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Abstract: This paper is devoted to a type of combined impulsive discrete Beverton–Holt equations in
ecology when eventual discontinuities at sampling time instants are considered. Such discontinuities
could be interpreted as impulses in the corresponding continuous-time logistic equations. The set of
equations involve competition-type coupled dynamics among a finite set of species. It is assumed
that, in general, the intrinsic growth rates and the carrying capacities are eventually distinct for the
various species. The impulsive parts of the equations are parameterized by harvesting quotas and
independent consumptions which are also eventually distinct for the various species and which
control the populations’ evolution. The performed study includes the existence of extinction and
non-extinction equilibrium points, the conditions of non-negativity and boundedness of the solutions
for given finite non-negative initial conditions and the conditions of asymptotic stability without or
with extinction of the solutions.

Keywords: difference equations; discrete Beverton–Holt equation; impulsive equations; competition
Beverton–Holt equations; equilibrium points; non-negativity; boundedness

1. Introduction

The single-species non-autonomous discrete Beverton–Holt equation has been widely
proposed for the study of the dynamics of populations in ecology and, in particular, for
the characterization of the population growth dynamics. Its typical usefulness is related
to the evolution of some species which reproduce by eggs. See, for instance, [1–4] and
some of the references therein. Some usefulness of the models has been pointed out related
to the fishery industry relying on the exploitation of species such as, for instance, coho
salmon, plaice, haddock and others [1]. The model has also been reported to be useful for
describing the evolution of the acorn wood pecker. Therefore, a certain effort has been
devoted to researching the mathematical properties of such an equation as, for instance,
the equilibrium points and their stability properties, as well as proving some classical
conjectures on Beverton–Holt equations concerning the positivity of the solutions and the
existence of stable oscillations [5–14]. The discretization could potentially be extended to
time intervals, including two samples of, in general, distinct sampling periods, to separate
the evolution of egg/larvae from that of reproductive adults in some species. In particular,
two different sampling periods can be involved when the stages of egg/larvae evolution
and those of adult evolution have different relevant average time intervals. For theoretical
multirate sampling techniques of analysis involving two or more combined sampling
periods, see, for instance, [15] and some of the references therein; see also [16–22]. An
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important effort has been devoted to rigorously prove the so-called Cushing–Henson
Conjectures [8]. The standard single-species non-autonomous Beverton–Holt Equation is

x(k + 1) =
µ(k)K(k)x(k)

K(k) + (µ(k)− 1)x(k)
, k ∈ N0 := N∪ {0}

where N is the set of natural numbers, for some given x(0) = x0 ≥ 0, where {µ(k)}∞
k=0

and {K(k)}∞
k=0 are, respectively, the intrinsic growth rate sequences of the species and the

sequences of the carrying capacity of the habitat. The subscript k refers to each sampling
instant in the evolution of the equation. In the above equation, biologists refer to the popula-
tion xk as the spawning stock at the continuous time kTs, with Ts being the sampling period
in-between consecutive samples [4]. An interpretation of the Beverton–Holt equation is that
it is the discrete version of the logistic equation running at a sampling period Ts which is the
time interval in-between two consecutive sampling instants tk = kTs and tk+1 = (k + 1)Ts;
∀k ∈ N0. It is well-known that the Beverton–Holt equation, sometimes referred to as the
Pielou logistic difference equation, is equivalent to the discrete Verhulst logistic equation
x(k) = r(k)x(k)/(x(k) + ν(k)); ∀k ∈ N0, under a given initial condition x(0) = x0 [13].
The time-invariant version of the Verhulst equation is the discretization of the logistic
continuous-time time-invariant equation

.
x(t) = r x(t)(1− x(t)/K); ∀t ∈ R0+ = R+ ∪ {0},

x(0) = x0 with x(t) being the size of the resource population [13]. On the other hand,
Stevic [12] has proved the conjectures of Beverton–Holt analytically [8], for periodically
varying carrying capacities, which have been then rigorously confirmed. The first one of
such conjectures claims the existence of a periodic steady-state regime in the event that
the carrying capacity varies in a periodic fashion. Such a periodic steady-state is a global
attractor of all the positive solutions. The second conjecture establishes that the average
value of the periodically varying values of the solution is smaller than the average value
of the carrying capacity over one such sampling interval. In addition, the Beverton–Holt
equation has been extended by including discontinuities at the sampling time instants.
Such discontinuities might be interpreted as a presence of spawning stock impulses in the
corresponding continuous-time equation. The discontinuities are parameterized by two
more sequences of parameters, the so-called harvesting (typically, fishing or hunting) quota
sequence {(1− b(k))}∞

k=1 and the so-called independent consumption sequence {d(k)}∞
k=1,

which can include migrations “into” and “from” the studied region, namely, of positive
and negative values, respectively. It could also include, in the first case, re-population by
adults which is not properly reflected in the non-impulsive version of the equation since it
is not related to the evolution from the larva stage to the adult one. In this way, an artificial
repopulation may be interpreted in this context as a migration into the region considered
for the population study. On the other hand, the loss of population by dead are included
in the basic Beverton–Holt equation by appropriate settings of the environment carrying
capacity and intrinsic growth rate. It can be pointed out that the regulation of the fishing
quota is a very relevant problem since the fishing resources are becoming increasingly
scarce. As a result, the impulsive extended Beverton–Holt model is parameterized by
four parameters, or sequences, namely, the environment carrying capacity, the intrinsic
growth rate, the harvesting quota and the independent consumption. It has to be clarified
that, since input impulses in continuous-time dynamic systems translate into bounded
discontinuities in the state (see, for instance, [23–25]), it is usual to refer to their counterpart
discretized versions (with bounded steps at sampling time instants) as impulsive discrete
systems. See, for instance, [13,26,27]. The Beverton–Holt equation has also been studied
from a control point of view. For instance, the carrying capacity is designed in [28,29] as
a control variable, within certain limiting bounds, to achieve a prefixed suitable solution.
That strategy is feasible in certain closed or semi-closed habitats, such as, for instance,
in fisheries or certain agricultural exploitations. There are also some more recent studies
available where two-stage extended Beverton–Holt equations have been described in the
sense that the solution depends on its values on two consecutive previous samples. The
relevant functions of two arguments (that is, the two preceding values of the sampled



Appl. Sci. 2021, 11, 9020 3 of 38

solution) that define the evolution dynamics are assumed, by different researchers, to be
non-decreasing in both or one of those arguments [30,31]. The study of periodic solutions
has been also studied in the non-impulsive and in the impulsive Beverton–Holt equation
since some of its parameterizing parameters, such as, for instance, the carrying capacity
or the harvesting quota, are often subject to cyclic variations. See, for instance, [26,32,33]
and some of the references therein. The dynamics associated with strong and weak Allee
effects are studied in [34]; these lead, respectively, to extinction, for population stocks
under a critical density, and to recovery, after small density levels are reached without
the presence of a critical value. The results are applied to the study of the coexistence of
two competing species subject to Allee effects and contest competition. It can be pointed
out that a Beverton–Holt equation type is proposed and studied in [35] for a set with, in
general, more than two competing species. It is found that the species with the best fitness
outcompete the remaining ones. For the study of the involvement of two sampling periods
for two stages of evolution of mosquito, see, for instance [35] and some of the references
therein.

In this paper, a group of impulsive discrete Beverton–Holt equations reflecting compe-
tition among a finite number of species within the same habitat is considered with eventual
discontinuities of the solution at the sampling instants due to harvesting or independent
consumption influences. The above-mentioned set of equations involve competition-type
coupled dynamics among the involved species. It is assumed that, in general, the intrin-
sic growth rates might be eventually distinct for the various species and, since they can
have, in general, different fitness to the habitat, the various carrying capacities might be
also distinct, in general. The impulsive effects at sampling instants in the equations are
parameterized by the various harvesting quotas and the independent consumptions that
can be also distinct for the various competing species. The performed study includes the
existence of extinction and non-extinction equilibrium points, provided that the sequences
of parameters converge to appropriate values, the conditions of non-negativity and bound-
edness of the solutions, for any given sets of finite non-negative initial conditions, and
the description of sufficiency-type conditions, for asymptotic stability to any equilibrium
point and, in particular, for either non-extinction or extinction situations. The case of
intrinsic growth rates being less than unity and implying asymptotic extinction under
supplementary conditions involving the independent consumption to the harvesting quota
is also discussed through the second Lyapunov stability method.

The paper is organized as follows: Section 2 defines the whole impulsive competi-
tion Beverton–Holt model, the equilibrium points and the positivity and boundedness
properties of the solution. The role of the intrinsic growth rate, carrying capacity, inde-
pendent consumption and harvesting quota (the two last ones being closely related to
the “impulsive” characteristic of the model at sampling instants) are explained and their
relevance to the properties of the model are emphasized in the various given results. The
concepts of best fitness, or dominance, of some species on the remaining ones, as well as the
species consensus, are given and some related results are addressed. Section 3 is concerned
with the Lyapunov stability properties of the equation, with special emphasis given to the
case when its parameterization is time-varying. Some specific extinction conditions are
investigated in Section 4, while some numerical investigation is discussed in Section 5.
Finally, our conclusions end the paper.

2. The Competition Equation and Its Main Properties
2.1. The Single-Species Impulsive Beverton–Holt Equation

The subsequent impulsive discrete Beverton–Holt equation for a single species, [26,27,33]
extends the standard one, which has been described in the introduction:

x−(k + 1) =
µ(k)K(k)x(k)

K(k) + (µ(k)− 1)x(k)
,

x(k + 1) = x+(k + 1) = b(k + 1)x−(k + 1)− d(k + 1); ∀k ∈ N0 (1)
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with given finite initial conditions x(0) ≥ 0, where µ(k) ∈ R0+ := R+ ∪ {0} is the so-called
intrinsic growth rate of the population, determined by life cycle and demographic properties
(such as, for instance, species growth rate, survivorship rate, etc.) and K(k) ∈ R+ is the
so-called carrying capacity, a characteristic of the habitat dependent on resource availability,
temperature, humidity, etc. Typically, the constraints µ(k) > 1 and K(k) ∈ R+ for all k ∈ N0
are assumed for the Beverton–Holt equation, since if, otherwise, the carrying capacity is
zero, then the habitat is incompatible with the species evolution within it; if µ(k) ≡ 1, then
the species stock remains constant through time; if 0 < µ(k) < 1, then x−(k + 1)/x(k) =
µ(k)/[1− (1− µ(k))x(k)/K(k)], so that two special atypical situations can happen, namely,
if 1 > µ(k) > 1− (1− µ(k))x(k)/K(k) for the initial samples and there is a sufficiently
small population stock, which keeps the right-hand-side positivity, then the species stock
grows over time, but it can tend to negative values, making the model to be not well-posed
for a sufficiently extended time. If, on the contrary, µ(k) < 1− (1− µ(k))x(k)/K(k) for all
samples, then the population asymptotically extinguishes.

On the other hand, the impulsive parameters, which can modify the stocks of pop-
ulation, to the right of the sampling instants related to their left-values are the harvest-
ing quota (1− b(k)) ∈ R+; ∀k ∈ N0, which depends on the authorities policy depend-
ing on the spawning stock and foreseen recruitments and the independent consumption
d(k)(≤ b(k)x(k)) ∈ R; ∀k ∈ N0 that implies recruitment variations depending on un-
foreseen disturbances, artificial re-population actions and local migrations “towards” or
“from” the studied habitat. For easy presentation of some of the technical results, the
complementary harvesting quota b(k) ∈ R0+; ∀k ∈ N0 is used. Some particular results in
this paper are given for the case of intrinsic growth rates under unity and for negative
harvesting quotas, or, equivalently, for complementary harvesting quotas exceeding unity.
The physical interpretation of this situation is that a re-population with a number of adults
exceeding to population stock is performed with a ratio larger than unity.

Remark 1. Note that the public regulations on fishing or hunting taking into account the stocks of
population imply that b(k) ≤ 1; ∀k ∈ N0. However, if a repopulation with adults is intended, which
is sometimes the case, then it can be decided to increase the above coefficient exceeding unity in the
case that the population stock is low. Therefore, we admit, at the level of a general formulation, that
the complementary harvesting quota is non-negative and bounded. It turns out that the independent
consumption is positive, if there is a net flux of individuals from the studied habitat to outside of it,
so that the population stock decreases, and it is negative, if there is a net flux entering the habitat, so
that the population stock increases. Finally, it is zero if there is no interchange of population of the
habitat with the environment. The independent consumption can also take into account repopulation
actions that are not linked to a proportion on the existing population stock.

Note that, if x(0) = 0, or if K(0) = 0 and {d(k)}∞
k=0 ≡ 0, then {x(k)}∞

k=0 ≡ 0. It can
be argued that, although it is a common hypothesis to assume that {K(k)} ⊂ R+ and
{µ(k)− 1} ⊂ R+, it is possible, under certain extra constraints on the state of sufficient
smallness, related to information about the equation parameters, that µ(k) could take
values under unity. To clarify this concern, let us assume Equation (1) without impulsive
effects, that is, {b(k)}∞

k=0 ≡ 1 and {d(k)}∞
k=0 ≡ 0, so that x(k) = x−(k); ∀k ∈ N0. Thus,

for any given k ∈ N0, if µ(k) ∈ [0, 1], then x(k + 1) ≥ 0 if 0 ≤ x(k) ≤ K(k)
1−µ(k) , and x(k + 1)

is, furthermore, finite if x(k) < K(k)
1−µ(k) . Furthermore, if µ(k) = 0, then {x(j)}∞

k ≡ 0, so

that extinction happens in finite time. If {µ(j)}∞
k ≡ 1, then {x(j)}∞

k ≡ x(k), so that the
population remains constant and fixed to its value at the k− th sample.
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Now, let us assume that µ(k) ∈ (0, 1) and 0 < x(k) < K(k)
1−µ(k) , implying that x(k + 1) >

0 and finite. Let us also assume that µ(k + 1) ∈ (0, 1). Then, 0 < x(k + 1) < K(k+1)
1−µ(k+1) for

x(k + 2) > 0 and finite. One obtains

x(k + 1) =
µ(k)K(k)x(k)

K(k)− (1− µ(k))x(k)
<

K(k + 1)
1− µ(k + 1)

which implies that

[µ(k)K(k)(1− µ(k + 1)) + K(k + 1)(1− µ(k))]x(k) < K(k)K(k + 1)

so that the former non-negativity constraint x(k) < K(k)
1−µ(k) is amended by the stronger one

x(k) <
K(k)K(k + 1)

µ(k)K(k)(1− µ(k + 1)) + K(k + 1)(1− µ(k))
<

K(k)
1− µ(k)

And, proceeding recursively in the same way, it follows that x(k) has a strictly decreas-
ing infinite sequence of bounded non-negative upper-bounds. However, note that, if
µ(k + 1) = 1, then the upper-bound remains unaltered. Thus, we have the following
results.

