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Abstract

The following project aims to analyze the ability of Convolutional Neural Networks
(CNNs) to discriminate raw Electroencephalographic (EEG) signals for Brain-computer
interfaces (BCI), in order to develop a solid and reliable model that is capable of solving
these medical and clinical applications. The project also aims to serve as foundations for
future research projects of the UPV/EHU research group Aldapa, as well as being a start-
ing framework to apply modern techniques such as Transfer Learning or Semi-supervised
Learning.

To achieve this, this report collects and explains the mathematical and theoretical foun-
dations of the architectures and models used for the development, based on the article of
[Schirrmeister et al., 2017] and the large EEG database provided by [Kaya et al., 2018].
Following the model implementation, an experimentation is designed and tested, among
with an Hyperparameter Optimization setup for the developed model. Finally, the re-
sults show that the performance of the model depends on the subject and EEG recording
session. It also shows that some hyperparameters influence the model, for example the
optimization algorithm, but other hyperparameters barely affect the performance of the
implementation.
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1. CHAPTER

Introduction

1.1 Project overview

Brain-Computer interface (BCI) systems are a central component for medical and neuro-
logical applications. These BCI systems aim to translate the neural activity in the brain
into controllable signals for external devices, and these signals can be extracted using
Electroencephalographic (EEG) motor imagery. EEGs are an electrophysiological method
to record the electrical activity of the brain and save it digital data, which can be conse-
quently used for extracting information.

Machine Learning techniques allow extracting that information from EEG recordings of
brain activity in an end-to-end learning, that is, learning from the raw data. The inter-
est in using these techniques, in particular the use of Deep Learning and Convolutional
Neural Networks (CNN) is increasing, but a better understanding of how to design and
train CNNs into EEG decoding and how to visualize the informative EEG features is still
needed.

The aim of this project is to analyze the ability of these CNNs to discriminate raw EEG
data in order to develop a solid and reliable model that is capable of solving modern EEG-
based clinical applications. In order to achieve this, the development of the model goes
through the optimization of its hyperparameters using modern techniques. An experimen-
tation process is performed to test the performance achieved with the model architecture
and its optimal hyperparameters, among with the collection and analysis of the results,
that will be summarized in a report. A more detailed analysis of these objectives can be
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2 Introduction

found in the following section. This project also serves as a general base and reference for
future works and research projects of the UPV/EHU research group Aldapa, so they can
apply more advances techniques such as Transfer Learning or Semi-supervised Learning.

This project is structured as follows: First of all, the main theoretical and mathemati-
cal concepts concerning BCI and EEG recordings are explained. Secondly, the model’s
architecture mathematical basis are analyzed, including the usage of Machine Learning
and Deep Learning techniques and the main Neural Network model used for the project:
CNNs. Then, the model’s decisions are chosen and justified. Next, the model concrete
architecture is developed and each element of it is analyzed in detail. Following, the ex-
perimentation design is explained, among with other details such as the Hyperparameter
Optimization setup and the used hardware and software specifications. Finally, a complete
report of the results is attached and the conclusions that emerge from them are detailed.



2. CHAPTER

Project objectives report

The following chapter reports the project in a descriptive way, analyzing the project scope,
describing the project objectives, list the working packages and diagrams, the scheduling
of the project and the methodologies used for the completion of this work.

2.1 Description and objectives of the project

The general objectives of the project are to analyze the ability of neural networks to
discriminate imaginary movements recorded as electroencephalographic (EEG) data for
Brain Computer Interface (BCI) [Schirrmeister et al., 2017], given a large dataset of EEG
motor imagery dataset [Kaya et al., 2018].

This objective is subdivided into several steps, which are detailed below:

1. Documentation and research: in order to complete this project, a lot of documen-
tation and research has to be made to understand the theoretical and mathematical
foundations of the models and techniques used, as well as comprehend the type and
distribution of the required data. The main documents that is project is based on are
EEG for Brain Computer Interfaces (BCI) Machine Learning models [Schirrmeis-
ter et al., 2017] and a large EEG database for BCI [Kaya et al., 2018], among with
theoretical foundations in Machine Learning and Neural Networks, Deep Learning
and Convolutional Neural Networks, Bayesian Optimization and Hyperparameter
Tunning.

3



4 Project objectives report

2. Develop a complete and robust model: the development of a model that is capable
of compute and extract useful features from the raw data is one of the main objec-
tives of a research project. Different research has to be made from the student in
order to develop the programming skills necessary for the correct implementation
of a model with the above-mentioned characteristics.

3. Hyperparameter Optimization: extract the optimal hyperparameter configura-
tions for the different versions of the dataset, including data from different test
subjects, diverse amounts of data subsets and distinct number of classes to discrim-
inate. This optimization must be performed using novel optimization techniques,
such as the previously mentioned Bayesian Optimization.

4. Experimentation: designing a complete and reliable experiment in order to ana-
lyze the behaviour of the model given such situations is another key-point of the
developed project, as well as serve as a base for the future work performed by the
research group Aldapa. This experimentation includes validating the performance
for the different subjects, data subsets and hyperparameter configurations.

5. Results and analysis: exploring which hyperparameters influence more, discard
those that have less weight in the final results, find patterns in the optimal hyper-
parameters according to the database, which data amount is required or which data
subsets are easier to classify meant to facilitate the development of future work on
this type of data. Establishing a reference for future work and development of more
advanced techniques is the final purpose of this project.

6. Summarize and final report: a complete final report must be written in order to
achieve the academic purposes of the project, as well as serve as a document avail-
able to future researchers.

2.2 Project tasks and scheduling

2.2.1 WBS diagram

Figure 2.1 shows the Work Breakdown Structure diagram of the project, which is sub-
divided in different working packages that will be explained in the following sections.
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Figure 2.1: Work Breakdown Structure (WBS) diagram of the project. The different Work Pack-
ages of the project are indicated in brackets.

2.2.2 Work packages

Following the WBS diagram, the different packages are analyzed below.

MANAGEMENT

• Scheduling (S): Project scheduling, including objectives definition, tasks definition
and tool selection.

• Monitoring and Control (MC): Established schedule monitoring, date monitoring
and deliverables control. Regular meetings with the supervisor.

• Final Report and Presentation (FR): Final report design, writing and error check-
ing, presentation design and trials.

DOCUMENTATION AND RESEARCH

• Mathematical and Theoretical Foundations (MT): Adquire mathematical and
theoretical foundations in EEGs, BCI, Machine Learning, Deep Learning, CNNs
and Bayesian Optimization.
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• Programming skills, set-up working environment (W1): Adquire the program-
ming skills necessary to implement this project and set-up a comfortable working
environment and version control repositories.

DESIGN AND IMPLEMENTATION

• Model Adjustment and Implementation (I): Adapt the proposed network model
to the large EEG database. Implement the model.

• Hyperparameter Optimization design (H1): Select hyperparameters to optimize,
select ranges and possible values of those hyperparameters.

• Experimentation and Validation design (E1): Select subjects and data subsets to
test. Design validation process.

EXPERIMENTATION AND VALIDATION

• Execution and Validation working environment set-up (W2): Implement the ex-
perimentation and execution framework.

• Hyperparameter Optimization execution (H2): Execute the optimization process
and collect best configurations.

• Experimentation and Validation execution (E2): Validate the results using mod-
els generated with the best configuration.

• Result analysis (R): Analyze the results and plots of the validation and optimiza-
tion steps.

2.2.3 Deliverables and milestones

The project has the following deliverables:

• Implementation: the working implementation of the project. It is mainly coded in
Python and can be accessed in the following GitHub repository.

• Project report: the formal document that collects the work that has been per-
formed.

https://github.com/ertozi/bci-deep-learning-abecares
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Deliverable Milestone date
Implementation 01/08/2021
Project report 05/09/2021

Project advocacy
13/09/2021

-
17/09/2021

Table 2.1: Deliverables and milestones of the project.

Figure 2.2: Gantt diagram of invested time for each working package.

