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Abstract: Graphene is a two-dimensional material, with exceptional mechanical, electrical, and
thermal properties. Graphene-based materials are, therefore, excellent candidates for use in nanocom-
posites. We investigated reduced graphene oxide (rGO), which is produced easily by oxidizing and
exfoliating graphite in calcium silicate hydrate (CSHs) composites, for use in cementitious materials.
The density functional theory was used to study the binding of moieties, on the rGO surface (e.g.,
hydroxyl-OH/rGO and epoxide/rGO groups), to CSH units, such as silicate tetrahedra, calcium
ions, and OH groups. The simulations indicate complex interactions between OH/rGO and silicate
tetrahedra, involving condensation reactions and selective repairing of the rGO lattice to reform
pristine graphene. The condensation reactions even occurred in the presence of calcium ions and
hydroxyl groups. In contrast, rGO/CSH interactions remained close to the initial structural models
of the epoxy rGO surface. The simulations indicate that specific CSHs, containing rGO with different
interfacial topologies, can be manufactured using coatings of either epoxide or hydroxyl groups. The
results fill a knowledge gap, by establishing a connection between the chemical compositions of CSH
units and rGO, and confirm that a wet chemical method can be used to produce pristine graphene by
removing hydroxyl defects from rGO.

Keywords: composite material; calcium silicate hydrate; interlayer microstructure; nanomaterials;
DFT calculations; reduced graphene oxide

1. Introduction

Graphene [1] is a two-dimensional honeycomb plane of sp2 carbon atoms, and has re-
ceived considerable attention for its use in applications such as electronic devices [2], energy
storage devices [3], and composite materials [4,5], because of its unique mechanical [6,7],
electronic [8], thermal [9–12], and chemical properties [13–17]. The development of a cheap
method of fabrication of high-quality graphene remains a considerable challenge [15].
Graphene can be produced by chemical vapor deposition (CVD), using a catalytic metal
substrate made of materials such as Cu or Ni [18,19], or by mechanical and chemical exfoli-
ation of graphite, with deposition of the exfoliated pieces on various substrates [1,15,20].
The chemical vapor deposition method involves the use of high-temperature procedures
and specialist equipment, and is a relatively expensive method of producing graphene with
very few defects. A great deal of attention has been paid to the development of methods
involving the chemical oxidation and exfoliation of graphite, to yield graphene oxide (GO),
with the subsequent reduction in the oxygen-containing functional groups, using thermal,
chemical, or electrochemical reduction methods, to yield reduced graphene oxide (rGO),
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because such methods are solution-based [21,22]. Therefore the procedure for fabricating
rGO is briefly described.

The most widely used technique for preparing graphite oxide by oxidizing graphite
is known as Hummer’s method [20,23–25]. The oxidization of graphite is an effective
way of increasing the interlayer distance between the graphene sheets by adding oxygen-
containing functional groups, such as hydroxyl, epoxide, carboxyl, and carbonyl groups,
to facilitate the exfoliation [22]. The exfoliation of graphite oxide is an important process
for producing graphene oxide (GO), as an intermediate between graphite and graphene.
Graphite oxide can be completely exfoliated into GO by mechanically stirring a water and
graphite oxide mixture for a long time [26], or by ultrasonicating graphite oxide in a polar
organic solvent or aqueous solution [14,27]. The basal plane of GO is mostly occupied
by epoxide and hydroxyl groups, but the edge plane is mostly occupied by carbonyl and
carboxyl groups [28]. Hydroxyl and epoxide functional groups can be considered to be
surface structural defects in the graphene layer, as shown in Figure 1a. There are a few
functional groups at the edge of defective graphene, so our work will concentrate on the
surfaces, which have many epoxide and hydroxyl groups [29].
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Figure 1. (a) Reduced graphene oxide with hydroxyl and epoxide groups. The lower, left- and right-
hand panels show hydroxyl and epoxide surface models, respectively. (b) The 𝑝𝑘 ratios for calcium 
silicate hydrate gels. (c) Calcium silicate hydrate composites consisting of calcium silicate hydrate 
gel and epoxide/reduced graphene oxide. Carbon atoms are indicated in blue; oxygen, in red; hy-
drogen, in white; silicon, in light grey; and calcium, in dark grey. 
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the mechanisms involved in the interactions between the chemical components of ce-
mentitious CSH gel moieties [57] and pristine or defect-containing graphene sheets in wa-
ter, at the nanoscale. This is particularly relevant in the context of Dimov et al. [58], who 
demonstrated, experimentally, that graphene-enabled nanoengineered concrete compo-
sites can have ultra-high strengths and interesting additional functionalities. Yao et al. 
recently synthesized very tough highly ordered CSH–GO composites, assuming that they 
contain COOH groups [59]. Hou et al. recently used reactive force field molecular dynam-
ics to investigate the mechanical properties and reactivities of GO sheets that are function-
alized with hydroxyl (C–OH), epoxy (C–O–C), carboxyl (COOH), and sulphonic (SO3H) 
groups, with a 10% ultra-confined coverage with the calcium silicate hydrate gel (CSH), 
as shown in Figure 1b [60]. Calculations using potentials have mainly been performed to 
study the GO–COOH groups on graphene, but such groups are attached to the GO edges, 
so constitute a minority of the groups attached to GO. We therefore focus on hydroxyl 
and epoxy groups. 

