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Laburpena

Monte Carlo simulazioa ordenagailu bidezko esperimentuetan datza. Pseudo-ausazko

laginketan oinarritzen da eta azpian dagoen ”egia”ren ezagutza da bere indargune

nagusia. Metodo estatistikoen propietateak aztertzea ahalbidetzen du, analitikoki

oso konplexua edo ezinezkoa den kasuetan ere. Azken hamarkadetan ahalmen kon-

putazionalean eman diren aurrerapenei esker, Monte Carlo simulazioak garrantzi

handia hartu du jakintza arlo askotan. Horietako bat arrantza zientzia da, diszi-

plina anitzeko jakintza arloa, arrantza sistemaren ezagutzan eta kudeaketan ikertzea

helburu duena. Tesi honetan metodo estatistikoen hobekuntzak garatu dira Monte

Carlo simulazioa baliatuz, arrantza zientziarekin lotutako hiru arlo ezberdinetan:

espezieen banaketa ereduetan, stocken ebaluaketa ereduetan eta kudeaketa aholku-

laritzan. Landutako metodo guztiak Bizkaiko golkoko sardinaren kasu ikerketara

aplikatu ditugu (1. Kapitulua).

Landutako lehenengo gaia nitxo ekologikoaren teoriarekin bat datozen espezieen ba-

naketa ereduen (Species Distribution Modelling, SDM) garapena izan da (2. Kapi-

tulua). Eredu hauek espezieen presentzia edo ugaritasuna ingurumen baldintzekin

lotzen dute, bai eta ezaugarri espazialekin ere. Espezieen habitatak hobeto ezagutu

eta etorkizuneko baldintza klimatikoetan gerta litezken banaketak aurresatea dute

helburu. Nitxo ekologikoaren teoriaren arabera, espezie baten banaketa ingurumen

aldagai batean zehar moda bakarrekoa da. Hala ere, eskuragarri dauden metodoek

ez dute hau kontuan hartzen modu esplizituan eta ondorioz, zentzu ekologikorik

gabeko emaitzak lortzen dira batzuetan. Erregresio ereduetan oinarrituz, forma mu-

gatuko eredu gehigarri orokortuak (Shape Constrained Generalized Additive Mod-

els, SC-GAMs) proposatu ditugu nitxo ekologikoaren teoriarekin bat egingo duten

SDMak garatu ahal izateko. Eredu hauek eredu gehigarri orokortuen (GAM) es-

ix
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parru berekoak dira, forma mugatzeko aukera eskaintzen dutelarik. SC-GAMen

bitartez, estimatutako kurba eskala aurresalean ahurra izateko muga ezartzeak,

GAMen malgutasuna mantendu eta moda bakarra izateko baldintza betetzea ahal-

bidetzen du, aipatutako teoriarekin bat eginez.

Monte Carlo simulazioa erabili dugu proposatutako SC-GAM ereduak ohikoak di-

ren ondorengo ereduekin konparatzeko: GLM ereduak, soilik kurba simetrikoak es-

timatu ditzaketenak, GAM ereduak, malgutasun maila altua eta baxua finkatuz,

desiratutako forma lortzeko ohiko estrategian oinarrituta eta ”Plateau” deituriko

nitxo klimatiko eredua, zatikako funtzio bat doitzen duena, malda gorakorra, lautada

eta malda beherakorra dituena. Konparaketa egiteko, lehenik nitxo ekologikoarekin

bat datozen presentzia probabilitate kurbak sortu genituen Beta funtzioa erabiliz.

Parametro ezberdinak konbinatuz lau kurba ezberdin definitu genituen: simetrikoa,

platikurtikoa, ezkerrera alboratua eta eskuinera alboratua. Kurba bakoitzerako

1000 behaketa sortu genituen 4 modu ezberdinetan: ingurumen aldagai osoan zehar

ausaz laginduz, modaren inguruan probabilitate handiagoarekin laginduz, eta alda-

gairen balio baten azpitik edo gainetik lagintzeko zero probabilitatea ezarriz. Pre-

sentzia/ausentzia datuak simulatzeko gamlss.dist Rko paketeko puztutako beta

banaketa erabili genuen, teorikoki sortutako kurben balioetan zentratuz eta 0 eta

1 balio gehiagoren agerpena ahalbidetuz. Ereduak doitzeko, egiantza handieneko

prozedura erabili genuen scam Rko paketearen bitartez eta ”component-wise boost-

ing” prozedura mboosten bidez. Ereduen funtzionamendua neurtzeko, errore karra-

tuaren batez besteko erroa eta estimen ziurgabetasuna erabili genituen bai eta aur-

reikusitako kurbek nitxo ekologikoaren teoriarekin zuten adostasun maila ere, horre-

tarako bigarren deribatuak kalkulatuz.

Egindako simulazio ikerketak, SC-GAM ereduek doikuntza-egokitasuna eta nitxo

ekologikoaren teoriarekiko adostasun mailaren arteko oreka ona erakutsi zuten. SC-

GAMek GLM eta GAM ereduek baina hobeto funtzionatu zuten, teorikoki sortutako

kurbengandik gertuago zeuden emaitzak lortuz. ”Plateau” eredua forma egokiak es-

timatzeko gai izan zen baina lortutako emaitzak simulazioen ziurgabetasunarekiko

ezegonkorragoak izan ziren. Inplementazioei dagokienez, scam kodifikatzeko erraza,

eraginkorra eta azkarra izan zen, mboost bestalde, motelagoa izan zen bariantza

estimatzen, baina emaitza egonkorragoak lortu zituen.

SC-GAM eredua Bizkaiko golkoko sardinaren arrautzen datu errealei aplikatu zitzaien.
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Lortutako emaitzak, ereduaren malgutasuna eskuz finkatzea behar duten ereduekin

lortutakoak bezain onak izan ziren. Honela, proposatutako SC-GAM ereduak es-

pezieen banaketa eredugintzan oso erabilgarriak direla esan dezakegu, forma mu-

gatzea behar duten eta behar ez dute aldagaiak eredu berean erabili daitezkeelarik.

Stocken ebaluaketa izan da landutako bigarren arloa. Stocka eremu jakin batean

bizi diren espezie bereko eta ezaugarri biologiko antzekoak dituzten arrainen bil-

duma da, auto-ugaltzeko gaitasuna duena. Arrain espezieak aztertu eta kudeatzeko

unitate biologiko garrantzitsuena da. Stocken ebaluaketaren helburua iraganeko eta

gaur egungo stockaren egoera estimatzea da, bai eta lotutako ziurgabetasuna ere.

Horretarako, stockaren dinamika deskribatuko duen eredua sortzen da, arrantza pro-

zesua esplizituki kontuan hartzen duena. Stocken ebaluaketa ereduak Prozesu Ezku-

tuko Ereduak (Hidden Process Models) motakoak dira eta bi denbora serieren bi-

lakaera deskribatzen dute paraleloki: egoera prozesua, kasu honetan populazioaren

dinamikari dagokiona, eta behaketa prozesua, stockari buruzko datu bilketari dagoki-

ona. Eskuragarri dauden datu guztiak integratu daitezke, egiantza bateratua eratuz.

Ereduaren egoera ezezagunen gaineko inferentzia egiteko, metodo frekuentistak edo

Bayesiarrak erabili daitezke.

Bizkaiko golkoko sardinaren stocka analitikoki ebaluatzen du urtero ICES (Inter-

national Council for the Exploration of the Sea) erakundeak 2017 ezkero, Stock

Synthesis (SS) softwarean inplementatutako adinkako egitura duen ebaluaketa ere-

duaren bitartez. Parametroen estimazio frekuentista diferentziazio automatikoan

(Automatic Differentiation, AD) oinarrituta dago eta ADMB (Automatic Differen-

tiation Model Builder) erabiltzen du. 3. Kapituluan eredu honen xehetasunak

azaldu ditugu eta beste bi eredurekin konparatu dugu: a4a (assessment for all) ere-

duarekin, ADn oinarritutakoa baina egitura sinpleagoa duena, eta ad-hoc eraikitako

eredu Bayesiarra, JAGSen (Just Another Gibbs Sampler) idatzia inferentziarako

Markov katearen Monte Carlo metodoak (Markoc Chain Monte Carlo, MCMC) era-

biliz. Hiru ereduek oinarri berbera dute populazioaren dinamikari dagokionez, or-

dea, datuen erabilera (harrapaketa totala sartzea edo a priori informazio erabiltzea),

banaketa estatistiko (lognormala edo multinomiala adinkako datuetarako) edo esti-

mazio metodo (AD, MCMC edo prozedura iteratiboak) aldetik ezaugarri ezberdi-

nak dituzte. Lortutako emaitzen arabera, eredu guztiekin lortutako estimak bat

egin zuten eta beraz aztertutako hiru aukerak dira baliagarriak Bizkaiko golkoko

sardinaren egoera estimatzeko. Eredu Bayesiarraren garapenak, ebaluaketa ofiziala
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(SS) ”kutxa beltza” ez den eredu batekin konparatzea ahalbidetu zuen, ereduaren

ezaugarri eta ekuazio guztiak guk garatu genituelarik. Proposatutako beste aukera,

a4a, sinplea eta azkarra izan zen aldetik, milaka iterazio egin behar diren simulazio

ikerketetarako aukera egokien bezala identifikatu genuen, ebaluaketa eredu konplex-

uagoak ordezkatuz.