Lemma 1. Let us assume that {d(k)}∞
k=0 ≡ 0 and {b(k)}∞

k=0 ≡ 1 (namely, there is no impulsive
effect). Let us also assume that, for some finite k ∈ N0, {µ(j)}∞

k0
⊂ (0, 1), {x(j)}∞

k0
⊂ R0+ is

bounded and either {K(k)}∞
k=k0

is non-decreasing or {K(k)}∞
j=k0
⊂ (0 , 2). Then, ∃k1 ≥ 1 such

that x(k) = 0 for k ≥ k0 + k1 (that is, there is extinction in finite time).

Proof. Note that, since {µ(j)}∞
k0
⊂ (0, 1), {x(k)}∞

k=0 ⊂ [0, ∞) is strictly decreasing if and
only if

x(k + 1)− x(k) =
(

µ(k)K(k)
K(k)− (1− µ(k))x(k)

− 1
)

x(k) < 0; ∀k(≥ k0) ∈ N0

If x(k) = 0 for some finite k, then the result is already proved. Thus, let us assume that
x(k) > 0; ∀k(≥ k0) ∈ N0. Note that x(k) > 0, if and only if x(k) < min

(
K(k), K(k)

1−µ(k)

)
=

K(k), since µ(k)K(k)
K(k)−(1−µ(k))x(k) < 1, that is, since (1− µ(k))x(k) < (1− µ(k))K(k), leading

to x(k) < K(k); ∀k(≥ k0) ∈ N0, in order for it to be jointly strictly decreasing with the
denominator of the right-hand-side being positive for all ∀k(≥ ko) ∈ N0. Then, either
(x(k)− K(k))→ 0 as k→ ∞ , or x(k)→ 0 as k→ ∞ ; furthermore,

x(k) < min(K(k), x(k− 1)) < . . . < inf
k≥j≥0

K(j); ∀k(≥ k0) ∈ N0

Since {K(k)}∞
j=k0

is non-decreasing, then inf
k0≥k≥0

K(k) = inf
∞≥k≥0

K(k) ≥ inf
∞≥k≥k0

K(k), so

that

x(k) <min
(

inf
k≥j≥0

K(j), x(k− 1)
)
≥ inf

∞≥k≥k0
K(k) ≥ K(k0); ∀j(≥ k0) ∈ N0

Therefore, (x(k)− K(k))→ 0 as k→ ∞ is not possible, so x(k)→ 0 as k→ ∞ . Since
k0 is finite and {x(k)}∞

k0
⊂ R0+ is strictly decreasing and converges asymptotically to zero,

then there is some finite k1 ∈ N such that x(k0 + k1 − 1) < 2 and the species reproduction
is not feasible for the next samples, so that extinction happens in finite time k0 + k1.

If the assumption of {K(k)}∞
k=k0

being non-decreasing is replaced by {K(k)}∞
j=k0
⊂

(0, 2), then the result still holds, since x(k) < K(k) < 2; ∀k(≥ k0) ∈ N0 so that, in the event
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that (x(k)− K(k))→ 0 as k→ ∞ , the number of individuals becomes zero after a finite
time. �

Lemma 2. Let us assume that {d(k)}∞
k=0 ≡ 0, {b(k)}∞

k=0 ≡ 1 and that x(0) > 0. Let us also
assume that, for some finite k ∈ N0, {µ(j)}∞

k ⊂ (0, 1], card{j(≥ k) ∈ N0:µ(j) < 1} < ∞ and
{x(j)}∞

k ⊂ R0+ is bounded. Then, x(k) > 0, that is, there is no extinction in finite time and
x(k) = x(> 0); ∀k ≥ k0(∈ N0) with finite k0, so that a non-extinction equilibrium point is
reached in finite time.

In Lemma 2, note that the condition card{j(≥ k) ∈ N0:µ(j) < 1} < ∞ implies that
card{j(≥ k) ∈ N0:µ(j) = 1} = χ0, that is an infinity denumerable cardinal. In other words,
there is only a finite number of samples in the infinite subset of the natural numbers
{k, k + 1, . . . , +∞} for which the intrinsic growth rate is strictly less than unity. This
condition guarantees that, contrarily to Lemma 1, there is no extinction at the k − th
sample. Additionally, it turns out that, since the intrinsic growth rate sequence is less
than one for a finite number of samples, there exists a finite non-negative integer number
k0 such that µ(k) = 1: ∀k ≥ k0 implying that x(k0 + j) = x(k0); ∀j ∈ N0 leading to the
existence of an equilibrium point. It is addressed, in Section 5, how it is possible to achieve
asymptotic extinction in the single species and in the competition impulsive Beverton–Holt
equations under certain trade-offs between the independent consumption sequence and
the harvesting quota, even if the intrinsic growth rate is under unity.

2.2. The Competition Impulsive Beverton–Holt Equation

The class of impulsive discrete Beverton–Holt Equation of n competing species pro-
posed for further analysis is a generalization of the discrete Beverton–Holt Equation (1) for
the particular case of a single species, i.e., for n = 1, with a constant parameterization of in-
trinsic growth rates and carrying capacities through time being expressed for n competing
species as

x−i (k + 1) =
µiKixi(k)

Ki + ∑n
j=1 cji(µi − 1)xj(k)

(2)

xi(k + 1) = bi(k + 1)x−i (k + 1)− di(k + 1); ∀i ∈ n = {1, 2, . . . , n}, ∀k ∈ N0 (3)

with given finite initial conditions xi(0) ≥ 0. For some coupling coefficients cij ≥ 0; ∀i, j ∈ n
with cii = 1; ∀i ∈ n. The subscripts stand for the populations and model parameters of
the various competing species, while each current sample is denoted in parenthesis. The
superscript “-” stands for the population values to the left of a sampling instant, while
the absence of superscript indicates its value to the right of sampling instant. Note that it
was assumed, for the sake of exposition simplicity, that the intrinsic growth rate, carrying
capacity and inter-species coupling dynamics coefficients are constant through time for
each one of the species. The impulsive control parameters are the members of the real
sequences {bi(k)}∞

k=1 and {di(k)}∞
k=1; ∀i ∈ n. Those sequences may modify the levels of

populations to the right of the sampling instants. If those sequences are identically zero for
any population at a sampling instant, then its value after sampling remains unaltered. The
combination of (2) and (3) yields

xi(k + 1) =
[bi(k + 1)µiKi − di(k + 1)(µi − 1)]xi(k)− di(k + 1)

(
Ki(k) + ∑n

j( 6=i)=1 cji(k)(µi − 1)xj(k)
)

Ki() + ∑n
j=1 cji(µi − 1)xj(k)

; ∀k ∈ N0, ∀i ∈ n. (4)

It is of interest to summarize, first, some basic properties of the impulsive time-
invariant single Beverton–Holt equation for only one species to then interpret some parallel
properties associated with a tandem of competing species. It is apparent that the equi-
librium point exists also if the left and right values at the sampling time instants are
non-negative and finite, even if they are distinct. In the case that they are distinct, there
is an oscillatory equilibrium solution switching among those left and right values at the
sampling time instants. In the case that the four parameters are potentially time-varying,
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the mentioned impulsive Beverton–Holt equation for a single species (that is, n = 1) is the
following one:

x−(k + 1) =
µ(k)K(k)x(k)

K(k) + (µ(k)− 1)x(k)
;

x(k + 1) = b(k + 1)x−(k + 1)− d(k + 1)

that, combined, yield

x(k + 1) = b(k + 1)x−(k + 1)− d(k + 1)
= [µ(k)b(k+1)K(k)−d(k+1)(µ(k)−1)]x(k)−d(k+1)K(k)

K(k)+(µ(k)−1)x(k)

2.3. Equilibrium Points

The subsequent result holds for the case of one single species.

Theorem 1. Let us assume that either the intrinsic growth rates, carrying capacities, harvesting
quotas and independent consumptions are constant parameters, or that the related parameterizing
sequences converge asymptotically to constant parameters. Then, the following properties hold:

(i) There exist equilibrium points (or, more properly, left and right limits of equilibrium points)

x1,2 =
µbK− d(µ− 1)− K±

√
(µbK− d(µ− 1)− K)2 − 4(µ− 1)dK

2(µ− 1)

x−1,2 ≥
x1,2 + d

b
with physical sense, or feasible, (i.e., being real non-negative) of the single-species impulsive
Beverton–Holt equation if and only if

d ∈
[
−x1, min

((√
µb− 1

)2K
µ− 1

,
(µb− 1)K

µ− 1

)]
∪
[(√

µb + 1
)2K

µ− 1
, ∞

)

If µ ≥ max
(
1, b−1), then the above constraint becomes

d ∈
[
−x1,

(√
µb− 1

)2K
µ− 1

]
∪
[(√

µb + 1
)2K

µ− 1
, ∞

)

(ii) If d = 0 and b = 1, then there are no impulses at the equilibrium steady-state, so that
the equilibrium solution is not oscillatory between its left and right values at the sampling
instants, that is, x1 = x−1 = 0 (extinction) and x2 = x−2 = K.
If d = 0, then the equilibrium points become x1 = 0 (extinction) and x2 = (µb−1)K

µ−1 > 0,
provided that either µ > max

(
1, b−1) or µ < min

(
1, b−1). If, in addition, µ > 1 and

b = µ−1, then x1 = x2 = 0.

(iii) If d = (µb−1)K
µ−1 < 0, then there is only a non-negative equilibrium point x1 =

√∣∣∣ d
µ−1

∣∣∣K > 0

with either µ > 1 and d < 0 or µ < 1 and d < 0.

(iv) If d = µbK
µ−1 , then there is only a non-negative equilibrium point x1 =

√
1+4(1−µb)−1

2(µ−1) K > 0

with µ > 1 and b ∈
[
0, µ−1). Let us assume that negative harvesting quotas are allowed,

then x1 =
1+
√

4µb−3
2(1−µ)

> 0, provided that b > max
(
µ−1, 3

4 µ
)
.
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Proof. The equilibrium point to the left and right of the sampling instants satisfies x− = x+d
b

subject to the constraint

x =
[µb K− d(µ− 1)]x− dK

K + (µ− 1)x

The above constraint may be rewritten as

(µ− 1)x2 − [µbK− d(µ− 1)− K]x + dk = 0

whose zeros x1, x2 ≥ x1 are

x1,2 =
µbK− d(µ− 1)− K±

√
(µbK− d(µ− 1)− K)2 − 4(µ− 1)dK

2(µ− 1)
,

which have to be real and non-negative for the equilibrium point to have a physical sense,
so that two joint necessary conditions are

d ≤ d0 =
(µb− 1)K

µ− 1
; (µbK− d(µ− 1)− K)2 ≥ 4(µ− 1)dK

The second constraint can be re-arranged in the form

(µ− 1)2d2 − 2[(µb− 1) + 2]K(µ− 1)d + (µb− 1)2K2 ≥ 0

Defining the auxiliary variable f = (µ− 1)d, the above inequality takes the form

g( f ) = f 2 − 2(µb + 1)K f + (µb− 1)2K2 ≥ 0

One obtains that the zeros of the left-hand-side of the above constraint are

f1,2 =

(
µb + 1±

√
(µb + 1)2 − (µb− 1)2

)
K =

(
µb + 1± 2

√
µb
)

K

and the constraint g( f ) ≥ 0 holds, since g( f ) = 0 is a convex parabola of zeros f1, f2 ≥ f1,
if any of the two constraints below holds

d ≥ d2 =

(√
µb + 1

)2K
µ− 1

or d ≤ d1 =

(√
µb− 1

)2K
µ− 1

In order that, in addition, x−1,2 ≥
x1,2+d

b ≥ 0 (in order for the equilibrium points to
the left of the sampling instants to be non-negative as well), d ≥ −x1 since 0 ≤ x1 ≤ x2.
Furthermore, d ∈ [−x1, min(d0, d1)] ∪ [d2 + ∞). If µ ≥ max

(
1, b−1), then

(√
µb− 1

)2 ≤
µb − 1. Property (i) follows directly from the above constraints. Property (ii) follows
directly from the corresponding particular cases of Property (i).

To prove Property (iii), note that, if d = (µb−1)K
µ−1 < 0, then the equilibrium point

satisfies the constraint (µ− 1)x2 − Kd = 0, which yields x =

√∣∣∣ d
µ−1 K

∣∣∣ > 0 for µ > 1

and d > 0, or for µ < 1 and d < 0. The equilibrium point is unfeasible for alternative
combinations of values of µ and d.

To prove Property (iv), note that, if d = µbK
µ−1 , then the equilibrium point constraint

x = [µb K −d(µ−1)]x−dK
K+(µ−1)x becomes x = |d|K

K+(µ−1)x for d = (µb−1)K
µ−1 < 0. Thus, the equivalent

constraint (µ− 1)x2 + Kx− |d|K = 0 has, as zeros,

x1,2 =
−K±

√
K2 + 4(µ− 1)|d|K
2(µ− 1)

=
−1±

√
1 + 4(1− µb)

2(µ− 1)
K
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Let us consider two cases for d < 0, namely,
Case a: µb > 1 and µ < 1 so that, if b > µ−1 > 1 is not admissible, so that x1,2 < 0 (i.e.,

both unfeasible since negative). If b > 1 is admissible, then x1 =
1+
√

4µb−3
2(1−µ)

> 0, provided

that b > max
(
µ−1, 3

4 µ
)

and x2 =
1−
√

4µb−3
2(1−µ)

< 0 (i.e., unfeasible), since µb > 1.

Case b: µb < 1 and µ > 1, implying b ∈
[
0, µ−1), leading to x2 =

−1−
√

1+4(1−µb)
2(µ−1) K <

0 (unfeasible) and x1 =
−1+
√

1+4(1−µb)
2(µ−1) K > 0.

