

Zuzendaritza
Advisors

GeRnika: Simulating, Visualizing and Comparing Tumor
Evolution Data

Aitor Sánchez Ferrera

Gradu Amaierako Lana
Bachelor’s Thesis

Informatika Ingenieritzako Gradua

Degree in Informatics Engineering

Konputazio Zientziak

Computer Science

Maitena Tellaetxe Abete

Intelligent Systems Group (ISG) - Biodonostia

Borja Calvo Molinos

Konputazio Zientziak eta Adimen Artifiziala Saila

Department of Computer Science and Artificial Intelligence

Bachelor’s Thesis
Degree in Informatics Engineering

Computer Science

GeRnika: Simulating, Visualizing and Comparing Tumor
Evolution Data

Aitor Sánchez Ferrera

Advisors
Borja Calvo Molinos

Maitena Tellaetxe Abete

2021

Acknowledgements

Incluso si redactar esta memoria ha sido muy costoso, creo que estas son las líneas que más me va
a costar escribir. Durante todo el desarrollo de este proyecto me he sentido rodeado de muchas
personas que me han llenado de cariño y apoyo, por lo que quiero dedicarles unas palabras.

En primer lugar, quiero agradecer a mis tutores Borja y Maitena todo el trabajo que han
realizado dirigiendo este proyecto. Personalmente, esta aventura me ha hecho crecer mucho
a nivel profesional, aunque también me ha hecho sentir muy inseguro en muchas ocasiones.
Quiero agradeceros toda la ayuda que me habéis proporcionado y que me hayáis hecho sentir
tan arropado. Ha sido un gran placer trabajar con vosotros. Muchas gracias.

Esta facultad me ha dado a personas que han resultado ser muy importantes en mi día a día.
A Jose, Ander, Olatz y Josune: gracias por todo vuestro cariño y por alegrarme los días en los
que estaba algo desanimado y decaído. Sois personas muy especiales para mí y os guardo un
aprecio muy grande. Nos vemos muy pronto.

Tampoco puedo olvidarme de todas las amistades que he hecho durante estos últimos cuatro
años. A mis amigos de Pottokopiak y de la carrera (especialmente a Diego y Maialen, mis
partners in crime), la gran familia que me ha dado la representación estudiantil y todas las
nuevas amistades que han aparecido en mi vida durante esta etapa. Gracias por haberme hecho
sentir tan querido. Ha sido una maravilla poder compartir este tiempo con vosotros.

Por último, quiero dirigirme a tres personas que son muy importantes para mí. Gracias por
ser un pilar en mi vida y, sobre todo, por tener el valor de aguantarme todos los días. Aunque
no vivamos juntos, nunca nos ha faltado una llamada nocturna para contarnos lo duro y cansado
que ha sido el día y poder quejarnos (un poco por vicio) de todo lo que nos pasa. Gracias por
haber confiado y creído en mí siempre, incluso cuando ni yo mismo lo he hecho. Gracias a mi
madre, mi padre y mi hermano por ser ese sitio al que poder escapar cuando el estrés del día a
día me tiene agobiado y simplemente necesito un abrazo. Os quiero.

Abstract

Cancer is a collection of genetic diseases based on the uncontrollable division of cells and
their spreading into surrounding tissues, caused by changes in DNA. This process leads to the
overcrowding of altered cells that form a mass known as tumor. Nevertheless, all cells in a
particular tumor do not have the same characteristics as tumors are formed by diverse clones
with different mutations, and therefore different properties and behaviour. As a consequence, this
intratumoral heterogeneity entails a problem in regard to the diagnosis and medical treatments
that can help to manage the disease, potentially resulting in the failure of therapies and the
possible propagation of carcinogenic cells to other organs or tissues, which is known as metastasis.
Therefore, the development of methods to study the intratumoral heterogeneity are a hot research
topic. This project aims at providing a tool to help researchers to easily simulate tumor data
and analyze the results of their approaches for studying the composition and the evolutionary
history of tumors.

iii

Contents

Contents v

List of Figures vii

List of Tables viii

List of Algorithms ix

1 Introduction 1
1.1 The Clonal Deconvolution and Evolution Problem 1

1.1.1 The Clonal Deconvolution Problem . 2
1.1.2 Tumor phylogeny reconstruction . 3

1.2 State-of-the-art tools for studying the ITH and tumor phylogenies 3
1.3 Design principles of GeRnika . 4

2 Project Management 5
2.1 Aim of the project . 5
2.2 Definition of work packages and tasks . 5
2.3 Risk management . 8
2.4 Time estimation and deviation analysis . 8

2.4.1 Time deviation for method implementation 8
2.4.2 Time deviation for documentation . 9

3 Statistical and Computational Methods 11
3.1 Notation . 11

3.1.1 Numbers, vectors and matrices . 11
3.1.2 Phylogenetic trees and mutations . 11

3.2 Simulation of tumor data . 12
3.2.1 Tumor model . 12
3.2.2 Sampling model . 14
3.2.3 Sequencing noise model . 14

3.3 Visualization of phylogenetic trees . 15
3.4 Comparison of tumor phylogeny . 17

3.4.1 Equal phylogenetic trees . 17
3.4.2 Common subtrees . 17
3.4.3 Consensus tree . 18
3.4.4 Distances . 19

4 Package Structure 21
4.1 The source code of GeRnika . 21

4.1.1 The distribution . 21
4.1.2 The exported methods . 22

v

vi CONTENTS

4.1.3 The Phylotree class . 25
4.2 Vignettes . 25
4.3 External data . 26

4.3.1 Exported data . 26
4.3.2 Raw data . 26

5 Use Case: Analysis of the Effect of the Parameters in the Simulation 27
Step 1: Simulating tumor data . 27

The effect of k . 27
The effect of the evolution model . 28
The effect of noise . 29

Step 2: Visualizing phylogenetic trees . 33
Step 3: Comparing and combining different phylogenetic trees 36

The equals method . 38
The find_common_subtrees method . 38
The combine_trees method . 40

Conclusions and Future Work 45
General conclusions . 45
Future work . 45

Learning tree distributions: another approach for solving the CDEP 46
Lessons learned . 46

Appendix 47

Bibliography 75

List of Figures

1.1 The VAFFP formulation . 2
1.2 Phylogenetic tree of 10 nodes . 3

2.1 Simplified Gantt diagram of the project . 7
2.2 Task dependency graph of the project . 7

3.1 Example of calculating an associated B to T . 13
3.2 Examples of equal and unequal phylogenetic trees 17
3.3 Example of the common subtrees between two phylogenetic trees 18
3.4 Example of the consensus tree between two phylogenetic trees 19
3.5 Example of calculating distance between two phylogenetic trees 20

4.1 The dependencies among the source files of GeRnika. 22

5.1 The effect of parameter K. 28
5.2 The effect of the evolution model. 30
5.3 The effect of noise. 32
5.4 The evolution of the error in VAF values based on the read depth sequencing values. 34
5.5 Phylogenetic tree composed by 5 nodes . 35
5.6 Phylogenetic tree composed by 5 nodes with tags . 36
5.7 Visualizing phylotree_real, phylotree_grasp and phylotree_opt. 37
5.8 The common subtrees between phylotree_real and phylotree_grasp 38
5.9 The common subtrees between phylotree_real and phylotree_opt 39
5.10 The common subtrees between phylotree_real and phylotree_grasp with tags . . . 39
5.11 The common subtrees between phylotree_real and phylotree_opt with tags 40
5.12 The consensus tree between phylotree_real and phylotree_grasp. 41
5.13 The consensus tree between phylotree_real and phylotree_opt. 42
5.14 The consensus tree between phylotree_real and phylotree_opt using tags and a

selected color palette. 43

vii

List of Tables

2.1 Management of the risks of the project . 8
2.2 "Estimated vs real time" comparison for each task of the project. 9

4.1 Parameters of create_instance . 23
4.2 Parameters of combine_trees . 25
4.3 The attributes of the Phylotree class . 25

viii

List of algorithms

3.1 Algorithm for calculating the B matrix . 13
3.2 Algorithm for visualizing a phylogenetic tree from B 16

ix

CHAPTER 1
Introduction

Tumors undergo various development processes through which different mutations are accumu-
lated, producing subpopulations of cells with different mutational characteristics called clones [1].
This means that the mutational profiles of the clones of a tumor are different, and therefore their
properties, e.g., their growth rate, response to treatment or their ability to metastasize, also
differ. As a result, this fact gives rise to the Intra-Tumor Heterogeneity (ITH), which hinders the
design of effective medical therapies for treating cancer [2]. Consequently, in order to improve
the understanding of the disease, researchers are studying the so-called Clonal Deconvolution
and Evolution Problem.

1.1 The Clonal Deconvolution and Evolution Problem
The Clonal Deconvolution and Evolution Problem (CDEP) seeks the identification of the
genotypes and the frequencies of the clones present in a series of samples of a tumor, as
well as the analysis of the ancestral relations among them. Finding out the composition and
the evolutionary history of a tumor eases the design of medical treatments adapted to the
particularities of the clones of that particular tumor. Thus, the study of the ITH is not
only essential for a better understanding of cancer development, but also certainly helpful
for customizing efficient therapies for healing this disorder. However, the evaluation of the
algorithms for solving the CDEP presents some complications because, as approaches are usually
based on experimental data, we can not know whether their results reflect the real evolution of
a particular tumor or not.

One of the common approaches for solving the CDEP is the resolution of the Variant Allele
Frequency Factorization problem (VAFFP), introduced by [3]. According to its formulation, the
mutation frequencies observed in a series of tumor samples emerge from the combination of the
tumor clonal structure and the clone proportions present in each sample, and it is expressed by
way of a matrix decomposition procedure. Broadly speaking, each problem instance consists of
a matrix F containing the mutation frequency values in a set of samples –also known as Variant
Allele Frequency (VAF) values–, a matrix B that represents the evolutionary relationships
among the clones of the tumor and a U matrix that contains the clone proportions in each
tumor sample. Subsequently, in accordance with [3], the matrix decomposition is as follows:

F = U ·B (1.1)

Therefore, the VAFFP is based on finding a pair of matrices B and U that produce the
observed F matrix containing the VAF values of the mutations present in a series of samples of

1

1. Introduction

a tumor. This problem has been demonstrated to be a NP-complete problem [3]. Figure 1.1
shows two possible solutions for an instance of the VAFFP. In this case, two possible solutions
for the F matrix are shown below in panels a) and b). It is visible that the matrices B and U
of both solutions present different proportions and evolutionary relationships among clones for
the same F matrix.

Figure 1.1 The VAFFP formulation

M2

M1

M5M3

M4

M2

M1

M5M3 M4

M1

1

1 1
1 1 1
1 1

1
0 0

0 0
0

00

0
0

0
0 0

1
1
1
1

M4 M5M3M2

[x]Sample1

Sample2

Sample3

0.25

0.2 0.2
0.4
0 0.5

0.2 0.2
0 0

0
0 0.25

0.2
0.6][

Sample1

Sample2

Sample3

0.25

0.2 0.2
0.2
0 0.5

0.4 0.2
0 0

0
0 0.25

0.2
0.6][x

M1

1

1 1
1 0 1
1 1

1
0 0

0 0
0

00

0
0

0
0 0

1
1
1
1

M4 M5M3M2

[]

a)

b)

[
M1

1
1
1

M4

Sample1

Sample2

Sample3

M5M3M2

0.75 0.5 0
00.20.4

0.4 0.2 0 0
0.8

0.25]

Overall, solving the CDEP consists of two challenges: resolving the Clonal Deconvolution
Problem and reconstructing the phylogeny of the tumor.

1.1.1 The Clonal Deconvolution Problem

The Clonal Deconvolution Problem (CDP) aims at identifying the clones of a tumor and their
mutational pattern on the basis of several samples of that particular tumor. This problem
outputs the set of mutations found in each sample of the tumor and the estimation of the
proportion of cells that contain a particular mutation in each tumor sample, that is, the VAF
values of the mutations in that tumor. These values are obtained from the following procedure:
first one or more biopsies are sampled from the tumor, then they are sequenced using some bulk
DNA sequencing procedure, which profiles a mixture of cells from different clones [1].