• Project advocacy: the live presentation and verbal explanation of the performed
work.

The table 2.1 shows the milestones of the described deliverables.

2.2.4 Scheduling and invested time

Table 2.2 shows the time invested in each working package. Figure 2.2 shows the Gantt

diagram of the invested time in the project.

Notice that the time spent in the H2 and E2 packages refers to the activities of setting up
the machines were the experimentations were performed and other tasks, and not to the
total runtime of the experiments. The total runtime of the experiments can be found in
chapter 5.
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Work Packages Invested Time
(hours)

MANAGEMENT
Scheduling (S) 10
Monitoring and Control (MC) 25
Final Report and Presentation (FR) 70

DOCUMENTATION AND RESEARCH
Mathematical and Theoretical Foundations (MT) 15
Programming skills, set-up working environment (W1) 10

DESIGN AND IMPLEMENTATION
Model adjustment and Implementation (I) 80
Hyperparameter Optimization design (H1) 15
Experimentation and Validation design (E1) 15

EXPERIMENTATION AND VALIDATION
Execution and Validation working environment set-up (W2) 50
Hyperparameter Optimization execution (H2) 5
Experimentation and Validation execution (E2) 5
Result analysis (R) 15

Total: 315

Table 2.2: Distribution of time spent in each working package in hours.

2.3 Methodology

This project aims to serve as a general base and reference for future works and research
projects of the UPV/EHU research group Aldapa. The student has received support from
one researcher of the group, Ibai Gurrutxaga Goikoetxea, which is in turn the supervisor
of the project.

The project has been developed locally using the Python language and stored and con-
trolled using the GitHub repository platform. For the experimentation process the student
was granted access to the servers of the home university to decrease the runtime due to
the computational needs of the project.

2.3.1 Meetings

The student and the supervisor had regular meetings during the development of the project.
There was not a formal scheduling for the meetings due to the personal and professional
affairs of both individuals. As a results, the meetings were organised with verbal accor-
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dance and attending to the needs of the project. In any case, the meetings were held with
a periodicity of 1-2 weeks, with the exception of the August month, that only held one
meeting. Most of the meetings were held telematically using the BBC tool, but some
meetings were held in a traditional style in the general office of the supervisor.

2.3.2 Workplace

The student has worked mostly in his home due to the Covid-19 pandemic restrictions,
among with other personal affairs. The student has also used some university facilities,
e.g. the library.

2.3.3 Scheduling

Due to professional student affairs, a formal week scheduling was not created for the
development of the project. However, the student mostly worked on afternoons during
the first months and mornings during the august month, with a mean working time of 3-4
hours per working day.

2.3.4 Used tools, software and data types

Several tools have been used during the development of the project. Here are listed the
most relevant ones:

• The Python general purpose language, among with the above-mentioned libraries
are one of the main features that this project is based on.

• The Visual Studio Code IDE has served as the general workplace for the coding
process. Other text editors, including the terminal ones (Kate and Nano) have been
used in certain moments for a quick updates of the code.

• The data types used during the project include .mat files for the raw EEG data and
.json and .csv for the processed data. The reason to use this type of data is the
complementation with the Python Pandas [Pandas-Dev-Team, 2020] library.

• Overleaf LATEX online editting tool has been used for the writing of this report.

• For communications with the supervisor, emails for asynchronous communication
and BlackBoard Collaborate tool for synchronous communications have been used.

https://code.visualstudio.com/
https://es.overleaf.com
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2.4 Risk analysis

Generally speaking, every project accounts for some risks. This section analyzes the pos-
sible risks that this project has and explains a possible prevention and method of operation
in case a risk is detected during the development of the project.

2.4.1 Risks

1. Covid-19 pandemic: The global pandemic is the main source of uncertainty that
this project brings with it. The extension of the ERASMUS+ mobility of the student
and the the tightening of deadlines are the main problems that the pandemic may
bring.

2. Extension of the international mobility: As pointed before, the ERASMUS+ mo-
bility that the student had during the year, starting from September 2020 and final-
izing in April 2021 is a source of possible problems during the development of the
project.

3. Novelty of the student: The student is performing its first mid-size project with the
extra difficulties pointed out before, among with the general difficulties a project
of this size may have. These general difficulties include the lack of research prac-
tice, the implementation errors and the difficulties in drafting the project report in
English.

2.4.2 Prevention

1. To tackle the problems arising from the pandemic, the student has scheduled the
working period to fit the temporal requirements of the project.

2. The extension of the mobility derived problems can be prevented by starting the
project before the returning of the student to its home university.

3. The student has a good communication with its supervisor, in order to solve possible
academic problems that may arise during the development of the project.



3. CHAPTER

Theoretical foundations

3.1 Electroencephalographic motor imagery for Brain-computer

interfaces

3.1.1 Background

Patients immobilized due to trauma or other medical conditions suffer from a significant
deficit of motor and communication functions. Recent advances in neural science may
improve the condition of such patients by allowing them to regain control of certain motor
and communication abilities. Brain-computer interfaces (BCI) aim to translate neural
activity in the brain into control signals for external devices, for example, robotic arms or
legs. In order to do this, we need a tool to record this information and save it in a digital
way, which is what Electroencephalographic motor imagery can achieve.

Electroencephalography (EEG) is an electrophysiological monitoring method to record
electrical activity on the scalp that has been shown to represent the activity of the surface
layer of the brain. Figure 3.1 shows an example of an EEG signal. It is typically non-
invasive, with the electrodes placed along the scalp, but intracranial or invasive methods
can also be used. [Schomer and Da Silva, 2012]

Studies aimed into invasive or intracranial BCI presents considerable potential for high
degree of freedom control of assistive robots, but research into BCIs that do not need
risky brain surgery is also of great importance, and EEG motor imagery for BCI presents

11
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Figure 3.1: An example of 1 second of an EEG recording.

a particularly interesting direction. Important advances in BCI include neural control of
robotic devices primarily in humans, but some animals such as monkeys or nonhuman
primates can also benefit from it. The key advantages of EEG for BCI are the maturity of
the technology, relative easy handling and low costs, as well as the robustness, portability
and versatility of recent EEG devices.

3.1.2 A large EEG database for BCI

Development of more effective data processing and analysis methods for EEG BCI has
been affected by a lack of large, uniform and accessible datasets. Some EEG for BCI
datasets are available on the internet, but most are limited by short recording times, a
small number of participants or a small number of BCI signals.

The database that has been chosen for this work is the one developed by [Kaya et al.,
2018], in order to supply the above-mentioned lack of large and reachable source. The
dataset contains 60 hours of EEG BCI recordings across 75 recording sessions of 13
participants, 60,000 mental imageries, and 4 BCI interaction paradigms, with multiple
recording sessions and paradigms of the same individuals. In order to fit the size and
purpose of this work, only one paradigm (CLA) has been selected to work with, but more
paradigms are available such as HaLT, 5F, and others.

13 individuals between the ages of 20 and 35 participated in the study, all healthy volun-
teers from students studying in the engineering and science programs, identified only by
their aliases. Only 4 subjects had been selected to train the model of this project: Subject

B, Subject C, Subject E and Subject F.

The selected paradigm CLA (Classical) includes a popular EEG BCI interaction model
based on three imageries of left and right-hand movements and one passive mental im-
agery, in which participants remained neutral and engaged in no motor imagery.

The data acquisition and processing procedures were as follows: First, action signals were
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presented to participants indicating one of the mental imageries to be implemented (in this
case, left and right hand). The imagery was implemented by participants once during the
period that that action signal remained on. The EEG signal corresponding to the imple-
mented imagery was recorded by EEG-1200 hardware and saved via Neurofax recording
software. After the experiment, the acquired EEG data were saved and exported for further
processing and analysis.

Further analysis of the implementation in this specific work will be presented in the fol-
lowing sections.

