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Abstract 

Projected climate change will involve an additional threat for the sustainability of 

small ruminant production systems in Europe. Aiming to understand its implications, 

we conducted a literature review on climate change interactions with sheep and goat 

systems. The review first identifies the main potential impacts on productivity at the 

animal level (heat stress effects) and at the forage level (quantity and quality). 

Results from analysed studies suggest that heat stress thresholds for small 

ruminants could be higher than previously indicated, although they still will be 

affected during projected heatwaves. At the forage level, the potential positive effect 

of CO2 fertilization will probably be counteracted in most of the cases due to extreme 

weather events and other limitations. Based on that findings, the review analyses the 

most suitable adaptation strategies on animal heat stress and pasture production. 

Particular attention is paid to integrated approaches, providing co-benefits at 
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different levels. Finally, structural and practical challenges affecting small ruminants’ 

sustainability in a climate change context are discussed, together with potential 

synergies and trade-offs among different policies and/or strategies. According to the 

information reviewed, small ruminant systems could be particularly vulnerable to 

environmental changes, as they are often produced in harsh areas under already 

severe circumstances. At the same time, they have particular features that could 

involve advantages against other livestock systems to cope with –and fight against- 

future climatic conditions. Consequently, they should play a important role for the 

climate change adaptation and mitigation options within the livestock sector. 

 

Keywords: global warming; sheep; goats; climate change 

 

 

Introduction 

Future climate projections for Europe indicate a general warming trend and more 

variable patterns of precipitation, with an increase in frequency and length of dry 

periods and droughts (Jacob et al., 2014). Consequently, other abiotic variables will 

also be influenced, including increased likelihood and intensity of fires and floods 

and alteration of nutrient cycles. Such changes will inevitably affect livestock 

production, both the animals directly and the production system more widely.  

In this context, small ruminant systems are subject to specific challenges regarding 

their future. On one hand, they could be particularly vulnerable to environmental 

changes, as a large share of the production is held in marginal lands and/or semi-

arid conditions. Yet on the other hand, small ruminants have features (e.g. weather 
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resistance, grazing/browsing abilities) that can involve competitive advantages and 

opportunities against other livestock species in the face of a changing climate. 

Aiming to understand the potential influence of climate change (CC) in small 

ruminant farming in Europe, we here conduct an analysis of information available on 

CC interactions and weather effects on sheep and goat systems, involving direct 

impacts on animal productivity mainly, but also indirectly, via feed resources 

availability and disease occurrence. Other important aspects, e.g. welfare, although 

superficially mentioned, are beyond the scope of this study.  The main objective of 

this study is to estimate the general expected impacts of CC in the sheep and goat 

systems, but also to provide guidelines about how the sector could adapt to –or 

exploit- them. Accordingly, a set of guidelines including main CC adaptation 

strategies, but also synergies with CC mitigation, are discussed, both at practical and 

strategic level (i.e. policy), so the future role of European small ruminants in the 

context of CC can be adequately considered. 

 

Climate change effects on small ruminant systems: animal and fodder level   

Animal level 

Heat stress  

In addition to warming trends, future climate scenarios predict an increase in the 

frequency and duration of heat waves in Europe (Jacob et al., 2014), particularly in 

south-central regions. As a consequence, heat stress (HS) will be one of the most 

important factors affecting sheep and goat production. 

The general responses to HS in small ruminants include a number of metabolic, 

physiological and behavioural changes, such as raised respiration rate and rectal 

temperature, sweating, panting, increase drinking and reduction of feed intake (Marai 
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et al., 2007). Nevertheless, sheep and goats are considered less susceptible to HS 

than other domesticated species (Lu, 1989), which could provide them a competitive 

advantage under future CC scenarios.  

The literature describes thermoneutral zone (TNZ) for sheep between 12ºC and 

25ºC. A higher HS threshold (28-30ºC) can be expected for goats, due to specific 

adaptation mechanisms (Lu, 1989; Al-Dawood, 2017). Still, these ranges are often 

exceeded during heat waves in Europe, and that situation will become more frequent 

in the future. 

The risk of HS is often estimated by the temperature-humidity index (THI), which 

accounts for the combined effects of ambient temperature and relative humidity 

(RH). Based on this index, the following thresholds have been proposed for small 

ruminants (THI<22.2=absence of HS; 22.2 to <23.3 = mild HS; 23.3 to <25.6 = 

moderate HS; >25.6 severe HS) (Marai et al., 2007). 

In the present work, a revision of literature involving small ruminants and HS has 

been conducted. Detailed methodology is described in the Supplementary Material 

S1. First, we selected studies monitoring ambient conditions and animal-based 

indicators related to signs of HS, namely respiration rate and rectal temperature. 

THI was applied as an indicator for the degree of HS caused by weather conditions. 

The formula proposed by Marai et al 2007 was used:  

THI = db ◦C −{(0.31 − 0.31 RH)(db ◦C − 14.4)}  

where db ◦C is the dry bulb temperature (◦C) and RH is the relative humidity 

(RH%)/100. 

 Relationship of both parameters, respiration rate and rectal temperature, with THI 

followed a quadratic function (Figure 1 and 2), indicating that at high THI values, an 

increased response of the mechanisms to cope with HS is triggered. Results agree 
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generally with the ranges reported by Marai et al. (2007), although they show a 

higher HS threshold. According to Figures 1 and 2, early signs of HS would appear 

at a THI range among 23 to 25, which would suggest that small ruminants would be 

capable to cope with hotter conditions than previously estimated.  

 

Figure 1 Relationships between respiration rate and THI from reviewed studies on small ruminants 

 

Nevertheless, ultimately the vulnerability of sheep and goats to HS will be 

determined not only by ambient conditions, but also by other factors like the animal’s 

physiological stage (e.g. pregnancy, lactation) (Hamzaoui et al., 2013), or the 

specific breed (Brown et al., 1988). Analysed datasets indicate that dairy animals 

tend to be more susceptible to HS than those from meat systems. While both groups 

would trigger a similar level of response (i.e. increase in respiration rate) to cope with 

HS (Figure S1), in the case of dairy animals a higher increase in rectal temperature 



6 
 

is observed (Figure S2). This would suggest that cooling mechanisms activated are 

less capable to dissipate the body heat produced by dairy animals, which would be 

in accordance with several authors pointing out milk production as an important 

metabolic heat strain (Hamzaoui et al., 2013; Carabaño et al., 2017). 

