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SUMMARY

Translating energy into swarming motion for miniature entities re-
mains a challenge. This translation requires simultaneously breaking
the symmetry of the system to enable locomotion and a coupling ef-
fect between the objects that are part of the population to induce
the collective motion. Here, we report on Robocoliths, engineered
Emiliania huxleyi (EHUX) coccolith-based miniature hybrid entities
capable of swarming behavior. EHUX coccoliths are characterized
by an asymmetric morphology that allows breaking symmetry, play-
ing a central role in generating a net force and directed motion.
Their activation with the bioinspired material polydopamine not
only endows the asymmetric coccoliths with advanced functional-
ities, such as thermal- and energy-harvesting responsiveness under
visible light exposure to display a collective behavior (i.e., swarm-
ing), but it also provides a functional surface from which antifouling
polymer brushes are grown. In this context, Robocoliths pave the
way for the next generation of multifunctional swarming bio-micro-
machines.
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INTRODUCTION

One of the most fundamental questions in science is what defines life.1 Collective

motion is one of the hallmarks of life.2 This is commonly observed in nature at various

dimensional levels as energized entities gather, in a concerted effort, into motile

aggregated patterns. These motile aggregated events can be noticed, among

many others, as dynamic swarms; e.g., unicellular organisms such as bacteria, locust

swarms, or the flocking behavior of birds.3–5 In contrast to what is accomplished indi-

vidually, multiple entities enable local interactions between each participant to

occur in proximity. If we consider each participant in the collective behavior as a

(bio)physical transducer, then the energy will be converted from one type into

another. The proxemics will then favor enhanced communication between neigh-

boring individuals via transduction of energy, leading to dynamic and complex syn-

ergetic behaviors of the composite powered structure.6

Over recent years, fascinating nano- andmesoscopic objects have been designed to

collectively move through direct inspiration from nature or by harnessing its existing

tools.7–10 Such robotic swarms were categorized by an online expert panel as among

the 10 great unresolved group challenges in the area of robotics.11 With this in mind,

nano- and mesoscopic objects capable of swarming require immediate scientific

attention. Although investigation of their underlying mechanism of action is still in

its infancy, various systems have been developed that are capable of undergoing

controlled and uncontrolled swarming motion by harvesting energy (e.g., light,
Cell Reports Physical Science 2, 100373, March 24, 2021 ª 2021 The Author(s).
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thermal, etc.).12 Importantly, this energy should be transformed into a net force for

the system to move. When the systems of interest are mainly small (meso- to nano-

scopic), then their motion, typically at low Reynolds numbers (Re << 1), becomes a

very challenging concept.13 Nevertheless, this demands breaking the symmetry of

the system for the locomotion to occur.14 Furthermore, collective motion requires

a coupling effect between the objects that are part of the population.

In this work, the aim is to identify the minimum requirements to design miniature

robots (microrobots) with swarming behavior. Therefore, to develop a nano/meso-

scopic object capable of swarming behavior, we hypothesize that this object simul-

taneously fulfills these requirements: (1) it is characterized by broken symmetry with

a well-defined morphology, and (2) it is functionalized with a material capable of har-

vesting energy. If the harvested energy results in a field surrounding the object, and

this field can couple with the field of a neighboring object, then the collective

behavior will be correlated.

Emiliania huxleyi (EHUX) coccolithophore-derived asymmetric coccoliths stand out

as candidates for the choice of a nano/mesoscopic object with broken symmetry

and well-defined morphology. Besides the thermodynamical stability because of

their calcite composition,15 the critical advantage of EHUX coccoliths is their distinc-

tive and sophisticated asymmetric morphology. EHUX coccoliths are characterized

by several hammer-headed ribs placed to form a proximal and distal disc connected

by a central ring. These discs have different sizes but also allow the coccolith to have

a curvature, partly resembling a wagon wheel.16 EHUX coccoliths can be isolated

from EHUX coccolithophores, a unique group of unicellular marine algae that are

the primary producers of biogenic calcite in the ocean.17 Coccolithophores can

intracellularly produce intricate three-dimensional mineral structures, such as cal-

cium carbonate scales (i.e., coccoliths), in a process that is driven continuously by

a specialized vesicle.18 After the process is finished, the formed coccoliths are

secreted to the cell surface, where they form the exoskeleton (i.e., coccosphere).

The broad diversity of coccolith architecture results in further possibilities for specific

applications in nanotechnology19 or biomedicine.20 Inanimate coccoliths from

EHUX live coccolithophores, in particular, can be isolated easily in the laboratory

with a low culture cost and fast reproductive rate and have a reasonably moderate

surface area (�20 m2 g�1) exhibiting a mesoporous structure (pore size in the range

of 4 nm).21

Presumably, if harvesting of energy is done on both sides of the EHUX coccolith,

then it will allow generation of a net force, which means movement in a directional

manner. Coccoliths have immense potential for a multitude of applications, but to

enable harvesting of energy, their surface properties must be finely tuned.22 Inspired

by the composition of adhesive proteins in mussels, dopamine self-polymerization

into polydopamine is currently the most versatile functionalization strategy for virtu-

ally all types of materials.23 Because of its surface chemistry and wide range of light

absorption properties, polydopamine is an ideal choice for aided energy harvesting

function on inert substrates.24–26 In this work, we aim to exploit the benefits of poly-

dopamine coating to provide advanced energy harvesting functionalities to the

otherwise inert and inanimate coccoliths. Polydopamine (PDA has already been

shown to induce movement of polystyrene beads because of thermal diffusion ef-

fects between the object and the surrounding aqueous solution of up to 2�C under

near-infrared (NIR) light excitation.27 However, no collective behavior has been re-

ported. Here, we prove, for the first time, that polydopamine can act as an active

component to induce, under visible light (300–600 nm), collective behavior of a
2 Cell Reports Physical Science 2, 100373, March 24, 2021



Figure 1. Combination of polydopamine and coccoliths allows design of Robocolith hybrids

EHUX coccolithophores are cultivated for isolation of coccoliths. When coccoliths (asymmetric morphology) are exposed to light, no collective motion

is observed. Coccoliths are then mixed gently with dopamine solutions. Thus, polydopamine-coated coccoliths hybrids are obtained as a basis for

design of Robocoliths. Light excitation and the asymmetry of Robocoliths generates a thermal flux of heat because of polydopamine’s photothermal

properties. Coupling of convection from neighboring Robocoliths transforms their movement into an aggregated collective motion. Robocolith

functionalization is also proposed to prevent and control nonspecific attachment of biomacromolecules and possible diminution of the aggregation.
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structurally complex, natural, and challenging-to-control architecture such as cocco-

liths. As a result, the organic-inorganic hybrid combination (coccolith-polydop-

amine) would enable design of Robocoliths.