Therefore, only one equilibrium point is non-negative. Property (iii) has been proved.
�

Note that Theorem 1(iii) establishes the existence of a non-negative equilibrium point
with intrinsic growth rates exceeding unity and positive harvesting quotas subject to a
prescribed upper-bound. The physical interpretation is that there is a certain migration flux
(either spontaneous or due to a monitored re-population intervention) of adult individuals
from the habitat environment entering the habitat under study. Note that Theorem 1(iii)
was also extended by first considering that Case a is non-negative with b > µ−1 > 1, with
µ < 1 and d < 0. This implies that there is a negative migration flux (i.e., a supply of
individuals from the environment to the habitat, either spontaneous or via intervention)
and a negative harvesting quota, namely, a monitored supply of larvae to the habitat with
associated complementary harvesting quota in a proportion greater than unity related

to its natural stock within the habitat. In this case, x2 =
1−
√

4µb−3
2(1−µ)

< 0 (unfeasible) and

x1 =
1+
√

4µb−3
2(1−µ)

> 0, provided that b > max
(
µ−1, 3

4 µ
)
.

2.4. Non-Negativity and Boundedness of the Solutions

The subsequent assumptions are eventually made in the sequel in some of the technical
results.

Assumption 1. The carrying capacities, intrinsic growth rates and inter-species coupling dynamics
are constant, i.e., Ki > 0, µi > 1, cii = 1, cij ≥ 0; ∀i, j( 6= i) ∈ n.

Assumption 2. The complementary harvesting quotas and independent consumption sequences
satisfy the upper-bounding constraints 0 ≤ bi(k) ≤ bi < +∞; −∞ < di(k) ≤ bi(k)x−i (k);
∀i ∈ n, ∀k ∈ N0.

It can be pointed out that Assumption 1 can be extended directly to the case that the
constant parameters are sequences depending on time. It can be also generalized for µi ≤ 1
under the additional constraint Ki

1−µi
≥ ∑n

j=1 cjixj(k); ∀i, j( 6= i) ∈ n or for its extension to the
case when carrying capacities, intrinsic growth rates and inter-species coupling dynamics
are sequences depending on time. The interpretation is that, if the intrinsic growth rate is
under unity, then the coupling sequences from the remaining populations to the i− th have
to be small enough related to the ratio Ki(k)/(1− µi(k)). Note that the populations stocks
to the left and right limits of the sampling instants have to be non-negative for coherency
of the model evolution. The constraints of Assumption 2 guarantee that the populations
to the left limits of the sampling instants are non-negative if those to the right limits are
non-negative.

The following result on the non-negativity of the solution is directly obtained from
(2)–(3) and Assumptions 1–2.

Proposition 1. Under Assumptions 1–2, for all i ∈ n and any given k ∈ N0, if xi(k) ≥ 0, then
x−i (k + 1) ≥ 0 and xi(k + 1) ≥ 0. If xi(k) > 0, then x−i (k + 1) > 0 and, also, xi(k + 1) > 0 if,
furthermore, di(k + 1) < bi(k + 1)x−i (k + 1).
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Assumptions 1–2 also lead to the subsequent result on the dominance (or best fitness)
of a certain population on another one for all samples.

Proposition 2. Let us assume that, for any given i, j( 6= i) ∈ n, µi ≥ µj, Ki ≥ K j =

max
`∈n

(
c`i
c`j

)
µi(µi−1)
µj(µj−1)

Kj,
{

bi(k)− bj(k)
}∞

k=1 ⊂ R0+ and
{

dj(k)− di(k)
}∞

k=1 ⊂ R0+ and that

Assumptions 1–2 hold. Thus, if xi(0) ≥ xj(0), then
{

x−i (k)− x−j (k)
}∞

k=0
⊂ R0+ and{

xi(k)− xj(k)
}∞

k=0 ⊂ R0+.

The above conditions may be relaxed as follows:

If Ki ≥ K j, µi ≥ µj and xi(0) ≥
µj
µi

xj(0), then
{

x−i (k)− x−j (k)
}∞

k=1
⊂ R0+ and{

x−i (k)− x−j (k)
}∞

k=1
⊂ R0+, provided that dj(k)− di(k) ≥ bj(k)x−j (k)− bi(k)x−i (k); ∀k ∈ N.

Proof. Note that
x−i (1) = µixi(0)

1+∑n
`=1 c`i(µi−1)K−1

i x`(0)

≥ x−j (1) =
µjxj(0)

1+∑n
`=1 c`j(µj−1)K−1

j x`(0)

(5)

if xi(0) ≥ xj(0), µi ≥ µj and

0 ≤∑n
`=1

(
c`i(µi − 1)K−1

i − c`j
(
µj − 1

)
K−1

j

)
x`(0) ≤ 0

which holds if Ki ≥ K j and µixi(0) ≥ µjxj(0), which leads to x−i (1) ≥ x−j (1). Furthermore,
xi(1) ≥ xj(1) since xi(0) ≥ xj(0), bi(1) − bj(1) ≥ 0 and dj(1) − di(1) ≥ 0. Then, one

obtains recursively that
{

x−i (k)− x−j (k)
}∞

k=0
⊂ R0+ and

{
xi(k)− xj(k)

}∞
k=0 ⊂ R0+, as

claimed in the first part of the proposition. The second part is direct, since, under the
assumptions that Ki ≥ Kj and xi(0) ≥

µj
µi

xj(0), one obtains µiKixi(0) ≥ µjKjxj(0) (not
necessarily under the joint constraints xi(0) ≥ xj(0), µi ≥ µj and Ki ≥ Kj). This implies
that x−i (1) ≥ x−j (1), which, together with dj(1)− di(1) ≥ bj(1)x−j (1)− bi(1)x−i (1) (not
necessarily with dj(1) ≥ d1(1)), implies that xi(1) ≥ xj(1). The result for k ≥ 1 follows
recursively. �

Remark 2. It follows, from Proposition 2, that a population i ∈ n is dominant on the remaining
ones, or, in other words, it has the best fitness, for all j( 6= i) ∈ n and the respective left and right sam-
pled values if Ki ≥ max

j( 6=i)∈n
K j, xi(0) ≥ 1

µi
max

j( 6=i)∈n

(
µjxj(0)

)
and min

j( 6=i)∈n

(
dj(k)− bj(k)x−j (k)

)
≥

di(k)− bi(k)x−i (k); ∀k ∈ N. It turns out, furthermore, that an increase in an individual carrying
capacity facilitates the increase in the corresponding species numbers, if all the remaining parameters
remaining unchanged. The above constraints generalize Proposition 2, although at the expense
of involving conditions on the left amounts of the population stocks. It can be pointed out that,
eventually, there could exist more than one species with an identical best fitness within the set of
competing species.

The following result is now proved on non-negativity, boundedness and eventual
extinction of the species populations.

Theorem 2. The following properties hold:

(i) If ∞ > xi(0) > 0; ∀i ∈ n, Assumption 1 holds, {bi(k)}∞
0 ≡ 1 and {di(k)}∞

0 ≡ 0; ∀i ∈ n;
then, {xi(k)}∞

k=0 is non-negative and bounded; ∀i ∈ n. Furthermore, if {xi(k)}∞
0 → 0 (i.e.,

asymptotic extinction of the ith species), then lim inf
k→∞

min
0≤k<∞

Kie(k) = 0.
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(ii) If ∞ > xi(0) > 0; ∀i ∈ n and Assumptions 1 and 2 hold with {di(k)}∞
k=0 ⊂ R0+, then and

it is a bounded non-negative sequence if ∏∞
k=0[µibi(k)] = 0; ∀i ∈ n. This property holds, in

particular, if bi(k) > µ−1
i ; ∀k ∈ N0. If, furthermore, 0 ≤ di(k) < bi(k)x−i (k); ∀k ∈ N0,

then extinction in finite time does not occur for any i ∈ n, so that extinction only happens
asymptotically and {xi(k)}∞

k=0 is a bounded non-negative sequence if ∏∞
k=0[µibi(k)] ≤ A <

∞. In particular, if ∏
j+a−1
k=j [bi(k)] ≤ µ−a

i ; ∀k(≥ j0) ∈ Z0+ and some finite j0 ∈ N0 and
a ∈ N, then

x−i (k + 1) =
µiKixi(k)

Ki + ∑n
j=1 cji(µi − 1)xj(k)

(6)

If Assumptions 1 and 2 hold with {di(k)}∞
k=0 ⊂ R, then {xi(k)}∞

k=0 → 0 if
∏∞

k=0[µibi(k)− di(k + 1)] = 0.
(iii) If Assumptions 1 and 2 hold, then {xi(k)}∞

k=0 is bounded; ∀i ∈ n.

Proof. One obtains that (2) is equivalent to

x−i (k + 1) =
µixi(k)

1 + µi−1
Ki

∑n
j=1 cjixj(k)

=
µixi(k)

1 + µi−1
Kie(k)

xi(k)
; ∀k ∈ N0 (7)

where the equivalent i− th carrying capacity Kie is given by

0 ≤ Kie(k) =
Kixi(k)

∑n
j=1 cjixj(k)

=
Ki

1 + ∑n
j( 6=i)=1 cji

xj(k)
xi(k)

≤ Ki; ∀k ∈ N0 (8)

since cii = 1 and cij ≥ 0; ∀j( 6= i) ∈ n. By combining (7) and (8), one obtains

x−i (k + 1) = µixi(k)

1+ µi−1
Kie(k)

xi(k)
≤ µixi(k)

1+ µi−1
Ki

xi(k)
= µiKixi(k)

Ki+(µi−1)xi(k)
;

∀i ∈ n, ∀k ∈ N0

(9)

If Assumption 1 holds, {bi(k)}∞
0 ≡ 1 and {di(k)}∞

0 ≡ 0, then x−i (k) = xi(k); ∀i ∈ n,
∀k ∈ N0. Let us define yi(k) = 1/

(
x−i (k)

)
; ∀i ∈ n, ∀k ∈ N0. One obtains, from recursive

calculations in (8) using (7),

0 < µi−1
µiKi
≤ µi−1

µi max
0≤k<∞

Kie(k)
≤ µi−1

µi
∑k

j=0
µ

j−k
i

Kie(j)

≤ 1
xi(k+1) = yi(k + 1) = y−i (k + 1) = µ−1

i yi(k) +
µi−1

µiKie(k)

= µ
−(k+1)
i yi(0) +

µi−1
µi

∑k
j=0

µ
j−k
i

Kie(j)

≤ yi(0) +
µi−1

µi min
0≤j≤k

Kie(j)∑k
j=0 µ

j−k
i

≤ 1
xi(0)

+ µi−1
µi min

0≤j≤k
Kie(j)∑∞

j=0 µ
j−k
i

≤ 1
xi(0)

+ µi−1
µi min

0≤j≤∞
Kie(j)

1−µ
−(k+1)
i

1−µ−1
i

≤ 1
xi(0)

+ 1
min

0≤k<∞
Kie(k)

;

∀i ∈ n, ∀k ∈ N0

(10)

since Kie(k) ≤ Ki < ∞. Since ∞ > xi(0) > 0 and 1
xi(k+1) > 0; ∀i ∈ n, ∀k ∈ N0, then

{xi(k)}∞
0 is bounded; ∀i ∈ n. Note that {xi(k)}∞

0 is a non-negative sequence for any given
i ∈ n by construction and, furthermore, a positive sequence, unless lim inf

k→∞
min

0≤k<∞
Kie(k) = 0,

which would eventually imply, from (10), that {1/xi(k)}∞
0 → ∞ , so that {xi(k)}∞

0 → 0 .
Since it has been already proved (Property (i)) that

{
xj(k)

}∞
0 is bounded for any j ∈ n,
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then
{

xj(k)/xi(k)
}∞

0 → ∞ , which would translate into lim inf
k→∞

min
0≤k<∞

Kie(k) = 0 from (8),

if and only if {xi(k)}∞
0 → 0 . Property (i) has been proved. From Assumptions 1–2, with

non-negative independent consumption, one directly obtains that xi(k+1)
xi(k)

≤ bi(k + 1)µi,
which leads to the first part of Property (ii). If Assumptions 1 and 2 hold with non-
necessarily non-negative independent consumption sequence, then {xi(k)}∞

k=0 → 0 if
∏∞

k=0[µibi(k)− di(k + 1)] = 0, which proves the second part of Property (ii).
Property (iii) is proved by contradiction arguments. Let us assume that Assumptions

1 and 2 hold and {xi(k)}∞
k=0 is unbounded. Thus, there is a subsequence {xi(nk)}∞

k=0 ⊂
{xi(k)}, with nk+1 − nk < +∞, which is strictly increasing, so that {xi(nk)}∞

k=0 → +∞
and then, from (7),

0 ≤
x−i (k + 1)

xi(k)
≤ µiKie(k)

(µi − 1)xi(k)
; ∀k ∈ N0

then lim
k→∞

x−i (nk+1)
xi(nk)

= 0. Furthermore,

x−i (nk+1)

xi(nk)
=

(
x−i (nk+1)

xi(nk+1−1)

)(
xi(nk+1−1)
x−i (nk+1−1)

)
×
(

x−i (nk+1−1)
xi(nk+1−2)

)(
xi(nk+1−2)
x−i (nk+1−2)

)
. . .
(

x−i (nk+1)
xi(nk)

)
≤ C(nk, j) x−i (nk+1)

xi(nk)

(11)

where C(nk, j) is a positive real constant which is finite, since it is bounded to a finite
number of iterations between nk and nk+1, since nk+1 − nk < +∞ and since one has, from
Assumption 2, that

xi(k + 1) = bi(k + 1)x−i (k + 1)− di(k + 1) ≤ Mi < +∞; ∀i ∈ n; ∀k ∈ N0

and

0 ≤ xi(k + 1)
x−i (k + 1)

= bi(k + 1) − di(k + 1)
x−i (k + 1)

≤ Mi

x−i (k + 1)
< +∞ (12)

if x−i (k + 1) 6= 0 and xi(k+1)
x−i (k+1)

= 0
0 = +1 < +∞ if x−i (k + 1) = 0, still from Assumption 2.

