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Abstract: The administration of cardiosphere-derived cells (CDCs) after acute myocardial infarc-
tion (AMI) is very promising. CDC encapsulation in alginate-poly-L-lysine-alginate (APA) could
increase cell survival and adherence. The intrapericardial (IP) approach potentially achieves high
concentrations of the therapeutic agent in the infarcted area. We aimed to evaluate IP therapy using a
saline vehicle as a control (CON), a dose of 30 × 106 CDCs (CDCs) or APA microcapsules containing
30 × 106 CDCs (APA-CDCs) at 72 h in a porcine AMI model. Magnetic resonance imaging (MRI)
was used to determine the left ventricular ejection fraction (LVEF), infarct size (IS), and indexed end
diastolic and systolic volumes (EDVi; ESVi) pre- and 10 weeks post-injection. Programmed electrical
stimulation (PES) was performed to test arrhythmia inducibility before euthanasia. Histopathological
analysis was carried out afterwards. The IP infusion was successful in all animals. At 10 weeks,
MRI revealed significantly higher LVEF in the APA-CDC group compared with CON. No significant
differences were observed among groups in IS, EDVi, ESVi, PES and histopathological analyses. In
conclusion, the IP injection of CDCs (microencapsulated or not) was feasible and safe 72 h post-AMI
in the porcine model. Moreover, CDCs APA encapsulation could have a beneficial effect on cardiac
function, reflected by a higher LVEF at 10 weeks.

Keywords: CDCs; AMI; intrapericardial; microcapsules; APA; swine

1. Introduction

Despite a trend in reduced mortality, cardiovascular diseases (CVD) remain the leading
cause of mortality in Europe as a whole. Ischaemic heart disease is responsible for 38% of
CVD deaths in females and 44% in males [1]. The burden of CVD is not limited to their
high mortality, but these diseases also represent a very high economic and social cost, since
the associated hospitalizations, surgical interventions and pharmacological prescriptions,
are also on the rise [2].

Therapeutic advances in recent decades have reduced acute mortality after myocardial
infarction [3], increasing the proportion of patients with extensive infarction who survive
this acute phase but subsequently develop chronic heart failure.
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Regenerative therapy based on adult stem cells is positioning itself as a therapeutic
option, with experimental and clinical studies supporting its use [4,5]. In recent years,
cardiosphere-derived cells (CDCs) have been shown to decrease scar mass, increase viable
mass and halt adverse remodelling in the clinical and pre-clinical scenarios [6–10].

Although stem cell therapy has become a very promising approach to improving
cardiac function, concerns regarding the safety and potential risks, such as the development
of cardiac arrhythmias after cell administration, have also emerged [11,12].

The ability of cell therapy to achieve a beneficial effect will depend, among other
things, on the ability of cells to survive and to secrete the various paracrine factors that
determine cardioprotection, angiogenesis and activation of endogenous cells [13,14]. The
approaches that have been tried to increase cell survival and engrafting are varied, from the
administration of very high cell doses [15], to the modification of cells [16] and protecting
these cells by encapsulation [17].

In previous studies by our group, we verified that the pericardial fluid represents an
optimal medium for cell survival [18], allowing the possibility of achieving a high local
concentration of the therapeutic agent [19,20].

Myocardial oedema follows a bimodal pattern during the first week after infarction:
While the initial inflammatory wave appears immediately upon reperfusion and dissi-
pates at 24 h, the deferred oedematous wave appears on Day 4 and is maximal at around
Day 7 after reperfusion [21]. Accordingly, we hypothesized that the administration of a
regenerative therapy at 72 h after acute myocardial infarction could avoid direct expo-
sure of the administered cellular product to the deleterious effect of the inflammatory
microenvironment, which could enhance the beneficial effect of the therapy, minimizing
the development of heart failure secondary to acute myocardial infarction.

Therefore, in this study, we proposed the intrapericardial administration of CDCs,
whether encapsulated or not, in a porcine model of sub-acute myocardial infarction in
order to evaluate and compare the therapeutic effect of the injected agents. Furthermore,
we explored the possible arrhythmogenicity of the administered therapeutics.