3.1.3 EEG for BCI using Convolutional Neural Networks

Machine-learning techniques allow extracting information from EEG recordings, and
therefore play a crucial role in several important EEG-based research and application
areas, such as BCI systems for clinical applications. However, there is still room for con-
siderable improvement with respect to several important aspects of information extraction
from the EEG, including its accuracy, interpretability, and usability for online applica-
tions. A recent and prominent example of machine learning usage for BCI-EEG tasks is
the application of Deep Learning, in particular Convolutional Neural Networks (CNN).
Classic solutions to this type of problems have been performed extracting features from
the EEG signal “manually” i.e., based on expert judgements. In contrast, Deep Learning
techniques allow extracting the most relevant features from (almost) raw signals.

CNNs are artificial neural networks that can learn local patterns in data by using convolu-
tions as their key component, which are analyzed in section 3.2.2.

CNNs have been generally used in computer vision tasks, due to the similarities with na-
ture when analyzing their environment (see section 3.2.2). Therefore, existing CNN archi-
tectures are not well suited for EEG analysis, and thus these models need to be adapted and
the resulting decoding accuracies rigorously evaluated. For that purpose, a well-defined
baseline is crucial, that is, a comparison against an implementation of a standard EEG
decoding method validated on published results for that method. This comparison and
model creation is introduced by the work of [Schirrmeister et al., 2017], where 3 different
CNN models are evaluated, ranging from a “shallow” 2-layer CNN up to a 31-layer deep
Residual network [He et al., 2015].

Based on the models presented by [Schirrmeister et al., 2017], this project aims in using
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the “deep” type of network. The model decisions and other aspects of the implementation
can be obtained in section 4.

3.2 Artificial Intelligence, Machine Learning, Deep Learning

and Convolutional Neural Networks

3.2.1 Artificial Intelligence and Machine Learning

Artificial intelligence (AI) is intelligence exhibited by machines. Colloquially, this term
is associated to machines that mimic the cognitive functions that humans link to skills
that other human minds can achieve, such as learning and solving problems. In computer
science, it refers to the study of “intelligent agents”, which stands for any device that
perceives its environment (in form of digital data) and takes actions to maximize its chance
of success at some goal. [Russell and Norvig, 2002]

Machine Learning (ML) is the subfield of computer science that gives computers the
ability to learn without being explicitly programmed. This subfield evolves from the study
of pattern recognition and computational learning theory (other subfields of artificial in-
telligence). The main basis of this field is the study and development of algorithms that,
given some data, can make predictions or decisions, thus building a model that can be
further used. [Muñoz-Villamizar et al., 2020]

Machine Learning subdivides into two main fields [Davenport, 2018]: supervised learn-
ing and unsupervised learning, among with other fields, for example, semi-supervised
learning or reinforcement learning:

• Supervised learning algorithms are used when the desired output is known. For ex-
ample, we have a system composed by three variables (x1,x2,x3), and an output
variable y. The learning algorithm learns, given a dataset of combinations of the
(x1,x2,x3) variables and its correct ŷ output, comparing its actual output with the
correct one, and then modifying the model accordingly. Through methods like clas-
sification or regression, supervised learning uses patterns to predict the values of
the label on additional unlabeled data.

• Unsupervised learning is used against data that has no historical labels. The system
is not told the “right answer”. The algorithm must figure out what is being shown.
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Figure 3.2: A generic neural network example, which includes some hidden layers between the
input and output layers.

The goal is to explore the data and find some structure within. This structure needs
to be further analyzed by an expert, that will help in the understanding of the ob-
tained structure. A common example of unsupervised learning is clustering, where
some samples need to be grouped and labeled by its similarities in one class, while
being sufficiently different from samples of other classes.

3.2.2 Deep Learning and Convolutional Neural Networks

An artificial neural network (NN) is a type of algorithm inspired by the biological neu-
ral networks that constitute animal brains. These networks are collections of connected
nodes that transmit real numbers between each others. This nodes receive a real number,
perform some non-linear mathematical computations and output another real number, that
is transmitted to the next connected neuron. Each node has typically both a weight that
adjust the computations that are made and an activation function that is computed before
the signal is transmitted to the next neuron. Neurons are also aggregated into layers. The
signals travel from the first layer (input layer) to the last layer (output layer) potentially
traversing multiple layers in between. [Ongsulee, 2017]

Deep Learning studies Machine Learning models (mostly artificial neural networks) that
contain more than one hidden layer. These models use a cascade of many layers of non-
linear transformations to extract features from them. Each successive layer uses the output
from the previous one as input, and can be both supervised (generally in the output layer)
and unsupervised (the rest of the layers). The more layers a deep model has, the higher
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Figure 3.3: A generic diagram of a CNN, where we have an image of a car as input. The convo-
lution and pooling layers are iteratively structured, until a flatten + fully connected layer is used,
and finally using a softmax layer that classifies the image as car.

level of features are derived, which correspond with higher levels of abstraction, and thus
creating a hierarchy of concepts. The most known deep learning architectures are Deep
Neural Networks (DNN), which have demonstrated an out-performing of other machine
learning techniques on task such as computer vision, signal analysis, and other related
topics such as medical imagery or natural language processing. [Deng and Yu, 2014]

Convolutional Neural Networks (CNN) are a type of feed-forward deep artificial neural
network in which its connectivity pattern is inspired in the animal visual cortex, where
each cortical neuron respond to stimuli in a restricted region of the space, known as re-
ceptive field. Then these regions overlap to cover the entire visual field. This stimuli can
be mathematically approximated by a convolution operation. These type of networks are
great to detect hierarchical structures, such as the simple shapes that form more complex
structures in an image. [Fukushima et al., 1983]

A CNN consist of multiple layers of receptive fields, each one consisting on small neurons
collections. The outputs of these collections are then tiled so that their input regions over-
lap, and thus obtaining a higher resolution representation of the original input. CNNs may
include local or global pooling layers, which combine the output of these regions. They
may also consist of combinations of convolutional and fully-connected layers, known for
their prone to overfitting data. They are also based on a shared-weight architecture, which
makes them shift invariant. Combining all these features we obtain a model that prevents
overfitting and also makes them far less complex than other types of DNNs.

Figure 3.3 shows the building blocks of a CNN:

• The convolutional layer is the core building block of a CNN. This layer consists
of a set of learnable filters or kernels that have a small receptive field, but extend
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Figure 3.4: A 2×2 max-pooling example, where a 4×4 grid is subdivided in 4 grids and then a
max operation is performed in each grid.

through the full depth of the input volume. Each filter is convolved across the width
and height of the input volume, resulting in a 2-dimensional activation map of that
filter. This means that the network learns filters that activate when they detect some
specific type of feature at some spatial position in the input. [Géron, 2019]

• Another important layer of a CNN is the pooling, which is a form of down-sampling.
The most common function that implements this layer is the max-pooling, as shown
in Figure 3.4. It partitions the input image into a set of rectangles and, for each sub-
section, outputs the maximum value.

• A ReLU function is the non-saturating activation function f (x) = max(0,x) which
effectively removes the negative values from the activation map by setting them to
zero. [Krizhevsky et al., 2017] Another similar function is the ELU function, which
has negative values but smoothly traverses to the positive values of ReLU. [Trottier
et al., 2017]

• After several combinations of convolutional + ReLU and max-pooling layers, the
classifications is done via fully connected layers. These layers have each neuron
output connected to every neuron input on the next layer, as general non-convolutional
NNs.

• Finally, the softmax loss function is used to predict a single class of K mutually
exclusive classes, which effectively selects the final output of the model.

3.3 Bayesian Optimization for Hyperparameter Tuning

Hyperparameters are a key piece of any Machine Learning (ML) model, as they di-
rectly control the behaviour of an algorithm and affect significantly to the performance of
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these models. Usually, finding the best hyperparameters for a model requires professional
knowledge and expert views, or even sometimes it has to depend on brute-force search.
Therefore, if an efficient hyperparameter optimization algorithm is developed to optimize
any kind of ML algorithm, it could greatly improve its performance.

