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Abstract: The homodimers of transiently chiral molecules offer physical insight into the process of
molecular recognition, the preference for homo or heterochiral aggregation and the nature of the
non-covalent interactions stabilizing the adducts. We report the observation of the benzyl mercaptan
dimer in the isolation conditions of a supersonic jet expansion, using broadband (chirped-pulse)
microwave spectroscopy. A single homochiral isomer was observed for the dimer, stabilized by
a cooperative sequence of S-H···S and S-H···π hydrogen bonds. The structural data, stabilization
energies and energy decomposition describe these non-covalent interactions as weak and dispersion-
controlled. A comparison is also provided with the benzyl alcohol dimer.

Keywords: chiral recognition; transient chirality; non-covalent interactions; sulfur hydrogen bonding;
rotational spectroscopy; jet spectroscopy

1. Introduction

Molecular recognition is a subtle chemical process involving a combination of inter-
molecular interactions and intramolecular factors, largely dependent on the composition
of the host and guest molecules. The consequences of molecular recognition, extending to
large-scale chemical phenomena like supramolecular [1] and technological applications [2],
justify the molecular investigation of the electronic and stereochemical features of the
recognition process using high-resolution spectroscopy [3] and quantum mechanical meth-
ods [4,5]. In this context, the preparation of mass-selected intermolecular adducts in the gas
phase is a well-known procedure for isolation and observation of specific weak interactions
between target chemical groups, which otherwise would be blurred in the condensed
media. This approach, when combined with rationalizing theoretical calculations has led,
in the last decade, to an explosion of new weak intermolecular interactions previously
unnoticed [6,7].

Molecular recognition is especially interesting between chiral species, as it may pro-
vide insight into biochemical docking, asymmetric synthesis, and chiral analysis. Among
chiral molecules, those with very low (5–10 kJ mol−1) torsional stereomutation barriers
display transient chirality. Transient enantiomers interconvert in nanosecond time scales
that would be undetectable with conventional techniques. However, transient chirality can
be revealed by the formation of diastereomeric dimers in the gas phase, simultaneously
freezing stereomutation and providing information on the structural and energetic factors
controlling homo- or heterochiral aggregation [8,9]. The process of chirality synchroniza-
tion was first observed with electronic and vibrational spectroscopy [10–12], but these
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techniques require computational support for spectral interpretation. Alternatively, rota-
tional spectroscopy [7,13] offers an unequivocal structural identification that complements
molecular orbital calculations and may contribute to validating the computational models,
which in turn are critical for the determination of the weak chirodiastaltic energies [14–16]
between homo- and heterochiral aggregates.

Rotational experiments on homodimer synchronization have been mostly restricted to
alcohols (ethanol [17,18], 2-propanol [19], 2-butanol [20], glycidol [21], cyclohexanol [22])
and fluoroalcohols (2-fluoroethanol [23], trifluoroethanol [24], hexafluoroisopropanol [25]),
which benefit of the moderately strong O-H···O hydrogen bonds. Conversely, molecular
studies of thiol aggregation are much scarcer [5] (pp. 15–45). The experiments available
have mostly probed thiols as proton acceptors, in particular in O-H···S [26–31], N-H···S [32]
and C-H···S [33,34] hydrogen bonds. Thiol dimerization studies particularly contribute
to the description of thiol as proton donors in S-H···S [35–37] and other weak sulfur
interactions (S-H···O [38], S-H···π [39], etc.), far less investigated [40,41] and consequently
needed of molecular studies.

In this work, we selected benzyl mercaptan as a dimerization target. Benzyl mercaptan
represents an extension of our previous investigation on thiophenol dimerization [36] and
will establish if the two rings maintain the π-stacking thiophenol arrangement or tilted
geometries similar to the benzyl alcohol dimer [42], recently revisited [43]. Additionally, it
will discern whether the homochiral aggregation of benzyl alcohol is respected in the mer-
captan and the structural and physical differences in the S-H···S hydrogen bond compared
to the canonical O-H···O hydrogen bond.

