning in practice according
to (24), or that may not even exist if g ∈ [glim,−, glim,+], which is more likely to occur under
a positive directional factor.

Nonetheless, it is important to remember that values of the real part of the receptance
higher or lower than zero do not generate lobe structures for positive and negative direc-
tional factor cases, respectively. Based on this, an alternative chatter frequency dependent
strategy can be devised by simply setting the real part of the receptance function to be zero
for every dimensionless chatter frequency, that is,

Re h22 = 0 → fRe h22=0(g) =√√√√µ− 2µg2 − 2(2ζ2
1 − 1)(g2 − 1)g2 +

√
µ2 + 8ζ2

1
(
2(1 + µ)g2 − µ− 2g4 + 2ζ2

1(g2 − 1)
)
(g2 − 1)g2

2(g2 − 1)
. (26)

Hence, considering that each of the strategies has complementary tuning domains and
that for g > 1 the directional factor must be positive and negative for g < 1, a frequency
dependent tuning strategy can be raised by defining the following piecewise smooth
function:

fo(g) =


f d Re h22

d f =0,+
(g), for g > 1 and fRe h22=0(g) 6∈ R,

f d Re h22
d f =0,−

(g), for g < 1 and fRe h22=0(g) 6∈ R,

fRe h22=0(g), otherwise.

(27)

The curves of the optimal frequency tuning ratios depending on the dimensionless fre-
quency are depicted in Figure 5 together with the values of the broad-bandwith (frequency
independent) strategies in (22). In practice, the tuning is only realizable in a region limited
by fmin and fmax given by the stiffness range limits of the rotary spring (see Figure 3).

4.3. Comparison with Equivalent Constant Parameter Tuning Strategy

The effect of the proposed tuning strategy can be appreciated by plotting Re h22
optimally tuned for every value of g according to fo(g) in (27), namely Re h22( fo(g), g),
and comparing it to the case with constant tuning fo,± from (22) as in Figure 6a. Here,
for comparison purposes, the optimal damping ratios from the corresponding constant
tuning strategy in (22) have been set. The excitation frequency dependent strategy further
optimizes the wide-bandwidth tuning strategy proposed in [23], except for a single value
of g where fo(g) and fo,± obviously coincide.



Appl. Sci. 2021, 11, 2569 11 of 20

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0.4

0.6

0.8

1

1.2

1.4

1.6

fmin

fo,−

fo,+

fmax
tuning region

glim,−

glim,+

dimensionless frequency, g

fr
eq

ue
nc

y
ra

ti
o,

f

fo,+

fo,−
f d Re h22

d f =0,+
f d Re h22

d f =0,−
fRe h22=0

fo(g)

Figure 5. Optimal frequency of the TCT for µ = 5 % and ζ1 = 10 %. The tuning ratio f of the two
frequency dependent tunings ( d Re h22

d f = 0 and Re h22 = 0) are shown in dashed lines, as well as the
combined tuning in the thick orange line. Constant frequency tuning ratios fo,± are also provided in
the horizontal thin lines for the sake of comparison.

0.6 0.8 1 1.2 1.4
−5

0

5

10
ga,+

dimensionless frequency, g

di
m

le
ss

re
ce

pt
an

ce
,R

e
h 2

2(
g)

fo,+

fo(g)
b.i)

0.6 0.8 1 1.2 1.4
−10

−5

0

5
ga,−

dimensionless frequency, g

di
m

le
ss

re
ce

pt
an

ce
,R

e
h 2

2(
g)

fo,−
fo(g)

b.ii)

STABLE

UNSTABLE

0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

ga,+
3

ga,+
2 ga,+

dimensionless spindle speed, ν(g)

di
m

le
ss

de
pt

h
of

cu
t,

σ
(g
)

STABLE

UNSTABLE

0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

ga,−
3

ga,−
2 ga,−

dimensionless spindle speed, ν(g)

di
m

le
ss

de
pt

h
of

cu
t,

σ
(g
)