2. Materials and Methods
2.1. Experimental Protocol

In the present study, 30 young female Large White swine with an initial weight of
35–40 kg were used. All animals underwent a thorough clinical examination and healthy
animals were included in the study protocol, which was approved by the Institutional
Animal Care and Use Committee (Ref 018/16 and Exp. 20170123-4), while it complied fully
with the Directive 2010/63/EU of the European Parliament on the protection of animals
used for scientific purposes. The timeline of the experimental study is summarized in
Figure 1.

2.2. Anaesthesia and Analgesia

Animals were premedicated with diazepam (0.2 mg/kg) and ketamine (15 mg/kg) by
the deep intramuscular (IM) route. After 10 min, anaesthesia was induced with 1% propofol
(3 mg/kg) intravenously. Subsequently, the animals were intubated with endotracheal
tubes of the proper size. Anaesthetic maintenance was carried out using sevoflurane
in oxygen (1.8–2% inspiratory fraction). For that purpose, animals were connected to a
semi-closed circular circuit attached to a ventilator with an initial fresh gas flow (FGF)
of 3 L/min; when the adequate anaesthetic plane was reached, a FGF of 0.5 L/min was
established. Ventilation was controlled with a tidal volume of 8–10 mL/kg at an adjusted
rate to obtain normocapnia values (35–40 mmHg of CO2).
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Intraoperative analgesia was achieved by intravenous administration of an associ-
ation of ketorolac/tramadol (1 mg/kg and 2 mg/kg, respectively) at the beginning of
the experience, followed by a continuous infusion of remifentanil (0.15–0.18 µg/kg/h).
During anaesthetic maintenance, a continuous infusion of 0.9% NaCl (5–10 mL/kg/h) was
administered through a marginal vein of the ear.

Antiarrhythmic therapy was established with 2% lidocaine in a continuous intra-
venous infusion (1 mg/kg/h), starting after the initial anaesthetic stabilization of the
animals and ending after 1 hour of reperfusion after model induction. Prior to coronary
occlusion, a bolus of 1 mg/kg of 2% lidocaine was administered.

After infarct creation, the animals were allowed to recover from anaesthesia. As postop-
erative analgesia, swine received intramuscular buprenorphine at a dose of 10 mg/kg/12 h
for 1 day and a 50 µg/h transdermal fentanyl patch was applied.

2.3. Infarct Induction

Prior to infarct induction, oral amiodarone (400 mg) was given from 5 days before
infarction to 3 days after it. Acetylsalicylic acid (500 mg) was administered from 24 h
before model creation until euthanasia. Therapy with clopidogrel was established from
24 h before model induction (300 mg), continuing until euthanasia (75 mg). Furthermore,
all pigs received prophylactic antibiotics for 5 days after model induction.

Infarct induction was performed as detailed in a previous study [22]. In brief, anaes-
thetized pigs were placed in dorsal decubitus in order to establish a percutaneous access
to a femoral artery. A coronary angioplasty balloon (Xperience®, Ivascular, Barcelona,
Spain) of appropriate diameter was placed immediately distal to the origin of the first
diagonal branch of the left anterior descending coronary artery and inflated during 90 min.
During this occlusion period, possible arrhythmias or ventricular fibrillations were treated
by manual chest compressions, 200 J biphasic defibrillation shocks (Zoll M Series Biphasic
200 J, Zoll Medical Corporation, Chelmsford MA, USA) and pharmacological therapy when
needed.

Once the balloon had been deflated and removed, haemostasis of the arterial puncture
site was performed using manual compression. The animals were kept under general
anaesthesia during the reperfusion period to treat possible malignant arrhythmias and
were then recovered from anaesthesia and carried to the animal housing facility.
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Blood samples were taken for cardiac troponin I (cTnI) analysis and basic blood
biochemistry determination before (baseline) and after infarct induction (immediately
before IP therapy).

2.4. CDCs Isolation and Culture

CDCs were obtained from cardiac tissue explants of the atrial region of a healthy
adult male Large White pig as previously described [23]. After washing the tissue samples
with a PBS solution, the explants were cut into small fragments (1–2 mm3), washed again
and subjected to three enzymatic digestions using a 0.2% trypsin solution (Lonza, Basel,
Switzerland) and 0.2% Collagenase IV ( Sigma Aldrich, Madrid, Spain in PBS at 37 ◦C for
5 min each.