The algorithms for solving the CDP can be classified into two groups: (a) exact methods
–gathering mathematical optimization and enumeration methods– and (b) probabilistic methods,
which compute probability distributions to obtain a solution for this problem[4]. Beyond the
approaches, heuristic methods are also a good choice for finding good enough solutions in a more
reasonable amount of time than the methods mentioned before.

2

1.2. State-of-the-art tools for studying the ITH and tumor phylogenies

1.1.2 Tumor phylogeny reconstruction

In addition to the study of the composition of tumors, the analysis of the ancestral relationships
among their clones is also relevant. In fact, the reconstruction of tumor phylogenies may help
identifying the development patterns of that particular tumor in order to predict the evolution of
other tumor instances. These relationships may be studied by applying phylogenetic techniques
and they can be represented by means of phylogenetic trees.

A phylogenetic tree is a branching diagram that represents the evolutionary relationships
among the clones of an organism, in this case a tumor. It is composed of nodes, representing
clones that have undergone a mutation at some point in the evolution of the tumor, and edges,
which represent the ancestral relationships among the clones [5]. The root of the phylogenetic
tree represents the clone where the first mutation of the tumor appeared: the most recent
common ancestor of all the tumor clones, also known as the founding clone.

An example of the phylogenetic tree of a tumor composed by 10 different clones may be
visualized in Figure 1.2.

Figure 1.2 Phylogenetic tree of 10 nodes

The use of phylogenetic methods is a powerful systems biology approach, as it provides
computationally tractable and robust methods for analyzing high-dimensional and heterogeneous
cancer data sets [6]. Consequently, several new tools and fresh perspectives are being developed
so as to make more realistic prognostics and customize better therapeutic treatments for cancer.

1.2 State-of-the-art tools for studying the ITH and tumor phylogenies

Numerous of the newest and most powerful tools for solving the CDEP and analyzing tumors
phylogeny are implemented and gathered in R packages. The reason for this fact is that R is
one of the leading programming languages in Bioinformatics, as it is strongly recommended for
performing statistics, data analyses and visualisations [7].

3

1. Introduction

Regarding the existing tools for solving the CDP, we may find the following R packages
among the ones that use probabilistic methods: Clomial [8] (using the Expectation-Maximization
algorithm), sciClone [9] (based on Bayesian and variational algorithms), Canopy [10] (which
applies Bayesian algorithms and Markov Chain Monte Carlo methods) and Cloe [1] (based on a
latent feature model). Note that Canopy and Cloe are able to estimate tumor phylogenies in
order to infer the evolutionary history of tumors.

Additionally, there exists only one R package with wide options for visualizing tumor
phylogenies: ClonEvol [11]. This package takes the input of a clonal deconvolution tool in order
to perform clonal orderings and visualizations in cancer sequencings. However, it does not give
the option of comparing different phylogenetic trees nor calculating the distance between them.

All in all, there is a lack of tools that allow users to visualize and compare tumor phylogenies.
Moreover, it is necessary to acquire tumor data in order to test and evaluate the performance
of the new algorithms that are being developed for studying the ITH, including the CDEP.
Consequently, the main aim of this project is to design and implement an R package capable
of simulating tumor data, visualizing tumor phylogenies by means of phylogenetic trees, and
comparing them by building consensus trees and studying their similarities. The resulting R
package of this project is called GeRnika.

1.3 Design principles of GeRnika

Regarding the principles related to the design of GeRnika, it has been implemented in order to
be fundamentally intuitive and easy to use. Furthermore, this package offers accesible methods
for simulating and analyzing tumor phylogenies by using simple commands, all in one single
package.

In order to implement all its functionalities, GeRnika integrates various packages. One of
the main principles of GeRnika is that, even if it has got some dependencies in regards to the
methods of other R packages, it has been designed for minimizing dependencies to mitigate
incompatibilities related to package versions.

Following the above, GeRnika incorporates the following packages:

• data.tree [12]: General Purpose Hierarchical Data Structure. It is used for building
phylogenetic trees through data.tree class objects.

• tidyverse [13]: Easily Install and Load the ’Tidyverse’. A collection of R packages
designed for data science.

• Diagrammer [14]: Graph/Network Visualization. It is used for creating and designing
consensus trees.

• MCMCpack [15]: Markov Chain Monte Carlo (MCMC) Package. It is applied for using
statistical models during the simulation of tumor samples.

• reshape2 [16]: A package for flexibly reshaping data. It is used for reshaping data in
order to plot diagrams.

• colorspace [17]: A Toolbox for Manipulating and Assessing Colors and Palettes. It is
used for customizing default palettes for the methods in GeRnika.

4

CHAPTER 2
Project Management

This chapter presents the planning of the project and the analysis of its evolution, as its
management will help us to focus on the work that matters, maintaining under control any
deviation that may arise during the project’s development.

2.1 Aim of the project
In order to test the algorithms for solving the CDEP and analyzing tumors phylogeny, the
goal of this project is to design and implement an R package capable of simulating tumor data,
visualizing it by means of phylogenetic tree and comparing different tumor phylogenies.

We expect this tool to be useful for researches related to the solution of the Clonal Deconvo-
lution and Evolution Problem and the study of the ITH, contributing to investigations in the
field of oncology. It is remarkable to mention that the resulting R package will be used by the
Intelligent Systems Group research group –of the University of the Basque Country– for the
analysis of a real case of a cancer diagnosis provided by Biodonostia.

2.2 Definition of work packages and tasks
In order to achieve the aim of this project, we need to describe the tasks to fulfill during its
lifetime. We define the following tasks, classified into the work packages mentioned below.
Management of the project (WP1): This involves all the transversal tasks of the project related
to its management.

• Meetings (T1.1): The celebration of periodical meetings with the directors of the thesis
to manage the project. Estimated time: 10h.

• Git repository (T1.2): The creation and the maintenance of a Git repository with all the
versions of the project. Estimated time: 5h.

• Project planning (T1.3): The definition of the tasks and the methodologies used during
the project’s lifetime. Estimated time: 5h.

Preliminary study (WP2): This is focused on gaining a robust theoretical base around some of
the core concepts of the project.

5

2. Project Management

• Biology documentation (T2.1): The general rules of mutations and phylogeny. Estimated
time: 10h.

• CDP documentation (T2.2): The theoretical basis of the CDP and how it is formulated.
Estimated time: 10h.

• R package documentation (T2.3): How an R package is structured and how it may be
implemented. Estimated time: 10h.

Implementation of methods (WP3): The implementation of the methods of GeRnika.

• Simulation (T3.1): The methods related to the simulation of tumor data were already
implemented by the directors of the thesis. This task is based on the adaptation of the
previously implemented methods to append them to GeRnika. Estimated time: 10h.

• Visualization (T3.1): Design, implementation and evaluation of methods for visualizing
the phylogenetic tree of the sample of a tumor. Estimated time: 40h.

• Comparison (T3.2): Design, implementation and evaluation of methods for comparing
phylogenetic trees and finding their common subtrees. Estimated time: 50h.

• Consensus (T3.3): Design, implementation and evaluation of methods for creating and
rendering consensus phylogenetic trees. Estimated time: 50h.

Implementation and structure of the package (WP4): This collects all the tasks related to the
implementation of the resulting R package.

• Structure (T4.1): Designing an efficient structure for the package. Estimated time: 5h.

• Classification (T4.2): The classification of the methods implemented for the project’s final
product (i.e., defining the methods useful for users, the ones that are just auxiliary for
other methods, etc.). Estimated time: 5h.

Documentation (WP5): The creation of the documentation of the project and GeRnika

• Documentation of the thesis (T5.1): The writing of the document with all the aspects
related to the theoretical basis of the project and its development process. Estimated time:
25h.

• Package documentation (T5.2): The generation of the documentation that will be useful
for the future users of the resulting R package (ie.: the vignettes of the package, including
the experimentation of the methods in the package). Estimated time: 65h.

It is necessary to take into account that the methods related to the simulation of tumor data
were already implemented by the directors of the thesis, so we do not need to take into account
the task of implementing them in WP2.

With this in mind, the planning for the work packages described above is depicted in Figure
2.1.

6

2.2. Definition of work packages and tasks

Figure 2.1 Simplified Gantt diagram of the project

Once the work packages and the tasks of the project have been defined, the dependencies
among them may be visualized in Figure 2.2, which refers to the task dependency graph of the
project.

Figure 2.2 Task dependency graph of the project

7

2. Project Management

2.3 Risk management
The aim of risk management is to identify potential problems that may occur during the project’s
lifteime. To manage these risks, we will try to study their likelihood of taking place and we will
build strategies for mitigating them before they are triggered. Table 2.1 shows the risks that
have been identificated, the analysis of their impact and the actions we have taken for mitigating
them.
ID Risk description Effect Likelihood Impact Mitigating action

1

The theoretical base
around the core concepts
of the project may not be
completely understood

The methods of
the package would
not be correctly
implemented

Medium High
Asking every single
doubt to the advisors
of the thesis

2

There may exist
incompabilities among
the versions of the packages
used in the project.

We would not be
able to use the methods
of some packages

Low Medium

Searching for other
packages that gather
similar methods
and do not present
incompatibilities

3
There may come another
lockdown due to the
COVID-19 pandemic

We would not be
able to access the
resources of the
faculty for
developing the project.

Medium Medium

Getting installed the
software that is needed
for the development of
the package

4 The author of the thesis or
the advisors may be confined

We would not be able
to celebrate meetings
in person

Medium Low

Searching for a stable
meeting platform apt
for at least three
people

Table 2.1: Management of the risks of the project

This way, in case any of the previously mentioned risks arise we will be ready to respond to
it in order to ensure our project’s success.

2.4 Time estimation and deviation analysis
One of the most important assignments of a project’s planning is making realistic estimations
of the time each of its tasks needs to be fulfilled. Table 2.2 shows the comparison between the
estimated time for the tasks of the project and the time they ended up taking.

As the table shows, there are a few differences between the estimated time for some tasks
and the time they finally ended up taking. Next, we will explain the reasons that led to these
time deviations.

2.4.1 Time deviation for method implementation
As it is represented in Table 2.2, the design and the implementation of the methods for visualizing
and comparing phylogenetic trees took less time than it was predicted. The reason for this is
that, by using the data.tree package it was really intuitive to create the phylogenetic trees of
tumor samples.

Nevertheless, it is remarkable that the methods for building consensus trees took more
time than we expected. This is because we expent much time looking for a tool capable of
creating complex graphs while maintaining their interpretability. At first, we decided to use
the igraph package, as it offers many simple methods for visualizing complex graphs. However,
as the resulting consensus trees were not really intuitive to be interpreted, we decided to use
DiagrammeR, which took more time as the graphs originated by this tool follow a messy logic
and are hard to build.

8

2.4. Time estimation and deviation analysis

Estimation (h) Real (h)
PROJECT MANAGEMENT
Meetings 10 10
Git Repository 5 5
Planning 5 5
PRELIMINARY STUDY
Biology Doc 10 10
CDP Doc 10 10
R package doc 10 10
METHOD IMPLEMENTATION
Simulation 10 10
Visualization 40 35
Comparison 50 30
Consensus 50 70
PACKAGE IMPLEMENTATION
Structure 5 5
Classification 5 5
DOCUMENTATION
Memory of the Thesis 25 25
Documentation of the Package 65 75
Total 300 305

Table 2.2: "Estimated vs real time" comparison for each task of the project.

2.4.2 Time deviation for documentation
Table 2.2 shows that the creation of the documentation of the package took more time than
we firstly anticipated. The reason for this is that, as our aim is to publish the resulting R
package of this project, we were compelled to take special care of the resulting vignettes and the
documentation of the methods gathered in GeRnika. The purpose of this fact was to make an
easy understanding documentation for the future users of the package.

9

CHAPTER 3
Statistical and Computational Methods

In the previous chapters we introduced the need of a tool capable of simulating tumor data and
analyzing the phylogeny of tumors by means of phylogenetic trees. This chapter explains the
algorithms behind the implementation of the different functionalities offered by GeRnika.

Firstly, we will explain our approach for simulating tumor data. Then, we will present
the logical basis of phylogenetic trees representing the ancestral relations between the clonal
subpopulations present. Finally, we will describe a set of techniques for comparing phylogenies.

3.1 Notation
Before going ahead with the explanations of the algorithms in which our methods are based, we
will introduce the notation used to describe them.