Ziurgabetasuna ondo neurtzea garrantzi handikoa da stocken ebaluaketa prozesue-

tan. Geroz eta interes handiagoa hartzen ari den gaia da, izan ere, hainbat es-

pezieren gainbehera ekarri du kudeatzeko orduan ziurgabetasuna behar bezala kon-

tuan ez hartzeak. Tesi honetan Monte Carlo simulazioa erabili dugu ziurgabeta-

sun hori estimatzeko metodo ezberdinak konparatzeko (4. Kapitulua). Gainera,

ebaluaketa ereduan arrantza hilkortasun tasa estimatzeko, funtzio ez parametrikoak

gehitzearen efektua ere aztertu dugu. Simulazio ikerketarako a4a eredua erabili

dugu, aurreko atalean ondorioztatutakoa jarraituz. Ziurgabetasuna estimatzeko

hiru hurbilketa konparatu ditugu: aldagai anitzeko banaketa normala, bootstrap

parametrikoa eta ADMBen inplementaturiko MCMC algoritmo bat. Gehienetan

ebaluaketa ereduek funtzio parametrikoak erabiltzen dituzte, kasu askotan datuen

konplexutasuna azaltzeko gai ez direnak. Honela, funtzio ez parametrikoen erabilera

bultzatu izan da ereduen zehaztasuna hobetze aldera, ereduen aukeraketa prozesua

zaildu dezaken arren. Ziurgabetasuna estimatzeko metodoak konparatzeko, ered-

uaren konplexutasunaren araberako bost kasu ezberdin aztertu genituen, arrantza

hilkortasun (F ) parametroaren leuntze funtzioaren formaren arabera: egitura ba-

nakor klasikoetatik, tensor product splineetan oinarritutako egitura ez banakorre-

tara. Azken hauek, mgcv Rko paketean eskuragarri dauden leuntze funtzioen bitartez

inplementatu dira, askatasun gradu ezberdinak erabiliz.

Monte Carlo simulaziorako egiazko balioak sortzeko, definitutako kasu bakoitzerako

Bizkaiko golkoko sardinaren datu errealekin doitu genituen ereduak eta harrapaketen

eta indizeen datuak sortu genituen, egiazko balioei errore lognormala biderkatuz.

100 datu multzo sortu genituen kasu bakoitzerako, eta 1000 iterazio gorde genituen

ziurgabetasun estimazio metodo bakoitzetik. Metodo bakoitzaren funtzionamendua

konparatzeko, besteak beste, estimatutako biomasa ugaltzailea edo harrapagarri-

tasuna bezalako parametroen estima puntuala, bariantza, aldakuntza koefizientea,

estaldura probabilitatea edo alborapen erlatiboa kalkulatu genituen. Literaturan

aurkitutakoarekin bat eginez, gure emaitzen arabera MCMC izan zen metodo fida-

garriena. Arrantza hilkortasun parametrorako konplexutasun maila ezberdineko
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ereduen ziurgabetasun estimak alderatzerakoan, funtzio parametrikoak ez bezala,

funtzio ez parametrikoak forma malguak estimatzeko gai izan zirela ikusi genuen.

Hala ere, kasu konplexuenetan parametro kopuruak nabarmen egin zuen gora eta

ziurgabetasuna handitu egin zen, aldaketa koefiziente eta alborapen handiagoak

erakutsiz azken urte eta adinen estimetan, eta estaldura probabilitate okerragoak

emanez, MCMC metodoa salbuespen. Eredu aukeraketarako AIC eta BIC irizpi-

deak ere testatu genituen, BICak eredu egokia aukeratzeko zehaztasun handiagoa

duela ondorioztatuz.

Tesi honetan landutako azken arloa kudeaketa aholkua izan da. Stocken kudeake-

tarako aholku zientifikoa emateko modu tradizionala ebaluaketa eredu on bat garatu

eta emaitza horietatik epe motzerako kudeaketa ekintzak definitzean datza. Prozesu

hau urtero egiten da eta ondorioz, urtetik urtera harrapaketa aholku oso aldakorrak

suertatu daitezke. Azken hamarkadetan, modu tradizionalaren ordez, kudeaketa es-

trategien ebaluaketa (Management Strategy Evaluation, MSE) deituriko prozedura

indarra hartzen ari da, Monte Carlo simulazio bidez kudeaketa ekintza ezberdinak

ebaluatzen dituena, ekintza hauek sistema errealean inplementatu aurretik. Proze-

dura honetan etorkizunera proiektatzen da stockaren sistema osoa: populazio eta ar-

rantzaren dinamikak, behaketa prozesua, stockaren ebaluaketa, kudeaketa erabakiak

eta euren inplementazioa. MSEaren emaitzak kudeaketa estrategiak konparatzeko

erabiltzen dira, aurrez ezarritako helburuak bete, jasangarritasuna adibidez, eta zi-

urgabetasun iturri ezberdinen aurrean egonkortasuna erakusten dutenak aukeratuz.

Lan honetan feedback osoko MSEa garatu dugu Bizkaiko golkoko sardinaren stock-

erako (5. Kapitulua). MSE prozesuetan kontuan hartu beharreko ziurgabeta-

sun iturriak zeintzuk diren zehaztea oraindik ere erronka bat den arren, literatu-

raren arabera beharrezkoak diren hiru iturri sartu genituen gure lanean: prozesu,

parametro eta behaketa ziurgabetasunak hain zuzen ere. Gainera, SS ebaluaketa

eredu ofiziala Monte Carlo simulazioaren barruan sartu genuen. Hasierako popu-

lazioa definitzen duten parametroen ziurgabetasuna, ebaluaketa ereduko MCMC it-

erazioen bitartez sartu genuen, aurreko atalean ziurgabetasuna estimatzeko metodo

eraginkorrena dela ikusi baitgenuen. Horretarako, SS ereduak duen MCMC egit-

eko aukera baliatu genuen (ADMBen oinarritutakoa) eta 1000 iterazioa gorde gen-

ituen, MSEa hasierako 1000 populazio ezberdinetan oinarrituz. Behaketa errorea

banaketa multinomial eta lognormalen bitartez sartu genuen, SS ereduarekin kon-

sistentzia mantenduz, eta prozesu errorea urteroko erreklutamenduei errore lognor-
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mala biderkatuz. Ziurgabetasun iturri hauek txandaka sartu genituen euren efektua

banaka aztertu ahal izateko, bai eta iturri ezberdinen konbinaketena ere. 1000 sim-

ulazio egin genituen aukera bakoitzerako. Kudeaketa estrategien konparaketarako

adierazle ezberdinak kalkulatu genituen: biomasa ugaltzailea muga batetik behera

egoteko arrisku maila, arrantza debekatzera iristeko probabilitatea, urtetik urterako

harrapaketen aldaketa edo biomasa ugaltzailearen mediana besteak beste. FLBEIA

paketea erabili genuen simulazioak egiteko, modulu bidez egituratua dago eta horri

esker gure kasu ikerketarako funtzio bereziak sortu ahal izan genituen: errore multi-

nomial ez biderkakorra adinkako datuekin erabili ahal izateko funtzioa eta SS ebalu-

aketa eredua simulazio prozesuaren barruan doitu ahal izateko funtzioa.

