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Abstract: The primary goal of this research is to investigate COVID-19 transmission patterns in
West Bengal, India in 2021; the first Coronavirus illness (COVID-19) in West Bengal was revealed
on 17 March 2020. We employed the modified Susceptible-Asymptomatic-Vaccinated-Comorbidity-
Infectious-Recovered (SAVICR) compartmental model as part of fractional orders because of the
uncertainty created by the limited Coronavirus (COVID-19) information. In this article, two sub-
compartments (Normal Infected and Infected with Co-morbidity) has been considered with vacci-
nated class, which is relevant in the present situation. We have studied the dynamical analysis of
the system and also studied sensitivity of the parameters for West Bengal framework. We have also
considered an optimal control problem taking social distancing (non-pharmaceutical treatments) as a
control parameter along with vaccination.

Keywords: Caputo fractional differential equation; COVID-19; stability; sensitivity index; control

1. Introduction

Coronavirus disease (COVID-19) is a condition caused by the newly found Coron-
avirus SARS-COV-2. The majority of patients infected with COVID-19 will have mild
to moderate symptoms and will recover without therapy. When an infected individual
coughs, sneezes, or exhales, the virus that causes COVID-19 is primarily transferred by
droplets. These droplets are too heavy to float in the air and fall to the ground or other sur-
faces swiftly. If you are in close contact to someone who has COVID-19, you can be infected
by breathing in the virus or touching a contaminated surface and then touching your eyes,
nose, or mouth. West Bengal, India was first affected by Coronavirus (COVID-19) on 17
March 2020; in Kolkata a sum of 1,343,442 COVID-19 positive cases have been confirmed
by West Bengal’s Health and Family Welfare Department, until 28 May 2021 [1].

Various countries have used non-pharmaceutical treatments (NPIs) such as masking,
social distancing, and good hygiene practice to combat the COVID-19 pandemic. This
procedure aids in slowing, but not stopping, the progress of the disease. In order to
eradicate COVID-19 as a pandemic, effective immunization tactics based on NPIs are
required. To overcome COVID-19, a combination of fundamental techniques is unavoidably
necessary under the optimal control problem. The actual number of infected patients in
West Bengal is anticipated to be higher than the official count due to the restricted number of
tests undertaken [1]. According to the WHO, the genuine asymptomatic transmission rates
are unknown [2]. As a result, we have taken into account the fact that the asymptomatic
class does not transmit sickness and that the Coronavirus is mostly distributed by infected
individuals (symptomatically infected and infected with co-morbidity). In phases of co-
morbidity (such as heart disease, diabetes, pulmonary disease, and so on) within infected
humans, several studies may be available. Co-morbidity or medical disease puts everyone
at a higher risk of infection than healthy persons [3]. From statistical databases, it is
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evident that co-morbidity risk condition in India is pronounced. Patients suffering from
hypertension or diabetes mellitus are more likely to acquire a severe course and illness
development [4–6]. The immunization program has a significant impact on pandemic
eradication [7].

Calculus of fractional order can be thought of as an abstraction of the order of differ-
entiation in which the fractional order is substituted by the integer order. However, some
properties of classical integer order systems, such as Leibnitz’s rule and chain rules, are
not preserved in fractional calculus [8]. An integer system is sometimes unable to express
memory-based and hereditary property phenomena [9,10]. There are two main approaches
in fractional calculus, namely, the continuous and discrete approaches. The discrete ap-
proach is based on Grunwald–Letnikov functional derivative whereas the continuous
approaches are based on the Riemann–Liouville, Caputo derivative [11]. It has been ob-
served that the data gathered from real-world events fit better with fractional-order systems.
Diethelm [12] has compared the numerical solutions of the fractional-order system and
integer-order system, and concluded that the fractional-order system gives more relevant
interpretation than integer-order system. Recently, we have contributed to fractional-order
dynamical research in the epidemiological field [13–16]. Many researchers have made
significant contributions to various COVID-19 models [14,17–24]. Because the fractional
derivative is a generalization of the integer-order derivative, fractional-order modeling has
been used to investigate the disease transmission dynamics. In addition, the integer-order
differentiation is local, whereas the fractional differentiation is not so. This behavior helps
in the simulation of epidemic situations. Furthermore, the fractional derivative has the ca-
pability to improve the system’s stability zone. The calculus of fractional order system adds
an additional parameter to the modeling framework, which helps in numerical simulations.
The prior models are highly useful for analyzing COVID-19 transmission; however, they
ignore co-morbidity, vaccinated classes, and the West Bengal pandemic situation. These
facts, as well as the benefits of calculus of fraction order, compel us to build the proposed
model on COVID-19 in the Caputo fractional framework.

In this study, a modified-fractional-order SAVICR model for two sub-compartments
of infected patients (with or without co-morbidity) and vaccinated patients was developed
(Section 2). Next, we estimated the model’s fundamental reproduction number. The so-
lutions’ uniqueness, non-negativity, and boundedness were confirmed for the system’s
well-posedness (Section 4). We also studied the local stability of disease-free equilibrium
point and endemic equilibrium (Section 4, Section 4.4). We considered a control prob-
lem by modifying the previous system with controlling vaccination and social distancing
(Section 5). Furthermore, we numerically investigated the dynamical system in relation
to the parameter values associated with the West Bengal situation in 2021 (Section 6).
Section 7 concludes with some key points.

2. Model Formulation

Fractional differentiation operator of the Caputo type was first introduced in the year
1967 by Michele Caputo [25,26].

Definition 1 (Refs. [25,27]). The Caputo derivative with order ε ∈ (0, 1) for a absolute continuous
and differentiable function g on [0, ∞+) is defined as:

c
0Dε

t g(t) =


1

Γ(1− ε)

∫ t

t0

g
′
(s)

(t− s)ε ds

g
′
(t), ε = 1.