3.1.1 Numbers, vectors and matrices
Unbolded lowercase x represents a single number, boldface lowercase x represents a vector, and
capital boldface X represents a matrix.

Each element in a vector is represented with a subscript that denotes its position in the
vector. For instance, xi refers to the i-th element in vector x.

Similarly, an individual element of a matrix is represented with two subscripts denoting
the row and column indeces of the element in the matrix. For example, xij corresponds to the
element in the i-th row and j-th column in matrix X. On another note, the i-th row entry of a
matrix X is represented as xi. and the j-th column of its entry as x.j .

3.1.2 Phylogenetic trees and mutations
A clonal tree T that represents the development of a tumor with n mutations is a rooted, directed
tree on an n-sized vertex set VT = {v1, ..., vn} where vi corresponds to the i-th vertex or clone.
An edge from vertex vj to vertex vk represents a direct ancestral relationship (vj being the
parent of vi) and is denoted as vj → vk. The edges of T are collected on an n− 1-sized edge set
ET .

The set of n mutations in a tumor is denoted as M = {M1, ...,Mn}, where each subscript
denotes the mutation index. As there is a one-to-one correspondence between clones and
mutations, we can alternatively represent the set of vertices or clones in the tree as either
VT = {v1, ..., vn} or M = {M1, ...,Mn}.

11

3. Statistical and Computational Methods

Following, given a clonal tree T , let us define the function P : VT → {VT , ∅}, so that P(vi)
refers to the parent node of vi. Likewise, let us define another function K : VT → P(VT), so that
K(vi) refers to the set of children nodes of vi.

Finally, let Θn be the space of phylogenetic trees of size n. Let us then define one last
function R : θn → {v1, ...vn}, so that R(T ∈ Θn) denotes the root node of T .

3.2 Simulation of tumor data

Essentially, each instance of a tumor simulation consists of a F matrix containing mutation
frequency values in a set of samples. In order to build F , we will be using aB matrix, representing
the phylogeny of the tumor, and a U matrix, which contains the clone proportions in each
sample of that particular tumor [4].

This algorithm makes use of three models in order to simulate the previously mentioned
matrices: a tumor model simulating the evolutionary history and the current clonal state of the
tumor, a sampling model representing the tumor sampling process and a sequencing noise model
that adds sequencing noise to the error-free initial VAF values contained in the F matrix.

3.2.1 Tumor model

The tumor model generates a topology T and outputs its associated matrix B, jointly with its
clone proportions c and the tumor blend at the moment of the sampling.

3.2.1.1 Calculation of the B matrix

Given a number of n mutations, the tumor model iteratively generates a random topology T
(which represents the phylogenetic tree of the tumor) with n nodes. To do this, the root node of
T is set, with a random mutation as its identifier. Then, each remaining mutation is attached as
a new child to an already existing node in T . Additionally, we need to take into account that
this model follows two assumptions. On the one hand, we assume that all the clones present
in a tumor arise from a single mutation or clone. On the other hand, the output of the model
satisfies the Infinite Sites Assumption (ISA), whereby a particular mutation may arise only once
in the same tumor, and that mutation can not be lost. Consequently, each new node attached
to T inherits all the mutations present in its parent node.

Regarding the attachment of new nodes to the tree, the probability of the nodes in T of
being chosen as parent nodes for the new ones is controlled by the topology parameter k. This
parameter determines how branchy the topology is. Therefore, as this parameter takes small
values, the topology T will be more branched, while the topology will get more linear for bigger
values of k. Setting k to 1 generates a completely random topology. Once T is generated, an
associated B matrix that represents it is calculated.

B is a n x n binary clone genotype matrix that represents the mutations present in each
clone of a particular tumor. Through this, each row bi. represents the mutations present in clone
vi. According to its interpretation, we conclude that mutation Mj is present in clone vi when
bij = 1. Note that, as our model follows the ISA, the B matrix of a tumor will have a column
composed by all ones corresponding to the founding clone. The process for generating B is
described in Algorithm 3.1. An example of the calculation of an associated B to T is presented
in Figure 3.1.

12

3.2. Simulation of tumor data

Algorithm 1 Calculate B
Input T
Output B
n := size(T)
Initialize identity matrix Bn

for i in 1:n do
for j in the indeces of the descendant nodes of vi do

bj,i := 1

end
end

Algoritmo 3.1: Algorithm for calculating the B matrix

Figure 3.1 Example of calculating an associated B to T

 0 1 0 1

 1 0 0 1

 1 0 1 1

 0 0 0 1

4

1 2

3

 T

B

3.2.1.2 Simulation of the clone proportions c

Once T has been generated, the clone proportions of the tumor at the moment of sampling are
simulated. To simulate these proportions, the model samples a Dirichlet distribution in each
multifurcation of T . For example, for a clone vi with descendants vj and vk, our model will draw
a sample(xi, xj , xk) that represents the proportions of those clones from Dir(αi, αj , αk). After
that, the proportions of the internal nodes of the tree are scaled to the original proportion of
the parent clone, so the sum of the proportions of all the clones in T is one.

In regards to the parameters of the Dirichlet distribution, these depend on the evolution
model we assume is followed by the tumor, considering positive selection-driven evolution and
neutral evolution. Positive selection-driven evolution involves some mutations having a growth
advantage compared to others. Contrarily, neutral evolution entails that no mutations provide
fitness advantage and, therefore, different clone subpopulations are present in similar proportions.
With this in mind, the α parameters for the Dirichlet distribution have been set to α = 0.3 for

13

3. Statistical and Computational Methods

the neutral evolution, and αparent = 5 for parent nodes and αchild = 10 for children nodes in
the case of positive selection-driven evolution.

3.2.1.3 Simulation of the tumor blend

Finally, the tumor blend, that is how physically mixed are the clones among them, is simulated
by modeling the tumor as a Gaussian mixture model of n components. Through this, each
componentGi represents a tumor clone and the mixture weights are given by the clone proportions
c, simulated as described in the previous section.

In this case, the variance for all components is set to 1 and their mean value is set as follows.
First, a random clone is selected and the mean value of its component is set to 1. Then, the
mean values of the remaining n− 1 components are calculated sequentially by summing d units
to the mean value of the prior component. d ∈ (0, 4} is calculated using a Beta distribution as
follows:

di,j ∼ Beta(1, 5) (3.1)

As a result, for di,j = 0 clones i and j are completely mixed, while for di,j = 4 they are
physically far from each other [4].

3.2.2 Sampling model
Using the output of the tumor model, the sampling model generates the U matrix of the tumor.
Let m and n be the number of tumor samples we want to simulate and the number of clones
of that tumor, respectively. Then, U is a m x n matrix that captures the proportion of each
clone in each sample, where uij is the fraction of clone j in sample i. In addition, the values
in U must fulfil the sum rule, which is based on the following two conditions. First, as all uij

values represent proportions, they must be non-negative. Secondly, each ui. row denotes the
clone proportions in i-th sample, so the values in each row of U must sum up to one [3].

In order to generate U , the sampling is performed in a grid-manner over the tumor Gaussian
mixture model. Let Gi and Gn be the components with the lowest and largest mean values,
respectively. Then, the sampling domain is defined by [µGi − 3 · σGi, µGn + 3 · σGn] and divided
into m + 1 equal sized bins representing the sampling sites. Thus, the 1st and mth cutpoints
are always set to µGi − 3 · σGi and µGn + 3 · σGn, respectively, and the remaining m − 2 are
calculated accordingly. Then, for each cutpoint the probability density of the components of the
mixture model is obtained and normalized to sum 1. The resulting values pi are the true tumor
clone composition values on that sample. Finally, in order to simulate the physical process
of collecting individual cells, the final tumor clone composition values ui. in each sample are
modeled by the following multinomial distribution:

ui. ∼M(n = 100,p = pi) (3.2)

Note that setting relatively low values for n reduces the number of decimals in the values
of U . In that manner, clones with really low frequencies may be modeled as absent by setting
their composition values equal to 0, which is much more realistic than taking them into account
in so low frequencies.

3.2.3 Sequencing noise model
Once we have calculated B and U , the F matrix containing the VAF values of the tumor may
be computed on the basis of the VAFFP as introduced in the matrix decomposition of Equation

14

3.3. Visualization of phylogenetic trees

(1.1). As mentioned before, let us have m samples from a given tumor and we sequence them.
Now, let n be the number of mutations identified in at least one sample of the tumor. Then, F is
a m x n matrix, in which fij corresponds to the frequency of mutation j in sample i. This third
model adds sequencing noise to the fij values and builds a noisy F n matrix. Noise is simulated
at the level of the sequencing depth, which refers to the average number of reads that map to
the same part of the genome µsd. In order to do this, the sequencing depth r at the genomic
position where Mj occurs in sample i is simulated using a negative binomial distribution with
parameters µ = µsd and α = 5:

rij ∼ NB(µ = µsd, α = 5) (3.3)

The number of reads that support the alternate allele ra
ij is modeled by the following binomial

distribution:

ra
ij ∼ B(n = rij , p = fij). (3.4)

Then, we simulate Illumina mismatch errors, which are known to be around 0.1%. In order
to simulate its effect on the VAF values, we estimate the number of reads ra′

ij that contain a
different allele as a result of a sequencing error as:

ra′
ij ∼ B(n = ra

ij , p = 0.001) (3.5)

Then, we estimate the number of reads rr′
ij of the alternate allele. This parameter represents

the reads that contain the reference nucleotide but are read with the alternate allele as a result
of this error. Let us imagine that there is one genomic position where the unaltered cells have
an A but in some cells there is a mutation and the A changed to a T. For these unaltered cells,
with probability 0.1% a sequencing error will occur and instead of a A, one of C, G or T will be
read, all with equal chance. Therefore, 0.001

3 % of the times, reads with the mutation of interest
(in this case T) will arise from normal reads. The number of reads rr′

ij of the alternate allele is
estimated as follows:

rr′
ij ∼ B(n = rij − ra

ij , p = 0.001
3) (3.6)

Finally, the final noisy VAF values fn
ij are calculated as:

fn
ij =

ra
ij − ra′

ij + rr′
ij

rij
(3.7)

Once this process has been finished, a copy of the initial error-free VAF values are saved in
matrix F_true and the resulting error-added VAF values are contained in F . It is remarkable
that, even if our simulated data procedure follows the ISA, values in F may break this assumption
because of the process of adding noise.

3.3 Visualization of phylogenetic trees
In this section we will explain how to visualize a phylogenetic tree T from B. This procedure is
based on the interpretation of the B matrix of the tumor representing the relations among the
clonal subpopulations that compose it. It must be taken into account that this process does not
generate a new phylogenetic tree, as this is already generated and represented in the B matrix
after the CDEP has been solved.

15

3. Statistical and Computational Methods

First of all, we need to identify the root of the phylogenetic tree vr = R(T ∈ Θn); the
founding clone. As this node represents the cell were the first mutation of the tumor arose,
we can assume that it contains only that one mutation. Moreover, as we assume that tumors
have monoclonal origin, we can conclude that this clone is represented by the only row br. that
contains a single mutation, specifically the mutation present in all the clones corresponding to
the column with all ones. The row br. that represents the root of the phyogenetic tree vr in B
complies with the following condition:

n∑
j=1

brj = 1

So, if the root of the tree is represented by row br. and its mutation is contained in clone j
(brj = 1), the identifier of the root node representing the first emergent mutation in the tumor
will be j.

After setting the root node vr of the phylogenetic tree of the tumor, we will look for its
children nodes K(vr). Based on the explanation about the interpretation of the B matrix of
a tumor, the child nodes k of the root node vr must contain the same mutations as its parent
plus a new one. In other words, we can infer that vr → vk for every node vk that satisfies this
condition:

n∑
j=1

bkj − brj = 1

After finding out which are the children nodes of the root node K(vr), we will attach them
to the root node and we will repeat this process with the new added nodes. This will be done
over and over again until all the clones that compose the tumor are added to the phylogenetic
tree, completing T .

The process for obtaining T from B may be checked in Algorithm 2. This process is the
inverse of the transformation shown in Figure 3.1.