Dopamine polymerization proceeds in a solution, where it forms small colloidal ag-

gregates that adsorb on the surface of the coccoliths, forming a confluent film. This

film is characterized by high roughness, which translates into a high specific surface

area and enhanced harvesting of energy. Because of the conjugated nature of the

polymer backbone, polydopamine can absorb light over a broad electromagnetic

spectrum, including the visible region.

As a result, the surface of coccoliths is endowed with a photothermal effect, locally

heating and creating convection induced by the presence of PDA. This local convec-

tion is coupled with another nearby local convection, which allows coupling between

individual Robocoliths, enabling their collective motion (Figure 1).

Therefore, when the light encounters the anisometric Robocoliths, they heat locally

because of the photothermal conversion induced by the presence of PDA on their

surface. The intense local heating produces convection that is different on either

side of the Robocolith, causing its observed movement. Such convection can couple

with the convection of a neighboring Robocolith, resulting in a ‘‘swarming’’ motion.

In addition, the surface of Robocoliths is engineered to accommodate antifouling

polymer brushes and potentially prevent their aggregation. Although a primary

light-activated convective approach is taken as a first step to understand the motion

of Robocoliths, a multitude of mechanistic approaches are currently being devel-

oped to pave the way for the next generation of multifunctional Robocoliths as

swarming bio-micromachines.
Cell Reports Physical Science 2, 100373, March 24, 2021 3



Figure 2. Detailed morphological characterization of coccoliths reveals their fascinating asymmetric architecture

(A) EHUX coccolithophores were cultivated successfully and visualized by SEM (scale bar, 4 mm).

(B) Following this, we broke and removed the cellular material from EHUX coccolithophores to isolate multiple (top; scale bar, 20 mm) and individual

(bottom; scale bar, 1 mm) coccoliths, as visualized by SEM.

(C) AFM image of an individual coccolith. Micrograph size, 4 3 4 mm.

(D) AFM magnification the micrograph of an individual coccolith. Scale bar, 400 nm.

(E) Illustration of a coccolith, depicting its specific morphological parameters.

(F) Typical plotted values of the specific morphological parameters. Data are represented as mean G SD (n = 55), where n is the number of coccoliths

visualized by TEM.
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RESULTS AND DISCUSSION

Combination of coccoliths with polydopamine enables design of Robocolith

hybrids

To obtain inanimate coccoliths, EHUX live coccolithophores were grown in artificial

seawater enriched with Guillard’s f/10 medium and 10 nM Na2SeO3 at an initial den-

sity of 50,000 cells mL�1.28 During exponential growth (10–12 days of culture), EHUX

microalgae were collected when a density of �800,000 cells mL�1 was reached (Fig-

ure S1A). Scanning electron microscopy (SEM) revealed single EHUX microalgae

during and at the end of the growth phase (Figure S1B; Figure 2A). EHUXmicroalgae

were then collected by filtration, and then individual coccoliths were isolated by

Triton-NaOCl treatment, followed by several centrifugation/washing steps. Cocco-

liths were isolated successfully, and their native morphology was preserved during

the isolation process (Figure 2B; Figure S1C). Detailed morphological characteriza-

tion was acquired by atomic force microscopy (AFM) (Figures 2C and 2D). As re-

vealed by transmission electron microscopy (TEM) measurements, each coccolith

comprised 32G 4 hammer-headed ribs of 230G 58 nmwidth (rw) that are organized

in a ring with a distance (rd) of 246G 56 nm between them. The coccolith central area

showed a width (caw) and length (cal) of 0.90G 0.11 mm and 1.42G 0.20 mm, respec-

tively, whereas their proximal shield had a width (psw) and length (psl) of 2.60 G

0.29 mm and 3.21 G 0.30 mm, respectively (Figures 2E and 2F).
4 Cell Reports Physical Science 2, 100373, March 24, 2021
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Coccolith plates are mainly composed of calcium carbonate, as revealed by energy-

dispersive X-ray spectroscopy (EDX) coupled with SEM, Fourier transform infrared

spectroscopy (FTIR), and X-ray powder diffraction (XRD) (Figure S2). Based on the

EDX results, the composition of coccolith plates is very similar to the composition

of synthetic calcium carbonate microparticles (Figures S2A and S2B). As observed

in the FTIR spectra, the coccoliths are characterized by vibrational bands at

1,394 cm�1 (n3 asymmetric CO3 stretch), 870 cm�1 (n2 asymmetric CO3 stretch),

and 712 cm�1 (n4 asymmetric CO3 stretch), whereas the sharp bands at 870 and

712 cm�1 are characteristic of calcite. The characteristic FTIR bands are specific to

those of synthetic calcium carbonate microparticles,29 a finding that was confirmed

by XRD (Figures S2C and S2D). However, in contrast to the clear calcite coccolith

crystal structure, the XRD spectrum of calcium carbonate microparticles mainly re-

vealed vaterite (Figure S2D). Variation in the phase amounts causes the calcium car-

bonate polymorphs to display unique physicochemical properties, which can also

lead to possible thermal instability of the material.30,31 To investigate this possibility,

the coccoliths and the calcium carbonate microparticles were heated to 60�C
because this condition was also used to prepare some of the Robocoliths. Interest-

ingly, only the coccolith architecture was preserved upon heating, whereas the cal-

cium carbonate microparticles changed their morphology from round spheres to

largely disproportionate patches (Figure S3). Therefore, coccoliths are calcite-based

structures with purer crystal composition (better defined/sharper Bragg peaks in

XRD) and improved thermal stability compared with synthetic polymorph calcium

carbonate microparticles.

The predominant calcium carbonate surface of coccoliths is not readily amenable to

covalent functionalization by the usual organic reactions. To circumvent this, we

decided to introduce a polydopamine bioinspired functional coating. Polydop-

amine is a dopamine-derived synthetic eumelanin polymer that contains catechol

and amine functionalities in its backbone and has the ability to coat virtually any sur-

face by pure immersion of the substrate in a slightly basic dopamine solution.23,32,33

Additionally, polydopamine contains quinone ligands, known for their energy-har-

vesting capabilities.34 Hence, it can be employed to coat the surface of coccoliths

and provide them with energy-harvesting properties while preserving their complex

morphology during the functionalization process. However, polymerization of dopa-

mine into polydopamine and substrate coating are time-dependent and -consuming

processes that could be reduced considerably by increasing temperature and stir-

ring intensity.35

Consequently, we decided to incubate inanimate coccoliths for 1 h at room temper-

ature (RT) in a dopamine hydrochloride solution of 2 mg mL�1 in 10 mM Tris buffer

(pH 8.5) under mild shaking (2PDAc_RT). The effect of reaction temperature (RT

versus 60�C) and dopamine hydrochloride concentration (0.2, 2, 5, and 10 mg

mL�1) on polydopamine growth was also investigated by incubating coccoliths in

a 10 mM Tris buffer (pH 8.5) solution for 1 h at 60�C. In this respect, we obtained

0.2PDAc, 2PDAc, 5PDAc, and 10PDAc Robocoliths (for more details, see Experi-

mental procedures).