Ziurgabetasun iturriak MSEan sartzeak biomasa ugaltzailea muga batetik behera

egoteko arriskua handitzea eta batez besteko harrapaketen jaitsiera eragiten duela

ikusi genuen, geroz eta iturri gehiago sartu, orduan eta nabarmenagoak ziren eragin

hauek. Ebaluaketa eredua Monte Carlo simulazioaren barne doitzearen ondorioz,

biomasaren goi eta azpi estimazioak ematen zirela ikusi ahal izan genuen, biomasa

erreala baino estima baxuagoak ematen zituen ebaluaketa ereduak lehen urteetan,

eta errealak baina altuagoak gainontzeko urteetan. Honek biomasa ugaltzailea muga

batetik behera egoteko arriskua handitzen zuen bai eta proiekzio urteetan biomasa

horren bariabilitatea ere. Harrapaketak debekatzera iristeko probabilitatearen jait-

siera ere ikusi genuen, SS ereduak estimatutako biomasen bariabilitatea egiazkoa

baina txikiagoa izatearen ondorio. Behaketa errore multinomial eta lognormalak

gehitzean, biomasa ugaltzailearen bariabilitateak eta arrantza debekatzeko proba-

bilitateak gora egin zuten, bai eta deskribatutako alborapen efektuak ere. Bizkaiko

golkoko sardinarentzat lan honetan testatutako bi ustiapen arauek, Fan oinar-

ritutako ICES arauak eta harrapaketen oinarritutako arauak, ICESek definitutako

arrisku maila (Risk3 < 0.05) betetzen zuten prozesu errorea soilik sartutakoan.

Gainontzeko ziurgabetasun iturriak sartzean ordea, ez zen baldintza hori betetzen.

Honela, ziurgabetasun horiek kontuan hartzean, arrisku maila hori bete ahal izateko

harrapaketa totalak baxuagoak ziren. Ustiapen arau onenaren aukeraketa lan honen

helburuetatik kanpo zegoen arren, arau ezberdinak konparatu genituen aipatutako

ziurgabetasun iturri guztiak kontuan hartuz, aurrez ezarritako helburuen araberako

arau onenaren aukeraketa nola egin daiteken erakusteko.

Oro har, Monte Carlo simulazioa baliagarria izan da tesi honen helburuak bete ahal

izateko, datu erreal eta emaitza analitikoak soilik baliatuz lortu ezingo genituenak.
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Monte Carlo simulation consists in computer experiments that involve creating data

by pseudo-random sampling with the objective of obtaining empirical results for

complex problems. It has shown to be a powerful tool to study the performance of

statistical methods. The strength of Monte Carlo simulation relies on the underlying

known ”truth” which allows measuring and assessing the properties of the statistical

method under study, that are often difficult to be derived analytically. Due to the

advances in computational power during the last decades, Monte Carlo simulation

has become relevant in many scientific disciplines. One of them is fisheries science,

a multidisciplinary area that aims at understanding and managing fisheries. In this

thesis Monte Carlo simulation was used to improve statistical methodology related

to three different fields of fisheries science: species distribution models, stock assess-

ment models and management advice. All the methods were applied to the case

study of sardine in the Bay of Biscay (Chapter 1).

The first field of fisheries sciences addressed in this thesis was the development of

species distribution models (SDM) that meet the ecological niche theory framework

(Chapter 2). SDMs relate species occurrences or abundances with environmental

conditions and spatial characteristics and can be used to have a better understand-

ing of species habitats or to predict their distribution under future climate scenarios.

According to the ecological niche theory, species distributions are expected to show

unimodal relationships with respect to environmental gradients. However, most of

the available methods do not account for this expected shape explicitly, and result

in not meaningful or ecologically interpretable results. Focusing on regression-based

models, we propose using shape-constrained generalised additive models (SC-GAMs)

to build SDMs under the ecological niche theory. These models are based on the same

xv
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statistical framework as generalised linear models (GLMs) or generalised additive

models (GAMs) but include the possibility to add shape-constraints. In particu-

lar, imposing concavity constraints in the predictor scale in a logistic GAM leads to

flexible response curves while retaining the unimodality required by the niche theory.

We used Monte Carlo simulation to compare the proposed SC-GAM approach with

respect to commonly used GLMs, which can only estimate symmetric response

curves, GAMs, fixing a high and a low number of knots to limit the flexibility

of the response curve as a commonly used strategy to obtain the desired shape, and

a climate envelope model (”Plateau”) that fits a piecewise function consisting of an

increasing slope, followed by a plateau and a final decreasing slope. For that, first,

we generated theoretical response curves that meet the ecological niche theory using

the Beta function. Combining different values for the shape parameters, we defined

four different curves: symmetric, platycurtic, left skewed and right skewed. For each

of the curves, we generated samples of 1000 observations according to four sampling

options: sampling randomly along the whole range, sampling with a higher proba-

bility around the mode, and having a sampling probability of zero above or below a

specific value of the gradient. Presence/absence data were simulated following a beta

inflated distribution centred at the generated theoretical probabilities, allowing for

zero and one inflation, as implemented in the gamlss.dist R package. SC-GAMs

fitting was performed using a maximum likelihood approach with the scam R pack-

age and a component-wise boosting approach with mboost. The performance of the

methods was evaluated in terms of the Root Mean Square Error, the uncertainty

around estimates and the agreement with the niche theory through the computation

of the second derivatives of the predicted curves.

The simulation study showed that the proposed SC-GAM approach resulted in a

good balance between the goodness-of-fit and the agreement with the niche the-

ory. SC-GAMs performed better than GLM and GAMs obtaining fitted curves that

were closer to the generated theoretical curves. The ”Plateau” method was able

to provide the correct shapes but results were less robust to the uncertainty of the

replicates. The scam implementation was easy to code, efficient and fast while the

mboost approach was more robust but slower for variance estimation.

The SC-GAM approach was also applied to real egg abundance data of sardine in

the Bay in Biscay. The results obtained were as good as the outputs from models
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that needed manual tuning of parameters for controlling the desired shapes. There-

fore, it was concluded that proposed SC-GAMs can be readily applied for modelling

both constrained and unconstrained responses in a unified SDM framework.

The second field of fisheries science tackled in this thesis was stock assessment. A

stock is defined as a collection of fish of the same species distributed in a given area

that is large enough for self-reproducing and shows similar biological characteristics.

It forms the most important biological unit for regulation and monitoring of a fish

species. The objective of stock assessment is to estimate the past and current status

of a stock along with the corresponding uncertainty. This involves constructing a

stock assessment model that describe the dynamics of the stock along time incorpo-

rating explicitly the fishing process. Stock assessment models belong to the general

class of statistical models called Hidden Process Models. These models describe the

evolution of two time series in parallel: the state process, that in this case corre-

sponds to the stock population dynamics, and the observation process, that is related

to the data collected on the stock. All available data can be integrated constructing

a joint likelihood. Estimation methods to conduct inference on the unknown states

and model parameters can be based either on frequentist or Bayesian approaches.

Since 2017, sardine in the Bay of Biscay is analytically assessed yearly by ICES

(International Council for the Exploration of the Sea) using an age-structured stock

assessment model implemented in Stock Synthesis (SS) software. Parameter esti-

mation is based on automatic differentiation (AD) using Automatic Differentiation

Model Builder (ADMB) within a frequentist framework. In Chapter 3 we detail

the basis of this official assessment model and compare it with two alternative ap-

proaches: the a4a (assessment for all) model, that is also based on AD but intends

to be simpler in terms of implementation, and an ad-hoc developed Bayesian model

coded in JAGS (Just Another Gibbs Sampler) that uses Markov Chain Monte Carlo

(MCMC) methods for inference. The three models were based on the same pop-

ulation dynamics, but differ on some underlying assumptions (the use of the total

catch data or the incorporation of prior information), on statistical distributions for

the observations process (multinomial or lognormal distributions for age-structured

data), and on estimation methods (the use of AD or MCMC methods, or the need

for iterative tuning processes for some variance parameters’ estimation in SS). We

concluded that obtained estimates were all consistent and that the three approaches

presented could be used to estimate Bay of Biscay sardine’s stock status similarly.
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The development of the ad-hoc Bayesian model tailored for this specific case study

provided the opportunity to compare the official assessment to a non ”black-box”

approach where all the assumptions and equations were self-developed. Alterna-

tively, a4a was identified as a fast and simple approach that could be appropriate

to replace the official assessment in simulation studies where thousands of iterations

must be run.

The correct quantification of uncertainty in stock assessment is a crucial issue, with

an increasing interest in incorporating it into management processes due to many

management failures related to the lack of consideration of different uncertainty

sources. In this thesis we used Monte Carlo simulation to compare different method-

ologies for uncertainty estimation in stock assessment models with non-parametric

effects on fishing mortality (Chapter 4). Using the a4a approach, that was identified

as the most suitable option for simulation, three different approaches for uncertainty

estimation were tested: the multivariate normal distribution, parametric bootstrap-

ping, and an MCMC algorithm implemented in ADMB. Stock assessment models

have typically relied on parametric functions that may lack enough flexibility to cap-

ture all the data features and the inclusion of non-parametric smooth functions have

been advocated to avoid model miss-specification, although model selection could

be more difficult. In order to study the performance of the uncertainty estimation

methods depending on the model complexity, five different scenarios were defined

depending on the shape of the smooth function of the fishing mortality (F ). They

range from a classical age-year separable structure to a non-separable tensor product

based structure, and they were implemented using smoothing functions (splines and

tensor products) available in mgcv R package with different degrees of freedom.