In contrast to traditional ML models, Deep Neural Networks (DNNs) are known to be
specially sensitive to the choice of its hyperparameters. These hyperparameters do not
refer to the internal model parameters, such as a NN weights (those can be learned during
the model training phase), but to the higher level parameters of a model. For example, in
the case of a DNN, an important hyperparameter would be the number of layers it has, or
its learning rate. [Cho et al., 2020]

The process of finding the optimal hyperparameters of a ML model is called hyperpa-
rameter optimization or tuning. [Wu et al., 2019] There are two main kinds of hyper-
parameter tuning methods: manual search and automatic search.

• Manual search tries to optimize these hyperparameters by hand. It depends on the
intuition and previous knowledge of an expert user who can identify the vital hy-
perparameters that have a greater impact on the performance of the model. It is also
extremely hard to apply by non-expert users. Besides, as the number of hyperpa-
rameters and its range grows, it becomes quite difficult to humans to manage and
handle high dimensional data, thus it becomes easy to misinterpret the relationships
or trends between hyperparameters.

• To overcome the drawbacks of manual hyperparameter tunning, automatic methods
have been proposed. One type of these methods are exhaustive methods, for exam-
ple, grid-search (training a model for each combination of hyperparameters possible
and finding the optimal combination), but these methods suffer from the curse of di-
mensionality [Köppen, 2000], i.e., the efficiency of an algorithm decreases rapidly
as the number of hyperparameters being tuned and its range of values increases. An-
other less expensive automatic method is random search, but, as shown in [Bergstra
and Bengio, 2012], this method is unreliable for training some complex models.

Therefore, having a high precision and high efficiency algorithm for hyperparameter tun-
ing has always been a problem that is not fully solved in Machine Learning.
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3.3.1 Bayesian Optimization

The method proposed in [Wu et al., 2019] to develop and improve automatic hyperpa-
rameter optimization, and the method that is implemented in this work is called Bayesian
Optimization (BO).

Traditional optimization techniques like Newton method or gradient descent cannot be
applied due to the non-differentiable nature of these optimizations (most of the times, the
cost function of this kind of optimization problems are not representable or cannot be
differentiated).

BO is a very effective tool for solving functions that are computationally expensive to
find the extreme points. It can be applied for solving a cost function which does not have
a closed-form expression. Treating this cost function as a kind of a black-box that outputs
some values, we can combine prior information of it to obtain some posterior information
using the Bayesian Theorem. [Swinburne, 2004]

Algorithm 1: Bayesian Optimization

begin
for t = 1,2, ... do

Find xt by optimizing the acquisition function u over function f :
xt = argmax

x
u(x|D1:t−1).

Sample the objective function: yt = f (xt).
Augment the data D1:t = {D1:t−1,(xt ,yt)} and update the posterior of the
function f with a Gaussian Process.

end

The principal basis on Bayesian Optimization and the complete algorithm is shown in
Algorithm 1:

1. The optimization goal is to find the maximum value at the sampling point x for an
unknown function f :

x∗ = argmax
x∈A

f (x)≡ argmax
x

u(x|D)

where u is an adquisition function 3.3.1, D represents the dataset of previous obser-
vations, i.e., the prior information, and A represents the search-space of x.
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2. Then, for each iteration-step t, we compute new suboptimal values using the opti-
mization goal of above:

xt = argmax
x

u(x|D1:t−1).

3. Now, we sample our objective function or black-box function yt = f (xt), in order
to obtain a new value that we can use to expand our data and finally, update the
posterior distribution of the function f with a Gaussian Process.

D1:t = {D1:t−1,(xt ,yt)}

Figure 3.5 shows in an intuitive way how the algorithm performs, as we can see how
successively the current sampling point approaches the optimum value of the black-box
function.

A popular implementation of a Bayesian Optimization algorithm is Tree-structured Parzen
Estimator (TPE), [Ghanbari-Adivi and Mosleh, 2019] which is the model implemented
for this project. More information can be found in chapter 4.

Finally, BO needs an adquisition function u [Wilson et al., 2018] to derive the maximun
of the function f . Normally, we assume that a high value of the adquisition function cor-
responds to a large value of the black-box function f . This are some common adquisition
functions that are largely used for BO problems:

• Expected Improvement (EI) calculates the expectation of the degree of improve-
ment that a point can achieve when exploring the vicinity of the current optimum
value, i.e., calculates how will a near point improve the current optimum value, and
chooses that point based on this expectation degree.

• Upper Confidence Bound (GP-UCB) determines whether the next sampling point
should make use of the current optimum (a point near our current best), or explore
other zones of lower confidence.

3.3.2 Gaussian Process

Now that the general algorithm is clarified, the mathematical tool that this method used
is explained as follows. A Gaussian Process (GP) [Williams and Rasmussen, 2006] is
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Figure 3.5: Bayesian Optimization workflow. Each rectangle show one iteration-step of the algo-
rithm. The blue line represents our current knowledge of the black-box function, modelated via a
Gaussian Process. The red line is the real black-box function shape, and the red vertical line and
the red dot represents our current optimal sample. Each row represents how different adquisition
functions 3.3.1 perform when optimizing a black-box function.

a kind of technique developed in the basis of Gaussian stochastic process and Bayesian
learning theory.

A stochastic process is a “type" of probability distribution that, whereas a probability
distribution describes random variables or vectors, a stochastic process governs the prop-
erties of functions. This means that, for any sub-collection of random variables in this
stochastic process, it has a multivariate Gaussian distribution. Figure 3.6 shows how a
Gaussian Process may look like.

As any other gaussian distribution, a Gaussian Process is defined by a mean function
m : x→ R, normally assumed that m(x) = 0, and a covariance function k : x× x→ R. A
popular choice for the covariance function is the exponential square function:

k(xi,x j) = exp(−1
2

∥∥xi− x j
∥∥2
)

Finally, we formally denote a Gaussian Process as:

f (x)∼ GP(m(x),k(x,x′))
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Figure 3.6: A one-dimensional Gaussian Process. Each time we sample a Gaussian Process it
does not return a scalar value, but instead returns a gaussian probability distribution, denoted with
its own mean µ and variance σ . The black dots indicate the observations of data points D we
currently have in out BO problem. The black curve is the predicted mean of the objective function
of a BO problem. The blue area represents the range of the standard deviation near the mean. As
it can be seen, this area is small when is close to an observation, and large when it is away from it.



4. CHAPTER

Implementation of the model

This section aims to explain the process of adapting the proposed database to the final
implemented work, as well as elaborate the design choices made for the implementation
of the Neural Network and describe the model used for the experimentation.

4.1 Dataset analysis, extraction and preprocessing

The proposed database in the work [Kaya et al., 2018] is composed of 75 data files,
each containing the complete data record of one BCI recording session plus one text
description file. Each recording session contains 45 minutes of BCI imagery data, and
consists of approximately 900 mental imagery symbols. Each session is performed for
one participant and uses one interaction paradigm, identified via a systematic naming
convention.

For example, the filename CLASubjectB1510193StLRHand.mat indicates the recording
session of subject B that took place on October 15th, 2019, with paradigm CLA consist-
ing of 3 states (3st), left- and right-hand movements with a passive state. The recording
session mnemonic is Left-Right Hand (LRHand).

The only interaction paradigm used for this project is paradigm CLA, which consists
of 3 mental imagery states: left-hand, right-hand and a passive state. Other interaction
paradigms have been discarded due to the early nature of this work.

Participants focused a fixation point in the center of the eGUI (see Figure 4.1) screen.

23
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Each visual action signal was shown for 1 second during which time the participant imple-
mented the corresponding mental imagery once. The left- and right-hand motor imageries
were implemented by imagining closing and opening the respective fist once. After that,
the action stimulus disappeared and a random duration off-time of 1.5-2.5 seconds fol-
lowed, concluding one trial. During this random duration, the participant remained pas-
sive and did not engage in any voluntary mental imagery until the beginning of the next
trial. These trials were repeated about 300 times, resulting in a total segment duration of
15 minutes. Participants relaxed for 2-3 minutes, and continuing starting a new segment.
Each recording session finally contains 3 of these segments, making a total of 45 minutes
of BCI interaction time per recording session.