When dopamine is solubilized in 10 mM Tris buffer at basic pH (8.5), it polymerizes

over time in films (Figure S4). When coated with polydopamine, Robocoliths were

collected by centrifugation, washed thoroughly with distilled water, and character-

ized by TEM, SEM, X-ray photoelectron spectroscopy (XPS), and EDX (Figure 3; Fig-

ure S5). It is noteworthy that application of a polydopamine coating did not affect the

nano- or microstructure of the native coccoliths, as shown by electron microscopy
Cell Reports Physical Science 2, 100373, March 24, 2021 5



Figure 3. Robocoliths are designed by polydopamine-coccolith hybrid combination

(A) TEM image of pristine coccoliths (left; scale bar, 500 nm) and TEM (center; scale bar, 100 nm) and SEM magnified micrographs of pristine coccoliths

(right; scale bar, 500 nm).

(B) TEM images of Robocoliths with 2 mg mL�1 dopamine at RT (2PDAc_RT) (left; scale bar, 500 nm; center, scale bar, 100 nm) and magnified SEM

micrograph of Robocoliths with 2 mg mL�1 dopamine at RT (2PDAc_RT) (right; scale bar, 500 nm).

(C) High-resolution C 1s and N 1s XPS spectra for pristine coccoliths.

(D) High-resolution C 1s and N 1s XPS spectra for 2PDAc_RT Robocoliths.

(E) SEM micrographs of Robocoliths with 0.2 mg mL�1 dopamine at 60�C (0.2PDAc). Scale bar, 1 mm.

(F) 2 mg mL�1 dopamine at 60�C (2PDAc). Scale bar, 1 mm.

(G) 5 mg mL�1 dopamine at 60�C (5PDAc). Scale bar, 500 nm.

(H) 10 mg mL�1 dopamine at 60�C (10PDAc). Scale bar, 1 mm.
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(Figures 3A and 3B). Only a very thin and homogeneously distributed polymeric

coating was observed on the surface of coccoliths for 1 h at RT (Figure 3B). Compar-

ison of the high-resolution C 1s and N 1s orbital spectra of bare and polydopamine-

coated coccoliths further proved successful modification of the surface of coccoliths.

The C 1s evidenced an increase in contribution at a binding energy of 284.6 eV,

stemming from C-C/C-H bonds, whereas a peak centered at 399.8 eV in the N 1s

spectra proved the presence of secondary and primary amine groups and imine

functionalities, all found in the polydopamine structure (Figures 3C and 3D). EDX

analysis of Robocoliths also detected an increase in carbon content up to 29.07 wt

% compared with 13.99 wt % for non-coated coccoliths (Figures S2A and S5A).

Furthermore, when coccoliths were prepared at 60�C, almost complete coverage of

the surface of coccoliths was obtained with the increase in dopamine concentration

(Figures 3E–3H; Figures S5B–S5E). There was also a distinct tendency toward Robo-

colith aggregation when the dopamine concentration ranged from 2 mg mL–1 to

10 mg mL�1 when Robocoliths were prepared for 1 h at 60�C (Figures S5F and

S5G). Zhou et al.35 demonstrated previously that a temperature of 60�C does not

affect the chemical composition of the final PDA film. Therefore, it appears that

the increase in temperature and dopamine concentration indeed leads to an in-

crease in polydopamine deposition and aggregate occurrence without any PDA
6 Cell Reports Physical Science 2, 100373, March 24, 2021
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chemical perturbance. Moreover, the PDA layer is formed from the surface of cocco-

liths or by attachment of PDA colloidal aggregates formed in solution.36 Larger PDA

colloidal aggregates contribute to formation of a thicker PDA deposit layer with

higher roughness.37 An increased temperature (i.e., 60�C) will induce the formation

of larger colloidal aggregates at a faster rate that will contribute to the PDA layer on

the surface of the Robocoliths. The bigger the size of the PDA colloidal aggregates,

the higher the probability that one will adhere to another, contributing to the rough-

ness and aggregate occurrence between Robocoliths. Importantly, higher rough-

ness means a higher surface area for Robocoliths to harvest energy.

Robocoliths control temperature generation upon an on and off light

excitation mechanism

It is already well known that dopamine polymerization into polydopamine is a pro-

cess influenced by temperature, catalysts (i.e., oxygen), and pH.35,38,39 Therefore,

it was relevant to identify the role of dissolved oxygen (DO) during dopamine poly-

merization at RT and 60�C in the absence or presence of coccoliths. When only the

buffer (10 mM Tris, pH = 8.5) is heated from RT to 60�C, a decrease in DO is detected

from 8.5 G 0.03 mg mL�1 to 4.3 G 0.03 mg mL�1 for 10 min (Figure S6A). When the

bare coccoliths are dispersed in the buffer, no change in DO content is observed

(Figure S6B, purple curve) if the temperature is kept constant at 23�C–24�C (Fig-

ure S6B, green curve). Only when dopamine is added to the coccolith dispersion

does a noteworthy consumption of DO occurs with its value decreasing from

8.2 G 0.01 mg mL�1 to 4.2 G 0.36 mg mL�1 (Figure S6B, orange curve) maintaining

a constant temperature for 30 min (Figure S6B, blue curve). Within the same period

of 30 min and maintaining the temperature close to 60�C, there is again a barely

noticeable variation in DO for bare coccoliths (Figure S6C, purple curve for DO

and green curve for temperature), whereas dopamine polymerization induces con-

sumption of DO, with its values dropping from 4.1 G 0.14 mg mL�1 to 0.6 G

0.04 mg mL�1 (Figure S6C, orange curve).