Algorithm 2 Visualization of a phylogenetic tree from B

Input: B
Output: T
root = find_root_node(B)
T = new_tree(root)
queue = empty_list()
add_element(queue, root)
Initialize identity matrix Bn

while !is_empty(queue) do
node = pop(queue)
for child in children do

attach_node(T , node, child)
add_element(queue,child)

end
end

Algoritmo 3.2: Algorithm for visualizing a phylogenetic tree from B

16

3.4. Comparison of tumor phylogeny

3.4 Comparison of tumor phylogeny
GeRnika offers different functionalities for comparing the phylogeny of tumors. These are
based on checking if phylogenetic trees are equal or not, finding the common subtrees between
phylogenetic trees and calculating the consensus tree between two phylogenetic trees. This
section explains in more detail the methods for comparing tumor phylogenies.

3.4.1 Equal phylogenetic trees
By definition, equal phylogenetic trees are composed by the same nodes, connected by the
same edges. For instance, let us have a pair of phylogenetic trees T1 and T2 representing two
different phylogenetic trees, corresponding to two different tumors that consist of the same set
of mutations. Those tumors will share the same ancestral relations between their clones if every
node vi has the same parent node vj in T1 and T2. Thus, the conditions for two phylogenetic
trees being equals are represented as follows:

VT1 = VT2

∀vi ∈ VT1 ⇒ P1(vi) = P2(vi)

For a better understanding, Figure 3.2 shows two examples of the analysis of the equivalence
of various phylogenetic trees. The first example a) shows that T1 and T2 are equal as they share
the same clones related by the same ancestral relationships. Conversely, example b) shows that
T2 and T3 are not equal because they do not share the same evolutionary history (for example,
according to T2 P(v3) = v1 while T3 describes that P(v3) = v2).

Figure 3.2 Examples of equal and unequal phylogenetic trees

4

1 2

3

 T1

4

12

3

 T2

4

21

3

 T3

a) T1 == T2 b) T2 /= T3

3.4.2 Common subtrees
Nevertheless, the fact of two phylogenetic trees not being equal does not mean that they do not
have commonalities, as they may share a set of common subtrees. Let us have the same pair of
phylogenetic trees T1 and T2 as in the previous example. The intersection T1∩T2 denotes the set

17

3. Statistical and Computational Methods

of common subtrees between T1 and T2, which are composed by the ancestral relations shared
by trees T1 and T2. On the one hand, the edges that compose T1 ∩ T2 are the common edges
that exist in both trees T1 and T2. On the other hand, in regards to the nodes that compose the
intersection T1 ∩ T2, these are the ones that are connected by the common edges between T1
and T2. Note that the intersection T1 ∩ T2 may be composed by more than one common subtree
between trees T1 and T2.

This way, the nodes and edges collected by T1 ∩ T2 comply with the condition below:

vi ∈ VT1∩T2 ⇐⇒ ∃j(vi →1 vj ∧ vi →2 vj)

Next, Figure 3.3 shows an example of the search of the common subtrees between two
phylogenetic trees. In this case, the intersection between T1 and T2 is composed by a set of two
common subtrees.

Figure 3.3 Example of the common subtrees between two phylogenetic trees

 T1 T2 T3

4

21

3

5

4

1

3

52

4

1 2

3

5

∩

3.4.3 Consensus tree

Regarding the search of the common subtrees between two clonal trees, this is not the only way
for comparing the commonalities between two different phylogenetic trees that are not equal. It
is also possible to combine two phylogenetic trees into a graph that gathers the nodes and the
edges of both of them: a consensus tree.

Let us have the same pair of phylogenetic trees T1 and T2 as in the previous examples.
The union T1 ∪ T2 denotes the consensus tree between T1 ∪ T2, which collects all the ancestral
relationships among the clones in both trees T1 and T2. The consensus tree between T1∪T2 gathers
three type of differentiated relationships between nodes: the common ancestral relationships
present in both trees T1 and T2 (i.e. the ones that compose their set of common subtrees), the
evolutionary relations of T1 that do not exist in T2 and the independent ancestral relationships

18

3.4. Comparison of tumor phylogeny

of T2. The criteria for classifying these three types of relationships between nodes is described
below:

Common relationships: vi →1 vj ∧ vi →2 vj

Independent relationships of T1: vi →1 vj ∧ vi 6→2 vj

Independent relationships of T2: vi 6→1 vj ∧ vi →2 vj

An example of the visualization of the consensus tree between two phylogenetic trees is
presented in 3.4. In this case, we have the same T1 and T2 trees as in the previous example. It
is visible that the common edges that conform the consensus tree T1 ∪ T2 are the edges that
conform the set of common subtrees T1∩T2. On the other hand, the independent edges of trees
T1 and T2 (i.e. the ones that are not present in T1 ∩ T2) are represented in different colors.

Figure 3.4 Example of the consensus tree between two phylogenetic trees

 T1 T2 T3

4

21

3

5

4

1 2

4

1 2

3

5

∩
3

5

 Independent edges of T1
 Common edges

 Independent edges of T2

3.4.4 Distances

As mentioned previously, manipulating phylogenetic trees based on similarity is essential for
many applications. As similarity search has been extensively studied, various similarity measures
have been defined, that is, different types of distances between trees. The generally accepted
similarity measures for trees in the field of phylogenetics are the Robinson-Foulds (RF) distance
[18] and the Tree Edit Distance (TED) [19]. However, it is needed to employ measures apt to
compare phylogenetic trees under the perspective of the ITH.

In this case, as we are working with rooted and directed trees, the simplest distance that we
may define is based on the quantity of independent edges of the trees that we want to compare.
For example, let us have the same pair of trees T1 and T2 as in the previous examples. The
distance between both trees based on their independent edges ddiff may be computed as the
sum of the edges of T1 that do not exist in T2 and the independent edges of T2, which is equal
to subtracting the number of common edges to the total number of different edges (considering

19

3. Statistical and Computational Methods

common edges a single one when counting the total number of edges). This distance may be
calculated as introduced in Equation (3.8).

ddiff = |ET1∪T2 | − |ET1∩T2 | (3.8)

This way, equal phylogenetic trees with the same ancestral relationships will have d = 0
distance according to our measure.

Finally, Figure 3.5 shows an example of the calculation of the distance between two phyloge-
netic trees.

Figure 3.5 Example of calculating distance between two phylogenetic trees

 T1 T2

4

21

3

5

4

1 2

3

5
| ET1⋃T2 | = 5

| ET1∩T2 | = 3

ddiff = | ET1⋃T2 | - | ET1∩T2 | = 5 - 3 = 2

20

CHAPTER 4
Package Structure

An R package must follow a clear and intuitive structure that organizes the methods gathered
in it according to a predefined logic. Structuring a package also involves defining which are the
methods that will be exported for the users’ usage and classifying the ones that will be used
only as auxiliary functions for other methods [20].

It is remarkable that, as there often exist co-dependencies among the methods in the
same package, different structures for a particular package will lead to different hierarchical
dependencies among the source files in that package. With this in mind, this chapter presents
an explanation of the hierarchical strategy that is followed by the distribution of the methods of
GeRnika. It has to be taken into account that this chapter only presents the structure of the
package, as the usage of its methods is explained in Chapter 5.

4.1 The source code of GeRnika

4.1.1 The distribution
GeRnika has been implemented as a source package. This kind of packages include particular
components, such as a DESCRIPTION file, an R/ directory containing .R files, and a data/
directory that contains a set of predefined datasets for the usage of the functionalities offered
by the package. Regarding the distribution of the source code, the first principle of making
a package is that all R code goes in the R/ directory [20]. In this case, the R/ directory of
GeRnika consists of six different .R files that collect its methods. These source files are outlined
below.

• Generate_instances.R: This file collects all the methods related to our approach for solving
the CDEP and simulating tumor data.

• Phylotree_class.R: It contains the methods for defining and instantiating Phylotree S4
class objects. The Phylotree S4 class is a structure that provides facilities for constructing
phylogenetic trees in order to analyze the evolutionary development of tumors. This class
is presented in Section 4.1.3.

• Tree.R: This file gathers the functions that create the Node structures that represent phylo-
genetic trees. It also includes the methods to compare and combine different phylogenetic
trees.

• Clone.R: Its methods are auxiliary to the functions contained in Tree.R for constructing
phylogenetic trees.

21

4. Package Structure

• Utils.R: This file contains only auxiliary functions for the rest of source files of GeRnika.

• Data.R: It contains the specifications of the predefined datasets of GeRnika, which we will
introduce later on in this chapter.

As we have mentioned before, the components of GeRnika have some dependencies among
them, subject to the structure of the package. With this in mind, taking into account the
relations among the source files of the package, the hierarchy of GeRnika is described in Figure
4.1.

Figure 4.1 The dependencies among the source files of GeRnika.

According to the hierarchy of our package, Phylotree_class.R, Tree.R andGenerate_instances.R
contain the main methods of the package, that is, the ones that are exported for the users.
Contrariwise, Utils.R and Clone.R gather the auxiliary functions for the methods exported by
the main files of the package. Finally, Data.R contains the specifications of the datasets exported
by GeRnika, which we will introduce later on in this chapter.

4.1.2 The exported methods

One of the main tasks when designing an R package is to classify its methods into two groups: the
methods that will be exported for the public access, i.e, the ones that enable the functionalities
of the package, and the auxiliary functions for the exported methods. The exported functions
of a package are the ones that we want other people to use, in other words, the ones that are
related to the problem the package is designed to solve. Thus, any functions not related to the
purpose of the package should not be exported [20].

22

4.1. The source code of GeRnika

This section describes the functions that are exported by GeRnika for simulating tumor
data and analyzing tumor phylogeny. These functions are summarized below, but their usage is
described in Chapter 5.

Create_instance.

• Description: This function simulates the instance of a tumor, using the approach described
in Section 3.2 for simulating tumor data.

• Location: Generate_instances.R
• Input:

Parameter Description Type
n Number of clones Discrete No.
m Number of samples Discrete No.
k How branchy the topology is Continuous No.
selection The evolution model followed by the tumor "positive"/"neutral"

noisy Wheter noise is added to the error-free VAF values or not
(optional, TRUE by default) . TRUE/FALSE

sequencing depth The average number of reads that map to each locus
(for noisy cases, 30.0 by default) Continuous No.

Table 4.1: Parameters of create_instance

• Output: The F , F_true, B and U matrices that represent the data of a tumor.

B_to_phylotree

• Description: This method is the constructor of Phylotree class objects on the basis of
the B matrix of a tumor sample, based on the approach described in Section 3.3.

• Location: Phylotree_class.R.
• Input: A B matrix representing the ancestral relationships among the clones of a tumor.
• Output: A Phylotree class object (see Section 4.1.3).

23

4. Package Structure

Create_phylotree

• Description: This method is the general constructor of Phylotree class objects on the
basis of its attributes.

• Location: Phylotree_class.R.
• Input: The attributes of the Phylotree class, described in Table 4.3.
• Output: A Phylotree class object.

Phylotree_to_B

• Description: This method returns the B matrix of a Phylotree class object.
• Location: Phylotree_class.R.
• Input: A Phylotree class object.
• Output: A B matrix.

Equals

• Description: This function checks if two phylogenetic trees are equal or not, based on the
approach depicted in Section 3.4.1

• Location: Tree.R.
• Input: Two Phylotree class objects.
• Output: TRUE or FALSE.

Find_common_subtrees

• Description: This function plots the common subtrees between two phylogenetic trees,
based on the approach described in Section 3.4.2.

• Location: Tree.R.
• Input: Two Phylotree class objects.
• Output: A plot and the information about the similarities and the distance between both

trees.

Combine_trees

• Description: This method builds the consensus graph between two phylogenetic trees,
based on the approach described in Section 3.4.3.

• Location: Tree.R.
• Input:

24

4.2. Vignettes

Parameter Description Type
Phylotree_1 A phylogenetic tree Phylotree
Phylotree_2 A phylogenetic tree Phylotree
palette A palette composed by 3 colours palette

Table 4.2: Parameters of combine_trees

• Output: A dgr_graph object of the DiagrammeR package. We use this class because it
gives wide options for visualizing the results of combining two phylogenetic trees into a
complex graph, in this case a consensus tree.

It is remarkable that GeRnika allows its users to plot phylogenetic trees and consensus trees
using predefined tags for tumor clones. This may be done by using the optional argument labels
= TRUE in functions find_common_subtrees, combine_trees and the generic plot method for
the Phylotree class.