 

Figure 2 Relationships between rectal temperature and THI from reviewed studies on small 

ruminants 

 

Effects of heat stress on production 

Decreased productivity under HS has traditionally been attributed to the feed intake 

(FI) reduction observed in animals exposed to a high thermal load (Salama et al., 

2014). However, recent studies have pointed out that feed intake and production can 

sometimes have dissimilar responses to HS, indicating that different mechanisms 

could be involved in the productivity reduction associated to HS (Mahjoubi et al., 

2014). 
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While a number of studies have analysed the FI decrease in ruminants under HS, 

ranges for sheep and goats are still unclear. A specific review of the literature about 

this topic was conducted (Supplementary Table S2). As a result, a relationship 

between THI and FI was established (Figure 3), showing a gradual response which 

leads to significant FI reductions (10-25%) at severe HS conditions (THI>25.6), 

contrasting with previous linear approaches for this issue. 

 

Figure 3 Relationship between feed intake decline (%) and THI from reviewed studies on small 

ruminants 

 

Studies with lambs show that HS impairs growth rate, reducing daily gain (Darcan 

and Cankaya, 2008; Mahjoubi et al., 2014) but also affects pregnancy stage, 

decreasing the birth weight while increasing the embryo mortality rate (Romo-Barron 

et al., 2019), thus leading to a efficiency loss at farm level.  
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In dairy sheep and goats, a number of studies have reported decreases on milk 

production associated to HS conditions. However, in other cases, the effect has 

resulted on a decline on milk quality, like fat or protein content.  

A review of the available trials about this topic was conducted (Details described in 

Supplementary Material S1 and Table S3). The collected data were normalized into 

fat and protein corrected milk (FPCM) to capture together the effects on milk 

production and quality (Figure 4). Results indicate a gradual decline of the FPCM 

productivity, in the range of 2-5% at mild HS levels, up to 20% at severe HS 

conditions.  

 

Figure 4 Relationship between fat and protein corrected milk (FPCM) production decline (%) and THI 

from reviewed studies on small ruminants 

This involves a decline of about 1.5% in milk yield for every increase in one point of 

THI, comparatively higher than previous estimates (Salama et al., 2014). 
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Further negative effects of HS on product quality has also been observed in sheep 

and goat meat (Devine et al., 1993) and milk (Sevi and Caroprese, 2012), affecting, 

for example, milk coagulating properties, and consequently, the cheese-making 

process and control operations (Albenzio et al., 2004). 

 

Effects of heat stress on fertility and reproduction 

Heat stress impacts negatively fertility in small ruminants. For male animals, both the 

quantity and quality of sperm is reduced and the libido and fertilization capacity are 

significantly impaired (Kukovics, 2016). In female, it affects the ovarian function, by 

reducing the oestrous duration and delaying the oestrous cycle, thus affecting 

conception probability (Romo-Barron et al., 2019).  

Different factors will determine the specific response to HS at animal level, such as 

physiological status, breed or HS exposure time. Nutrition, for example, has been 

identified as one of the main factors affecting ovulation rate and sexual activity, and 

modulating reproductive endocrine functions (Forcada and Abecia, 2006). Changes 

in feed and forage (quantity and quality) due to CC may therefore add their own 

impacts on small ruminants’ systems, playing an important role not only on 

productivity, but also on reproduction issues. 

Effects of heat stress on disease occurrence 

Extreme events (e.g. heat waves or flooding) can severely weaken the animal 

immunity and udder health and speed up the development rates of pathogens and 

prevalence of infectious diseases (Escarcha et al., 2018). Moreover, climate change, 

indirectly, has been found to also increase persistence and abundance of disease 

vectors and parasites and host resistance to infectious agents (Escarcha et al., 

2018).  
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The way climate change-driven diseases may affect different small ruminants 

compared with other livestock species depends on the characteristics of the animals 

but also on the type of production systems. Whereas intensive systems are expected 

to be more vulnerable to health impacts of climate changes through heat stress, both 

intensive and extensive systems will be severely affected by new or expanded 

exposure to pests and disease. (Henry et al., 2018). 

The effect of climate on vector-borne diseases from small ruminants has been 

studied and the life cycle and geographical distribution of insects and ticks and, 

therefore, on arthropod-borne infections (mainly virus, bacteria and protozoa) have 

been documented (Marino et al., 2016). Sheep and specially goats, more in warm 

and moist climates, are known to be very susceptible, compared to other livestock, to 

internal parasites as they tend to graze closer to faecal drops, specially sheep, are 

slow to develop immunity (specially goats), and at parturition, they have a temporary 

loss of immunity. The production system will affect the age structure of the sheep 

population, stocking density, seasonality of grazing and many other factors that 

underpin the epidemiology of, for example, nematode infection (Sotiraki et al., 2013).   

Tick-borne diseases Ixodes ricinus, the sheep tick, and midge-borne diseases, like 

the bluetongue, have been found to be expanded its geographical range (shifting 

farther north and East) and seasonal activity in Europe over the past decade. These 

changes have been, partly, related to milder winters and prolonged spring and 

autumn seasons (Caminade et al., 2019).  

Plant-borne helminth infections (e.g. caused by gastrointestinal nematodes (GIN) 

and liver fluke) are currently one of the main health and productivity issues in sheep 

farms worldwide (Sargison, 2016). The impact of weather and climate on the 

dynamics of parasitic worms such as those leading to liver fluke in sheep (Fasciola 
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hepatica) has been studied in some countries in Europe (e.g. UK). Transmission of 

this parasite has been found to be seasonal in most countries (Caminade et al., 

2019) and favoured by wet and mild/warm climatic conditions on grasslands systems 

(Caminade et al., 2019).  

 

Plant level 

One of the most important impacts of CC on small ruminant systems in Europe is 

expected to be through changes in forage supply. Plant growth potential relies 

primarily on plant’s biological characteristics and ambient conditions, such as 

temperature, solar radiation and carbon dioxide (CO2) concentration. However, 

ultimate plant productivity (quantity and nutritional quality) is influenced by a number 

of limiting factors (e.g. nutrients, soil water) and stressors (e.g. ozone (O3) 

concentration, pests), many of them directly and/or indirectly affected by CC. 