β0 > 0 β0 < 0

β0 > 0 β0 < 0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24
0.95

1

1.05

1.1

1.15

mass ratio, µ

di
m

le
ss

fr
eq

.,
g a

β0 > 0
β0 < 0

a.i) a.ii)

b.i) b.ii)

c)

Figure 6. Comparison of the broad-bandwidth tuning and self-tuning strategy for positive and
negative directional factor cases. (a) Dimensionless receptance functions. (b) Zeroth order algorithm
(ZOA) critical curves. (c) Dimensionless frequencies associated to stability asymptotes.



Appl. Sci. 2021, 11, 2569 12 of 20

The effect of the introduced strategy on the milling stability can be observed by
computing stability limit given by the parametric curves of the dimensionless ZOA case as

σ(g) :=
Z Ktc β0

k2
alim(ω2 g) =

2π
Re h22(g)

and ν(g) :=
Z

ω2
Ω(ω2 g), (28)

where σ(g) and ν(g) are respectively the dimensionless depth of cut and spindle speed.
Figure 6b shows the dimensionless stability limits given by the piecewise smooth function
Re h22( fo(g), g) and the ones subjected to constant tuning Re h22( fo,±, g). As can be
observed, the stability is enhanced for both positive and negative directional factor cases
over the whole range of spindle speeds, except for the aforementioned points where the
two strategies converge. As noticed in [29], the ‘double lobe’ shape of the stability diagram
becomes a ‘single lobe’ structure.

Finally, apart from the mentioned increase of the stability limit, a variation with respect
the location of the maximum stability asymptotes ga is also noticed. These stability asymp-
totes are directly linked to the dimensionless spindle speeds at which the so-called ‘sweets
spots’ take place by the relation νa = ga/l, being l = 1, 2, 3, ... the lobe number. These di-
mensionless resonant frequencies can be numerically computed by simply Re h22(ga) = 0.
The curves of the optimal dimensionless frequency for the frequency dependent strategy
presented in this paper are shown in Figure 6c for increasing mass ratio. Accordingly,
by implementing the presented tuning and machining at spindle speeds calculated by ga,
the maximum stability is guaranteed.

5. Iterative Tuning Algorithm for the TCT

The excitation frequency dependent tuning strategy leads to a theoretical increase
of the stability limits by optimising the system dynamics for each chatter frequency ωc.
Obviously, the direct application of this tuning would imply that the chatter frequency
is known beforehand for every value of the spindle speed Ω. In practice, the tuning will
only take place once the process is unstable, and for a certain spindle speed Ω the arising
unstable frequency ωc will vary with the tuning f , since the dynamics of the TCT-blade
assembly vary with every tuning. Consequently, the ‘final’ ωc cannot be known in advance.
The practical realization of the previously developed tuning strategy must therefore be
attained by an algorithm in which the optimal tuning is sought by iteratively measuring
the chatter frequency and performing the tuning until the convergence is achieved.

The flowchart of the algorithm proposed for the TCT is shown in Figure 7, which is
implemented in a real-time controller. Regardless of the machining parameters, the TCT
is initially tuned according to the broad-bandwidth tuning strategy in (22). Once the
machining starts, the blade undergoes forced vibration even for the stable cutting situation
due to the unavoidable stationary part of (7). The part vibration can be estimated by
microphones or other contactless solutions, avoiding sensors that could interfere with
the cutting process. Then, the vibration measurement is fed to the real-time controller
for the continuous computation of the frequency spectrum. This forced vibration, which
manifests itself in the form of harmonics at the tooth passing frequency ωZ = 2π/TZ, does
not usually entail a real hazard for an acceptable part quality, except in finishing passes
where high surface quality is required. When regenerative vibrations arise, a dominant
high amplitude peak at a frequency higher or lower than the standalone natural frequency
ω2 (for β0 > 0 and β0 < 0 cases, respectively) can be noticed, leading to deep marks and
bad surface quality.
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Therefore, the real-time controller detects the onset of chatter when the frequency of
the maximum vibration peak is not an integer of the tooth passing frequency ωZ. If this
is the case, the optimal natural frequency of the table ω1 is determined according to
the measured chatter frequency ωc by setting ω1 = fo(ωc/ω2)ω2, with fo(g) from the
expression in (27). The position of the rotary spring is then modified according to (1) to
match the required natural frequency. This procedure is iteratively carried out until the
machining becomes stable or when a limit of six iterations is reached, if the process cannot
be stabilized at all.

