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Abstract

Abstract Autism Spectrum Disorder (ASD) is a largely prevalent neu-

rodevelopmental condition with a big social and economical impact af-

fecting the entire life of families. There is an intense search for biomarkers

that can be assessed as early as possible in order to initiate treatment

and preparation of the family to deal with the challenges imposed by the

condition. Brain imaging biomarkers have special interest. Specifically,

functional connectivity data extracted from resting state functional mag-

netic resonance imaging (rs-fMRI) should allow to detect brain connec-

tivity alterations. Machine learning pipelines encompass the estimation

of the functional connectivity matrix from brain parcellations, feature

extraction and building classification models for ASD prediction. The

works reported in the literature are very heterogeneous from the compu-

tational and methodological point of view. In this Thesis we carry out

a comprehensive computational exploration of the impact of the choices

involved while building these machine learning pipelines.
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Resumen en castellano

Introducción

La prevalencia de los transtornos del espectro autista (TAE) es creciente y se han

desarrollado soluciones técnicas para ayudar a un diagnóstico más preciso y más

temprano. Más preciso debido a la heterogeneidad de la esta condición que presenta

caracteristicas muy dispares, hasta el punto que es dificil de establecer fronteras en-

tre fenotipos concretos. Las soluciones tecnológicas van desde el estudio objetivo del

comportamiento mediante técnicas de monitorización del movimiento o de respuesta

a estímulos, como soluciones de visión por computador que analizan la existencia de

patrones de movimientos repetitivos típicos de esta condicion, o como aplicaiones

implementadas en tablets que permiten monitorizar mediante los sistemas inerciales

incorporados a la tablet la dinámica de la respuesta en el manejo de la tableta y

su interaccion, hasta los métodos de observación de la actividad neuronal, como los

sistemas de electroencefalografía (EEG) o los métodos de observación basados en

imagen de resonancia magnética. Concretamente, se busca la estructura de la conec-

tividad entre regiones del cerebro para comprobar si existen indicadores (biomar-

cadores) de la condición en esta estructura cerebral. Se consideran las redes que se

crean en reposo, en el denominado resting state. La imagen funcional de resonan-

cia magnética juega un papel fundamental en esta investigación puesto que aporta

una gran resolución espacial para la localización de los efectos correlacionados con

la condición TAE. Se han generado en la comunidad cientifica bases de datos de

sujetos TAE y controles de gran tamaño para el estudio sistemático de la existencia

de estos biomarcadores. En esta Tesis Doctoral, nos hemos concentrado en una base

de datos concreta, denominada ABIDE, que recoge un alto numero de sujetos. De
1
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Figure 1: Flujo de proceso típico de una analisis predictivo de la condición TAE
basada en datos de imagen funcional de resonancia magnetica que permite calcu-
lar la matriz de conectividad cerebral. 1) Parecelación del cerebro, 2) obtención
de las series temporales representativas de cada región cerebral, 3) cálculo de
la matriz de conectividad basada en una medida de similitud entre series tem-
porales, 4) construccion demodelos predictivos y realizacion de experimentos de
validacion cruzada, 5) resultados de la capacidad de discriminación TAE versus
desarrollos típicos (DT)

ella hemos seleccionado sujetos control y sujetos con diagnóstico TAE definitivo, un

total de 871, para la realización de experimentos computacionales sobre sus matri-

ces de conectividad cerebral extraidas a partir de sus datos de imagen funcional de

resonancia magnética en estado de reposo.

El flujo de proceso general para el analisis mediante algoritmos de aprendizaje

máquina sobre la información de conectividad cerebral se ilustra en la figura 1.

Las matrices de conectividad cerebral funcional se extraen de los datos de imagen

funcional en estado de reposo y se procesan como sigue:

1. Se aplica una parecelación del cerebro a los volumenes de datos funcionales de

resonancia magnética. Existen varias parcelaciones definidas en la literatura,

por lo que corresponde seleccionar una de ellas.

2. Las series temporales asociadas a los voxeles que están incluidos en una región

cerebral se agregan para obtener una unica serie temporal que será la repre-

sentante de esa región cerebral, usualmente mediante el calculo del promedio.

3. Se construye la matriz de conectividad calculando la similitud entre los rep-

resentantes de cada par de regiones de la parcelacion cerebral. Existen varias

alternativas en la literatura sobre cual es la medida de similitud más apropiada.
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La matriz de conectivdad es siempre simétrica y se puede interpretar como la

matriz de adyacencia de un grafo definido sobre las regiones del cerebro.

4. La matriz de conectividad es la materia prima para los procesos de aprendizaje

máquina que incluyen técnicas de extracción de caracteristicas (features) y

técnicas de construcción de clasificadores basados en dichas caracteristicas

como entrada. La selección de características corresponde a la selección de

conexiones cerebrales específicas en base a criterios de saliencia de la similitud

entre regiones. En este caso, las conexiones seleccionadas pueden pasar a ser

biomarcadores para la condición TAE.

5. Se realizan experimentos de validación cruzada para establecer el rendimiento

relativo de cada una de las posibilidades de elección técnica en cada fase del

flujo general

El rendimiento de los algoritmos de clasificación puede estar fuertemente influido

por las decisiones tomadas en cada fase del proceso, concretamente la selección

de la cohorte, la parcelación del volumen cerebral, la estimación de la matriz de

conectividad, el algoritmo de extracción/seleccion de características y el modelo de

clasificador.

Objetivos y metodología

El objetivo fundamental de esta Tesis Doctoral es la evaluación del impacto de

las distintas elecciones que se realizan al llevar a cabo el proceso general en el

rendimiento discriminante entre TAE y sujetos con desarrollo típico. Para ello se ha

realizado una exploración exhaustiva de todas las posibles combinaciones respetando

la metodología rigurosa de la evaluación de sistemas de clasificación. Esto es, hemos

realizado múltiples repeticiones de un proceso de validación cruzada con separación

estricta de los conjuntos de datos de entrenamiento y de test, con absoluta separación

de los procesos de entrenamiento respecto de los datos de test.



List of Tables 4

Contribuciones

Las contribución principal de esta Tesis Doctoral es un exhaustivo examen del efecto

que tiene la elección de la parcelación del cerebro, la medida de similitud utilizada

para construir la matriz de conectividad, el proceso de extracción de características,

y el modelo de clasificación entrenado sobre las características extraidas de las ma-

trices de conectividad. En este trabajo se ha evitado introducir sesgos como los que

introduce la selección de la cohorte experimental. Este proceso de selección explica

los resultados muy elevados de rendimiento que no son transferibles a otras cohortes

extraidas de la misma base de datos ABIDE.

Resultados

Las figuras 2, 2, y 3 sumarizan los resultados obtenidos en los experimentos con-

frontando los clasificadores utilizados, los atlas de parcelación, las medidas de simil-

itud y la extracción de caracteristicas.

En la figura 2 se puede apreciar que el efecto de la extracción de caracteristicas

es muy superior al de la selección de un clasificador específico, especialmente el

analisis factorial, analisis de componentes principales y la correlación de Pearson

son comparables. En la figure 3 se aprecia la misma situacion, en la que los métodos

de extracción de características tienen mucho más efecto que los atlas de parcelación.

Finalmente, en la figura 4 se observa que las medidas basadas en la tangente y la

correlacion tiene la mayor varianza. En general, la elección del clasificador no tiene

un gran impacto, salvo pequeños efectos de KNN y Random Forest.

Conclusiones

La primera conclusión extraida de nuestro trabajo experimental es el bajo rendimiento

obtenido en general. Este bajo rendimiento se debe a la heterogeneidad de los datos,

que proceden de diversos centros los cuales tienen distintos instrumentos de resonan-

cia magnética, distintos protocolos de imagen, y distintos protocolos de diagnóstico

lo que lleva a etiquetados inhomogeneos y a datos que presentan una alta variabil-
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Figure 2: Impacto relativo de la extracción de caracteristicas versus los clasifi-
cadores utilizados.
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Figure 3: Impact relativo de las características extraidas versus los atlas utilizados
para la parcelación cerebral.



List of Tables 7

Figure 4: Impact relativo de los clasificadores utilizados versus la medida de
similitud utilizada para la construcción de la matriz de conectividad.
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idad intercentro. La segunda gran conclusión es que el mayor efecto se produce

en la selección de características, mientras que la selección del clasificador es casi

irrelevante.



Chapter 1

Introduction

This chapter presents the background and motivation for this Thesis in section

1.1. Section 1.2 describes the objectives of this research work. A summary of

the generated contributions is given in section 1.3. The research environment and

context are described in section ??. The related publications are listed in section

1.4. Section 1.5 presents the structure of this Thesis.

1.1 Background and Motivation

Autism Spectrum Condition (ASC) [8,9] is a highly prevalent, heritable and hetero-

geneous neurodevelopmental disorder that has distinctive cognitive features often

cooccuring with other psychiatric or neurological disorders. It is the subject of a

broad and intense research effort, with more than 40 EU funded research projects

devoted to some of its aspects in the last 20 years. Similar effort is being done

in China, USA, Russia, and South America looking for its causes at various levels:

genetic, metabolic, neural or brain based. Searching for the pathogenesis leads also

to findings which are also diagnostic indications, i.e. biomarkers of the disorder that

can be used to guide early diagnosis, which in its turn may allow to apply thera-

peutic or palliative treatments from an early age. ASC computer aided diagnosis

(CAD) has been gaining interest in the scientific community in the recent years,

aiming to contribure to its early detection. In this report we gather the approaches

that have been reported in the recent literature trying to be comprehensive, though
9
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keeping pace of the reported results may be difficult. Some CAD approaches are

based on behavioral characterizations, while the majority of approaches are based

on the analysis of brain neural activity and morphology in some way or another.

Most recent studies are focused on the detection of brain functional connectivity

anomalies using specific signals such as electroencephalographic (EEG) recordings

or functional magnetic resonance imaging (fMRI). The emergence of large public

repositories of data is boosting research in this topic.

1.1.1 Prevalence

Across the Autism and Developmental Disabilities Monitoring (ADDM) Network

sites, estimated ASC prevalence among children aged 8 years was 23.4 per 1,000 (one

in 43) boys and 5.2 per 1,000 (one in 193) girls [10]. Thus ASC appears to require

specific research programs contemplating explictly the impact of sex/gender related

issues [11, 12]. Some references [13] state that the overall worldwide prevalence of

ASC is as high as 1% of the population, while others [14] argue that non specific

diagnostic criteria recently included in the diagnostic protocol produce as an artifact

the 20-fold increase in its prevalence. Therefore, the heterogeneity in ASC features

that hinders the identification of biomarkers could be a side effect of excessively

wide diagnostic criteria. A recent normative study [15] on brain cortical structure

modeled by a probabilistic predictive model concluded that there is some indication

that sexual-related characteristics of the brain are highly correlated with ASC.

1.1.2 Diagnosis

ASC is currently diagnosed on the basis of qualitative information obtained from

parent interviews and clinical observation, which leads to disturbing differences be-

tween sites [16]. Given its great prevalence, automated approaches to assist diagno-

sis [17, 18] are highly desirable. Increasingly, clinical neuroscience focus is shifting

to find metrics derived from brain imaging [19] that may be useful to predict di-

agnostic category, disease progression, or response to intervention, e.g. looking for

endophenotype using multivariate analysis approaches [20]. These metrics come
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from machine learning approaches to the study of brain structure and function.

Some of them can be considered as neuroimage based biomarkers that would be

helpful to guide early interventions. Currently, the research community has not

yet identified reliable and reproducible biomarkers for ASC. Clinical heterogeneity,

methodological standardization and cross-site validation raise issues that must be

addressed before further progress can be achieved [21].

1.1.3 Datasets

A central role in the effort to obtain robust and reproducible biomarkers is played by

the availability of public datasets, such as the Autism Brain Imaging Data Exchange

(ABIDE) dataset [22, 23] that includes demographic, clinical information and data

from several magnetic resonance imaging (MRI) modalities allowing for a variety of

studies such as brain maturity estimation as a biomarker of brain abnormality [24].

1.1.4 Pattern recognition for CAD

A wide variety of machine learning and pattern recognition studies on the develop-

ment of CAD systems for ASC have been reported [25] exploiting a variety of infor-

mation sources, including structural, diffusion and functional MRI, as well as elec-

troencephalography (EEG) [26–28], additional demographic and clinical data [29],

and behavioral measurements captured by computer vision or other body mea-

surement approaches [30]. There are meta-analysis confirmations of ASC imaging

biomarkers from anatomical MRI [31], and diffusion MRI imaging [32, 33]. The

latter showing white matter integrity disruption. Connectivity based brain par-

cellation [34] provided additional evidence of altered white matter connectivity in

ASC.

1.1.5 Brain functional connectivity

A main goal of this Thesis is the exploration and validation of ASC biomarker dis-

covery based on brain functional connectivity information using artificial intelligence

approaches, namely namely machine learning and deep learning techniques. Brain
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functional connectivity analysis based on resting state functional MRI (rs-fMRI) can

be done by seed analysis, where the specific connectivity relative to a selected brain

region is compared across subjects and populations [34], or on the basis of brain

parcellations into a set of regions of interest (ROIs) which can be defined either

by anatomical guidelines or by data driven unsupervised segmentation [35]. In any

case, rs-fMRI connectivity analysis has been accepted as a source of information for

the discovery of biomarkers of psychiatric disorders [36] such as schizophrenia [37]

and ASC [21].

Neuroimage biomarker discovery over functional connectivity data may be guided

by statistically significant differences between ASC and typically developing (TD)

subjects. For instance, t-test on the dynamical network strength of ASC vs. TD was

reported to confirm identification of aberrant connectivity in ASC subjects [38], and

significant differences between ASC and TD in the level of activation of thalamic

connectivity have been identified by independent component analysis (ICA) [39]. In

predictive analysis approaches to biomarker identification, the subject’s condition

(ASC vs. TD) prediction performance achieved is the measure of the biomarker

significance. Predictor models are built by machine learning techniques, often con-

sisting of two steps: a dimensionally reduction (aka feature extraction or feature

selection) followed by a classification step for class prediction. Though discrimi-

nation between ASC and TD is the most common paradigm, some works [40, 41]

compare ASC with Schizophrenia over a small cohort, while others consider patterns

for discrimination among low-functioning and high-functioning ASC subjects [42].

1.1.6 Computational pipeline

The general pipeline of predictive analysis for brain connectivity based biomarkers

is illustrated in Figure 1.1. Functional connectivity matrices are extracted from

preprocessed rs-fMRI data as follows:

1. A parcellation of the brain is defined;

2. The time series corresponding to the voxels in each region of the parcellation

are aggregated into one representative time series often by averaging;
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Figure 1.1: Functional connectome predictive analysis pipeline steps after rs-fMRI
data preprocessing (not shown): 1) given a parcellation of the brain, 2) obtain the
representative time series of each region by averaging the time series of voxels
within the region, 3) build the connectivity matrix by computing a similarity
measure between each pair of representative time series, 4) carry out cross-
validation experiments, using Machine Learning algorithms for feature extraction
and classifier training; 5) report test results on the prediction of the ASC vs TD.

3. The connectivity matrix is built computing the similarity among the repre-

sentatives of each pair of regions in the parcellation. Hence the connectivity

matrix is always a symmetric matrix that can be interpreted as the adjacency

matrix of a graph representing the relations among brain regions.

4. The connectivity matrix is then used as the raw data for machine learning

processes which may involve feature extraction/selection. Feature selection

involves the selection of specific connections that may become identified as

biomarkers.

5. Predictive performance is estimated by the training/testing of classification

models often in a cross-validation scheme.

Predictive performance may be heavily influenced by the decisions made at each

step of the study, namely by the cohort selection, the choice of brain volume parcel-

lation, the functional connectivity matrix estimation procedure, the feature selec-

tion/extraction algorithm applied, and the classification model building algorithm.

After the cross-validation assessment, the cross-validation classification performance

results may be used to identify biomarkers in the connectivity matrix.
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1.2 Objectives

The main objective of this thesis is to explore the eficiency of machine learning

approaches, including more recent deep learning techniques, to the CAD of ASC

subjets, stated as a classification problem of ASC versus healthy controls (aka typ-

ically developing (TD) children).

We want to assess the impact of the various metaparameter choices in com-

putational pipeline of Figure 1.1. If possible we would like to select the optimal

combination of such metaparameter choices.

Operational objectives implemented in the pursue of this general objective are:

• Identifiying and recovering a representative dataset for the realization of the

computational experiments

• Implementation of the exploitation of the diverse feature extraction, classi-

fier building algorithms, cross validation procedures, and performance result

collection and analysis.

• Carrying out the computational experiments assessing the performance of the

various combinations of metaparameter choices, managing the combinatorial

complexity of the data coming out from the experiments.