 

Effects of elevated [CO2] and interactions with other factors 

The increase in CO2 concentration [CO2] in the atmosphere is the main cause of the 

greenhouse effect linked to CC. Many studies have confirmed the so-called CO2 

fertilisation effect enhancing plant growth (Nowak et al., 2004; Ainsworth and Long, 

2005). On grassland ecosystems, the stimulatory effect of doubling the ambient 

[CO2] increases aboveground production by about 10-20% on average (Lee et al., 

2013), although the effect may vary widely  depending on the species, system and 

seasonal conditions. When no other climatic factors are considered, trees and 

shrubs have the greatest response to elevated [CO2], whilst among non-woody 

plants, species that fix N2 (i.e. legumes) are favoured over non-fixing species (i.e. 

graminoids) (Nowak et al., 2004; Ainsworth and Long, 2005; Dellar et al., 2018).  
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Higher temperature also tends to increase plant growth, although beyond an 

optimum the effect starts to decrease. In Europe, where an overall warming trend is 

expected (Jacob et al., 2014), this effect could enhance pasture yields in temperate 

and cold Northern regions (Höglind et al., 2013), while in warmer areas some 

species may reduce its potential. 

Nevertheless, the ultimate response of grassland ecosystems will be defined by the 

interacting processes in the soil-water-plant system, where many different factors are 

involved. Water availability is probably the most critical constraint to plant growth, 

even counteracting the enhanced productivity associated with rising atmospheric 

[CO2] or temperature (Dellar et al., 2018). Hence, changes in rainfall patterns 

projected for all European regions will become very relevant, but particularly 

damaging in the Southern region. Combination of longer dry spells and warmer 

temperatures during certain periods will reduce soil moisture by enhancing 

evapotranspiration. As a result, the positive CO2 fertilisation effect on plant 

production can be significantly reduced or even removed in most of the cases 

(Obermeier et al., 2017). 

Nutrients also play a key role in the extent of the CO2 fertilisation effect. Managed 

pastures with a high external input of N have greater productivity when [CO2] 

increases but little or negligible response has been observed in pastures with low N 

supply (Nowak et al., 2004). Increased biomass production under elevated [CO2] 

may therefore not be sustained in natural and semi-natural ecosystems due to 

nutrient limitations. 

In terms of nutritional quality, there does not appear to be any significant effect of 

elevated [CO2] on forage digestibility (Dumont et al., 2015). With regards to protein 

content, experiments have shown that conditions linked to enhanced productivity (i.e. 
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elevated [CO2]) usually lead to reduced protein content in forage species. In 

contrast, reduced water availability, which often results on a decrease in productivity, 

tends to increase protein content (Dellar et al., 2018). Thereby, under future climate 

conditions, the potential increase of pasture productivity projected in regions like 

Central and Atlantic Europe, would be accompanied by a decrease in the protein 

content of non-leguminous plants.  

This effect could be partially counteracted by changes in plant species composition, 

as a shift towards a higher content of legumes in pastures is expected (Allard et al., 

2003). However, particular management and grazing abilities of small ruminants 

must be carefully considered, as they can have a crucial influence. For example, in a 

long-term pasture study, the relative proportions of forbs and legumes only increased 

in the first years, as selective defoliation due to grazing sheep countered the faster 

growth rates of forbs and legumes in response to elevated [CO2] (Newton et al., 

2014). 

Effects of climate on other stressors 

Ozone (O3) is a harmful plant pollutant, which can cause damage to forage species, 

as well as increased sensitivity to pests and pathogens. Although emissions of O3 

precursors are decreasing in Europe, [O3] level is predicted to increase due to 

emissions in other parts of the world (Fuhrer, 2009). Several experiments have found 

that clover species tend to particularly suffer from increased [O3], which will influence 

changes in pasture composition (Fuhrer, 2009).  

Furthermore, higher temperatures will increase the multiplication rate of soil-borne 

pathogens, which could enhance the incidence of diseases affecting forage plants. 

Warming conditions will also mean that insects extend their ranges to higher 
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latitudes and altitudes, and could also expand the range of plants they consume 

(Bale et al., 2002). 

 

Climate change adaptation strategies for small ruminant systems in Europe 

Coping with heat stress at animal level 

Preventing/mitigating heat stress 

Some measures can help animals to deal with hot conditions, by reducing exposure 

or by enhancing heat losses. Physical protection with artificial or natural shade is one 

of the most cost-effective measures outdoors to prevent HS. Solar radiation affects 

small ruminants, increasing thermal load and affecting welfare, ruminant behaviour 

and productivity (Alvarez et al., 2013). Hence, providing shade through trees or 

artificial shelters is highly recommendable, particularly in feeding areas, in order to 

avoid drops in consumption.  

Improving conditions in barns is another strategy that can prevent HS. Keeping an 

adequate stocking density and airspace, or meeting the larger needs (in quantity and 

frequency) of drinking water during heat waves, are important factors to consider. 

Other practices, such as shearing and polling/disbudding, and minimal handling of 

animals during heatwave periods are also recommended (Pennisi et al., 2004).  

Building design and orientation are also important: east-to-west is better than north-

to-south to reduce sunlight exposure, while an alignment perpendicular to prevailing 

winds captures better the breeze. House dimensions, in particular width, are critical 

to promote air movement, minimising the inside to outside temperature gradient and 

maximising heat loss through natural convection.  

The use of specific cooling devices has proven to be an effective measure for 

enclosed animals at particularly hot environments. Forced ventilation and spray 
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cooling systems has been shown to alleviate HS, improving weight gain, milk yield 

and welfare in ewes (Albenzio et al., 2004) and goats (Darcan and Güney, 2008; 

Darcan and Cankaya, 2008). 

Nutritional management under heat stress 

An animal with poor nutritional status will be more susceptible to environmental 

stresses of all kinds. Ensuring a nutritionally balanced diet is therefore an easy way 

to improve sheep and goat resistance to challenging conditions. Moreover, diet 

management will need to be modified in order to adapt to extreme heat events. For 

those periods, there are potential strategies to ameliorate the effect of heat on 

animal performance.  

During daytime periods of high ambient temperature, small ruminants can 

experience changes in feeding behaviour, leading to reductions in the feeding 

frequency and daily intake. Changes in feeding regime can help to alleviate this 

effect, for example by increasing number of meals and shifting meals to late 

afternoon/evening and placing the feed in shaded areas (Sevi and Caroprese, 2012). 

Use of high energy density diets (e.g. higher concentrates vs forage, fat) is a good 

practice, in order to balance reduced feed intake and increased energy demand for 

thermoregulation. Moreover, feeding fat is associated with reduced metabolic heat 

production per unit of energy fed and compared to starch and fibre, fat has a much 

lower heat increment in the rumen (Van Soest, 1982).  