Digested tissue fragments were then washed with Complete Explant Medium (CEM)
(10% foetal bovine serum (FBS) (Sigma), 1% penicillin-streptomycin (Lonza), 2 mM L-
glutamine (Lonza) and 0.2 mM 2-mercaptoethanol (Sigma)) in IMDM (HyClone/Cytiva,
Matrid, Spain) with an antifungal and antibiotic supplement and were then cultured in
90 mm Petri plates using the same culture medium at 37 ◦C and 5% CO2.

Three weeks later, tissue fragments were discarded and fibroblast-like cells migrating
from the tissue explants were trypsinized and seeded into 30 mm poly-D-lysine coated
plates with cardiosphere growing medium (CGM) (10% FBS, 1% penicillin-streptomycin,
2 mM L-glutamine and 0.1 mM 2-mercaptoethanol in 35% IMDM and 65% DMEM-Ham’s
F12 (Sigma)). CDCs migrating from the established cardiospheres were selected, seeded
again using CGM and expanded (at 37 ◦C and 5% CO2). CDCs at Passages 5 to 10 were
used for intrapericardial delivery.

Cells were stored in liquid nitrogen until their usage, using a 90% FBS and 10%
dimethyl sulfoxide (DMSO) solution as a freezing medium. For treatment, cells were
thawed, centrifuged and resuspended in CGM medium. Subsequently, CDCs were counted,
centrifuged again and resuspended in a saline solution at room temperature, adjusting the
concentration to 10 × 106 cells/mL. The volume (5 mL) of the cell suspension needed for
each injection was pre-filled into syringes that were transported under sterile conditions to
the operating room.

2.5. Cell Encapsulation

CDCs were incorporated into alginate-poly-L-lysine-alginate (APA) microcapsules
using an electrostatic dripper. For that purpose, the cells collected by trypsinization were
passed through a 40 µm filter and suspended in a 1.5% sodium alginate solution at a cell
density of 6 × 106 cells/mL of alginate. This suspension was deposited in a sterile syringe
that was placed in the electrostatic dripper. Using a peristaltic pump, the suspension was
passed through a 0.35 mm needle at a flow rate of 5.9 mL/h.

The resulting particles fell into a 55 mM calcium chloride solution, which was kept
under stirring for 15 min to ensure that the ionic gelation process was completed.

Subsequently, the droplets were covered by poly-L-lysine at a concentration of 0.05%
for 5 min. After washing them with mannitol, they were covered with a new layer of
alginate by incubation with 0.1% alginate for 5 min. The entire process was carried out
aseptically and the resulting microcapsules (370 ± 10 µm in diameter and loaded with
4 × 106 cells/mL of alginate) were transferred to the culture medium, where they were
kept under standard conditions until use.

2.6. Group Allocation and IP Administration

Animals were allocated to control (5 mL saline injection, CON), cell (a dose of 30 × 106

of CDCs suspended in 5 mL, CDCs) or encapsulated cell (a dose of 30 × 106 of CDCs encap-
sulated in APA and suspended in 5 mL, APA-CDCs) groups before infarct induction. In the
three groups, the administration was carried out blindly 72 h after infarction, immediately
after acquiring a magnetic resonance imaging (MRI) study.
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For IP administration (Figure 2), anesthetized swine were placed in the right lateral
decubitus position, allowing access to the thoracic cavity by means of a mini-lateral tho-
racotomy (≤5 cm). Once the pericardial sac was visible, an 18G Abbocath catheter was
inserted inside it and 2–3 mL of pericardial fluid removed before therapy administration.
After slow inoculation of the treatment, the catheter was pulled out, the thoracotomy was
surgically closed, and the animals were allowed to recover from anaesthesia.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 5 of 15 
 

 

106 cells/mL of alginate) were transferred to the culture medium, where they were kept 
under standard conditions until use. 

2.6. Group Allocation and IP Administration 
Animals were allocated to control (5 mL saline injection, CON), cell (a dose of 30 × 

106 of CDCs suspended in 5 mL, CDCs) or encapsulated cell (a dose of 30 × 106 of CDCs 
encapsulated in APA and suspended in 5 mL, APA-CDCs) groups before infarct induc-
tion. In the three groups, the administration was carried out blindly 72 h after infarction, 
immediately after acquiring a magnetic resonance imaging (MRI) study. 