1.3 Contributions

In this Thesis, the functional connectivity matrix computed from rs-fMRI data is

the sole source of information for classification.

We explore the impact of choices made in the implementation of the machine

learning pipeline of Figure 1.1 for the prediction of ASC vs. TD.

We have carried out extensive cross-validation experiments over the algorithmic

choices at each step of the classification model building pipeline.

We report the impact on predictive performance ASC vs TD of all combinations

of:

• five feature extraction/selection approaches,
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• six brain parcellations,

• five functional connectivity matrix computation methods, and

• ten classification model building techniques.

This comprehensive comparison of classical machine learning approaches encom-

passes more than eleven thousand (11500) cross-validation experiments.

We report statistically significant differences in performance found as well as

direct comparison to state of the art published results.

We found that specific combinations of pipeline choices can boost the perfor-

mance of ASC vs. TD classification based on brain functional connectivity data.

The software needed to replicate the experiments reported in this Thesis have

been published in github1.

1.4 Publications

Publications related with the content of this Thesis:

• Impact of Machine Learning Pipeline Choices in Autism Prediction From Func-

tional Connectivity Data; Graña, M. & Silva, M. International Journal of

Neural Systems , Vol. 31 , pp. 2150009 , 2021

• Impacto y regulación de la inteligencia artificial en el ámbito sanitario Karina

Medinaceli, M. S. REVISTA IUS , 2021

• On Machine Learning for Autism prediction from functional connectivityMoi-

ses Silva , Manuel Graña, CORES21, The 12th International Conference on

Computer Recognition Systems June 28–30, 2021 Bydgoszcz, Poland

1.5 Structure of the thesis

This thesis is structured as follows:

1https://github.com/mmscnet/Impact-feature-extraction-in-Autism

https://github.com/mmscnet/Impact-feature-extraction-in-Autism
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• Chapter 2 discusses the role fo computer aided systems in the dignosis of

Autism Spectrum Condition. We review several paradigms besides the brain

connectivity approach that is the main focus of the Thesis.

• Chapter 3 provides a detailed review of approaches and resources for the anal-

ysis of brain connectivity directed to the finding of biomarkers of Autism

Spectrum Condition from the point of view of machine learning.

• Chapter 4 provides the descritption of the machine learning tools and tech-

niques applied in the search of optimal classification of Autism Spectrum Con-

dition subjects on the basis of brain connectivity.

• Chapter 5 provides the description of the deep learning approaches tested in

the framework of this Thesis, including transfer learning approaches.

• Chapter 6 provides the report of the results achieved with machine learning

techniques over the ABIDE database.

• Chapter 7 reports the results achieved over the ABIDE dataset using deep

learning techniques.

• Finally, Chapter 8 presents the conclusions and future lines of work.



Chapter 2

State of the art of Autism

diagnostic technological tools

In this Chapter we review the state of the art on the use of technological support

for the diagnosis of autism. The contents of the Chapter are as follows: Section

2.2 presents behavior measurement based CAD approaches. Section 2.3 presents

EEG based CAD approaches. Section 2.4 presents MRI based biomarker finding

efforts. Section 2.5 presents MRI based CAD approaches. Section 2.6 presents public

available data repositories. Finally, Section 2.7 gives some concluding remarks.

2.1 Introduction

Computer aided diagnosis (CAD) aims to help the clinical practitioner to achieve

early and accurate diagnosis of ASC in order to try to apply early treatments hop-

ing to improve the child’s condition in some way. Recent randomised control tri-

als [43–48] emphasize the improved effect achieved when the treatment is applied

at early ages, even todlers. Here we will not discuss the clinical aspects such as

treatment protocols or diagnositic procedures follow in the clinic, focusing only on

the technological aspects. A CAD system often is composed of some technological

device that allows to measure the behavior or some biological or physiological as-

pect of the subject, and some classifier system built by machine learning techniques

that provides the diagnosis suggestion. Machine leraning can be used to build hi-
17
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erarchies of categories which may help to refine diagnostic process [49], but mostly

is used to give a response to the question “Is this child at high risk of ASC?”. It

is important to keep in mind that ASC is a quite heterogeneous condition that is

still under revision by the clinical experts, therefore all the technological solutions

would be always limited in their scope by some a priori selection of measures and

expected observations. Regarding the kind of knowledge modeling approach used,

the literature offers a wide variety:

• Rule based expert systems [50].

• Deep learning architectures [51,52] and shallow artificial neural networks [53].

• Support Vector Machines [52, 54–57].

• Statistical inference (i.e. ANOVA) is traditionally used in biomarker identifi-

cation.

Regarding the kind of information used, the literature refers the following at least:

• Qualitative information produced by reports from parents and caregivers [50,

58].

• Genetic and metabolic information such as the selection of microarray ex-

pression data [54, 55, 59, 60], or the detection of specific metabolites that are

hypothesized to be related to ASC [56].

• Brain imaging data, often from diverse MRI modalities [21]. Structural brain

imaging is widely recognized as a rich source of information for the neuropsy-

chological analysis of the brain [61–65]. Also, brain functional imaging may

be providing a wealth of information on the effects on brain connectivity that

may be at the root of the ASC [66–72]. Diffussion spectrum MRI have been

also proposed [73–75] for high precision white matter fiber tracking. Finally,

there are increasingly facilities for multimodal data processing [76].

• Diverse motion capture devices which provide quantitative information about

the subject responses and motion.
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• EEG data that can be used either for brain functional connectivity analysis

or as features for classification processes.

• Functional near-infrared spectroscopy (fNIRS) is a recent approach to measure

the brain activitiy wich already gives some discrimination results regarding the

processing of faces by ASC children [77].

Most of the CAD approaches are developed over small local datasets, posing prob-

lems of reproducibility and generalization of the results. In some areas, such as brain

imaging, there are efforts to collect big repositories of data coming from many re-

search centers. As will be discussed later, these efforts pose the additional difficulty

of dealing with inter center variability of data recording procedures and methods.

2.2 Behavior measurement based CAD approaches.

Some approaches use behavioral information measured by computer vision or an-

other sensing technique. They can be rooted in an enactive approach to autism

understanding [101], focusing on disruptions to action perception [102]. Table 2.1

summarizes the literature found so far1. Some approaches measure the response of

the child to stylized representations, such as the discrimination of geometric figures

from visualization of grasping [103]. In general, a wide variety of sensors can and

have been used to monitor the behavior and assess the risk of ASC [104–106] either in

isolation or in some kind of information fusion. For instance, in [79] authors propose

the measurement using computer vision of the imitation response of ASC children

versus neurotypical children to discriminate them. Another non intrusive approach

to discriminate ASC children uses the inertial information of a smart tablet [80].

The authors find definitive patterns of motion that are compatible with the ASC

clinical characterization, larger and faster motions, stronger forces at contact, with

1Explanation of acronyms: CA conversation analyis, CV computer vision, EMT eye motion
tracking, EOG electrooculogram, FD face detection, FER facial expression recognition, MoCap
Motion Capture, MA mobile application, WA wrist accelerometers, GE gaze estimation, HPE
head pose estimation, LE landmark extraction, MI Magneto-Inertial, MMN mismatch negativity,
OMC object motion capture, PA pupil analysis, POMDP Partially Observable Markov Decision
Process SR speech recognition.
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Table 2.1: Behavioral approaches to CAD for ASC characterization.

ref sensor approach robot?

[78] CA

[79] CV

[80] tablet dynamical analysis

[81] kinect MoCap

[82] WA dynamical analysis

[83] CV FD,LE,GE, HPE,FER

[84], [85], [86, 87] CV MoCap

[88] CV GE,PA y

[89] EOG EMT

[90] MA pictograms

[91] CV,SR name calling

[92] CV OMC

[93] CA, MMN

[94] EMT

[95] CV FD

[96] CV POMDP y

[97] Haptic, kinect

[98] tablet target tracking

[99] MI

[100] CV MoCap y
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more distal use of space. Another approach uses the Kinect V2 sensor in order to

measure the motions of the subjects and try to detect stereotypical motor reactions

which are the hallmark of autism in clinical diagnosis processes. The experiments

reported with motion captured from professional actors promised that this detection

can be achieved with great probability [81]. Detection of motion by means of wrist

accelerometers has been reported by [82] achieving discrimination of children at high

risk versus low risk of ASC in the realization of some motor tasks. A comprehen-

sive behavior observation system encompasing face detection, landmark extraction,

gaze estimation, head pose estimation and facial expression recognition has been

proposed in [83] to make a continuous assessment of the evolution of the ASC sub-

jects under treatment. Another motion analysis system, tracking the motion of

diverse body parts while the subjects are inmersed in an interactive discussion in-

volving turn taking, has demonstrated significant differences between ASC and TD

subjects [84]. Similarly, tracking body motion while engaging with a social robot

was found discriminant in [85]. Computing the dynamic time warping (DTW) dis-

tance between the robot motion and the child motion while engaging in an imitation

game was intended as a measure of impairment in [100]. The examination of the

gaze and the pupil while interacting with a robotic avatar has been also shown to

be lead to moderate classification accuracy [88]. The measurement of eye motion

when tracking objects by means of an electrooculogram has been also show capable

of high accuracy discrimination of ASC subjects [89], while serving also to train the

subjects to perform more accurate object tracking. Also it showed that the ASC

children retain intact shape appreciation while losing emotional content [94]. From

a different point of view, proposal in [96] consists in the modeling of child behav-

ior by means of Partially Observable Markov Decision Process (POMCP) from the

incomplete observations made by a robot interacting with the child.

In a different approach, a mobile application is proposed [90] that helps in the

screening of children by evaluating their responses to pictogram based questionaire.

Childs with high risk of ASC are referred to a specialized centre. Another early

screening proposal involves the close monitoring of classroom to study the reaction

to name calling of the children [91]. This system has voice recognition as well
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as human body posture and reaction monitoring. For instance, subject vitality is

measured by tracking object motion speed using hidden infrared markers with six

infrared cameras, while the subjects are performing simple picking tasks [92]. The

measurement of stereotypical motion was also a way to characterize ASC interacting

skills [86, 87]. The measurement of reaching acts mediated by a robotic arm was

found to differ from ASC to TD young adults [107] with better performance for

ASC when the error refers to properctive senses, while it is the converse when error

is measured by visión. The analysis of brain volumes through MRI indicates that

there are significant variations of volume in lobule VI, and parts of lobule VIII.

The responses to a mismatch experiment of sounds (vowel, vowel duration, conso-

nant, syllable frequency, syllable intensity) showed significant differences in children

(8-12 year old) with asperger syndrome in intensity and frequency relative to typ-

ically developing children [93] leading to conclude aberrant cortical sound-speech

discrimination in Asperger syndrome children. Conversation analysis is used while

a ASC child is interacting with a robot trying to ascertain if he has perseverative

talking features [78] one of the traits of high performing ASC children. The se-

quential analysis showed that recurrence may be driven by the interaction scenario.

Other experiments measured the response of ASC versus TD children when viewing

silouhettes of human and robotic [108] measuring the mimicry as the project results.

Target tracking in a tablet device provides behavioral information that can be

used for assessment of sensorial impairment [98], while a magneto-inertial platform

is proposed in [99] for the assessment of motor skills.

2.3 EEG based CAD approaches.

Electroencephalographic (EEG) sensors of neural activity have been also used to

explore the feasibility of identifying brain biomarkers of ASC or to implement CAD

systems based on their readings. Some works have achieved discrimination between

ASC and TD children in small cohorts [109] applying some feature extraction pro-

cedures that include the techniques from non-linear chaotic time series analysis and

time frequency decomposition, such as the fractal dimension. Another proposed
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computational pipeline involves wavelet decomposition, entropy feature extraction

from each EEG sub-band and a classifier based on ANNs [53]. Another kind of

ANN, uses the self-organizing map (SOM) for feature extraction reporting results of

a number of conventional classifiers upon the SOM features [110]. Classification ori-

ented research, however, does not provide clinical or biological insights because it is

often impossible to translate back the significative features into biological causes or

biomarkers that can be useful to understand the condition and propose treatments.

Looking for biomarkers, a recent systematic review of studies that have used EEG

and magnetoencephalography (MEG) data for brain connectivity analysis reports

underconnectivity in long-range connections for ASC subjects, while local connec-

tions seem to be unafected [111]. Recent approaches fuse EEG information with

other sources such as MRI information [112].

2.4 MRI based biomarkers.

Another track for research into the existence of anomalies in brain morphology

and functionality connectivity is the use of various modalities of magnetic resonance

imaging (MRI), namely structural (T1-weighted) MRI, resting state functional MRI

(rs-fMRI) and diffusion weighted imaging (DWI), and magnetic resonance spec-

troscopy (MRS) are the most relevant modalities found in the literature aiming to

identify ASC biomarkers [126, 134]. Table 2.1 provides a summary of the literature

worked out so far2.

The neural circuit mechanisms taking care of the regulation of social behaviors

are key to find such biomarkers [135]. For instance, structural MRI has provided

2Explanation of acronyms: Machine learning RF: Random Forest; SVM: Support Vector Machine; CART:
Classification and Regression Trees; GBM: Gradient Boosting Machine; RFE: Recursive Features Elimination; PSO:
Particle Swarm Optimization; DBN: Deep Belief Network; DNN: Deep Neural Network; ICA: Independent Com-
ponent Analysis; GCT Granger Causality Test; LSTM: Long Short-Rerm Memory; ROI: Region of Interest; GLM:
General Linear Model; RW: Random Walk; WBA: voxel-wise Whole Brain Analysis; Anatomical references
RSFG: Right Superior Frontal Gyrus, MFG: Middle Frontal Gyrus; IFG: Inferior Frontal Gyrus; FFA: Fusiform
Face Area; OFA: Occipital Face Area; EBA: Extrastriate Body Area; STS: Sulcus Temporal Superior; CC: Corpus
Callosum; LUF: Left Uncinate Fasciculus; SLF : Superior Longitudinal Fasciculus; CP: Cerebral Peduncle; SCC:
Splenium Corpus Callosum; PCC : Posterior Cingulate Cortex; SFG/mPFC: Superior Frontal Gyrus/Medial Pre-
frontal Cortex; LPC: Left Parietal Cortex; RPC: Right parietal Cortex; Hipp: Hhippocampal formation; RSN:
Resting State Network; CB: Cingulum Bundle; A/SL-F: Arcuate/Superior Longitudinal Fasciculus; UF: Uncinate
Fasciculus.
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evidence of atypical brain lateralization of subjects with ASC [136] in a cohort of 67

ASC subjects and 69 neurotypical subjects with matching IQ and relevant personal

characteristics.

The study of brain regions related to language [137] suggests that the child

can discern the social quality of behavior, but he has limited capability to explain

and rationalize it. These findings confirm the general assessment [138] that ASC

subjects suffer impairments of audio processing at neural level. Other approaches

focus on the motor disabilities searching for correlated regions and performance in

the brain [139]. Other neurophysiological models such as the mirror neurons [140]

seem to have been abandoned in the recent years [141].

Image biomarker findings are quite diverse [134]. Structural MRI findings using

voxel based differences are sometimes contradictory and inconsistent, and heavily

dependent on the technique used and the age of subjects, though some increase in

gray matter and white matter volume was consistently reported, as well as corpus

callosum decrease in volume. Morphological differences in thalamus and striatum

have been also reported using structural features [142]. A long term longitudinal (ac-

cross late childhood, adolescence and adulthood) big scale study of cortical thickness

is reported in [143]. Increased cortical thickness was reported for ASC in the range

between 6 years and adolescence [143], with differences decreasing towards adult-

hood. Other authors report significant differences in temporoparietal regions [144].

One of the questions raised is whether the differences in measurements found in

older children may be due to the actual ASC effects or the years of social disfunc-

tion. Hence, the current preferences of researchers looking for ASC biomarkers is to

do the observations in very early ages, even toddlers. Tractography analysis based

on fractional anisotropy coefficients extracted from DWI data have shown consistent

degradation of main neural tracts, pointing to a degradation of brain connectivity.

Fusion of DTI and sMRI volumetric information has shown differences in preschool

ASC children [127]. The study of brain connectivity in toddlers comparing ASC

with other developmental disorders has been reported using DWI and streamlined

tractography [145]. Over an anatomical parcellation of the brain, the neural path-

ways between them were extracted, and the connectivity strength between brain
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regions was estimated. The results point to overconnectivity in ASC toddlers versus

other developmental disorders.

The analysis of functional connectivity based on rs-fMRI data has found also

many incoherent or contradictory results heavily dependent on the heterogeneity

of population samples, analysis methods and design of the resting state scan [146].

The accepted conclusion so far is that there is some form of compensation between

reduced long-range connectivity and increased short-range connectivity [111]. The

functional parcellation of the insula allowed to find differences of insula functional

connectivity between ASC and neurotypical subjects [147]. Another study detected

effects in the extrastriate body area (EBA) [148] in fMRI when the task is the

contigency detection of one’s movements with others. Other studies found altered

connectivity from/to the superior temporal sulcus (STS) [149,150].