The variation in DO concentration during the dopamine polymerization process is

more or less similar (i.e., �4 mg mL�1) at RT and 60�C in the absence or presence

of coccoliths. By increasing the temperature of the system, the total initial DO con-

centration in the system decreases from �8.2 mg mL�1 (RT) to �4.1 mg mL�1 (60�C)
(Figure S6B versus S6C). In this case, the decrease in gas solubility can be attributed

to the increase in temperature. Thus, at an elevated temperature, there is a decrease

in total initial DO concentration in the system. However, the slope of the DO

decrease is steeper at 60�C than at RT during the polymerization process. Thus,

the rise in temperature leads to an increase in polymerization rate, which translates

into higher consumption of oxygen.40,41

Robocoliths were then excited at 558 nm (without bright-field [BF] exposure) to

investigate the role of temperature using a Pt100 temperature sensor (not dis-

played), which did not allow use of a BF under the inverted fluorescence microscope

(Figure S7). Therefore, dispersions of �40 mg mL�1 0PDAc, 0.2PDAc, 2PDAc,

5PDAc, and 10PDAc Robocoliths were excited using only the fluorescence filter

with excitation at 558 nm over 5 min (Figure S8A). As compared with 0PDAc Robo-

coliths, which barely displayed any light-induced change in temperature, 0.2PDAc,

2PDAc, 5PDAc, and 10PDAc Robocoliths displayed an increase in temperature. An

increase in temperature would normally lead to a decrease in DO into the aqueous

environment. All polydopamine-coated Robocoliths displayed a decrease in DO

(Figure S8B). Additionally, the DO appears to be correlated with the temperature

because an increase in temperature seems to lead to a decrease in DO (Figure S8C).
Cell Reports Physical Science 2, 100373, March 24, 2021 7



Figure 4. Robocoliths have temperature-generating properties

(A) Change in temperature (DT, �C) during light excitation (BF and BF + 356, 495, 558, 595, and 675 nm) of 0PDAc and 2PDAc Robocoliths after 5 min of

excitation. Data are represented as mean G SD (n = 3).

(B) Illustrative variation of 0.2PDAc Robocolith suspension temperature (�C) during manual recordings without light (light off) or during light excitation

(light on) under BF + 558 nm for 20 min.

(C) Illustration revealing that the light excitation induces Robocoliths to generate a thermal flux of heat (depicted as a yellow frame) and a force capable

of causing motion of the Robocoliths toward a more aggregated, swarm-like scenario (depicted as small orange arrows).
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Theoretically, if the DO in the aqueous environment would leave the system, then a

decrease in DO content for non-coated Robocoliths could be expected as well.

Interestingly, no change in DO was observed for non-coated Robocoliths (0PDAc;

Figure S8B). Therefore, the DO consumption upon excitation of Robocoliths, along

with the increase in temperature, might be due to the complex chemistry of poly-

dopamine-related oxidative processes.40,41 The latter will require further research

for the mechanistic understanding of these intricate processes upon the excitation

of Robocoliths. Because of a possible light on/off switching mechanism, the compo-

nent units of the complex structure of polydopamine might suffer additional and

reversible structural oxidation/re-orientation, allowing consumption of DO. The

temperature seems to rise slightly with the increase in initial dopamine concentra-

tion used for functionalization of the surface of Robocoliths. Although correlated

with the increase in temperature, the decrease in DO is almost the same for the

2PDAc_RT Robocoliths (DO = 7.87 G 0.38 mg mL�1 at 28.49�C G 0.13�C) as for

2PDAc Robocoliths (DO = 7.97G 0.38 mg mL�1 at 27.69�CG 0.29�C) when excited

at 558 nm (Figure S8C). Nevertheless, 2PDAc Robocoliths excited at 595 nm dis-

played a more pronounced decrease in DO, correlating with higher temperature

generation (7.71 G 0.38 mg mL�1 at 29.06�C G 0.78�C), compared with 2PDAc

and 2PDAc_RT Robocoliths excited at 558 nm.

Moreover, a thin thermocouple was used (displayed in Figure S7), which allowed use

of BF in conjunction with the fluorescence excitation filters (Figure 4A). As a result,

2PDAc Robocoliths showed a gradual increase in temperature with BF + 356, 495,

558 nm; a maximum reached under BF + 595 nm; followed by no variation of tem-

perature at BF + 675 nm. Minimal temperature differences were seen during excita-

tion of bare coccoliths or coccoliths coated with polydopamine under a BF only.

Nevertheless, although a BF slightly influences the outcome of temperature, Robo-

coliths control temperature via a light switch on/off mechanism. This was illustrated

by on/off excitation of �40 mg mL�1 0.2PDAc Robocoliths under BF + 558 nm for

over 15 min (Figure 4B). When the light was on, the temperature increased. When

the light was off, the temperature went back to its initial values. The temperature cy-

cle (longer than 13 min) becomes smaller because the fluorescence illumination was

turned on and off manually at an earlier time point than with the initial measurements

(0–12 min). Thus, the light on-off cycle can also be controlled at temperature levels

almost similar to those with a similar irradiation time for up to 1 h (Figure S9). The

cycle of controlling the temperature can be repeated several times based on this
8 Cell Reports Physical Science 2, 100373, March 24, 2021
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light switch on/off mechanism. Therefore, light excitation induces Robocoliths to

generate a thermal flux of heat and a force capable of causing motion of the Robo-

coliths toward a more aggregated, swarm-like scenario (Figure 4C).

Heated Robocoliths display motion upon an on and off light excitation

mechanism

Surprisingly, while visualizing polydopamine-coated coccoliths under an inverted

fluorescencemicroscope, we realized that they displayedmotion under various exci-

tation wavelengths irrespective of their preparation method (0.2PDAc, 2PDAc,

2PDAc_RT, 5PDAc, and 10PDAc). The wavelengths investigated were 356, 495,

558, 595, and 675 nm, associated with the available fluorescence filters, whereas

the BF was used for visualization (see Experimental procedures for details and

Figure S7). The velocity of Robocoliths was quantified using a time-resolved particle

image velocimetry (PIV) tool in MATLAB. PIV is based on associating directionality

vectors using particle movement displayed as colored mapping patterns. By

analyzing multiple frames extracted from video recordings, a mean velocity area

can be determined.42 We hypothesized that the motion is a consequence of the

PDA photothermal effect on the symmetry-breaking structure of the coccolith. The

light-inducedmovement is also dependent on the asymmetric and intricate architec-

ture of the coccoliths. As an illustration, polydopamine-coated polystyrene spherical

beads (bead diameter, 8.5 mm without the coating) were excited with an 808-nm

laser to reach an average moving velocity of polydopamine-coated polystyrene

beads of approximately 5.5 mm s�1 to induce their aggregation for in-solution paint-

ing and calligraphy.27 Unlike single polydopamine-coated polystyrene bead micro-

particles capable of displaying motion, our Robocoliths display movement under

light excitation only in the presence of other Robocoliths.

Formation of PDA aggregates from dopamine is a random process with little to no con-

trol over the final morphology (Figure S4). When coccoliths are present, their surface

acts as a nucleation interface for PDA aggregates, taking the shape of the coccoliths

through polymerization of dopamine on the surface of the coccoliths. Although PDA-

coated coccoliths also aggregate to some extent (Figure S5), this phenomenon will

have better control over preserving the morphological features of the supporting coc-

coliths than a random, surface-free, dopamine-to-polydopamine polymerization pro-

cess. After the Robocoliths are obtained, they are washed repeatedly with distilled wa-

ter to minimize the presence of unattached PDA aggregates from the surface of

coccoliths. Moreover, coccoliths alone do not move under light irradiation, whereas

coccoliths coated with PDA do move. This means that the mechanism of motion is

not overall heating of the surrounding liquid but an effect associated with PDA itself.