In our whole context, we have used 0Dε instead of c
0Dε

t and 0 < ε < 1. Caputo
derivative is defined only for differentiable functions while the functions that have no
first-order derivative might have no Caputo derivative.
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Applying Caputo fractional differential equations, the following six compartmental
models have been created:

c
t0

Dε
t S(t) = Λε − δεS(t)− αεS(t)− βεS(t)I(t), S(0) > 0,

c
t0

Dε
t A(t) = βεS(t)I(t)− φε A(t) + σεβεV(t)I(t)− δε A(t), A(0) ≥ 0,

c
t0

Dε
t V(t) = αεS(t)− σεβεV(t)I(t)− δεV(t), V(0) > 0,

c
t0

Dε
t I(t) = ξφε A(t)− (δε

2 + ρε)I(t), I(0) ≥ 0,

c
t0

Dε
t C(t) = (1− ξ)φε A(t)− (δε

1 + γε)C(t), C(0) ≥ 0,

c
t0

Dε
t R(t) = ρε I(t) + γεC(t)− δεR(t), R(0) ≥ 0.

(1)

Here c
t0

Dε
t is the notation of fractional derivative of order ε ∈ (0, 1) in Caputo sense

with initial time t0 ≥ 0 (assuming that t0 = 0). For simplicity we use 0Dε instead of c
t0

Dε
t .

System 1 is dimensionally correct as both sides have same time dimension time−ε. It is
also noticed that the equilibrium points and reproduction number contain ε as all the
parameters contain ε in power form. We have omitted the power ε of all parameters (for
simplicity) in theoretical analysis. In numerical simulations, we have taken into account
the power ε of all parameters. Now, system 1 transforms to:

0DεS(t) = Λ− δS(t)− αS(t)− βS(t)I(t), S(0) > 0,

0Dε A(t) = βS(t)I(t)− φA(t) + σβV(t)I(t)− δA(t), A(0) ≥ 0,

0DεV(t) = αS(t)− σβV(t)I(t)− δV(t), V(0) > 0,

0Dε I(t) = ξφA(t)− (δ2 + ρ)I(t), I(0) ≥ 0,

0DεC(t) = (1− ξ)φA(t)− (δ1 + γ)C(t), C(0) ≥ 0,

0DεR(t) = ρI(t) + γC(t)− δR(t), R(0) ≥ 0.

(2)

It is presumed δ ≤ δ2 ≤ δ1. Schematic diagram of system 2 is shown in Figure 1.

Figure 1. The system 2 is represented schematically.

The susceptible, asymptomatically infected, Vaccinated class, symptomatically in-
fected without co-morbidity, symptomatically infected with co-morbidity and recovered
or removed population at time t are represented by S(t), A(t), V(t), I(t), C(t), and R(t),
respectively. Table 1 provides a brief description of all parameters.



Mathematics 2021, 9, 2806 4 of 27

Table 1. Description of parameters used in the system 2.

Λ Recruitment rate of S

σ Transmission rate at which vaccinated people become asymptomatic

β Transmission rate at which susceptible people become asymptomatic

δ Morbidity rate

δ1 Disease-induced death rate of symptomatically infected with co-morbidity class

δ2 Disease induced death rate of symptomatically infected without co-morbidity class

ρ Recovery rate of symptomatically infected without co-morbidity class (I)

φ Conversion rate of asymptomatic infected people to symptomatic

ξ
Fraction of asymptomatic population enters to infected class without
co-morbidity(I)

γ Recovery rate of symptomatically infected with co-morbidity class (C)

α Rate of vaccination

3. Equilibrium Points and Basic Reproduction Number

The disease-free equilibrium point E0 and endemic equilibrium point E1 of system (2)
are given below.

1. E0 =

(
Λ

δ + α
, 0,

αΛ
δ(δ + α)

, 0, 0, 0
)

2. E1 = (S∗, A∗, V∗, I∗, C∗, R∗).

Here
S∗ =

Λ
α + δ + βI∗

A∗ =
δ2 + ρ

ξφ
I∗

V∗ =
αΛ

[α + δ + βI∗][σβI∗ + δ]

I∗ =
Λξφ

(φ + δ)(δ2 + ρ)
− δ

σβ

C∗ =
(1− ξ)(δ2 + ρ)

ξ(γ + δ1)
I∗

R∗ =
[

ρ

δ
+

γ(1− ξ)(δ2 + ρ)

δξ(δ1 + γ)

]
I∗

(3)

E1 remains in R6
+ if

Λξφσβ ≥ δ(φ + δ)(δ2 + ρ)

The basic reproduction number, indicated by R0 , is the estimated number of secondary
cases generated by the infection of a single individual. The basic reproduction number R0
is calculated at disease-free equilibrium point E0 by the help of the NGM (Next Generation
Matrix) whose dominant eigenvalue is R0 [28,29]. The components A, I, and C in system (2)
are explicitly appended with a disease transmission. The matrices F, V represent respective
new infection and transition matrices.

Consider u = (A, I, C)T , the subsystem of system (2) can be represented as:

0Dε
t u = F(u)−V(u),
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F(u) =



βSI + σβVI

0

0


and

V(u) =



φA + δA

(δ2 + ρ)I − ξφA

(δ1 + γ)C− (1− ξ)φA


DF(E0) = F

DV(E0) = V

DF(u) and DV(u) are the Jacobian of F, V at disease-free equilibrium E0 where

F =



0
Λβ

δ + α
+ σβ

αΛ
δ(δ + α)

0

0 0 0

0 0 0



V =


(δ + φ) 0 0

−ξφ δ2 + ρ 0

−(1− ξ)φ 0 δ1 + γ


Thus, we obtain

R0 =
ξβΛφ

(φ + δ)(δ + α)(δ2 + ρ)
+

αξφβσΛ
δ(φ + δ)(δ + α)(δ2 + ρ)

. (4)

Reproduction number R0 is a function of ε because each parameter is a function of ε.
The value of ε has been fixed for analysis reasons. If we modify the value of ε, it will affect
all other parametric values, including the value of R0.

4. Basic Analysis of the System (2)

This section has carefully accomplished certain basic results such as existence, non-
negativity, boundedness, and stability of system (2).

4.1. Preliminaries of Caputo Fractional Calculus

The following definitions and theorems are essential for further theoretical study.

Lemma 1 (Ref. [30]). Consider a continuous function on [a, b] where a > 0 and 0Dεψ(t) is
continuous on (a, b], then

ψ(x) = ψ(a) +
1

Γ(ε)
(x− a)ε. 0Dεψ(η),
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where 0 < a ≤ η ≤ x, ∀x ∈ (a, b].

Remark 1. If 0Dεψ(t) ≥ 0(0Dεψ(t) ≤ 0) for all t ∈ (a, b), then ψ(t) is a non-decreasing
(non-increasing) function for t ∈ [a, b].