In reviews of white matter connectivity studies [32,114,124,125], mostly done on

DTI data, it was found recently that there is evidence of alterations in the connec-

tivity of the limbic system, contributing to ASC social impairment, while previous

reviews emphasized decreased connectivity of the corpus callosum, cingulum, and

temporal lobe [115]. On a functional MRI study [151] involving age and IQ matching

ASC and TD subjects playing “stone paper scissor” against human/robot/random

computer some reversed effect on the hypothalamus activity was found in ASC sub-

jects. On the other hand, other authors focus on the motor functional system [139]

as the key to improve the ASC subject outcomes. A recent work points in the di-

rection of alterations of the brain microstructure while the macrostructural features

are mostly preservated as the neurological causes for ASC [152].

The spatial shifting of resting state networks, such as the default mode network,

has been also tested as a biomarker for ASC [153]. The parcellation of the brain

activity into intrinsic connectivity networks allowed to assess their spatial variabil-

ity and its discriminant power, finding that ASC showed greater spatial variability.

These results help to harmonize the contradictory findings of underconnectivity and

overconnectivity in several studies [154]. Increase in intrasubject variability brain

connectivity in time, due to diverse factors such as caffeine intake between sessions,

has been found a potential biomarker for ASC [122]. Connectivity of the thalamus
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cortex has been studied by rs-fMRI brain networks and anatomical connectivity

computed by diffusion weighted imaging tractography [155] finding diverse patterns

of underconnectivity. On other effort, the connectivity between the cerebellum and

the temporoparietal junction was analyzed in detail using both independent compo-

nent analysis and seed based connectivity analysis [156] finding perturbed input to

the temporal-parietal regions from the cerebelar areas. Some task oriented studies,

such as the longitudinal study in [113] looks at the reward processing brain related

regions and functional connections.

2.5 MRI based CAD approaches

Biomarker identification aims to detect brain regions, connections or biochemical

signatures that show significant differences between ASC and neurotypical popu-

lations. CAD goes one step further, it produces a decision on the diagnosis that

can be used by the clinical practitioner with some confidence. CAD systems re-

quire sophisticated machine learning tools, such as multiview multitask ensembles

of classifiers [157]. Classification experiments based on structural MRI morphologi-

cal features extracted using FreeSurfer give low scores [129].

A tensor based approach to estimate connectivity in rs-fMRI is proposed in [158]

that it is able to extract both the connectome representation and the dynamic

functional connectivity for each subject finding discriminant effects on the putamen

connectivity for ASC subjects. Fine temporal analysis of the rs-fMRI time series, by

clustering them into short time intervals that may be shared between brain regions,

allows more precise classification [159,160]. On the other hand, structural features of

brain cortex were used by random forest classifier to produce reliable predictions in

toddlers [161]. Independent component analysis (ICA) and Granger Connectivity

Analysis (GCA) of rs-fMRI from high functioning autism showed discriminating

differences that can lead to automated classification [121].

A multimodal approach, involving structural and functional MRI is followed

in [52] where nonstationary independent components are extracted as fMRI fea-

tures and an sparse autoencoder extracts texture features from the structural MRI.
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These features are used to train/test a SVM classifier. SVM and recursive feature

extraction (RFE) allow to classifiy children into ASC and control [130]. In another

study [123] a decision tree classification was applied to features extracted from mul-

timodal MRI information, though the sample is very small (#ASC=19, #TD= 18).

On other study, the use of random forest classifiers give a much better classification

accuracy that SVM+RFE [120]. It was claimed in [162] that it is possible to dis-

criminate ASC from controls on the basis of a few abnormal functional connections,

however conclusions do not seem well supported to us.

Deep learning is having also a definitive impact in the recent attempts to con-

struct CAD systems. For instance, Deep Belief Networks have been reported [51,117]

to achieve ASC children discrimination fusing structural MRI imaging data and rs-

fMRI data. Another approach [52] uses sparse autoencoders to extract feature filters

from structural MRI, which are applied to the 3D structural MRI by a convolution

neural network for feature extraction. A linear decomposition by ICA is applied to

extract rs-fMRI connectivity features after appropriate signal bandpass. Structural

and functional features are finally entered to a linear support vector machine (SVM)

classifier. However, deep learning approaches are blind, in the sense that no biolog-

ical information is provided by them, so there is no explanation that may lead the

clinical practice to find treatments. Long Short-Term Memories (LSTM) have been

applied to classification of ASC children [116] using ABIDE data.

The brain dynamics of ASC young adults is compared with TD matched in IQ

and age [119] looking for significant differences. It is found that dynamic transitions

identified from rs-fMRI data are differently coorelated with IQ in TD and ASC

subjects: for TD subjects IQ is correlated to the frequency of transitions, while for

ASC subjects is correlated with brain dinamics stability.

2.6 Public data resources

Looking forward to achieve more robust classification results [157, 163], big repos-

itories of multi-center information are becoming available, most including several

modalities of brain imaging data [164]. However, inter-site variability seriously im-
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pedes the data analysis [165]. After removing inter-center variability predictive

classification results reported are close to random noise, enforcing the conclusion

that more specific differential diagnostic tools are needed because of the actual het-

erogeneity of the brain structures in ASC subjects. Also, fine subdivisions of the

disorder are proposed as a way to improve automated diagonistic decisions [128]. The

state of the publicly available data resources until 2017 was summarized in [166],

here we review some of the most relevant up to date

Simons Foundation Autism Research Initiative (SFARI) SFARI is a repos-

itory of genetic samples of 2700 families with at least a descentdant that has ASC

traits. A subset of subjects called the Simons Variation in Individuals Project

(VIP), 200 cases, have also fMRI and sMRI data. The data website is http:

//www.sfari.org. The data can be accessed after registration.

Autism Brain Imaging Data Exchange (ABIDE) The first collection ABIDE

I is presented in [167]. It was built up aggregating data available from several

institutions. It contains data from 1112 subjects, 539 with ASC and 573 healthy,

aging range is from 7 up to 64 years. There are rs-fMRI and sMRI data as well

as phenotipic information. The second collection ABIDE II is presented in [168]

after adding 487 ASC and 557 healthy subjects from additional institutions. The

new data collection includes DWI data for 284 subjects, as well as psychological

variables for all new subjets. Both datasets are available from http://fcon_1000.

projects.nitrc.org/indi/abide/, where a curated bibliographic list is also given

(up to March 2017), including publications about ABIDE availability (up to August

2016).

IMAGEN It is a result of EU FP6 funded project LSHM-CT- 2007-037286 in

the period 2007-2012. The main goal of the project was to identify the genetic

and neurobiological roots of the ASC in european adolescents. The consortium was

composed of 20 institutions from UK, Germany, France, Norway, Canda and Ireland.

The dataset contains stratified data from three main periods of subjects life: Phase

1: adolescents 15-16 years old; Phase 2: the same subjects in the range 18-20 years,

http://www.sfari.org
http://www.sfari.org
http://fcon_1000.projects.nitrc.org/indi/abide/
http://fcon_1000.projects.nitrc.org/indi/abide/
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and Phase 3: at 22 years. It contains data from 2223 subjects. It is not specific for

ASC subjects. The data includes biological and psychological tests data. The data

can be accessed, after registration, from http://www.imagen-europe.com.

2.7 Concluding remarks

Computer aided diagnosis (CAD) systems for ASC are currently a hot focus of re-

search, because they may provide early detection leading to improved treatment.

CAD systems provide the clinical practitioner with a recommendation of the diag-

nosis, which may (or may not) be based on accepted biomarkers. Black-box CAD

systems are not easily accepted because the medical staff requires understanding

the recommendation from a causality point of view. Therefore, future efforts must

emphasize explainability in order to get acceptance in the medical community.

http://www.imagen-europe.com


Chapter 3

State of the art of brain

connectivity analysis for Autism

This Chapter summarizes the state of the art in the analysis of brain connectivity

looking for biomarkers or computer aided diagnostic systems for Autism spectrum

condition (ASC). Section 3.1 provides a brief revision of protocols of magetic reso-

nance imaging (MRI) for the brain. Section 3.2 provides a review of previous works

focused on the brain MRI data, specifically based on the data from the ABIDE

dataset that has been used also in our experiments.

3.1 Brain imaging

Brain imaging technologies are divided into two main categories: structural imag-

ing and functional imaging. Structural imaging techniques are used for studying

the anatomy of the brain and diagnosing disorders, for example, detecting tumors

or physical injuries. Functional brain imaging techniques are used to measure the

activity of the brain and analyze how it changes overtime to understand the brain

functions and dynamics. Magnetic Resonance Imaging (MRI) can be used for both

structural and functional brain imaging, the latter usually denoted as fMRI. Ad-

ditional techniques for functional brain data aquisition are electroencephalography

(EEG) and magnetoencephalography (MEG). fMRI has become a popular tool for

psychologists trying to examine normal and abnormal brain function. Over the last
31
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decade it has provided new insight to the investigation of how memories are formed,

language, pain, learning and emotion to name but a few areas of research. fMRI is

also being applied in clinical and commercial settings. Recently, machine learning

techniques are extensively applied to extract useful information from fMRI [169].

In the following subsections we will give a short revision of the fundamentals of

processing MRI data for brain imaging applications.

3.1.1 Kinds of noise found in brain MRI

As with almost all types of physical measurements, MRI data can be corrupted by

acquisition artifacts. These artifacts arise from a variety of sources, including head

movement, brain internal motion, such as the vascular effects related to periodic

physiological fluctuations, and computational errors introduced by reconstruction

and interpolation processes. In particular, MRI data often contain transient spike

artifacts and slow drift over time related to a variety of sources, including magnetic

gradient instability, radio frequency interference, and movement induced and physi-

ologically induced in homogeneities in the magnetic field. These artifacts will likely

lead to violations of the assumptions of normally and identically distributed errors

that are commonly made in subsequent statistical analysis. Unless these sources of

noise are properly tackled with, they will reduce statistical power in group level anal-

ysis, and will increase false positives in single-subject inference. Of course, the effect

in machine learning predictive approaches will be catastrophic. It is very important

to perform a careful examination of the data, in order to have an early detection

of these problems. However, for some modalities such as fMRI the large amount

of data prevents this exhaustive examination. For instance, fMRI often presents a

substantial slow drift of the signal over time, which may induce significant signal

variations that may confound the statistical analysis or the predictive models. The

introductory chapter in [1] collects visualization of some types of MRI artifacts that

are reproduced in Figure 3.1.
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Figure 3.1: Examples of common MRI artifacts: (A) k-space artifact; (B) ghosting
in a phantom; (C) susceptibility artifact; and (D) spatial normalization artifact. [1]
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3.1.2 The fMRI experiment

The fMRI signal is produced by the variable presence of oxigen in the blood as a

reponse to the need of energy due to activation of the neurons carrying some cog-

nitive task. The Blood-oxygen-level-dependent (BOLD) signal captures the haemo-

dynamic response that provides more oxygen to working neurons than to inactive

neurons.

The typical fMRI task activation experiment utilizes visual, auditory or other

stimuli to induce two or more different cognitive states in the subject following an

alternating sequence, while collecting MRI volumes continuously [170]. In a task

with a two-condition design, one cognitve state corresponds to the experimental

condition, while the other corresponds to the control condition. The aim of the

experiment and data processing is to assess if there are specific locations in the

brain that have specific neural responses to the task, i.e. that change their activity

according to the change in proposed cognitive state. This is done through multi-

ple statistical tests carried out over all the brain space that try to falsify the null

hypothesis of no change in the BOLD signal correlated with the task.

When the experiment follows a block design, the alternation between the experi-

mental and control conditions are shown in Figure 3.2. Each block typically lasts in

the order of tens of seconds. A jittered event-related (ER) design (not shown) may

be useful to characterize the amplitude or timing of the hemodynamic response. In

the ER design, task events are relatively brief happening at non-constant intervals

of control condition so long that allow a more fully return of the hemodynamic

response to baseline state. The detail of the design of the task greatly influences

the degree to which valid inferences can be drawn from the measured time series

data. The research must ensure of separating the effect of interest changes between

experimental and control conditions from confounding effects, like the attention of

the subject or his emotional valence.
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Figure 3.2: Block design fMRI experiment. A neural response to the state change
from A to B in the stimulus is accompanied by a hemodynamic response that
is detected by the rapid and continuous acquisition of MR images sensitized to
BOLD signal changes. Using single- or multi-variate time series analysis methods,
the average signal difference between the two states is computed for the scan
and a contrast map generated. A statistical activation map is finally obtained
using a suitable threshold for the difference; the map depicts the probability that
a voxel is activated given the uncertainty due to noise and the small BOLD signal
differences.
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3.1.3 The resting state fMRI experiment

Contrary to the task oriented fMRI experiments, the resting state fMRI (rs-fMRI)

experiments do not impose any cognitive or motor task to the subject. Subjects

are instructed to stay relaxed, doing nothing and trying not to fall sleep or loss

conscience. The aim is to examine the ground state of the brain and its connectivity.

It has the advantage that any kind of subjects can perform the experiment, whatever

their cognitive impedements, if they can stay quiet for a while. The analysis of the

rs-fMRI data has been tackled with diverse approaches, for instance independent

component analysis (ICA) allowed to discover the default mode networks (DMN).

A common approach is to compute the average signal of each region of a given

brain parcellation and to estimate the connection strength between regions as some

measure of correlation or similarity among these representative signals. The latter

is the approach pursued in this Thesis.

3.1.4 Preprocesing

The preprocessing methods customarily applied to the fMRI data include skull strip-

ping, spatial normalization, realignment for motion correction, and smoothing for

noise reduction [?]:

• Skull stripping. After all the brain images in the fMRI sequence have been

converted to a predefined shape and size, the structure of the skull along with

other parts of the body (i.e. eyes, spinal cord and the muscles in the face and

neck) are removed because they do not provide any useful information.

• Spatial normalization. The size and shape of the human brain varies from

subject to subject. We must ensure that each point in one brain volume

corresponds to the same location in another brain volume, in order to have

anatomically comparable values (i.e. we do not compare different brain struc-

tures in the subjects). Therefore, all the brain volumes must be registered

and warped to a standard template. The most conventional is the Montreal

Neurological Institute (MNI) for structural MRI.
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Figure 3.3: An image (top left) is warped to match a template (top right) to
produce a spatially normalized version (top center). For clarity, the original image
was approximately aligned with the template, and the warping was only done in
two dimensions. The bottom row shows the difference between the template and
image, both before and after the warping [2].
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Figure 3.4: Skull-stripping steps: (A) input images, (B) brain contouring, and
(C) removal of nonbrain tissues [3].

Figure 3.5: Realigment: (A) input image, (B) Voxel-Based Registration Method,
and (C) Boundary-Based Registration Method [4]
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Figure 3.6: Results of the smoothing data analysis: t-maps (top) and thresholded
images (bottom) obtained using spatially adaptive smoothing and fixed Gaussian
kernels with various widths from [5].

Figure 3.7: Different methods of Slice time correction: A) FSL B)SPM and C)FS
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• Realignment. When the head moves during an experimental run or between

runs (also termed within-run vs. between runs head movements), the corre-

spondence between image location and brain anatomical region will be chang-

ing slightly between MRI volume captures, i.e. motions can cause a given voxel

to contain signal from two different types of tissue or a loss of data. This effect

is more easy to visualize at the edges of the imaging volume. Furthermore,

movement of the head will alter the uniformity of the magnetic field that has

been shimmed for one particular head position. Finally, head motion can have

consequences for activation timing/pattern of excitation, given that each exci-

tation pulse is targeted to one slice at a time and the head is moving through

different slices during acquisition. Motion correction adjusts the series of MRI

volumes to ensure that the brain appears in the same position by a process

called co-registration [171].

• Smoothing (Noise reduction). The spatial noise present in the fMRI scans is

assumed to be Gaussian noise, independent for each voxel, and zero-mean. We

expect that convolving the BOLD volumes, after realignment, with a Gaussian

smoothing kernel will remove most of this Gaussian noise improving the Signal

to Noise Ratio (SNR). The main inconvenient of this process is that for very

low SNR, the amount of smoothing required may damage the information

content of the fMRI volumes.

• Slice time correction. The fMRI data for each subject is a time series of MRI

scans. Each scan should correspond to a particular point in time recording

the instantaneous BOLD information. However, recording each slice in the

volume requires some time. Therefore, the data captured at different brain

regions are obtained at different points in time. Slice time correction method

uses the Fourier transform of the signal at each voxel across time to perform the

time series interpolation in order to obtain time homogeneous BOLD volumes.