2. Materials and Methods

The sample of benzyl mercaptan (>96%, bp 195 ◦C) was obtained commercially and
required no further purification. The sample was vaporized inside the heating reservoir
(45–55 ◦C) of a pulsed solenoid injector and expanded near adiabatically through a 0.8 mm
nozzle to form a supersonic jet within an expansion chamber. Neon at stagnation pressures
of 0.2 MPa was used as the carrier gas, with typical molecular pulses of 800–900 µs. The
expanding jet was probed in the 2–8 GHz cm-wave region with a direct-digital chirped-
pulse Fourier transform microwave (CP-FTMW) spectrometer, following Pate’s design [44].
The operation sequence is based on short (4 µs, 20 W) chirped pulses, which are broadcasted
perpendicularly to the jet. The MW radiation produces a fast-passage broadband transient
excitation [45,46], simultaneously covering the full spectral bandwidth. Following the
excitation, the molecular ensemble emits a free-induction decay, which is detected in the
time-domain (ca. 40 µs) and acquired using a (25 GSamples/s) digital oscilloscope. A
Fourier transformation with a Kaiser–Bessel window results in FWHM linewidths of ca.
100 kHz. In this experiment, ca. 1 M averages were acquired at a repetition rate of 5 Hz.
The uncertainty of the frequency measurements was estimated below 20 kHz.

Several computational calculations complemented the experimental study. Follow-
ing an initial conformational screening with molecular mechanics (MMFFs [47]), all fur-
ther calculations used density-functional theory (DFT) molecular orbital calculations.
Two density-functional methods were selected here, including B3LYP [48] and the double
hybrid B2PLYP [49] method, in combination with Ahlrichs’ polarized triple-zeta basis
def2-TZVP [50]. Both methods were supplemented with D3 [51] dispersion corrections and
Becke–Johnson damping [52]. Frequency calculations were performed at the same level of
theory, using the harmonic approximation. The calculation of complexation energies con-
sidered the basis set superposition errors (BSSE) with the counterpoise approximation [53].
All DFT calculations were conducted with Gaussian 16 [54]. The physical contributions
to the binding potential of the water clusters were estimated by energy decomposition
analysis using second-order symmetry adapted perturbation theory [53,55] (SAPT), imple-
mented in PSI4 [56]. Finally, the presence of non-covalent interactions was analyzed with
the NCIPlot methodology, based on a reduced gradient of the electronic density [57].
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3. Results
3.1. Benzyl Mercaptan Monomer

Benzyl mercaptan displays a bidimensional potential energy surface, qualitatively
similar to benzyl alcohol [58]. The two torsional degrees of freedom are associated with
the elevation and orientation of the terminal thiol group, given by dihedrals τ1(SCα-
CipsoCortho) and τ2(HS-CαCipso). Our previous rotational investigation [59] of benzyl
mercaptan confirmed that the monomer presents a single isomer in the gas phase, as
in the alcohol. In this conformation the sulfur atom is synclinal to the ring plane (τ1~
±74◦ vs. ±55◦ in benzyl alcohol) and the thiol hydrogen is synchronously oriented to-
wards the π ring (τ2~ ±74◦ vs. ±53◦ in benzyl alcohol), denoted gauche-gauche or GG
(Tables S1 and S2, Supporting Information, SI). The global minimum is four-fold degener-
ate, as the thiol group may tunnel between symmetry equivalent conformations either by
reflection on the ring plane or in a perpendicular plane bisecting the phenyl ring through
carbons Cipso and Cpara. Inversion through the perpendicular plane creates a detectable
barrier (B2 = 248 cm−1 = 2.97 kJ mol−1), which produces characteristic tunneling dou-
blings in the rotational spectrum of Figure S1 (SI) [59], strongly perturbed by Coriolis
interactions [60]. The inversion barrier in benzyl mercaptan is ca. 11% lower than in the
alcohol (B2 = 280 cm−1 = 3.35 kJ mol−1). The molecule thus changes chirality by invert-
ing between the two gauche-gauche enantiomers GG and G′G′ of Figure 1 (primes denote
negative dihedrals).
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Figure 1. The most stable GG conformer of benzyl mercaptan and its enantiomer G′G′.