Definition 2 (Ref. [8]). Mittag–Leffler functions of single and double parameters are described below:

Eε(w) =
∞

∑
k=0

wk

Γ(εk + 1)
and Eε1,ε2(w) =

∞

∑
k=0

wk

Γ(ε1k + ε2)
, where ε, ε1, ε2 ∈ R+.

Theorem 1 (Ref. [31]). Suppose g(t) is differentiable with exponential order and 0 < ε < 1.
Further, if 0Dεg(t) is piece-wise continuous on [0, ∞), then

L {0Dεg(t)} = sεF(s)−
n−1

∑
j=0

sε−j−1gj(0),

where the Laplace transform of g(t) is represented by F(s) = L {g(t)}.

Theorem 2 (Ref. [32]). For any complex number M and ε1, ε2 ∈ (0, 1), we have

L
{

tε2−1Eε1,ε2(Mtε1)
}
=

sε1−ε2

(sε1 −M)
,

where the real part of s > ‖M‖
1

ε1 and Eε1,ε2 is the two parametric Mittag–Leffler function.

Theorem 3 (Ref. [27]). Consider:
0Dε

t x(t) = Φ(x),

with 0 < ε < 1, x ∈ Rn). The equilibrium points of the above system are solutions to the equation
Φ(x) = 0. An equilibrium is locally asymptotically stable if all eigenvalues (λi) of the Jacobian

matrix J =
∂Φ
∂x

calculated at the equilibrium points satisfy |arg(λi)| >
επ

2
.

4.2. Existence and Uniqueness

Lemma 2 (Ref. [33]). Consider the system:

0Dεx(t) = g(t, x) (5)

with initial condition x(0) = x0, where ε ∈ (0, 1), g : [0, ∞)×Ω → IRn, Ω ⊆ IRn, if g(t, x)
satisfies local Lipschitz condition with respect to x, then there exists a unique solution of (5) on
[0, ∞)×Ω .

In our context Ω = {(S, A, V, I, C, R) ∈ R6 : max(|S|, |A|, |V|, |I|, |C|, |R|) ≤ M < ∞}.

Now, we have the following theorem.

Theorem 4. The system (2) with initial condition X(0) = (S(0), A(0), V(0), I(0), C(0), R(0)) ∈
Ω, possess a unique solution X(t) ∈ Ω, ∀t ≥ 0 .

Proof of this Theorem is given in Appendix A.

4.3. Non-Negativity and Boundedness

Here, we first studied the non-negativity and then we demonstrated that all solutions
of system (2) are bounded.

Theorem 5. The solutions of SAVICR model (2) with initial values lie in Γ+ = R6
+.
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Proof.
0DεS(t)

∣∣
S(t)=0 = Λ > 0 (6)

0Dε A(t)
∣∣

A(t)=0 = βSI + σβVI (7)

0DεV(t)
∣∣
V(t)=0 = αS (8)

0Dε I(t)
∣∣

I(t)=0 = ξφA (9)

0DεC(t)
∣∣
C(t)=0 = (1− ξ)φA (10)

0DεR(t)
∣∣
R(t)=0 = ρI + γC (11)

From (6), we have
0DεS(t)|S(t)=0 = Λ > 0.

We can deduce from Lemma 1 that S(t) is increasing in near S(t) = 0, and S(t) is
unable to go across the axis S(t) = 0. As a result, S is non-negative and similarly we can
show V(t) > 0 for all t ≥ 0 (from Equation (8)). We now assert that A(t) commences in Γ+

cannot be negative. Contrarily, there exists τ1 such that A(t) traverses the A(t) = 0 axis for
the first time at t = τ1 with the following possibilities.

A(t) > 0, for 0 ≤ t < τ1,
A(τ1) = 0,
A(τ+

1 ) < 0.

Relation (7) revels that 0Dε A(t)
∣∣

A(τ1)=0 = βS(τ1)I(τ1) + σβV(τ1)I(τ1). and this leads
the following cases.

Case1: Suppose βS(τ1)I(τ1) + σβV(τ1)I(τ1) ≥ 0, then from Lemma 1, A(t) is not decreas-
ing in the neighborhood of t = τ1, and A(τ+

1 ) = 0. As a result, a contradiction occurs.
Case2: On the other hand βS(τ1)I(τ1) + σβV(τ1)I(τ1) < 0, which discloses I(τ1) must be
negative. If I(τ1) < 0, then a τ2 (0 < τ2 < τ1) exists with

I(t) > 0, for 0 ≤ t < τ2,
I(τ2) = 0,
I(τ+

2 ) < 0.

From (9), we obtain
0Dε

t I(t)
∣∣

I(τ2)=0 = ξφA(τ2) > 0,

which refutes I(τ+
2 ) < 0. Therefore, I(t) ≥ 0, ∀t ∈ [0, ∞) and also A(t) ≥ 0, ∀t ∈ [0, ∞).

Once again from (10) and (11), we can conclude C(t), R(t) are non-negative.
As a result, all solutions of system (2) that begin with Γ+ are constricted to the region

Γ+.

Theorem 6 (Boundedness). System (1) has uniformly bounded solutions X(t) = (S, A, V, I, C, R).

Proof. It is clear from the first equation of (2) that

0DεS(t) ≤ Λ− δS

Using Laplace transforms (L {·}), we have

sεL {S(t)} − sε−1S(0) + δL {S(t)} ≤ Λ
s

,

⇒ L {S(t)} ≤ A
sε−(1+ε)

sε + δ
+ S(0)

sε−1

sε + δ
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Using inverse Laplace transforms (using Theorem 2):

S(t) ≤ S(0)Eε,1(−δtε) + ΛtεEε,ε+1(−δtε)

Therefore, S(t) ≤ M1[Eε,1(−δtε) + δtεEε,ε+1(−δtε)] =
M1

Γ(1)
= M1, M1 = max

{
Λ
δ

, S(0)
}

.