The use of protein with low rumen degradability is also an option, as it allows to 

balance increased N catabolism. As has been shown for cereal-based sheep, slow 

fermenting grain can reduce metabolic heat and help ameliorate HS (Gonzalez-

Rivas et al., 2016). 
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Use of specific supplements can also provide benefits. Whole flaxseed has been 

shown to help immune function and physiological responses of sheep (Caroprese et 

al., 2012). Some nutraceuticals (e.g. mineral and antioxidant supplementation) may 

also be beneficial against the negative effects of HS in sheep (Chauhan et al., 2014) 

and to improve productive and reproductive functions (Sitzia et al., 2015).  

 

Genetic selection and adoption of heat resistant breeds 

Those breeds that originate in tropical and arid areas are considered to cope better 

with HS, partly due to anatomical and morphological traits better adapted to hot 

conditions, such as long ears, large body surface, skin thickness, length of hair and 

high sweating capacity of sweat glands, among others. Moreover, their low body 

mass and low metabolic requirements allows them to minimise their water and 

maintenance requirements. Hair sheep and fat-tailed sheep tend to tolerate heat 

better than wooled and thin-tailed sheep, while goats with loose skin or floppy ears 

tend to be most heat tolerant. Animals with light coloured hair/wool and pigmented 

skin are also better adapted to hot conditions (Al-Dawood, 2017). In contrast, the 

shorter legs and bodies; short, thick ears, tight skin and dense fleeces of most 

Northern European breeds makes them comparatively poor at resisting HS.  

Although swapping to more resistant breeds is one option, this can have its own 

problems. Breeds native from hot and arid regions often show low productivity. This 

is due to adaptation to harsh environments, but also to the lack of selection 

programmes in these regions. In many cases, the large productivity gap with 

European populations may not justify the introduction of breeding stock from hot 

areas in crossbreeding programs, although this might be an alternative to selection 

under more extreme conditions (Al-Dawood, 2017). 
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Selection goals in Europe have mainly focused on high productivity, which have 

resulted in animals increasingly more susceptible to HS. In fact, when analysing 

historical milk records, genetic antagonism has been found between productivity and 

heat tolerance, even for local breeds of dairy sheep and goats (Carabaño et al., 

2017). Inclusion of heat tolerance traits in the current selection programs of small 

ruminants may provide a useful tool to establish climate-oriented farming systems in 

Europe. However, difficulties for defining heat tolerance criteria and quantifying 

adequate levels for the chosen traits, may challenge the development of selection 

programs. Overall, an equilibrium between productivity and adaptation to high heat 

loads in selection or crossbreeding programs have to be valued for each system of 

production. 

 

Adaptation to increased disease occurrence 

With the increasing problem of anthelmintic resistance to drugs in recent decades 

(Van Dijk et al., 2010), more emphasis is required to limit the level of parasitism 

below acceptable limits while delaying the emergence of drug resistance. This will 

require an integrated approach which do not intend to lead to parasite-free animals 

but rather, prevent clinical disease and production losses. Measures will be required 

at different levels of the farm management including other alternatives to commercial 

anthelmintic drugs, such as vaccines (Morand-Fehr and Boyazoglu, 1999), host 

resistance, and grazing management. Good pasture management, in fact, is one of 

the major means to limit the intake of infective larvae by animals, for example, by the 

use of parasite-free fields, pasture rotations, and alternation of grazing animals 

(Morgan et al., 2018). Also, using alternative forages with anthelmintic value (e.g. 

rich-tannin forages) appear to be a promising option (Morgan et al., 2018). Other 
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measures include using resistant breeds, genetic selection for resistance and 

resilience to parasite infection (Joy et al., 2020) and early or out-of-season 

lambing/kidding. The development of cheap and efficient methods of animal 

identification, registration and control of movements which would allow timely 

preventive measures in daily operations will also be helpful (Durmus et al., 2019). 

 

Adapting pastures/forages to a changing climate 

Enhancing diverse pastures 

Biodiversity acts as a safeguard of ecosystem functioning, thus promoting a more 

stable and resilient ecosystem against fluctuations of climatic conditions. 

Accordingly, studies indicate that multi-species mixtures contribute to the resistance 

of grassland yields to extreme events (e.g. droughts), which are expected to become 

more frequent and severe in most European regions (Hofer et al., 2016).  

Increasing mixed legume-grass pastures is also a good measure to adapt to 

potential shortages of global protein sources in Europe, or to face the expected 

decreased of protein content in non-leguminous plants under CC conditions (Dellar 

et al., 2018). Consistent yield benefits of mixed grass-legume swards have been 

reported across a wide range of climatic conditions and fertilization levels, generally 

outperforming monocultures (Kirwan et al., 2007). Moreover, legumes, when they 

are grown in pasture-crop rotations, can also reduce weed populations and break the 

life cycles of pests and diseases (Howieson et al., 2000).  

Beyond the effects on grassland production, forages from mixed swards may also 

lead to a positive response at the animal level. Increased herbage voluntary intake 

has been observed in sheep when more diverse forage mixtures were provided 

(Niderkorn et al., 2015). The big challenge for legume-based grassland systems will 
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be, however, persistence of legumes. Their relative abundance in mixed swards 

tends to decrease over time, especially under high N fertilisation levels (Lüscher et 

al., 2014), but other practices, in particular sheep grazing, also appear to have a 

detrimental effect on the legume proportion of mixed grasslands (Dumont et al., 

2011). Different strategies have been shown to prevent this decline, such as: 

adjusting fertilisation dosages, increasing defoliation/cutting frequency, or through an 

adequate pre-selection of species for enhancing more diverse mixed grass-legume 

swards, considering their competitive abilities relative to each other (Lüscher et al., 

2014; Brophy et al., 2017). 

 

Reducing tillage 

Implementing changes in tillage practices could be another adaptation measure 

applicable across different climatic regions and systems. Reduced tillage increases 

resilience to CC through improved soil fertility and increased capacity for water 

retention in the soil, and should generate improvement in the long-term productivity 

potential. Reduced tillage at pasture reseeding has been observed to prevent the 

deterioration of pasture quality and promote C sequestration and preservation in 

pastures, plus is considered to be more effective under conditions of water deficit. 

 

Plant breeding 

Longer term adaptations can also be developed through improved plant breeding. 

New forage resources are required that are adapted to higher temperatures, 

increased [CO2] and drought periods (Hopkins and Del Prado, 2007). This might be 

achieved through exploitation of traits for dehydration tolerance and summer 

dormancy, either in novel species or for introducing traits into existing widely used 
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grasses and legumes (Volaire et al., 2014). Particular emphasis should be also on 

targeting plant traits that can deal with more than one abiotic stressor (e.g. grasses 

that can both tolerate drought and flooding: (Loka et al., 2016)). 