Then, from (11) and (12), one obtains lim
k→∞

x(nk+1)
xi(nk)

= 0, since
{

x−i (nk+1)
xi(nk)

}∞

k=0
is bounded and

{xi(nk)}∞
k=0 is strictly increasing from the contradiction argument hypothesis. Thus, there

is a subsequence
{

xi
(
mnk

)}∞
k=0 ⊂ {xi(nk)} such that

xi

(
mnk+1

)
xi(mnk )

< 1, so that one concludes,

from D´Alembert criterion for convergence of sequences, that
{

xi
(
mnk

)}∞
k=0 → 0 . As a

result, {xi(k)}∞
k=0 is bounded. Property (iii) has been proved. �

Note that Theorem 2 (i) guarantees the boundedness of all the populations under
Assumption 1, provided that the harvesting quota and the independent consumption are
zero (so that there are no impulsive effects at sampling instants), while Theorem 2(iii)
guarantees such a boundedness under Assumptions 1 and 2.

In the following, the limits of the convergent sequences are denoted with the same
notation as the sequences of elements by suppressing the sample argument “k” for the sake
of notation simplicity.

Theorem 3. Let us assume that all the populations converge to equilibrium points, that is,
{xi(k)}∞

0 → xi . Then, the following properties hold:

(i) Let us assume that Assumptions 1 and 2 hold and that {bi(k)}∞
0 → bi

(
> µ−1

i

)
,

{di(k)}∞
0 → di ∈

[
0, di

]
,
{

cji(k)
}∞

0 → cji ∈
[
0, cji

]
for some di ∈ R0+, cji ∈ R0+;
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∀j( 6= i), i ∈ n. If di and cji; ∀j( 6= i), i ∈ n are sufficiently small compared to Ki(biµi − 1),
then there are two equilibrium points xi ≥ 0; ∀i ∈ n.

(ii) Let us assume that the quadruple (Ki, µi, bi, di) satisfies the constraints

Bi = [Ki(biµi − 1)− (µi − 1)di] ≥ 0

Ci = (Ki(biµi − 1)− (µi − 1)di)
2 − 4(µi − 1)diKi ≥ 0

Then, one of each i − th equilibrium point is feasible, that is, xi ≥ 0 under the
subsequent stipulations:

(1) Either the coupling constraint ∑n
j( 6=i)=1 cjixj ∈

[
Bi+
√

B2
i −Ci

µi−1 , ∞
)

from the remaining

equilibrium points and, furthermore, any of the three conditions below:

C1) bi ≥ µ−1
i and 0 ≤ di ≤

Ki(biµi − 1)
µi − 1

C2) µi > 1, bi ∈
(

µ−1
i , 5µ−1

i

]
, di ∈

[
Ki(biµi − 1)

µi − 1
,

4Ki
µi − 1

)
C3) µi < 1, bi ∈

(
µ−1

i , 5µ−1
i

]
, di ∈

[
− 4Ki

1− µi
, −Ki(biµi − 1)

1− µi

)
;

(2) Or, the coupling constraint ∑n
j( 6=i)=1 cjixj ∈ [0, ∞) from the remaining equilibrium

points together with sgn(di) = sgn(µi − 1) (which excludes the values µi = 1 and di = 0).

Proof. Take any i ∈ n. One obtains, from (2)–(3), by taking limits, that

x−i =
µiKixi

Ki + ∑n
j=1 cji(µi − 1)xj

(13)

xi = bix−i − di =
biµiKixi

Ki+∑n
j=1 cji(µi−1)xj

− di

=
(biµiKi−di(µi−1))xi−di

(
Ki+(µi−1)∑n

j( 6=i)=1 cjixj

)
Ki+∑n

j=1 cji(µi−1)xj

(14)

then (
(biµiKi − di(µi − 1))

Ki + ∑n
j=1 cji(µi − 1)xj

− 1

)
xi =

di

(
Ki + (µi − 1)∑n

j( 6=i)=1 cjixj

)
Ki + ∑n

j=1 cji(µi − 1)xj
(15)

so that

xi =
di

(
Ki+(µi−1)∑n

j( 6=i)=1 cjixj

)
biµiKi−di(µi−1)−Ki−∑n

j=1 cji(µi−1)xj

=
di

(
Ki+(µi−1)∑n

j( 6=i)=1 cjixj

)
(µi−1)

[
(Ki−di−xi)−∑n

j( 6=i)=1 cjixj

]
+(bi−1)Kiµi

(16)

by noting that the denominator of the above second identity balances that of the first one.
Re-arranging terms in the above Equation (16) leads to

(µi − 1)x2
i − b̂ixi + ĉi = 0 (17)

where
b̂i = b̂i(x1, . . . , xi−1, xi+1, · · · , xn)

= (µi − 1)
(

Ki − di −∑n
j( 6=i)=1 cjixj

)
+ (bi − 1)Kiµi

= Ki(biµi − 1)− (µi − 1)
(

di + ∑n
j( 6=i)=1 cjixj

) (18)
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ĉi = ĉi(x1, . . . , xi−1, xi+1, · · · , xn) = di

(
Ki + (µi − 1)∑n

j( 6=i)=1 cjixj

)
(19)

It is obvious, from the above equations, that if bi > 1/µi and di = 0 and cji = 0;
∀j( 6= i), then b̂i = Ki(biµi − 1) and ĉi = 0; ∀i ∈ n and one obtains the equilibrium points
xi =

Ki(biµi−1)
µi−1 > 0 and xi = 0 as zeros of (17). It turns out that, in the general case, the

zeros of (17), namely,

xi =
b̂i ±

√
b̂2

i − 4(µi − 1)ĉi

2(µi − 1)
(20)

are both non-negative and real if b̂i > 0 and b̂2
i ≥ 4(µi − 1)ĉi which hold for each i ∈ n if

di and cji; ∀j( 6= i) are sufficiently small in view of (18) and (19), such that ĉi is sufficiently
small, compared to Ki(biµi − 1) (that is, sufficiently small related to the first additive term
of
∣∣∣b̂i

∣∣∣) from the property of the continuity of the zeros of a polynomial with respect to its
coefficients. Property (i) has been proved. Property (ii) is now proved by guaranteeing
the validity of b̂2

i ≥ 4(µi − 1)ĉi depending on the coupling equilibrium dynamics from the
remaining species j( 6= i) ∈ n to the i− th one. First, let us define the auxiliary amount
∆i = (µi − 1)∑n

j( 6=i)=1 cjixj so that, from (18) and (19),

b̂i = (µi − 1)(Ki − di)− ∆i + (bi − 1)Kiµi = Ki(biµi − 1)− (µi − 1)di − ∆i

ĉi = di(Ki + ∆i)

then

g(∆i) = b̂2
i − 4(µi − 1)ĉi = (Ki(biµi − 1)− (µi − 1)di − ∆i)

2 − 4(µi − 1)(di(Ki + ∆i))

= ∆2
i − 2[Ki(biµi − 1)− (µi − 1)di ]∆i + (Ki(biµi − 1)− (µi − 1)di)

2 − 4(µi − 1)diKi − 4(µi − 1)di∆i

= ∆2
i − 2[Ki(biµi − 1)− (µi − 1)di ]∆i + (Ki(biµi − 1)− (µi − 1)di)

2 − 4(µi − 1)diKi
= ∆2

i − 2Bi∆i + Ci ≥ 0

(21)

holds, where
Bi = [Ki(biµi − 1)− (µi − 1)di] (22)

Ci = (Ki(biµi − 1)− (µi − 1)di)
2 − 4(µi − 1)diKi = B2

i − 4(µi − 1)diKi (23)

Let us consider the subsequent two cases:
Case 1 (g(∆i) = 0 has real zeros ∆i1,i2). For the above constraint (21) to be well-posed

with real zeros ∆i1,i2 of g(∆i) = 0, with ∆i2 = Bi +
√

B2
i − Ci ≥ ∆i1 = Bi −

√
B2

i − Ci

(according to the definition of ∆i), so that g(∆i) ≥ 0 if and only if ∑n
j( 6=i)=1 cjixj ∈[

max
(

0, Bi+
√

B2
i −Ci

µi−1

)
, ∞
)

, a necessary condition being that B2
i ≥ Ci, equivalently,

(µi − 1)di ≥ 0. Provided that such a necessary condition holds, sufficient conditions
for ∆i2 = ≥ 0 are as follows:

(a) Bi ≥ 0, equivalently, 0 ≤ di ≤
Ki(biµi−1)

µi−1 , which, combined with the above necessary

condition, also implies that bi ≥ µ−1
i ;

(b) Bi < 0 together with Ci ≤ 0. These two joint sufficiency-type conditions are

respectively equivalent to di >
Ki(biµi−1)

µi−1 and the implicit constraint di ≥ di =
B2

i
4(µi−1)Ki

=

(λi−µi+1)2d2
i

4(µi−1)Ki
,obtained after defining the auxiliary parameter λi =

Ki(biµi−1)
di

for di 6= 0. Note
that the particular case di = 0 requires, for feasibility, that Bi ≥ 0 (from the necessary
condition B2

i ≥ Ci), so that it is included in the sufficient condition Bi ≥ 0 (or di ≤
Ki(biµi−1)

µi−1 ), that is, it is included in (a). Since the given implicit constraint has to be checked

for di 6= 0, it becomes identical to 1 ≥ (λi−µi+1)2di
4(µi−1)Ki

, or equivalently identical to

di ≤ di =
4(µi − 1)Ki

(λi − µi + 1)2 =
4(µi − 1)Ki

λ2
i + (µi − 1)2 − 2(µi − 1)λi
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Note that (µi − 1)λi =
µi−1

di
Ki(biµi − 1), so that, under the given necessary conditions,

sgn[(µi − 1)λi] = sign[Ki(biµi − 1)] = sgn(biµi − 1), which is +1 if bi > µ−1
i and −1 if

bi < µ−1
i . Thus, if bi ≥ µ−1

i , then di ≤ di if di ≤
4(µi−1)Ki

λ2
i +(µi−1)2 , which is, in turn, guaranteed if

di ≤ 4Ki
µi−1 . As a result, the sufficient condition (b) is guaranteed if di ∈

(
Ki(biµi−1)

µi−1 , 4Ki
µi−1

]
, if

bi ∈
(

µ−1
i , 5µ−1

i

]
.

On the other hand, if bi < µ−1
i , then di =

4(µi−1)Ki
λ2

i +|µi−1|(|µi−1|+2|λi |)
≤ 4Ki

µi−1 if, furthermore,

µi > 1, implying again that the condition (b) is guaranteed if di ∈
(

Ki(biµi−1)
µi−1 , 4Ki

µi−1

]
and

di = −
4|µi−1|Ki

λ2
i +|µi−1|(|µi−1|+2|λi |)

≥ − 4Ki
1−µi

= 4Ki
µi−1 if µi < 1.

Note that, in both,
Case 2 (g(∆i) = 0 has complex conjugate zeros ∆i1, i2). This condition holds if and only

if B2
i < Ci (which also trivially requires that Ci > 0), which, in view of (23), requires that

(µi − 1)di < 0, which holds if and only if sgn(di) = sgn(µi − 1). Since g(0) = Ci > 0
and ∆i1, i2 are complex conjugate zeros, g(∆i) > 0 in all its definition domain, that is, if
∑n

j( 6=i)=1 cjixj ∈ [0, ∞).
Property (ii) follows from Cases 1 and 2. �

Note, from Equation (20), that both equilibrium points of the i− th species are zero if
di = cji = 0; ∀j( 6= i) ∈ n and bi = µ−1

i ; ∀i ∈ n. Excluding this trivial case, also note from
Equation (20) that, provided that the radicand is non-negative, a necessary condition for at
least one of the equilibrium points to be non-negative is that either b̂i > 0 or b̂i < 0 and
ĉi ≥ 0. The first case implies that

di + ∑n
j( 6=i)=1 cjixj <

Ki(biµi − 1)
µi − 1

The second case implies that µi < 1 and

di + ∑n
j( 6=i)=1 cjixj >

Ki(biµi − 1)
µi − 1

;

di

(
Ki − (1− µi)∑n

j( 6=i)=1 cjixj

)
≥ 0

while the second constraint above is fulfilled with di ≥ 0 and ∑n
j( 6=i)=1 cjixj ≤ K1

1−µi
, or

di ≤ 0 and ∑n
j( 6=i)=1 cjixj ≥ K1

1−µi
.

Example 1 (Positive equilibrium points for n = 2 and n ≥ 3 with zero independent consumptions).
The allocation and positivity of the equilibrium points is easy to deal with in an analytical way from
a linear algebraic system in the absence of independent consumptions at the equilibrium state, as it
is now discussed. If n = 2 and d1 = d2 = 0, then

xi =
µibiKixi

Ki + (µi − 1)
(
xi + cjixj

) for i, j( 6= i) = 1, 2 (24)

which leads, for xi > 0 and for i = 1, 2, denoted also as x = (x1 , x2)
T �� 0, to

xi + cjixj =
Ki(biµi − 1)

µi − 1
for i, j( 6= i) = 1, 2 (25)
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leading to

[
x1
x2

]
=

[
1 c21

c12 1

]−1
 K1(b1µ1−1)

µ1−1
K2(b2µ2−1)

µ2−1

 = 1
1−c12c21

[
1 −c21
−c12 1

] K1(b1µ1−1)
µ1−1

K2(b2µ2−1)
µ2−1


= 1

1−c12c21

 K1(b1µ1−1)
µ1−1 − c21K2(b2µ2−1)

µ2−1
K2(b2µ2−1)

µ2−1 − c12K1(b1µ1−1)
µ1−1

 �� 0

(26)

provided that Ki > 0 for i = 1, 2 and either µi > max
(

1, b−1
i

)
, or µi < min

(
1, b−1

i

)
, for

i = 1, 2 and c12 and c21 are sufficiently small according to the relations

cij <
Kj(µi − 1)

(
bjµj − 1

)
Ki
(
µj − 1

)
(biµi − 1)

; i, j( 6= i) = 1, 2 (27)

The equilibrium consensus, that is, the equilibrium points of both species are identical,
x = x1 = x2 = a

1−c12c21
> 0 for some prefixed a > 0 is achieved for the coupling coefficients

satisfying

cij =

(
Ki(biµi − 1)

µi − 1
− a
)

µj − 1

Kj
(
bjµj − 1

) ∈ [0, 1); i, j( 6= i) = 1, 2 (28)

so that the parameter a > 0 has to satisfy, furthermore,

Ki(biµi − 1)
µi − 1

− a <
Kj
(
bjµj − 1

)
µj − 1

; i, j( 6= i) = 1, 2 (29)

or

a > max

(
0, max

1≤i,j( 6=i)≤2

(
Kj(bjµj−1)

µj−1 − Ki(biµi−1)
µi−1 , Ki(biµi−1)

µi−1 − Kj(bjµj−1)
µj−1

))
= max

(
0,
∣∣∣K2(b2µ2−1)

µ2−1 − K1(b1µ1−1)
µ1−1

∣∣∣) (30)

The generalization to n ≥ 3 species, if di = 0; ∀i ∈ N0, leads to a vector of equilibrium
points given by

x =


x1
x2
· · ·
xn

 =


1 c21 · · · cn1

c12 1 c32 · · · cn2
· · · · · · · · · · · ·
c1n c2n · · · 1


−1



K1(b1µ1−1)
µ1−1

...