• Coregistration. The anatomical label maps of the brain are created to over

an sMRI template. Therefore, the sMRI scan is used to coregister the fMRI

data to the right dimensions allowing to overlaid the anatomical labe lel map
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Table 3.1: Number of regions of the brain parcellations used in this Thesis.
Atlas #ROIs

Automated Anatomical Labeling (AAL) 116
Eickhoff-Zilles (EZ) 116
Harvard-Oxford (HO) 110

Talarach and Tournoux (TT) 110
Dosenbach 160 160

Craddock 200 (CC200) 200

on the fMRI data in order to produce the brain parcellations discussed below.

This is required so that we can have a one to one match of the ROIs defined

in the atlas with the areas in the fMRI data.

3.1.5 Brain parcellations

Korbinian Brodmann subdivided the cerebral cortex into numerous areas based on

regional differences in the distribution, density, shape, and size of cell bodies [172,

173] providing one of the first brain anatomical parcellation allowing researchers to

investigate brain-behavioral associations with developmental [174], cognitive , and

clinical phenotypes [175].

In our works on the functional connectivity analysis, the parcellations presented

in Table 3.1 were applied in order to obtain the region representative time series

for each of the regions of the selected parcellations. As discussed in [35] there are

several approaches to the definition of the brain parcellation which may lead to

significant differences in the computational experiments outcomes [175, 176]. On

the one hand, we consider in this paper the anatomically guided parcellations such

as the Tailarach and Tournoux (TT), Eickhoff-Zilles [177], Harvard Oxford (HO)

[178], and the Automated Anatomical Labeling (AAL) [179, 180] defined from the

brain segmentation of selected control populations. On the other hand, we consider

parcellations are produced from the segmentation of the rs-fMRI time series of the

brain volume using clustering techniques, such as the Dosenbach [174] and Craddok

[181] parcellations. All these atlases were defined at the conventional resolution of

sMRI of 1mm3. In order to reduce their resolution to conventional fMRI resolution

of 3mm3 nearest neighbor interpolation was used.
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• Tailarach and Tournoux. The Co-Planar Stereotactic Atlas of the Human

Brain by Talairach and Tournoux (1988) [?] is based on the anteroposterior

commissural system and contains gross anatomy onaxial, coronal, and sagittal

sections. The Talairach and Tournoux (TT) atlas has widespread familiarity

and utilization, and the associated Talairach transformation is a practical way

for normalizing brain images. Developed initially for stereotactic and func-

tional neurosurgery, the TT atlas iswidely used in human brain mapping for

brain comparison across subjects [?] and the number of references to it has

been growing exponentially [?]. In addition, the Talairach system is the most

frequently used coordinate system in human brain mapping [182]. The TT

atlas distributed with AFNI was coregistered and warped into template space.

• Eickhoff-Zilles. The Eickhoff-Zilles(EZ) atlas [177] was derived from the max-

propagation atlas distributed with the SPM Anatomy Toolbox. The atlas was

transformed into template space using the Colin 27 template (also distributed

with the toolbox) as an intermediary.

• Harvard-Oxford. The Harvard-Oxford (HO) atlas [178] was developed at the

Center for Morphometric Analysis (CMA), and distributed with the FMRIB

Software Library (FSL). It comes with a probability distribution for each brain

region obtained from a Maximum A posteriori (MAP) estimate. The HO atlas

is split into cortical and subcortical probabilistic atlases. A 25% threshold was

applied to each of these atlases and they were subsequently bisected into left

and right hemispheres at the midline (x = 0). ROIs representing left/right

WM, left/right GM, left/right CSF and brainstem were removed from the

subcortical atlas.

• Automated Anatomical Labeling (AAL). The AAL atlas [179, 180] is dis-

tributed with the AAL Toolbox.

• Dosenbach 160. The Dosenbach 160 atlas [174] distributed with DPARSF/DPABI

includes 160 4.5-mm radius spheres placed at coordinates extracted from Ta-

ble S6 in Dosenbach et al., 20104. These regions were identified from meta-

analyses of task-related fMRI studies.
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• Craddock 200 (CC200) [183]: Functional parcellation was accomplished using

a two-stage spatially-constrained functional procedure applied to preprocessed

and unfiltered resting state data corresponding to 41 individuals from an inde-

pendent dataset. A grey matter mask was constructed by averaging individual-

level grey matter masks derived by automated segmentation. Individual-level

connectivity graphs were constructed by treating each gray matter voxel as

a node and defining edges between nodes whose temporal correlation among

3D neighborhoods was above a preset threshold. Each graph was partitioned

into 200 regions using normalized cut spectral clustering. Association matri-

ces were constructed from the clustering results by setting the connectivity

between voxels to 1 if they are in the same ROI and 0 otherwise. A group-

level correspondence matrix was constructed by averaging the individual level

association matrices and subsequently partitioned into 200 regions using nor-

malized cut clustering. Labels were generated for each of the resulting ROIs

from their overlap with AAL, EZ, HO, and TT atlases using the cluster naming

script distributed with the pyClusterROI toolbox .

3.1.6 Connectivity matrices

The first step of a computational pipeline dealing with rsfMRI data is the estimation

of the connectivity matrices. In the experimental works reported in Chapters 6 and

76 we have considered five similarity metrics to build the connectivity matrices from

the time series representatives of the brain parcellations which are available from

the nilearn python package (https://nilearn.github.io/modules/generated/

nilearn.connectome.ConnectivityMeasure.html). At the root of these compu-

tations is the robust estimation of the covariance matrix of the time series. We

use the Ledoit-Wolf shrinkage estimator [184] following methodological recommen-

dations in [175, 176]. The connectivity matrices are constructed according to the

following connectivity measures:

• The covariance matrix computed using the Ledoit-Wolf shrinkage estimator

[184],

https://nilearn.github.io/modules/generated/nilearn.connectome.ConnectivityMeasure.html
https://nilearn.github.io/modules/generated/nilearn.connectome.ConnectivityMeasure.html
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• The Pearson Correlation Coefficient (PCC) [185] among each pair of ROI time

series, which is computed as the normalization of the covariance matrix [186].

• The precision computed as the inverse of the covariance matrix.

• The partial correlation obtained regressing out all other connections for each

pair of regions [187].

• The tangent space representation of the matrices obtained by whitening them

[188].

Hence, for each subject in the ABIDE dataset and brain parcellation we have five

different connectivity matrices as input for the feature extraction and classifier cross-

validation.

3.2 Related works

Artificial intelligence tools and problem solving approaches [208] are contributing

to the understanding and predictive analysis of ASC. Overall, there is increasing

evidence that specific features extracted from MRI neuroimaging can be used to

discriminate ASC from TD. However, there is a wide variety of methodological and

computational approaches tested on widely different cohorts and imaging modalities

[21,209].

3.2.1 Anatomical brain imaging

Regarding anatomical brain imaging, predictive models can be built based on anatom-

ical differences computed by voxel based morphometry (VBM) over gray and white

matter segmentations of T1-weighted MRI data. Experiments over a small cohort

have reported average accuracies cross-validation experiments below 70% for a series

of stratified computational experiments [210]. However, a similar study [211] using

voxel based morphometry (VBM) significative differences of diverse stratifications

of female and male subjects of the ABIDE dataset reported much higher accuracies,

above 90% in several subgroups. On the other hand, the use of 3D convolutional
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neural networks (3D-CNN) [212] on the complete ABIDE structural MRI dataset

reported an accuracy of 70%. Hence, there is a strong selection effect that may bias

significantly the reported results. Significance weighted principal component anal-

ysis allows to remove the effects of site data acquisition improving discrimination

based on anatomical imaging [213].

3.2.2 Functional connectivity

Works based on functional connectivity information extracted from rs-fMRI data

have been predominant in the latter times. They have been carried out over a

wide variety of cohorts, testing many computational approaches. Relevant brain

connection selection using logistic regression [162] achieved accuracy of 85% by a

linear classifier in a leave one out validation over a small cohort (74 high-functioning

adult ASCs and 107 adult TDs). Further validation on an independent subset

of the ABIDE dataset (N=88) achieved a remarkable accuracy of 75%. Another

work [214] reports accuracies over 80% on a small cohort of paired 20 ASC and

20 TD children using hyperconnectivity networks as features for a SVM classifier,

while other authors [215] reported on the results of multilinear regression over the

functional connectivity matrices after PCA dimensionality reduction of a cohort of

85 ASC and 163 TD children finding specific imbalances in brain connectivity for

ASC children. However, the heterogeneity of the cohorts points to powerful selection

bias in the results. In other words, the selection of which subjects are used for the

experiments has a strong effect in the results reported.

3.2.3 Dataset heterogeneity

The heterogeneity of the data in ABIDE as illustrated by the demographic informa-

tion shown in Table 6.1 is a source of bad results for machine learning approaches.

Experiments concerning single sites report overly optimistic results that can not

be achieved with the entire ABIDE dataset or a large subsample [216]. For in-

stance, some works carry out separate intra-site cross-validation experiments re-

porting as the global result over the database the average of the separate intra-site
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results [201,217]. This selection strategy overlooks the differences among sites, doing

the crossvalidation on coherent data.

The selection of the experimental cohort among the ABIDE subjects varies

among studies, often for unexplained reasons. For instance, the benchmarking

work [176] selected 871 subjects, after visual quality inspection of the data, while

our own selection includes 884 subjects because our exclussion reason is diagnostic.

Therefore we have excluded from Table 3.2 references such as the recursive feature

selection on 532 subjects [218], the time series clustering approach tested on 814

subjects [219], and others that report results on ABIDE subsamples of 209 [220],

365 [39], 182 [221], 211 [222], and 119 [223] subjects .

3.2.4 Summary information

Table 3.2 summarizes the state of the art regarding the classification of subjects

into ASC or TD on the basis of functional connectivity matrices extracted from the

rs-fMRI data published in the ABIDE I dataset [22,23]. The criteria for inclusion in

this table are (1) that the references report results on the (almost) complete ABIDE

I dataset in order to be comparable to our own results reported below, and (2) that

they report results using only features extracted from the functional connectivity

matrices. We have excluded results obtained adding other kinds of information, such

as the graph convolutional networks (GCN) enriched with demographic information

[189], and the features extracted from structural and MRI data [206].

The selected references of Table 3.2 apply the conventional machine learning

validation methodology uniformly. Works report the average results of repetitions

of k-fold cross-validation results where the training and any feature extraction is

restricted to the training dataset avoiding the double dipping issues [224,225], with

training and testing datasets selected across original sites contributing to ABIDE

listed in Table 6.1. The performance reports in the references of Table 3.2 are

usually in terms of the average Accuracy. Some works report the AUC as a more

robust performance measure [176,189,202], and some report the median and 5% and

95% percentiles of the AUC [202]. Maximal accuracy and AUC results found in the

literature are 77% and .75, respectively. Regarding reproducibility of the results,
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one key issue is the availability of the actual data used in the experiments, which

is heavily dependent on rs-fMRI preprocessing, brain parcellation, and functional

connectivity matrix estimation. In many instances, obtaining the same dataset is not

possible, so we prefer to work on the publicly available preprocessed connectomes.

We feel that results reported over this dataset are fairly comparable.

Columns of Table 3.2 reflect the choices made in the steps of the process of Fig-

ure 1.1, namely on brain parcellation, feature extraction, and classification method.

Most works do not report on the specific functional connectivity matrix estima-

tion procedure. The most popular brain parcellations are the HO [178], and the

AAL [179,180], whose definitions are guided by anatomical criteria. However, data

driven parcellations have also been assessed in the literature applying dictionary

learning, independent component analysis (ICA), clustering approaches, stochastic

parcellations according to a random selection of sites (SP), and the selections of sites

following biomarkers reported in the literature, such as [173]. The feature extraction

processes applied are widely varying among references. Some works report graph

measures, other PCA and recursive feature selection (RFE), sequential feature se-

lection (SFS), or the use of ANOVA to select the most relevant connections [176].

Unlike conventional machine learning classifier model building approaches, studies

using deep learning [203] do not have a separate feature extraction process. Convo-

lutional Neural Networks (CNN) that learn from the data to carry out a hierarchy

of feature extraction processes have been also applied to the task of defining ASC

classification systems [226–232].



Chapter 4

Machine learning background

This Chapter provides some background ideas and definitions on Machine Learning

techniques that have been used in the computational pipeline proposed in Figure 1.1.

Section 4.1 gives some introductory terminology. Section 4.2 provides details on the

classifier building models. Section 4.3 provides details on the feature extraction and

feature selection methods that have been applied to the brain connectivity matrices.

Section 4.4 describes the performance evaluation procedures and metrics used to

report results in Chapter 6.

4.1 Introduction

Machine learning is a field of artificial intelligence that provides the machine with

theability to learn from data without providing specific instructions. Machine learn-

ing is divided into three broad categories: supervised learning, unsupervised learn-

ing, and semi-supervised learning. In machine learning terms, this goal is formulated

as the supervised learning task of inferring from collected data a model that predicts

the value of an output variable based on the observedvalues of input variables. As

such, finding an appropriate model is based on the assumption that the output vari-

able does not take its value at random and that there exists a relation between the

inputs and the output [233]. Unlike supervised learning, in unsupervised learning,

there is no corresponding output for the input data. The goal of unsupervised learn-

ing is to draw inference and learn the structure and patterns of the data. Cluster
49
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analysis is the most common example of unsupervised learning. Semi-supervised

learning is a category of machine learning which falls between supervised and un-

supervised learning. In semi-supervised learning techniques, besides using labeled

data, unlabeled is used the learning process [169].

4.2 Classifier model building methods

We have applied classifier building methods that are available from the open and

free source Python library scikit-learn v0.22 (https://scikit-learn.org/) [234].

In this section we describe the classifiers that have been tested:

4.2.1 Random Forest (RF)

Random Forest (RF) [235] is a supervised learning algorithm and a popular ensemble

method that combines by majority voting the response from a committee of decision

trees [236] trained upon bootstrapped versions of the training data. The "forest" it

builds, is an ensemble of decision trees; usually trained with the “bagging” method.

Moreover, the variables used to compute each node split are randomly selected. The

basic premise of the algorithm is that building a small decision tree with few features

is a computationally cheap process [237]. A tree-based model involves recursively

partitioning the given dataset into two groups based on a certain criterion until a

predetermined stopping condition is met. At the bottom of decision trees are the leaf

nodes where the decision on the class is performed. Figure 4.1 illustrates a recursive

partitioning of a two-dimensional input space with axis-aligned boundaries. Each

time the input space is partitioned in a direction parallel to one of the axes. In the

figure, the first split is defined by x2 ≥ a2. Then, the two resulting subspaces are

partitioned: The left branch corresponds to the split on x1 ≥ a4. The right branch

is first split by the rule x1 ≥ a1, and then one of its subbranches is split by the ryle

x2 > a3. Figure 4.2 is a graphical representation of the space partition in figure 4.1.

Depending on how the partition and stopping criteria are set, decision trees can

be designed for both classification tasks (categorical outcome, for example, logistic

regression) and regression tasks (continuous outcome).

https://scikit-learn.org/
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Figure 4.1: A graphical representation of a binary decision tree splitting the space
recursively.

For both classification and regression problems, the subset of predictor variables

selected to split an internal node depends on predetermined splitting criteria that

are formulated as an optimization problem. A common splitting criterion in classi-

fication problems is entropy, which is the practical application of Shannon’s source

coding theorem that specifies the lower bound on the length of a random variable’s

bit representation. At each internal node of the decision tree, entropy is given by

the equation (4.1) where c is the number of unique classes and pi is the prior prob-

ability of each given class. This value is maximized to gain the most information at

every split of the decision tree. For regression problems, a commonly used splitting

criterion is the mean squared error at each internal node:

E = −
c∑
i=1

pi × log(pi) (4.1)

A drawback of decision trees is that they are prone to overfitting, which means

that the model follows the idiosyncrasies of the training dataset too closely and

performs poorly on the test data, i.e. unknown data at training time. Overfitted

decision trees lead to low generalization performance.
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Figure 4.2: Recursive binary partition of a two-dimensional space obtained as a
result of the binary tree in 4.1.
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One way to increase generalization accuracy is to consider only a subset of the

observations and build up many individual trees. First introduced by [238], this idea

of the random-subspace method was later extended and formally presented as the

random forest by [239]. The random forest model is an ensemble tree-based learning

algorithm; that is, the algorithm averages predictions over many individual trees.

The individual trees are built on bootstraped samples from the original sample. This

is called bootstrap aggregating or simply bagging, and it reduces overfitting. It is

performed in order to obtain additional randomization of the training of individual

decision trees, expecting a more diverse ensemble of classifiers. It is a common

understanding (though there are scarce formal proofs) that diversity improves the

generalization performance of the ensemble, decreasing overfitting effects.