For the Monte Carlo simulation, true values were generated by fitting the real data

from the Bay of Biscay sardine case study to the defined model in each scenario and

simulated catch and indices-at-age data were generated by multiplying lognormal

errors to the true values. For each scenario 100 datasets were simulated, and 1000

iterations were saved for each of the uncertainty estimation methods. The methods’

performance was evaluated for several quantities of interest, such as spawning stock

biomass (SSB) or catchabilities, in terms of point estimates, variance, coefficients

of variation, coverage probabilities, relative bias or skewness. In agreement with

previous studies in the literature, we concluded that MCMC was the most reliable

method. When uncertainty estimation was compared across models of different lev-
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els of complexity for fishing mortality, we found that non-parametric functions were

able to estimate flexible shapes that parametric models could not capture. However,

the most flexible configurations increased the number of parameters and resulted in

greater uncertainty, with greater CVs and relative bias at terminal years and ages

and also in a deterioration of coverage probabilities, except for the MCMC method.

AIC and BIC criteria for model selection were also tested in terms of accuracy in

selecting the correct model, obtaining better results for BIC.

The third and final field of fisheries science addressed in this thesis was fisheries

management advice. The traditional approach for providing scientific advice for

management consists in developing the best possible assessment and subsequently

translating these into short-term management actions. This is repeated on an an-

nual basis and can result in highly variable recommendations from year to year. In

the last decades an alternative approach known as management strategy evaluation

(MSE) has emerged. It entails evaluating by means of Monte Carlo simulation dif-

ferent management actions before they are put in place. This approach involves the

projection into future years of the entire management system: the real dynamics

of the population and fishery, the observation process, the stock assessment, the

management decision and its implementation. The results are then used to compare

and select management strategies that outperform with respect to pre-specified ob-

jectives and that are robust to different sources of uncertainty.

In this work we developed a full-feedback MSE for sardine in the Bay of Biscay

(Chapter 5). Although the decision on what sources of uncertainty need to be in-

cluded in an MSE remains a major challenge, we considered the least three sources

of uncertainty that should be included according to the literature, namely, process,

parameter and observation uncertainties. The official SS assessment model was also

incorporated into the Monte Carlo simulation. Uncertainty on parameters that de-

fine the initial population was introduced via MCMC iterations, identified as the

most robust method for uncertainty estimation in stock assessment models, using

the MCMC option in SS (inherited from ADMB) and saving 1000 output iterations

as 1000 different initial populations for the MSE conditioning. Observation error

was included through multinomial and lognormal distributions in order to be consis-

tent with the SS assessment model assumptions and process error was represented

by lognromal errors in the annual recruitments. Different sources of uncertainty

were added gradually to provide an analysis of the impact of each of them. 1000
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simulation were run for each of the MSE scenarios including different uncertainty

sources. The performance indicators computed for comparison were the risk of SSB

being below a limit level, the probability of closure of the fishery, the interannual

catch variability and the median SSB. FLBEIA package was used to perform these

simulations, which has a modular implementation facilitating the development of

new functions by the users. We developed several functions for our case study, such

as a function to include the SS assessment model within the MSE loop or a function

to generate the non-multiplicative multinomial error for age-structured data obser-

vation.

The gradual inclusion of uncertainties resulted in a successive increase of the prob-

ability of SSB being below the limit biomass reference point Blim and a decrease of

the average catches. The fitting of the stock assessment within the MSE simulation

led to a bias in the estimated SSB by the SS model, negative in the first years and

positive afterwards, resulting in an increase of the risk to be below Blim and of the

variability of the SSB in the projection years. A decrease on the probability of clo-

sure was observed, related to the fact that the SSB variability estimated by SS was

lower then the real one. When multinomial and lognormally distributed observation

errors were included, variability in SSB, risks and probability of closure increased,

as well as the described bias effect. The two harvest control rules implemented for

the Bay of Biscay sardine in this work, the F-based ICES rule and an alternative

catch-based rule, were considered precautionary in the base case MSE (only pro-

cess uncertainty included), but not when incorporating all the proposed sources of

uncertainty. So, we concluded that when all the relevant uncertainty sources were

included the ICES precautionary criterion (Risk3 < 0.05) was met with a lower

level of total catches. Although the selection of the best harvest control rule for Bay

of Biscay sardine was out of the scope of this work, we compared several additional

harvest control rules, to illustrate how the best rule could be selected by managers

according to predefined objectives by accounting for the most important uncertainty

sources for this stock.

In general terms, Monte Carlo simulation has been an adequate tool to accomplish

the objectives of this thesis that definitely could not have been achieved using only

available real data or analytical solutions.



Chapter 1
Introduction

1.1 Monte Carlo simulation in fisheries science

Exact analytical properties of statistical methods are often difficult to derive, spe-

cially when wrong assumptions are made or several sources of uncertainty are in-

corporated. In these cases, an alternative approach is Monte Carlo simulation. It

consists in computer experiments that involve creating data by pseudo-random sam-

pling with the objective of obtaining empirical results of methods’ performance. The

strength of these simulation studies relies on the underlying known ”truth” which

allows measuring and assessing the properties of the evaluated methods.

First modern Monte Carlo experiments were found at the end of the nineteenth cen-

tury, being Laplace’s approximation of the irrational number π the first documented

application of the Monte Carlo simulation (Johansen 2010). However, due to the cost

of carrying these physical experiments, it was not until the 1940s, when the random

number generators were introduced by the physics community, that Monte Carlo

simulations became more practical. During the 1980s, the increased popularity of

Bayesian methods and the need to evaluate complex high-dimensional integrals led

to a revolution in Monte Carlo simulation methodology by the statistics community

(Gelfand and Smith 1990).

Monte Carlo simulation is an intuitive and easy to understand tool that can determi-

nate unknown solutions of complex problems very efficiently in contrast to determin-

istic approaches (Atanassov and Dimov 2008). Moreover, Monte Carlo simulation

algorithms can be easily parallelized resulting in a linear speed-up (Rosenthal 2000).

1
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As a drawback, obtained results are not exact and are subject to the number of it-

erations performed. Computational limits are the main disadvantages for the use of

Monte Carlo simulation. However, due to the vast advances in computational power

during the last decades (Nordhaus 2007), Monte Carlo simulation have become more

attractive and more frequently used in many areas, such as medicine (Concato and

Feinstein 1997), finance (Brandimarte 2014) , chemistry (Jorgensen and Duffy 2000)

or social science (Carsey and Harden 2013).

Monte Carlo simulation has been also extensively used in fisheries science (Garcia

et al. 2013, Ianelli 2002, Oksanen and Minchin 2002, Punt et al. 2002, Yin and

Sampson 2004). This discipline aims at understanding and managing fisheries (Hart

et al. 2002). Subsequently, it is a multidisciplinary area, which encompasses dis-

ciplines such as oceanography, marine biology, meteorology, conservation, ecology,

population dynamics, statistics, economics, management, and many others. It is a

relatively modern science moving nowadays towards holistic approaches to fisheries

assessment and management, which take into account ecosystem aspects in order to

enhance sustainability.

This thesis uses Monte Carlo simulation to improve the statistical methodology of

three different fields of fisheries science:

1. Habitat models, through the development of species distribution models that

allow understanding how species interact with their environment.

2. Stock-assessment models, which making use of available data of an exploited

species population are able to estimate its current and past status along with

the corresponding uncertainties.

3. Long-term management advice, where based on the status of a population and

related sources of uncertainties different management alternatives are studied

in order to find the best strategy in the long-term.

Methodological improvements in these three research topics can provide managers

better and valuable information to oversee marine species in space and time. The

state of the art of each of these three topics is reviewed this chapter.

As pointed out by Harrison (2010), there is no single Monte Carlo simulation method,

but most of them, as well as the work in this thesis, follow a similar structure. Let
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θ denote the vector of the quantity (or quantities) of interest. The general steps of

Monte Carlo simulation are::

1. Choose or create the deterministic model for the input, which will represent

the reality.

2. Add stochasticity to input values, generating pseudorandom samples (itera-

tions) from selected statistical distributions.

3. Apply the method of interest to the generated pseudo-random inputs and

obtain the desired numerical output, θ̂i.