As a photothermal material, the function of PDA is to harvest energy to move, so it is

expected that PDAaggregates will move aswell. To assess the effect of PDAonmotion,

we compared the speed of 10PDAc Robocoliths with that of 10PDA polydopamine ag-

gregates formed by polymerization of a 10 mgmL�1 dopamine solution during 595 nm

irradiation while keeping the average concentration of the sample at 40 mg mL�1.

Although both samples displayed motion, 57.83 G 11.18 mm s�1 and 117.92 G

30.73 mm s�1, the Robocoliths were twice as fast. This suggests that, although PDA is

the source of energy for the motion, the intricate symmetry-breaking morphology of

the coccolith also plays a central role in directing the energy for netmotion. Conversely,

no movement, or hardly any movement, was detected under BF excitation for 10PDA

(0.13 G 0.02 mm s�1) and 10PDAc (0.16 G 0.06 mm s�1) (Figure 5A; Figure S10).

The role of polydopamine in the movement of coccoliths under light excitation was

further evidenced by exciting bare coccoliths, compared with Robocoliths, under
Cell Reports Physical Science 2, 100373, March 24, 2021 9



Figure 5. Robocoliths move at impressive speeds

(A) The movement of Robocoliths is associated with vector patterns, and their mean velocities are displayed as color mapping using PIV. As an example,

10PDAc Robocoliths barely move under BF (�0.1 mm s�1, left, 10PDAc BF), whereas under BF and fluorescence excitation (BF + 595 nm), they reach a

mean velocity of up to 120 mm s�1 (right, 10PDAc BF + 595 nm).

(B) Mean velocity magnitudes of 2PDAc_RT Robocoliths under light excitation with different wavelengths (BF + 356, 495, 558, 595, and 675 nm).

(C) Mean velocity magnitudes of 0PDAc, 0.2PDAc, 2PDAc, 5PDAc, and 10PDAc Robocoliths under BF versus BF + 595 nm.

(D) Mean velocity magnitudes of 2PDAc Robocoliths under BF + 595 nm upon dilution from 20 mg mL�1 to 0.3 mg mL�1. Mean velocities were obtained

from single videos: X = 3 G SD, where X = average of 100 images (50 frames) taken at the beginning, middle, and end of each video recording.
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various light excitation wavelengths. By exciting �40 mg mL�1 Robocoliths

(2PDAc_RT), it was observed that the BF did not influence their movement

(0.09 G 0.01 mm s�1), whereas the velocity varied between 31.55 G 0.95 and

32.75 G 0.59 mm s�1 when an additional excitation wavelength was added at 356,

495, 558, and 675 nm, reaching a maximum of 62.52G 12.33 mm s�1 at 595 nm (Fig-

ure 5B). Similarly, �40 mg mL�1 0.2PDAc, 2PDAc, 5PDAc, and 10PDAc Robocoliths

also displayed movement upon excitation at 595 nm, with no movement under BF

exposure (Figure 5C). At present, more investigation is required to declare a clear

correlation between initial dopamine concentration and velocity magnitude. How-

ever, in spite of this lack of information, Robocoliths prepared at 60�C generally

display higher velocity magnitudes (76.16 G 13.55 mm s�1 for 2PDAc, 595 nm)

than Robocoliths prepared at RT (62.52G 12.33 mm s�1 for 2PDAc_RT, 595 nm) (Fig-

ure 5B versus 5C). Presumably, the higher roughness of PDA achievable at a higher

temperaturemay have resulted in a more specific area and amore substantial photo-

thermal effect.

How could temperature affect motion? To assess this, we analyzed the movement of

2PDAc Robocolith samples at 595 nm excitation when the samples were initially at

RT or cooled. The first set of samples was placed in a well in the middle of a micro-

plate, whereas for the cooling experiment, the samples were placed in a well in the

middle of a microplate and the other wells were filled with ice. Before the
10 Cell Reports Physical Science 2, 100373, March 24, 2021
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experiment, we allowed the system to equilibrate. No crystallization was observed in

the cooled well during the experiment (2PDAc with ice; Figures S11A and S11B).

2PDAc Robocoliths without ice displayed a temperature of 24�C during the experi-

ment. On the other hand, the temperature increased from 0 �C (t = 0 min) up to 15�C
(t = 5 min) in the cooled well. Analysis of the mean velocity revealed that Robocoliths

that were kept cooled were 40% slower (44.46 G 0.5 mm s�1) than the same Robo-

coliths maintained at RT (76.16 G 13.55 mm s�1). The reduction in the velocity

may relate to a less efficient photothermal effect at lower temperatures or to a reduc-

tion of convection at temperatures lower than RT.

We also analyzed the effect of the numbers of Robocoliths relative to their velocity.

For this, we added increasing numbers of Robocoliths to the same volume of water.

The velocity was highest for the highest concentration (i.e., �74 mm s�1 at 20 mg

mL�1) and decreased with decreasing concentration until 0.3 mg mL�1, beyond

which no motion could be observed (�0.8 mm s�1) (Figure 5D). These results high-

light a striking finding: the motion of Robocoliths is not only a surface effect but

also a cumulative one. We hypothesize that this may be related to the heat transfer

mechanism. The higher the number of Robocoliths, the higher the capacity to har-

vest energy dissipated as heat, which would cause a convective flow amplifying

the movement.

Robocoliths transform light into swarming motion

Increasing the number of Robocoliths increases their velocity under irradiation but

also aligns the motion in a swarming-like fashion. A higher concentration translates

into closer proximity of one Robocolith to another. Because of light-induced photo-

thermal conversion,43–45 the motion of Robocoliths is enabled, and the likelihood of

interaction between adjacent Robocoliths is increased (Video S1). The observation

of multiple Robocoliths (0.2PDAc, 2PDAc, 2PDAc_RT, 5PDAc, and 10PDAc) under

the BF using the wavelengths investigated therein (356, 495, 558, 595, and

675 nm) reveals their exciting swarming behavior (Figure 6A; Video S2). Negligible

movement, if any, was observed for bare, non-coated coccoliths (0PDAc) during

their visualization under the BF or the BF and a fluorescence filter. When movement

occurred, it was only negligible and was also observed for Robocoliths during their

visualization under the BF. Moreover, Robocoliths exhibited motion only when the

light was on (in the presence of a fluorescence filter), which stopped immediately

when the excitation source (in the absence of a fluorescence filter) was removed (Fig-

ure 6B; Video S3). As a result, the polydopamine coating induces swarming of coc-

coliths. Presumably, the convection flow from one Robocolith may couple with

another, and this results in a preferential direction of motion (Figure 6).