Individual decision trees are easily interpretable, but this interpretability is lost

in random forests because many decision trees are aggregated. However, in exchange,

random forests often perform much better on prediction tasks. The random forest

algorithm more accurately estimates the error rate compared with decision trees.

More specifically, the error rate has been mathematically proven to always converge

to zero as the number of trees increases [239].

The error of the RF is approximated by the out-of-bag error during the training

process, wich is computed as follows. Each decision tree is built on a different

bootstrap sample. Each bootstrap sample randomly leaves out a number of the

observations in the original sample. These left-out observations for a given tree are

referred to as the out-of-bag sample. Finding parameters that would produce a low

out-of-bag error is often a good strategy for model selection and parameter tuning.

Note that in the RF algorithm, the size of the subset of predictor variables strongly

determines the final depth of the trees. Hence, it is a parameter that needs to be

tuned during model selection [237].

4.2.2 K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) [240] is the basic non parametric classifier building

approach where the test sample class is assigned by majority voting among the class

labels of the K closest training samples according to the Euclidean distance. Fix &
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Hodges were the first to propose a KNN classifier algorithm as early as the year of

1951 for performing pattern classification task [241].

The KNN algorithm essentially boils down to forming a majority vote between

the K most similar instances to a given “unseen” observation. Similarity is defined

according to a distance metric between two data points. A popular choice is the

Euclidean distance, but other measures can be more suitable for a given setting,

such as the Manhattan, Chebyshev and Hamming distances. More formally, given a

positive integer K, a stored training data sample of feature vectors with associated

class labels S = {yi, ωi}Ni=1, an unseen observation x, and a similarity metric φ (y,x),

a KNN classifier performs [242] the following steps:

1. It runs through the whole dataset computing {di = φ (yi,x)}Ni=1 . The nearest

neighboring set A is composed of the K points in the training data that are

closest to x, . K is usually odd to prevent tie situations.

2. It then estimates the conditional probability for each class, that is, the fraction

of points in A with that given class label. (I(z) is the indicator function which

evaluates to I when the argument z is true and 0 otherwise)

P (ωx = j,X = x) = 1
k

∑
i∈A
I(ωi = j)) (4.2)

3. Finally, input x gets assigned to the class with the largest probability.

4.2.3 Gaussian Naive Bayes (GNB)

Gaussian Naive Bayes (GNB) [240] assumes the statistical independence of the fea-

tures, so that the classifier can be built as an aggregation of one dimensional not

interacting classifiers modeled by a loose mixture of Gaussians. Naive Bayes is used

widely [243] in many applications such as: text categorization [244], document judg-

ment and data stream classification [245]. Naive Bayes is a generative model based

classifier [246] with a fast learning and testing process.

Bayesian classifiers are straightforwardly derived from the Bayes rule and prob-

ability theorems. It has been proven that learning the optimal Bayesian classifier
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from training data is an NP-hard problem [247]. A simplified version of Bayesian

classifier called naive Bayes uses two assumptions. The first is that attributes are

conditionally independent given the class label. The second is that, no latent at-

tribute affects the label prediction process [248].

Assume, the vector (x1, . . . , xn) represents the n attributes of the instance x. Let

it be c the class label of the instance x. The probability of observing x given the

class label c can be computed by as follows:

p(x1, . . . , xn |c) =
n∏
i=1

= p(xi |c) (4.3)

In order to predict the class label of instance x, its probability to belong to each

class is computed. The class with the maximum probability is identified as the class

label of the instance x. Formally:

C(x)NB = arg max
c

{p(x1, . . . , xn |c)}c (4.4)

The conditional independence assumption between the attributes in naive Bayes is

weak, and rarely correct in most real problems except of situations in which the

attributes are extracted from independent stochastic processes. Some methods have

been introduced for improving the conditional independence assumption in naive

Bayes.

Gaussian naive Bayes classification is an instance of naive Bayes method assum-

ing that each the attribute follows a Gaussian distribution given the class label. For

example, suppose that ith attribute is continuous and its class conditional mean and

variance are denoted by uc,i and σ2
c,i, respectively, given the class label c. Hence, the

probability of observing the value xi in ith attribute given the class label c, is given

by the normal distribution:

p(xi|c) = 1√
2πσ2

c,i

exp
(−

(xi−µc,i)
2

2σ2
c,i

) (4.5)
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4.2.4 Support Vector Classifier (SVC)

Support Vector Classifier (SVC) [249,250] looks for the maximum margin hyperplane

discriminating the sample into two classes solving a linear programing problem on

the relevance of the samples to this class boundary. We use the linear kernel version

because its response is more stable, needs less parameter tuning, and is more efficient

computationally. In some instances we carry out a variable selection procedure based

on their statistical significance in an ANOVA analysis [251]. We consider both sparse

(`1) and non-sparse (`2) regularization terms. We test the two implementations

available from scikit-learn, based respectively on libsvm (https://www.csie.ntu.

edu.tw/~cjlin/libsvm/) and liblinear (https://www.csie.ntu.edu.tw/~cjlin/

liblinear/) libraries.

The foundations of Support Vector Machines (SVM) have been developed by

Vapnik [252] and gained popularity due to many promising features such as bet-

ter empirical performance. The formulation uses the Structural Risk Minimization

(SRM) principle, which has been shown to be superior [253], to traditional Empirical

Risk Minimization (ERM) principle, used by conventional neural networks. SRM

minimizes an upper bound on the expected risk, whereas ERM minimizes the error

on the training data. It is this difference which equips SVM with a greater ability to

generalize, which is the goal in statistical learning. SVMs were developed to solve

the classification problem, but recently they have been extended to solve regression

problems [254].

4.2.5 Logistic regression (LR)

Logistic regression (LR) [255–257] is the classical approach that models the probabil-

ity of the binary classes by a logistic linear function, enabling linear regression solvers

to cope with classification problems. We apply both sparse (`1) and non-sparse (`2)

regularizations. Unlike linear regression which outputs continuous number values,

logistic regression transforms its output using the logistic sigmoid function to return

a probability value which can then be mapped to two or more discrete classes. There

are thre types of logistic regression: Binary, Multi and Ordinal.

https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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In linear regression we tried to predict the value of y(i) for the i-th example x(i)

using a linear function y = hθ(x) = θ>x. This is clearly not a solution for pre-

dicting binary-valued labels (y(i) ∈ {0, 1}). In logistic regression we use a different

hypothesis class to try to predict the probability of a given example belonging to

the “1” class versus the probability that it belongs to the “0” class. Specifically, LR

tries to learn a function of the form:

P (y = 1 |x) = hθ(x) = 1
1 + exp

(
θ>x

) ≡ σ
(
θ>x

)
(4.6)

P (y = 0 |x) = 1− P (y = 1 |x) = 1−hθ(x) (4.7)

The function σ(z) ≡ 1
1+exp(−z) is often called the “sigmoid” or “logistic” function.

It is an S-shaped function that “squashes” the value of
(
θ>x

)
into the range [0, 1]

so that we may interpret hθ(x) as a probability. Our goal is to search for a value of

θ so that the probability P (y = 1 |x) = hθ(x) is large when x belongs to the “1”

class and small when x belongs to the “0” class (so that P (y = 0 |x) is large). For a

set of training examples with binary labels
{

(x(i), y(i)) : i = 1, . . . ,m
}
the following

cost function measures how well a given hθ does this prediction:

J(θ) = −
∑
i

(y(i)log(hθ(x(i))) + (1−y(i))log(1−hθ(x(i)))) (4.8)

When y(i) = 1 minimizing the cost function means that we need to make hθ(x(i))

large, and when y(i) = 0 we want to make 1− hθ large as explained above. We can

learn to classify our training data by minimizing J(θ) to find the best choice of θ.

Once we have done so, we can classify a new test point as “1” or “0” by checking

which of these two class labels is most probable: if P (y = 1|x) > P (y = 0|x) then

we label the example as a “1”, and “0” otherwise. This is the same as checking

whether hθ(x) > 0.5

To minimize J(θ) we can use the tools of linear regression. We need to provide

a function that computes J(θ) and ∇θJ(θ) for any requested choice of θ. The
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derivative of J(θ) as given above with respect to θj is as follows:

∂J(θ)
∂θj

=
∑
i

x
(i)
j (hθ(x(i))− y(i)) (4.9)

Written in its vector form, the entire gradient can be expressed as follows:

∇θJ(θ) =
∑
i

x(i)(hθ(x(i))− y(i)). (4.10)

This is essentially the same as the gradient for linear regression except that now

hθ(x) = σ(θ>x) (4.11)

.

4.2.6 Least absolute shrinkage and selection operator (LASSO)

Least absolute shrinkage and selection operator (LASSO) [258] is a sparse (`1) reg-

ularized regression method that performs simultaneously variable selection and reg-

ularization. The lasso is a shrinkage method like ridge, with subtle but important

differences. The lasso estimate is defined by

β̂lasso = arg min
β

N∑
i=1

(yi − β0 −
∑

xijβ0)2 (4.12)

subject to

Xpj = |βj| ≤ t (4.13)

It is possible to re-parametrize the constant β0 by standardizing the predictors;

the solution for β̂0 is y, and thereafter the model is fitted without an intercept. In

the signal processing literature, the lasso is also known as basis pursuit [259]. We

can also write the lasso problem in the equivalent Lagrangian form

βlasso = arg min
β

1
2

N∑
i=1

(yi − β0 −
∑
j

xijβj)2 + λ
p∑
j=1
|βj|

 (4.14)

.
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The L2 ridge penalty term ∑p
j=1 β

2
j is replaced by the L1 lasso penalty ∑p

j=1 |βj|.

This modified constraint makes the solutions nonlinear in the yi, and there is no

closed form expression like the one available to solve ridge regression. Computing

the lasso solution is a quadratic programming problem, that efficient algorithms are

available for computing the entire path of solutions as λ is varied. Because of the

nature of the constraint, making t sufficiently small will cause some of the coefficients

to be exactly zero. Thus the lasso does a kind of continuous subset selection. If t is

chosen larger than t0 = ∑p
j=1

∣∣∣β̂j∣∣∣ (where βj = β̂lsj , i.e. the least squares estimates),

then the lasso estimates are the β̂. On the other hand, for t = t0/2 say, then the

least squares coefficients are shrunk by about 50% on average.

4.2.7 Ridge Classifier (RC)

Ridge Classifier (RC) [260,261] treats the classification problem as a straightforward

regression in the [−1, 1] interval with a penalty on the size of the coefficients. The

ridge coefficients minimize a penalized residual sum of squares,

β̂ridge = arg min
β


N∑
i=1

(yi − β0−
p∑
j=1

xijβj)2 + λ
p∑
j=1

β2
j

 (4.15)

Here λ ≥ 0 is a complexity parameter that controls the amount of shrinkage:

the larger the value of λ, the greater the amount of shrinkage. The coefficients are

shrunk toward zero (and each other). The idea of penalizing according to the sum

of squares of the parameters is also used in neural networks, where it is known as

weight decay. An equivalent way to write the ridge problem is

β̂ridge = arg min
β

N∑
i=1

(yi − β0−
p∑
j=1

xijβj)2, (4.16)

subject to

λ ≥
p∑
j=1

β2
j (4.17)

which makes explicit the size constraint on the parameters. When there are many

correlated variables in a linear regression model, their coefficients can become poorly

determined and exhibit high variance. A wildly large positive coefficient on one
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variable can be canceled by a similarly large negative coefficient on its correlated

cousin. By imposing a size constraint on the coefficients, this problem is alleviated.

The ridge solutions are not equivariant under scaling of the inputs, and so one

normally standardizes the inputs before solving equation (4.15). In addition notice

that the intercept β0 has been left out of the penalty term. Penalization of the

intercept would make the procedure depend on the origin chosen for Y ; that is,

adding a constant c to each of the targets yi would not simply result in a shift of the

predictions by the same amount c. It can be shown that the solution to equation

(4.15) can be separated into two parts, after reparametrization using centered inputs:

each xij gets replaced by xij−xj . We estimate β0byȳ = 1
N

∑N
1 yi. The remaining co-

efficients get estimated by a ridge regression without intercept, using the centered

xij . Henceforth we assume that this centering has been done, so that the input

matrix X has p (rather than p+ 1) columns.

Writing the criterion of equation (4.15) in matrix form, we have

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ, (4.18)

and the ridge regression solutions are easily seen to be given by the following ex-

pression:

β̂ridge = (XTX + λI)−1XTy, (4.19)

where I is the p×p identity matrix. Notice that with the choice of quadratic penalty

βTβ, the ridge regression solution is again a linear function of y. The solution adds a

positive constant to the diagonal of XTX before inversion. This makes the problem

nonsingular, even if XTX is not of full rank, and was the main motivation for ridge

regression when it was first introduced in statistics [262]. In the case of orthonormal

inputs, the ridge estimates are just a scaled version of the least squares estimates,

that is, β̂ridge = β̂/(1 + λ).

Ridge regression can also be derived as the mean or mode of a posterior distri-

bution, with a suitably chosen prior distribution. In detail, suppose yi ∼ N(β0 +

xTi β, σ2), and the parameters βj are each distributed as N(0, τ 2), independently of

one another. Then the (negative) log-posterior density of β, with τ 2 and σ2 assumed
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known, is equal to the expression in curly braces in eq. (4.15), with λ = σ2/τ 2. Thus

the ridge estimate is the mode of the posterior distribution; since the distribution is

Gaussian, it is also the posterior mean.

The singular value decomposition (SVD) of the centered input matrix X gives us

some additional insight into the nature of ridge regression. This de- composition is

extremely useful in the analysis of many statistical methods. The SVD of the N ×p

matrix X has the form

X = UDV T . (4.20)

Here U and V are N × p and p × p orthogonal matrices, with the columns of U

spanning the column space of X, and the columns of V spanning the row space. D

is a p × p diagonal matrix, with diagonal entries d1 ≥ d2 ≥ ... ≥ dp ≥ 0 called the

singular values of X. If one or more values dj = 0, then X is singular. Using the

singular value decomposition we can write the least squares fitted vector as

Xβ̂ls = X(XTX)−1XTy = UUTy, (4.21)

after some simplification. Note that UTy are the coordinates of y with respect

to the orthonormal basis U . Q and U are generally different orthogonal bases for

the column space of X. Note that since λ ≥ 0, we have d2
j/(d2

j + λ) ≤ 1. Like

linear regression, ridge regression computes the coordinates of y with respect to the

orthonormal basis U . It then shrinks these coordinates by the factors d2
j/(d2

j + λ).

This means that a greater amount of shrinkage is applied to the coordinates of

basis vectors with smaller d2
j . The SVD of the centered matrix X is another way of

expressing the principal components of the variables in X. The sample covariance

matrix is given by S = XTX/N , and from eq. (4.15) we have

XTX = V D2V T , (4.22)

which is the eigen decomposition of XTX (and of S, up to a factor N). The

eigenvectors vj (columns of V ) are also called the principal components of X. The

first principal component direction v1 has the property that z1 = Xv1 has the largest
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sample variance amongst all normalized linear combinations of the columns of X.

This sample variance is easily seen to be

V ar(z1) = V ar(Xv1) = d2
1
N
, (4.23)

and in fact z1 = Xv1 = u1d1. The derived variable z1 is called the first principal com-

ponent of X, and hence u1 is the normalized first principal component. Subsequent

principal components zj have maximum variance d2
j/N , subject to being orthogonal

to the earlier ones. Conversely the last principal component has minimum variance.

Hence the small singular val- ues dj correspond to directions in the column space

of X having small variance, and ridge regression shrinks these directions the most.

If we consider fitting a linear surface over this domain (the Y -axis is sticking out

of the page), the configuration of the data allow us to determine its gradient more

accurately in the long direction than the short. Ridge regression protects against

the potentially high variance of gradients estimated in the short directions. The

implicit assumption is that the response will tend to vary most in the directions of

high variance of the inputs. This is often a reasonable assumption, since predictors

are often chosen for study because they vary with the response variable, but need

not hold in general.

The following monotone decreasing function of λ is the effective degrees of free-

dom of the ridge regression fit.

df(λ) = tr
[
X(XTX + λI)−1XT

]
= tr(Hλ) =

p∑
j=1

d2j
2j + λ

. (4.24)

Usually in a linear-regression fit with p variables, the degrees-of-freedom of the fit

is p, the number of free parameters. The idea is that although all p coefficients in a

ridge fit will be non-zero, they are fit in a restricted fashion controlled by λ. Note

that df(λ) = p when λ = 0 (no regularization) and df(λ)→ 0 as λ→∞. Of course

there is always an additional one degree of freedom for the intercept, which was

removed apriori.
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4.2.8 Bayesian Ridge Classifier (BRC)

Bayesian Ridge Classifier (BRC) [263] performs the ridge regression in a Bayesian

framework modeling the priors of the coefficients as a spherical Gaussian distribution

whose parameters follow prior Gamma distributions. Model fit and hyper-parameter

estimation is carried out concurrently allowing for better adaptability to the data

at hand. Bayesian regression allows a natural mechanism to survive insufficient

data or poorly distributed data by formulating linear regression using probability

distributors rather than point estimates. The output or response y is assumed

to drawn from a probability distribution rather than estimated as a single value.