...
Kn(bnµn−1)

µn−1



= (In + o(ε))−1



K1(b1µ1−1)
µ1−1

...

...
Kn(bnµn−1)

µn−1



(31)

provided that Ki > 0, µi > max
(

1, b−1
i

)
; ∀i ∈ n with cij ≥ 0; ∀i, j( 6= i) ∈ 3 and

max
1≤i,j( 6=i)≤n

cij ≤ ε for some ε ∈ R0+ so that, if ε is sufficiently small, then the inverse

of (In + o(ε)) exists and x �� 0, i.e., all its components, that is, the equilibrium states of
all the species, are positive.

The following technical result, which establishes equilibrium point upper-bounds
when one of the species in the competing set is dominant to the left and right samples,
holds.
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Proposition 3. Let us define the population inverses y−i = 1/x−i and yi = 1/xi at the equilibrium
points and let us assume that the i− th species is the dominant one in the set of n competing species
in the set that has the best fitness. Then, the following equilibrium constraints hold:

y−i ≤
bi

µibi − 1

µi − 1
Ki

+
µi − 1

Ki

n

∑
j( 6=i)=1

cji

(
bi − diy−i + di

bi
(
bi − diy−i

) )+
1

bi − diy−i

 (32)

yi =
bi−diy

−
i +di

bi(bi−diy
−
i )

y−i ≤
bi−diy

−
i +di

(bi−diy
−
i )(µibi−1)

×
[

µi−1
Ki

+ µi−1
Ki

∑n
j( 6=i)=1 cji

(
bi−diy

−
i +di

bi(bi−diy
−
i )

)
+ 1

bi−diy
−
i

] (33)

If di ≤ 0 with |di| ≤ (1− bi)x−i , then the following further upper-bounds for (32) and
(33) are obtained:

y−i ≤
bi

µibi−1

[
µi−1

Ki
+ µi−1

Ki
∑n

j( 6=i)=1 cji

(
(1−|di |)b−1

i
bi+|di |y−i

)
+ 1

bi+|di |y−i

]
≤ bi

µibi−1

[
µi−1

Ki
+ µi−1

Ki
∑n

j( 6=i)=1
1
bi

(
1 +

cji
bi

)]
yi ≤

µi−1
Ki

+ µi−1
Ki

∑n
j( 6=i)=1

1
bi

(
cji +

1
bi

)

Proof. So that one obtains, from (2)–(3) the following equilibrium constraints, since cii = 1;
∀i ∈ n,

y−i =
Ki+ ∑n

j=1 cji(µi−1)xj
µiKixi

= µ−1
i yi +

µi−1
µiKi

+ µi−1
µiKi

∑n
j( 6=i)=1 cjiyiy−1

j

(34)

yi =
1

bix−i − di
=

y−i
bi − diy−i

= b−1
i y−i + Yi (35)

where

Yi =

(
1

bi − diy−i
− 1

bi

)
y−i =

diy−i
bi
(
bi − diy−i

) (36)

Then, from (36) into (35), one obtains

yi =

(
b−1

i +
di

bi
(
bi − diy−i

))y−i =
bi − diy−i + di

bi
(
bi − diy−i

) y−i (37)

Which, replaced in (34), yields(
1− µ−1

i

(
b−1

i + di
bi(bi−diy

−
i )

))
y−i = µi−1

µiKi
+ µi−1

µiKi
∑n

j( 6=i)=1 cjiyiy−1
j

= µi−1
µiKi

+ µi−1
µiKi

∑n
j( 6=i)=1 cjiy−1

j

(
b−1

i + di
bi(bi−diy

−
i )

)
y−i

(38)

and then(
1− µ−1

i

(
b−1

i +
di

bi
(
bi − diy−i

))− µi − 1
µiKi

∑n
j( 6=i)=1 cjiy−1

j

(
b−1

i +
di

bi
(
bi − diy−i

)))y−i =
µi − 1
µiKi

(39)

Note, from (3), that x−i ≥ max(0, di/bi) (equivalently, y−i ≤ bi/di) in order for the
i− th equilibrium point to be non-negative to the left of the sampling instants, provided
that it is non-negative to the right of such sampling instants. Therefore, the last two
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additive terms on the left-hand-side of the above equation are necessarily negative under
that stipulation.

Let us assume that the i − th species is dominant so that xi ≥ max
1≤j( 6=i≤n)

xj, so that

yi/yj ≤ 1; ∀j( 6= i) ∈ n. Then,(
1− µ−1

i

(
b−1

i + di
bi(bi−diy

−
i )

))
y−i

≤ µi−1
µiKi

+ µi−1
µiKi

∑n
j( 6=i)=1 cji

(
b−1

i + di
bi(bi−diy

−
i )

) (40)

and, since (di/bi)y−i ≤ 1,

µibi−1
µibi

y−i ≤
µi−1
µiKi

+ µi−1
µiKi

∑n
j( 6=i)=1 cji

(
b−1

i + di
bi(bi−diy

−
i )

)
+

µ−1
i di

bi(bi−diy
−
i )

y−i

≤ µi−1
µiKi

+ µi−1
µiKi

∑n
j( 6=i)=1 cji

(
bi−diy

−
i +di

bi(bi−diy
−
i )

)
+ 1

µi(bi−diy
−
i )

(41)

which is identical to (32); then, (33) is direct for the equilibrium values at the right of the
sampling instants. The further two upper-bounds if di ≤ 0 inequalities follow directly from
(32)–(33) and the proof is completed. �

The next definition relies on the concept of equilibrium consensus among the species
in the sense that all of them reach the same equilibrium points.

Definition 1. It is said that the n(≥ 2) competing species set has a left/right equilibrium consensus
if there exist at least two, non-necessarily distinct, non-negative real numbers x− and x such that
x−i = x− and xi = x; ∀i ∈ n, that is, the equilibrium point is common to all the species.

Some sufficient conditions for equilibrium consensus are found in the subsequent
result.

Proposition 4. The following parametric constraints hold:

(i) A right equilibrium consensus for a given common population x is reached under the indepen-
dent consumptions

di =
(biµi − 1)Ki − (µi − 1)

(
∑n

j=1 cji

)
x

Ki + (µi − 1)
(

∑n
j=1 cji

)
x

x; ∀i ∈ n (42)

(ii) A right equilibrium consensus for a common equilibrium population of value

x =
(biµi − 1)Ki

(µi − 1)
(

∑n
j=1 cji

) (43)

exists if di = 0; ∀i ∈ n with either µi > max
(

1, b−1
i

)
or µi < min

(
1, b−1

i

)
for each i ∈ n

for x > 0, or, jointly, µi = b−1
i 6= 1; ∀i ∈ n for x = 0 (that is, “extinction” consensus).

(iii) Let us assume that the competing species set has an equilibrium consensus and that there
are no impulses at the equilibrium points, that is, bi = 1 and di = 0; ∀i ∈ n. Then, the
equivalent carrying capacities Kie = Ke; ∀i ∈ n are identical for all the species, the carrying
capacities are Ki = Ke∑n

j=1 cji; ∀i ∈ n and the nonzero common equilibrium point coincides
with such a common equivalent carrying capacity, i.e.,

x = x− =
Ki

∑n
j=1 cji

= Kie = Ke; ∀i ∈ n.
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Proof. One obtains, from (4), for xi = x; ∀i ∈ n that

(µi − 1)
(

∑n
j=1 cji

)
x2

=
[
(biµi − 1)Ki − di(µi − 1)

(
∑n

j=1 cji

)]
x− diKi; ∀i ∈ n

(44)

which proves Property (i). Property (ii) follows directly from Property (i), by making
di = 0; ∀i ∈ n, which leads to x = (biµi−1)Ki

(µi−1)
(

∑n
j=1 cji

) ; ∀i ∈ n. Since cji ≥ 0; ∀i, j ∈ n implies

that Ki
∑n

j=1 cji
= µi−1

biµi−1 x ≥ 0, it follows that a necessary condition of fulfillment of those

constraints for each i ∈ n is that either µi ≥ max
(

1, b−1
i

)
or µi ≤ min

(
1, b−1

i

)
, or, jointly,

µi = b−1
i 6= 1; ∀i ∈ n.

To prove Property (iii), note that, since bi = 1 and di = 0; ∀i ∈ n, one has, at the
equilibrium points,

x− = x =
µiKix

Ki + ∑n
j=1 cji(µi − 1)x

(45)

whose solutions are x = 0 and, after direct calculation for x 6= 0, one obtains

x− = x =
Ki

∑n
j=1 cji

= Kie = Ke; ∀i ∈ n. (46)

�

Let us assume, for generalization purposes, that the intrinsic growth rates, the carrying
capacities and inter-species coupling coefficients might also be time-varying, in general.
Thus, one obtains, from the resulting generalized (2) and (3) and, provided that x−i (k + 1) 6=
0 and λji(k) = xj(k)/xi(k), that

y−i (k + 1) = 1
x−i (k+1)

= µ−1
i (k)yi(k) +

µi(k)−1
Ki(k)µi(k)

+ µi(k)−1
Ki(k)µi(k)

∑n
j( 6=)=1 cji(k)λji(k)

(47)

yi(k + 1) = ρ−1
i (k + 1)y−i (k + 1) (48)

for any i, j( 6= i) ∈ n, where

ρi(k + 1) = xi(k + 1)/x−i (k + 1) = bi(k + 1)− di(k + 1)y−i (k + 1) > 0 (49)

for non-negativity and non-extinction in finite-time of the solution sequence, so that
di(k + 1) < bi(k + 1)x−i (k + 1). Then, it follows, from (47) and (48), that

yi(k + 1) = (ρi(k + 1)µi(k))
−1yi(k) +

µi(k)−1
Ki(k)µi(k)ρi(k+1)

+ µi(k)−1
Ki(k)µi(k)ρi(k+1)∑n

j( 6=)=1 cji(k)λji(k)
(50)

for any i ∈ n. It can be proved that

xi(k + 1) > x−i (k + 1)
⇔ di(k + 1) < (bi(k + 1)− 1)x−i (k + 1)⇔ ρi(k + 1) > 1

(51)

xi(k + 1) < x−i (k + 1)
⇔ di(k + 1) > (bi(k + 1)− 1)x−i (k + 1)⇔ ρi(k + 1) < 1

(52)

xi(k + 1) = x−i (k + 1)
⇔ di(k + 1) = (bi(k + 1)− 1)x−i (k + 1)⇔ ρi(k + 1) = 1

(53)
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for any i ∈ n. We first prove (51) in detail by using contradiction arguments and logics of
propositions rules as follows. Let us assume that ρi(k + 1) ≤ 1 for some given i ∈ n. Then,
one obtains, from (49), that

bi(k + 1)x−i (k + 1) > di(k + 1) ≥ (bi(k + 1)− 1)x−i (k + 1)

so that
ρi(k + 1) ≤ 1⇒ di(k + 1) ≥ (bi(k + 1)− 1)x−i (k + 1)

which is the contrapositive logic proposition and then equivalent, logic proposition to the
logic implication

di(k + 1) < (bi(k + 1)− 1)x−i (k + 1)⇒ ρi(k + 1) > 1

and the part “⇒” is proved in (51) for any i ∈ n if xi(k + 1) > x−i (k + 1). Now, let us
assume that ρi(k + 1) > 1 and di(k + 1) ≥ (bi(k + 1)− 1)x−i (k + 1). Then,

ρi(k + 1) = bi(k + 1)− di(k + 1)y−i (k + 1)
≤ bi(k + 1)− (bi(k + 1)− 1)x−i (k + 1)y−i (k + 1)

= bi(k + 1)− (bi(k + 1)− 1)x−i (k + 1)y−i (k + 1) = 1

which contradicts that ρi(k + 1) > 1. Then,

ρi(k + 1) > 1⇒ di(k + 1) < (bi(k + 1)− 1)x−i (k + 1)

which proves the part “⇐” of (51) for any i ∈ n. As a result, (51) has been proved for
any i ∈ n. The proofs of (52) and (53) are very close to the one above and were therefore
omitted.

Now, note, from (49), that, for any given i ∈ n,

1
ρi(k + 1)µi(k)

=
1

µi(k)
(
bi(k + 1)− di(k + 1)y−i (k + 1)

) < 1 (54)

if µi(k)
(
bi(k + 1)− di(k + 1)y−i (k + 1)

)
> 1, equivalently, if x−i (k + 1) > di(k+1)µi(k)

µi(k)bi(k+1)−1 and,
in a similar way, one has

1
ρi(k + 1)µi(k)

> 1 if x−i (k + 1) <
di(k + 1)µi(k)

µi(k)bi(k + 1)− 1
(55)

1
ρi(k + 1)µi(k)

= 1 if x−i (k + 1) =
di(k + 1)µi(k)

µi(k)bi(k + 1)− 1
(56)

Extinction at the limit as time tends to infinity needs some extra constraints, as
follows, since xi(k + 1) < di(k+1)µi(k)

µi(k)bi(k+1)−1 does not hold at the limit with the left-hand
side and right-hand side both converging to zero. So, the convergence to extinction of
xi(k) as k→ ∞ implies that xi(k) = bi(k)x−i (k)− di(k)→ 0 as k→ ∞ , then, equivalently,
x−1

i (k) = yi(k)→ ∞ as k→ ∞ and we convey that also x−i (k)→ 0 (basically, the asymp-
totic convergences to the right and left of the sampling instants jointly hold), bi(k)→ 1
and di(k)→ 0 as k→ ∞ with di(k)

xi(k)
→ 0 as k→ ∞ (so that di(k) = o

(
x−1

i (k)
)

as k→ ∞ )

and then ρi(k) = bi(k)−
di(k)
xi(k)
→ 1 as k→ ∞ from (49).