3.2. Benzyl Mercaptan Homodimer

For benzyl mercaptan the dimerization from a single gauche-gauche conformation may
in principle produce only homochiral (GG-GG = G′G′-G′G′) or heterochiral (GG-G′G′

= G′G′-GG) diastereoisomers (proton donor denoted first). The most stable isomers are
expected to balance several intermolecular interactions, mainly involving the S-H and
C-H groups as proton donors and the sulfur lone pairs and π electrons as acceptors. How-
ever, the two diastereotopic acceptor lone pairs (Lp+/−) and the multiple possibilities
for interaction between the polar thiol groups and the two ring molecules are expected to
produce multiple isomers. The results of a DFT (B3LYP-D3(BJ)) conformational search are
summarized in Table S3 and Figure S2 (SI), suggesting 11 isomers within complexation
energies below 10 kJ mol−1. The five most stable isomers are compared to the benzyl
alcohol dimer [42] in Figure 2. The two most stable dimers 1 (= GG-GG-Lp−) and 2
(= GG-GG-Lp+) are homochiral and controlled by the two thiol groups (3D Figure S3, SI),
which engage in two successive S-H···S and S-H···π interactions. The two rings adopt tilted
(C1) unsymmetric orientations to permit further interaction via C(sp2)-H···π weak hydro-
gen bonds, with the alternative use of the two sulfur lone-pairs at the acceptor molecule
producing two different ring orientations Lp+ and Lp− (Figure S4, SI), well separated in
energy (∆EZPE = 1.9 kJ mol−1, ∆Ec = 3.1 kJ mol−1). The third isomer (=G′G′-GG-Lp−) is
the heterochiral equivalent to isomer 1 (Figure S5, SI), predicted at ∆EZPE = 3.3 kJ mol−1

(∆Ec = 4.6 kJ mol−1) The fourth (=GG-GG-ππ) and fifth (=GG-GG-π) isomers reveal dif-
ferent homochiral S-H···π interactions, either alone or combined with a C(sp3)-H···π link,
which is destabilized ca. 4–5 kJ mol−1 with respect to the thiol S-H···S hydrogen bonding.
Isomer GG-GG-ππ uses two identical S-H···π interactions to produce the lowest-lying C2-
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symmetric dimer, characterized by two tilted rings which avoid π-stacking (Figure S6, SI).
Only for the higher energy isomers (>10 kJ mol−1) near-parallel π···π or C-H···π interac-
tions are predicted, as in the (C2) homochiral isomer 9 (=GG-GG) and the (Ci) heterochiral
isomer 11 (=GG-G′G′). The preference for C2-symmetric heterochiral S-H···π dimers ob-
served in the crystallographic structure [61] must thus be attributed to matrix effects and
does not represent the isolated molecule nor the dimer. The three most stable isomers of
the benzyl mercaptan dimer were reoptimized at B2PLYP-D3(BJ) level in Table 1, offering a
prediction of the rotational parameters.
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Table 1. Rotational parameters of the benzyl mercaptan dimer.

Experiment Theory f

Isomer 1 2 3

(GG-GG-Lp−) (GG-GG-Lp+) (GG-G′G′-Lp+)

A/MHz a 490.79216(17) e 496.24 538.12 509.23
B/MHz 344.12732(12) 352.51 328.24 338.05
C/MHz 317.21115(11) 324.58 299.94 319.40
DJ/kHz 0.03861(51) 0.0326 0.0596 0.0507

DJK/kHz 0.0642(18) 0.0608 −0.0984 −0.0040
DK/kHz −0.0718(20) −0.0675 0.1748 0.0420
d1/kHz −0.00375(33) −0.0026 −0.0004 −0.0031
d2/kHz 0.00089(13) 0.0008 −0.0005 0.0008
|µa|/D ++ 1.6 0.4 1.0
|µb|/D ++ 1.7 1.3 1.6
|µc|/D ++ 1.4 0.8 0.7

HBond donor b

HS-CαCβ/deg −41.3 −50.6 42.8
SCα-CβC1/deg −56.6 −70.0 63.3
HBond acceptor
HS-CαCβ/deg −54.1 −46.3 −45.8
SCα-CβC1/deg −65.7 −56.1 −68.9