From the properties of Mittag–Leffler function: [34]:

Eα1,α2(z) = zEα1,α1+α2(z) +
1

Γ(α2)

In this circumstance,

Eε,1(−δtε) = (−δtε)Eε,ε+1(−δtε) +
1

Γ(1)
(12)

Let N(t) = S(t) + A(t) + V(t) + I(t) + C(t) + R(t).
Now,

0Dε
t N(t) = 0Dε

t S(t) + 0Dε
t A(t) + 0Dε

t V(t) + 0Dε
t I(t) + 0Dε

t C(t) + 0Dε
t R(t)

= Λ− {δS(t) + δA(t) + δV(t) + δ2 I(t) + δ1C(t) + δR(t)}

≤ Λ− δmN(t), where δm = min{δ1, δ2, δ}

Hence,
0Dε

t N(t) + δmN(t) ≤ Λ

Using Laplace transformation, we have (using Theorem 1):

sεF(s)− sε−1N(0) + δmF(s) ≤ Λ
s

, where F(s) = L {N(t)}

⇒ F(s) ≤ Λ
s−1

sε + δm
+

N(0)sε−1

sε + δm
=

sε−1N(0)
sε + δm

+
Λsε−(1+ε)

sε + δm

Using inverse Laplace transforms (using Theorem 2):

N(t) = N(0)Eε,1(−δmtε) + ΛtεEε,ε+1(−δmtε) (13)

From (12) and (13), we obtain

N(t) ≤ M2[Eε,1(−δmtε) + δmtεEε,ε+1(−δmtε)] =
M2

Γ(1)
= M2, M2 = max

{
Λ
δm

, N(0)
}

Thus S(t), N(t) are bounded and hence the solution (S(t), A(t), V(t), I(t), C(t), R(t))
is bounded in {(S, A, V, I, C, R)|S + A + V + I + C + R ≤ M2; S ≤ M1} for t ∈ [0, ∞).

4.4. Local Stability

For simplicity of analytical studies, we have reduced the system (2) by omitting the
sixth equation as R does not present in top five equations of system (2). The dynamics of R
also be obtained from the dynamics of S, A, V, I, C. The following is the reduced system:
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0DεS(t) = Λ− δS(t)− αS(t)− βS(t)I(t), S(0) > 0,

0Dε A(t) = βS(t)I(t)− φA(t) + σβV(t)I(t)− δA(t), A(0) ≥ 0,

0DεV(t) = αS(t)− σβV(t)I(t)− δV(t), V(0) > 0,

0Dε I(t) = ξφA(t)− (δ2 + ρ)I(t), I(0) ≥ 0,

0DεC(t) = (1− ξ)φA(t)− (δ1 + γ)C(t), C(0) ≥ 0.

(14)

In this case we have to analyze the stability of equilibrium points E∗0 =

(
Λ

δ + α
, 0,

αΛ
δ(δ + α)

, 0, 0
)

and E∗1 = (S∗, A∗, V∗, I∗, C∗), where

S∗ =
Λ

α + δ + βI∗

A∗ =
δ2 + ρ

ξφ
I∗

V∗ =
αΛ

[α + δ + βI∗][σβI∗ + δ]

I∗ =
Λξφ

(φ + δ)(δ2 + ρ)
− δ

σβ

=
δ

σβ

(
Λξφσβ

δ(φ + δ)(δ2 + ρ)
− 1
)

=

(
R0

K0
− 1
)

δ

σβ

C∗ =
(1− ξ)(δ2 + ρ)

ξ(γ + δ1)
I∗

and R0 =
ξβΛφ

(φ + δ)(δ + α)(δ2 + ρ)
+

αξφβσΛ
δ(φ + δ)(δ + α)(δ2 + ρ)

, K0 =

(
δ

(δ + α)σ
+

α

α + δ

)
For E∗1 to exist in feasible region R5

+, it is necessary and sufficient that R0 > K0.
From simple calculation it is clear that K0 ≥ 1 if σ ≤ 1. If R0 = K0, then the disease-free
equilibrium and endemic equilibrium points will be confluent.

The following lemma is essential for analysis of system (14).

Lemma 3 (Refs. [35,36]). Suppose P(λ) = λn + a1λn−1 + a2λn−2 + ...+ an be the characteristic
equation of system (14) evaluated at equilibrium point. For n = 4, ∇(P) is the discriminant
of the characteristic equation P(λ) = λ4 + a1λ3 + a2λ2 + a3λ + a4 which is represented as

∇(P) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2 a3 a4 0 0
0 1 a1 a2 a3 a4 0
0 0 1 a1 a2 a3 a4
4 3a1 2a2 a3 0 0 0
0 4 3a1 2a2 a3 0 0
0 0 4 3a1 2a2 a3 0
0 0 0 4 3a1 2a2 a3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Lemma 4 (ref. [37]). Suppose ∇(P) < 0, a1 > 0, a2 > 0, a3 > 0, a4 > 0 hold, then the

equilibrium point is asymptotically stable if a2 =
a1a4

a3
+

a3

a1
. If a2 6=

a1a4

a3
+

a3

a1
then ε <

1
3

must hold.

Theorem 7. The disease-free equilibrium point E∗0 of system (14) is locally asymptotically stable if
and only if R0 < 1.

Proof. Proof is given in Appendix A.

Theorem 8. The endemic equilibrium E1 of system (14) is unstable.

Proof. Proof is given in Appendix A.

4.5. Sensitivity Analysis

It is clear that R0 relies on different parameters and value of R0 is 0.1146 for Table 2.
The normalized forward sensitivity index with regard to each parameter has been derived
as follows to analyze the sensitivity of R0 to any parameter (say, θ) [29,38]:

ΩR0
θ =

∂R0

∂θ

θ

R0

Table 2. The values of the parameters used in system (1) corresponding to the situation in West
Bengal (India).

Parameters Values Source

Λ 0.00004 [1]

β 0.3945 Estimated

δ 1/(70.4× 365) [1]

δ1 1/(60× 365) Assumed

δ2 1/(65× 365) Assumed

φ 1/5.2 [39]

ξ 0.3 Assumed

ρ 0.1245 Assumed

σ 0.08 Estimated

γ 0.1240 Assumed

α 3× 10−4 Estimated

ε 0.7 Estimated

The sensitivity index can be affected by different factors, but it may also be constant
or unrelated to them. These values are critical for estimating the sensitivity of parameters,
which should be performed with caution because even minor changes in a parameter can
produce significant quantitative changes. It is not necessary to be cautious while estimating
a parameter with a lower sensitivity index because little changes in that parameter create
small changes. We focused on the parameters Λ, α, β, φ, ρ, andσ because we could not
manage δ, ξ. Table 3 shows the sensitivity index values for the parameters Λ, α, β, φ, ρ, σ
that match Table 2. From Table 3, it is revealed that infection transmission rate β, recovery
rate of without co-morbidity class, and vaccination rate are highly sensitive. According to
the sensitivity index (Table 3), the transmission rate from symptomatically infected people is
the most sensitive of all the criteria for lowering disease prevalence, and vaccination lowers
the number of symptomatically infected people. As a result, reducing virus transmission
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through social distancing and vaccination, as well as other preventative measures, would
aid in the timely management of this pandemic situation.