4.1.3 The Phylotree class
GeRnika defines a new class, Phylotree. The Phylotree S4 class is a data structure that provides
facilities to represent phylogenetic trees in order to analyze the evolutionary development of
tumors. The composition of this class is represented in Table 4.3.

Attribute Description Type
B The square matrix containing the mutations of the clones in the tumor Matrix
clones The equivalence table of the clones in the B matrix of the tumor vector
genes The equivalence table of the genes in the tumor vector
parents The vector of the parents of the clones in the phylogenetic tree vector
tree The Node structure that represents the phylogenetic tree Node
labels The tags of the genes in the phylogenetic tree vector

Table 4.3: The attributes of the Phylotree class

Even if Phylotree class objects have quite a few attributes, the users of this package will not
need to manipulate them as these exist only to reduce the computational cost of the operations
between phylogenetic trees. The different ways for instantiating this class are described in
Chapter 5.

4.2 Vignettes
Vignettes are a long-form guide to a particular R package [20]. These are like book chapters or
academic papers that describe the problems that a particular package is designed to solve, and
then show the users how to solve them. In this case, GeRnika stores two vignettes: the paper
vignette (Appendix ??) and the usage (Appendix ??) vignette. These may be visualized using
the browseVignettes command for R.

Regarding the paper vignette, it introduces the context and the motivation for creating
the GeRnika package. It provides the instructions for installing the package, its attachment to
the user’s namespace and it explains the design principles under which the package has been
implemented.

On top of that, the usage vignette represents a demo for using GeRnika. This contains
examples to help any user to understand the usage of the functionalities offered by the package
in an easy and intuitive way.

25

4. Package Structure

Vignettes are a fundamental part of the structure of any R package, and they must be updated
regularly as the methods in the package are updated. Consequently, as new functionalities for
this package are added, new vignettes that explain how those new functionalities work will be
implemented.

4.3 External data
When implementing an R package, it is often useful to include data in it. This data may be used
for saving default values for the parameters employed in the different methods of the package
[20]. As an alternative, external data may also be included to ease the employment of the
functionalities offered by a package.

Depending on the use of the external data, we categorize it into two main groups: exported
data and raw data.

4.3.1 Exported data
Exported data is stored in a binary form in the data/ folder of the package and it is available to
the user. GeRnika stores the following datasets exported data.

• B_mats: a data.frame containing a set of 10 trios of B matrices. The purpose of saving
this dataset in GeRnika is to allow its users to use predefined B matrices for trying the
methods of the package without the need of creating new ones.

• hyperparameters: a data.frame containing the static values for the parameters used in
the methods of the package.

• palettes: a data.frame composed by 3 default palettes for the parameters used in the
methods of GeRnika.

These datasets are documented in the data.R file of the package and they may be loaded to
the local namespace of the user by using the GeRnika::«name_of_dataset» command.

4.3.2 Raw data
As another option, this package also includes non-binary Raw data [20]. This data is contained
in the inst/extdata folder of the package, and it can also be attached by the users of the package
by using the system.file command. In this case, GeRnika stores different files in its inst/extdata
folder. These include different pictures and animations used for building the vignettes of the
package.

26

CHAPTER 5
Use Case: Analysis of the Effect of the

Parameters in the Simulation

This chapter introduces an example of the use of GeRnika in R. Following, we present some
guidelines to help any user to understand the usage of the functionalities offered by the package,
which include the simulation of tumor data, the visualization of phylogenetic trees and the
comparison of tumor phylogenies by means of the approaches described in Chapter 3.

Step 1: Simulating tumor data
As explained in Section 3.2, each instance of a tumor’s simulation consists of 4 matrices: F_true
(containing the error-free VAF values), F , B and U . Tumor data is simulated through the
create_instance function. The information about its parameters and their usage may be checked
in Table 4.1. Following, this is an example of the instantiation of a tumor composed by 5 nodes
and 4 samples (setting k=0.5 and a “neutral” evolutionary model):

I <- create_instance(n=5, m=4, k=0.5, selection="neutral")

As a result, this method returns the previously mentioned set of matrices. Once we have
shown an example of the instantiation of a tumor, we will analyze the effect of changing the
values of the parameters used for its simulation.

The effect of k

k is the parameter that determines whether the topology of a simulated tumor is more or less
branched. As a result, higher k values will lead to tumors represented by branchy phylogenetic
trees, while lower values of k will produce tumors with more linear phylogenetic trees (more
information in Section 3.2.1).

The effect of bigger and smaller values for k on the phylogenetic tree of a simulated tumor is
presented below. In order to show the effect of this parameter, we will use Phylotree S4 class
objects (whose usage will be introduced later in this chapter):

First we will create two new tumor instances I1 and I2, setting k1 = 0 and k2 = 2:

I1 <- create_instance(n=5, m=4, k=0, selection="neutral")

27

5. Use Case: Analysis of the Effect of the Parameters in the Simulation

I2 <- create_instance(n=5, m=4, k=2, selection="neutral")

Then, we will instantiate two new Phylotree tree1 and tree2 class objects using the previously
simulated tumor instances:

tree1 <- B_to_phylotree(B=I1$B)
tree2 <- B_to_phylotree(B=I2$B)

Finally, we will visualize the phylogenetic trees of both tumor instances by means of the
generic plot method for the Phylotree S4 class.

plot(tree1)
plot(tree2)

Figure 5.1 The effect of parameter K.

Following the above, it is visible that the tree on the left (Tree1) is totally branchy as it is
composed by a root connected to all the leaves of the tree. On the right side we can see a linear
tree (Tree2), whose structure is conformed by two main branches.

After analyzing the effect of parameter k in the creation of a tumor instance, we will proceed
to check the difference between the clonal subpopulations of tumors depending on the evolution
model they follow.

The effect of the evolution model
This parameter depends on the evolution model we assume is followed by the tumor, considering
positive selection-driven evolution and neutral evolution (introduced in Section 3.2.1.2). These

28

Step 1: Simulating tumor data

parameters influences the proportions of the different clone subpopulations in the tumor,
contained in its U matrix.

We will create two instances Ipos and Ineu setting their evolution models to "neutral" and
"positive", respectively:

Ipos <- create_instance(n=5, m=8, k=0.5, selection="neutral")

Ineu <- create_instance(n=5, m=8, k=0.5, selection="positive")

Then, we will show the heatmaps of their U matrices by using the following functions:

U_to_heatmap <- function(U, values = TRUE)
Upos <- melt(U)
colnames(Upos) <- c("samples", "clones", "proportion")){
colnames(Upos) <- col_names
Var1 <- col_names[1]
Upos<-ggplot(Upos, aes(x=samples, y=clones, fill=proportion)) +

geom_tile(col="black") +
scale_fill_gradient(limits=c(0.0000000000001, 1)) +
theme(axis.title.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.ticks.y=element_blank())

if(values){
Upos <- Upos + geom_text(aes(label=proportion), size=4)

}
Upos

}

U_to_heatmap(Ipos$U)
U_to_heatmap(Ineu$U)

Remembering the explanation of Section 3.2.2, the U matrix of a simulated tumor instance
represents the proportion of every clone subpopulation in each particular sample of the tumor.
Regarding Figure 5.2, the first heatmap refers to the U matrix of an instance with a neutral
evolution and the second one to the U matrix of an instance with a positive selection-driven
evolution.

Consequently, we may see that, even if all the different clone subpopulations are not present
in similar proportions, almost all clones are present in all the samples of the tumor that follows
a neutral evolution model. Conversely, the second heatmap presents that some clones take the
biggest part of the tumor samples, as clone 3 provides a growth advantage whereas other clones
do not. In addition, this second heatmap shows that there are clones that are missing in more
than one tumor sample (For instance, the 5th clone is missing in all the samples of the tumor).

Once we have analyzed the difference between neutral and positive selection-driven evolution
models, we will show the results of adding noise to our simulated tumor instances.

The effect of noise
The aim of this process is to add sequencing noise to the error-free Variant Allele Frequency
(VAF) values present on the F_true matrix of our instance. Then, the resulting VAF values

29

5. Use Case: Analysis of the Effect of the Parameters in the Simulation

Figure 5.2 The effect of the evolution model.

0.59 0.47 0.34 0.12 0.08 0.01 0.01 0

0.13 0.22 0.25 0.43 0.41 0.15 0.11 0.02

0 0.01 0.01 0.11 0.22 0.54 0.71 0.85

0.01 0.03 0.06 0.14 0.17 0.24 0.17 0.13

0.27 0.27 0.34 0.2 0.12 0.06 0 0

clone1

clone2

clone3

clone4

clone5

sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8

0.25

0.50

0.75

1.00
proportion

0.75 0.45 0.19 0.07 0.01 0 0 0

0.16 0.26 0.19 0.08 0.01 0.01 0 0

0.09 0.29 0.61 0.83 0.98 0.98 0.99 0.97

0 0 0.01 0.02 0 0.01 0.01 0.03

0 0 0 0 0 0 0 0

clone1

clone2

clone3

clone4

clone5

sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8

0.25

0.50

0.75

1.00
proportion

30

Step 1: Simulating tumor data

will compose the F matrix of our tumor instance.
Now, we will show the difference between error-free and noisy instances by comparing their

F and F_true matrices. First we will create two tumor instance Ifree and Inoisy. Ifree will
not have added noise, while Inoisy will have it (depth = 5.0):

Ifree <- create_instance(n=5, m=8, k=0.5, selection="neutral", noisy=FALSE)

Inoisy <- create_instance(n=5, m=8, k=0.5, selection="positive", noisy=TRUE,
depth=5.0)

Now we will show the heatmaps that represent the difference between the F and F_true
matrices of our instances Ifree and Inoisy:

F_to_heatmap <- function(F, values = TRUE){
Fpos <- melt(F)
col_names <- c("samples", "mutations", "VAF")
colnames(Fpos) <- col_names
Var1 <- col_names[1]
Fpos<-ggplot(Fpos, aes(x=samples, y=mutations, fill=VAF)) +

geom_tile(col="black")+
scale_fill_gradient(limits=c(0.0000000000001, 1)) +
theme(axis.title.x=element_blank(),
axis.ticks.x=element_blank(),
axis.title.y=element_blank(),
axis.ticks.y=element_blank())

if(values){
Fpos <- Fpos + geom_text(aes(label=round(VAF, digits = 2)), size=4)

}
Fpos

}

F_to_heatmap(abs(Ifree$F - Ifree$F_true))
F_to_heatmap(abs(Inoisy$F - Inoisy$F_true))

The heatmaps in Figure 5.3 show the differences between the F matrix and the F_true
matrix of each instance, i.e. the noise added to the original VAF values of our tumor samples.
The first heatmap presents that there is no difference between the values present in F and
F_true, as it is the one that refers to the error-free instance. Contrarily, the second heatmap
shows that the F and F_true matrices contain different values, as a result of adding sequencing
noise to the initial error-free VAF values of our tumor instance.

It is remarkable that the create_intance method allows users to control the sequencing read
depth of a simulated instance, which has a direct influence on the resulting VAF values contained
in its matrix.