The following result, whose proof involves the use of the above considerations, is
concerned with non-asymptotic and asymptotic extinction conditions.

Theorem 4. The following properties hold:

(i) Let us assume that the i− th species has the best fitness, xi(0) > 0 is finite, that the i− th
independent consumption fulfills di(k + 1) < bi(k + 1)xi(k + 1); ∀k ∈ N0 and that there is
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a strict sequence of non-negative integer numbers {k`}∞
`=0 ⊂ N0 with k`+1− k` ≤ k < +∞;

∀` ∈ N0 such that ∏
j=k`+1
j=k`

[ρi(k`+1 + 1− j)µi(k`+1 − j)] ≥ ρ > 1. Then, there is no
asymptotic extinction of the i− th species with the best fitness and its solution sequence is
bounded for all time.

(ii) Let us assume that (1− µi)∑n
j=1 cjixi(0) < 1, bi(k)→ 1 , di(k)→ 0 and di(k)

xi(k)
→ 0 as

k→ ∞ and that lim inf
k→∞

µi(k) ≤ 1 with ∑∞
k=1(µi(k)− 1) = +∞. Then, there is asymptotic

extinction of the i-th species with the best fitness and then that of all the remaining ones.

Proof. From recursive calculations by using (50), the inverse of the i− th population is
given by

yi(k + 1) = ∏k
j=0

[
(ρi(k + 1− j)µi(k− j))−1

]
yi(0)

+∑k
j=0 ∏k−1

`=j
[
(ρi(`+ 2)µi(`+ 1))−1] µi(j)−1

Ki(j)µi(j)ρi(j+1) (∑
n
`=1 c`i(j)λ`i(j))

(57)

with the notation convention ∏k−1
`=j
[
(ρi(`+ 2)µi(`+ 1))−1] = 1 for j = k, λii(j) = 1,

λ`i(j) ≤ 1; ∀`( 6= i) ∈ n since the i − th species has the best fitness. Since there exists a
strictly increasing sequence {k`}∞

`=0 ⊂ N0 with k`+1 − k` ≤ k < +∞; ∀` ∈ N0 such that

∏
j=k`+1
j=k`

[ρi(k`+1 + 1− j)µi(k`+1 − j)] ≥ ρ > 1 then

lim
k→∞

∏k
j=0
[
ρi(k + 1− j)µi(k− j)−1] (58)

and
∑k

j=0 ∏k−1
`=j
[
(ρi(`+ 2)µi(`+ 1))−1] µi(j)−1

Ki(j)µi(j)ρi(j+1)

×(∑n
`=1 c`i(j)λ`i(j)) < +∞; ∀k ∈ N0

(59)

since xi(0) > 0 is finite and then yi(0) > 0 is finite as well. Then, {yi(k)}∞
k=0 < +∞ from

(57) and {xi(k)}∞
k=0 does not converge to zero. In addition, from that inverse sequence

solution formula {yi(k)}∞
k=0 ⊂ R+ and then {xi(k)}∞

k=0 is bounded since it is convergent.
Property (i) has been proved. To prove Property (ii), first note that the joint constraints
di(k + 1) < bi(k + 1)xi(k + 1); ∀k ∈ N0 and (1− µi)∑n

j=1 cjixi(0) < 1, the second one
implying also that (1− µi)∑n

j=1 cjixj(0) < 1 since the i − th species has the best fitness
and being always guaranteed if µi ≥; 1, guarantee that {xi(k)}∞

k=0 ⊂ R0+ directly from the
time-varying generalization of (2)–(3), even if µi < 1. The constraints bi(k)→ 1 , di(k)→ 0
and di(k)

xi(k)
→ 0 as k→ ∞ guarantee that eventual asymptotic extinction of the i− th species

jointly holds at the left and right of the sampling instants with ρi(k)→ 1 , as k→ ∞ , while
the constraints, either lim inf

k→∞
µi(k) < 1 or lim inf

k→∞
µi(k) = 1 with ∑∞

k=1(µi(k)− 1) = +∞,

guarantee that {yi(k)}∞
k=0 → ∞ and then {xi(k)}∞

k=0 → 0 so that
{

xj(k)
}∞

k=0 → 0 , since
the i − th population has the best fitness; ∀j ∈ n from the formula which obtains the
solution of the inverse population from the initial conditions. �

3. Stability Results Obtained by Lyapunov Method

It is now assumed that the Beverton–Holt equation is time-varying, in general, rather
than parameterized by constant parameters. A Lyapunov sequence candidate is proposed
for stability analysis around eventual non-extinction equilibrium points. From Assumption
2, an artificial auxiliary sequence {νi(k)}k∈N ⊂ R is defined by νi(k) =

di(k)
x−i (k)

∈ (−∞, bi(k)];
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∀i ∈ n, ∀k ∈ N (note that di(k) is not defined for k = 0). That definition, with the above
constraint, guarantees that

di(k + 1) = νi(k + 1)x−i (k + 1)≤ bi(k + 1)x−i (k + 1); ∀i ∈ n, ∀k ∈ N (60)

Remark 3. The above artificial sequence allows an easy integration of the eventual independent
consumption contribution to the stability of non-extinction equilibrium points.

The above artificial sequence is not adequate to describe finite-time extinction xi(k) =
x−i (k + 1) = 0 with di(k + 1) < 0 (individuals of the species i− th enter the habitat from
outside) implying that the extinguished i− th species to the left of the (k + 1) sampling
instants recovers from previous extinction to the right of the (k + 1) sampling instant.

We can now describe the model to the right of the sampling instants as follows, if{
x−i (k)

}∞
k=0 ⊂ R+, ∀i ∈ n,

xi(k + 1) =
µi(k)Ki(k)(bi(k + 1)− νi(k + 1))

Ki(k) + (µi(k)− 1)∑n
j=1 cji(k)xj(k)

xi(k); ∀i ∈ n, ∀k ∈ N (61)

for given initial finite conditions xi(0) > 0; ∀i ∈ n, where νi(k) =
di(k)
x−i (k)

∈ (−∞, bi(k)]. Let

us define the i− th population inverse yi(k) = x−1
i (k); ∀i ∈ n, ∀k ∈ N so that

yi(k + 1) = (µi(k)(bi(k + 1)− νi(k + 1)))−1yi(k)

+ µi(k)−1
µi(k)Ki(k)(bi(k+1)−νi(k+1))

(
∑n

j=1 cji(k)xj(k)
)

yi(k)
(62)

which can be rewritten as

yi(k + 1) = (ai(k) + hi(k))yi(k) = ai(k)
(

1 + µi(k)−1
Ki(k)

(
∑n

j=1 cji(k)xj(k)
))

yi(k)

= ai(k)
(

1 + µi(k)−1
Ki(k)

+ µi(k)−1
Ki(k)

(
∑n

j( 6=i)=1 cji(k)xj(k)
))

yi(k)
(63)

where
ai(k) = (µi(k)(bi(k + 1)− νi(k + 1)))−1 (64)

hi(k) =
µi(k)−1

µi(k)Ki(k)(bi(k+1)−νi(k+1))

(
∑n

j=1 cji(k)xj(k)
)

= (µi(k)−1)ai(k)
Ki(k)

(
∑n

j=1 cji(k)xj(k)
) (65)

The following result relies on the asymptotic stability of the non-extinction equilibrium
point of the competition impulsive Beverton–Holt equation.

Theorem 5. Let us assume that all the competing species have non-zero equilibrium points xi ∈ R+.
Those equilibrium points are asymptotically stable, provided that the following constraints hold:

(a) ai(k) + hi(k) = ai(k)
(

1 + µi(k)−1
Ki(k)

(
∑n

j=1 cji(k)xj(k)
))

< 1;

∀k ∈ N0

(b) lim sup
k→∞

[
ai(k)

(
1 + µi(k)−1

Ki(k)

(
∑n

j=1 cji(k)xj(k)
))]
≤ 1
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and that, furthermore, at least one of the subsequent four constraints hold for some set of real
parameters θi > 0; ∀i ∈ n:

(c) xi(k) < (1 + ai(k) + hi(k))
xi
2 ; ∀k ∈ N0

(d) ∑n
i=1

θi
xi(k)

(1 + ai(k) + hi(k)) > 2∑n
i=1

θi
xi

; ∀k ∈ N0

(e)
max

1≤i≤n
x2

i (k)

min
1≤i≤n

xi(k)
<

∑n
i=1 θi(1−(ai(k)+hi(k))

2)
2∑n

i=1 θi [1−ai(k)−hi(k)]
xi

(f) ∑n
i=1 θix2

i (k)
∑n

i=1 θixi(k)
<

min
1≤i≤n

(1−(ai(k)+hi(k))2)

2 max
1≤i≤n

(1−ai(k)−hi(k))
xi

Proof. Let us define yi = x−1
i ; ∀i ∈ n with xi being a nonzero equilibrium point of the i-th

species and ỹi(k) = yi(k)− yi; ∀i ∈ n, ∀k ∈ N0. Let us consider the Lyapunov sequence
candidate V(k) = ∑n

i=1 θi(yi(k)− yi)
2; ∀k ∈ N0 for some set of design scalar coefficients

θi > 0; ∀i ∈ n. Then, the one-step incremental Lyapunov sequence candidate verifies the
subsequent chain of relations:

∆V(k) = V(k + 1)−V(k) = ∑n
i=1 θi

(
ỹ2

i (k + 1)− ỹ2
i (k)

)
= ∑n

i=1 θi(ỹi(k + 1) + ỹi(k)) (ỹi(k + 1)− ỹi(k))

= ∑n
i=1 θi([ai(k) + hi(k)]yi(k)− yi + yi(k)− yi)

×([ai(k) + hi(k)]yi(k)− yi − yi(k) + yi)

= ∑n
i=1 θi([ai(k) + hi(k) + 1]yi(k)− 2yi) ([ai(k) + hi(k)− 1]yi(k))

= ∑n
i=1 θi[ai(k) + hi(k) + 1] [ai(k) + hi(k)− 1]y2

i (k)

−2∑n
i=1 θiyi [ai(k) + hi(k)− 1]yi(k)

= −∑n
i=1 θi((1 + ai(k) + hi(k))yi(k)− 2yi)(1− ai(k)− hi(k))yi(k)

≤ −∑n
i=1 ((1 + ai(k) + hi(k))yi(k)− 2yi) min

1≤i≤n
[θi(1− ai(k)− hi(k))yi(k)];

∀k ∈ N0

(66)

Other upper-bounds of ∆V(k) are clearly the following ones:

−
(

∑n
i=1 θi

[
1− (ai(k) + hi(k))

2
])

min
1≤i≤n

y2
i (k)

+2(∑n
i=1 θiyi [1− ai(k)− hi(k)]) max

1≤i≤n
yi(k)

(67)

and
− min

1≤i≤n

(
1− (ai(k) + hi(k))2)(∑n

i=1 θiy2
i (k)

)
+2 max

1≤i≤n
(1− ai(k)− hi(k))(∑n

i=1 θiyi(k)yi)
(68)

Thus, if the constraints (a) and (b) and one of the constraints from (c) to (f) hold, then
{−∆Vk}∞

k=0 ⊂ R+, so that {Vk}∞
k=0 is bounded and strictly decreasing, so that {Vk}∞

k=0 → 0
so that yi(k)→ yi = x−1

i , equivalently, xi(k)→ xi ; ∀i ∈ n; ∀k ∈ N0. �

Remark 4. Note that the constraint (a) of Theorem 5 requires, as a necessary condition,
µi(k)(bi(k + 1)− νi(k + 1)) > 1; ∀i ∈ n; ∀k ∈ N0+.
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Note also that a sufficient condition for Theorem 5 to hold is

∑n
i=1 θi((1 + ai(k) + hi(k))yi(k)− 2yi)(1− ai(k)− hi(k)) > 0;

∀i ∈ n, ∀k ∈ N0

(69)

although it is not as easy to test as the conditions given in the theorem statement.
Note that stability around the zero equilibrium implies the asymptotic extinction of

all the species, This also implies that the inverse populations diverge asymptotically to +∞.
Note that

yi(k + 1) = 1
µi(k)Ki(k)(bi(k+1)−di(k+1)y−i (k+1))

(Ki(k)yi(k) + µi(k)− 1)

+ µi(k)−1
µi(k)Ki(k)(bi(k+1)−di(k+1)y−i (k+1))

(
∑n

j( 6=i)=1 cji(k)
yi(k)
yj(k)

) (70)

The asymptotic extinction is formalized through the subsequent result.

Theorem 6. Let us assume that the following conditions hold:
(a) {Ki(k)}∞

k=0 ⊂
(
0 , K

)
, {µi(k)}∞

k=0 ⊂ (1, µ), {bi(k)}∞
k=0 ⊂

[
0, b

]
, cii(k) = 1,{

cji(k)
}∞

k=0 ⊂ [0, 1] and di(k) ∈
(
−∞, bi(k)x−i (k)

]
; ∀i ∈ n, ∀k ∈ N0.