Table 3. Normalized forward sensitivity index for different parameters correspondence to Table 2.

Parameters Sensitivity Index

β +1

φ 0.0104

ρ −0.9964

α −0.8704

Λ +1

σ +0.0152

5. Fractional-Order Optimal Control

One of the most important preventative precautions that everyone should do is to keep
social distances and maintain adequate cleanliness [40]. Aside from that, other vaccines
are now accessible, and people are being advised to take the appropriate amount to avoid
future infection. As a result, these tactics have been implemented into this system in order
to limit the quick transfer of information. Our goal is to reduce the number of susceptible
and contaminated people together with the cost of applying combined control measures
u, v (social distance and vaccination). Though Ding et al. [41] and Agarwal et al. [42] have
made early contributions to optimal control theory in fractional calculus, recently many
researchers have significantly contributed in the field of fractional-order control [43,44].

One of the most important results in classical and fractional optimal control is the
Pontryagin Principle [43,45]. The method is similar to what was used to solve the traditional
integer-order optimal control problem. We have already studied some control problems
using the Pontryagin Principle for fractional-order systems [15,16]. The main distinction
is that in a fractional-order optimal control problem, the adjoint equations are in the
Right-Riemann–Liouville derivative (RL

t Dε
T) of order ε but the co-state equations are in

Caputo differential equations. System (2) is reintroduced by implementing some control
interventions that can reduce the disease load. We have introduced two controls, u, v, where
v is considered as intensity of vaccination and u can be considered as non-pharmaceutical
interventions (complete or partial lockdown, social distancing, etc.) with 0 ≤ u, v ≤ 1.
Here, u = 0 portrays no such non-pharmaceutical interventions maintained in definite
time zone ([0,Tf ]), while u = 1 represents the scenario where full (100%) interventions is
maintained; whereas v = 0 denotes no vaccination and v = 1 stands for fully vaccinated.

Consider U =
{
(u, v) ∈ L∞

1 (0, Tf ), 0 ≤ u, v ≤ 1, t ∈ (0, Tf )
}

be the control space with
measurable control function u, v. Our main objective is to minimize the cost function J in
[0, Tf ] by finding optimal solution as follows:

J(u∗, v∗) = Jmin (u(t),v(t))∈U (15)

J(u, v) =
∫ Tf

0

[
m1 I(t) + m2C(t) +

m3

2
u2(t) +

m4

2
v2(t)

]
dt (16)
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subject to
0DεS(t) = Λ− (δ + αv)S− βSI(1− u), S(0) > 0,

0Dε A(t) = (1− u)βSI + σβ(1− u)VI − (δ + φ), A(0) > 0,

0DεV(t) = vαS− (1− u)σβVI − δV, V(0) > 0,

0Dε I(t) = ξφA− (δ2 + ρ)I, I(0) > 0

0DεC(t) = (1− ξ)φA− (δ1 + γ)C, C(0) > 0,

0DεR(t) = ρI + γC− δR, R(0) > 0.

(17)

The next theorem shows the existence of optimal solution of control problem.

Theorem 9. Suppose the control function x = (u, v) ∈ U be measurable on [0, Tf ] and 0 ≤
u, v ≤ 1. Then there subsists an optimal control x∗ = (u∗, v∗), which minimizes J(u, v) of (20)
with

RL
t Dε

Tf
λ1(t) = (1− u)(λ2 − λ1) + λ1(δ + αv)

−λ3αv

RL
t Dε

Tf
λ2(t) = λ2(δ + φ)− λ4(ξφ)− λ5{(1− ξ)φ}

RL
t Dε

Tf
λ3(t) = λ3(δ + σβ(1− u)I)− λ2σβ(1− u)I,

RL
t Dε

Tf
λ4(t) = λ3σβ(1− u)V − λ2{σβ(1− u)V + (1− u)βS}

+(1− u)βSλ1 + λ4(δ + ρ)− λ6ρ−m1,

RL
t Dε

Tf
λ5(t) = λ5(δ1 + γ)− λ6γ−m2,

RL
t Dε

Tf
λ6(t) = δλ6.

where λi(Tf ) = 0, i = 1, 2, ..., 6 and

u∗ = max{min{ū, 1}, 0}; v∗ = max{min{v̄, 1}, 0}

ū =
(λ2 − λ1)S∗ I∗β + σβV∗ I∗

m3
, v̄ =

(λ1 − λ3)αI∗S∗

m4

(18)

and S∗, A∗, V∗, I∗, C∗, R∗ are the corresponding optimal state variables of (17).

Proof. Consider the following Hamiltonian function:

H = m1 I(t) + m2C(t) +
m3

2
u2(t) +

m4

2
v2(t) + λ1(0DεS(t)) + λ2(0Dε A(t)) + λ3(0DεV(t))

+λ4(0Dε I(t)) + λ5(0DεC(t)) + λ6(0DεR(t))

(19)

where adjoint variables are denoted by λi, i = 1, 2, 3, 4, 5, 6 with λi(Tf ) = 0 (i = 1, 2, 3, 4, 5, 6).