Mathematically, to obtain a fully probabilistic model the response y is assumed to

be Gaussian distributed around Xw as follows:

p(y |X,w, α) = N(y |Xw, α) (4.25)

.

One of the most useful type of Bayesian regression is Bayesian Ridge regression

which estimates a probabilistic model of the regression problem. Here the prior for

the coefficient w is given by spherical Gaussian as follows:

p (w |λ) = N
(
w
∣∣∣0, λ−1Ip

)
. (4.26)

4.2.9 Multi-layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) [264] implements the classical artificial neural net-

work architecture with sigmoid activation functions in the hidden and output layers

trained by backpropagation of the error at the output layer. We apply both the

adam and the L-BFGS solvers. We explore MLP architectures with 5 and 10 hidden

layers in order to assess the impact of different hierarchical representational depths.

Historically, MLP were motivated by the functionality of the human brain. In-

deed, the first neural network was devised by McCulloch and Pitts [265] in an

attempt to model a biological neuron. A McCulloch and Pitts neuron is a function
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of the form

x /∈ Rd 7→ 1R+

d∑
i=1

wixi − θ, (4.27)

where d ∈ N , 1R+ : R −→ R, with 1R + (x) = 0 for x < 0 and 1R+(x) = 1 elsewhere,

and wi, θ ∈ R for i = 1, ...d. The function 1R+ is a so called activation function θ, is

called a threshold, and wi are weights. The McCulloch and Pitts neuron, receives

d input signals. If their combined weighted strength exceeds the threshold then the

neuron fires. Otherwise the neuron remains inactive. A network of neurons can be

constructed by linking multiple neurons together in the sense that the output of

one neuron forms an input to another. A simple model for such a network is the

multilayer perceptron as introduced by Rosenblatt [266].

A multilayer perceptron (MLP) with d-dimensional input, L layers, and activa-

tion function

isafunction

Fthatcanbewrittenasx 7→ F (x) := TL(%(4.28)) where T`(x) = A`x+b`, and (A`)L`=1 ∈

RN`, for N` ∈ N, N0 = d and ` = 1, ..., L. Here% : R→ R is applied coordinate-wise.

The neurons in the MLP correspond again, to the applications of

eventhough, incontrasttotheMcCullochandPittsneuron, theMLPallowsarbitrary

%. We should notice that the MLP does not allow arbitrary connections between

neurons, but only between those, that are in adjacent layers, and only from lower

layers to higher layers. While the MLP or variations thereof, are probably the most

widely used type of neural network in practice, they are very different from their

biological motivation. Connections only between layers and arbitrary activation

functions make for an efficient numerical scheme but are not a good representation

of the biological reality.

4.3 Feature extraction/selection

We have considered several dimensional reduction procedures which are either fea-

ture extraction or feature selection techniques. Feature extraction usually involve
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some transformation of the feature space where the meaning of the original vari-

ables is lost unless there is some backprojection transformation. Feature selection

preserves some of the original variables discarding others. As feature extraction

techniques we have applied the following ones available in the scikit-learn Python

package:

4.3.1 Probabilistic Principal Component Analysis (PCA)

Probabilistic Principal Component Analysis (PCA) [267] is a probabilistic approach

to the estimation of the eigendecomposition of the feature vectors covariance ma-

trix instead of the conventional singular value decomposition (SVD) approach. A

maximum likelihood approach is followed for this estimation under the assumption

of a Gaussian multivariate model.

Principal component analysis (PCA) [268] is a well-established technique for di-

mensionality reduction, and a chapter on the subject may be found in numerous texts

on multivariate analysis. Examples of its many applications include data compres-

sion, image processing, visualisation, exploratory data analysis, pattern recognition

and time series prediction.

The most common derivation of PCA is in terms of a standardised linear pro-

jection which maximises the variance in the projected space [269, 270]. For a set

of observed d-dimensional data vectors {tn}, n ∈ {1...N} the q principal axes wj,

j ∈ {1...N}, are those orthonormal axes onto which the retained variance under pro-

jection is maximal. It can be shown that the vectors wj are given by the q dominant

eigenvectors of the sample covariance matrix S = ∑
n(tn − t)(tn − t)T/N , where t is

the data sample mean, such that Swj = λwj. The q principal components of the ob-

served vector tn are given by the vector xn = W T (tn−t), whereW = (w1, w2, ..., wq).

The variables xj are then uncorrellated such that the covariance matrix ∑xnx
T
n/N

is diagonal with elements λj.

A complementary property of PCA, and that most closely related to the orig-

inal discussions of [271] is that, of all orthogonal linear projections x0 = W T (t0 −

t), the principal component projection minimises the squared reconstruction error∑
n

∥∥∥tn − t̂n∥∥∥2
, where the optimal linear reconstruction of tn is given by tn = Wxn+t
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.

4.3.2 Isometric Mapping (Isomap)

Isometric Mapping (Isomap) [272] looks for a low dimension embedding of the feature

space which preserves the geodesic distances among the data samples. It involves

the search for the nearest neighbors, the shortest-path search between samples, and

the computation of the partial eigendecomposition.

Assume a cloud of high dimensional data points{x1, x2, ..., xN} , xi ∈ RM that

lie on a smooth K-dimensional manifold. In most cases of practical interest K is

much smaller than the data dimension M(K � M). Isomap builds upon MDS

but attempts to compute the low-dimensional representation by estimating pairwise

geodesic distances. For sufficiently close pairs, referred to as neighboring points, the

euclidean distance provides a good approximation of geodesic distance [273], [274].

For faraway points, one needs to walk through these neighboring pairs in the shortest

way possible to evaluate the geodesic distance. That can be achieve defficiently

by applying a shortest path algorithm on a graph comprising edges that connect

neighboring points. Here we introduce notations for these concepts. The graph

is denoted as G = (V,E) in which V = {x1, x2, ..., xN} denotes the set of nodes,

and E is the set of edges connecting neighboring samples. There are two ways of

determining the neighbors of a point are K-nearest neighbors [275], or all points

within a fixed range ε. For neighboring nodes xi and xj, the weight is taken to be

wi,j = ||xi − xj||2. If we take xixj to be the shortest route between xi and xj, we

could compute geodesic distances as dG(xi, xj) = w(xi  xj) in which w(.) denotes

weight of the path. Finally, we seek a set of low-dimensional point denoted by

{y1, y2, ..., yN} in RK t hat preserves pair wise geodesic distances [276].

4.3.3 Local Linear Embedding (LLE)

Local Linear Embedding (LLE) is manifold learning approach that can be assimi-

lated to a sequence of PCA transformations, which try to benefit from and enhance

the local linear structure of the data [277].
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The high-dimensional coordinates of each patch can be mapped into correspond-

ing local co-ordinates by means of an essentially linear tmation. LLE attempts to

find a global transformation of the high-dimensional coordinates into low dimen-

sional ones by exploiting adjacencyinformation about closely located data points,

this information being aform of summarisation of the local transformations between

the high and low dimensional co-ordinates. Suppose that the data set comprises

vectors {x1, ..., xN} ∈ RD. In the first step, for each 1 ≤ i ≤ N , nearest neighbours

of xi are identified by using a preselected criterion for close proximity and further

indexed by a set N(i) ⊂ 1, ..., N . In the second step, weights wijj ∈ N(i) are found

that optimally reconstruct xi from ts nearest neighbours. These weights minimise

the local reconstruction error

E
(i)
loc({wij}j∈N(i)) =

∥∥∥∥∥∥xi−
∑

j∈N(i)
wijxj

∥∥∥∥∥∥ ,2 (4.29)

where ‖·‖ is the Euclidean norm, subject to the condition ∑
j∈N(i)

wij = 1.

A key property of the optimal weights is that they are invariant to three types

of transformation:

1. Scaling. Multiplying all co-ordinates by a scalar factor scales the errors E(i)
loc

uniformly and hence yields the same weights

2. Orthogonal transformation. Distances are invariant to rotation and mirror-

reflection and so too is each E(i)
loc

3. Translation. The weights are constrained to sum to one, so an offset to all

co-ordinates does not affect the value of any E(i)
loc

Suppose that the data points are sampled densely from the underlying low-dimensional

manifold. Then, for each point xi, there exists a linear map composed of a trans-

lation, rotation and scaling, that maps the high-dimensional coordinates of a close

neighbourhood of xi to corresponding local coordinates on the manifold. Since

the weights computed in the high dimensional space are invariant to the three con-

stituent mappings, it is natural to take these weights as a basis for there construction
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of the local co-ordinates. In fact, all local neighbourhoods can be reconstructed si-

multaneously if a specific optimisation problem is solved. The cost function for this

problem measures how well low dimensional coordinates of any given point yi ∈ Rd

are reconstructed from the neighbouring points yjj∈N(i) using the weights computed

in the previous step; here d is a dimension index fixed beforehand, usually at a

value much smaller than D. More specifically, in the third step, LLE minimises the

reconstruction error. This optimisation is similar to that in the first step, except

that now the weights are fixed and the low dimensional coordinates are sought. To

obtain an essentially unique solution, the yi are constrained to have zero mean and

an identity covariance matrix [278].

4.3.4 Multi-Dimensional Scaling (MDS)

Multi-Dimensional Scaling (MDS) [279] looks for a dimensional reduction of the

feature space such that the relative ordering of the distances between samples in the

original space are preserved in the reduced dimension space.

Proximity data, the input to MDS, consist of dissimilarity information for pairs

of objects. This contrasts with multivariate data that consist of attribute informa-

tion forindividualobjects. If the objects are labeled i = 1, ..., N , we will assume

that proximity data are given by dissimilarity values Di,j. (If the data are given

as similarities, a monotone decreasingtransformation will convert them to dissim-

ilarities.) The goal of MDS is to map the objects i = 1, ..., N to “configuration”

or “embedding” points {x1, ..., xN} ∈ Rkin such a way that the given dissimilari-

ties Di,j are well approximated by the distances ‖xi − xj‖. The choice ofembedding

dimension k is arbitrary in principle, but low in practice: k = 1, 2, 3 are the most

frequently used dimensions, for the simple reason that the points serve as easily

visualized representors of the objects. In realdata, there are typically many more

objects, and the dissimilarities usually contain error as well as bias with regard to

the fitted distances.

The oldest version of MDS, called classical scaling, is due to Torgerson (1952).

It is, however, a later version due to [280, 281] that has become the leading MDS

method. Kruskal defined MDS in terms of minimization of a loss function called
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“Stress”, which issimply a measure of lack of fit between dissimilarities Di,j and

fitted distances ‖xi − xj‖. In the simplest case, Stress is a residual sum of squares

StressD(x1, ..., xN) = (
∑

i 6=j=1..N
(Di,j − ‖xi − xj‖)2)1/2, (4.30)

where the outer square root is just a convenience that gives greater spread to small

values. For a given dissimilarity matrix D = (Di,j), MDS minimizes Stress over

all configurations (x1, ..., xN)T , thought of as N ×k-dimensional hypervectors of un-

known parameters. The minimization can be carried out by straightforward gradient

descent applied to StressD, viewed as a function on RNk.

We note that MDS is blind to asymmetries in the dissimilarity data because

(Di,j−‖xi − xj‖)2+(Dj,i−‖xj − xi‖)2 = 2·((Di,j+Dj,i)/2−‖xi − xj‖)2+C, (4.31)

where C is an expression that does not depend on ‖xi − xj‖. We therefore assume

from now on that the dissimilarities are symmetrized. The assumption of symmetry

will later be brokening one special case, when one of the two values is permitted to

be missing.

There exist several types of MDS, and they differ mostly in the loss function

they use. Here are two dichotomies that allow us to structure some possibilities:

• Kruskal-Shepard distance scaling versus classical Torgerson-Gower inner-product

scaling: In distance scaling dissimilarities are fitted by distances ‖xi − xj‖,

where as classical scaling transforms the dissimilarities Dij to aform that is

naturally fitted by inner products 〈xi, xj〉. The transformation of dissimilarity

data Dij to “inner-product data Bij satisfies D2
ij = Bii − 2Bij +Bjj, there by

mimicking the corresponding identities for ‖xi − xj‖ and 〈xi, xj〉

• Metric scaling versus non metric scaling: Metric scaling uses the actual val-

ues of the dissimilarities, while non metric scaling effectively uses only their

ranks [280, 282]. Nonmetric MDS is realized by estimating an optimal mono-

tone transformation f(Di,j) of the dissimilarities simultaneously with the con-

figuration
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A difference between classical and distance scaling is that inner products rely on

an origin in the coordinate system, while distances do not; a set of inner products

determines uniquely a set of distances, but a set of distances determines a set of

inner products only modulo change of origin. To avoid arbitrariness, one constrains

classical scaling to mean-centered configurations. Another difference between clas-

sical and distance scaling is that distance scaling requires iterative minimization

while classical scaling can be solved with inexpensive eigendecompositions. Just

the same, we implemented classical scaling with iterative gradient descent on a loss

function called “Strain”, which parallels gradient descent on Stress in distance scal-

ing. This computational uniformity has advantages because it is straightforward to

introduceweights and missing values in Strain and Stress, which is not possible in

eigen decompositions [283].

4.3.5 Factor Analyisis (FA)

Factor Analysis (FA) [284, 285] tries to explain the observed variables as a linear

model of unseen latent variables. The conventional approach assumes a Gaussian

prior for the distribution of the latent variables. Changing the prior distribution

gives way to diverse algorithms

Factor analysis is a statistical method used to describe variability among ob-

served, correlated variables in terms of apotentially lower number of unobserved

variables called factors. The observed variables are modeled as linear combinations

of the potential factors, plus "error" terms. The information gained about the in-

terdependencies between observed variables can be used later to reduce the set of

variables in a dataset. Computationally this technique is equivalent to low rank

approximation of the matrix of observed variables. Factor analysis originated in

psychometrics, and is used in behavioral sciences, social sciences, marketing, prod-

uct management, operations research, and other applied sciences that deal with

large quantities of data.

Suppose we have a set of observable random variables {x1, ..., xn} , with means

{µ1, ..., µn}. Suppose for some unknown constants lij and k−unobserved random
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variables Fj, where i ∈, ..., p and j ∈, ..., k, where k < p , that we have

xi − µi = li1F1 + ...+ likF
k + εi. (4.32)

Here, the εi are independently distributed error terms with zero mean and finite

variance, which may not be the same for all i. Let V ar(εi) = ψi, so that we

have cov(ε) = Diag(ψ1, ..., ψp) = ψ and E(ε) = 0. In matrix expresion, we have

x− µ = LF + ε

If we have observations, then we will have the dimensions xpxn, Lpxk, and Fkxn.

Each column of x and F denote values for one particular observation, and matrix

L does not vary across observations. Also we will impose the following assumptions

on F .

1. F and ε are independent

2. E(F ) = 0

3. Cov(F ) = I (to make sure that the factors are uncorrelated)

4. Any solution of the above set of equations following the constraints F for is

defined as the factors, and L as the loading matrix.

Suppose Cov(x − µ) = ∑. Then note that from the conditions just imposed on,

either we have

Cov(x− µ) = Cov(LF + ε)

or ∑
= LCov(F )LT + Cov(ε)

or ∑
= LLT + ψ

Note that for any orthogonal matrix Q if we set L = LQ and F = QTF , the

criteria for being factors and factor loadings still hold. Hence a set of factors and

factor loadings is identical only up to orthogonal transformations.
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4.4 Classification performance evaluation

In the computational experiments reported in Chapter 6, we carry out one hun-

dred repetitions of the 10-fold cross-validation for each combination of experimen-

tal factors. Feature extraction/selection parameters are always computed only on

the training dataset and applied in the test dataset to avoid double dipping is-

sues [224,225]. Most of the papers in the literature report the accuracy (Acc) of the

classification results averaged after the repetition of 10-fold cross-validation experi-

ments. Accuracy is computed as

Acc = (TP + TN)/N

where N is the number of test samples, and TP and TN are the number of cor-

rect positive and negative predictions on the test set, respectively. Some papers on

ASC prediction based on brain connectivity [176] report the area under the receiver

operating curve (ROC) (AUC) [286] as a more general and robust measure of the

classifier performance. The accuracy is determined by the actual decision thresh-

old applied to classify the test samples, while the ROC plots the balance of false

positives (FP ) versus TP across the entire range of decision threshold values. Foll-

lowing the lead of [176] we report in Chapter 6 the median, 5% and 95% percentile

values of the cross-validation repetitions results instead of the average value as a

better description of their distribution. We plot the densities of the median AUC

results across the repetitions of cross-validation experiments in order to visualize

their distribution for different pipeline choices. The plots use the density() func-

tion in R that generates smooth curves that are not always bounded in the interval

[0, 1]. To provide a quantitative ranking of the choices, we carry out one sided non-

parametric Wilcoxon’s rank sum tests among all pairwise combinations of choices

for each pipeline module. For each test we consider the results of all cross-validation

repetitions with all possible choice combinations for the remaining pipeline modules.