 

Dealing with scarcity of feed resources 

Smart grazing and forage management 

For small ruminant systems largely reliant on grazing, CC in Europe will require 

livestock managers to deal with increased inter and intra-annual variability in forage 

availability dynamics. In rainy areas, ability to manipulate forage quantity and quality 

through grazing management, fertilisation and use of seeded forages will become 

very important. Spring plant growth, provided sufficient water availability, and winter 

production is likely to benefit from mild climate conditions. For southern, drier areas, 

adjusting the match-up between seasonal nutrient demand and supply through 

manipulation of an animal´s physiological state or through different mobility patterns 

will be more appropriate (Martin et al., 2014). In fact, forage resources usually stored 

for over-wintering livestock could be partially redistributed in summer to deal with 

increased risk of forage deficit. 

The benefits from management-intensive grazing strategies, like rotational and multi-

paddock grazing, will become especially relevant in future scenarios. These 

practices not only lead to increased pasture yield and utilisation, but they also reduce 

livestock selectivity towards more palatable foods, thus enabling sustainable sward 

diversity in the long term (i.e. legume persistence) and providing advantages in 

terms of animal nutrition (Provenza et al., 2003). Likewise, mixed grazing (i.e. mixing 

sheep and/or goats with cattle) has also been shown to provide specific advantages 
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to small ruminant systems in terms of pasture utilisation, animal weight gain and 

control of parasite burdens (D’Alexis et al., 2014). 

 

Alternative feed resources 

A number of by-products from agricultural, food processing, forestry and bioenergy 

activities could be used for feeding small ruminants as an adaptive response to 

forage supply seasonal constraints (Salami et al., 2019). Large volumes of agro-

industrial by-products are produced in Europe every year which are not always 

adequately valorised. Among them, olive cake, citrus pulp and tomato pomace have 

been shown to be particularly suitable for small ruminant feeds (Table 1). Other agri-

food by-products have also been successfully tested and its potential use deserves 

to be further explored (Supplementary Table S4).  

Table 1 Alternative feed sources suitable for small ruminants and estimated availability in Europe 

Alternative feed 
sources 

Availability 
in Europe 
(kTon/yr) 

References in small ruminants1 

Olive cake 8190 Abbeddou et al 2011, Arco-Pérez et al 2017, Cabbidu et al 
2004, Chiofalo et al 2004, Hadjipanayiotou et al 1999, Molina-
Alcaide et al 2010, Ben Salem and Znaidi 2008 
 

Tomato by-
products 

2601 Abbeddou et al 2011, Arco-Pérez et al 2017, Di Francia et al 
2004, Razzaghi et al 2015, Romero-Huelva et al 2013; 
Romero-Huelva et al 2013b; Romero-Huelva et al 2017, Ben 
Salem and Znaidi 2008, Denek and Can 2006 

Citrus pulp 1073 Fegeros et al 1995, Romero-Huelva et al 2013; Romero-
Huelva et al 2017, Bueno et al 2002, Caparra et al 2005, 
Lanza et al 2001, Scerra et al 2001 

Other fruit by-
products 
 

1301 Razzaghi et al 2015, Sedighi-Vesagh et al 2014, Volanis et al 
2004, Eliyahu et al 2015, Pirmohammadi et al 2006 

Other vegetable 
by-products 

3189 Nudda et al 2006, Romero-Huelva et al 2013; Romero-Huelva 
et al 2013b 
 

1The complete reference list is provided in the supplementary material (Table S4) 
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Despite this, poor nutrient balance, seasonality and difficulty for handling and long-

term conservation as fresh material are crucial issues that constrain their wider use 

as animal feed. Preservation through different techniques like pelleting, ensiling or 

manufacture of feed blocks can help to overcome these difficulties, expanding the 

potential for including a broader range of agro-industrial by-products in small 

ruminants diets (Ben Salem and Smith, 2008). 

Tree leaves and shrubs further offer an alternative forage supply, especially during 

periods when grassland growth is limited or dormant due to unfavourable weather 

conditions (summer/autumn). Various tree species have been identified of interest 

for small ruminants as a source of proteins and macro- and micronutrients. 

According to reviewed studies, leaves from white mulberry (Morus alba), ash 

(Fraxinus excelsior), alder (Betula alba), robinia (Robinia pseudoacacia) and lime 

trees (Tilia platyphyllos) are especially suitable to be included in ruminants diet 

(Luske and Van Eekeren, 2015), although a number of fodder shrubs have also been 

identified for their potential in Mediterranean systems (Eichhorn et al., 2006). 

 

Integrated approaches 

Agroforestry systems 

Besides serving as an additional feed source, planting forage trees in grazing areas 

(introduction of silvo-pastoralism) can also provide shelter, as previously mentioned, 

preventing HS and improving animal welfare. Moreover, trees could involve 

important synergies for pasture production, especially in harsh environments, as they 

can extend the seasonality of the understory production by buffering the 

microclimate under the canopy and by enhancing an uneven distribution of nutrients.  
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Southern Europe already hosts several oak-based agroforestry systems (e.g. 

Dehesa-Montado in the Iberian Peninsula) that have been shown to be good 

examples of highly resilient, productive and biodiverse farmed landscapes (Hopkins 

and Del Prado, 2007). In parts of temperate Europe there are also wood pastures 

systems, that provides shelter for sheep in both, winter and summer. Similarly, 

hedgerow systems found in central Europe can be considered examples of the 

integration of trees with pastures for livestock production. 

Fire risk control 

Grazing with small ruminants has been proposed as a valuable tool for the 

prevention of fire risks in different landscapes and systems. They not only allow to 

control the accumulation of flammable vegetation, but they can also be managed for 

clearing and maintaining firebreaks, especially in remote areas or with steep slopes, 

where they can be an alternative to mechanical methods. If adequately valued, this 

activity could involve an additional income to the farm while providing an alternative 

source of feed.  

The role of small ruminant grazing for the preservation of a number of landscapes in 

Europe have been highlighted in several cases, like Atlantic heathlands (Jáuregui et 

al., 2009) or Mediterranean scrublands (Mancilla-Leytón et al., 2013). In these areas, 

arable farming is unfeasible and this system often represents the only way of 

productively using the land. 