(b) If there is some finite k ∈ N0 such that xi(k) = 0, then xi(k + 1) = −di(k + 1) = 0
(c) lim

k→∞

(
∏k

j=0[αi(j)]
)
= +∞

Then, {xi(k)}∞
k=0 → 0 ; ∀i ∈ n if

lim
k→∞

inf
Ki(k)yi(k) + µi(k)− 1

µi(k)Ki(k)
(
bi(k + 1)− di(k + 1)y−i (k + 1)

) > 1

Proof. Note that the assumption di(k) ≤ bi(k)x−i (k) is equivalent to bi(k)− di(k)y−i (k) ≥ 0;
∀i ∈ n, ∀k ∈ N0+ and implies that xi(k) ≥ 0 and yi(k) ≥ 0; ∀i ∈ n, ∀k ∈ N0. Let us define
the auxiliary variables for i ∈ n, k ∈ N0 as

αi(k) =
Ki(k)yi(k) + µi(k)− 1

µi(k)Ki(k)
(
bi(k + 1)− di(k + 1)y−i (k + 1)

) (71)

βi(k) =
µi(k)− 1

µi(k)Ki(k)
(
bi(k + 1)− di(k + 1)y−i (k + 1)

) (72)

γi(k) = ∑n
j( 6=i)=1 cji(k)

yi(k)
yj(k)

(73)

so that
yi(k + 1) = αi(k)yi(k) + βi(k)γi(k); ∀i ∈ n, ∀k ∈ N0 (74)

One obtains, via recursive calculations with the above relation, that

yi(k + 1)−∑k
j=0

(
∏k

j=0 [αi(`)]
k−jβi(j)γi(j)

)
=
(

∏k
j=0[αi(j)]

)
yi(0);

∀i ∈ n, ∀k ∈ N0
(75)

And, if yi(0) > 0 and finite (equivalently, 0 < xi(0) < +∞) for all i ∈ n, then

lim
k→∞

(
yi(k + 1)−∑k

j=0

(
∏k

j=0 [αi(`)]
k−jβi(j)γi(j)

))
= +∞; ∀i ∈ n (76)

The following cases can arise:
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Case 1: {yi(k)}∞
k=0 → +∞ ; ∀i ∈ n, equivalently, {xi(k)}∞

k=0 → 0 ; ∀i ∈ n. The proof
follows directly.

Case 2: {yi(k)}∞
k=0 is bounded and lim

k→∞

(
∑k

j=0

(
∏k

j=0 [αi(`)]
k−jβi(j)γi(j)

))
= +∞ for

some i ∈ n.
Case 2 can hold through several sub-cases as follows:
a) Sub-case 2a: Either {αi(k)}∞

k=0 → +∞ or {βi(k)}∞
k=0 → +∞ . Since the numerators

of their respective general terms are finite, then either the denominators converge to zero
or they have some element which is zero, that is, either bi(k)− di(k)y−i (k)(≥ 0)→ 0 as
k→ ∞ for some i ∈ n or there are some k ∈ N0 and some i ∈ n, such that bi(k) −
di(k)y−i (k) = 0. However, these two sub-cases imply, respectively, {xi(k)}∞

k=0 → 0 and
xi(k) = 0, which implies that x−i (k + 1) = 0 and xi(k + 1) = −di(k + 1) = 0 from the
assumption (b). In both cases, extinction is achieved either asymptotically or in a finite
time and the claim of Case 2 that {yi(k)}∞

k=0 is bounded cannot hold for any i ∈ n so that
{yi(k)}∞

k=0 → +∞ ; ∀i ∈ n. Thus, Case 2, supported by Sub-case 2a, cannot hold.
b) Sub-case 2b: Either {γi(k)}∞

k=0 → +∞ or
{

γj(k)
}∞

k=0 → +∞ for some given i ∈ n

and some j( 6= i) ∈ n. Since the sequences
{

cji(k)
}∞

k=0 ⊂ [0, 1] then either
{

yi(k)
yj(k)

}∞

k=0
→ ∞ ,

or
{

yi(k)
yj(k)

}∞

k=0
= +∞, for j( 6= i) ∈ n. Since {yi(k)}∞

k=0 is claimed to be bounded, then the

denominators of the quotients defining the general terms of the above sequence either
converge to zero as k→ ∞ or are zero for some finite k ∈ N0. However, this would
imply the unboundedness of some of the subpopulations contradicting the boundedness
property of Theorem 2, which still holds for the extended Beverton–Holt evolving under the
time-varying parameterizing sequences {Ki(k)}∞

k=0, {µi(k)}∞
k=0, {bi(k)}∞

k=0 and {di(k)}∞
k=0,

fulfilling the assumption (a) of this theorem. Therefore, Case 2 cannot hold when being
supported by Sub-case 2b.

c) Sub-case 2c: lim
k→∞

(
∑k

j=0

(
∏k

j=0 [αi(`)]
k−jβi(j)γi(j)

))
= +∞ with

lim
k→∞

(
∑k

j=0

(
∏k

j=0 [αi(`)]
k−j
))

= +∞ and {βi(j)γi(j)}∞
j=0 being bounded for any i ∈ n.

Since lim
k→∞

(
∏k

j=0[αi(j)]
)
= +∞ and since the above partial sum diverges to +∞ as k→ ∞ ,

one also concludes, from the assumed condition (c), i.e., lim
k→∞

(
∏k

j=0[αi(j)]
)
= +∞, that

the Sub-case 2c reduces to Case 1. As a conclusion, only Case 1, including Sub-Case 2c, is
possible, which implies the asymptotic extinction of all the subspecies. �

Remark 5. As it could be expected from intuition, a large hunting/fishing quota or a certain
level of positive independent consumption might lead to extinction. Such conclusions arise from
inspecting either the zeroing in finite time or the asymptotic convergence to zero of the amount
bi(k + 1)− di(k + 1)y−i (k + 1). In a parallel way, sufficiently small hunting/fishing quotas or
small positive independent consumption can keep the populations free of extinction.

4. About Extinction Conditions under Small Intrinsic Growth Rates

Note that Theorem 6 gives extinction conditions for intrinsic growth rates exceeding
unity, which is an usual condition in the background literature on Beverton–Holt equa-
tions [5–12,18,26–29,33]. In this section, the asymptotic extinction is studied for the case of
intrinsic growth rates being less than unity.

Remark 6. Note that extinction at the right of the k− th sampling instant of the i− th species oc-
curs if di(k) = bi(k)x−i (k) and it occurs asymptotically if

(
di(k)− bi(k)x−i (k)

)
→ 0 as k→ ∞ .

This can happen irrespective if the intrinsic growth rate exceeds unity or is less than unity. The
first case, which is the typical situation in the Beverton–Holt equation, might be addressed as a
particular case included in Theorem 6. The condition is difficult to achieve in practical cases, since
it requires an exact monitoring of the independent consumption through time. In the following and
for the case of intrinsic growth rates below unity, this case is excluded from the analysis.
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To fix ideas, we first discuss the case when just a single species is involved. For this
purpose, we establish two preliminary necessary technical results for possible extinction
either in finite time or asymptotic extinction, while keeping the solution sequence non-
negative and bounded for all time under non-negative initial conditions.

Proposition 5. Let us consider one single-species impulsive Beverton–Holt equation, Equation (1).
Let us assume that {µ(k)}∞

k=0 ⊂ (0, 1], {b(k)}∞
k=1 ⊂ (0, 1] and {d(k)}∞

k=1 ⊂ (−∞,+∞) Then,
for any given k ∈ N0, x(k) = 0 ⇒ x−(k + 1) = 0 and, furthermore, x(k + 1) = 0 if and only
if d(k + 1) = 0. If {x(k)}∞

k=0 → 0 , then {d(k)}∞
k=1 → 0 and, if, in addition, {b(k)}∞

k=1 ⊂ R+,
then {x−(k)}∞

k=0 → 0 .

Proof. One obtains, from (1), that

x(k + 1) = [b(k+1)µ(k)K(k)+d(k+1) (1−µ(k))] x(k)−d(k+1)K(k)
K(k)−(1−µ(k))x(k) ;

∀k ∈ N0

(77)

Since K(k) > 0, x(k) = 0⇒ x−(k + 1) = 0 from (1) and x(k + 1) = 0 if and only
if d(k + 1) = 0 and, if b(k + 1) > 0, then x−(k + 1) = x(k+1)+d(k+1)

b(k+1) = 0. Note that, if

{x(k)}∞
k=0 → 0 , then

d(k + 1) = b(k+1)µ(k)K(k) x(k)
K(k)−(1−µ(k))x(k) − x(k + 1)→ 0 as k→ ∞ and also

x−(k + 1) = x(k+1)+d(k+1)
b(k+1) → 0 as k→ ∞ if {b(k)}∞

k=1 ⊂ R+ since {x(k)}∞
k=0 → 0 and

{d(k)}∞
k=1 → 0 . �

Proposition 6. Let us consider a Beverton–Holt equation for one single species. Let us assume
that {µ(k)}∞

k=0 ⊂ (0, 1], {b(k)}∞
k=1 ⊂ (0, 1] and {d(k)}∞

k=1 ⊂ (−∞,+∞). Then, for any given
k ∈ N0, x(k + 1) ∈ [0,+∞), with x(k) ≥ 0, if and only if

x(k) ∈
[
min

(
0, d(k+1)K(k)

b(k+1)µ(k)K(k)+d(k+1)(1−µ(k))

)
, K(k)

1−µ(k)

)
;

∀k ∈ N0

(78)

Proof. Let us consider several cases in (77) with the given assumptions, namely,
Case a: x(k + 1) ≥ 0, if x(k) ∈

[
d(k+1)K(k)

b(k+1)µ(k)K(k)+d(k+1)(1−µ(k)) , K(k)
1−µ(k)

)
. Note that the

limits of the admissible domain of x(k) are mutually compatible, since

d(k+1)
b(k+1)µ(k)K(k)+d(k+1)(1−µ(k)) < 1

1−µ(k)

⇔ d(k + 1) < d(k + 1) + b(k+1)µ(k)K(k)
1−µ(k)

which trivially holds, since b(k+1)µ(k)K(k)
1−µ(k) > 0. Since x(k) is also requested to be non-

negative, then (78) is used. It was proved that (78) implies that x(k + 1) ≥ 0. Now, note
that the conditions {µ(k)}∞

k=0 ⊂ (0, 1], {b(k)}∞
k=1 ⊂ (0, 1] and {d(k)}∞

k=1 ⊂ (−∞,+∞)
also imply that the domain of x(k) is bounded and, from (77), x(k + 1) is also bounded.
Thus, Case a fully verifies the statement claim.

Case b: x(k + 1) ≥ 0, if x(k) ∈
(

K(k)
1−µ(k) , d(k+1)K(k)

b(k+1)µ(k)K(k)+d(k+1)(1−µ(k))

)
. However, a

necessary condition for the above domain of values of x(k) to be well-posed is that

1
1−µ(k) <

d(k+1)
b(k+1)µ(k)K(k)+d(k+1)(1−µ(k))

⇔ d(k + 1) > d(k + 1) + b(k+1)µ(k)K(k)
1−µ(k)
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which is a contradiction. Then, Case b does not verify the statement claim.
Case c: x(k + 1) ≥ 0, if x(k) = K(k)

1−µ(k) = d(k+1)K(k)
b(k+1)µ(k)K(k)+d(k+1)(1−µ(k)) and the indeter-

mination 0/0, resulting from (77), is solvable with a positive limit, as the numerator and
denominator converge to zero. However, the identity of both confluent values of x(k) leads
to the following contradiction:

0 = d(k + 1)− d(k + 1) =
b(k + 1)µ(k)K(k)

1− µ(k)
> 0

so that Case c does not verify the statement claim. As a result, only Case a satisfies the
statement claim and the proof is complete. �

The next main result of this section concerned with the case in which one single species
relies on the asymptotic convergence of the solution to extinction when the solution to
the right of the sampling instants is a non-negative strictly decreasing sequence, that is,
{x(k)− x(k + 1)}∞

k=0 ⊂ R+ and {x(k)}∞
k=0(⊂ R+)→ 0 .

Theorem 7. Let us consider the Beverton–Holt equation for one single species. Let us assume that,
if x(k0) = 0 for any finite k0 ∈ N0, then d(k0 + 1) = 0. Let us also assume that 0 < x(0) =

x−(0) < K(0)
1−µ(0) , {µ(k)}∞

k=0 ⊂ (0, 1], {K(k)}∞
k=1 ⊂

(
0, K

)
with K < +∞, {b(k)}∞

k=1 ⊂
(0, 1].

Let us also assume that

d(k + 1) ∈
(
[(b(k+1)µ(k)−1)K(k)+(1−µ(k))x(k)] x(k)

K(k)−(1−µ(k))x(k) , b(k+1)µ(k)K(k)x(k)
K(k)−(1−µ(k))x(k)

]
;

∀k ∈ N0

(79)

Then, {x(k)}∞
k=0 ⊂ R0+, {x−(k)}∞

k=0 ⊂ R0+, {d(k)}∞
k=1 ⊂ R are bounded, with

{x−(k)}∞
k=0 → 0 and {x(k)}∞

k=0 → 0 being strictly decreasing and {d(k)}∞
k=1 → 0 .

Proof. Let us consider the Lyapunov sequence candidate V(k) = x(k); ∀k ∈ N0 so that
∆V(k) = V(k + 1)−V(k) = x(k + 1)− x(k). Then, from Proposition 6, 0 < x(k) < K(k)

1−µ(k)
for any k ∈ N0 implies that x(k + 1) ≥ 0, so that

(K(k)− (1− µ(k))x(k))∆V(k) = (K(k)− (1− µ(k))x(k)) (V(k + 1)−V(k))

= [(b(k + 1)µ(k)− 1)K(k) + d(k + 1) (1− µ(k)) + (1− µ(k))x(k)] x(k)− d(k + 1)K(k)

= [(b(k + 1)µ(k)− 1)K(k) + (1− µ(k))x(k)] x(k)− d(k + 1) [K(k)− (1− µ(k))x(k)]≤ 0;

∀k ∈ N0

(80)

and {x(k)}∞
k=0 ⊂ R0+ is bounded and non-increasing, since 0 < x(0) < K(0)

1−µ(0) if

d(k + 1) ≥ [(b(k + 1)µ(k)− 1)K(k) + (1− µ(k))x(k)] x(k)
K(k)− (1− µ(k))x(k)

; ∀k ∈ N0 (81)

which implies that ∆V(k) ≤ 0; ∀k ∈ N0. Since K(k) > (1− µ(k))x(k), it follows, from (80),
that x(k + 1) < x(k), so that {x(k)}∞

k=0 is strictly decreasing, if x(k) > 0 and (81) is a strict
inequality, ∆V(k)→ 0 as k→ ∞ and that x(k)→ 0 as k→ ∞ . If x(k + 1) ≥ 0, then

d(k + 1) ≤ b(k + 1)x−(k + 1) =
b(k + 1)µ(k)K(k)x(k)
K(k)− (1− µ(k))x(k)

; ∀k ∈ N0 (82)

and {x−(k)}∞
k=0 ⊂ R0+ is also bounded, since x(0) = x−(0) is finite and {d(k)}∞

k=1 ⊂
(−∞,+∞). Combining both inequalities, (81), in its strict version, and (82), yields (79). This
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also implies that x(k)→ 0 as k→ ∞ so that d(k + 1)→ 0 and x−(k + 1)→ 0 as k→ ∞ .
�

Remark 7. Note that Theorem 7 holds, in particular and as stated, if b(k + 1) = µ(k) ≡ 0 since it
involves, for all k ∈ N0 the condition −x(k) < d(k + 1) ≤ 0, implying that x(k + 1)− x(k) =
−d(k + 1)− x(k) < x(k)− x(k) = 0 if x(k) 6= 0, so that the one-step increment of the Lyapunov
sequence is negative.