chatter
detection

algorithm

initial tuning:
fi = fo and i = 1

device tuning:
ω1 = fi ω2

stable?
optimal tuning
fi ← fo(ωc/ω2)

i ≤ 6? i := i + 1

i ≤ 3?

fi ← fi+ fi−1
2

not stabilisable

fi

no

yes, ωc

no

fi

yes

yes

no

Figure 7. Implemented algorithm for chatterless blade recontouring based on the real-time measured
chatter frequency.

However, under certain cutting parameters, the tuning may oscillate and not converge
to its optimal value even for a theoretically stabilizable point, as the changes on the
assembly dynamics produced by the tuning lead to too large chatter frequency jumps.
In these instances, the convergence of the algorithm can be improved as follows: after
a threshold of three tuning iterations, the ideal objective tuning is calculated with the
expression in (27), but in spite of directly tuning the device to that value, the device is
tuned to the mean value of the actual tuning and the calculated ideal tuning, achieving a
better convergence.

6. Validation of the Concept

The introduced self-tuning algorithm has theoretically demonstrated a higher perfor-
mance compared to other wide-bandwidth tuning methods. It has been noted that ZOA
leads to accurate stability predictions as long as the milling process is not interrupted or
only lightly interrupted. Nonetheless, blade recontouring may involve low radial immer-
sion operations performed with cutters featuring few teeth and negligible smoothing effect
of the tool helix. This would lead to an interrupted cutting that could favour the occurrence
of both flip instabilities and machining mode coupling effects that might compromise the
effectiveness of the algorithm. For this reason, the effectiveness of the algorithm presented
in this paper is validated in this section by means of the semidiscretization and initial value
time domain simulations for the milling case in Table 2, which resembles an interrupted
recontouring operation.
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Table 2. Definition of the dimensionless dynamic and tuning parameters of the structure.

Tool/Material Process

D (mm) Z Kc (MPa) Ke (N/mm) immersion (%) strategy β0 fZ (mm)

12 3 [800, 320]T [30, 40]T 25 down-milling 0.67 0.1

Part Dynamics TCT

ω2 (Hz) ζ2 (%) m2 (kg) µ (%) m1 ζ1 = ζ1,o,+ (%) [ fmin, fmax]

300 0.5 0.5 5 10 12.2% [0.5, 2]

6.1. Milling Stability through Semidiscretization Method

The stability and chatter frequency charts for the standalone (stiff) clamping, the TCT
under broad-bandwidth tuning and the self-tuned TCT obtained through semidiscretiza-
tion [43] are respectively shown in Figure 8a,b. For the self-tuned case, the chatter frequency
is computed for every unstable point of the Ω—a mesh as in [49], and optimal tuning is
iteratively performed according to the algorithm in Figure 7 until the process is stable or a
maximum of 6 iterations is reached.
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Figure 8. Results of the semidiscretization calculations for the milling case in Table 2 with stan-
dalone (stiff) clamping, TCT under broad-bandwidth tuning and TCT under self-tuning algorithm.
(a) Stability lobe limit diagrams. (b) Chatter frequency diagrams.