For IP administration (Figure 2), anesthetized swine were placed in the right lateral 
decubitus position, allowing access to the thoracic cavity by means of a mini-lateral 
thoracotomy (≤5 cm). Once the pericardial sac was visible, an 18G Abbocath catheter was 
inserted inside it and 2–3 mL of pericardial fluid removed before therapy administration. 
After slow inoculation of the treatment, the catheter was pulled out, the thoracotomy was 
surgically closed, and the animals were allowed to recover from anaesthesia. 

 
Figure 2. Surgical procedure for IP therapy. (a) Exposure of the pericardial sac through a 5-cm-long 
incision in the fourth or fifth intercostal space. (b) Gentle traction of the pericardium to allow 
puncturing and to gain access to the pericardial cavity. (c) Placement of an 18G Abbocath catheter 
within the pericardium. (d) Evacuation of pericardial fluid. (e) Slow injection of the therapy 
through the catheter. (f) Appearance of the pericardium after catheter removal. 

The safety of the IP therapy was evaluated by cTnI analysis after treatment, com-
paring the results with cTnI values obtained before IP delivery. The occurrence of ma-
lignant arrhythmias during IP administration was also explored. Biochemical analysis 
was carried out at 24 h after IP therapy. During the follow-up period, any signs of infec-
tion, bleeding, pain or pericarditis were analysed. 

2.7. MRI Studies 
At 72 h after infarct induction, as well as 10 weeks later, animals were again sub-

jected to general anaesthesia in order to perform MRI examinations as previously de-
scribed [20]. These studies were carried out with 1.5 T equipment (Philips Intera®, Best, 
The Netherlands) using a specific cardiac 5-element multi-channel coil. The images were 
obtained with cardiac synchronization based on vectocardiograms and apnoea. 

Briefly, breath-hold gradient echo cine mode images in the short axis view were 
acquired to analyse left ventricular function: Left ventricular ejection fraction (LVEF), 
end diastolic volume (EDV) and end systolic volume (ESV). EDV and ESV were normal-

Figure 2. Surgical procedure for IP therapy. (a) Exposure of the pericardial sac through a 5-cm-
long incision in the fourth or fifth intercostal space. (b) Gentle traction of the pericardium to allow
puncturing and to gain access to the pericardial cavity. (c) Placement of an 18G Abbocath catheter
within the pericardium. (d) Evacuation of pericardial fluid. (e) Slow injection of the therapy through
the catheter. (f) Appearance of the pericardium after catheter removal.

The safety of the IP therapy was evaluated by cTnI analysis after treatment, comparing
the results with cTnI values obtained before IP delivery. The occurrence of malignant
arrhythmias during IP administration was also explored. Biochemical analysis was carried
out at 24 h after IP therapy. During the follow-up period, any signs of infection, bleeding,
pain or pericarditis were analysed.

2.7. MRI Studies

At 72 h after infarct induction, as well as 10 weeks later, animals were again subjected
to general anaesthesia in order to perform MRI examinations as previously described [20].
These studies were carried out with 1.5 T equipment (Philips Intera®, Best, The Netherlands)
using a specific cardiac 5-element multi-channel coil. The images were obtained with
cardiac synchronization based on vectocardiograms and apnoea.

Briefly, breath-hold gradient echo cine mode images in the short axis view were
acquired to analyse left ventricular function: Left ventricular ejection fraction (LVEF), end
diastolic volume (EDV) and end systolic volume (ESV). EDV and ESV were normalized
to body surface area (EDVi and ESVi). Late enhancement images of the myocardial scar
using the same cardiac plane were obtained 5–10 min after administration of 0.2 mmol/kg
gadobutrol (Gadovist, Bayer, Berlin, Germany) to measure the infarct size (IS).