To our best knowledge, the mechanism involved in the interactions between rGO 
and monomers in CSH gels during the fabrication of cementitious composite materials 
(Figure 1c) have not been studied previously. The aim of this study was to improve our 

Figure 1. (a) Reduced graphene oxide with hydroxyl and epoxide groups. The lower, left- and
right-hand panels show hydroxyl and epoxide surface models, respectively. (b) The pk ratios for
calcium silicate hydrate gels. (c) Calcium silicate hydrate composites consisting of calcium silicate
hydrate gel and epoxide/reduced graphene oxide. Carbon atoms are indicated in blue; oxygen, in
red; hydrogen, in white; silicon, in light grey; and calcium, in dark grey.

Many recent studies have focused on manufacturing very pure rGO sheets (i.e.,
graphene with low coverage densities of oxygen-containing functional groups) from
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GO [22]. Feng et al. produced rGO structures with low oxygen contents (down to 5.6% by
weight), using Na and NH3 treatments with active solvated electrons as a strong reducing
agent [30]. Liao et al. [31] produced graphene from exfoliated graphite oxide in deionized
water at ~pH 3, between 12 and 48 h at 120 or 95 ◦C, at an oxygen-to-carbon reduction
ratio (O:C) of about 1:6, and analyzed the product by means of C1s X-ray photoelectron
spectroscopy spectra. By considering Fourier transform infrared spectra, they found a
marked decrease in the number of hydroxyl and epoxide groups. Pei et al. [32] fabricated
very conductive and flexible graphene films by reducing GO films, by immersion in a
solution of HI, an 85% N2H4·H2O solution, and a 50 mM NaBH4 aqueous solution at
room temperature. They found that after reducing the GO films with HI, most of the
oxygen-containing groups from the GO film had been removed, causing the C–C bonds
to become dominant, giving a C/O atom ratio ≥ 12 and an electrical conductivity of up
to 298 S/cm. Much lower C/O atom ratios and electrical conductivities were found for
higher GO films that were reduced using N2H4·H2O and NaBH4.

Concrete- and cement-based materials are only second to water, in terms of their
use around the world [33–36]. The total annual concrete production around the world
is ≥20 × 109 t and it is currently increasing by 5% per year, and contributes 5–10% to
global anthropogenic carbon dioxide emissions [37,38]. The chemically active ingredients
of cements in clinker particles are hydrated to produce cement paste. Unhydrated clinker
and calcium silicate hydrates form a multi-scale porous composite, the primary binding
phase of which is known as CSH gel [39,40]. This acts as a glue that adheres to fine and
coarse aggregates to create concrete [37,41]. CSH gel has a complex structure [33,42,43],
including water in the interlayers, layered material structures at the nanoscale [44,45], a
globular texture at the mesoscale [46–48], and a multi-scale porous structure [49–51]. The
engineering properties of cement-based materials are largely controlled by the properties
of the CSH gel [33,39,52], which has an intrinsically brittle nature and is weak in tension.
This weakness is usually overcome by reinforcing cement-based materials with metal fibers
and, more recently, the possibilities offered by inorganic or carbon nanotubes are being
explored [53–56]. In the latter case, it is relatively difficult to combine the aqueous solution
involved in the cementitious matrix with the hydrophobic carbon nanostructures, such as
pristine carbon nanotubes. An understanding of the defects seems to be key in controlling
the final properties of the cementitious nanocomposite [56].