All data files are shared in .mat files and contain MATLAB-readable records of the raw
EEG data and the recording session’s interaction record. Each data file is represented as a
MATLAB structure named “o”, with 5 key fields (see Table 4.1).

The fields of the record “o” comprising the data are as follows. The main fields are
“marker” and “data”, which contain the recording session’s interaction record and the
EEG raw data, respectively. The fields “nS” and “sampFreq” contain the total number of
EEG signal samples and the sampling rate expressed in Hz. The sampling rate used in this
project is 200Hz, but a 1000Hz option is available for some sessions, referred in the data
file by the identifier HFREQ (high frequency). In any case, this project only focuses on
the 200Hz recordings.

The “data” field is a 2D MATLAB array of size nS× 22, where each column is a time-
series of voltage (in µV ) measurements from a single EEG input lead. The ordering of
this lead is described in a description.txt file and is the same for the entire database.

The “marker” field contains the recording session’s interaction record. This record is a
1D MATLAB array of size nS×1, with integer values from 0 to 99. Each value encodes
the state eGUI at the time mapping to the corresponding EEG data sample in the “data”
array at the same index location. The marker codes from 1 to 6 to encode visual stimuli
directing the participants to implement the given mental imageries in the order 1: “left
hand”, 2: “right hand”, 3: “passive”. The other codes have been omitted due to its non-
appearance in the CLA paradigm. Codes greater than 10 indicate service periods, such as,
99: “initial relaxation”, 91: “intersession breaks”, 92: “experiment end”. Code 0 means
“blank” or nothing is displayed in the eGUI. The record codes are summarized in Table
4.2.
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Figure 4.1: An example of the graphical user interfaces (eGUI) used for BCI interactions. For
CLA (and other) interaction paradigms, the eGUI displayed six icons symbolizing left hand, right
hand, left leg, right leg and tongue motor imageries together with a passive imagery indicated by
a symbol. A fixation point in the center of the screen is also shown. The action to be implemented
is represented as a red rectangle around the respective icon.

Data Record Keys
id A unique alphanumeric identifier of the record
nS Number of EEG data samples

sampFreq Sampling frequency of the EEG data
marker The eGUI record codes

data The raw EEG data

Table 4.1: Data Record Keys used in MATLAB object “o”.

“marker” code Meaning
1 Left hand
2 Right hand
3 Passive/neutral
91 Session break
92 Experiment end
99 Initial relaxation
0 Nothing

Table 4.2: Explanation of the numerical codes used in recording session interaction records.
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4.1.1 EEG signal extraction and preprocessing

This data is then extracted and loaded to the model using Python. The data is loaded using
the Python library SciPy [Virtanen et al., 2020]. Another key library is then used: MNE
[Gramfort et al., 2013]. This package is meant to explore, visualize and analyze human
neurophysiological data, for example, EEGs. Loading and processing the “o” object re-
sults in a MNE Raw object, containing the channel names, number of time points, the
time points and additional information of the EEG signal.

Similar to what is done in [Schirrmeister et al., 2017], the sync channel is then dropped
and the signals are converted from µV to V , while adding a band-pass filter between
0.1Hz and 40Hz. Next, the signal is standarized for each trial, subtracting the mean of the
full signal and dividing for the standard deviation.

Finally, the events of the signal are found and attached along with the active event id’s
(the “marker” codes) into a processed MNE object. In the creation of this object the time
between events must be specified, in this case, 1 second (the duration of the mental im-
agery implementation). The final object will be processed by the neural network, at the
time of performing cropped training (see subsection 4.2.1).

4.2 Model design choices and hyperparameters

The Neural Network model implemented for this project is based on the architecture
proposed by [Schirrmeister et al., 2017], using both the proposed methods used in the
cited work and some other methods that are also mentioned but not implemented in it.

4.2.1 Design choices

The general architecture of the NN model is based on a Convolutional Neural Network
of the “deep” type mentioned in [Schirrmeister et al., 2017]. Several architectural choices
were evaluated. The general idea of the model is to implement a first “special” convolu-
tional block, whose aim is to handle EEG inputs, followed by some (or none) standard
convolutional max-pooling blocks and adding some final dense softmax classification lay-
ers.

The first “special” convolutional is a split into two layers of a normal convolution layer,
in order to better handle the large number of input channels (one per electrode, in contrast
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to the common 3 input channels of RGB-images). In the first layer, a convolution over
time is performed, and in the second layer, a spatial filtering with weights for all possible
pairs of electrodes with filters of the preceding temporal convolution is performed. Note
that as there is no activation function in between the two layers, they could in principle
be combined into one layer. However, using two layers implicitly regularizes the overall
convolution by forcing a separation of the linear transformation into a combination of a
temporal convolution and a spatial filter.

Other features were also evaluated:

• The usage of batch normalization. This is meant to facilitate the optimization by
keeping the inputs of the layers to a normal distribution during training, standar-
dising intermediate outputs to zero mean and unit variance for a batch of training
examples.

• Dropout randomly some sets of neurons, preventing the model to overfit the data
and generalize better.

• Reduction of the number of neurons in the fully-connected layer blocks, and how
strongly this reduction should be applied.

• The loss function optimization algorithm. Gradient descent based algorithms were
chosen to evaluate, such as Stochastic Gradient Descent (SGD) or Adaptive Mo-
ment Estimation (Adam). [Kingma and Ba, 2017]

• Early-stopping techniques, allowing the model to stop training when certain metrics
do not improve in successive iterations.

• Activation function of the neurons. Two activation functions are evaluated, the pop-
ular ReLU function or the novel ELU function, sensitive to the type of data that is
used in this project.

• The usage of temporal filtering, aimed to remove or attenuate frequencies within
the raw signal that are not of interest or do not influence the model at all.

Another key component of this model is the usage of cropped training. This strategy is
focused on using crops, that is, sliding an input window withing the trial, which leads to
many more training examples for the network that the trial-wise training strategy.
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Before applying the cropped training, the data is filtered extracting only the relevant sec-
onds of each session i.e., the 1.5-2.5 seconds of passive imagery is discarded and only the
mental imagery implementation of 1 second is kept.

Two parameters control this cropping, called window (or crop) size and step size. The
window size represents a portion of each trial. It can be seen as a moving window across
the trial, and how much that window moves is represented by the step size parameter. The
crop size range selected for the model is of 0.5 seconds (window size of 50) or 1 second
(window size of 100), meaning that the trials are divided into a bunch of piece-trials,
depending on the step size, or the full trial is preserved. The size between each crop (step
size) is ranged from 10% to 100% of the window size. To determine the number of crops
that will be made for one trial is computed using the following equation:

Number of crops per trial =
⌊

trial size−window size
window size×step size +1

⌋
Figure 4.2 shows the summarized process of the data extraction and cropped training, as
well as a clarification of each partition of the data for better understanding.

Finally, a general outline of the model layers and blocks is described in figure 4.3. The
model architecture is variable, meaning that some hyperparameters directly control the
number of blocks, layers and features that the model has. A further explanation of the
hyperparameters of the model can be found in the next subsection.

4.2.2 Hyperparameters of the model

Using the above-mentioned design choices, a total of 13 hyperparameters have been im-
plemented in the model. These hyperparameters will then be optimized via hyperparam-
eter optimization algorithms (see section 4.3). The selected hyperparameters are: win-

dow_size and step_size, related to cropped training; kernel_size, to control the size of
the convolution kernel used in convolutional blocks; pool_size, to select the size of the
max-pooling algorithm applied; learning_rate, an essential hyperparameter in every NN
model; temporal_filters, to optimize which frequencies are less relevant to the model, opti-

mizer, the optimization algorithm; activation, the activation function; batch_normalization,
to select whether this technique is applied or not; n_conv_layers, to optimize the number
of convolutional blocks used in the model; n_fc_layers, same as previous hyperparameter,
but with fully-connected blocks; n_neurons_2nd_layer, to select the percentage of reduc-
tion in the successive fully-connected layers and, finally, dropout_rate, to drop certain
sets of neurons to avoid overfitting. These hyperparameters are summarized in Table 4.3
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Figure 4.2: A diagram summarizing the processing of the data. First, the full session is subdivided
into its trials. Each trial is then filtered, discarding the passive states (represented as gray crossed
boxes) and collecting only the active implementation imageries. Finally, the cropped training is
performed, where the window size is represented by the red dashes and the step size is represented
by the green lines and dashes.