The results from the semidiscretization calculations confirm the superior performance
of the iterative strategy over the fixed-frequency strategy, with the exceptions of the
aforementioned spindle speeds at which the two strategies converge. Moreover, it can
also be noticed that the introduced strategy also increases the stability limit for spindle
speed ranges where a dominant period doubling behavior may be expected, even if the
expressions driving their stability limit differ from those of the Hopf-kind instabilities [50].
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6.2. Initial Value Time Domain Simulations with Fly-Over Effect

So far, an ideal linear milling model has been considered in order to devise the tuning
algorithm and validate it through semidiscretization calculations. However, the real milling
cases are subdued to the fly-over non-smoothness [51], effect by which the cutting edge
jumps out of the cut due to the vibration. Apart from being the cause of the vibration
amplitude reaching a threshold instead of growing indefinitely, this strong non-linearity
also induces a multi-regenerative effect than can make the chatter frequencies diverge from
the ideal linear case [52] and, thus, compromise the effectiveness of the tuning strategy.

In order to assess the robustness of the self-tuning algorithm against these deviations,
initial value time domain simulations of (2) have been performed together with the self-
tuning algorithm. With this purpose, (2) is transformed onto its modal state-space form and
numerically solved through an exponential time differencing forward Euler scheme [53].
For each discrete time step, the cutting force in (7) is calculated by considering a total
of 20 prior tooth passes for the computation of the chip thickness and switching it off
whenever fly-over takes place (hi(t) < 0).

For each Ω, a point, the chatter detection algorithm is run every 100 tool rotation
periods, of which the last 60 periods are taken for the FFT calculation. Chatter is detected
and its dominant frequency ωc measured if any peak is noticed at frequencies not matching
the tooth passing frequency ωZ and if its amplitude is higher than the 30% of the largest
tooth passing harmonic. If this is the case, the tuning of the device ω1 is computed
according to Figure 7 based on the measured chatter frequency ωc, and the system matrices
corresponding to the new tuning k1 = m1 ω2

1 are recalculated. Here, it is considered that the
tuning mechanism (rotary spring) is agile enough to perform the system retuning without
affecting the system stability. Therefore, the dynamics of the tuning mechanism are omitted
and the tuning is assumed to take place instantaneously. The process is iteratively repeated
until the stability is reached or the tuning goes into an oscillatory situation (machining
stability is not possible).

The results of the time domain simulations for the A, B, C and D points from the
stability chart in Figure 8 are shown in Figure 9. As predicted by the semidiscretization
calculations, the algorithm successfully stabilizes the initially Hopf unstable cases. Point
B (see Figure 9b), chosen according to the stability asymptote in Figure 6c, confirms that
large stability gains can be attained with the TCT by integrating the self-tuning algorithm
and adjusting the spindle speed to the stability asymptote. The capacity of the algorithm to
enhance the stability in period doubling zones is also demonstrated in Figure 9c, as one
case of flip chatter was successfully suppressed by the tuning algorithm. An ‘unstabilizable’
case can be seen in Figure 9d, where an oscillatory behavior between two unstable tunings
is reached.

Finally, once the capability of the algorithm to maximize the stability of the system
has been demonstrated, it would also be important to study the robustness aspects of
the algorithm itself. One of the main hazards for all the mode tuning strategies is the
uncertainty with respect to the actual dynamic parameters of the system, namely, initial
deviations of the part dynamics or deviations due to the material removal. In this sense,
an in-depth analysis of the uncertainty and variability of the system parameters and their
effect on the tuning robustness would be decisive for a proper design of devices based on
the TCT architecture.
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ẋ 2
(m

/s
)

a.i)

a.ii)

a.iii) a.iv)

1 2

chatter
suppressed!