2.8. End of Study and Post-Mortem Examinations

Ten weeks after infarct creation, immediately after the second MRI study, animals were
maintained under deep anaesthesia and subjected to programmed electrical stimulation
(PES) by means of a quadrapolar catheter (Marinr SC Steerable Quadrapolar Catheter,
Medtronic, Minneapolis, MN, USA) inserted into the left and the right ventricles in order to
analyse the inducibility of arrhythmias. Three cycle lengths with up to 4 extrastimuli with
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different coupling intervals were used following the clinical stimulation protocols. Once
the PES was finished, euthanasia was carried out by a lethal dose of potassium chloride
(1–2 mmol/kg). Subsequentially, the hearts were explanted and cut into slices 1 cm thick.
While one of the sections was incubated at 37 ◦C for 10 min in a 1% solution of 2,5,3-
triphenyl tetrazolium chloride (TTC) in phosphate buffer, samples from the infarct, border
and remote areas of the remaining slices were obtained for posterior histopathological
analysis by means of haematoxylin-eosin (H/E) and Masson’s trichrome (MT) staining [20].

2.9. Statistical Analysis

Animals presenting with LVEF < 45% and IS > 15% (in the pre-treatment MRI ex-
amination) were included in the calculations. Data are presented as means ± standard
deviations. Normality was checked using the Shapiro-Wilk test. Differences between
groups were identified and compared using the Kruskal-Wallis and Mann-Whitney U tests.
Intragroup comparisons were calculated with the Wilcoxon paired sample test. Binary
data were examined by performing a chi-square test. Values of p < 0.05 were considered
significant. Calculations were accomplished using the SPSS 18.0 statistical package for
Windows (SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Infarct Induction

One animal died during infarct induction, resulting in the following allocation: CON
(n = 10), CDCs (n = 10) and APA-CDCs (n = 9).

Infarct creation was successfully in all surviving animals, as demonstrated by a
significant increase in cTnI values in all groups 72 h after model induction (pre-treatment)
(Table 1) (CON: p = 0.008; CDCs: p = 0.016; APA-CDCs: p = 0.008; Wilcoxon paired sample
test). On the other hand, no significant differences in cTnI levels were detected among
groups either at baseline or after infarction (N.S., Kruskal-Wallis). Basic biochemistry data
obtained at baseline and pre-treatment timepoints are presented in Table S1.

Table 1. Cardiac TnI values (µg/L) measured during the study.

Groups Baseline Pre-Treatment Post-Treatment

CON 0.02 ± 0.01 a 5.61 ± 2.56 a,b 2.65 ± 1.69 b

CDCs 0.02 ± 0.01 a 4.83 ± 2.26 a,b 3.04 ± 2.06 b

APA-CDCs 0.02 ± 0.02 a 3.49 ± 2.24 a,b 2.11 ± 0.93 b

Data are presented as means ± standard deviation. Intragroup comparisons at baseline and pre-treatment are
denoted by a p < 0.05, and pre-treatment and post-treatment comparisons are denoted by b p < 0.05. No statistically
significant differences among groups were detected.

3.2. IP Therapy Administration

The IP administration was completed successfully in all cases. No malignant arrhyth-
mias occurred during or immediately after IP delivery.

A significant decrease in cTnI levels was seen in the three study groups after therapy
administration (CON: p = 0.008; CDCs: p = 0.008; APA-CDCs: p = 0.016; Wilcoxon paired
sample test) (Table 1). Nevertheless, no statistically significant differences were observed
among groups in this parameter (N.S., Kruskal-Wallis). The results of the biochemical
analysis at 24 h post-treatment are presented in Table S1.

During the 10-week follow-up period, no signs of infection, bleeding, pain or peri-
carditis were detected in any pig.

3.3. MRI Studies

The cardiac function parameters are shown in Table 2. One animal belonging to the
CDC group exhibited a LVEF of 45% and an IS of 14% in the first MRI study and was
therefore excluded from the calculations (CON: n = 10; CDCs: n = 9, APA-CDCs: n = 9). No
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statistically significant differences were observed among groups before IP administration
(N.S., Kruskal-Wallis).

Table 2. MRI-derived cardiac function parameters measured before (pre) and 10 weeks after IP treatment, as well as
treatment effects.