r(S···H)/Å 2.748 2.941 2.803
∠(S-H···S)/deg 162.9 137.5 158.6

r(S-H···centroid)/Å 2.515 2.398 2.553
∆EZPE/kJ mol−1 c 0.0 1.7 3.4

∆G/kJ mol−1 0.4 0.0 1.4
Ec/kJ mol−1 −35.6 −33.1 −31.3

∆Ec/kJ mol−1 0.0 2.6 4.3
N d 337

σ/kHz 8.5
a Rotational constants (A, B, C), Watson’s S-reduction centrifugal distortion constants (DJ, DJK, DK, d1, d2) and
electric dipole moments (µα, α = a, b, c). b Structural parameters of the dimer. c Relative electronic energies (∆E)
with zero-point correction, Gibbs energy (∆G, 298K, 1 atm), complexation energies (Ec) and relative complexation
energies (∆Ec). d Number of transitions (N) and rms deviation (σ) of the fit. e Standard errors in units of the last
digit. f B2PLYP-D3(BJ)/def2-TZVP.

The jet-cooled microwave spectrum of Figure S1 provided experimental evidence
on the nature of the dimerization adduct. Figure 3 shows a spectral section with typical
rotational transitions. Noticeably, a single isomer was observed for the dimer of benzyl
mercaptan. The spectrum was quite dense and more than 300 rotational transitions were
measured experimentally, with all three (µa, µb, µc) selection rules active. The wide range
of angular momentum quantum numbers (J = 3–15 and K−1 < 12) and the diversity of
R-branch (J + 1←J) and some Q-branch (J←J) transitions assured a good determination
of the rotational parameters. There was no indication of tunneling effects in the spectra,
which were reproduced satisfactorily with a Watson’s (S-reduced) semirigid rotor Hamilto-
nian [62] and quartic centrifugal distortion terms. The experimental rotational parameters
are compared with B2PLYP-D3(BJ) theoretical predictions in Table 1, with the full listing
of observed transitions in Table S4 (SI). Since several low-lying isomers were predicted at
small relative energies (<3–5 kJ mol−1), the observation of a single dimer species cannot
be uniquely attributed to a pre-expansion thermal depopulation and probably suggests a
conformational relaxation through low interconversion barriers, previously observed in jet
experiments [63,64] and kinetically affecting the jet populations [65].

The identification of the benzyl mercaptan dimer was unequivocal. We confirmed
the detection of the predicted global minimum, identified as the homochiral GG-GG-Lp−.
The predictions for the equilibrium rotational constants slightly exceed the experimental
ground-state values by 6–8 MHz, but the relative differences are below 1.6–2.8%, ensuring
a positive identification. The agreement of the (harmonic) centrifugal distortion constants
with the experiment values is consistent with the conformational assignment.
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3.3. Non-Covalent Interactions

The intermolecular interactions associated to the benzyl mercaptan dimerization
were explored using structural, energetic, and electronic density information. Unlike the
parallel-displaced hydrogen-bonded dimer of thiophenol [36], the aggregation of benzyl
mercaptan follows a pattern of non-stacked cooperative hydrogen bonding. A primary S-
H···S hydrogen bond is formed in which the thiol acts as a proton donor to a second sulfur
atom, followed by a secondary S-H···π hydrogen bond to the opposed π ring. Weak C-H···π
or C-H···S hydrogen bonds are minor necessary contributors to the most stable isomers. The
benzyl mercaptan dimers exhibit characteristically long S-H···S hydrogen bonds (B2PLYP:
r(S-H···S) = 2.75 Å), relatively close to linearity (B2PLYP: ∠(S-H···S) = 163◦). These values
compare satisfactorily with the few rotational studies of thiol-thiol hydrogen bonding
in the dimers of thiophenol [36] (B2PLYP: r(S-H···S) = 2.84 Å, ∠(S-H···S) = 135◦) and
hydrogen sulfide [35] (experiment: r(S-H···S) = 2.778(9) Å; B2PLYP: r(S-H···S) = 2.79 Å,
∠(S-H···S) = 172◦). Crystallographic surveys of cysteine-methionine contacts have yielded
shorter average values of r(S-H···S) = 2.55(47) Å [66] and r(S-H···S) = 2.5–2.7 Å [37]. The
secondary hydrogen bond interactions between the thiol group and the π ring in Table 1
show distances to the ring centroid of r(S-H···centroid) = 2.52 Å (B2PLYP).