4. Repeat steps 2 and 3 n times.

5. Perform statistical analysis on collected n output sets (θ̂1, . . . , θ̂n).

The last step, statistical analysis, involves the computation of performance statistics

that compare the obtained outputs (hat θ1, . . . , θ̂n) with respect to the underlying

”truth” (θ) to evaluate the statistical method being tested. Common performance

statistics measure the bias, the precision and the accuracy either in absolute or in

relative terms (Walther and Moore 2005). The most common performance statistics

include among others:

� Relative bias, defined as
∑

(θ̂i−θ)/θ
n .

� Coverage probability, is defined as Pr(θ ∈ PIθ̂) the proportion (out of the n

simulations) of 90% confidence or probability intervals (PI) that contain the

true value.

� Root Mean Square Error, RMSE =

√∑
(θ−θ̂i)2
n .

1.2 Case study: Bay of Biscay sardine & ICES context

European sardine (Sardina pilchardus) is a small pelagic fish that has a lifespan of

up to 10 years. Maturity is achieved in their first year of life and spawning occurs

throughout the year, with two peaks in spring and in autumn/winter. This species

diet consists of zooplankton and phytoplankton and it is prey of a range of fish and

marine mammal species, such as, common dolphins or harbour porpoises. European

sardine measures from 13 to 25cm but a decreasing trend in body length has been
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detected since the 2000s (Véron et al. 2020).

The species has a wide distribution in the Northeast Atlantic extending from the

Celtic Sea and North Sea in the north to Mauritania in the south. Populations of

Madeira, the Azores and the Canary Islands are at the western limit of the distribu-

tion (Parrish et al. 1989). Sardine is also found in the Mediterranean and the Black

Seas.

Assessment and management advice for sardine in the Northeast Atlantic have been

developed under the ICES (International Council for the Exploration of the Sea,

http://www.ices.dk) auspices. ICES is an intergovernmental marine science orga-

nization whose main goal is to advance and share scientific understanding of marine

ecosystems and the services they provide and to use this knowledge to generate

state-of-the-art advice for meeting conservation, management, and sustainability

goals. Based on scientific work and data, ICES provides scientific advice for a wide

range of recipients, including ICES member countries and various international or-

ganizations and commissions, such as the European Commission (EC).

The ICES advisory process starts when a request for advice is received from a client.

Then, expert groups collect the data, carry out the corresponding analysis and draft

a first scientific/technical response to the request. Expert group reports are peer-

reviewed by independent experts and then reviewed by an advice drafting group. The

draft advice is discussed and finally approved by the Advisory Committee (ACOM)

and it is delivered to the client. An important part of ICES advice regards the

management of the exploitation of living marine resources. ICES classifies six main

categories; from ”stocks with quantitative assessments” (category 1), to ”negligible

landings stocks and stocks caught in minor amounts as bycatch” (category 6). In

between there are stocks with qualitative assessments or stock assessments that only

indicate trends. ICES advice is aligned with the reformed Common Fisheries Policy

(CFP) that includes the fundamental objective to progressively restore and main-

tain fish stocks above biomass levels capable of producing the maximum sustainable

yield (Salomon et al. 2014). In addition, all ICES advice is consistent with the pre-

cautionary approach, according to which all the populations need to be maintained

within safe biological limits (UN 1995).

http://www.ices.dk
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Figure 1.1: ICES areas and divisions in the Bay of Biscay. The stock of sardine in
the Bay of Biscay is distributed in divisions 8 a,b,d.

The stock is the most important biological entity for regulating and monitoring a

fish species. A unit stock is an arbitrary collection of populations of fish of the same

species that is large enough to be essentially self-reproducing with members of the

collection showing similar patterns of growth, migration, and dispersal located in a

given area (Hilborn and Walters 1992). Sardine in the Northeast Atlantic is sepa-

rated in three stocks or management units: Iberian sardine that is distributed along
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ICES divisions 8c and 9a, sardine in the Bay of Biscay (BoB) that is distributed

along ICES divisions 8a,b,d and sardine in southern Celtic Sea and English Channel

that is distributed in ICES subarea 7 (Figure 1.1). This thesis is focused on sardine

in the Bay of Biscay. Until 2017, this stock was considered together with the stock

from subarea 7. Although there was no strong evidence in any direction both regions

had individuals of all the life stages, biological traits seemed to be different and it

was decided to separate them into two stocks and work on the Bay of Biscay sardine

stock assessment model due to poor data availability in subarea 7. The connectivity

of this species from the northern Bay of Biscay to the eastern Gulf of Cadiz has

been also analysed (Silva et al. 2019), concluding that the flow rates between three

large areas were low. These three main areas, Bay of Biscay, the northern Spanish

and Portuguese waters and the Gulf of Cadiz, with their own recruitment hotspots,

are considered to be host self-sustained weakly connected populations forming a

metapopulation.

Concerning human activities, sardine in the Bay of Biscay is exploited mainly by

France and Spain. For French fleet, both purse seiners and pelagic trawlers tar-

get sardine in French waters. Purse seiners operate mainly in coastal areas while

trawlers are not allowed to fish within 3 nautical miles from the coast. Both pair

trawlers and purse seiners operate close to their base harbour when targeting sar-

dine. French catches increased from 1983 with around 4 thousand tonnes to 2008

with 21 thousand tonnes, reaching the series maximum in 2018 with more than 25

thousand tonnes. The highest catches are taken in the summer months and almost

all are taken in southwest Brittany. Spanish catches are taken by purse seines from

the Basque Country operating mainly in division 8b. Spanish landings peaked in

1998 and 1999 with almost 8 thousand tonnes but decreased to below 1 thousand

tonnes in 2010. Spanish catches increased again, reaching 16 thousand tonnes in

2014. The Spanish fishery takes place mainly between October and March. The

strong increase of Spanish catches in 8b is mainly due to an increase of the fishing

effort, taking into account the low level of the Iberian sardine stock in 8c and some

monthly closures of the southern fishery.

The population present in the Bay of Biscay is monitored by two surveys carried

out in spring. On the one hand, the PELGAS acoustic surveys are conducted yearly

and provide sardine estimates in terms of total biomass and number of individuals

by age since 2000 (Doray et al. 2018). On the other hand, since 1999 BIOMAN
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surveys provide yearly a sardine egg abundance index (Santos et al. 2018) with the

Daily Egg Production Method (DEPM, Lasker 1985)), and since 2011, every three

years, sardine spawning stock biomass is estimated since 2011 in the SAREVA or

BIOMAN surveys (ICES 2020b).

The stock assessment and management of sardine in the Bay of Biscay has evolved

along the last decades (Figure 1.2). ICES provided advice for sardine in the com-

bined 8.a,b,d and 7 regions for the first time in 2013. In previous years, exploratory

assessments were carried out during the working group on horse mackerel, anchovy

and sardine (WGHANSA) and cohort tracking analyses were conducted from 2013

to 2016 to derive total mortality (Z). The advice was based on available survey

indices following the guidelines for ICES category 3.

In 2017, an ICES benchmark workshop for evaluating and improving the data and

assessment methodology was carried out (ICES 2017a in contrast with the previ-

ous advice one in 2013 (ICES 2013), it was considered that various time series of

fishery data in the Bay of Biscay monitored from commercial vessels and surveys

were long enough to provide an analytical assessment using a catch-at-age statistical

stock assessment model. The model selected for the assessment by WGHANSA was

Stock Synthesis (SS, Methot and Wetzel 2013). However, obtained absolute esti-

mates were approved only as relative indicators of stock status. Thus, the sardine

stock was classified as category 2 stock.

In 2019 an Inter-benchmark process was carried out for this stock with the objective

of evaluating the stock assessment focusing on retrospective bias, data revisions and

reference points’ update (ICES 2019b). The SS model was revised and changes con-

cerning selectivity estimation and the stock-recruitment relationship were applied.

Although some issues on the catchability coefficients still remained, the stock was

upgraded from ICES category 2 to category 1 due to the improvement in terms of

retrospective bias and other diagnostics.

Given that there is not agreed management plan for this stock, ICES advice is based

on the maximum sustainable yield (MSY) approach. No total allowable catch is set

by the European Commission for this stock and the fisheries appear to be regu-

lated by market price (ICES 2019e); some fisheries have their own local manage-

ment, limiting total catch or fish sizes to sustain prices. There is ongoing discussion
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about a possible management plan through the South West Waters Advisory Coun-

cil (https://www.cc-sud.eu/index.php/en/) but there is not an agreement yet.

Figure 1.2: Main milestones in the assessment and management advice of sardine
in the Bay of Biscay.