Hyperparameter Description
window_size The window crop size that will be used for the cropped training.

step_size*
The step between the different crops.

*This hyperparameter is not really a hyperparameter for the CNN,
but used instead in the process of cropping the data described in this section.

kernel_size Kernel size of the convolution.
pool_size The max-pooling dimension (2×2 or 3×3).

learning_rate Learning rate value of the model.
temporal_filters The number of filters that are applied during the temporal convolution.

optimizer Optimizer of the model.
activation Activation function of the model.

batch_normalization Decide to apply batch normalization or not to the different blocks of the model.
n_conv_layers Number of additional convolutional blocks.

n_fc_layers Number of Fully-Connected layer blocks.

n_neurons_2nd_layer
Reduction of neurons in the subsequent Fully-Connected layers

(including the first one, if exists).
dropout_rate Percentage of neurons to be dropped in the fully-connected layers.

Table 4.3: List of hyperparameters of the implemented model.
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Figure 4.3: General outline of the architecture of the model. The architecture is composed of
a “special” convolution block, which splits the convolution into two layers. Next, an optional
second convolutional block is added, without the convolution split. Further, 1 or 2 optional FC
layers are included, with the final softmax classification layer to classify between left or right
hand. Optional layers and blocks depend on its corresponding hyperparameters, for example, the
optional convolutional block will appear or not depending on n_conv_layers hyperparameter, and
the number of FC layer blocks depends on n_fc_layers hyperparameter. More information about
the hyperparameter ranges can be found in section 5.1.
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4.3 Hyperparameter optimization framework setup

The Keras [Chollet et al., 2015] Python library was mainly used to implement the de-
scribed model, among with other common libraries such as NumPy [Harris et al., 2020],
the previously mentioned SciPy [Virtanen et al., 2020], the plotting library Matplotlib
[Hunter, 2007] and the data analysis and manipulation tool Pandas [Pandas-Dev-Team,
2020].

To implement the hyperparameter optimization phase, a scalable and distributed execution
framework is used: Ray-project [Moritz et al., 2017]. Attached to this framework, an
experiment execution library for hyperparameter tunning is used: Tune [Liaw et al., 2018].
This framework and libraries allows to implement easily an optimization benchmark out
of the box, including support for most common Deep Learning libraries (in this case,
Keras) and state of the art optimization algorithms, for example, Bayesian Optimization.

The selected setup for the optimization of the hyperparameters mentioned in section 4.2.2
consists of a set of about 250 iterations, where each one is evaluated and the best hyper-
parameter configuration is chosen among all of them. The first set of hyperparameters is
uniformly chosen between the bounds detailed in Table 4.3. Successive hyperparameter
configurations are optimized using the Tree-based Parzen Estimation (TPE) algorithm,
based on Bayesian Optimization and implemented using the Hyperopt library [Bergstra
et al., 2015]. The metric used to estimate which configuration is considered the best one
is the mean validation accuracy over a 10-fold cross-validation for each model generated
with each set of hyperparameters. Each fold creates a model and fits it, outputting an ac-
curacy in the process. This accuracy is validated using the 20% of each fold. When all 10
folds are completed, the mean accuracy of those folds is computed and the resulting value
is the accuracy of the model. A further explanation on the experiments performed with
the model can be found in section 5.





5. CHAPTER

Experimentation design

The following sections explains the design of the performed experiments, including the
test subjects selected for the experimentation, the hyperparameter ranges whose perfor-
mance is tested, the employed hardware specifications, the different dataset sizes used
to test the performance of the model, the total collected data and the final survey style
validation step.

5.1 Hyperparameter ranges and choices

As explained in the previous chapter, the hyperparameter ranges and choices were selected
as follows:

• window_size: a choice between 50 and 100 was selected. This means that the model
will perform the cropped training with half a second or a full second, respectively.

• step_size: this parameter ranges from 0.1 to 1 in intervals of 0.1, meaning that the
difference between windows can vary between a 10% of the window_size to its
complete size, in 10% intervals.

• kernel_size: a common choice among kernel sizes are odd numbers. Therefore, the
set with the 4 first odd numbers (3, 5, 7, 9) excluding 1 was selected as the parameter
range.
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• pool_size: some popular choices for max-pooling sizes are 2×2 or 3×3. Therefore,
it was decided to test these 2 strides, referring them as a choice of 2 or 3.

• optimizer: as previously mentioned, the two loss function optimization algorithms
selected for this project are Stochastic Gradient Descent (SGD) and Adaptive Mo-
ment Estimation (Adam).

• activation: similar to the previous hyperparameter, the mentioned two activation
functions were tested: ReLU and ELU functions.

• learning_rate: a logarithmic continuous range between 10−5 and 10−2 was selected
as the possible values of the learning rate of the model.

• temporal_filters: the number of filters that are applied during convolution has a
range between 10 and 50 filters, in intervals of 10.

• batch_normalization: the choice between using or not batch normalization is stated
as this parameter range.

• n_conv_layer: the number of additional convolutional blocks is controlled by this
hyperparameter.

• n_fc_layers: in the same way, the number of fully-connected blocks is controlled
by this parameter, ranging from no FC blocks, 1 additional block or 2 additional
blocks.

• n_neurons_2nd_layer: the percentage of neurons that consecutive FC blocks have
is controlled by this hyperparameter, ranging from a 20% of the previous neurons
up to a 75% of the previous number of neurons, in intervals of 5%.

• dropout_rate: a choice between 0 or 0.6 dropout rate is selected for this hyperpa-
rameter.

A summarized version of these intervals, choices and ranges can be found in table 5.1

5.2 Employed hardware specifications

The employed machine to perform the experimentation is a GNU/Linux distribution based
OS, with an Intel(R) Xeon(R) Gold 5120 @2.20GHz CPU with 56 cores and 2 threads per
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Hyperparameter Range, Interval or Choices
window_size {50, 100}

step_size [0.1, 0.2, ..., 1]
kernel_size {3, 5, 7, 9}
pool_size {2, 3}

learning_rate [10−5,10−2]
temporal_filters [10, 20, ..., 50]

optimizer {Adam, SGD}
activation {ReLU, ELU}

batch_normalization {Yes, No}
n_conv_layers {0, 1}

n_fc_layers {0, 1, 2}
n_neurons_2nd_layer [0.2, 0.25, ..., 0.75]

dropout_rate {0, 0.6}

Table 5.1: List of hyperparameters with their ranges, intervals or choices. The square brackets
stand for ranges and intervals, and the braces stand for sets of choices.

core and 62 GB of RAM. A total of 5 GPUs were used for the experimentation, 4 for the
main experiments computation and 1 for the final validation step (see Section 5.4). The
first 4 GPUs are NVIDIA(R) Tesla(R) P40, with 3840 CUDA cores and 24 GB GDDR5
memory size. The last GPU to perform the validation step is a NVIDIA(R) GeForce GTX
TITAN Black, with 2880 CUDA cores and 6 GB GDDR5 memory size.

5.3 Selected test subjects, dataset samples and collected data

5.3.1 Selected subjects, data samples and cross-validation

From a total of 13 participants, 7 test subjects were selected for the CLA paradigm BCI
interaction mental imagery collection. Not all of these test subjects had 3 complete mental
imagery sessions. Therefore, the first 4 test subjects that had 3 BCI sessions completed
were selected as the subjects used for this project: Subject B, Subject C, Subject E and
Subject F.