Placing and exciting Robocoliths in a microscope well with a glass-bottom dish and a

transparent poly(methyl methacrylate) (PMMA) coverslip microplate with a cover lid

induces water condensation on the bottom of the dish cover, with evaporation con-

firming sample heating (Figure S12; Figure 6C; Video S4). No condensation was

observed in the absence of excitation (absence of a fluorescence filter). Therefore,

the temperature increases in Robocoliths upon light excitation in the presence of

a fluorescence filter. The structure-property-function relationship between polydop-

amine and synthetic eumelanin is markedly similar.46 Although low, the quantum

yield of synthetic eumelanin is strongly dependent on wavelength.47 Because syn-

thetic eumelanin’s optical properties are similar to those of polydopamine, we

deduce that polydopamine might only be sensitive to certain wavelengths. The

gradient inducing swarming is mainly caused by temperature as an outcome of

the light-activated photothermal properties of polydopamine. Therefore, when light
Cell Reports Physical Science 2, 100373, March 24, 2021 11



Figure 6. Robocoliths display swarming behavior

(A) Examples of frames extracted from video recordings (Videos S2, S3, and S4) of EHUX coccoliths showing no swarming (top row, left) and swarming

instances of Robocoliths upon BF and 495 nm excitation: 2PDAc_RT (top row, center), 0.2PDAc (top row, right), 2PDAc (bottom row, left), 5PDAc

(bottom row, center), and 10PDAc (bottom row, right). Scale bar, 100 mm.

(B) Robocoliths were visualized under the BF while the light was off (left, light off), and nomovement was observed (scale bar, 100 mm). While keeping the

BF on and adding a fluorescence filter at 595 nm (right, light on), Robocoliths started to move (scale bar, 100 mm).

(C) Robocoliths were then placed on the glass bottom of a well dish, and the dish was covered with a glass-like polymer coverslip. When the dish

containing the Robocoliths was excited at 595 nm (light on), the Robocoliths were not only moving but also inducing condensation on the lower bottom

of the dish cover (scale bar, 100 mm).
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(BF or any combination of BF + fluorescence filters) shines on bare coccoliths, no

temperature increase is observed, and, therefore, no movement is generated (Fig-

ure 4A; Video S2). The same situation applies when light (BF only) shines on Robo-

coliths (PDA-coated coccoliths). However, when light (BF + any combination of fluo-

rescence filters) encounters Robocoliths, then a temperature gradient is formed

(Figure 4A), and they swarm (Video S2).

To identify the direction of movement, we analyzed the frames extracted from the

videos of swarming Robocoliths at 20, 2.5, and 0.3 mg mL�1 (Video S1). Naked-

eye observation readily reveals that light-activated Robocoliths tend to move to-

ward the swarm. To confirm this, we analyzed the extracted frames using PIV, in

which directionality vectors determined the direction of movement. Under light acti-

vation, Robocoliths do indeed move toward the swarm (Figure S13). Mostly static

Robocoliths are identified at the lowest concentration (0.3 mg mL�1). Robocoliths

at higher concentrations tend to have a higher velocity the farther they are from

the swarm (yellow-orange areas). Still, their speed quickly decreases as they bump

into each other to form the swarm-like aggregated region (dark blue area).
12 Cell Reports Physical Science 2, 100373, March 24, 2021
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When polydopamine is applied to the surface of coccoliths, they display swarming

during light excitation at neutral pH. Therefore, it was interesting to establish

whether the architecture of Robocoliths is preserved under acidic conditions while

verifying the swarming effect during light excitation. Robocoliths (2PDAc) were re-

suspended and kept at RT overnight in the dark in citric acid-Na2HPO4 buffer solu-

tions prepared at pH values of 7.3, 5.4, and 3.2 before SEM characterization and

movement recordings. As revealed by SEM, the morphology of 2PDAc Robocoliths

appeared to be preserved at the specified pH values (Figure S14). Various move-

ment patterns were also observed by resuspending 2PDAc Robocoliths at pH 7.3,

5.4, and 3.2 (Video S5). However, an acidic pH is expected to dissolve the calcium

carbonate raw material of Robocoliths.48 Selective dissolution of coccoliths has

already been observed in typical acidification experiments.49,50 In our case, the

buffer solution in which the Robocoliths were incubated is a citric acid-Na2HPO4 so-

lution mixture. Although PDA is stable toward citric acid, CaCO3 reacts with this

acid, leading to formation of calcium citrate, carbon dioxide, and water.51,52 Thus,

coccoliths will act as a sacrificial template, leaving only a layer of polydopamine in

the shape of coccoliths visible by SEM. As a result, an in-depth investigation is

required to reveal the influence of pH on the morphology and movement behavior

of Robocoliths, and this will be the focus of a follow-up study.

Robocoliths enable grafting of polymer brushes onto their surface

Swarming requires collectivemovement by coupling fields that generate the force.53

However, at the microscale, attractive forces between the objects can lead to

colloid-like aggregation, ultimately preventing motion. As a possible route to avoid

their aggregation and achieve better control over their swarming behavior, we

envisage grafting of antifouling and functional polymer brushes onto the surface

of coccoliths. Polymer brushes are ultrathin polymer coatings on which polymer

chains are tethered from one end to the surface at a very high density. This leads

to a stretch conformation that acts as an entropic barrier to protein adsorption.54

Various brushes have been grafted: gold and even polymeric substrates displaying

excellent antifouling properties.55,56 However, their growth from intricate, inert bio-

logical surfaces (i.e., coccoliths) remains very challenging. The lack of functional

groups on these types of surfaces often requires drastic activation protocols that

transform the surface into a very different material.57

Moreover, quite often, the new modification does not yield bonds that are suffi-

ciently strong to account for the high osmotic pressure of the brushes on the

surface.58,59 To overcome this limitation, polydopamine can be employed

effectively as an adlayer for immobilization of atom-transfer radical polymerization

(ATRP) initiators, as demonstrated by previous experience with poly(ε-caprolactone)