The current main challenge in the field area lies in improving our understanding
of the mechanisms involved in the interactions between the chemical components of
cementitious CSH gel moieties [57] and pristine or defect-containing graphene sheets in
water, at the nanoscale. This is particularly relevant in the context of Dimov et al. [58], who
demonstrated, experimentally, that graphene-enabled nanoengineered concrete composites
can have ultra-high strengths and interesting additional functionalities. Yao et al. recently
synthesized very tough highly ordered CSH–GO composites, assuming that they contain
COOH groups [59]. Hou et al. recently used reactive force field molecular dynamics to
investigate the mechanical properties and reactivities of GO sheets that are functionalized
with hydroxyl (C–OH), epoxy (C–O–C), carboxyl (COOH), and sulphonic (SO3H) groups,
with a 10% ultra-confined coverage with the calcium silicate hydrate gel (CSH), as shown
in Figure 1b [60]. Calculations using potentials have mainly been performed to study
the GO–COOH groups on graphene, but such groups are attached to the GO edges, so
constitute a minority of the groups attached to GO. We therefore focus on hydroxyl and
epoxy groups.

To our best knowledge, the mechanism involved in the interactions between rGO
and monomers in CSH gels during the fabrication of cementitious composite materials
(Figure 1c) have not been studied previously. The aim of this study was to improve our
fundamental understanding of the interactions between CSHs (e.g., CSH gel) with rGO,
using density functional theory (DFT) calculations. Interactions at the interface were
taken into account by calculating the adsorption energies of optimized CSH gel units with
OH/rGO and epoxide/rGO sheets in various initial configurations. The results fill a key
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knowledge gap, by establishing connections between the chemical components of CSH gel
in cementitious materials and rGO.

2. Methods and Computational Models
2.1. Simulation Parameters

The interactions between rGO and CSHs are studied by performing DFT electronic
structure calculations [61]. The Vienna ab initio simulation package [62–64] and the pro-
jected augmented-wave method were used to define electron–ion interactions. A well-
converged plane-wave cutoff energy of 400 eV was employed. The electron exchange
and correlation functional was used in the generalized gradient approximation with
Perdew−Burke−Ernzerhof parametrization [65]. A force tolerance of 0.01 eV/Å was used
for the structural optimizations. The Brillouin zone was sampled using a well-converged
k-sampling, given by 2 × 2 × 1 Monkhorst-Pack k-points for the whole system [66]. The
density of state (DOS) was calculated using a refined mesh of 34 × 34 × 1 Monkhorst-
Pack k-points. The charge transfers were calculated using Bader analysis, with the code
developed by Henkelman et al. [67].

2.2. Model Building

Models of rGO, focusing on hydroxyl or epoxide groups, are developed with periodic
boundary conditions in the x- and y-directions, to remove finite length effects, and a
well-converged vacuum slab 10 Å thick to avoid interactions with adjacent cells in the
z-direction. Larger boxes of 15 Å were also tested for some cases involving rGO, Ca, and
silicate units, and the calculated energy differences were found to converge at the sub
meV level. The optimized primitive rGO unit cell therefore has the parameters a = 12.30 Å,
b = 12.30 Å, c = 10 Å, α = 90◦, β = 90◦, and γ = 60◦. We treated silicate hydrate moieties as
Si(OH)4 monomers, because these moieties occur in solution when the calcium silicates
in cementitious clinkers are hydrated. SiO(OH)3

− units that were produced in small
amounts during the hydration process, causing the pH of cement, were also studied. The
contributions of van der Waals interactions were not considered in all the configurations,
because the differences in van der Waals potential energies were found to be small when
calculated in some tests. The ∆E was calculated from the difference between the energies
of the relaxed configuration and the ground-state structure. Further, rGO structures
with oxygen-to-carbon reduction ratios (O:C) of 1:50 were used in the simulation models.
(The vacancy–adatom pair is one of the most common defects in graphene, but the defect
mobility is high [68]. Thus, single vacancies would be saturated in solutions before entering
the composites).