In Southern Europe, where more severe fire events are expected with the prospect 

of warmer and drier summers, silvopastoral systems involving goats are particularly 

indicated, being a browser species well adapted to feed on shrubby vegetation and 

arid climatic conditions. Besides avoiding vegetation accumulation, it can also help to 

reduce the shrub encroachment that will be enhanced under CC conditions. In 
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contrast, in commercial forest plantations of Central/Northern Europe, sheep seem 

more suitable for controlling competing ground vegetation than other livestock 

ruminants, like cattle or goats, that may cause more damages to trees, by trampling 

or browsing respectively (Sharrow et al., 1989). 

 

Cover crops 

Cover crops are non-marketable plants grown to protect the bare soil, providing 

several benefits in terms of soil health, weeds control and nutrient balance. In the 

context of CC, they can help to increase adaptive capacity against extreme rain 

events (i.e. soil erosion) and droughts (Alonso-Ayuso et al., 2014) while mitigating 

climate warming through changes in biogeochemical processes and albedo. 

However, their use is often limited as they do not involve immediate revenue for 

farmers. Coupling cover crops and small ruminant systems can offer interesting 

opportunities for both sides, either as an additional source of forage and as grazing 

management tool for plant growth control. 

 

 

Structural and practical challenges affecting small ruminants’ sustainability in 

a climate change context 

The sector has been experiencing economic and structural changes in recent 

decades, mainly due to a decrease in livestock numbers (linked to changes in 

consumer trends and intensification of production), outbreaks of contagious diseases 

and policy changes. Climatic hazards are expected to add yet further challenges to 

this ongoing situation. 
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At the EU level, several policy instruments are already available for helping the 

sector in its capacity to deliver a broad range of ecosystem services. Nevertheless, 

due to the numerous challenges that the sector is likely to undergo in the future it is 

becoming clear that the current level of support (e.g. the Common Agricultural Policy 

(CAP) post-2020) is likely to be insufficient, especially for systems that are more 

extensive. 

Climate change in Europe, as previously mentioned, will require livestock managers 

to be more flexible in order to deal with increased variability in forage quality and 

productivity. One strategy may be to save forage in years that are more productive, 

which would demand for additional investment and costs for preservation 

technologies and storage. For pasture-based systems, the reduced grazing of 

animals in higher temperatures will necessitate provision of supplementary feed or 

reconciliation of the deficit with lower production levels. To guarantee future 

sustainability of small ruminant systems, farmers will therefore need coordinated 

support from different agents (e.g. regional to national governments, producers’ 

associations, research institutions) providing both the financial instruments (e.g. 

insurance plans, credits for investments) and the technical guidance (e.g. agro-

climatic forecasts, heat-resistant breeds) to adopt the necessary adaptation 

measures. 

For optimising the role that policy instruments have on the sustainability of small 

ruminant systems, policies must be aligned with the strategies relating to a number 

of cross-cutting issues, including CC, environment, rural development, bio-economy, 

food security, research and public health. Co-benefits in different issues should be 

sought (e.g. emissions and health), while potential trade-offs or counter-acting 

objectives must be identified and assessed too.  
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Climate-related policies, for adaptation and mitigation goals, should be evaluated 

within agricultural policies, so the synergies among the two are promoted and the 

possible trade-offs are minimised. Rural Development Programmes supporting small 

ruminant systems under disadvantaged conditions is an example of policy that can 

involve additional climate co-benefits through the ecosystem services provided, such 

as promoting the usage of underutilized land resources (scrub, wood land), helping 

to reduce fire risk through adequate grazing practices and contributing to 

preservation of landscapes that act as reliable carbon sinks (e.g. grasslands vs 

forests). The definition of areas with natural constraints (ANC) under the CAP 

provides one of the main instruments to compensate farmers producing in mountain 

areas or facing other specific disadvantages. This is crucial to prevent land 

abandonment and ensure agricultural land-use and landscape maintenance. 

However, as projected climatic hazards could have uneven effects on agricultural 

landscapes across Europe, updated criteria used for the designation of new ANCs 

should consider expected CC impacts when developing future ANC schemes.  

Current and potential upcoming EU agricultural strategies are likely to both prevent 

the expansion of cropland in Europe (e.g. CAP discouraging the conversion from 

grassland to arable land) and to hinder agricultural land use expansion in other 

regions outside Europe. This will coincide with the anticipated decline and 

increasingly erratic local production of grains in temperate European countries under 

CC. Under this scenario of limited land use conversion and CC further affecting feed 

supply, the use of unexploited rangelands resources (scrub, woodland) will acquire 

particular relevance (Silanikove and Koluman, 2015). This would be especially 

interesting for countries that could support sheep and goat grazing systems through 

policy and designation of appropriate land uses. However, in this strategy, where 
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obtaining limited production at the lowest possible cost is the aim, the use of well-

adapted native animal breeds will be instrumental.  

Appropriate alignment of rural objectives within EU strategies linked to food safety 

and food security should also be considered. For example, while the ANC schemes 

of rural development programmes in the CAP aim to support the viability of small-

scale farms in disadvantaged areas, the EU’s food safety policies are often 

considered a regulatory constraint against such farmers commercializing their 

products (Bureau and Swinnen, 2018). Similarly, EU development policies in relation 

to global food security are in conflict with the alarming tendency to feed ruminants a 

greater amount of ingredients that could otherwise have been used directly in the 

human food chain (Mottet et al., 2017). In the face of a future with CC severely 

affecting the stability of food supply, livestock systems that are non-competitive with 

human food-chains should be promoted via policy. This would be useful to arrest this 

trend and provide a potential competitive advantage of pasture-based livestock 

systems over other ruminant systems or livestock sectors (e.g. monogastric 

animals).  

Considering future feed limitations, there is also great potential for small ruminant 

production systems in Europe to replace some of their feed with by-products from 

agro-industry. Again, appropriate alignment of different policies (e.g. bio-energy) 

together with other related regulations (environmental, food safety) would, however, 

be required. Such a strategy would promote a circular economy, improve resource 

use efficiency of the systems involved and decrease competition for human-edible 

feed resources. Despite the potential benefits, in the near future competition 

amongst food, animal feed and bioenergy will most probably result in decreasing 

availability of by-products for feed in some European areas. Integrated modelling 
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approaches and methodologies like life cycle assessment can help to decide the 

most favourable use of each by-product from an environmental point of view. 

Nevertheless, prioritisation must always consider the particular context of every case 

(downstream effects, pollution swapping, logistics).  