We present the p-values of these tests in tables organized as follows: for each table

entry the null hypothesis is that the median AUC of the row choice is greater than

that of the column choice. We specify (row>column) at each table caption as a
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reminder to the reader.
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Chapter 5

Deep Learning Background

This Chapter provides some background information about Deep Learning (DL)

architecture and approaches applied to our problem of computer aided diagnostic of

ASC. Section 5.1 gives some introductory remarks. Section 5.6 discusses the ideas

of transfer learning. Section 5.6 presents the architectures used for transfer learning

5.1 Introduction

Allowing computers to model our world well enough to exhibit what we call intelli-

gence has been the focus of more than half a century of research [287], [288]. Since

2006, deep structured learning, or more commonly called DL or hierarchical learn-

ing, has emerged as a new area of machine learning research [289], [288]. DL is a

branch of machine learning which is based on artificial neural networks. It is referred

as DL in contrast with shallow ANNs. The deep ANNs (DNNs) have more layers

than ever before that enable learning hierarchical structures in different granularity

and a greater amount of composition of learned functions or learned concepts than

conventional machine learning algorithms [290], [291]. It is a type of representation

learning that discovers a hierarchy of structures in the data. Trained with large

amount of data, DL shows outstanding performance with enormous model capacity,

and performs well on diverse structured and unstructured, and even interconnected

data sets [292].

One of the objectives of neuroimaging research is to find biomarkers that may
75
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assist the diagnosis of brain disorders and/or help treat these disorders [292]. Using

DL algorithms to investigate neurological malfunctions has the advantage of allevi-

ating feature engineering, and an ever-increasing number of neuroimaging studies

are turning to DL enabled methods in order to demystify these neurological disor-

ders [293], [294], [295], [199], [296], [297], [298]. DL methods are penetrating clinical

practice and reshaping medical imaging research community, and research articles

involving DL are accumulating at a fast pace. In this Thesis, we do not attempt

an exhaustive review on DL, but mainly focus on fMRI images based brain disorder

diagnosis and show the landscape of the active research initiatives. There are many

different approaches to analyze fMRI images from different perspectives. Features

can be extracted from fMRI images to perform disorder classifications. Different

feature extraction methods and data analysis tools can result in different DL mod-

els [292].

5.2 Traditional Machine learning, Transfer learn-

ing and Fine tunning

Traditional machine learning techniques are based on the model of isolated, single

task learning wherein knowledge from a past task is not leveraged for other tasks;

however, many machine learning methods work well only under a common assump-

tion: the training and test data are drawn from the same feature space and the

same distribution [299]. No knowledge is retained which can be transferred from

one paradigm to another [300]. When the distribution changes, most statistical

models need to be rebuilt from scratch using newly collected training data. In many

real world applications, it is expensive or impossible to re-collect the needed training

data and rebuild the models [299].

Transfer learning or Domain Adaptation, related to the difference in the distri-

bution of the train and test set. The need for transfer learning may arise when

the data can be frequently outdated. In this case, the labeled data obtained inone

time period may not follow the same distribution in a later time period [299]. This

can be understood the same as a projecting all new inputs through a pre-trained
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Figure 5.1: Different learning processes (a) traditional machine learning, and (b)
transfer learning.

model. Like if we have a pre-trained model function f() and wish to learn a new

function g(), we can simplify g() by g(f(x)). This way g() sees all the data through

f(). Figure 5.1 shows the difference between the learning processes of traditional

and transfer learning techniques. As we can see, traditional machine learning tech-

niques try to learn each task from scratch, while transfer learning techniques try to

transfer the knowledge from some previous tasks to a target task when the latter

has fewer high-quality training data. Transfer learning can be further segregated

into transductive and inductive [299]. It is further divided into domain adaption,

cross-lingual learning, multi-task learning and sequential transfer learning. Figure

5.2 ilustrates this taxonomy.

Fine-tuning means making small adjustments to a process to achieve the desired

output or performance. Fine-tuning DL involves using weights of a previous DL

algorithm for programming another similar DL process. Weights are used to connect

each neuron in one layer to every neuron in the next layer in the neural network. The

fine-tuning process significantly decreases the time required for programming and

processing a new DL algorithm as it already contains vital information from a pre-

existing DL algorithm. Fine tuning consists of the following four steps (ilustrated

in figure 5.1.):

1. Pre-train a neural network model;
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Figure 5.2: Types of transfer learning [6]
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Algorithm 5.1 Fine tuning process in transfer learning.

2. Create a new neural network model (We assume that these model parameters

contain the knowledge learned from the source dataset and this knowledge will

be equally applicable to the target dataset);

3. Add an output layer whose output size is the number of target dataset cate-

gories to the target model, and randomly initialize the model parameters of

this layer and the last

4. Train the target model on a target dataset, such as a chair dataset.

5.3 Architectures used

5.3.1 VGG16 and VGG19

In 2014 the Visual Geometry Group from Oxford University as second in the ILSVRC

challenge for classification using a very deep but simple convolutional neural net-

work architecture that has come to be known as VGG [301]. VGG is used as a

pre-processing model. Compared with traditional convolutional neural networks, it

has been improved in network depth. It uses an alternating structure of multiple

convolutional layers and non-linear activation layers, which is better than a single

convolution The layer structure can better extract image features, use Maxpooling

for downsampling, and modify the linear unit (ReLU) as the activation function,
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Figure 5.3: An overview of the VGG-16 model architecture, this model uses
simple convolutional blocks to transform the input image to a 1000class vector
representing the classes of the ILSVRC.

that is, select the largest value in the image area as the pooled value of the area.

The down sampling layer is mainly used to improve the anti-distortion ability of

the network to the image, while retaining the main features of the sample and re-

ducing the number of parameters [7]. This model has become very popular inthe

research community due to its simple approach and becausethe pre-trained weights

were made freely available online, facilitating thefine-tuning of this powerful model

on new tasks [302]. Several of the papers reviewed make use of this model, and so

its network architecture is provided in Figure 5.3.

The structure of the VGG network shown in Figure 5.3 is explained [302] as

follows:

• The first and second convolutional layers are comprised of 64 feature kernel

filters and size of the filter is 3×3. As input image (RGB image with depth

3) passed into first and second convolutional layer, dimensions changes to

224x224x64. Then the resulting output is passed to max pooling layer with a

stride of 2.

• The third and fourth convolutional layers are of 124 feature kernel filters and

size of filter is 3×3. These two layers are followed by a max pooling layer with
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stride 2 and the resulting output will be reduced to 56x56x128.

• The fifth, sixth and seventh layers are convolutional layers with kernel size

3×3. All three use 256 feature maps. These layers are followed by a max

pooling layer with stride 2.

• Eighth to thirteen are two sets of convolutional layers with kernel size 3×3.

All these sets of convolutional layers have 512 kernel filters. These layers are

followed by max pooling layer with stride of 1.

• Fourteen and fifteen layers are fully connected hidden layers of 4096 units

followed by a softmax output layer (Sixteenth layer) of 1000 units.

In another work [7] found training VGG16 and VGG19 challenging (specifically

regarding convergence on the deeper networks), so in order to make training easier,

they first trained smaller versions of VGG with less weight layers (columns A and

C) first. They experiment with 6 models, with different numbers of trainable layers.

Based on the number of models the two most popular models are VGG16 and

VGG19. The specifics of the architectures are in Figure 5.2.

5.3.2 Resnet

In 2012, [303] rolled out the red carpet for the Deep Convolutional Neural Network.

This was the first time this architecture was more successful that traditional, hand-

crafted feature learning on the ImageNet. Their DCNN, named AlexNet, contained

8 neural network layers, 5 convolutional and 3 fully-connected. This laid the foun-

dational for the traditional CNN, a convolutional layer followed by an activation

function followed by a max pooling operation [304]. Deep networks naturally inte-

grate low/mid/high-level features [305] and classifiers in an end-to-end multi-layer

fashion, and the “levels” of features can be enrichedby the number of stacked layers

(depth). When deeper networks are able to start converging, a degradation prob-

lem has been exposed: with the network depth increasing, accuracy gets saturated

(which might beunsurprising) and then degrades rapidly [306]. Unexpectedly, such

degradation is not caused by overfitting, and adding more layers to a suitably deep
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Figure 5.4: Different ConvNet Architectures [7].
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Figure 5.5: Residual learning a building block

model leads to higher training error [307], [308]. This problem of training very deep

networks has been alleviated with the introduction of ResNet or residual networks

and these Resnets are made up from Residual Blocks, such as the one illustrated in

Figure 5.6.

The very first thing we notice to be different is that there is a direct connection

which skips some layers (may vary in different models) in between. This “skip

connection” is the core of residual blocks. Due to this skip connection, the output of

the layer is not the same now. Without using this skip connection, the input x gets

multiplied by the weights of the layer followed by adding a bias term. Next, this

term goes through the activation function, z() and we get our output as H(x). i.e.

H(x)=f(wx + b) or H(x) = z(x). Now with the introduction of skip connection,

the output is changed to H(x) = z(x) + x

There appears to be a slight problem with this approach when the dimensions

of the input vary from that of the output which can happen with convolutional and

pooling layers. In this case, when dimensions of z(x) are different from x, we can

take the following approach: The skip connection is padded with extra zero entries

to increase its dimensions. The projection method is used to match the dimension

which is done by adding 1×1 convolutional layers to input. In such a case, the

output is: H(x) = z(x) + w1x. Here we add an additional parameter w1 whereas

no additional parameter is added when using the first approach.

ResNet network uses a 34-layer plain network architecture inspired by VGG-19
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in which then the shortcut connection is added. The skip connections in ResNet

solve the problem of vanishing gradient in deep neural networks by allowing this

alternate shortcut path for the gradient to flow through. The other way that these

connections help is by allowing the model to learn the identity functions which

ensures that the higher layer will perform at least as good as the lower layer, and

not worse [304]. These shortcut connections then convert the architecture into the

residual network as shown in the figure 5.6.
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Figure 5.6: Architecture RESNET
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Chapter 6

Results of Machine Learning

Approaches

In this Chapter we provide experimental results of a large combination of choices

in the design of the computational pipeline introduced in Figure 1.1. Section 6.1

describes the experimental dataset extracted from the ABIDE repository. Section

6.2 provides some general remarks on the experimental results. Section 6.3 examines

the effect of the brain parcelation. Section 6.3 discusses the effect of the connectivity

matrix definition. Section 6.5 presents the effect of the classification model chosen.

Section 6.6 shows the effect of the choice of the feature selection method. Section

6.7 summarizes the best results of the experimental work. Finally, the best results

are compared with the state of the art of Table 3.2.

6.1 The experimental dataset

In this section we will first introduce the dataset used, then we comment on the brain

parcellations and functional connectivity measures considered. The next subsections

describes the classifier building methods employed, and the feature extraction and

feature selection methods examined. Finally, we comment on the performance mea-

sures selected to report results.

The dataset analyzed in the study is extracted from the Autism Brain Imaging

Data Exchange (ABIDE) [22,23] that provides rsfMRI acquisitions of 1112 subjects
87
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Table 6.1: Demographics distribution per site of the ABIDE I dataset. Test =
the subject underwent DSM IV TR test. A = Autism, C = Control

Male Female test Male Female
Site N A C A C A C Y N A C A C

CALTECH 38 19 19 15 15 4 4 37 1 15 14 4 4
CMU 27 14 13 11 10 3 3 5 22 3 1 1
KKI 55 22 33 18 24 4 9 39 16 9 20 3 7

LEUVEN1 29 14 15 14 15 29 14 15
LEUVEN2 35 15 20 12 15 3 5 32 3 11 14 2 5
MAX_MUN 57 24 33 21 29 3 4 42 15 15 23 3 1

NYU 184 79 105 68 79 11 26 171 13 64 72 9 26
OHSU 28 13 15 13 15 23 5 12 11
OLIN 36 20 16 17 14 3 2 25 11 11 9 3 2
PITT 57 30 27 26 23 4 4 45 12 18 20 4 3
SBL 30 15 15 15 15 26 4 14 12
SDSU 36 14 22 13 16 1 6 33 3 12 15 6

STANFORD 40 20 20 16 16 4 4 36 4 13 15 4 4
TRINITY 49 24 25 24 25 44 5 21 23
UCLA_1 82 49 33 42 29 7 4 55 27 26 23 2 4
UCLA_2 27 13 14 13 12 2 20 7 8 10 2
UM_1 110 55 55 46 38 9 17 82 28 28 31 8 15
UM_2 35 13 22 12 21 1 1 31 4 11 18 1 1
USM 101 58 43 58 43 61 40 38 23
YALE 56 28 28 20 20 8 8 48 8 15 19 7 7

1112 539 573 474 474 65 99 884 228 358 388 50 88
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either diagnosed with ASC or TD. This dataset collects data from 10 sites as detailed

in Table 6.1. We have excluded cases with diagnosis as Asperger or PDD-NOS

according to the fourth Diagnostic and Statistical Manual of Mental Disorders (DSM

IV TR). We have selected and processed the 884 subjects (ASC n=408,TD n=476)

that underwent the DSM IV TR test for the computational experiments in this

Thesis.

In order to have a fair comparison with the published literature, we have resorted

to the pre-processed acquisitions which are available as part of the Pre-processed

Connectome Project (http://preprocessed-connectomes-project.org/abide/)

[309]. The raw rs-fMRI data has been processed using the Configurable Pipeline for

the Analysis of Connectomes (C-PAC) (http://fcp-indi.github.io/) in order to

obtain the corrected and spatially normalized rs-fMRI volumes. C-PAC applies skull

striping, slice timing correction, motion correction, global mean intensity normal-

ization, nuisance signal regression, band-pass filtering (0.01–0.1 Hz) and registration

of fMRI images to standard anatomical MNI space.

6.2 General remarks on the results

Before proceeding with the detailed discussion of the effect of each pipeline module,

we note an effect that is common to all of them: All the presented distribution

density approximations of the median AUC have a big peak around the value 0.5,

which is equivalent to random choice. This is a clear indication of the difficulty

of the problem. Most pipeline combinations are poor performers and results are

quite unstable in general, with big variations between crossvalidation repetitions.

We think that this is the most salient empirical demonstration of the data hetero-

geneity and the need for careful design of large scale data collection efforts. Data

heterogeneity is due to site differences on data capture devices and procedures, as

well as implementation of diagnostic criteria. Another source of heterogeneity is the

openess of the diagnostic criteria leading to the inclussion of subjects with widely

diverse cognitive signatures. Clustering analysis [310] of data from a mentalizing

task has revealed the existence of at least six well differentiated subgroups in a large

http://preprocessed-connectomes-project.org/abide/
http://fcp-indi.github.io/
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Table 6.2: One sided (row>column) Wilcoxon’s rank sum test p-values between
median AUC results achieved from the different parcellations used to extract
representative time series for the connectivity matrices.

AAL CC200 D160 EZ HO TT max AUC
AAL 2.06e-15 2.404e-68 1.632e-30 2.127e-31 1.340e-36 0.753
CC200 1 6.098e-30 4.169e-06 1.164e-05 2.089e-10 0.767
D160 1 1 1 1 1 0.669
EZ 1 1 4.032e-14 4.721e-01 2.372e-02 0.748
HO 1 1 8.746e-15 5.278e-01 2.602e-02 0.739
TT 1 1 1.032e-08 9.762e-01 9.739e-01 0.734

sample of ASC and controls. Finally, sex is a demonstrated source of heterogenity.

Sex has bee proven to have a significant effect on the neurobiology of autism [11].

Figure 6.1 summarizes the impact of feature selection/extraction methods versus

the classifiers. It can be easily appreciated that the effect of feature extraction is

greater than that of the classifier of choice, specifically the factor analysis, PCA

and correlation based selection are quite comparable feature computation methods.

Figure 6.2 summarizes the impact of feature computation versus the brain parce-

lation applied to extract brain regions. Results show the greater effect of feature

computation methods, with the same qualitative results as above. Figure 6.3 sum-

marizes the impact of classifiers versus the chosen connectivity measure, the results

for the tangent and correlation measures show the greatest variances. Other than

that theclassifiers do not have a clear ranking, except for the lower performance of

k-NN and random forest.