Binding energies are collected in Tables 1 and 2, comparing B2PLYP (with BSSE cor-
rections) and a second-order 2+(3) symmetry-adapted perturbation theory (SAPT) energy
decomposition (at the optimized geometries of B3LYP-D3(BJ)/def2-TZVP). Not unexpect-
edly, the predicted binding energy of the benzyl mercaptan dimer (SAPT: −35.3 kJ mol−1)
is larger than in thiophenol (−25.9 to −27 kJ mol−1) [36] but remains ca. 84% smaller
than in the benzyl alcohol dimer (−42.1 kJ mol−1) [43], reflecting the weaker thiol H-bond.
Additional insight into the nature of the thiol hydrogen bond is obtained from the attractive
contributions to the energy decomposition [67,68]. The largest attractive contributor in
the benzyl mercaptan dimer is dispersive (54%) but in smaller proportion than in the
thiophenol dimer (60%) and with larger electrostatic participation (34% vs. 29–31% in
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thiophenol). This result reverts the calculation for the benzyl alcohol dimer, where the elec-
trostatic component (45%) is larger but nearly matched by dispersion (41%). A comparison
with the dispersive pyridine-methane dimer and the water and hydrogen sulfide dimers
is also given in Table 2. Similar trends of decreasing strength and dispersion have been
observed in other thiol clusters and monohydrates [30,31]. To our knowledge, there are
no comparable experimental binding energies involving thiol dimers except for hydrogen
sulfide clusters [26,27].

Non-covalent interactions can also be analyzed using the topological properties
of the electron density (ρ(r)) with the NCIPlot method [57]. Figure 4 represents a re-

duced electronic density gradient s
(
= 1

2(3π2)
1/3
|∇ρ|
ρ4/3

)
versus the signed electronic density

(sign (λ2) ρ) using the second eigenvalue (λ2) of the electron density Hessian, compar-
ing the global minimum of the benzyl mercaptan and benzyl alcohol dimers (B3LYP-
D3(BJ)/def2-TZVP geometries). This representation qualitatively identifies the stronger
O-H···O hydrogen bond interactions in the alcohol (at more negative abscissas), simulta-
neously providing a 3D visualization of the most relevant interaction surfaces. The 3D
plot clearly identifies the S-H···S hydrogen bond and broad interaction regions between
the two rings mainly associated with the S-H···π contact. The reduced electronic density
calculations thus confirm the cooperative scheme of intermolecular interactions present in
the benzyl mercaptan dimer, complementing the structural and energetic descriptions in
Tables 1 and 2.
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Figure 4. NCI plot (left panel) and reduced electronic density gradient (right panel) for the observed dimer of benzyl
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The reduced electronic density shows the attractive (negative minima) and repulsive (positive minima) interactions in the
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Table 2. Binding energy decomposition for the dimer of benzyl mercaptan, and comparison with
several thiol and alcohol dimers and the van der Waals pyridine-methane dimer. The interaction
energy is decomposed into electrostatic (∆Eelec), inductive (multipole interactions/charge transfer,
∆Eind), exchange repulsion (∆Eexch) and dispersion (∆Edisp) energy terms, using SAPT(2)+3/aug-cc-
pVDZ//B3LYP-D3(BJ)/def2-TZVP (all values in kJ mol−1).

Cluster ∆Eelect ∆Edisp ∆Eind ∆Eexch ∆Etotal ∆ES22
i

(Benzyl mercaptan)2
a −39.3[34.4%] h −61.1[53.6%] −13.6[12.0%] 78.7 −35.3

(Thiophenol)2
PD1-trans b −24.9[31.0%] −47.9[59.5%] −7.7[9.5%] 54.6 −25.9

(Thiophenol)2 PD2-cis −26.0[29.4%] −53.8[60.9%] −8.4[9.6%] 61.3 −27.0
(H2S)2

c −12.1[49.0%] −7.8[31.7%] −4.7[19.3%] 19.2 −5.4
(Benzyl alcohol)2

d −58.7[44.5%] −54.6[41.4%] −18.6[14.1%] 89.8 −42.1
(Phenol)2

e −41.8[48.3%] −28.8[33.3%] −15.9[18.4%] 58.9 −27.6 −29.5
(H2O)2

f −35.7[63.5%] −9.5[16.8%] −11.1[19.8%] 37.7 −18.6 −21.0
Pyridine-methane g −3.0[20.6%] −10.9[74.6%] −0.7[4.8%] 9.4 −5.2