Securing good water availability and quality will become a still greater challenge, 

especially in Mediterranean areas, where many competing uses (e.g. irrigation) have 

to be balanced. Whilst promoting mixed legume-grass pastures and grain legumes 

are good measures in order to adapt to potential shortages of protein sources in 

Europe, for the most widely used legume in European grasslands (white clover), 

water is a limiting factor and requires availability of soil P. This should be recognised 

in breeding and promotion of legumes for use in agricultural systems. 

Research strategies can be an important instrument encouraging these practices 

and enhancing the development of CC-adapted grass and animal varieties with 

improved efficiency in the use of nutrients and resources. Effective knowledge 

transfer and demonstration activities should be emphasised when developing 

research schemes, in order to engage both public and private sectors in the 

communication of research results. 

Health-wise, it will be instrumental that parasite control is fully integrated into the 

whole-farm economic context (Charlier et al., 2014) and farmers (and their advisors) 

understand and internalise the costs and benefits of novel treatment strategies 

(Morgan et al., 2018). Further advance through public funding will have to be made 

in order to deal with infectious diseases in terms of surveillance systems, disease 

and vector control measures, vaccine development, diagnostic tests, and 

mathematical risk modelling. Otherwise, infections will significantly hinder the export 

potential of many Mediterranean areas, for example. In the globalised world, the 
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highest level of protection could be guaranteed only by the simultaneous and 

harmonized policies and practices in all parts of the world. However, more efficient 

regional cooperation in research and in the implementation of measures could be the 

great step towards safeguarding and protecting small ruminants’ animal industry 

(Durmus et al., 2019). 

Despite the many challenges for small ruminant systems in Europe, opportunities 

exist. Growing market demands for fresh dairy products have been identified as an 

opportunity for the sheep and goat sectors in some European countries (e.g. 

France). To meet international market demands would require both changes in 

milking season schedules (extending the season from earlier in autumn and later in 

summer) and targeting the milk to market sector where it is competitive (e.g. milk 

intended for protected designation of origin (PDO) cheese-making). Such changes 

would exacerbate the challenges that HS exert on overall productivity and 

reproduction performance, but, if appropriate adaptation measures are introduced to 

alleviate HS impact, the sector could still be in a good position to have a competitive 

advantage against the dairy cattle sector (Silanikove and Koluman, 2015).   

 

Conclusions 

Small ruminant production systems are subject to specific challenges regarding their 

future, and projected CC will involve an additional threat for their sustainability. 

Appropriate strategies and adaptation measures should be effectively transferred 

and implemented in the sector according to their regional context, so the main risks 

of CC could be partially mitigated. Furthermore, under an integrated policy 

framework, bridging Rural development, Climate, and Research & Innovation 

aspects, such measures could promote those specific features and services of small 
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ruminants systems that provide them competitive advantages (at animal and system 

level) against other livestock systems, thus enhancing their role -and future 

sustainability- in the face of a changing climate. 
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Supplementary Material S1: 

Literature search methodology: 

Available literature about small ruminants under heat stress was searched and a 

selection of studies was conducted based on the following criteria: 1) the trials 

involved sheep or goats, 2) they analysed performance under thermoneutral (TN) 

and heat stress (HS) conditions, and 3) the studies provided information at least on 

one of these parameters: respiration rate (RR), rectal temperature (RT), feed intake 

(FI), milk production (lactating animals). The collected studies that met the previous 

criteria were further filtered, so the trials involving breeds from tropical regions (e.g. 

India, Brazil) were excluded. The meteorological data provided in the collected 

studies were converted into THI based on Marai et al., 2007 and Kelly et al., 1971. 

After the literature search, a total of 17 studies (involving 32 trials) monitoring 

ambient conditions and animal-based indicators related to signs of HS (respiration 

rate and/or rectal temperature) were selected. Details of the studies collected 

according to these criteria can be checked in Supplementary Table S1. 

For feed intake, 13 datasets were identified, involving 7 studies of dairy systems and 

6 from meat systems. Details of the studies collected according to these criteria can 

be checked in Supplementary Table S2. 

Finally, datasets from 12 studies reporting decline of milk production (and/or 

composition) were selected. The milk loss reported in those studies was converted 

into fat and protein correct milk (FPCM) according to Pulina, Macciotta and Nuda 

(2004) in order to normalise the results. Details of the studies selected are described 

in Supplementary Table S3. 
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Table S1 – Selection of reviewed studies reporting respiration rate (RR) and/or rectal temperature 

(RT) for dairy sheep and goats under heat stress. 

Reference 
 
 

Species 
 
 

System 
 
 

Breed 
 

THI 
 
 

RR 
(breaths/min) 

RT  
(ºC) 

Abdalla et al., 1993 Sheep Dairy DorsetxRambouillet 19-32 72-149 39.1-40.1 

Bernabucci 2009 Sheep Dairy Sardinian 19-30 47-125 39.3-39.8 

Brasil et al., 2000 Goat Dairy Alpine 22-32 38-127 39.1-40.0 

Hamzaoui 2014 Goat Dairy Murciano-Granadina 19-33 34-136 38.7-40.2 

Hamzaoui et al., 2013 Goat Dairy Murciano-Granadina 19-33 45-110 38.9-39.6 

Alhidary et al., 2012 Sheep Meat Merino 23-34 39-110 39.1-39.8 

Bhattacharya 1974 Sheep Meat Awassi 19-31 31-101 39.1-39.3 

da Silva et al., 1992 Sheep Meat Polwarth 20-32 - 38.7-39.8 

Denek et al., 2006 Sheep Meat Awassi 11-27 - 39.0-39.7 

Dixon et al., 1999 Sheep Meat Merino 15-36 49-208 39.2-40.2 

Faichney 1986 Sheep Meat Corriedale 21-28 18-82 38.9-39.0 

Lees et al., 2017 Sheep Meat Merino 23-36 51-222 - 

Mahjoubi et al., 2014 Sheep Meat Afshari 24-33 84-188 39.5-40.1 

Mittal et al., 1979 Sheep Meat Corriedale 26-34 45-110 38.7-40.7 

Monty et al., 1991 Sheep Meat St. Croix/Rambouillet 21-34 32-170 38.7-40.7 

Srikandakumar et al., 2003 Sheep Meat Merino 22-35 50-128 39.5-39.8 

Wojtas et al., 2014 Sheep Meat Merino 20-28 56-96 39.4-39.4 

 

Table S2 – Selection of reviewed studies reporting feed intake (FI) decrease (%) for sheep and goats 

under heat stress. 