2.3. Adsorption Energy

The adsorption energy (Eads) relates to interactions between the sorbent and substrate,
and was calculated using Equation (1), as follows:

Eads = ETotal − (ESub + EAb) (1)

where ETotal is the total energy of the composite systems, ESub is the energy of the graphene
or rGO plane, and EAb is the energy of the absorbed moiety [69].

3. Results
3.1. Hydroxyl/rGO with Silicate Hydrate Moieties
3.1.1. Hydroxyl/rGO with Si(OH)4 Silicate Hydrate Units

Feasible configurations of hydroxyl- and epoxide-reduced graphene with CSH gel
moieties were calculated to allow the investigation of the mechanisms involved in the
interactions between the different moieties. We were interested in investigating the mech-
anism involved in the interaction between Si(OH)4 hydrated silicate monomers and hy-
droxyl/rGO. Two separate configurations for our simulation models, with Si(OH)4 in two
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different positions relative to the hydroxyl/rGO sheets, as input geometric structures, were
therefore first prepared. Two dissimilar Si(OH)4 unit configurations, with respect to the
distance to the hydroxyl/rGO sheet, were found. There was a stable configuration in which
the starting geometry did not change much after optimization, as shown in Figure 2a.
However, optimization indicates that the ground-state structure could become chemi-
cally reconstructed, and produce a water molecule between the graphene layer and the
SiO(OH)3 unit, as shown in Figure 2b. The energy of the reconstructed structure (Figure 2b)
was ∼=0.3 eV lower than the expected optimized configuration (Figure 2a). This structure
corresponds to the ground-state energy structure for Si(OH)4 deposited slightly further
from the hydroxyl/rGO sheet than in the expected configuration.
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Figure 2. Top and side views of the geometric configurations obtained for the initial geometric structure of Si(OH)4

on a hydroxyl/reduced graphene oxide (rGO) sheet. (a) Expected optimized physisorbed configuration. (b) Ground
state obtained as an optimized geometric structure including a water molecule and a SiO(OH)3 unit on the graphene
plane. (c) Optimized geometric structure obtained for SiO(OH)3 on a hydroxyl/rGO sheet for a singly negatively charged
system. The energy difference ∆E and adsorption energies for Si(OH)4 and SiO(OH)3 are indicated below the respective
configurations.

The calculated adsorption energies for the SiO(OH)3 and Si(OH)4 configurations were
−1.683 eV and −0.094 eV (2.17 kcal/mol), respectively. Therefore, the SiO(OH)3 unit in
the ground-state structure had a lower adsorption energy than the other configurations,
indicating that the system containing SiO(OH)3 with a water molecule next to a graphene
plane was the most favorable configuration. Importantly, a condensation reaction occurs
when a hydroxyl group at the GO interface becomes dissociated and combines with a
hydrogen atom released by Si(OH)4.

Then, several configurations of water molecules in a system with a SiO(OH)3 unit
on graphene were considered, to determine the optimum location of the water molecule.
The geometric structure consisting of a system containing SiO(OH)3, a water molecule,
and graphene, shown in Figure 2b, was the ground-state structure and the most stable
configuration. The ground-state structure forms for two reasons. The water molecule
establishes two strong O–H hydrogen bonds (short) with SiO(OH)3, and, most importantly,
it is near the graphene surface, implying an interaction with the graphene surface and an
increase in the bonding energy.

A SiO(OH)3 unit on hydroxyl/rGO, in a singly negatively charged system, was also
considered. Perhaps surprisingly, we found that in the ground-state structure, hydrogen is
dissociated from the hydroxyl/rGO surface and is being transferred to the SiO(OH)3 unit
to saturate the dangling oxygen atom, as shown in Figure 2c. SiO(OH)3 on hydroxyl/rGO
in a neutral system was placed as another initial simulation model, and we also found
that the hydrogen becomes dissociated from the hydroxyl/rGO surface and is transferred
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to the SiO(OH)3 unit. This indicates that a hydrogen atom becomes dissociated from the
hydroxyl/rGO surface regardless of whether the system is charged or neutral. A dangling
oxygen bond therefore points towards the graphene plane and is almost fully occupied
through charge transfer from the graphene sheet.