a This work. b Ref. [36] c Ref. [35]. d Ref. [43]. e Seifert, N.A.; Steber, A.L.; Neill, J.L.; Pérez, C.; Zaleski, D.P.; Pate,
B.H.; Lesarri, A. Phys. Chem. Chem. Phys. 2013, 15, 11468–11477. f Mukhopadhyay, A.; Cole, W.T.S.; Saykally,
R.J. Chem. Phys. Lett. 2015, 633, 13–26. g Gou, Q.; Spada, L.; Vallejo-López, M.; Lesarri, A.; Cocinero, E.J.;
Caminati, W. Phys. Chem. Chem. Phys. 2014, 16, 13041–13046. h Relative contribution to the attractive interactions
(∆Eelect + ∆Edisp + ∆Eind). i Jurečka, P.; Šponer, J.; Černý, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985–1993.

4. Discussion

The benzyl mercaptan dimer is a model cluster with a primary amphoteric thiol
group and a combination of aliphatic proton donors and a π ring acceptor. The methylene
pivot between the thiol and the aromatic ring permits some conformational flexibility
and a variety of intermolecular forces, generally balancing two cooperative interactions.
The rotational spectrum confirmed a single isomer in the gas phase, providing data for
comparison between experiment and theory. The observed global minimum (GG-GG-
Lp−) is homochiral and characterized by a leading thiol-thiol (S-H···S) hydrogen bond, in
cooperation with a secondary thiol-aromatic (S-H···π) hydrogen bond. Characteristically,
this interaction pattern and stereochemistry is coincident with the most stable (hom-Ogπ-
I) benzyl alcohol dimer, stabilized by stronger O-H···O and O-H···π alcohol hydrogen
bonds [42,43]. In consequence, the expected reduction in hydrogen bond strength of the
thiol group does not affect the conformational equilibrium observed in the alcohol, and the
π ring acceptor maintains its secondary role in both dimers. The smaller, more rigid phenol
and thiophenol dimers, also observed in the gas phase [36,69], similarly depend on the S-
H···S or O-H···O hydrogen bonds but adopt different hinged or stacked orientations which
reflect a different balance with the ring interactions. Since the number of experimental
observations is limited additional thiol-alcohol comparisons are presently possible only
for a few other aromatic dimers like 2-phenylethanethiol [29,70], also showing similar
thiol-thiol interactions in the global minimum.

The second isomer of the mercaptan dimer (GG-GG-Lp+), separated 1.7 kJ mol−1

(B2PLYP)–1.8 kJ mol−1 (B3LYP), differs in the use of a different sulfur lone-pair in the
acceptor molecule but maintains its homochiral character. The equivalent isomer in the
alcohol (hom-Otπ-V: 3.2 kJ mol−1) is much higher in energy. Consequently, the benzyl
mercaptan dimer shows a reinforced preference for homochirality compared to the alcohol,
where the heterochiral isomer (het-Ogπ-II) is nearly isoenergetic (0.2 kJ mol−1) with the
(hom-Ogπ-I) global minimum. Conversely, in the benzyl mercaptan dimer the heterochiral
isomer (G′G′-GG-Lp− ≡ het-Ogπ-II) is third in energy and more separated ((B2PLYP:
3.4 kJ mol−1; B3LYP: 3.3 kJ mol−1) from the homochiral partner.

The fourth and fifth isomers of the benzyl mercaptan dimer do not show thiol-thiol
hydrogen bonds, which are replaced by separate thiol interactions with different proton
acceptors. These isomers introduce the discussion on the strength of the thiol or alcohol
groups as proton acceptors in presence of competing groups, which has been mostly studied
for alcohol dimers with two acceptor groups. In those cases, the observed alcohol-alcohol
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hydrogen bonding of (benzyl alcohol)2 is confirmed with related aromatic acceptors, as in
(indanol)2 [71] or (propargyl alcohol)2 [72]. However, ethers [21,73], carbonyl groups [74],
or carboxylic acids [75] show preference as primary proton acceptors, more intense in
amino [76] or cyano [77] groups. Additionally, when the two thiol/alcohol groups bind
separately to secondary acceptors both homo and heterochiral symmetric geometries be-
come possible. In the benzyl mercaptan dimer, the fourth isomer (GG-GG-ππ, 4.4 kJ mol−1)
shows a homochiral C2 antiparallel geometry stabilized by two S-H···π hydrogen bonds,
higher in energy than the equivalent C2 benzyl alcohol dimer (homππ-IV, 2.0 kJ mol−1)
and reminiscent of the antiparallel aniline dimer [78]. However, the heterochiral Ci benzyl
alcohol dimer (hetππ-III, 1.6 kJ mol−1) does not appear among the preferred geometries of
the benzyl mercaptan dimer, where the fifth unsymmetric isomer (GG-GG-π, 4.6 kJ mol−1)
instead shows a combination of S-H···π and C-H···π interactions.