(PCL) nanofibrous scaffolds.60 Polymer brushes based on oligo(ethylene) methacry-

lates (MeOEGMA) have shown extraordinary abilities for prevention of cell attach-

ment61,62 and non-specific adsorption of proteins when challenged with real biolog-

ical fluids.56 However, MeOEGMA lacks reactive functional groups on its structure,

which limits the possibility of further decorating the surface of coccoliths with bio-

molecules of interest, including antibodies or peptides. Therefore, here we also

considered copolymerization of MeOEGMA with small amounts of methacrylic

acid (MAA) to provide functional carboxylic groups adequate for enabling subse-

quent post-polymerization reactions (Figure S15A). From the available approaches

used for living copolymerization of MeOEGMA and MAA, including ATRP or revers-

ible addition-fragmentation chain transfer polymerization (RAFT), we selected a

‘‘brush-growing’’ strategy of ‘‘grafting from’’ polymerization reaction via light-

induced single-electron transfer living radical polymerization (SET-LRP). This is
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because of its widely reported living nature, improved versatility in terms of the

broad range of polymerizable monomers using a plethora of solvents, and the fast

polymerization kinetics achieved with low catalyst concentrations.55,63,64 After

design of Robocoliths by functionalization of the surface of coccoliths with polydop-

amine, we covalently immobilized the initiator from which polymer brushes were

grown. To decorate the surface of Robocoliths with functional polymer brushes,

we first involved the aminemoieties provided by the polydopamine layer41 in the co-

valent attachment of the radical initiator (2-bromo-2-methylpropionic acid [BMP])

onto the surface of Robocoliths via carbodiimide chemistry. Briefly, the carboxylate

groups of 10 mmol of BMP were activated with 12 mmol of N-hydroxysuccinimide

(NHS) in the presence of 12 mmol of N-(3-dimethylaminopropyl)-N-ethylcarbodii-

mide hydrochloride (EDC$HCl) in dimethyl formamide (DMF). After 2 h of mild

shaking at RT, 2PDAc_RT Robocoliths (chosen here as an example) were added to

the solution mixture along with 4-(dimethylamino)pyridine (DMAP), and the reaction

was left overnight at RT. Coccoliths were then collected by centrifugation and

washed several times with DMF and distilled water. MeOEGMA and MeOEGMA/

MAA (molar ratio of 97.5:2.5) brushes were grown from initiator-coated Robocoliths

in a degassed solution of the monomer(s) in DMSO in the presence of CuBr2 and tris

[2-(dimethylamino)ethyl]amine (Me6TREN) and by exposing the reaction system for

1 h to UV light (9-W lamps, lmax = 365 nm) at RT.

Successful conjugation of BMP was evaluated by EDX, where a Br peak appeared af-

ter the aforementioned reaction was completed (Figure S15B). According to XPS

analysis, the C 1s spectrum of poly(MeOEGMA) brushes grown on coccoliths

showed a predominant peak at 286.4 eV stemming from the C-O bonds of ethylene

oxide groups in the side chains. In the case of poly(MeOEGMA-co-MAA) brushes,

apart from the substantial C-O contribution, an increase of the O-C=O peak was dis-

cerned, indicating successful incorporation of MAA into the copolymer structure

(Figures S15C and S15D). The surface z potential of the coccoliths was also

monitored in each reaction step to evaluate formation of brushes (Figure S15E).

Bare coccoliths initially showed a negative surface charge value that was kept

strongly negative after the polydopamine coating. The negative charge of the coc-

coliths after polydopamine coating (�24.9 G 1.0 mV) is associated with the zwitter-

ionic nature of polydopamine, which has an isoelectric point of�4.26 Consequently,

at pH values above 4, a negative charge is expected because of deprotonation of the

phenolic groups. Immobilization of BMP did not result in a significant change of z po-

tential, which remained strongly negative at�23.1G 0.4 mV. However, after growth

of poly(MeOEGMA) polymer brushes, a significant difference in the surface charge

of Robocoliths was observed, where the value of the z potential was about 0.6 G

0.1 mV. This almost neutral charge would be beneficial in preventing non-specific

electrostatic adhesion of biomolecules. Although the neutral brushes lack ionic sta-

bilization, they provide steric stabilization for the Robocoliths. Finally, Robocoliths

functionalized with poly(MeOEGMA-co-MAA) brushes displayed a slightly

negative charge (�2.8 G 0.3 mV), which agrees well with the presence of

carboxylate groups. Thermogravimetric analysis (TGA) also confirmed successful

polymerization of poly(MeOEGMA) and poly(MeOEGMA-co-MAA) brushes onto

the surface of Robocoliths (Figure S15F). In the studied temperature range, bare coc-

coliths and 2PDAc_RT Robocoliths did not suffer significant weight loss (<3%). In

contrast, 25% and 16% weight loss was seen for the Robocoliths functionalized

with poly(MeOEGMA) and poly(MeOEGMA-co-MAA), respectively. Considering

the surface area of coccoliths reported in the literature (i.e., 20 m2 g�1),21 this repre-

sents a surface density of �1,666 ng cm�2 and �952 ng cm�2 for poly(MeOEGMA)

and poly(MeOEGMA-co-MAA) brushes, respectively.
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Figure 7. The Robocolith surface allows growth of antifouling brushes

(A) Schematic representation of the interaction between antifouling Robocoliths with fluorescently labeled proteins.

(B) BF and the corresponding fluorescence micrographs of 2PDAc_RT Robocoliths incubated with FITC-BSA. Scale bars, 50 mm.

(C) BF and the corresponding fluorescence micrographs of poly(MeOEGMA) brush-modified 2PDAc_RT Robocoliths incubated with FITC-BSA. Scale

bars, 50 mm.

(D) BF and fluorescent micrographs of 2PDAc_RT Robocoliths incubated with FITC-BSA and TRITC-BSA. Scale bars, 50 mm.

(E) BF and fluorescence micrographs of poly(MeOEGMA-co-MAA) brush-modified 2PDAc_RT Robocoliths incubated with FITC-BSA and TRITC-BSA.

Scale bars, 50 mm.
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We further assessed the adsorption of proteins on 2PDAc_RT Robocoliths (control)

and polymer brush-coated 2PDAc_RT Robocoliths (Figure 7). Both systems were

incubated in fluorescein isothiocyanate-labeled albumin solution (FITC-BSA) (1 mg

mL�1) for 1 h under mild shaking. The albumin model protein was adsorbed onto

the surface of Robocoliths, as demonstrated by fluorescencemicroscopy (Figure 7B).

In contrast, no FITC-BSA was detected on poly(MeOEGMA) brush-modified Robo-

coliths, indicating prevention of non-specific adsorption of proteins (Figure 7C).

To provide functionalities for the structure of polymer brushes, a small amount

(2.5 mol %) of MAA was incorporated. Poly(MeOEGMA-co-MAA) brushes were

also able to reduce adsorption of FITC-BSA in comparison with Robocoliths

(�60% reduction in fluorescent intensity), but the reduction in fluorescence intensity

was not as efficient as in the case of poly(MeOEGMA) brushes. This could be

ascribed to the interactions (e.g., electrostatic or hydrogen bonding) between the

free carboxylic acids from the polymer brush and the functional groups of the
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protein. However, after activating the carboxylic groups of poly(MeOEGMA-co-

MAA) brushes via carbodiimide chemistry, further conjugation reactions with the

biomolecule of interest (i.e., FITC-BSA) were allowed, as demonstrated by the in-

crease in fluorescence intensity (Figure S16).