3.1.2. Model Calculations for an SiO(OH)3 Unit on Graphene: Chemisorbed and
Physisorbed Configurations

Next, we considered the adsorption properties of a SiO(OH)3 unit on the graphene
surface. The unit on the graphene plane was placed at several distances in four different
configurations, with the system being either neutral or singly negatively charged. All
four configurations were optimized, and the ground-state structure was found for the
configuration associated with the unit that was physisorbed to the graphene sheet. The
configurations for the neutral cases are shown in Figure 3. The ground-state structure
was found to be SiO(OH)3 physisorbed to the graphene sheet, which has a lower energy
state (−0.23 eV) than the chemisorbed configuration. When the system is singly negatively
charged, both relaxed structures have the SiO(OH)3 unit physisorbed to the graphene
sheet.
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Figure 3. Energy scheme for the relaxed geometric structures of SiO(OH)3 units on graphene. Two
different initial chemisorbed and physisorbed configurations with different distances between the
graphene plane and SiO(OH)3 were found for the neutral systems, and physisorbed configurations
were found for the singly negatively charged system. The energy difference ∆E (in eV) for each
configuration for each charge state is given below the respective structure. The adsorption energy
with respect to the SiO(OH)3 units is also shown in each case.

The calculated adsorption energies for SiO(OH)3, for the physisorbed ground-state
structures and the next chemisorbed configuration for the neutral system, are −1.59 and
−1.36 eV, respectively, as shown in Figure 3, for the two clearly different distances. In
contrast, the adsorption energies for the two similar physisorbed configurations on the
negatively doped graphene plane are 2.16 and 2.22 eV, as shown in Figure 3. An electron
is transferred to SiO(OH)3 to form SiO (OH)3

− for the total charged system, so the initial
energy state must change by the difference between the neutral and charged silicate units.
We expect that the adsorption of SiO(OH)3 to the doped graphene sheet in the neutral
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and singly negatively charged state is almost the same, because the doping electron must
be shared between a large number of carbon atoms. The corrected adsorption energy for
the SiO (OH)3

− unit, typical in a basic solution, was found to be exothermic by −1.4 eV,
because charge fills the oxygen levels. It seems that the adsorption of silicate hydrate units
onto rGO would remain favorable at basic pH values and with negatively charged units.

3.2. Hydroxyl/rGO Combined with CSH Units in the Presence of Ca Ions and Hydroxyl Groups
3.2.1. Hydroxyl/rGO with Silicate Hydrate Units in the Presence of Ca Ions

Comprehensive investigations of systems containing Si(OH)4 and hydroxyl/rGO
sheets ending in SiO(OH)3 were performed. Previously studied structures, including
Si(OH)4 and SiO(OH)3 units with a hydroxyl/rGO substrate, were used, but in the presence
of Ca ions. Two different Si(OH)4 and hydroxyl/rGO configurations are used with a Ca ion
at different positions, one with the Ca ion close to Si(OH)4 and the other with the Ca ion
far from Si(OH)4, as the initial geometric structures. The structures were optimized, and
the ground-state energy was found to be 0.495 eV lower for the configuration with a Ca ion
close to Si(OH)4 (Figure 4a) than for the other initial configuration with a Ca ion far from
Si(OH)4. In fact, for the same configuration without a Ca ion, charge transfer occurred from
the graphene sheet to the 2p orbital of the dangling oxygen atom in SiO(OH)3. Therefore,
in a system containing a Ca ion, the Ca ion interacts directly with SiO(OH)3. Some of the
charge on the Ca ion is transferred to the 2p orbital of an oxygen atom in SiO(OH)3, to
occupy the orbital fully, and the remaining charge is transferred to the graphene sheet. The
structure of Si(OH)4 on a hydroxyl/rGO substrate was also optimized in the presence of a
Ca ion, in a doubly positively charged system. The hydroxyl group dissociates from the
hydroxyl/rGO substrate and a water molecule is formed, and the Ca ion also interacts
with SiO(OH)3. The distance between the Ca ion and the oxygen atom in the ground-state
structure is ~2.075 Å, as shown in Figure 4a, which was 0.1 Å more than the distance in the
other configuration.
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Figure 4. Optimized geometric structures including a silicate hydrate unit (Si(OH)4 or SiO(OH)3) and
a Ca ion on a graphene plane, with the Ca ions initially close to the units on the hydroxyl/reduced
graphene oxide sheet. The upper panels are for systems containing Ca ions; and the lower panels
are for systems containing Ca ions and hydroxyl groups. The adsorption energies for SiO(OH)3 and
Si(OH)4 are indicated beneath the respective configuration.