Groups CON CDCs APA-CDCs

Pre 10 Weeks Treatment
Effect Pre 10 Weeks Treatment

Effect Pre 10 Weeks Treatment
Effect

LVEF (%) 27 ± 3 29 ± 7 * 2 ± 7 28 ± 5 32 ± 8 3 ± 9 32 ± 7 38 ± 6 * 5 ± 5
IS (%) 26 ± 7 a 12 ± 3 a −13 ± 6 21 ± 4 a 10 ± 4 a −11 ± 6 20 ± 5 a 11 ± 3 a −9 ± 4

EDVi (mL/m2) 93 ± 16 99 ± 19 6 ± 24 84 ± 9 89 ± 20 5 ± 21 87 ± 10 94 ± 17 8 ± 10
ESVi (mL/m2) 68 ± 12 71 ± 19 3 ± 21 60 ± 8 62 ± 21 2 ± 21 59 ± 11 59 ± 14 2 ± 8

Data are presented as means ± standard deviation. LVEF: left ventricular ejection fraction. IS: Percentage of infarct area of the left ventricle.
EDVi: Indexed end diastolic volume. ESVi: Indexed end systolic volume. Differences within groups are denoted by a p < 0.05 and those
among groups by * p < 0.05.

The post-treatment CMR examination could not be accomplished in two swine: one
pig from the CON group that died during MRI acquisition and another one from the APA-
CDC group that presented excessive arrhythmias (CON: n = 9; CDCs: n = 9, APA-CDCs:
n = 8).

LVEF increased over time in all groups, slightly more so in treated groups, although
the differences were not statistically significant (N.S., Kruskal-Wallis). Treatment effects
(magnitude of change over time) on LVEF revealed no significant differences among groups
(N.S., Kruskal-Wallis) (Figure S1). Nevertheless, at 10 weeks, differences among groups
were significant for this parameter (p = 0.036, Kruskal-Wallis), owing to the LVEF being
significantly higher in the APA-CDC group than in the CON group (p = 0.007; Mann-
Whitney U test) (Figure 3).
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by a p < 0.05 and those among groups by * p < 0.05.

IS decreased significantly over time in the three study groups (CON and CDCs:
p = 0.004; APA-CDCs: p = 0.008; Wilcoxon paired sample test). At the end of the study,
however, the differences among groups were not significant (N.S., Kruskal-Wallis). No
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significant differences were observed in the treatment effects on IS (N.S., Kruskal-Wallis)
(Figure S1).

EDVi increased over time in all groups, without reaching statistical significance
among them (N.S., Wilcoxon). ESVi increased slightly in the CON and CDC groups
(N.S., Wilcoxon), while it remained stable in the APA-CDC group (N.S., Wilcoxon paired
sample test). No significant differences among groups were observed regarding ventricular
volumes at 10 weeks post-IP administration (N.S., Kruskal-Wallis). Similarly, treatment
effects on EDVi and ESVi showed no significant differences among the CON, CDC and
APA-CDC groups (N.S., Kruskal-Wallis) (Figure S1).

3.4. End of Study and Post-Mortem Examinations

PES from the left and right ventricles induced ventricular tachycardia in one animal
belonging to each group. No significant differences in arrhythmia inducibility among
groups (N.S., χ2) were seen.

After euthanasia, no pericardial adhesions or treatment-related changes were detected
during necropsy and heart explantation.

TTC staining revealed transmural fibrous scars with a similar size and site in all
animals (Figure 4a). H/E and MT staining of the healthy myocardium showed no alter-
ations, while analysis of the infarct (Figure 4b,c) and border areas revealed lesions such as
myocardial necrosis and vascular proliferation, along with extensive myocardial fibrosis in
all cases, which presented a lower degree of severity in samples belonging to the border
zones. No evident anatomopathological differences among the CON, CDC and APA-CDC
groups were therefore observed.
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4. Discussion

In this blinded, randomized preclinical study, we aimed to evaluate the therapeutic
effect of an IP administration of free vs. microencapsulated CDCs. At 10 weeks, we
demonstrated an improvement in cardiac function, reflected by a statistically significantly
higher LVEF after IP administration of microencapsulated CDCs compared with the control
group.

In recent years, heart-derived cells, especially CDCs, have been recognized as an
effective cell type for the treatment of ischaemic heart disease [24]. Several preclinical
and clinical studies have demonstrated the beneficial effects of these cells in the field of
regenerative cardiology [23].

Important limitations of stem cell therapy, however, are poor engraftment and viability
rates [25,26]. Early after AMI, a highly adverse inflammatory microenvironment is found,
which inhibits the survival of cells transplanted into the myocardium [27]. Although the
optimal timepoint of cell delivery has not been determined to date, some previous studies
have suggested that optimal cell nesting and survival occurs in the period between Days 3
and 7 post-AMI [28]. Accordingly, in the present study, CDC administration was carried
out at 72 h after infarct induction, when an equilibrium between the factors that facilitate
and those that hinder cell survival and homing could have been reached [28].