Differences in the physical forces operating in the benzyl mercaptan and alcohol
dimers are notorious in the topological analysis of the electronic density and the SAPT
energy decomposition of Table 2 and Figure 3. The weaker, dispersive character of the
thiol dimer, thus, contributes to a better description of non-covalent forces involving
low-electronegativity atoms.

Future advances in the understanding of intermolecular forces are expected to extend
to different chemical groups, incorporating a synergic combination of empirical data and
computational models. In this work, rotational spectroscopy has an increasingly important
role thanks to the development of chirped-pulsed broadband techniques.

5. Conclusions

The combination of rotational data and molecular orbital calculations constitutes a
very effective way of interrogating weak non-covalent interactions, simultaneously ex-
tending the knowledge base on intermolecular forces and the benchmark capacity of the
experiments. The availability of empirical data is expected to contribute to the develop-
ment of improved density-functional methods, which will be essential for the molecular
modelling of large chemical systems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/sym13112022/s1, Figure S1: Rotational spectrum of benzyl mercaptan in the 3–8 GHz
frequency region. The positive trace shows the experimental spectrum; the negative trace is the
simulation of fitted rotational constants of the monomer and the dimer (isomer 1, GG-GG-Lp−),
Figure S2: The most stable isomers of the benzyl mercaptan dimer, classified by their intermolecular
interactions and ordered by complexation energy (∆Ec, kJ/mol). Isomers in the dashed rectangle
exhibit a sulfur S-H···S hydrogen bond. The only symmetric isomers are 5 (C2), 9 (C2) and 11 (Ci),
Figure S3: A rotatable 3D figure of the two most stable isomers of the benzyl mercaptan dimer,
Figure S4: A comparison of the three asymmetric (C1) most stable isomers of the benzyl mercaptan
dimer. Isomers 1 (G′G′-G′G′-Lp+ = GG-GG-Lp−, left) and 2 (G′G′-G′G′-Lp− = GG-GG-Lp+, right),
are both homochiral but differ in the acceptor lone pair position of sulfur (the dihedral formed by the
lone pair or τ(LpS-CαCipso) have different signs for isomer 1 and isomer 2), producing a change of
relative orientation between the rings, Figure S5: A comparison of the three asymmetric (C1) most
stable isomers of the benzyl mercaptan dimer. Isomers 1 (G′G′-G′G′-Lp+ = GG-GG-Lp−, left) and
3 (GG-G′G′-Lp+ = G′G′-GG-Lp−, right) differ in the stereochemistry of the donor group, either
homochiral in isomer 1 or heterochiral in isomer 3, Figure S6: The most stable symmetric dimer
of benzyl mercaptan (isomer 5 GG-GG-ππ) has C2 symmetry but avoids the parallel arrangement
of the two phenyl rings, unlike in the symmetric benzyl alcohol dimer. The Figure shows the (a, b,
c) principal inertial axes, with a vector pointing in the C2 (≡b) symmetry axis direction, Figure S7:
A comparison of the NCI Plots for isomers 1 (G′G′-G′G′-Lp+ = GG-GG-Lp−, upper panel) and 2
(G′G′-G′G′-Lp− = GG-GG-Lp+, lower panel) of the benzyl mercaptan dimer, Table S1: Rotational
parameters of benzyl mercaptan, Table S2: Atomic coordinates of benzyl mercaptan gauche GG,
Table S3: Conformational search for the benzyl mercaptan dimer (B3LYP-D3(BJ)) and comparison
with the experimental rotational parameters, Table S4: List of observed rotational transitions of the
benzyl mercaptan dimer GG-GG-Lp− and (observed-calculated, o-c) residuals for the fit of Table 1
(all units in MHz).
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