Reference System Breed THI range  FI loss (%) 

Abdalla et al., 1993 Dairy sheep Dorset x Rambouillet 19-32 29% 
Alhidary et al., 2012 Meat sheep Merino 22-32 23% 
Ames and Brink 1977 Meat sheep Merino 19-32 4-35% 
Bhattacharya et al., 1974 Meat sheep Awassi 19-33 4% 
Bernabucci et al., 2009 Dairy sheep  Sardinian 19-30 4% 
Brasil et al., 2000 Dairy goats Alpine 22-32 8% 
Brown et al., 1988 Dairy goats Alpine 19-29 6% 
Denek et al., 2006  Meat sheep Awassi 11-27 2-17% 
Dixon et al., 1999 Meat sheep Merino 15-34 7-12% 
Hamzaoui et al., 2014  Dairy goats  Murciano-granadina 19-33 29-35% 
Hamzaoui et al., 2013 Dairy goats  Murciano-granadina 19-33 21% 
Leibovich et al., 2011  Dairy sheep Assaf 26-29 10% 
Sano et al., 1985 Dairy goats Saanen 19-33 4-18% 
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Table S3 – Selection of reviewed studies reporting milk yield decline (%) for sheep and goats under 

heat stress. The results have been converted into fat and protein correct milk (FPCM) according to 

Pulina, Macciotta and Nuda (2004) 

Reference System Breed THI range  FPCM loss 
(%) 

Abdalla et al., 1993 Dairy sheep Dorset x Rambouillet 19-32 27% 
Brasil et al., 2000 Dairy goats Alpine 22-32 8% 
Brown et al., 1988 Dairy goats Alpine 19-29 8-20% 
Finocchiaro et al., 2005 Dairy sheep Sarda 19-32 31% 
Hamzaoui et al., 2014  Dairy goats  Murciano-granadina 19-33 11-16% 
Hamzaoui et al., 2013 Dairy goats  Murciano-granadina 19-33 5% 
Leibovich et al., 2011  Dairy sheep Assaf 26-29 12% 
Menéndez-Buxadera et 
al., 2013 

Dairy goats Murciano-
granadina/Payoya 

21-32 9-29% 

Menéndez-Buxadera et 
al., 2012 

Dairy goats Murciano-
granadina/Payoya 

21-32 7-8% 

Peana et al., 2007 Dairy sheep Sarda 20-32 19% 
Ramón et al., 2015 Dairy sheep Manchega 22-30 1% 
Romero et al., 2008 Dairy goat Payoya 19-33 13% 
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Supplementary Figures: 

 

Figure S1 – Relationships between respiration rate and THI of reviewed studies on small ruminants 

under heat stress from dairy and meat systems 

 
Figure S2. Relationships between rectal temperature and THI of reviewed studies on small ruminants 

under heat stress from dairy and meat systems 
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Supplementary Material 2: 

Literature search methodology: 

Available literature about studies involving trials with small ruminants and agri-food 

by-products utilisation was searched. The data of the selected studies were 

extracted and are shown in Supplementary Table S4. Regional availability of organic 

by-products from agri-food industries in Europe was obtained following the 

methodology described in Pardo et al., 2017 from FAOSTAT data. 
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Table S4 – Selection of reviewed studies involving utilisation of agri-food by-products in the diet of sheep and goats 

Reference Basal diet Alternative feed sources Supplement type Animal Breed 

Abbeddou et al 2011 Barley straw/concentrate 
Olive cake and leaves, 
tomato pomace 

- Dairy ewes Awassi 

Arco-Pérez et al 2017 Alfalfa hay/concentrate Olive cake, Tomato surplus Silage Dairy goats Murciano-granadina 

Ben Salem and Znaidi 2008 Wheat straw/concentrate Tomato pulp, olive cake Feed blocks Lambs Barbarine 

Bueno et al 2002 Grass hay/concentrate Citrus pulp - Kids Saanen 

Cabbidu et al 2004 Grass hay/concentrate Olive cake Silage Dairy ewes Sarda 

Caparra et al 2005 Oat hay/concentrate Citrus pulp Dried Lambs Merino 

Chiofalo et al 2004 Alfalfa hay/concentrate Olive cake 
- 

dairy ewe Comisana 

Denek and Can 2006 Wheat straw/wheat grain Tomato pomace 
Silage 

Rams Awassi 

Di Francia et al 2004 Oat hay/concentrate Tomato pomace Silage dairy ewe Comisana 

Eliyahu et al 2015 Wheat hay/concentrate 
Pomegranate pulp, grape 
pulp, avocado pulp 

Silage Lambs Assaf 

Fegeros et al 1995 Alfalfa hay/concentrate Citrus pulp Dried Dairy ewe Karagouniko 

Hadjipanayiotou et al 1999 
Barley straw/concentrate Olive cake Silage Dairy ewes & goats Chios, Damascus 

Lanza et al 2001 
Wheat straw/barley+maize Citrus pulp - Lambs Barbaresca 

Molina-Alcaide et al 2010 Alfalfa hay/concentrate Olive cake Feed blocks Dairy goats Murciano-granadina 

Nudda et al 2006 Alfalfa hay/concentrate Linseed cake Extruded Dairy goats AlpinexSarda 

Pirmohammadi et al 2006 - Apple pomace Silage, dried Rams Gezel 

Razzaghi et al 2015 Alfalfa hay/concentrate 
Pomegranate seed pulp, 
tomato pomace - 

Dairy goats Saanen 

Romero-Huelva et al 2013 Alfalfa hay/concentrate 
Tomato fruits, citrus pulp, 
brewer's grain and yeast 

- Dairy goats Murciano-granadina 

Romero-Huelva et al 2013 Alfalfa hay/concentrate 
Tomato and cucumber fruit 
wastes 

Feed blocks Dairy goats Murciano-granadina 
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Romero-Huelva et al 2017 Alfalfa hay/concentrate 
Tomato fruits, citrus pulp, 
brewer's grain and yeast 

- Dairy goats Murciano-granadina 

Scerra et al 2001 Oat hay/concentrate Citrus pulp Silage Lambs Merinizzata 

Sedighi-Vesagh et al 2014 Alfalfa hay/concentrate Pistachio by-products - Dairy goats Saanen 

Volanis et al 2004 Oat hay/concentrate Orange fruit waste Silage Dairy ewe Sfakian 

Volanis et al 2006 Oat hay/concentrate Citrus pulp Silage Dairy ewe Sfakian 
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