Microencapsulation is a further strategy to increase cell retention and survival, which
facilitates allogeneic cell transplantation, since it protects the cells from the host immune
reaction [29].

Microcapsules act as a semi-permeable barrier that allows proteins, molecules and
other nutrients to diffuse inside the capsules and enable the cells to secrete growth factors
and other therapeutic products [25,29,30] that could favour tissue regeneration.

Among the different materials used as building units of microcapsules, APA has been
studied the most and is commonly used in microencapsulation. Alginate presents good
biocompatibility and low toxicity [31]. The second alginate coating that is used in APA
microcapsules reduces immunological reaction after cell implantation [30].

Regarding CDC encapsulation, the recent characterization of these encapsulated cells
carried out by our research group demonstrated that APA encapsulation does not alter cell
features, keeping long viability (reaching its maximum at Day 21) and growth factor release.
The sustained release of growth factors (VEGF, TGF-β1, MSP and IGF-1) from encapsulated
CDCs suggests that the therapy with CDC-loaded APA microcapsules could promote
angiogenesis and regeneration of the infarcted tissue via the paracrine mechanism [30].

Furthermore, the increased expression of CD117 (related to apoptosis regulation,
cell differentiation, proliferation, chemotaxis, cell adhesion and stemness) indicated that
encapsulated CDCs could differentiate into more mature cardiac progenitor cells, acquiring
the phenotype of cardiac progenitor mast cells, while the decreased expression of Nanog in
encapsulated CDCs indicated a lower risk of teratoma formation after transplantation. The
higher expression of Hgfl suggested that these encapsulated CDCs are a putative tool for
cardiac regeneration, since Hgfl has been related to increased migration, engraftment and
commitment in resident cardiac stem cells [30].

In our study, however, histopathological analysis revealed no evident differences
among groups neither in the infarct nor in the border areas regarding the presence of
necrosis and fibrosis. Similarly, TTC staining revealed infarcts with a similar extent in the
three study groups.

Despite the absence of significant differences in macro- and microscopic examinations
of the myocardium after euthanasia, a significant enhancement in cardiac function was
detected by MRI in animals treated with APA microcapsules containing CDCs at the 10-
week timepoint. While LVEF increased over time in the three study groups, this parameter
was significantly higher in the APA-CDC group compared with the CON group at the end
of the study, suggesting that APA microcapsules represent promising stem cell therapy
carriers. A certain degree of progressive recovery of LVEF during the healing process
of an AMI (even in untreated subjects) has been identified in earlier studies [32,33] and
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could most likely be attributed to reversible myocardial dysfunction, known as myocardial
stunning [34].

Although LVEF is the most relevant criterion for determining heart function [35,36],
other CMR-derived parameters, such as IS and ventricular volumes, have also been proposed
as potential surrogate end-points [37].

Regarding IS, in this experimental study, a reduction in the percentage of infarcted
myocardium was observed over time, reaching statistical significance in all groups. To
our knowledge, the apparent decrease in IS in all study groups, including CON, could be
attributed to the dynamic changes that take place in the infarcted myocardium. Early after
MI (in our case, before treatment, which was performed 72 h after infarct induction), the
presence of oedema can cause an overestimation of IS. This swelling, however, decreases
rapidly, resulting in a reduction in the size of infarcted myocardium, even in subjects that
were not treated [24,38–41].

In the present study, the reduction in IS was more remarkable in the CON group, as can
be observed in the treatment effect results: −13 ± 6% versus −11 ± 6% in the CDC group
versus −9 ± 4% in the APA-CDC group. We believe that this decrease could be explained
by a higher degree of LV wall thinning due to adverse ventricular remodelling in the CON
group, which causes an augmented loss of cardiomyocytes, destruction of the extracellular
matrix of the necrotic area and its replacement by a thin fibrotic scar [42,43], resulting in a
lower percentage of infarcted myocardium calculated in the CMR images. In contrast, in
the treated groups, the lower percentage of decrease could indicate a protective effect on
ventricular remodelling, especially in the APA-CDC group. Nevertheless, further studies,
including data on cardiomyocytes, fibrosis or immune cell infiltration or the immune
response, will be necessary to validate this point.