Mathematics 2021, 9, 2806 13 of 27

For control system (17), let us consider that u∗, v∗ are applied optimal control inter-
ventions with optimal state variables S∗, A∗, V∗, I∗, C∗, R∗:

RL
t Dε

Tf
λ1(t) = −

∂H
∂S

= (1− u)(λ2 − λ1) + λ1(δ + αv)

−λ3αv

RL
t Dε

Tf
λ2(t) = −

∂H
∂A

= λ2(δ + φ)− λ4(ξφ)− λ5{(1− ξ)φ}

RL
t Dε

Tf
λ3(t) = −

∂H
∂V

= λ3(δ + σβ(1− u)I)− λ2σβ(1− u)I,

RL
t Dε

Tf
λ4(t) = −

∂H
∂I

= λ3σβ(1− u)V − λ2{σβ(1− u)V + (1− u)βS}

+(1− u)βSλ1 + λ4(δ + ρ)− λ6ρ−m1,

RL
t Dε

Tf
λ5(t) = −

∂H
∂C

= λ5(δ1 + γ)− λ6γ−m2,

RL
t Dε

Tf
λ6(t) = −

∂H
∂R

= δλ6.

(20)

From optimality conditions [45], we have obtained the optimal conditions:

∂H
∂u

∣∣∣
u=ū

= m3ū + λ1βS∗ I∗ − λ2(βS∗ I∗ + σβV∗ I∗) + λ3σβV∗ I∗ = 0

∂H
∂v

∣∣∣
v=v̄

= m4v̄− λ1S∗α + λ3αS∗ = 0

(21)

So, we have

ū =
(λ2 − λ1)S∗ I∗β + σβV∗ I∗

m3
, v̄ =

(λ1 − λ3)αI∗S∗

m4
(22)

So, in U, we have

u∗ =



0 if
∂H
∂u

< 0

ū if
∂H
∂u

= 0

1 if
∂H
∂u

> 0

(23)

v∗ =



0 if
∂H
∂v

< 0

v̄ if
∂H
∂v

= 0

1 if
∂H
∂v

> 0

(24)

and
u∗ = max{min{ū, 1}, 0}; v∗ = max{min{v̄, 1}, 0} (25)

where ū =
(λ2 − λ1)S∗ I∗β + σβV∗ I∗

m3
, v̄ =

(λ1 − λ3)αI∗S∗

m4
.
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6. Numerical Simulations

For numerical purposes, we have used the MatLab software in combination with
Roberto Garrappa’s fd12 Matlab function for fractional differential equations [46]. For the
optimal control problem, the iterative scheme (Euler’s forward and backward) has been
used [15]. Table 4 depicts the pandemic scenario of West Bengal in the period 1 June 2021
to 20 October 2021. We have also considered system (1) where all parameters contain
ε. The value of reproduction number R0 is 0.0152 according to Table 2, which suggests
the non-existence of an endemic equilibrium point and the existence of asymptotically
stable disease free equilibrium. Numerical simulations have been compared to the model’s
conclusions to real-world data from WHO [47] and worldometers [48] reports. The total
population of West Bengal is around 9.2× 107 [1]. We considered t = 1 day as the minimum
time unit and end time is Tf = 60 days. We have also considered Φ = I + C as the total
infected population due to COVID-19 in West Bengal. The symptomatically infected cases
(with or without co-morbidity), from 1 June 2021 to 20 October 2021, are listed in Table 4
with 5 days interval [1]. Initially, we have simulated our system for 60 days, and then
we extended our limit to 150 days. We saw that in the beginning, the time series of total
infected population (Φ = I + C) does not quite fit with actual data; however, around
t = 30 days, the model data fit well with real data when the order of the derivative was
0.7 (Figure 2). Next, we performed numerical simulation using Table 2 from 1 June to 30
October 2021 (Figure 3) and real data are taken up to 20 October 2021.
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Figure 2. Real Data vs. Model Data of total infected (I + C) cases between 1 June 2021 and 31
July 2021.

For the optimal control problem, we have assumed m1 = 100, m2 = 100, m3 =
10, m4 = 1000, all are in INR (Indian Rupee). It is observed from Figures 4 and 5 that
infected population with co-morbidity is decreasing if we control both factors (vacci-
nation and social distancing) simultaneously. After effectively executing control policy,
the number of infected individuals with co-morbidity will be lowered from 15,860 to 14,970
(Figures 4 and 5). Figure 6 depicts the time series of the optimal control variables and the
optimal cost of implementation of the control policy. It has been noted that the effect of
controls u∗, v∗ is minimal in the time span of 60 days. Figure 7 suggests the variation of
total infected population (Φ) when the combined control strategy is applied. For ε = 0.7,
we saw that the population of the total infected class (Φ) is not far from the realistic sce-
nario for West Bengal (Figures 8 and 9). We have estimated ε by graphical method using
MatLab (Figure 9). Other parameters have been estimated in similar graphical method
using MatLab as mentioned in Table 2 (Figure 10). In Figure 10, the variation of time series
of different state variables have been produced for different values of ε for the long time
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period (t = 300). Figures 11–13 depict the time series of state variables, optimal control
variables, and optimal cost for longer time periods (t = 250 days).

Table 4. Day by day case report between 1 June 2021 and 20 October 2021 of West Bengal (India).

Day Total Infected Cases Model Value

1/6/2021 9424 9000

6/6/2021 7682 3385

11/6/201 5274 2978

16/6/2021 3268 1925

21/6/2021 2184 1651

26/6/2021 1933 1444

1/07/2021 1478 1286

6/07/2021 1367 1163

11/07/2021 997 1054

16/07/2021 831 962

21/07/2021 752 893

26/07/2021 657 832

31/07/2021 769 777

05/08/2021 732 728

10/08/2021 639 683

15/08/2021 663 648

20/08/2021 673 758

25/08/2021 758 685

30/08/2021 652 557

04/09/2021 677 590

09/09/2021 680 560

14/09/2021 702 540

19/09/2021 619 500

24/09/2021 707 470

30/09/2021 651 452

05/10/2021 618 420

10/10/2021 619 405

15/10/2021 530 393

20/10/2021 857 380
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Figure 3. Real Data vs. Model Data of total infected (I + C) cases between 1 June 2021 and 20
October 2021.
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Figure 4. Time series of state variables when no control is implemented.