1.3 State of the art

In this section, we review the most relevant statistical methodology of the three

fisheries science fields that will be dealt with in this thesis.

1.3.1 Regression models for species distribution models

In recent years there has been an increased interest in understanding the impact of

environmental changes on species distribution. During the last decades many studies

have been published on this topic (Beaugrand et al. 2008, Bruge et al. 2016, Chust

et al. 2014, Erauskin-Extramiana et al. 2019, Reygondeau and Beaugrand 2011,

Villarino et al. 2015). Since 1950 the atmosphere and ocean have warmed, and cli-

mate change is considered an unequivocal reality (IPCC 2013). This reality has an

impact across all marine ecosystems, latitudes and trophic levels and may lead to

some species local extinctions and invasions (Cheung et al. 2013). Climate change is

associated to multiple ecosystem changes such as shifts in temperature, circulation,

stratification, nutrient input, oxygen content or ocean acidification among others

(Doney et al. 2012). As a result, fish stocks can be impacted, affecting their pro-

ductivity, habitat suitability or population-dynamics. Many efforts are being made

to see how fish species abundance have been affected by climate change during the

https://www.cc-sud.eu/index.php/en/
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last decades or to predict how distributions may change (Koenigstein et al. 2016,

Orio et al. 2019, Rijnsdorp et al. 2009). The fishery activity could be also affected.

For instance, according to Cheung et al. (2009), an increase in the catch potential

in high latitudes and a decrease in tropical and subtropical regions is expected.

Species distribution models (SDM) are important statistical tools in ecology that re-

late species occurrence or abundance with information on environmental conditions

and spatial characteristics of locations where the species are found (Elith and Leath-

wick 2009). These models can be used to predict or to have a better understanding

of the species distribution (Halvorsen 2012, Petitpierre et al. 2017). They are widely

used in several fields, such as ecology, evolutionary biology and conservation (Guisan

et al. 2013, Peterson et al. 2011, Zimmermann et al. 2009).

Data for SDM is ideally composed by records of species presence and absence loca-

tions together with abundance records for the locations were the species are found.

Sometimes only opportunistic or biased spatial data are available, containing pres-

ence data without information on absences or abundances. In such cases it is a

common practice to generate pseudo-absence data (Iturbide et al. 2015). When

both, absence data and some measure of abundance, are available for modelling, a

two stage approach is recommended (Austin and Cunningham 1981, Borchers et al.

1997).

The focus of the most highly cited papers on SDM is the development of novel meth-

ods to better predict environmental suitability for species and the improvement of

model performance (Barbosa and Schneck 2015). Still, most of the available sta-

tistical methods used to model species distributions result in responses along envi-

ronmental gradients that do not fulfil the conditions of ecological niche theory, and

consequently are not always ecologically meaningful or interpretable.

In this thesis we will focus on the commonly used regression-based approaches

for proposing improvements on SDM. Generalised linear models (GLM) are well-

stablished statistical models in SDM (Guisan et al. 2002). GLMs are parametric

models which assume that the relationships or pattern of interest can be expressed

in a specific formula involving a fixed number of unknown parameters. However,

choosing a specific functional form to model the relationship between some variables

of interest is often difficult, if not impossible. Non-parametric smoothing methods
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are able to let the data suggest the appropriate form based on some infinite dimen-

sional collection of functions. The degree of smoothness of the resulting form can

usually be either controlled or estimated. Non-parametric models, where the model

structure is not fixed beforehand are well-established in regression models like gen-

eralised additive models (GAMs) (Hardle 1994).

GAMs (Hastie and Tibshirani 1990, Wood 2006a) are a generalisation of GLMs,

where the linear predictor, g(x), is a smooth function of the explanatory variable.

For a single explanatory variable, we have the form:

g(x) = β0 + f(x), (1.1)

where f(x) is a smooth function. There are several ways to represent f(x), from

kernel smoothing or local linear methods to splines-based regression methods. We

describe the latter approaches, where f(x) is given by a sum of some basis functions.

Hence for a single covariate x, we have:

f(x) =
K∑
k=1

θkBk(x), (1.2)

where θk are the regression coefficients and Bk(x) a basis function of x. There are

several choices for the basis functions (e.g. polynomials of a certain order, natural

splines, cubic splines or B-splines). Splines are flexible tools for smoothing in gen-

eral. A spline of degree d is a function formed by connecting polynomial segments

of degree d so that the function is continuous, the function has d − 1 continuous

derivatives, and the dth derivative is constant between knots. B-splines (de Boor

1972) are a popular choice given that they are easy to compute and they have good

numerical properties. In regression splines, estimated regression coefficients, θ̂j , are

obtained by least squares (i.e. by minimizing the residual sum of squares) and hence

the shape of a spline can be controlled by carefully choosing the number of knots

and their exact locations in order to allow flexibility (e.g. fix the locations of k knots

at quantiles of x), and avoid overfitting where the trend changes little. However, in

many situations, choosing the number of knots and their locations is a very difficult

problem to solve.
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Alternatively, smoothing splines find the solution of f which minimizes:

n∑
i=1

(yi − f(xi))
2 + λ

∫
f ′′(x)2dx,

where the minimizer f(x) is a natural cubic spline, with knots at each sample point

x1, ..., xn, and λ
∫
f ′′(x)2dx is the roughness penalty. The parameter λ, controls the

amount of smoothness and takes values 0 < λ < ∞, for λ → ∞; large values of

λ result in strong penalisation (a straight line in the limit) and for values λ close

to 0 the resulting fit is a wiggly function. The selection of λ can be performed

by (generalised) cross-validation or information criteria such as Akaike or Bayesian

information criteria (Akaike 1974, Schwarz 1978). However, the main drawback of

smoothing splines is the dimensionality for large n (Green and Silverman 1993).

In contrast to smoothing splines, low-rank approximations have been proposed in

the literature (see Ruppert et al. 2003 for a complete overview), which are called

penalized regression splines. For instance, thin plate regression splines (Wood 2003)

are constructed by a simple transformation and truncation of the basis that arises

from the solution of the thin plate spline smoothing problem. P-splines (Eilers and

Marx 1996) are also a low-rank approximation and a simpler alternative to smooth-

ing splines. They consider moderately large B-spline basis functions of a size smaller

than the observations and modify the penalty term by a discrete order difference

penalty on adjacent coefficients, i.e. the difference operator acts on the regression

coefficients, ∆θj = θj − θj−1, ∆2θj = ∆(∆θj) = θj − 2θj−1 + θj−2 and in general

∆dθj = ∆(∆d−1θj) (see Eilers et al. 2015 for further details).

As in GLMs more than one explanatory variable can be incorporated as well as

interactions between covariates with different degrees of smoothness. This can be

done using tensor products which are based on a set of basis functions that allow

having different marginal smoothness penalties (Wood 2006a). Other constructions

for interactions, such as the mentioned thin plate regression splines are also avail-

able but are not invariant to the rescaling of any of the covariates. Thus, tensor

product smooths are especially useful for a general framework where variables may

be measured in different units.

Compared to GLMs, GAMs are capable of fitting more complex ecological response
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shapes and are used extensively in SDM (Elith et al. 2006). The most popular

R package to fit GAMs is mgcv (Wood 2019) which includes several methods for

the construction of smoothing functions. Thus, the package can be either used to

fit generalised additive models with the implemented estimation methods (penal-

ized likelihood or quasilikelihood maximization with smoothness selection by GCV,

GACV, gAIC/UBRE or (RE)ML (Wood 2019)) or can be used to construct the de-

sired structures of the smoothing function to incorporate in a more complex models

(as done in Chapter 3).

Apart from mgcv, another package that implements non-parametric smoothing func-

tions have been used; the package mboost (Hothorn et al. 2018). It is based on the

the so-called model-based boosting. This is a gradient descent algorithm for optimiz-

ing general risk functions using component-wise penalized least squares for fitting

GAMs, based on P-spline base-learners (Bühlmann and Hothorn 2007).

1.3.2 Statistical inference on stock assessment models

The objective of stock assessment is to describe the past and current status of a

stock. This involves constructing a stock assessment model that describes the dy-

namics of the stock along time and then, conducting statistical inference on the

unknown parameters of that model based on collected data. Besides natural pro-

cesses such as birth, natural mortality or growth, stock assessment models need to

incorporate explicitly the fishing process that affects the fish stock over time.