The results indicate that the adsorption energies of SiO(OH)3 in the four different
configurations, with a water molecule on the graphene surface, vary between −1.43 and
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−1.69 eV; the latter is given as the ground state indicated in Figure 2b. These adsorption
energies of the SiO(OH)3 model are slightly higher than the adsorption energies of −1.36 to
−1.59 eV, when no water molecule is present on the graphene surface (Figure 3). The energies
for the adsorption of SiO(OH)3 to the graphene surface are a few eV lower, at −6.22 eV to
−4.38, in the presence of a water molecule or hydroxyl group, and a Ca ion (Figure 4a,b). In
other words, the adsorption energy decreases when a Ca ion is added to the system.

When a Ca ion is far from SiO(OH)3 on the hydroxyl/rGO sheet in the initial simula-
tion model, the hydroxyl group is found to not dissociate from the hydroxyl/rGO sheet.
A lower energy, −1.93 eV, is found for the ground-state structure than in other configura-
tions. However, the ground-state structure in the initial simulation model relates to the
configuration with the Ca ion near SiO(OH)3. Optimization for the ground-state structure
indicates that the hydroxyl group becomes dissociated from the hydroxyl/rGO, and the Ca
ion is involved in bonding, so charge transfer from the Ca ion to two neighboring oxygen
atoms occurs, to cause a nearly full occupation of the oxygen orbitals (Figure 4b).

3.2.2. Hydroxyl/rGO with Silicate Hydrate Units, in the Presence of Ca Ions and Involving
Hydroxyl Groups

We also studied the interactions between Si(OH)4 and SiO(OH)3, and the hydroxyl/rGO
sheet, in the presence of a hydroxyl group and a Ca ion. The results indicate that the ground-
state structure has the same configuration as the structure with a Ca ion close to the silicate
monomer, which causes the hydroxyl group to dissociate from the hydroxyl/rGO sheet
and the charge to be compensated by charge transfer from the Ca ion to the two neigh-
boring oxygen atoms on two hydroxyl groups, as shown in Figure 4c,d. The ground-state
structures of Si(OH)4 and SiO(OH)3 have energies that are almost 3 and 0.4 eV lower,
respectively, than the next lowest energy configurations. In contrast, for the configuration
with a Ca ion that is far from the silicate, the hydroxyl group is not dissociated from the
sheet. The adsorption energy for SiO(OH)3 in the ground-state structure, in the presence of
a hydroxyl group and a Ca ion on the graphene plane, is −2.63 eV, which indicates that
stronger adsorption occurred than for the removal of only hydroxyl, as shown in Figure 4c.
In fact, even when more hydroxyl groups are added to the system, the hydroxyl group
becomes dissociated from the hydroxyl/rGO sheet, because the hydroxyl groups from
Si(OH)4 remain strongly bonded to the Si atom.