For each subject, 2 of its sessions were used as training data for the model. The last
session was used for validation purposes. This facilitates both the validation task (as the
3rd session is never used for training the model) and the separation of the data when tests
with less available data are performed.
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At first, 4 different data samples were raised for the experimentation: 100% of the avail-
able data (2 complete BCI interaction sessions); 75% of the available data (first BCI ses-
sion complete and half of the second session); 50% of the available data (only the first
session) and 25% of the available data (half of the first session). These samples were
tested with all subjects in a first experimentation round. Having regard to the results of
the first experimentation, two more data samples were made for Subject C and Subject E,
which had interesting results. These samples had 15% of the available data (30% of the
first session) and 10% (20% of the first session).

Finally, for each subject and data sample performed, a total of 10 identical models were
evaluated using the cross-validation technique. This method splits the available data into
10 different random subsets, and performs a full model training and validation using each
set, computing the mean validation accuracy of the 10 models when finalizing.

5.3.2 Total executions, collected data and final runtime

A total of 20 experimentation executions were performed. 4 executions for each subject
(one per sample) and 2 extra executions for Subjects C and E. Each execution included
between 150 and 300 iterations, depending on the data available, runtime performance
and possible errors due to unsuitable model configurations (some hyperparameters values
are incompatible between them).

For each iteration, the mean validation accuracy was collected among each hyperparame-
ter value and the date stamp, which were saved in a data frame. In addition, the confusion
matrices of the iterations were also saved for further analysis, but weren’t primarily used
in this work. Finally, the extraction of the best configuration per experiment was per-
formed and created a final file containing all 20 execution’s best hyperparameters.

The sum of time necessary to complete the experimentation was approximately 550 hours:
about 100 hours for the 6 executions of Subject C, 100 hours for the 6 executions of
Subject E, 200 hours for 4 executions of Subject B and 150 hours for 4 executions of
Subject F. The difference of execution time between different subjects is further explained
in Chapter 6. However, the real amount of time required to complete the experimentation
was far less, due to the usage of paralelization and multiple GPU devices for computation
(see Section 5.2).
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5.4 Survey style validation

In contrast to the classical final validation step or, commonly named, test set, a different
type of validation was performed to check the quality of the model. The standard way to
perform a validation consists on taking a predicted values array and a true or real values
array that is previously labeled according to a given training set. Then these two arrays
are compared side by side, and the number of guesses can be obtained, and thus the
accuracy. Other metrics such as the true positives, false positives, true negatives and false
negatives can be obtained, arranging them in a confusion matrix, which also serves for
the calculation of more complex metrics, for example, precision, recall, F1-score, etc. (in
the case of a binary classification, like this model’s one). [Fawcett, 2006]

For this project, a different type of validation was designed. The objective of this imple-
mentation is to classify trials, and not crops. Therefore, the scope of the validation is to
take the predictions of every crop that is inside a trial, make a survey between all crops
and assign the most voted class to the trial. A reason to justify this survey validation is
that comparing the results of a prediction inside each trial is more reliable than traditional
validation, as the full window size inside each segment is used for evaluation and not
individual outputs, and thus implies a better generalization of the model. An example of
how this validation is implemented and its procedure can be seen in Figure 5.1.

The model is validated using this method 10 times for each subject and data sample, using
the best configuration of hyperparameters obtained in the previous experiments. These
results are both saved as confusion matrices and validation accuracy values to facilitate
the result analysis. The results of these experiments can be seen in Chapter 6.
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Figure 5.1: Survey style validation example. This new validation consists on splitting both the
predicted values array and the true or real values array into K different arrays where K =
Number of crops per trial, which is previously mentioned in section 4.2.1. Then, for each new
array, a survey is made among all the elements of this array, and the label with more presence is
the new label of the array. Finally, the comparison between both sets of arrays is performed as
usual, and the same metrics can be obtained.
In the example, a crop per trial of 5 elements is made, each element labeled as 0 or 1. In the first
crop, the number of 0s is bigger than the number of 1s for the predicted values array. In the case
of the true values array, the label will always be the same for each element in the crop, thus not
requiring a survey process. The first crop will output an error, as the values are not the same in the
predicted array and the real array. In contrast, the second prediction array has more 1s than 0s, and
does not output an error. This process is repeated for each crop, and finally the resulting accuracy
and confusion matrices are computed.



6. CHAPTER

Results of the experimentation

The following sections analyzes in detail the results of the experiments explained in the
previous section, including the hyperparameter analysis and their influence in the model,
as well as the validations tests results and the general performance of the different models,
subjects and dataset samples tested.

6.1 Optimizer results, best hyperparameter configurations and

influence analysis

6.1.1 Optimizer general performance

Figure 6.2 show the scatter-plot of the accuracy improvements over all iterations of the
optimizer for subject F. Applying to every subject, the optimizer overall increases the
accuracy of the models, and the best found hyperparameter configuration always obtains a
high validation accuracy value. It must be noticed, however, that the validation performed
during the optimization process is different that the final validation previously mentioned
in section 5.4, but it is performed extracting the 20% of the available data and reserving
it as validation subset. Figure 6.1 shows a diagram with the distribution of data for the
subsamples, cross-validation, etc.

Table 6.1 shows the best configurations found among with its accuracy values. Some
accuracy values decrease as the sample size increases. This is counter-intuitive, although

39
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Figure 6.1: Distribution of the data for the different processes of the model.

Figure 6.2: Scatter-plot of the 250 iterations of the optimizer for subject F and 100% of the data.
The graph shows clearly an improvement over time, however, it can also be seen how the optimizer
jumps over different configurations before deciding which one should be the next best one.
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an explanation can be seen: the first 4 data samples (10%, 15%, 25%, 50%) are taken from
the first session. If, for whatever reason, some subsets of this session turn out to be easier
to classify, this may make these first results better.

6.1.2 Hyperparameter result analysis

In general, the hyperparameter experiments do not show many major conclusions, how-
ever, some information can be gathered from these experiments. Some hyperparameters
clearly influence the performance of the models, independently from the subject and data
sample. Other hyperparameters only influence in certain subjects or samples, or are more
desirable in certain configurations while other configurations seem to be less affected by
them. Finally, a bunch of hyperparameters do not affect at all the different subjects, sam-
ples or configurations, its influence is not clear or there are not enough samples to justify
a certain value or choice.

Consecutively, an in depth analysis is listed below:

• The optimization algorithm has a clear influence in the model: it is better to use
Adam over SGD (see 6.3). This confirms that the optimization algorithm is an im-
portant hyperparameter, and therefore it is convenient to test more optimization
algorithms in future experiments performed for this model.

• Window size is in most cases better at a value of 100 than in a value of 50. Similar
to the optimization algorithm, it may be interesting to test other values in future
experiments, as it is one of the main hyperparameters that directly control the be-
haviour of the model. Figure 6.4 shows an example of the clear difference in the
optimal parameter preference.

• The step size shows a descending size pattern, which clearly shows that lower values
have better results than higher values. This contrast with the fact that window_size

is clearly better with a value of 100 and therefore this parameter is only useful when
window_size is 50, but the parameter is still optimized even when it’s not useful at
all.

• ReLU activation function seems to perform better than ELU function in most cases,
especially for Subjects B and F.

• The learning rate varies between subjects. The optimal values seem to be between
10−4 and 10−2, but the exact location depends on the subject and the data sample
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and the best configurations tend to be near 10−4, except for the bigger data samples
in subject E (Figure 6.5).

• Temporal filters do not offer major clear results, but lower values (between 10 and
20) tend to be worse in many cases.

• The usage of additional convolutional blocks is dependant on the subject. For sub-
ject B, a predictable result is shown: it is better to use an additional block if more
data is available. For subject F, always using an additional block is better than not
using one. However, for subjects C and E, a clear patter does not appear at all.

• Batch normalization does not show a clear pattern. It seems that its use is not justi-
fied. However, most iterations show a preference in not using this technique at all,
but in some other examples this is just the opposite. The reason of this result could
be the above-mentioned optimization value stuck, but it is not clear at all.