Let us consider now the extended competition model from (4) for the extinction of
some species i ∈ n in the competition model with possible time-varying parameterization
to conclude that

x i(k+1)
xi(k)

=
(
[bi(k + 1)µi(k)Ki(k) + di(k + 1)(1− µi(k))]− di(k+1)

xi(k)

(
Ki(k) + ∑n

j( 6=i)=1 cji(k)(µi(k)− 1)xj(k)
))

∀k ∈ N0

(83)

× 1
Ki(k)− (1− µi(k))xi(k) + ∑n

j( 6=i)=1 cji(k)(µi(k)− 1)xj(k)
< 1; ∀k ∈ N0

with the positive denominator in (83) implying a non-negative numerator, implying,
equivalently, that 0 ≤ xi(k + 1) < xi(k) if xi(k) > 0 for all k ∈ N0 if the “ad-hoc” version of
(79) holds in the form

di (k + 1) ≤ bi(k+1)µi(k)Ki(k)xi(k)
Ki(k)−(1−µi(k))xi(k)+∑n

j( 6=i)=1 cji(k)(µi(k)−1)xj(k)
;

∀k ∈ N0

(84)

di (k + 1) >
(bi(k+1)µi(k)−1)Ki(k)+(1−µi(k))xi(k)−∑n

j( 6=i)=1 cji(k)(µi(k)−1) xj(k)
Ki(k)−(1−µi(k))xi(k)+∑n

j( 6=i)=1 cji(k)(µi(k)−1) xj(k)
xi(k);

∀k ∈ N0

(85)

which leads to the subsequent result.

Theorem 8. Let us consider a competition Beverton–Holt equation for n species. Let us assume
that, if xi(k0) = 0 for any finite k0 ∈ N0 and i ∈ n then di(k0 + 1) = 0. Let us also assume that

xj(0) = x−j (0) ≥ 0; ∀j( 6= i) ∈ n;

0 < xi(0) = x−i (0) <
Ki(0)+∑n

j( 6=i)=1 cji(0)(µi(0)−1)xj(0)
1−µi(0)

>,

{µi(k)}∞
k=0 ⊂ (0, 1], {µ`(k)}∞

k=0 ⊂ (1, µ`) ⊂ (1, +∞),
{

bj(k)
}∞

k=1 ⊂ (0, 1],{
Kj(k)

}∞
k=1 ⊂

(
0, K j

)
⊂ (0,+∞) and dj(k) ⊂

(
−∞, bj(k)x−j (k)

)
]; ∀j, `( 6= i) ∈ n;

∀k ∈ N.

Let us also assume that

di (k + 1) ∈
(

(bi(k+1)µi(k)−1)Ki (k)+(1−µi(k))xi(k)−∑n
j( 6=i)=1 cji(k)(µi(k)−1)xj(k)

Ki(k)−(1−µi(k))xi(k)+∑n
j( 6=i)=1 cji(k)(µi(k)−1)xj(k)

xi(k),

bi(k+1)µi(k) Ki (k)xi(k)
Ki(k)−(1−µi(k))xi(k)+∑n

j( 6=i)=1 cji(k)(µi(k)−1) xj(k)

]
; ∀k ∈ N0

(86)

Then, {xi(k)}∞
k=0 ⊂ R0+,

{
x−i (k)

}∞
k=0 ⊂ R0+, {di(k)}∞

k=1 ⊂ R are bounded, with{
x−i (k)

}∞
k=0 → 0 and {xi(k)}∞

k=0 → 0 being strictly decreasing and {di(k)}∞
k=1 → 0 .
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5. Numerical Experiments

This Section aims at illustrating, through numerical simulation examples, some of the
theoretical results discussed in the previous Sections. In this way, this Section is organized
into a number of examples concerned with the Theorems and results stated in Sections 2–4.

Example 2. Let us consider the system (1) parameterized by b(k) = 1, d(k) = 0, K(k) = 300 and
µ(k) = 0.6 + 5× 0.6k with x(0) = 100. The values of µ(k) with iteration along with the evolution
of x(k) are displayed in Figure 1. Thus, Lemma 1 holds, since the growth rate converges to 0.6 and
µ(k) ∈ (0, 1) for all k ≥ 5. It is observed, in Figure 1, how the population extinguishes in finite
time, since x(j) = 0 for j> 30 according to Lemma 1. On the other hand, when µ(k) = 1 + 0.62k, we
have that µ(k) converges to unity (in fact µ(k) is forced to be exactly unity from j = 10 onwards)
and we are in the condition of applying Lemma 2. Therefore, Figure 2 shows how the population
remains strictly positive for all discrete time (and even converges to a positive constant value) as
Lemma 2 claims.
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Figure 1. Evolution of µ(k) and x(k) with iteration in Example 2 when µ(k) converges to a limit be-low
unity.

Example 3. Let us consider the system (1) parameterized by the constant values b(k) = 0.9,
d(k) = 0.1, K(k) = 300 and µ(k) = 2.4 with x(0) = 100. The evolution of x(k) is displayed in
Figure 3. It can be seen, in this figure, that the population converges to the equilibrium point given
numerically by 248.385. This value is in accordance with the calculations in Theorem 1(i), since
µ(k) = 2.4 > max(1, 1/b(k)) = 1.11 and d = 0.1 satisfies the constraint

0.1 = d ∈
[
−x1,

(√
µb−1

)2
K

µ−1

]
∪
[ (√

µb+1
)2

K
µ−1 , ∞

)
= [−0.0863, 47.2741] ∪ [1307, ∞).
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Figure 2. Evolution of µ(k) and x(k) with iteration in Example 2 when µ(k) converges to unity in finite
time.
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Figure 3. Evolution of x(k) for constant parameters in Example 3, including harvesting and external
consumption. The population converges to a positive equilibrium point.



Appl. Sci. 2021, 11, 9020 31 of 38

Thus, Theorem 1(i) holds. Furthermore, Theorem 1(i) provides two equilibrium points
given by x1 = 0.0863 and x2 = 248.385. Moreover, Figure 3 also depicts the left value of
the population x−(k). It satisfies at the equilibrium 276.09 = x−(k) = x2+d

b = 248.385+0.1
0.6 =

276.09, as Theorem 1(i) states. If we now consider the case when b(k) = 1 and d = 0, i.e.,
there is no harvesting nor independent consumption, then the left and right values of the
population are the same, as Figure 4 shows, while the equilibrium point is in accordance
with Theorem 1(ii), since x2 = (µb−1)K

µ−1 = 300, as it can be readily seen in Figure 4. In

addition, when b = µ−1 (and d = 0), the trajectory of the population is depicted in Figure 5.
It can be observed, in this figure, that the population ends up extinguishing, as predicted
by Theorem 1(ii).
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Figure 4. Evolution of x(k) for constant parameters in Example 3, while no harvesting nor independent
consumption is considered.
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Figure 5. Evolution of x(k) for constant parameters in Example 3 and b = µ−1 with d = 0.

Example 4. Let us consider the multi-species Beverton–Holt Equations (2) and (3) parameterized
by the constant values bi(k) = 1, di(k) = 0, K1(k) = 300, K2(k) = 200 and K3(k) = 100 and
µ1(k) = 2.4, µ2(k) = 2 and µ3(k) = 1.8 with x1(0) = 100, x2(0) = 50 and x3(0) = 30. The
coupling matrix is given by

C =

 1 0.4 0.3
0.25 1 0.4
0.5 0.35 1


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These parameters correspond to the case when the species 1 dominates the other
two. Thus, we are in the condition of applying Propositions 1 and 2 and Theorem 2(i) to
guarantee that all populations are non-negative and, furthermore, x1(k) > x2(k) > x3(k),
as Proposition 2 ensures. These results can be observed in Figure 6, where the evolution of
the three populations is displayed. In addition, Figure 7 displays the evolution of the three
species when we consider the same parameters as before, but b1 = 0.98, b2 = 0.96 and
b3 = 0.95 with d1 = 0.01, d2 = 0.02 and d3 = 0.03 (i.e., b1 > b2 > b3 while d3 > d2 > d1).
It is checked, in this case, that both Propositions 1 and 2 hold when a harvesting quota,
along with an external consumption, is included in the system. It can be also observed, in
Figure 7, that species 3 extinguishes. This situation is also predicted by Theorem 2(ii), since
b3 = 0.95 > 1/µ3 = 0.55, making x3(k) converge to zero asymptotically. Finally, Theorem
2(iii) is also verified, since, as it can be observed in Figures 6 and 7, all populations are
bounded for all time.
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Figure 6. Evolution of x1(k), x2(k) and x3(k) for constant parameters in Example 4 when species 1
dominates the other two. In this case, there is neither harvesting nor external consumption.

Example 5. Let us consider the multi-species Beverton–Holt Equations (2) and (3) parameterized
by the constant values b1(k) = 0.98, b2(k) = 0.96 and b3(k) = 0.95, di(k) = 0, K1(k) = 300,
K2(k) = 200 and, Ke(k) = 200 and µ1(k) = 2.4, µ2(k) = 2 and µ3(k) = 1.8 with x1(0) = 100,
x2(0) = 50 and x3(0) = 30. The coupling matrix is given by

C =

 1 0.004 0.003
0.0025 1 0.004
0.005 0.0035 1



The evolution of the three species under this parameterization is displayed in Figure 8.
It can be seen that the population of the three species converge to a positive equilibrium
point given by x1 = 288.41, x2 = 182.23 and x3 = 175.90, in accordance with Theorem 3,
since Condition C1 of Theorem 3(ii) holds. Furthermore, these values are close to the ones
calculated from (31) and given by x1 =288.46, x2 = 182.58 and x3 = 175.42, since the elements
of the matrix C are sufficiently small and satisfy the conditions (27).
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Figure 7. Evolution of x1(k), x2(k) and x3(k) for constant parameters in Example 4. Species 1 dominates
the other two and harvesting quota and consumption are included.

Example 6. Let us consider the multi-species Beverton–Holt Equations (2) and (3) parameterized
by the constant values bi(k) = 1, di(k) = 0, Ki(k) = 200 and µ1(k) = 2.4, µ2(k) = 2 and µ3(k) = 1.8
with x1(0) = 100, x2(0) = 50 and x3(k) = 30. The coupling matrix is given by

C =

 1 0.004 0.005
0.0025 1 0.004
0.005 0.0035 1



The evolution of the three species under this parameterization is displayed in Figure 9.
It can be observed, in Figure 9, that there exists a consensus equilibrium point in which
the equilibrium points of all species converge to the same unique value. The numerical
location of the equilibrium point is given by x = 198.50, which is close to the theoretically
calculated one of 198.70 predicted by Proposition 4 in (43).
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Figure 8. Evolution of x1(k), x2(k) and x3(k) for constant parameters in Example 5 when harvesting
quota is included and coupling matrix C has small non-diagonal components.
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Figure 9. Evolution of x1(k), x2(k) and x3(k) for constant parameters in Example 6 when no harvesting
quota nor external consumption are included so that left-hand side values and right-hand side values
are coincident. The coupling matrix C has small non-diagonal entries and the three species converge
to the same equilibrium point.
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Example 7. Let us consider the multi-species Beverton–Holt Equations (2) and (3) parameterized
by the constant values bi(k) = 1, di(k) = 0, K1(k) = 300, K2(k) = K3(k) = 200 and µ1(k) = 1.5+ 0.4k,
µ2(k) = 1.45 + 0.35k and µ3(k) = 1.35 + 0.3k with x1(0) = 100, x2(0) = 75 and x3(k) = 50. The
coupling matrix is given by

C =

 1 0.4 0.005
0.25 1 0.4
0.05 0.035 1


The evolution of the three species under this parameterization is displayed in Figure 10.

Since we are in the condition of applying Theorem 4(i), because 0 = di < bixi and

∏
j=k`+1
j=k`

[bi(k`+1 + 1− j)µi(k`+1 − j)] ≥ ρ > 1, then there is no asymptotic extinction of
the populations, as Figure 10 shows. Moreover, all the populations converge to an equi-
librium point which is asymptotically stable, as established by Theorem 5. In addition,
Figure 11 displays the populations of the three species when µ1(k) = 0.5 + 0.4k < 1,
µ2(k) = 0.45 + 0.35k < 1 and µ3(k) = 0.35 + 0.3k < 1. As it is claimed in Theorem 4(ii), the
three species extinguish asymptotically, since (1− µi(0))∑n

j=1 cjixi(0) < 1.
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Figure 10. Evolution of x1(k), x2(k) and x3(k) for constant parameters in Example 7 when no harvesting
quota nor external consumption are included and growth rates are larger than unity.
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In conclusion, this section illustrates, through numerical simulation examples, some
of the theoretically discussed results.

6. Conclusions

This paper discusses extinction and non-extinction conditions obtained from an
impulsive-type competition Beverton–Holt equation, which, in the most general case,
is modeled under a time-varying parameterization. Some of the obtained results rely
on the existence of one or more competing species within the studied habitat having a
best fitness, which is interpreted as a dominance of its population stock. Such mentioned
extinction/non-extinction conditions are easily testable constraints on the harvesting, typ-
ically being hunting/fishing quotas, or, alternatively, on the independent consumption,
which are the relevant parameters in the discontinuities at sampling time instants of the
population dynamics. The performed research includes the study of the existence of
extinction and non-extinction equilibrium points, the conditions of non-negativity and
boundedness of the solutions for any given set of finite non-negative initial conditions, as
well as formal generic results related to sufficiency-type conditions for asymptotic stability
to any equilibrium point and, in particular, for extinction. The case of intrinsic growth rates
being less than unity and implying extinction is also discussed compared to the evolution
of the independent consumptions and the harvesting quotas sequences. Several simulated
examples are displayed and discussed.
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