0 0.5 1 1.5
−2000

−1000

0

1000

2000

3000

time, t (s)

di
sp

la
ce

m
en

t,
x 2

(µ
m

)

Ω = 6315 rpm, a = 4.9 mm

0 0.5 1 1.5
280
300
320
340
360
380

1
2

time, t (s)

tu
ni

ng
,ω

1
(H

z)

200 400 600 800 1000
0

500

1000

1500

2000
ωZ 2ωZ 3ωZ

ωc

frequency, ω (Hz)

|ẋ
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ẋ 2
(m

/s
)

d.i)

d.ii)

d.iii) d.iv)

Figure 9. Results of the initial value time domain simulations with fly-over effect for the milling case in Table 2. (i) Blade tip
displacement x2. (ii) standalone TCT tuning frequency ω1. (iii) Frequency spectrum of the blade tip displacement velocity
|ẋ2|. (iv) Phase and Poincaré diagrams.
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7. Conclusions

The wide variety of different blade geometries present in a single engine makes blade
manufacturing and repairing processes a complex task, since specific stiffening fixtures
are needed for each geometry in order to avoid machining chatter when performing
the recontouring operations. Similarly to TMDs, the tuneable clamping table can damp
the critical modes by means of mode tuning, but thanks to its in-series configuration,
the tuning can be achieved without interfering with the cutting area, enabling a more
universal clamping. Aiming at maximising its chatter suppression capabilities, a self-
tuning algorithm has been developed for TCT architecture. The algorithm iteratively
measures the frequency of the arising chatter and optimally tunes the device for that
frequency, outperforming other wide-bandwidth tuning strategies. The effectiveness of the
algorithm has been validated through semidiscretization calculations and initial value time
domain simulations, where the stability enhancement provided in the ideal linear case has
been validated. The industrial application of the algorithm would require studying the
robustness of the algorithm with respect the uncertainty of the part dynamics due to initial
deviations or material removal.
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Abbreviations
The following abbreviations are used in this manuscript:

DDE delay differential equation
FFT fast Fourier transform
MRO maintenance, repair and overhaul
SLD stability lobe diagram
TMD tuned mass damper
TCT tuneable clamping table
ZOA zeroth order algorithm
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Nomenclature
(t, r) t: tangential, r: radial
M assembly mass matrix
C assembly viscous damping matrix
K assembly stiffness matrix
H assembly receptance matrix
mi modal (reflected) mass of the ith substructure
ki modal (reflected) stiffness of the ith substructure
kf flexure stiffness
ks rotary spring stiffness
ci modal (reflected) viscous damping of the ith substructure
Hi,j receptance function between the ith and jth substructures
θ angular position of the rotary spring
x displacement vector
xs stationary solution vector
p perturbed solution vector
F force vector
ftr specific cutting force in tangential-radial (t, r) coordinates
Kc cutting coefficient vector
Ke edge coefficient vector
fZ feed per tooth
Ω spindle speed
a axial depth of cut
h chip thickness
ϕen entering immersion angle
ϕex exit immersion angle
ϕ angular position of the cutter
τ regenerative delay
TZ tooth passing period
ωZ tooth passing frequency
ωc dominant chatter frequency
ψi,j phase of the receptance between the ith and jth substructures
ω excitation frequency
g(ϕ) screen function
g dimensionless excitation frequency
µ mass ratio
ζi standalone damping ratio of the ith substructure
ωi standalone natural frequency of the ith substructure
f frequency ratio
hi,j(g) dimensionless receptance between the ith and jth substructures
fo,± optimal frequency tuning ratio of the broad-bandwidth strategy
ζ1,o,± optimal TCT damping ratio of the broad-bandwidth strategy
fRe h22=0 zero real part tuning ratio
f d Re h22

d f =0,± zero real part derivative tuning ratio

fo(g) optimal frequency tuning ratio of the excitation frequency dependent strategy
glim,± dimensionless TCT tuning limits
fmax upper tuning ratio limit
fmin lower tuning ratio limit
ga dimensionless frequency of the stability asymptote
νa dimensionless spindle speed of the stability asymptote
ν dimensionless spindle speed
σ dimensionless depth of cut
B directional milling coefficient
β directional factor
∆F regenerative milling force
G stationary milling force
Z number of flutes of the cutter
D cutter diameter
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