The models available for assessing fish stocks range from simple to complex based

on the available data for a given stock (Edwards et al. 2012a). Among the sim-

plest models, the most widely used ones are biomass dynamic models or production

models (Beverton and Holt 1957, Pella and Tomlinson 1969, Schaefer 1954). They

describe the fluctuations of the stock biomass as a function of previous year biomass,

catch and surplus production, ignoring any age or size structure. Alternatively, sta-

tistical catch-at-age (SCA) models (Deriso et al. 1985, Fournier and Archibald 1982,

Schnute 1994) use age disaggregated data to describe the population dynamics in

terms of the number of individuals in each age group. SCA models are considered

more realistic, but they are also more complex and imply a greater number of pa-

rameters to be estimated, being more data-demanding. Between these two levels of
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complexity, there are other types of stock assessment models, such as virtual popu-

lation analysis (Pope and Shepherd 1982) or delay-difference models (Deriso 1980).

However, stock assessment models are continuously evolving (Maunder and Piner

2015). In the last years, efforts have been directed towards developing models for

data-limited stocks (Dowling et al. 2019), while more complex models are incorpo-

rating spatial structure (Goethel et al. 2011, Punt et al. 2000) or assessing multiple

stocks simultaneously (Punt and Kennedy 1997, Punt et al. 2011).

Stock assessment models are calibrated by using observations collected from the fish-

ery, scientific surveys and species biology. The stock assessment modelling approach

of using all available data in a single analysis is known as integrated analysis (Maun-

der and Punt 2013 and references therein). It was first formulated by Fournier and

Archibald (1982) and mathematically, it consists of constructing a joint likelihood

for all the observed data that can later be used in any likelihood-based framework.

Integrated analysis is composed of the following three layers:

� Population dynamics model: It describes the population dynamics in terms of

essential population factors such as stock abundance and mortality, and it can

include process errors.

� Data and observation model: It relates the data, such as, survey abundance

index, catch, weight, age composition or other available information, to the

model predictions. This includes the likelihood function, which represents the

sampling process.

� Estimation method: It is the algorithm to provide point and uncertainty esti-

mates of the model quantities of interest.

Integrated analysis belongs to a large group of statistical models called Hidden Pro-

cess Models (HPM). They describe the evolution of two (usually multivariate) time

series evolving in parallel: the state process that represents the unknown (hidden)

underlying state of nature, and the observation process that refers to the observa-

tions from the state time series (Buckland et al. 2007, Newman et al. 2006, Thomas

et al. 2005). In the context of integrated analysis for stock assessment, the state

process corresponds to the population dynamics model, whereas the observation

process is related to the data and observation model (Aeberhard et al. 2018).
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In a formal definition of a HPM, let nt denote the state vector at time t and yt the

associated measurements at time t of this state vector for t in 1, ..., T . For instance

nt could be the vector of abundances by age at time t and yt the numbers-at-age esti-

mated in a research survey at that time instant t. The evolution of the state process

and the links between the state and observation vectors are described by probability

density functions (pdfs). More precisely, a HPM is defined by three different pdfs:

the pdf that generates the initial state, g0(n0|θ), the pdf that describes the evolution

of the state vector from one time period to the next, gt(nt|nt−1,nt−2, ...,n0,θ), and

the pdf that relates the observation vector to the state vector, ft(yt|nt,θ), being θ

the vector of the model parameters. State-space models (SSM) are a particular case

of HPMs where the state process depends only on the previous state, i.e. the pdf

that describes the evolution of the state vector along time is simply gt(nt|nt−1,θ).

The estimation method used to conduct inference on the unknown model param-

eters θ and the state vectors nt of HPMs in general, and integrated analysis in

particular, can be based either on frequentist or on Bayesian methods (Maunder

and Punt 2013). While one of the most appealing features of HPMs is that they can

account explicitly for both process and measurement errors, this can lead to quite

complex models for which inference is a challenge that involves high-dimensional

integration. Auger-Méthé et al. (2020) provide a thorough review of different infer-

ence methods, and include an in-depth tutorial about how to fit these models in R.

Some of the most common methods include Markov chain Monte Carlo (MCMC)

methods (Brooks et al. 2011, Gamerman and Lopes 2006, Gilks et al. 1996), sequen-

tial Monte Carlo (SMC) methods (Doucet et al. 2001) or Laplace approximation

(Fournier et al. 2012). In the particular case of stock assessment models, Aeberhard

et al. (2018) review the work done on stock assessment to fully utilize the SSM

framework. Other papers that have framed stock assessment models as state-space

models can be found in Mäntyniemi et al. (2013; 2015), Meyer and Millar (1999),

Millar and Meyer (2000) or Nielsen and Berg (2014).

In what follows, we expand on two of the estimation methods used for stock-

assessment that will be used in this thesis: Automatic Differentiation (AD) and

Markov chain Monte Carlo (MCMC).
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1.3.2.1 Automatic Differentiation

Common methods in frequentist statistical inference, such as MLS (Minimum least

squares) or MLE (maximum likelihood estimation), are based on the minimiza-

tion/maximisation of an objective function and thus, require the calculation of the

derivatives. The computation of derivatives can be classified in four type of meth-

ods: manually working and coding derivatives, numerical differentiation, symbolic

differentiation, and automatic differentiation (Baydin et al. 2018). In the case of

stock assessment models, manual and symbolic options cannot be applied as usually

they are not closed-form models, whereas numerical methods can be inaccurate due

to the high number of parameters. As an alternative, automatic differentiation (AD)

can be applied to highly non-linear models with a large number of parameters. AD

is based in two main ideas (Griewank et al. 1989):

� The function is split into a sequence of elementary operations with known

derivatives.

� The application of the chain rule in the forward or reverse mode, being the

latter superior in terms of computational effort but may need more storage.

Efforts on AD go back to the 1950s although it gained popularity in the 1980s due

to the improvements in programming languages and the possibility to implement an

efficient reverse mode (Baydin et al. 2018). AD has been employed in many different

areas such as computational fluid dynamics, weather modelling, engineering design

optimization or biomedicine as listed in the community web www.autodiff.org,

however, it has not been extensively used in statistical inference.

In the past decade, motivated by fish stock assessment models with hundreds of pa-

rameters and highly non-linear objective functions, Automatic Differentiation Model

Builder (ADMB Fournier et al. 2012), was developed as a tool for statistical param-

eter estimation for non-linear statistical models. It is based on Automatic Differen-

tiation for computation of derivatives combined with a quasiNewton optimizer and

a simplified C++ template language for model development. Using AD, high or-

der derivatives can be easily calculated which facilitates optimization of the Laplace

approximation (Fournier et al. 2012) for the marginal likelihood in complex models

with random effects. Uncertainty of estimated parameters can be evaluated through

various methods such as profile likelihood, delta method or MCMC. It is available

www.autodiff.org
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as a free open-souce software (http://www.admb-project.org).

Although it was originally developed to fit stock assessment models, it has spread

within other scientific fields, ecology, medicine or economy. Moreover, based on

the established ADMB, Template Model Builder (TMB Kristensen et al. 2016) was

developed as an easier and faster R package for the implementation of non-linear

random effects models, combining existing high-performance libraries and easy ac-

cess to parallel computation (http://tmb-project.org).

1.3.2.2 Markov chain Monte Carlo

Opposed to frequentist approaches, where the parameter vector to be estimated

(θ) is unknown and fixed, in Bayesian statistics θ is treated as a random variable.

Considering the Bayes’ theorem, the posterior distribution of the parameter vector

given the data can be expressed as:

P (θ|y) =
P (y|θ)P (θ)

P (y)
,

where P (θ) represents the prior distribution of θ before any data is observed, P (y|θ)

is the likelihood of the observations y = y1, ..., yn and P (y) is the marginal distribu-

tion of y that can be expressed as :

P (y) =

∫
P (y|θ)P (θ) dθ .

Solving this integral analytically is sometimes infeasible. Markov chain Monte Carlo

(MCMC) methods (Gilks et al. 1996) is one of the methods that can be used to

draw samples from a target density, such as the posterior distribution in Bayesian

statistics, i.e. π(θ) = P (θ|y). Metropolis-Hastings (MH, Chib and Greenberg 1995)

is one of the first and most popular algorithms for MCMC, together with the Gibbs

sampler (Casella and George 1992), popular for multivariate target distributions.

The idea behind these algorithms is the updating of the parameter vector, θ ∈ RD,

iteratively until the equilibrium target distribution is reached. According to the

MP algorithm a candidate parameter value x∗ is generated from an arbitrary jump-

ing proposal distribution, J(x|xt), which is accepted as the next value of the chain

(xt+1) with a probability α = min(1, π(x∗)J(xt|x∗)
π(xt)J(x∗|xt) ). Although any proposal distribu-

tion should work to reach converge, the speed will depend on the chosen proposal

http://www.admb-project.org
http://tmb-project.org
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distribution. The key of the second algorithm, the Gibbs sampler, is that it relies

on univariate conditional distributions, where all except one variable have fixed and

updated values as proposal distribution, resulting in an acceptance probability of

α = 1. D random variables are simulated sequentially from these univariate distri-

butions, which is usually more simple than the simulation of a D-dimensional vector

from the full joint distribution. Look at Algorithm1 for the general structure of the

method.