Mathematics 2021, 9, 2806 17 of 27

0 20 40 60

t

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

S
u
s
c
e
p

ti
b

le
 (

S
) 

×10
8

0 20 40 60

t

0

0.5

1

1.5

2

2.5

A
s
y
m

p
to

m
a

ti
c
a
lly

 I
n
fe

c
te

d
 (

A
)

×10
5 With Control

0 20 40 60

t

0

0.5

1

1.5

2

2.5

In
fe

c
te

d
 (

I)

×10
5

0 20 40 60

t

0

0.5

1

1.5

2

2.5

In
fe

c
te

d
 w

it
h
 C

o
m

o
rb

id
it
y
 (

C
)

×10
5

0 20 40 60

t

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
e

c
o

v
e

re
d
 (

R
)

×10
6 With control

0 20 40 60

t

0

0.5

1

1.5

2

2.5

V
a
c
c
in

a
te

d
 (

V
)

×10
5

Figure 5. Time series of state variables when combined control strategy is implemented.
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Figure 6. Time series of optimal control variables and optimal cost when combined control strategy
is implemented.
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Figure 8. Time series of total infected population (I + C) and infected cases with co-morbidity when
ε = 0.6, 0.7, 0.8, 0.9.
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Figure 10. Variation of time series of all state variables for t = 300 days when ε = 0.7, 0.8, 0.9.
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Figure 11. Time series of state variables when combined control strategy is implemented Tf =

250, ε = 0.7.
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Figure 12. Time series of optimal control variables when combined control strategy is implemented
Tf = 250, ε = 0.7.
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Figure 13. Time series of optimal cost and total infected population (Φ) when combined control
strategy is implemented Tf = 250, ε = 0.7.

7. Conclusions

In real-world dynamical processes, such as epidemic spread, fractional calculus plays
a critical role. We looked into the emergence of a modified SAVICR epidemic model that
included memory effects. The co-morbidity and vaccinated classes have been added. Our
model accurately simulates the reality of the West Bengal (India) outbreak and predicts
the daily number of confirmed COVID-19 cases. The size of the infected population with
co-morbidity is important in estimating the number of Intensive Care Units (ICU) needed.
Our proposed model is compatible with other places/countries. The order of derivative
can differ from region to region. If we vary the order of derivatives while keeping other
parametric values fixed, the results will be different (Figure 3). This demonstrates that
the order of derivative is important in system simulation (1). We can see that the number
of people with a co-morbidity and asymptomatic population decreases significantly at
200 days by conducting long-term simulation (Figure 10). Finally, it has shown that the
optimal control strategy is implementing social distancing policies and lowering economic
costs by combining non-pharmaceutical interventions with vaccination.

Our work reveals the validity of the proposed model in West Bengal (India) scenario.
The main advantage of this model is that it is simple and fits with real data for long
time periods, as mentioned in Figure 3 (1 June 2021 to 20 October 2021). Theoretically,
it is established that the endemic equilibrium point is not asymptotically stable, which
guarantees the extinction of the current pandemic (Theorem 6). One disadvantage of
this model is that the model values and real data of the total infected population differ
too much in the initial stage; further, vaccinated people may be affected by COVID-19,
which is a factor not included in our model. It is observed that the number of infected



Mathematics 2021, 9, 2806 22 of 27

individuals can be controlled by proper vaccination and NPI, and the strategies proposed
to control COVID-19 through proper implementation of NPI and vaccination events can
contribute to our society. Further, the study of the pulsed immunization strategy remains
within the scope of our future studies. There are several fractional-order systems, namely
Caputo–Fabrizio, Caputo–Hadamard, Atangana–Baleanu–Caputo derivative, and Reisz
derivative, which are extensively used for studying epidemiological and biological systems.
We wish to conduct a comparative study of the proposed model in different fractional-
order frameworks.
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Appendix A

Proof of Theorem 4. Let us denote X = (S, A, V, I, C, R) and X = (S̄, Ā, V̄, Ī, C̄, R̄). Con-
sider a map L(X) = (L1(X), L2(X), L3(X), L4(X), L5(X), L6(X)), where

L1(X) = Λ− δS− αS− βSI

L2(X) = βSI − φA + σβVI − δA,

L3(X) = αS− σβVI − δV

L4(X) = ξφA− (δ2 + ρ)I

L5(X) = (1− ξ)φA− (δ1 + γ)C

L6(X) = ρI + γC− δR

For any X, X ∈ Ω:
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∥∥L(X)− L(X)
∥∥

=
∣∣L1(X)− L1(X)

∣∣+ ∣∣L2(X)− L2(X)
∣∣+ ∣∣L3(X)− L3(X)

∣∣+ ∣∣L4(X)− L4(X)
∣∣

+
∣∣L5(X)− L5(X)

∣∣+ ∣∣L6(X)− L6(X)
∣∣

=
∣∣−(δ + α)(S− S̄)− β(IS− ĪS̄)

∣∣
+
∣∣β(IS− ĪS̄)− (φ + δ)(A− Ā) + σβ(VI − V̄ Ī)

∣∣
+
∣∣ξφ(A− Ā) + (δ2 + ρ)(I − Ī)

∣∣+ ∣∣(1− ξ)φ(A− Ā)− (γ + δ1)(C− C̄)
∣∣

+
∣∣ρ(I − Ī) + γ(C− C̄)− δ(R− R̄)

∣∣
+
∣∣α(S− S̄)− σβ(VI − V̄ Ī)− δ(V − V̄)

∣∣
≤ (δ + 2α)

∣∣S− S̄
∣∣+ 2β

∣∣IS− S̄ Ī
∣∣+ 2σβ|VI − ĪV̄|+ (δ + 2φ)

∣∣A− Ā
∣∣

+(2ρ + δ)|I − Ī|+ (δ1 + 2γ)
∣∣C− C̄

∣∣
+δ|V − V̄|+ δ|R− R̄|

≤ (δ + 2α)
∣∣S− S̄

∣∣+ 2β
∣∣IS− S̄I + S̄I − S̄ Ī

∣∣+ 2σβ|VI − V̄ I + V̄ I − ĪV̄|+ (δ + 2φ)
∣∣A− Ā

∣∣
+(2ρ + δ)|I − Ī|+ (δ1 + 2γ)

∣∣C− C̄
∣∣

+δ|V − V̄|+ δ|R− R̄|

≤ (δ + 2α)
∣∣S− S̄

∣∣+ 2βM(|I − Ī|+
∣∣S− S̄

∣∣) + 2σβ(|V − V̄|+ |I − Ī|) + (δ + 2φ)
∣∣A− Ā

∣∣
+(2ρ + δ)|I − Ī|+ (δ1 + 2γ)

∣∣C− C̄
∣∣

+δ|V − V̄|+ δ|R− R̄|

≤ F1
∣∣S− S̄

∣∣+F2
∣∣A− Ā

∣∣+F3|V − V̄|+F4|I − Ī|+F5
∣∣C− C̄

∣∣+F6|R− R̄|

≤ F
∥∥X− X

∥∥, where F = max{F1, F2, F3, F4, F5, F6},

and
F1 = (δ + 2βM + 2α)

F2 = (δ + 2φ)

F3 = 2βM + 2σβM + δ2 + 2ρ

F4 = δ1 + 2γ

F5 = {2σβM + δ}
F6 = δ

Hence Lipschitz’s condition is satisfied. Therefore, Lemma 2 confirms that the system
(2) posses a unique solution of system (2).