3.3. Epoxide/rGO with CSH Units

As mentioned above, the hydroxyl group in the ground-state structures of the CSH
composites dissociates from the hydroxyl/rGO sheet, to produce pristine graphene
(Figure 2b). According to previous works [70], the contribution of carbonyl/epoxy groups
on nanocomposites is still important, and they are not fully hydrolyzed during the prepa-
ration of composites. However, as shown in Figure 5a, pristine graphene is not produced
when Si(OH)4 is on the epoxide/rGO surface, and the ground-state structure remains
similar to the initial structure, with Eads~0.127 eV (2.93 kcal/mol). The mechanism in-
volved in the interaction between SiO(OH)3 and the surface of the epoxide/rGO sheet was
investigated, and the results are shown in Figure 5b. We found an adsorption energy for
SiO(OH)3 on the epoxide/rGO surface of −0.853 eV, which is lower than the adsorption
energy for a neutral Si(OH)4 silicate hydrate moiety. The SiO(OH)3 silicate unit moves
away from the epoxide groups, as shown by the physisorption model described above.
The nearest distance between the dangling oxygen atom and the epoxide/rGO sheet is
2.931 Å. Even longer distances were found in several previous studies. For example, Gao
et al. [71] calculated the adsorption energies for H2S and CH4 on intrinsic graphene, which
were −0.038 and −0.022 eV, respectively, and distances of 3.813 and 3.865 Å, which are
larger than the distances included in Figure 5. Then, the interaction between SiO(OH)3 and
the epoxide/rGO sheet was considered to be neutral in the presence of a Ca ion and two
hydroxyl groups, as shown in Figure 5c. As discussed above, the adsorption energy be-
comes more favorable when Ca ions are involved. The adsorption energy for SiO(OH)3, in
the presence of a Ca ion and hydroxyl functional groups of hydroxyl, is therefore −1.52 eV
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lower (Figure 5c) than the adsorption energy for the same structure without the functional
groups (Figure 5b).
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graphene oxide (rGO) sheet. The adsorption energies are shown below each structure. Adsorption of
a silicate unit to epoxide/rGO becomes more favorable in the presence of a Ca ion.

4. Discussion
4.1. Electronic Properties of the Ground State with the Condensation Reaction

The electronic properties of the ground-state structures described above are now
analyzed in more detail. The total DOS of the ground-state structure consisting of a
graphene layer, a water molecule, and a SiO(OH)3 unit is shown in Figure 6a. The Fermi
level is indicated by a vertical dashed line at the value of zero. The charge neutrality
point for the graphene layer was higher than the Fermi level, because the graphene layer
was positively charged. The DOS that was projected on the non-protonated oxygen atom
belonging to SiO(OH)3 is plotted in pink. Below the Fermi level, at the valence band
energy of −0.073 eV, there is a large DOS peak from the oxygen atom with nearly one extra
electron. Bader charge analysis shows the charge density distribution assigned to atoms, as
shown in Figure 6b. Thus, our results indicate that there is charge transfer from graphene
to the dangling oxygen atom, in order to have the amount of electrons at the valence fully
occupied for the SiO(OH)3 moiety.
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4.2. Electronic Properties of the Ground State SiO(OH)3 with the Graphene Sheet

The electronic properties of the ground-state structures given by the physisorption
model of SiO(OH)3 on the graphene plane, for the neutral and singly negatively charged
systems, were assessed. The Bader charge analysis method indicates that the charge
transfers between the graphene and SiO(OH)3 were similar to the charge transfers in the
ground state on the rGO, as shown in Figure 7a. For the neutral system, the graphene sheet
lost 0.62 electrons and the charge density of the dangling oxygen became 7.32 electrons
(Figure 7a).
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from the graphene layer to establish the strong bond, which is stabilized further by a water molecule, as shown by the
adsorption energies (see discussion in the text).

We constructed the 3D charge density difference plots to determine the spatial dis-
tribution of the charge. The charge density differences for the ground-state structure of
SiO(OH)3 on the graphene plane in the neutral system, with respect to the graphene sheet
(200 electrons) and the SiO(OH)3 unit (31 electrons), are shown in Figure 7b. The distri-
bution of electrons between the substrate and absorbent matched the results of the Bader
charge analysis, because an electron was transferred to the SiO(OH)3 unit. The adsorption
energy for SiO(OH)3 on graphene was calculated with respect to the negative unit, and
was in the range of a few electron volts. This is typical for Coulomb interactions over a few
angstroms distance, caused by charge transfer. Water molecules near the graphene increase
the adsorption energy because they form hydrogen bonds with SiO(OH)3, and because the
oxygen atom in a water molecule becomes more stable by interacting with the depleted
positive charge in the graphene layer.