The effect of the depth sequencing

The depth sequencing (or sequencing read) is the average number of reads that map to the same
locus (section of the genome). Therefore, higher values for this parameter will produce less noise
than lower ones for the original VAF values of a tumor instance. Now we will show the evolution

31

5. Use Case: Analysis of the Effect of the Parameters in the Simulation

Figure 5.3 The effect of noise.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

mut1

mut2

mut3

mut4

mut5

sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8

0.25

0.50

0.75

1.00
VAF

0 0 0 0 0 0 0 0

0.04 0.49 0.18 0.08 0.01 0.01 0 0

0.24 0.29 0.39 0.07 0.02 0.02 0.01 0.03

0.25 0.45 0.01 0.26 0.01 0 0 0

0 0 0 0 0 0 0 0

mut1

mut2

mut3

mut4

mut5

sample1 sample2 sample3 sample4 sample5 sample6 sample7 sample8

0.25

0.50

0.75

1.00
VAF

of the produced noise-error for instances with a "neutral" and "positive" evolutionary model and
depth values between 10 and 5000. We will repeat this process with an instance composed by 10
clones and 2 samples and another one consisting of 100 clones and 10 samples:

calc_error <- function(F1, F2) {
m <- nrow(F1)
n <- nrow(F2)
error <- sum(abs(F1 - F2))/(m*n)
return(error)

}

depths <- seq(10, 5000, 10)
errors_1 <- list()

32

Step 2: Visualizing phylogenetic trees

errors_2 <- list()
errors_3 <- list()
errors_4 <- list()
for (rep in 1:500) {

F_10 <- create_instance(n=10, m=2, k=0.5, selection="positive",
noisy=TRUE, depth=depths[rep])

F_20 <- create_instance(n=10, m=2, k=0.5, selection="neutral",
noisy=TRUE, depth=depths[rep])

F_30 <- create_instance(n=100, m=10, k=0.5, selection="positive",
noisy=TRUE, depth=depths[rep])

F_40 <- create_instance(n=100, m=10, k=0.5, selection="neutral",
noisy=TRUE, depth=depths[rep])

errors_1[length(errors_1)+1] <- calc_error(F_10[["F"]], F_10[["F_true"]])
errors_2[length(errors_2)+1] <- calc_error(F_20[["F"]], F_20[["F_true"]])
errors_3[length(errors_3)+1] <- calc_error(F_30[["F"]], F_30[["F_true"]])
errors_4[length(errors_4)+1] <- calc_error(F_40[["F"]], F_40[["F_true"]])

}

median_1 <- data.frame(error=errors_1, depth=depths)
median_2 <- data.frame(error=errors_2, depth=depths)
median_3 <- data.frame(error=errors_3, depth=depths)
median_4 <- data.frame(error=errors_4, depth=depths)

color_1 = GeRnika::palette[1]
color_2 = GeRnika::palette[2]

ggplot() + geom_line(data=median_1, aes(x=depth,y=error, color="Positive"),
size=0.8, show.legend=TRUE) + geom_line(data=median_2,
aes(x=depth, y=error, color="Neutral"), size= 0.8, show.legend=TRUE)
+ labs(color="Evolution Model")

ggplot() + geom_line(data=median_3, aes(x=depth,y=error, color="Positive"),
size=0.8, show.legend=TRUE) + geom_line(data=median_4,
aes(x=depth, y=error, color="Neutral"), size=0.8, show.legend=TRUE)
+ labs(color="Evolution Model")

The results of the analysis is described in Figure 5.4. The first graphic presents the progression
of the error for a tumor instance composed by 10 mutations and 2 samples. The second graphic
shows the same progression for a tumor instance composed by 100 mutations and 10 samples. It
is visible that, both instances present a noise-error shrink as depth values get higher, whether
they follow a neutral evolutionary selection or a positive-driven one. Note that the VAF values
of the second instance are smaller and less changing than the values of the first instance.

After analyzing the effect of the different parameters for creating a tumor instance, we will
present the basis of the Phylotree S4 class.

Step 2: Visualizing phylogenetic trees
In this section, we will be using the Phylotree class for the purpose of inferring and visualizing
phylogenetic trees on the basis of simulated tumor data. The Phylotree S4 class is a structure

33

5. Use Case: Analysis of the Effect of the Parameters in the Simulation

Figure 5.4 The evolution of the error in VAF values based on the read depth sequencing values.

0.00

0.05

0.10

0.15

0 1000 2000 3000 4000 5000

depth

e
rr

o
r

Evolution Model

Neutral

Positive

0.00

0.03

0.06

0.09

0 1000 2000 3000 4000 5000

depth

e
rr

o
r

Evolution Model

Neutral

Positive

34

Step 2: Visualizing phylogenetic trees

that provides facilities for constructing phylogenetic trees in order to analyze the evolutionary
development of tumors. As every S4 class, the Phylotree class is composed by various attributes
that are essential for building the phylogenetic tree of a particular tumor instance in an optimal
way. The attributes of Phylotree class may be visualized in Table 4.1.3. The Phylotree class
is instantiated on the basis of the B matrix of a tumor as presented below.

First, we will create the instance of a tumor with 5 clones, 4 samples, k = 0.5 and sequencing
noise:

instance <- create_instance(n=5, m=4, k=0.5, selection="positive", noisy=TRUE)

Now we will instantiate a new Phylotree class object using the previously generated B:

phylotree <- B_to_phylotree(B=instance$B)

The B_to_phylotree method takes a B matrix as an argument and calculates the values for
the other attributes present in Phylotree class objects. After instantiating the new Phylotree
class object, we can visualize it using the generic method plot for this class:

plot(phylotree)

Figure 5.5 Phylogenetic tree composed by 5 nodes

Nonetheless, this is not the only way for visualizing the phylogenetic tree of a tumor. Note
that this package allows its users to instantiate and visualize Phylotree class objects using tags
for the names of the clones that compose the phylogenetic tree. This is an example about how
this can be done.

we will create a list with the tags we want to insert in our phylogenetic tree and we will use
it in order to instantiate a new Phylotree class object.

tags <- c("ATM", "BARD1", "BRCA1", "TP53", "BAP1")

phylotree <- B_to_phylotree(B=instance$B, labels=tags)

After creating the Phylotree class object, we may render it using the tags we have previously
assigned to the clones in the following way:

35

5. Use Case: Analysis of the Effect of the Parameters in the Simulation

plot(phylotree, labels=TRUE)

Figure 5.6 Phylogenetic tree composed by 5 nodes with tags

This is one of the possible methods for instantiating Phylotree class objects on the basis
of the B matrix of a tumor. However, this package also grants the option of using the general
constructor of the Phylotree S4 class for instantiating new Phylotree objects, which allows
users to give specific values to the attributes of a new Phylotree class object.

Once we have shown the usage of the methods for instantiating Phylotree class objects and
the procedures by these can be visualized, we will proceed to present the functions for comparing
the phylogeny of different tumors.

Step 3: Comparing and combining different phylogenetic trees
This package presents different functionalities for comparing the phylogeny of various phylogenetic
trees. In order to show how these capabilities work, we will use the B_mats dataset of the
GeRnika package, which contains 10 trios of B matrices based on the solution of various instances
of the Clonal Deconvolution and Evolution Problem given by the ILS and GRASP methods.
This trios consist of the following matrices:

• B_true: The real B matrix of a simulated tumor instance.

• B_Grasp: The initial solution of the ILS for finding better solutions for the problem
instance. This is generated employing a greedy randomized adaptive heuristic strategy (as
introduced by [4]).

• B_opt: The optimal solution for the instance of the CDEP, obtained from the ILS.

First, we will load the real B matrix of the simulated instance of a tumor and the B matrices
given by the ILS and the GRASP method:

B_mats <- GeRnika::B_mats

B_opt <- B_mats[[2]]$B_opt
B_real <- B_mats[[2]]$B_real

36

Step 3: Comparing and combining different phylogenetic trees

B_grasp <- B_mats[[2]]$B_grasp

Now, we will use these matrices in order to instantiate new Phylotree class objects in order
to compare them:

tags <- c("ATM", "BARD1", "BRCA1", "TP53", "BRIP1", "CDH1",
"NF1", "NBN", "PALB2", "PTEN")

phylotree_real <- B_to_phylotree(B=B_real, labels=tags)
phylotree_grasp <- B_to_phylotree(B=B_grasp,labels=tags)
phylotree_opt <- B_to_phylotree(B=B_opt, labels=tags)

plot(phylotree_real)
plot(phylotree_grasp)
plot(phylotree_opt)

Figure 5.7 Visualizing phylotree_real, phylotree_grasp and phylotree_opt.

As these three trees above are based on the solution of the same instance for the CDEP, it is
reasonable that they are quite similar. Now, we will show the different methods offered by the
GeRnika package for comparing phylogenetic trees.

37

5. Use Case: Analysis of the Effect of the Parameters in the Simulation

The equals method
If we compare the phylogenetic trees from above, it is evident that they are not equal. For
example, phylotree_real and phylotree_opt are not equal as some of the edges of phylotree_real
do not exist in phylotree_opt and the other way around.

The equivalence between two phylogenetic trees may be checked by using the equals method
as follows:

equals(phylotree_1=phylotree_real, phylotree_2=phylotree_real)
#> [1] TRUE

equals(phylotree_1=phylotree_real, phylotree_2=phylotree_opt)
#> [1] FALSE

As a result, this method returns TRUE when we compare phylotree_real with itself. However,
as phylotree_real and phylotree_opt are not equal, this method returns FALSE when we check
whether they are equal or not.

The find_common_subtrees method
In order to find the common subtrees between two phylogenetic trees, the following command
may be used:

find_common_subtrees(phylotree_1=phylotree_real, phylotree_2=phylotree_grasp)
#> Independent edges of tree1: 6
#> Independent edges of tree2: 6
#> Common edges: 3
#> Distance: 12

Figure 5.8 The common subtrees between phylotree_real and phylotree_grasp

find_common_subtrees(phylotree_1=phylotree_real, phylotree_2=phylotree_opt)
#> Independent edges of tree1: 3
#> Independent edges of tree2: 3
#> Common edges: 6
#> Distance: 6

The find_common_subtrees function renders all the common subtrees between two phy-
logenetic trees. For example, the first call of this method shows that phylotree_real and

38

Step 3: Comparing and combining different phylogenetic trees

Figure 5.9 The common subtrees between phylotree_real and phylotree_opt

phylotree_opt have a common subtree that covers the biggest part of both phylogenetic trees.
In addition, this method prints the information about the similarities and the distance between
both trees.

Furthermore, this method provides the option to render the common subtrees between two
phylogenetic trees using custom tags for their clones. This can be done in the following way:

find_common_subtrees(phylotree_1=phylotree_real, phylotree_2=phylotree_grasp,
labels=TRUE)

#> Independent edges of tree1: 6
#> Independent edges of tree2: 6
#> Common edges: 3
#> Distance: 12

Figure 5.10 The common subtrees between phylotree_real and phylotree_grasp with tags

find_common_subtrees(phylotree_1=phylotree_real, phylotree_2=phylotree_opt,
labels=TRUE)

#> Independent edges of tree1: 3
#> Independent edges of tree2: 3

39

5. Use Case: Analysis of the Effect of the Parameters in the Simulation

#> Common edges: 6
#> Distance: 6

Figure 5.11 The common subtrees between phylotree_real and phylotree_opt with tags

It is perceptible that phylotree_real is more similar to phylotree_opt than to
phylotree_grasp. As phylotree_grasp represents the initial solution of the Iterated Lo-
cal Search while phylotree_opt describes the optimal solution after performing the ILS, it is
reasonable that phylotree_opt is more similar to phylotree_true than phylotree_grasp.

The combine_trees method
GeRnika package contains a method for combining different phylogenetic trees and building their
consensus tree, through which their common edges will be distinguished from the independent
edges of each of them.

We will create the consensus tree between phylotree_real and phylotree_opt. Then, we will
build the consensus tree between phylotree_real and phylotree_grasp. As this method returns
dgr_graph class objects, we will use the render_graph method of the DiagrammeR package in
order to visualize the consensus trees:

consensus_real_grasp <- combine_trees(phylotree_1=phylotree_real,
phylotree_2=phylotree_grasp)

render_graph(consensus_real_grasp)

consensus_real_opt <- combine_trees(phylotree_1=phylotree_real,
phylotree_2=phylotree_opt)

render_graph(consensus_real_opt)

40

Step 3: Comparing and combining different phylogenetic trees

Figure 5.12 The consensus tree between phylotree_real and phylotree_grasp.

Figures 5.12 and 5.13 present the consensus tree between phylotree_real and phylotree_opt
and the consensus tree between phylotree_real and phylotree_grasp, respectively. Regarding
the trees, the nodes and the edges that compose the common subtrees between the original trees
are blue. In addition, yellow edges denote to the independent edges of the tree passed as the first
parameter of the method, while orange edges represent the independent edges of the second tree.

Additionally, GeRnika gives users the option to build consensus trees using the tags of the
clones that compose the phylogenetic trees. Moreover, it is possible to select the palette of colors
in which the edges of the consensus tree will be printed. For this purpose, the GeRnika package
offers three custom palettes to be used for its methods: "Lancet", "NEJM" and "Simpsons". The
"Simpsons" palette is used by default for the methods of GeRnika.

palette <- GeRnika::palettes["Lancet"]

consensus <- combine_trees(phylotree_1=phylotree_real,
phylotree_2=phylotree_opt, labels=TRUE,
palette=palette)

render_graph(consensus)

Note that the parameter palette of this method may take a palette –a vector containing the
hexadecimal code of various colors– composed by three colors in order to use them for building
the consensus tree.