6.3 Effect of the brain parcellation

Figure 6.4 shows the density plots corresponding to the aggregation of the median

AUC results per brain parcellation used. As expected, these distributions are not

Gaussian shaped, some of them are markedly multimodal. In the case of AAL, the

distribution is pretty close to an uniform distribution. Most parcellation distribu-

tions have a big peak at the 0.5 value of the median AUC with a low tail of values

above 0.7. We use one sided Wilcoxon’s rank sum test to assess quantitatively the

improvement of results achieved with each parcellation. Table 6.2 shows the p-values
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Figure 6.1: Impact of feature selection versus classifiers.
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Figure 6.2: Impact of features versus the atlas parcelation of the brain
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Figure 6.3: Impact of classifiers versus the connectivity measure
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Figure 6.4: Density plots of the median AUC results achieved from the different
brain parcellations tested in the experiments.

Table 6.3: One sided (row>column) Wilcoxon’s rank sum test p-values be-
tween median AUC results achieved from the different measures used to build
the connectivity matrices: cv=covariance, pc=partial correlation, p= precision,
t=tangent, c=correlation, max=maximum median AUC achieved.

cv pc p t c Max AUC
cv - 0.011 2.2e-16 1 1 0.67704
pc 0.988 - 8.69e-10 1 1 0.70
p 1 1 - 1 1 0.67
t 2.2e-16 2.2e-16 2.2e-16 - 0.059 0.76
c 2.2e-16 2.2e-16 2.2e-16 0.9408 - 0.74

of paired comparisons among the parcellations. It is quite apparent that the AAL

parcellation improves over all others, followed by the CC200 parcellation. However,

the maximum median AUC is greater for CC200 parcellation (0.767). The worse

results are obtained from the Dosenbach parcellation, which has the greatest con-

centration of results around AUC=0.5. These findings are quite interesting since the

AAL parcellation has a direct anatomical interpretation, allowing results of feature

selection to be reported as anatomical biomarkers naturally.
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Figure 6.5: Density plots of the median AUC results achieved from the different
measures used to build the connectivity matrices.

6.4 Effect of the connectivity matrix estimation

Figure 6.5 shows the distribution plots of the cross-validation repetitions median

AUC aggregated by the kind of approach applied to compute the connectivity matrix

per individual. It can be appreciated that these distributions are bimodal, with a

high peak in 0.5. The tangent measure has the greatest second peak, around 0.7,

consequently having the greatest maximum value of the median AUC. We use the

one sided Wilcoxon’s rank sum test for a quantitative comparison shown in Table 6.3.

The PCC based connectivity and the tangent space connectivity allow to achieve

much better results than the others, as reflected in the p-values reported in Table

6.3. Tangent space connectivity has a slightly significative improvement (p=0.059)

over the correlation based connectivity, which is reflected in the best median AUC

achieved (0.76).

6.5 Effect of the classifier building method

We have selected several classifiers to carry out the cross-validation experiments,

some exploratory analysis (not reported here) of their performance results was car-

ried out in order to select model building representatives for the comparison here.

Figure 6.6 presents the plots of the densities of the selected classifiers, where two
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Figure 6.6: Density plots of the median AUC results achieved from the different
classifiers tested in the experiments. Neural10a =10 hidden layers MLP trained
with adam procedure, SVC L2= non sparse SVC, b_ridge=bayesian ridge regres-
sion, GNB=gaussian naive Bayes, RF=random forest.

Table 6.4: One sided (row>column) Wilcoxon’s rank sum test p-values between
median AUC results achieved by the diverse kind of classifiers experimented
with. Neural10a =10 hidden layers MLP trained with adam procedure, SVC
`2= non sparse SVC, b_ridge=bayesian ridge regression, GNB=gaussian naive
Bayes, RF=random forest.

neural10a SVC `2 b_ridge kNN RF GNB max AUC
neural10a 0.963 0.817 2.547e-47 1.481e-06 2.143e-30 0.75
SVC `2 0.036 0.192 5.789e-62 0.841e-11 1.264e-43 0.761
b_ridge 0.182 0.807 1.438e-61 1.407e-09 1.594e-42 0.761
kNN 1 1 1 1 1 0.61
RF 1 1 1 7.701e-20 2.036e-08 0.756
GNB 1 1 1 6.782e-07 1 0.66
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Figure 6.7: Density plots of the median AUC results achieved from the different
feature extraction approaches. PCA2 = PCA retaining only half of the features,
MDS2000, fa2000= MDS, FA retaining 2000 features, LNE3=LNE retaining one
third of the features, p90= PCC selection 90% percentile.

Table 6.5: One sided (row>column) Wilcoxon’s rank sum test p-values between
median AUC results achieved from the different best versions of the feature ex-
traction algorithms. PCA2 = PCA retaining only half of the features, MDS2000,
fa2000= MDS, FA retaining 2000 features, LNE3=LNE retaining one third of
the transformed features.

PCA2 MDS2000 LNE3 p90 fa2000 Max AUC
PCA2 1.248e-116 8.525e-55 0.0029 0.078 0.75

MDS2000 1 1 1 1 0.55
LNE3 1 4.878e-66 1 1 0.62
fa200 0.921 1.577e-122 6.900e-59 0.0833 0.76

groups of classifiers can be easily identified visually, one group of less performing

classifiers whose mass of results is centered around median AUC=0.5, and the other

that achieve better responses. The results of the one-sided Wilcoxon’s rank sum test

in Table 6.4 provide confirmation of the qualitative identification of two groups of

classifiers. Top performing are sparse SVC `2, ridge classifier and the MLP with 10

hidden layers. Among them, the sparse SVC has an almost significant improvement

over the other two. These results are in agreement with state of the art results.
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6.6 Effect of the feature extraction/selection

Feature extraction consists of a data space transformation where the new variables

lose the meaning of the original space, i.e. the anatomical localization of the ef-

fects. Feature selection (such as the PCC based connection selection) preserves the

meaning of the original variables, because the selected variables are not transformed.

Feature selection is the preferred approach for the medical researchers because they

can explain and compare the found biomarkers in the framework of the medical

literature.

We have explored the effect of the feature extraction and feature selection pro-

cedures described above. The Isometric Map has been discarded as its results were

far worse than any other feature extraction method. For the other methods we have

made an exploration of the performance achieved when varying the number of fea-

tures retained, finding slight significant improvements leading to specific selections

for each approach that are compared in Table 6.5 using the one sided Wilkoxon’s

rank sum test as the density functions plotted in Figure 6.7 are far from Gaussian in

most cases (exception made of MDS which appears to be almost Gaussian). PCA2

has an almost uniform distribution in the interval [0.5,0.7] of AUC values. Regard-

ing Table 6.5, PCA2 improves significantly over the other procedures, althought the

significance of the improvement over FA is short.

6.7 Best results

One of the conclusions that can be extracted from the previous sections is that find-

ing good performing pipelines requires exploration of many computational choices

where most of them will not achieve good results. Here we have selected the best

performing pipelines found by exhaustive search over our experimental results, some

of them improving over most of the results reported in the state of the art of Table

3.2. Table 6.6 gives the best median AUC scores found, together with the 5% and

95% percentiles of the cross-validation results in our experiments for comparison

with the most comprehensive exploration of results to date [176], where the best re-

ported results are 0.66, 0.711, and 0.756 for the 5%, 50%, 95% percentiles of median
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Table 6.6: Best median AUC scores found in cross-validation repetitions, with
corresponding settings (parcellation, feature extraction, classifier, and connectiv-
ity measure) that achieved it.

Settings AUC percentiles
Parcel. Feat. extr. Classifier conn. meas. 5% median 95%
cc200 fa logistic `1 tangent 0.733 0.765 0.803
cc200 pca logistic `2 tangent 0.739 0.765 0.801
cc200 fa svc `1 tangent 0.739 0.764 0.803
cc200 fa1000 logistic `1 tangent 0.733 0.765 0.803
cc200 pca svc `1 tangent 0.735 0.767 0.805
cc200 fa2000 logistic `1 tangent 0.733 0.765 0.803
cc200 fa2000 svc `1 tangent 0.739 0.764 0.803

Best reported to date [176] 0.66 0.711 0.756

Table 6.7: Best Acc scores found in cross-validation, with corresponding settings
(parcellation, feature selection, classifier, and connectivity measure) that achieved
it.

Settings Acc percentiles
parcel. Feat. ext. Classifier conn. meas. 5% median 95%
cc200 fa logistic `1 tangent 66.9 69.9 72.3
cc200 fa svc `1 tangent 65.7 69.9 72.8
cc200 fa1000 logistic `1 tangent 66.9 69.9 72.3
cc200 fa1000 svc `1 tangent 65.7 69.9 72.8
cc200 fa2000 logistic `1 tangent 66.9 69.9 72.3
cc200 fa2000 svc `1 tangent 65.7 69.9 72.8
cc200 pca logistic `2 tangent 67.3 70.5 72.1
cc200 pca svc `1 tangent 65.9 70.1 72.1

Best reported to date [203] - - 77
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AUC distribution across all repetitions of the cross-validation experiments. This

comparison shows the impact of feature extraction approaches to enhance classifi-

cation results. Because many of the results in the literature are reported in terms

of accuracy, we include here the corresponding accuracy tables. Table 6.7 gives the

instances with the best accuracy results of our experiments, comparing favorably

with the results gathered in Table 3.2. Some recent results [199, 203] have been

achieved using brain parcellations that are not accessible, hence direct comparison

against them is not possible for us.



Chapter 7

Results of Deep Learning

Approaches

In this Chapter we report two experiences on the application of Deep Learning (DL)

to the ASC discrimination based on the connectivity matrices. The first was imple-

mented in Matlab and reported in Section 7.1. Section 7.2 tells our last experience

using the Google Codelabs environment to apply DL, and transfer learning to this

problem. Section 7.3 gives some comments on our attempts to apply DL to this

problem.

7.1 Matlab implementation

We report a series experiments on the application of CNNs [264,311] over the connec-

tivity matrices obtained with the diverse parcellations and connectivity measures.

CNNs carry out induction of feature extraction filters at diverse abstraction levels,

hence no feature extraction have been included in the experiment. We have used

the Matlab implementation of CNNs, publishing the code and the data in zenodo
1. The number of the experiments is limited by available computing resources.Table

7.1 gives the best results achieved by each CNN topology after 10 repetitions of

10-fold crossvalidation with each setting. One of the difficulties of the application

1https://zenodo.org/record/4121200
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Table 7.1: Results of explored CNN topologies. We report median accuracy,
brain parcellation (parcel.) and connectivity measure (conn. meas.) with best
results. n@m denotes a convolution layer with n filters of size m. full denotes
full connectivity layer. Output is always a softmax of two units. E denotes the
number of CNNs in an ensemble.

Settings Acc percentiles
CNN topology parcel. conn. meas. 5% median 95%
20@5, full TT correlation 48.30 54.55 62.50

20@5,20@5,full EZ correlation 51,14 60.23 67,61
20@5,20@5,20@5,full HO correlation 54.55 63.64 72.73

20@5,20@5,20@5,20@5,full AAL correlation 55.93 64.04 72.16
20@5,20@5,20@5,20@5,20@3,full AAL correlation 53.93 61.36 68.18
20@5,20@5,20@5,20@5,full,E=11 AAL correlation 57.95 66.29 74.58

20@9,20@7,20@5,full HO correlation 55.68 64.77 72.73
20@11,20@59,20@7,20@5,full AAL correlation 55.68 64.77 71.19

20@11,20@59,20@7,20@5,full,E=11 AAL correlation 58.43 66.29 74.01

of DL approaches is the finding the optimal topology of the network, which can be

very tricky. For our experiments using Matlab environment we have followed the

strategy of increasing the depth of the network and changing the size of the filters

following a pyramid structure, broader filters at the bottom layers and smaller ones

at the top layers. We have also tested ensembles of CNNs, though not very big

for lack of computational resources. We found that adding layers provided some

improvements, reaching kind of overfitting situation when we applied a five lay-

ers topology. Using an ensemble of 11 CNNs provided a small improvement, lack of

computational resources and time prevented experimentation with larger ensembles.

The use of a pyramidal strategy in the definition of the filters did not provide signif-

icant improvements. Comparison with results in Table 6.7 show that the examined

CNN topologies do not provide any improvement over conventional feature selection

and classification methods. This observation does not preclude the existence some

specific CNN topology that improves over conventional approaches on this dataset,

however the ingenuity and computational resources to find it is beyond our current

capabilities. Another observation from the results in Table 7.1 is that the 5-95%

percentile interval is much larger than in Table 6.7, likely due to the stochastic

learning characteristics.
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7.2 Google codelab implementation

Using the resources provided by Google Codelabs2 we carried out some experiments

with little success. Transfer learning using as base network the VGG16, MobileNet

and Resnet50 networks achieved very poor results of average accuracy 0.4615, in-

dependently of the brain parcellation used. Fully trained CNN on the connectivity

matrix obtained from the AAL and CC200 atlas increased to Acc = 54.00.

The model was expected to improve around the predefined repositories and ar-

chitecture with Tensorflow and Keras (https://tfhub.dev/), but having tested with

images given the existing example-based tests, these improve up to 20%. In our

case, its applicability and existing information is almost null. On the other hand,

this occurs with the tensorflow 2.0 version, the previous reviews and comments were

given with the Tensorflow 1.0 version. It is interesting to mention that there are

significant differences between both versions at the time of their execution, this is

due to the updating of the libraries, improvements to the development model or

others that do not facilitate continuity in order to generate a robust model.

7.3 Conclussions on DL performance

Our conclussions on the applicability of DL to ASC discrimination based on brain

connectivity are very negative. It does not seem evident that DL will be providing

much better results than the conventional machine learning approaches. Besides our

experience reported above the literature has several examples of attempts to apply

DL to ASC prediction on the ABIDE dataset. In order to discuss comparative re-

sults we face the issue of the diversity of the underlying pipeline selections and DL

design pecularities. We have not found in the literature an exhaustive exploration

of DL approaches over the brain parcellations and connectivity measures compa-

rable to ours. However, we have shown that they have quite significant effect on

the predictive performance. For instance, experiments involving a large ensamble

of 300 CNNs [203] was carried out on a very specific irreproducible brain parcella-

2https://codelabs.developers.google.com/?cat=all

https://codelabs.developers.google.com/?cat=all
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tion and connectivity matrix constructions, with ad hoc simplified CNN topologies

found by after a long trial and error process with little succes (Acc=67). A greater

computational (irreproducible) tour de force of training an ensemble of 3D CNN ap-

plied on the normalized rs-fMRI data [199] provided a small improvement (Acc=72).

The use of recurrent networks such as the LSTM [194] did not achieve better re-

sults than the conventional approaches (Acc=68%). Graph convolutional networks

(GCN) [189, 191] did not provide significant improvement over conventional results

in Table 6.7 achieving the best result Acc=70 adding ancilliary information to the

connectivity data. Even using ensembles of GCN [192] did not add significant ben-

efits. Using autoencoders for feature extraction combined with conventional MLP

classifier provided one of the best reported results [206] .



Chapter 8

Conclusions and future work

In this Chapter we provide summarized conclussions of the work carried out in

Section (8.1) and some lines of future work in Section (8.1).

8.1 Conclusions

The predictive approach to the analysis of brain connectivity from rs-fMRI data is

gaining importance in recent studies. In this approach, brain connectivity biomark-

ers are confirmed by the predictive performance in the classification between target

populations. Up to this date there is no comprehensive study of the impact of the

choices that can be made while building the machine learning pipelines, hence we

have carried out a comprehensive assessment on the ABIDE I dataset, finding that

some feature extraction procedures provide a boost on the performance of the clas-

sifiers across several connectivity matrix building approaches, namely the classical

principal component analysis (PCA) and factor analysis (FA).

A key issue is the reproducibility of the results, that depends on the availability

of the data and the precise computational resources to other researchers in the

community. For this reason, we emphasize the public availability of the data and

programming resources used for this study via github1 and zenodo2 repositories.

1https://github.com/mmscnet/Impact-feature-extraction-in-Autism
2https://zenodo.org/record/4121200

105

https://github.com/mmscnet/Impact-feature-extraction-in-Autism
https://zenodo.org/record/4121200


8.2. Future work 106

8.2 Future work

Future work should address the extension of the computational experiments to the

full extent of the ABIDE II dataset. Other conectomics datasets collecting sub-

jects and controls from connectivity analysis regarding other diseases will also be

considered. Additionally, innovative machine learning approaches [312–315] will be

explored. The instability of the validation of the predictive approaches in many

instances of neuroscience datasets is an issue of methodological concern. In the

case of the ABIDE dataset the sources of this instability are the heterogeneity of

the subjects, diagnostic criteria implementation, and the data capture differences

among sites. Future work will explore the relevance of novel validation approaches

such as the works underlying the statistical agnostic mapping [316] to provide more

robust performance predictions leading to better grounded biomarker identification.
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