4.3. Electronic Properties of the Ground State with Condensation Reaction after Addition of
a Ca Ion

We assessed the changes in the hydroxyl/rGO electronic properties, caused by adding
CSH. The structures with the most favorable adsorption energies were analyzed. The
DOS and Bader charge distributions are shown in Figure 8. The DOS indicated that the
graphene Fermi level moves above the neutrality point, i.e., into the linear part above the
density of states of zero. The oxygen and calcium states are not near the Fermi level, and
are more than 1 eV from the graphene neutrality point, meaning that these states are almost
fully occupied and empty, respectively. Although the neutrality point can be recovered by
doping, occupation of the CSH counterpart remains similar, even for the cases involving
hydroxyl groups. The unprotonated oxygen atom has more charge than the neutral cases
discussed above, and it becomes almost equally charged as the case for the negatively
charged systems. The Ca ion on graphene is almost unoccupied, but has a charge of
0.42 electrons because it is close to graphene. This value is almost the same independently
as for the Ca configuration, as long as the Ca ion remains close to the graphene. It seems
that the Ca ion helps to form a sandwich structure of charges between the graphene layer
and silicate hydrate unit, giving very favorable adsorption energies.
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Figure 8. (a) Density of states and (b) charge distribution of the ground state found for rGO with
hydroxyl groups, which is compound of a water molecule, a SiO(OH)3 unit and a Ca ion on the
graphene plane. The Fermi level is marked by dashed line and assigned to zero. The partial density
of states on the dangling oxygen and calcium are also included using magenta and green colors,
respectively. The charges are associated to atoms using Bader charge analysis. Note that because of
the Ca ion, the graphene layer is doped negatively. The unprotonated oxygen receives more charge
and the silicate hydrate unit is deposited above the Ca ion on the graphene.

4.4. Electronic Properties of the Ground-State Epoxide/rGO with the Silicate Hydrate Unit

The charge density distribution of the neutral systems, determined by Bader charge
analysis, and the charge density differences for the molecular orbital isosurfaces, are shown
in Figure 9. The Bader charge analysis, the results of which are shown in Figure 9a,
indicated that there are 7.30 electrons on the unprotonated oxygen atom. The addition of
an electron causes the electron density of the dangling oxygen atom to increase slightly,
from 7.30 to 7.46, 0.73 electrons to be transferred to the graphene plane, and 0.11 electrons
to be shared between the other atoms. Three-dimensional charge density difference plots
were produced, giving more details of the distributions of electrons between the substrate
and absorbents than were given by the Bader charge analysis, in order to investigate the
electron distributions further. The charge density differences for the ground-state structure
of SiO(OH)3 on the graphene plane in the neutral system are shown in Figure 9b. Graphene
lost charge to the silicate hydrate unit because it was far from the epoxide group. In fact,
the bond between graphene and the SiO(OH)3 unit resembles the bond in the basic bonding
model described in Figures 3 and 6. In other words, the adsorption energies indicated that
the charge transfer from the graphene plane to SiO(OH)3 occurs in the neutral system, to
give an almost fully occupied oxygen 2p orbital.
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5. Conclusions

A DFT method was used to study the mechanism involved in the interactions between
hydroxyl or epoxide rGO and the CSH moieties, such as CSH gel in cement. The DFT
calculations for silicate tetrahedra, Ca ions, and hydroxyl groups improve our under-
standing of the bonds between rGO and primary CSH moieties. The results led to the
following conclusions. The interactions between hydroxyl/rGO and silicate tetrahedra
can repair hydroxyl defects selectively in the rGO lattice, and cause graphene to re-form.
The dissociation of defects in the graphene plane, and the formation of water, even occurs
in the presence of Ca ions and hydroxyl groups. In fact, the main interactions between
the graphene plane and CSH gel are Coulomb interactions, caused by charge transfer.
In contrast, the ground-state structure remains similar to the initial structure model for
interactions between epoxide/rGO and CSH gel. Consideration of the strong interactions
in this way could allow improvements to be made in the design of composite materials.
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