41

5. Use Case: Analysis of the Effect of the Parameters in the Simulation

Figure 5.13 The consensus tree between phylotree_real and phylotree_opt.

The consensus tree between phylotree_real and phylotree_opt using tags and a selected
color palette.

42

Step 3: Comparing and combining different phylogenetic trees

Figure 5.14 The consensus tree between phylotree_real and phylotree_opt using tags and a
selected color palette.

43

Conclusions and Future Work

Once we have explained all the theoretical base behind the implementation of GeRnika together
with its functionalities and their usage, we will conclude this project by drawing some general
conclusions from its results. This chapter also includes the description of the future tasks for
completing and improving GeRnika and the lesson learned from this project.

General conclusions
We have designed and implemented a tool apt to simulate, visualize and compare tumor data.
As new approaches for solving the CDEP are arising, this package will allow researchers to
simulate tumor data in order to carry out the experimentation of their algorithms and evaluate
their performance. Moreover, GeRnika may be really useful for oncologists for analyzing tumor
phylogenies in order to customize specific medical treatments for removing tumors before they
metastasize. Thus, we can conclude that we have achieved the main aim of this project: to bring
in a tool that represents an advancement and a contribution to investigations in the field of
oncology.

Furthermore, this package is already available in a public Github repository, so that anybody
can download it and employ it for their projects. The instructions for installing it and attaching
it to the namespace of RStudio are included in the documentation of the package (specifically
in Appendix ??).

Future work
We have realized that there exist many techniques related to phylogenetics in order to analyze
the composition of tumors and their phylogenies. This has encouraged us to continue designing
and implementing additional methods and functionalities for GeRnika. We plan to extend the
options for visualizing and comparing different phylogenetic trees.

In regards to the improvement of the visualization of phylogenetic trees, we think that it
would be interesting to give users the option to plot phylogenetic trees with different sized nodes
depending on their proportions. For instance, clones with higher proportions may be represented
with bigger nodes in the tree and clones in lower proportions with smaller ones. On the other
hand, as mentioned in 3.8, even if there have been defined various measures for calculating the
distance between trees (e.g. the Robinson-Foulds distance and the so called Tree Edit Distance)
we have planned to design and implement other measures to compare trees under the perspective
of the ITH. It is also remarkable that we plan to publish a paper to promote the use of GeRnika
and to introduce it to the research community of the field of oncology.

We have also thought about defining different roles for the users of GeRnika as we implement
new functionalities. For instance, advanced users may be interested in analyzing deeply the
ancestral relationships among the clones that compose a phylogenetic tree by accessing to some
auxiliary functions (e.g. the get_descendants and get_ascendants methods).

45

Conclusions and Future Work

Finally, in respect of the solutions for the CDEP, we have considered to study another
approach for solving this problem by computing probability distributions on trees.

Learning tree distributions: another approach for solving the CDEP
As introduced by [21], Hidden Markov Models (HMMs) are popular models for generating
sequential data, which is the simplest form of structured data that consists of a total ordering
relation between the atomic elements of the sequence. These models have been generalized
in order to learn probability distributions on trees, being trees a form of structured data that
represent atomic entities bound by partial order relationships, such as trees in natural language,
syntax trees and phylogenetic trees. With this in mind, there exists a class of HMMs that allow
learning distributions for tree structured data: Hidden Tree Markov Models (HTMMs). HTMMs
model tree distributions by proposing the existence of a hidden generative process by a set of
unobserved Markov state random variables.

On the other hand, [22] presents another approach for learning tree structured data: Hidden
Tree Markov Networks (HTN). HTNs combine the representation power of generative models for
trees and the incremental and discriminative learning capabilities of neural networks by using a
neural architecture. As a result, these models allow to learn effective encodings of discriminative
structural knowledge using generative tree models while parallelizing their computations.

With this in mind, these models may be really useful in order to infer accurate solutions for
an instance of the CDEP on the basis of a set of good solutions for that particular instance of
the problem. Hence, we have planned to study this two types of models in order to design and
implement another approach for solving the CDEP by computing probability distributions on
trees.

Lessons learned
After analyzing the large amount of posibilities for improving and completing GeRnika, we have
realized that we may enlarge the scope of this project as much as we want, so we can conclude
that projects are never finished, but abandoned when we run out of time to continue improving
them. Then, the lesson learned from this project is that it is necessary to make the most of the
resources we have within reach so as to develop projects that lead to more complete and useful
products.

46

Appendix

Note that the last two appendices of this thesis contain the paper and usage vignettes of GeRnika.
However, it must be taken into account that these vignettes are adapted to be exported as html
format files, so as they are included as pdf format files, they have missing various images and
animations. The original html vignettes are contained in GeRnika and they may be rendered by
building the vignettes and rendering them through the build_vignettes and browse_vignettes
methods.

47

Package ‘GeRnika’
September 5, 2021

Type Package

Title Simulating, Visualizing and Comparing Tumor Evolution Data.

Version 1.0.0

Author Aitor Sánchez Ferrera, Borja Calvo Molina and Maitena Tellaetxe Abete

Maintainer Aitor Sánchez Ferrera <aitorsanchezferrera@gmail.com>

Description GeRnika is a package capable of simulating tumor data, visualizing it by means of phylo-
genetic trees and comparing different tumor phylogenies. It aims at providing re-
searchers a tool to easily simulate tumor data and analyze the results of their ap-
proaches for studying the composition and the evolutionary history of tumors.

Encoding UTF-8

LazyData true

imports data.tree, DiagrammeR, tidyverse, MCMCpack, reshape2,
markdown, knitcitations, colorspace

Depends data.tree, DiagrammeR, tidyverse, MCMCpack, reshape2,
markdown, knitcitations, colorspace, R (>= 2.10)

RoxygenNote 7.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

License GPL (>= 3)

R topics documented:
B_mats . 2
B_to_phylotree . 2
combine_trees . 3
create_instance . 5
create_phylotree . 6
equals . 7
find_common_subtrees . 8
hyperparameters . 9
palettes . 10
Phylotree_class . 10
phylotree_to_B . 11

Index 12

1

2 B_to_phylotree

B_mats B_mats is a set of 10 trios of B matrices

Description

A list of lists composed by 10 trios of B matrices; a real B matrix, a B matrix got by using the
Grasp method and another one as a result of an ILS. These matrices can be used as examples for
the methods of GeRnika.

Usage

B_mats

Format

A list of lists composed by 10 trios of B matrices

Trio 1 B_real, B_grasp and B_opt (matrices composed by 5 clones)
Trio 2 B_real, B_grasp and B_opt (matrices composed by 5 clones)
Trio 3 B_real, B_grasp and B_opt (matrices composed by 5 clones)
Trio 4 B_real, B_grasp and B_opt (matrices composed by 5 clones)
Trio 5 B_real, B_grasp and B_opt (matrices composed by 5 clones)
Trio 6 B_real, B_grasp and B_opt (matrices composed by 10 clones)
Trio 7 B_real, B_grasp and B_opt (matrices composed by 10 clones)
Trio 8 B_real, B_grasp and B_opt (matrices composed by 10 clones)
Trio 9 B_real, B_grasp and B_opt (matrices composed by 10 clones)
Trio 10 B_real, B_grasp and B_opt (matrices composed by 10 clones)

Source

Local source; as a result of the Grasp and the ILS methods used for solving the Clonal Deconvolu-
tion and Evolution Problem (CDEP).

B_to_phylotree Create a Phylotree object from a B matrix.

Description

Creates a Phylotree class object from a B matrix.

Usage

B_to_phylotree(B, labels = NA)

Arguments

B The Matrix that represents the clones in the phylogenetic tree.
labels Optional argument that refers to the vector containing the tags of the genes of

the phylogenetic tree. NA by default.

combine_trees 3

Value

A Phylotree class object.

Examples

Create a B matrix instance
composed by 10 subpopulations of
clones
B <- create_instance(

n = 10,
m = 4,
k = 1,
selection = "neutral")$B

Create a new 'Phylotree' object
on the basis of the B matrix
phylotree <- B_to_phylotree(B = B)

Generate the tags for the genes of
the phyogenetic tree
tags <- LETTERS[1:nrow(B)]

Create a new 'Phylotree' object
on the basis of the B matrix and
the list of tags
phylotree_tags <- B_to_phylotree(

B = B,
labels = tags)

combine_trees Get consensus tree between two phylogenetic trees

Description

Returns a graph representing the consensus tree between two phylogenetic trees.

Usage

combine_trees(
phylotree_1,
phylotree_2,
palette = GeRnika::palettes$Simpsons,
labels = FALSE

)

Arguments

phylotree_1 A Phylotree class object.
phylotree_2 A Phylotree class object.
palette a vector composed by the hexadecimal code of three colors. "The Simpsons"

palette used as default.
labels A boolean, if TRUE the resulting graph will be plotted with the tags of the genes

in the phylogenetic trees instead of their mutation index. FALSE by default.

4 combine_trees

Value

a dgr_graph object representing the consensus graph between phylotree_1 phylotree_2.

Examples

Load the predefined B matrices of the package
B_mats <- GeRnika::B_mats

B_real <- B_mats[[2]]$B_real
B_opt <- B_mats[[2]]$B_opt

Generate the tags for the genes of
the phyogenetic tree
tags <- LETTERS[1:nrow(B)]

Instantiate two \code{Phylotree} class objects on
the basis of the B matrices
phylotree_real <- B_to_phylotree(

B = B_real,
labels = tags)

phylotree_opt <- B_to_phylotree(
B = B_opt,
labels = tags)

Create the consensus tree between phylotree_real
and phylotree_opt
consensus <- combine_trees(

phylotree_1 = phylotree_real,
phylotree_2 = phylotree_opt)

Render the consensus tree
render_graph(consensus)

Load another palette
palette_1 <- GeRnika::palette["Lancet"]

Create the consensus tree between phylotree_real
and phylotree_opt using tags and another palette
consensus_tag <- combine_trees(

phylotree_1 = phylotree_real,
phylotree_2 = phylotree_opt
palette = palette_1
labels = TRUE)

Render the consensus tree using tags and the
selected palette
render(consensus_tag)

create_instance 5

create_instance Simulate tumor data

Description

Simulates a tumor instance, composed by F, F_true, B and U.

Usage

create_instance(
n,
m,
k,
selection,
noisy = TRUE,
depth = 30,
seed = Sys.time()

)

Arguments

n the number of clones.

m the number of samples.

k continuous number how branchy the created topology is

selection character that specifies the clone selection. Possible values: "positive" and
"neutral"

noisy optional logical that specifies whether noise is added to values in F or not.
FALSE by default.

depth optional argument representing the read sequencing depth (for noisy cases). 30
by default.

Value

the instance of a tumor sample, composed by F, F_true, B and U .

Examples

Create an instance composed by 10 clones,
4 samples, k = 1, "neutral" selection and
with added noise and depth = 500
I1 <- create_instance(

n = 10,
m = 4,
k = 1,
selection = "neutral",
depth = 500)

Create an instance composed by 50 clones,
10 samples, k = 5, "positive" selection with
added noise and depth = 500

6 create_phylotree

I2 <- create_instance(
n = 50,
m = 10,
k = 5,
selection = "positive",
noisy = TRUE,
depth = 500)

Create an instance composed by 100 clones,
25 samples, k = 0, "positive" selection without
added noise
I3 <- create_instance(

n = 100,
m = 25,
k = 0,
selection = "positive",
noisy = FALSE)

create_phylotree Create a Phylotree object.

Description

The general constructor of the Phylotree S4 class.

Usage

create_phylotree(B, clones, genes, parents, tree, labels = NA)

Arguments

B The Matrix that represents the clones in the phylogenetic tree.

clones numeric vector representing the clones in the phylogenetic tree.

genes numeric vector representing the genes in the phylogenetic tree.

parents numeric vector representing the parents the clones in the phylogenetic tree.

tree data.tree object containing the tree structure of the phylogenetic tree.

labels Optional argument that refers to the list containing the tags of the genes of the
phylogenetic tree. NA by default.