To prove specific conjugation of the biomolecule of interest in Robocoliths function-

alized with poly(MeOEGMA-co-MAA) brushes, Robocoliths were first incubated with

FITC-BSA, followed by incubation with tetramethylrhodamine isothiocyanate-

labeled bovine serum albumin (TRITC-BSA). Both fluorescently labeled BSAs were

absorbed on the surface of Robocoliths. Therefore, use of polydopamine as a sur-

face layer may be a severe drawback when highly specific interaction with biomole-

cules of interests is desired (Figure 7D).

Accordingly, Robocoliths functionalized with activated poly(MeOEGMA-co-MAA)

brushes were first incubated with FITC-BSA when the protein was covalently coupled

onto the surface, followed by incubation with TRITC-BSA. Robocoliths functionalized

with activated poly(MeOEGMA-co-MAA) brushes showed no further adsorption of

TRITC-BSA. Therefore, coccoliths decorated with poly(MeOEGMA-co-MAA)

brushes preserve their antifouling nature and facilitate specific conjugation of

the biomolecule of interest (Figure 7E). Robocoliths functionalized with

poly(MeOEGMA) did not allow protein fouling. Moreover, poly(MeOEGMA) lacks

functionalities that will enable further conjugation reactions. By introducing MAA,

part of the antifouling ability of the poly(MeOEGMA) Robocoliths is impaired

slightly. However, poly(MeOEGMA-co-MAA) Robocoliths display carboxylic groups,

which, after being activated via carbodiimide chemistry, can enable further conjuga-

tion and specific reactions with the biomolecules of interest. Therefore, the anti-

fouling properties of functionalized Robocoliths could then be checked in respect

to other bio(macro)molecules. This model is tunable because it can be developed

toward target proteins of interest while avoiding attachment of other proteins.

Overall, coccoliths from EHUXwere cultured easily in the laboratory, with fast growth

rates and reproducible nanostructured asymmetric morphologies with potential for

nanotechnology applications.20,65 Coccoliths are microscopic asymmetrical objects,

enabling motion at low Reynolds numbers66 while ensuring breaking of the symme-

try for improved swarming ability. It is essential to note that coccoliths were

described recently as micro-photo-regulators in the presence of an electromagnetic

wave, such as light,67 making the coccolith an exciting choice for designing Roboco-

liths. Moreover, polydopamine has been shown to induce a controlled light-respon-

sive swarming behavior in coccoliths. This enabled design of a novel Robocolith with

intricate architectural stability, temperature-generating properties, and motion with

velocities of up to 120 mm s�1.

Previous studies have revealed that an increased reaction temperature (i.e., 60�C)
leads to a surface-deposited polydopamine layer with higher roughness in a shorter

period of time (<8 h) than those prepared at RT for 24 h.35 This suggests that Robo-

coliths prepared using the same concentration of dopamine will have higher surface

roughness when prepared at 60�C (2PDAc) than those prepared at RT (2PDAc_RT).

Moreover, the increase in dopamine concentration at a constant temperature leads

to polydopamine films with increased thickness, roughness, and absorbance.68 This

also suggests that, by increasing the initial concentration of dopamine, our Roboco-

liths prepared at 60�C resulted in PDA layers of an assumed increased roughness;

0.2 PDAc Robocoliths had the lowest PDA roughness, and 10 PDAc Robocoliths

had the highest PDA roughness. Increased PDA thickness on the surface of
16 Cell Reports Physical Science 2, 100373, March 24, 2021



ll
OPEN ACCESSArticle
Robocoliths also leads to a higher surface area and increased ability to harvest light.

Thus, the preparation conditions change the Robocoliths’ ability to harvest energy,

which, in turn, is reflected by their velocity under light excitation (BF + 595 nm);

2PDAc_RT Robocoliths move slower (62.52 G 12.33 mm s�1) than 2PDAc Roboco-

liths (76.16 G 13.55 mm s�1) and slower than 10PDAc Robocoliths (117.92 G

30.73 mm s�1). However, use of a higher temperature of reaction and higher initial

concentration of dopamine also results in a higher amount of PDA colloidal aggre-

gates, which is difficult to control and might have a direct effect on the uniformity

of the distributed PDA on the surface of Robocoliths and, thus, on our observations.

Asymmetric particles with differently responsive sides to environmental stimuli (e.g.,

Janus particles covering different metals on the two sides) can generate net propul-

sion forces to generate movement.69 We also acknowledge that, in light-driven

motion, the particles can be spherical, and light shading can also make a spherical

particle into a Janus particle.70 Nevertheless, published reports have demonstrated

that an asymmetric shape plays an important part in breaking the symmetry and

generating propulsion forces.71–73 It has been reported that, at high concentrations

of light-activated, polydopamine-coated, spherical polystyrene beads, competition

between forces generated by thermal buoyancy influenced their movement.27 In

contrast, the coccoliths’ asymmetric morphology should allow asymmetric

distribution of thermal gradients, enhancing this phenomenon. Unlike single poly-

dopamine-coated polystyrene beads microparticles capable of displayingmotion,27

our Robocoliths enable movement under light excitation only in the presence of

other Robocoliths. Moreover, compared with polydopamine-coated polystyrene

bead microparticles,27 the asymmetric coccolith has an architecture that is far

more challenging to control. The coccolith’s high surface area also allows more

PDA to be attached to its surface. Therefore, a higher energy-harvesting capability,

coupled with a higher probability of the occurrence of PDA-specific reversible

hydrogen bonding/p-p interaction, enables the observed swarming-like effect.

More studies of the role of excitation, coccolith properties, the polydopamine layer

and its polymerization parameters (i.e., oxygen, pH, and temperature), and the role

of antifouling brush accommodation capacity with respect to swarming ability

should be considered. With this, a better understanding of the swarmingmechanism

of Robocoliths under light excitation will be obtained.
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33. Larrañaga, A., Ramos, D., Amestoy, H., Zuza, E.,
and Sarasua, J.-R. (2015). Coating of bioactive
glass particles with mussel-inspired
polydopamine as a strategy to improve the
thermal stability of poly(l -lactide)/bioactive
glass composites. RSC Advances 5, 65618–
65626.

34. Son, E.J., Kim, J.H., Kim, K., and Park, C.B.
(2016). Quinone and its derivatives for energy
harvesting and storage materials. J. Mater.
Chem. A Mater. Energy Sustain. 4, 11179–
11202.

35. Zhou, P., Deng, Y., Lyu, B., Zhang, R., Zhang, H.,
Ma, H., Lyu, Y., and Wei, S. (2014). Rapidly-
deposited polydopamine coating via high
temperature and vigorous stirring: formation,
Cell Reports
characterization and biofunctional evaluation.
PLoS ONE 9, e113087.

36. Pop-Georgievski, O., Verreault, D., Diesner,
M.-O., Proks, V., Heissler, S., Rypá�cek, F., and
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