Concerning ventricular volumes, increases in EDV and decreases in ESV are common
findings after AMI. In this experimental study, EDVi increased in the three groups over
time. ESVi increased slightly in the CON and CDC groups over the 10-week period, while
it remained stable in the APA-CDC group. According to the literature, these changes
in ventricular volume could be attributed to a compensatory hypertrophy of the remote
myocardium in order to preserve stroke volume and LVEF [38].

In the present experimental study, we carried out PES in order to identify the risk of
developing ventricular arrhythmias due to IP therapy with free or encapsulated CDCs. It
has to be taken into account that patients eligible for cell therapy are prone to developing
arrhythmias due to their underlying ischaemic heart disease. On the other hand, the
potential intrinsic arrhythmogenicity of the delivered stem cells cannot be excluded [44].
In fact, the occurrence of arrhythmias after stem cell therapy is a major concern of the
scientific community [44,45]. Different mechanisms, such as immaturity of the electrical
phenotypes of the transplanted phenotypes, poor cell–cell coupling and cardiac nerve
sprouting, have been proposed as contributors to arrhythmogenic risk after stem cell
administration [45]. Despite the proarrhythmic effects that have been attributed to stem
cell therapy [46], antiarrhythmic properties have also been reported after mesenchymal
stem cell or CDC delivery [47]. In our investigation, however, no statistically significant
differences in VT inducibility rates were detected between CON and CDCs-treated animals
(both free and encapsulated). Hence, neither pro- nor antiarrhythmic effects related to the
therapy could be confirmed in this experimental setting.

Apart from the cell type used, the route of administration seems to further account
for the varied results [46]. Certain cell delivery methods have been reported to carry a
higher rate of arrhythmias [48]. Thus, intramyocardial injection has been reported to cause
enough inflammatory tissue damage and to further increase ventricular irritability [44].
The intrapericardial route, however, seems to provide an alternative approach with less
potential for arrhythmias [49].

With regard to IP delivery, additional advantages over other delivery routes, such as
homogeneous cell distribution, increased local therapy concentration and limited systemic
exposure, have been reported [19,20]. Previous studies by our group demonstrated that the
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IP approach was safe and feasible for MSCs, CDCs and EVs from CDCs in a chronic and an
acute porcine myocardial infarction model [18,23,50]. Additionally, we demonstrated that
the intrapericardial administration of EVs from CDCs triggered a M2 polarization during
the acute phase of myocardial infarction [49]. Finally, as a further safety evaluation, we
demonstrated the absence of changes in proinflammatory cytokines (TFN-α, IL-1β and
IFN-α) after intrapericardial CDC administration in the same porcine model, indicating the
high safety profile of the therapy [ 50]. Although a cytokine analysis of APA-CDCs was not
carried out in either the previous or in the present study, a low immunological response
after its administration could be assumed, since alginate-poly-L-lysine-alginate has been
reported to reduce immunological reactions after cell implantation [30]. Accordingly, as
expected, in this study, we injected 30 × 106 CDCs/animal in the absence of adverse events.
Similarly, the IP administration of encapsulated CDCs was uneventful in all cases.

The porcine AMI model is the most attractive one for preclinical studies of myocardial
regeneration. However, it is not exempt from certain limitations [24]. Although we carried
out comparisons among the CON, CDCs and APA-CDCs groups, an additional group of
animals comprising empty APA microcapsules would have been useful for clarifying if
APA-CDCs could be able to improve functional results.

It would have been of great interest to explore how well CDCs are incorporated into
the myocardial tissues after intrapericardial administration. However, this was not defined
in this experimental study and therefore has to be mentioned as a further limitation.

In conclusion, the IP injection of CDCs (microencapsulated or not) is feasible and safe
at 72 h post-AMI in the porcine model, as demonstrated by the absence of procedure-related
complications. Moreover, CDC encapsulation in APA seems to have a beneficial effect on
cardiac function, reflected by a statistically significantly higher LVEF at 10 weeks compared
with the CON group, which was, however, not accompanied by a favourable outcome in
infarct size reduction. Although no significant histopathological differences among groups
were observed, the excellent safety profile, together with the improved cardiac function,
could be clinically relevant.
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