Value

A Phylotree class object.

Examples

Create a B matrix instance
composed by 10 subpopulations of
clones
B <- create_instance(

n = 10,
m = 4,

equals 7

k = 1,
selection = "neutral")$B

Create a new 'Phylotree' object
on the basis of the B matrix
phylotree1 <- B_to_phylotree(B = B)

Create a new 'Phylotree' object
with the general constructor of
the class
phylotree2 <- create_phylotree(

B = B,
clones = tree@clones,
genes = tree@genes,
parents = tree@parents,
tree = tree@tree)

Generate the tags for the genes of
the phyogenetic tree
tags <- LETTERS[1:nrow(B)]

Create a new 'Phylotree' object
with the general constructor of
the class using tags
phylotree_tags <- create_phylotree(

B = B,
clones = tree@clones,
genes = tree@genes,
parents = tree@parents,
tree = tree@tree,
labels = tags)

equals Check if two phylogenetic trees are equal

Description

Checks wether two phylogenetc trees are equivalent or not.

Usage

equals(phylotree_1, phylotree_2)

Arguments

phylotree_1 A Phylotree class object.
phylotree_2 A Phylotree class object.

Value

A boolean, TRUE if they are equal and FALSE if not.

8 find_common_subtrees

Examples

Load the predefined B matrices of the package
B_mats <- GeRnika::B_mats

B_real <- B_mats[[2]]$B_real
B_opt <- B_mats[[2]]$B_opt

Instantiate two \code{Phylotree} class objects on
the basis of the B matrices
phylotree_real <- B_to_phylotree(

B = B_real)

phylotree_opt <- B_to_phylotree(
B = B_opt)

equals(phylotree_real, phylotree_opt)

find_common_subtrees find the set of common subtrees between two phylogenetic trees.

Description

Plots the common subtrees between two phylogenetic trees and prints the information about their
similarities and their differences.

Usage

find_common_subtrees(phylotree_1, phylotree_2, labels = FALSE)

Arguments

phylotree_1 A Phylotree class object.

phylotree_2 A Phylotree class object.

labels A boolean, if TRUE the rendered graph will be plotted with the tags of the genes
in the phylogenetic trees instead of their gene index. FALSE by default.

Examples

Load the predefined B matrices of the package
B_mats <- GeRnika::B_mats

B_real <- B_mats[[2]]$B_real
B_opt <- B_mats[[2]]$B_opt

Generate the tags for the genes of
the phyogenetic tree
tags <- LETTERS[1:nrow(B)]

hyperparameters 9

Instantiate two \code{Phylotree} class objects on
the basis of the B matrices using tags
phylotree_real <- B_to_phylotree(

B = B_real,
labels = tags)

phylotree_opt <- B_to_phylotree(
B = B_opt,
labels = tags)

find the set of common subtrees between both
phylogenetic trees
find_common_subtrees(

phylotree_1 = phylotree_real,
phylotree_2 = phylotree_opt)

find the set of common subtrees between both
phylogenetic trees using tags
find_common_subtrees(

phylotree_1 = phylotree_real,
phylotree_2 = phylotree_opt,
labels = TRUE)

hyperparameters hyperparameters for the methods of GeRnika

Description

A data.frame containing the static values for the parameters used in the methods of GeRnika.

Usage

hyperparameters

Format

A data.frame contaning different static values.

Overdispersion value = 0.5

Depth_sequencing value = 30.0

Source

local source; inspired on the optimal parameters for the methods of GeRnika.

10 Phylotree_class

palettes palettes for the methods of GeRnika

Description

A data.frame containing 3 default palettes for the parameters used in the methods of GeRnika.

Usage

palettes

Format

A data.frame contaning 3 palettes

Lancet #0099B444, #AD002A77, #42B540FF

NEJM #FFDC9177, #7876B188, #EE4C97FF

Simpsons #FED43966, #FD744688, #197EC0FF

Source

Lancet, NEJM and The Simpsons palettes; inspired by the plots in Lancet journals, the plots in the
New England Journal of Medicine and the colors used in the TV show The Simpsons, respectively
(taken from ggsci package: https://github.com/road2stat/ggsci).

Phylotree_class Phylotree_class S4 class to represent phylogenetic trees.

Description

Phylotree_class S4 class to represent phylogenetic trees.

Slots

B the data.frame containing the square matrix that represents the clones of the phylogenetic tree.

clones a vector representing the equivalence table of the clones in the phylogenetic tree.

genes a vector representing the equivalence table of the genes in the phylogenetic tree.

parents a vector representing the parents of the clones in the phylogenetic tree.

tree a Node class object representing the phylogenetic tree.

labels a vector representing the tags of the genes in the phylogenetic tree.

phylotree_to_B 11

phylotree_to_B Get B from Phylotree

Description

Returns the B matrix of a Phylotree object.

Usage

phylotree_to_B(phylotree)

Arguments

phylotree a phylotree class object.

Value

A data.frame representing the B matrix of the phylogenetic tree.

Examples

Get the B matrix of a tumor instance
composed by 10 subpopulations of
clones
B <- create_instance(10, 4, 1, 1)$B

Create a new 'Phylotree' object
on the basis of the B matrix
phylotree <- B_to_phylotree(B)

Get the B matrix of the phyotree
b1 <- phylotree_to_B(phylotree)

Index

∗ datasets
B_mats, 2
hyperparameters, 9
palettes, 10

B_mats, 2
B_to_phylotree, 2

combine_trees, 3
create_instance, 5
create_phylotree, 6

equals, 7

find_common_subtrees, 8

hyperparameters, 9

palettes, 10
Phylotree_class, 10
phylotree_to_B, 11

12

Bibliography

[1] Francesco Marass, Florent Mouliere, Ke Yuan, Nitzan Rosenfeld, and Florian Markowetz. A
phylogenetic latent feature model for clonal deconvolution. The Annals of Applied Statistics,
10:2377–2404, 2016. See pages 1, 2, and 4.

[2] Rebecca Burrell, Nicholas Mcgranahan, Jiri Bartek, and Charles Swanton. The causes and con-
sequences of genetic heterogeneity in cancer evolution. Nature, 501:338–45, 09 2013. See page
1.

[3] Mohammed El-Kebir, Layla Oesper, Hannah Acheson-Field, and Benjamin J. Raphael. Reconstruc-
tion of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics,
31(12):i62–i70, 06 2015. See pages 1, 2, and 14.

[4] Maitena Tellaetxe Abete. Metaheuristic algorithms for the clonal deconvolution problem. ADDI:
Institutional Repository, 2021. See pages 2, 12, 14, and 36.

[5] Matthew A. Myers, Gryte Satas, and Benjamin J. Raphael. Calder: Inferring phylogenetic trees
from longitudinal tumor samples. Cell Systems, 8(6):514–522, 2019. See page 3.

[6] Jason A. Somarelli, Kathryn E. Ware, Rumen Kostadinov, Jeffrey M. Robinson, Hakima Amri, Mones
Abu-Asab, Nicolaas Fourie, Rui Diogo, David Swofford, and Jeffrey P. Townsend. Phylooncology:
Understanding cancer through phylogenetic analysis. Biochimica et Biophysica Acta (BBA) - Reviews
on Cancer, 1867(2):101–108, 2017. Evolutionary principles - heterogeneity in cancer? See page 3.

[7] Sylvia Tippmann. Programming tools: Adventures with r. 2015. See page 3.
[8] Habil Zare, Junfeng Wang, Alex Hu, Kris Weber, Josh Smith, Debbie Nickerson, ChaoZhong Song,

Daniela Witten, C. Anthony Blau, and William Stafford Noble. Inferring Clonal Composition from
Multiple Sections of a Breast Cancer, 07 2014. See page 4.

[9] Christopher A. Miller, Brian S. White, Nathan D. Dees, Malachi Griffith, John S. Welch, Obi L.
Griffith, Ravi Vij, Michael H. Tomasson, Timothy A. Graubert, Matthew J. Walter, Matthew J. Ellis,
William Schierding, John F. DiPersio, Timothy J. Ley, Elaine R. Mardis, Richard K. Wilson, and
Li Ding. SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of
Tumor Evolution, 08 2014. See page 4.

[10] Yuchao Jiang, Yu Qiu, Andy J. Minn, and Nancy R. Zhang. Assessing intratumor heterogeneity and
tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing, 2016. See
page 4.

[11] White B S Foltz S M Miller C A Luo J Fields R C Maher C A Dang, H X. ClonEvol: clonal ordering
and visualization in cancer sequencing, 2017. See page 4.

[12] Facundo Munoz Markus Wamser Pierre Formont Kent Russel Noam Ross Duncan Garmonsway
Christoph Glur Russ Hyde, Chris Hammill. data.tree: General Purpose Hierarchical Data Structure,
2020. R package version 1.0.0. See page 4.

[13] RStudio Hadley Wickham. tidyverse: Easily Install and Load the ’Tidyverse’, 2021. R package
version 1.3.1. See page 4.

[14] Richard Iannone. DiagrammeR: Graph/Network Visualization, 2020. R package version 1.0.6.1. See
page 4.

[15] Jong Hee Park Ghislain Vieilledent Michael Malecki Matthew Blackwell Keith Poole Craig Reed Ben
Goodrich Ross Ihaka The R Development Core Team The R Foundation Pierre L’Ecuyer Makoto
Matsumoto Takuji Nishimura Andrew D. Martin, Kevin M. Quinn. MCMCpack: Markov Chain
Monte Carlo (MCMC) Package, 2021. R package version 1.5.0. See page 4.

75

Bibliography

[16] Hadley Wickham. reshape2: Flexibly Reshape Data: A Reboot of the Reshape Package, 2020. R
package version 1.4.4. See page 4.

[17] Achim Zeileis, Jason C. Fisher, Kurt Hornik, Ross Ihaka, Claire D. McWhite, Paul Murrell, Reto
Stauffer, and Claus O. Wilke. colorspace: A toolbox for manipulating and assessing colors and
palettes. Journal of Statistical Software, 96(1):1–49, 2020. See page 4.

[18] William H. E. Day. Optimal algorithms for comparing trees with labeled leaves. Journal of
Classification, 2(1):7–28, 1985. See page 19.

[19] Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between trees
and related problems. Society for industrial and Applied Mathematics, 18(6):1245–1262, 1989. See
page 19.

[20] Jennifer Bryan Hadley Wickham. R Packages. O’Reilly Media, 2015. See pages 21, 22, 25, and 26.
[21] Davide Bacciu and Daniele Castellana. Learning Tree Distributions by Hidden Markov Models.

Journal of Machine Learning Research, 1. See page 46.
[22] Davide Bacciu. Hidden Tree Markov Networks: Deep and Wide Learning for Structured Data.

Symposium Series on Computational Intelligence, 2017. See page 46.

76

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	The Clonal Deconvolution and Evolution Problem
	The Clonal Deconvolution Problem
	Tumor phylogeny reconstruction

	State-of-the-art tools for studying the ITH and tumor phylogenies
	Design principles of GeRnika

	Project Management
	Aim of the project
	Definition of work packages and tasks
	Risk management
	Time estimation and deviation analysis
	Time deviation for method implementation
	Time deviation for documentation

	Statistical and Computational Methods
	Notation
	Numbers, vectors and matrices
	Phylogenetic trees and mutations

	Simulation of tumor data
	Tumor model
	Sampling model
	Sequencing noise model

	Visualization of phylogenetic trees
	Comparison of tumor phylogeny
	Equal phylogenetic trees
	Common subtrees
	Consensus tree
	Distances

	Package Structure
	The source code of GeRnika
	The distribution
	The exported methods
	The Phylotree class

	Vignettes
	External data
	Exported data
	Raw data

	Use Case: Analysis of the Effect of the Parameters in the Simulation
	Step 1: Simulating tumor data
	The effect of k
	The effect of the evolution model
	The effect of noise

	Step 2: Inferring and visualizing phylogenetic trees
	Step 3: Comparing and combining different phylogenetic trees
	The equals method
	The find_common_subtrees method
	The combine_trees method

	Conclusions and Future Work
	General conclusions
	Future work
	Learning tree distributions: another approach for solving the CDEP

	Lessons learned

	Appendix
	Bibliography