Proof of Theorem 5. For disease-free equilibrium,
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J(E∗0 ) =



−(δ + α) 0 0 − βΛ
δ + α

0

0 −(δ + φ) 0
βΛ

δ + α
+

σβαΛ
δ(δ + α)

0

α 0 −δ − σβαΛ
δ(δ + α)

0

0 ξφ 0 −(ρ + δ2) 0

0 (1− ξ)φ 0 0 −(δ1 + γ)


Characteristic equation is:

(λ + δ2 + ρ)(λ + δ + α)(λ + δ)P(λ) = 0

where

P(λ) = λ2 + λ(φ + δ + δ2 + ρ) +

[
(φ + δ)(δ2 + ρ)− ξφ

(
Λβ

δ + α
+

σβαΛ
δ(δ + α)

)]
.

The three eigenvalues are −(ρ + δ2),−(δ + α),−δ. For these eigenvalues, we have
|arg(λ)| = π > επ

2 . The rest two eigenvalues can be found from:

λ2 + λ(φ + δ + δ2 + ρ) +

[
(φ + δ)(δ2 + ρ)− ξφ

(
Λβ

δ + α
+

σβαΛ
δ(δ + α)

)]
= 0. (A1)

Discriminant of the quadratic Equation (A1) is

(φ + δ + δ2 + ρ)2 − 4
[
(φ + δ)(δ2 + ρ)− ξφ

(
Λβ

δ + α
+

σβαΛ
δ(δ + α)

)]

= (φ + δ− δ2 − ρ)2 + 4ξφ

(
Λβ

δ + α
+

σβαΛ
δ(δ + α)

)
≥ 0

So, all the roots of the quadratic Equation (15) are real. The both roots will be negative
if

(φ + δ)(δ2 + ρ)− ξφ

(
Λβ

δ + α
+

σβαΛ
δ(δ + α)

)
> 0

=⇒ − ξβΛφ

(δ + α)(δ2 + ρ)(δ + φ)
− αξφβσΛ

δ(φ + δ)(δ + α)(δ2 + ρ)
+ 1 > 0

=⇒ −R0 + 1 > 0

=⇒ R0 < 1

Using Theorem 3, the asymptotic stability of E0 can be reached.

Proof of Theorem 6. For endemic equilibrium point,



Mathematics 2021, 9, 2806 25 of 27

J(S∗, A∗, V∗, I∗, C∗) =



m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 b34 b35

m41 m42 m43 m44 m45

m51 m52 m53 m54 m55


where

m11 = −(δ + α)− βI∗

m12 = 0
m13 = 0
m14 = βS∗

m15 = 0
m21 = βI∗

m22 = −(δ + φ)
m23 = σβI∗

m24 = βS∗ + σβV∗

m25 = 0
m31 = α
m32 = 0
m33 = −(σβI∗ + δ)
m34 = −σβV∗

m35 = 0
m41 = 0
m42 = ξφ
m43 = 0
m44 = −(δ2 + ρ)
m45 = 0
m51 = 0
m52 = (1− ξ)φ
m53 = 0
m54 = 0
m55 = −(δ1 + γ)

(A2)

Characteristic equation is:
(λ + δ1 + γ)Q(λ) = 0, (A3)

where Q(λ) = λ4 + d1λ3 + d2λ2 + d3λ + d4 and

d1 = −(m11 + m12 + m13 + m14)

d2 = −m12m21 −m13m31 −m23
+m32 + m22m33 −m14m41 −m24m42 −m34m43 + (m22 + m33)m44 + m11(m22 + m33 + m44)

d3 = m11(m23m32 −m22m33 + m24m42 + m34m43)
+m14(m22m41 + m33m41 −m21m42 −m31m43) + m24(m33m42 −m32m43)
+m34(m22m43 −m23m42)−m44(m11m22 −m23m32 + (m11 + m22)m33)
+m13(−m21m32 −m34m41 + m31(m22 + m44)) + m12(−m23m31 −m24m41 + m21(m33 + m44))

d4 = m12m41(m24m33 −m23m34) + m11m42(m23m34 −m24m33)
+m24m43(m32m11 −m12m31) + m34m43(m12m21 −m11m22) + m14{m23(m32m41 −m31m42)
+m21(m33m42 −m32m43) + m22(m31m43 −m33m41)}+ {m12(m23m31 −m21m33)
+m11(m22m33 −m32m23)}+ m13{m22(m34m41 −m31m44)
+m24(m31m42 −m32m41) + m21(m32m44 −m34m42)}

(A4)
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One root of the characteristic Equation (A3) is −(δ1 + γ) and for this eigenvalue we
have |arg(λ)| = π > επ

2 . Other four roots can be found from Q(λ) = 0.
The system (14) is asymptotically stable around endemic equilibrium E∗1 if the follow-

ing conditions fulfilled:

1. If ∇(Q) < 0, d1 > 0, d2 > 0, d3 > 0, d4 > 0 and ε <
1
3

2. If ∇(Q) < 0, d1 > 0, d2 > 0, d3 > 0, d4 > 0 and d2 =
d1d4

d3
+

d3

d1
, for ε ∈ (0, 1),

where Q(λ) = λ4 + d1λ3 + d2λ2 + d3λ + d4.
Now, d4 > 0 is the essential condition for stability (asymptotically stable) of the

endemic equilibrium point E∗1 (Lemma 4). From (29), we have

d4 = −βS∗(σβI∗αξφ)− βI∗(σβI∗ + δ)ξφ− (δ + φ)(δ + α + βI∗)(σβI∗ + δ) < 0.

Hence, the endemic equilibrium is unstable.
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