• Similarly to batch normalization, the usage of dropout is also not justified (at least
at a 0.6 value) as there is no clear pattern of improvement. Being usually a success-
ful parameter, it could be worth as future work to test other smaller values of the
parameter, for example, a value of 0.2.

• The kernel size is another hyperparameter that does not offer any clear successful
value. It seems not to be a relevant hyperparameter in this experimentation (Figure
6.6).

• The number of additional FC layers do not show any clear influence in the perfor-
mance of the model.

• It is difficult to distinguish a pattern or influence in the number of neurons for the
additional FC layers. It must be taken into account that the number of possible val-
ues for this hyperparameter is relatively high. Therefore, we have less samples for
each value and the reliability of the results is lower. In any case, it seems desirable
to avoid extreme values, as some examples fail miserably.

• Finally, the max-pooling size does not follow any clear pattern.
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Figure 6.3: Example box-and-whisker plot for subject B and 25% of the total data for optimizer
hyperparameter. The plot shows how strong the difference between both choices is. The numbers
between brackets indicate how many samples of each hyperparameter value was selected during
the optimization process. Interestingly, the most popular value for this example is the SGD algo-
rithm, but Adam clearly outperforms it.

Figure 6.4: Boxplot for subject C and 75% of the total data for window_size hyperparameter. The
plot clearly shows how the value of 100 is better than a value of 50.
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Figure 6.5: learning_rate’s logarithmic scale plot for subject E and 75% of the data. In contrast
with the generalized 10−4 value for almost every subject and data sample, here the best values are
around 10−3.

Figure 6.6: Boxplot of the kernel_size values for subject F and 25% of the data. Although the most
popular values tend to be smaller ones, the plot doesn’t show any visible pattern in the preference
or the optimal value for the convolution’s kernel. The greater values that are obtained with the
values of 7 and 9 are not really reliable due to the absence of more samples.
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It should also be taken into account that this analysis is not definitive, as it may happen
that, by chance, some values of the hyperparameter we are analysing have been combined
with less suitable values for other hyperparameters i.e. one hyperparameter choice has
been used in combination with bad values of other hyperparameters values and that, as
a result, it comes out worse than using another choice of the first hyperparameter. Other
problems may have come from the fact that the optimization of certain hyperparameters
could have got stuck in some suboptimal values, as some hyperparameters have more
influence than others in this process. In any case, this chance effect should reduce the
more iterations and samples we have.
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6.2 Validation tests results

Figure 6.7 shows the results of the mean validation accuracy obtained for each subject
and data sample, using the survey validation explained in section 5.4.

In general, the C and E subjects have better results than the subjects B and F, with this
first mentioned subjects achieving a mean validation accuracy greater than 0.8 for almost
every data sample and the impressive results of subject E with the full data available for
training.

In contrast, subjects B and F suffer from what is called BCI Illiteracy. A a slight improve-
ment is noticed across the increase in data size, but the barrier of 0.6 validation accuracy
value is never reached, noticing that subject B struggles more than subject F to reach a
higher value. This BCI Illiteracy could be improved by making changes in the model,
rather than accomplishing a better hyperparameter configuration. Another problem that
BCI Illiteracy carries with it is the increase in the cost of computing, as it is mentioned in
section 5.3. [Vidaurre and Blankertz, 2010]

Taking into account that the validation is made with the third session, and the training is
performed with the first and second sessions, it is normal that the achieved results with
this validation differ a lot when compared with the hyperparameter optimization values.
Table 6.2 shows the accuracies obtained during the survey validation accuracy phase.

Subjects B and E suffer from the same “curse” that the accuracies of the configurations
found during the optimization have when tested with the survey validation. It is noticeable
how poorly subject E performs with 25% of the data (in contrast with the performance of
15%) and even worse with 50% of the data. In the case of subject B, the decrease is much
slighter, but it is also quite remarkable. A possible explanation is that some subsets of
this session may be really similar to the 3rd session, which would make these first results
better.
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Figure 6.7: Plot of validation accuracies obtained via survey validation method. The values of
subjects B and F are clearly worse than the results obtained by subjects C and E. The subject
C value hill when training with more than the 50% is also visible. The decay in performance of
subject E in the first data sample and its astounding results with 100% of the data can also be seen.

However, when introducing the second session, these values both improve or stay close
to the best achieved value, except for subject C. The case with subject C is peculiar when
compared with the other 3 subjects. It seems that with the data from the first session he
reaches his maximum performance and it is not able to improve with more data. This may
mean that sessions 1 and 3 are quite similar and, in contrast, session 2 seems to not adding
any knowledge to the model in this case.
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Subject Survey validation accuracy
B25 0.526
B50 0.508
B75 0.53
B100 0.554
C10 0.523
C15 0.551
C25 0.684
C50 0.863
C75 0.842
C100 0.864
E10 0.713
E15 0.752
E25 0.716
E50 0.676
E75 0.902
E100 0.993
F25 0.526
F50 0.543
F75 0.544
F100 0.58

Table 6.2: Final survey validation accuracies. The decrease in performance compared with the
results in the optimization process (see table 6.1) is notorious due to the usage of the third session
as validation, as it has never been seen before during the model fitting step.





7. CHAPTER

Conclusions and future work

7.1 Conclusions

As has been shown, BCI interaction paradigms aim to translate neural activity into con-
trol signals for external devices. To record this information, we need EEG motor imagery,
which translates these brain signals into usable raw data. Machine Learning techniques
allow extracting information from EEG recordings of brain activity in order to perform
an end-to-end learning from this raw data. A particular technique of Machine Learning
is Deep Learning and Convolutional Neural Networks, which are well-fitted to computer-
vision and image related AI problems, but it can be modified to perform an EEG problem
classification and obtain satisfactory results. These results lay a basis in more and ex-
tended experiments, among with future research.

Summarizing the proposed objectives of this project, a functional model that is capable of
discriminate imaginary movements recorded as EEGs for BCI has been developed. In ad-
dition, the hyperparameters that control the behaviour and performance of this model have
been selected and optimized, using modern optimization techniques such as Bayesian
Optimization. A complete and reliable experimentation has been developed in order to
evaluate the behaviour of the model given the best found hyperparameter configurations
and, finally, an analysis of the results of the experimentation has been performed and its
conclusions have been annotated. To conclude, the theoretical foundations, model design,
experimentations and its results have been collected and summarized in a final report.

51
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The experimentation shows some results that are highly relevant for future researching
and open new ways of experimenting with this type of models. For example, the results
are clearly dependant on the subject we are working with; it seems that there are dif-
ferences between sessions, and sessions that are more similar between them than others
(experiments with more sessions may be a starting point for Transfer Learning research);
the most relevant parameters (optimizer Adam, window_size of 100, ReLU activation

function, ...) but also take into account other parameters that seem to not influence at all
the model (kernel_size or max_pooling).

In conclusion, EEG for BCI interactions are a promising research field for development of
primarily medical and neurological tools. In addition, CNNs are not only a novel, promis-
ing tool in the EEG decoding field, but combined with innovative Machine-Learning and
optimization techniques, they may also open up new windows for EEG-related problems.

7.2 Future work

Many fields of this project may be extended in future works. The usage of more BCI in-
teraction paradigms is one of the main topics a future research may start with, among with
the inclusion of more test subjects and even more data subsets. The technique of Trans-
fer Learning when working with different sessions per subject is also another important
feature that this project does not cover.

Selecting the survey validation as the standard validation for all steps of the implementa-
tion may be another addition to the future experiments performed in this topic.

Curating the proposed hyperparameters, finding new ones and updating the search values
of them are also possibilities to extend the experimentation in the proposed model and,
finally, improving the model and include novel or advanced Machine-Learning related
techniques, such as the previously mentioned Transfer Learning, or even Semi-Supervised
Learning may lead the results of this project into a higher level.

All in all, the possibilities in continuing the research are uncountable and this project lay
a foundation on them.
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