Algorithm 1 Gibbs sampling

Initialize x0 ∈ RD
for iteration n = 1, ..., N do

sample xn1 ∼ π(x1|xn−1
2 , xn−1

3 , ..., xn−1
D )

sample xn2 ∼ π(x2|xn1 , x
n−1
3 , ..., xn−1

D )
...
sample xnD ∼ π(xD|xn1 , xn2 , ..., xnD−1)

end for

An important issue of algorithms for MCMC is when to start and when to stop them

in order to obtain stationarity and convergence. First draws may not be close to

the target distribution. A common practice regarding this issue is to use a burn-in

period, i.e., discarding early iterations and start collecting samples which are suf-

ficiently close to the stationary distribution. Apart from that, in order to avoid

autocorrelation, thinning is also commonly used, which implies discarding all but

every kth sample. Concerning the stopping point, the longer the chain the better

estimates can be obtained, however, there are several convergence diagnostics that

help deciding when to stop. One of the most popular diagnostic is the Gelman-Rubin

test (Gelman et al. 1992); based on parallel chains, the within-chain variance and

the between-chain variances are estimated and the ratio between these to estimates

is compared to one. The recommendation is to stop the algorithm when this ratio

is close to one, with a general cut-off value of 1.1 (Gelman et al. 2013). Diagnostics

based in spectral density are also popular, such as, Geweke’s test (Geweke et al.

1991), which compares the means of the sampled parameter on two different parts

of the chain. If the means are close enough it is assumed that the two samples,

usually the last part and an earlier part, come from the same distribution. Another

spectral density-based diagnostic is the Heidelberg and Welch test which consists in

applying an stationarity test successively. First it is applied to the whole chain, if

the null hypothesis of stationarity is rejected, the test is repeated without the first
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10%, 20%, ... of the chain. If stationarity is not accepted before reaching the 50%

it is considered a failure of stationarity. Graphical convergence diagnostics are also

easy and popular tools, such as trace plots; showing the realization of the Markov

chain at each iteration so that it can be easily visualized if the chain is well mixed or

is stuck in some part, or autocorrelation plots; showing values of the correlation of

the sampled parameter with itself at differing time lags, having that as lag increases,

values should be close to zero for a fast mixing. A thorough review of convergence

an diagnostic for MCMC can be found in Roy (2020).

For state-space models, Bayesian approaches can be implemented using several avail-

able flexible software packages such as WinBUGS, OpenBUGS or JAGS (Just An-

other Gibbs Samples) from the BUGS family (Bayesian inference Using Gibss Sam-

pling, Lunn et al. 2012) or more recent tools using Hamiltonian Montecarlo such

as STAN (Carpenter et al. 2017). These are most widely used generic software for

Bayesian inference, all using MCMC algorithms.

Applications in stock assessment field can be found for different types of models, such

as, simple production models (Meyer and Millar 1999), two-stage biomass dynam-

ics (Ibaibarriaga et al. 2008), age-structured-length-based (Mäntyniemi et al. 2013),

mark-recapture models (Michielsens et al. 2006) or the JABBA tool (Mourato et al.

2018).

1.3.3 Management strategy evaluation

In general, the poor management of fish stocks or natural resources, has led to de-

pletion or population extinction in many cases. More than the half of all assessed

fish stocks may be in need of rebuilding (Worm et al. 2009). In 2018 from all stocks

in the Northeast Atlantic more than the 30% were overexploited (the exploitation

level was above the MSY fishing mortality) according to the STECF report (Scien-

tific, Technical and Economic Committee for Fisheries, STECF 2020). Thus, the

general objective is to reduce this percentage by providing advice for more species

and providing better advice. The Common Fisheries Policy (CFP) establishes gen-

eral objectives and rules for fisheries management in Europe (Salomon et al. 2014),

defining the total allowable catch (TAC) as one of the core tools for management.
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Figure 1.3: General scheme of the process to produce management advice.

The general steps followed for management advice are shown in Figure 1.3. Firstly

the population to be managed is identified and data on biology, abundance and

exploitation of the stock are collected. These data can be obtained from scientific

surveys and commercial catches, however, not all stocks have scientific monitoring

and sometimes only commercial data are available. Based on the availability and

quality of the data, the status of the stock is assessed, usually through international

scientific collaboration, given that stocks can be distributed along several countries.

This assessment is ideally performed integrating all available data in mathematical

models but not always is possible and trend-based or qualitative assessments can be

required. Based on the obtained stock assessment, management advice is produced

using estimates from mathematical models and experts opinion in order to meet

pre-specified objectives. Finally, the scientific management advice can be applied

to the corresponding population, however, the implementation of the advice is sub-

jected to several factors, such as the agreement between countries or other political

considerations, that are out of the scientific process.

The traditional approach for providing scientific advice for the management of fish

stocks has been based on the development of a good assessment of the resource, that

estimates the past and present stock status, and the subsequent short-term forecasts

in order to derive a management advice (Butterworth 2007). This is usually repeated

on an annual basis, that might result in highly variable recommendations from year

to year. Recent advances in fisheries science have been linked to the development

of evaluation tools for management actions of harvested stocks in a virtual world,
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without their direct application to the real system (Bunnefeld et al. 2011). Man-

agement strategy evaluation (MSE, Butterworth and Punt 1999, Kell et al. 2006,

Smith 1994) is a simulation framework that evaluates the performance of alternative

fisheries management measures in terms of trade-offs between pre-specified objec-

tives. It involves the projection of the entire management system into future years

by means of Monte Carlo simulation (McAllister et al. 1999). The aim is to identify

a management strategy that meets these management objectives while being robust

to the system’s uncertainties (Punt et al. 2016, Sainsbury et al. 2000).

The MSE framework is composed of two systems: the true system and the observed

one (Kell et al. 2007). The true system is represented by a mathematical model

called the operating model (OM), which represents the real dynamics of the fishery

system. It is composed of the stock and the fleet dynamics (biological and fish-

ing processes) and other potential covariates that could impact the system. The

management procedure (MP) represents the observed system and includes: 1) an

observation model that mimics the data monitoring from the true population and

fishery in the operating model, 2) stock assessment which gives the stock status

based on observed data and 3) decision of management actions based on the stock

assessment output. These management actions are usually represented by Harvest

Control Rules (HCR) that are mathematical formulas for pre-agreed management

actions as a function of variables related to the stock status (ICES 2006) that de-

termine target levels of fishing mortality, total catch or effort. HCRs are defined

depending on the available knowledge of fish stocks. The MP is linked to the OM by

the implementation of the decided management actions, which will have an impact

on the dynamics of the fishery system (Figure 1.4).

One of the strengths of MSE is that it includes different sources of uncertainty in

the components of the described system. Francis and Shotton (1997) identified the

main sources of uncertainty in fisheries in general. Later, Punt et al. (2016) distin-

guished that the major sources of uncertainty in MSE in particular are: 1) process

uncertainty, related to stochasticity on demographic characteristics 2) parameter un-

certainty, coming from variability on estimated parameters used to condition the case

study 3) observation error in the data, due to sampling inaccuracy, 4) uncertainty

when conducting assessment, related to the estimation process of the assessment

model and 5) implementation error, coming from the variability in the fulfilment of

the defined management policy.
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Depending on the way the observation and assessment errors are included in the

MSE, the ICES Study Group on Management Strategies differentiated three types

of MSEs (Figure 1.4). A ”full-feedback” MSE incorporates the stock assessment

in the Monte Carlo simulation, a ”shortcut approach” MSE uses an emulator of

the stock assessment and an ”empirical” MSE is based directly on stock status in-

dices collected from the population and/or the fishery. Being able to incorporate

the assessment model in the MSE of a specific stock can represent a substantial

improvement for the correct characterization of the entire process and the related

uncertainty, which is crucial for a robust management plan. However, the imple-

mentation of a full-feedback approach can be tedious and very time consuming.

Among the available software for MSE, we will use FLBEIA (Bio-Economic Impact

Assessment using FLR, Garcia et al. 2017) that has been applied for a large number

of case studies across Europe (Nielsen et al. 2018). FLBEIA is an R package (R Core

Team 2018) built on the basis of FLR libraries (Kell et al. 2007). It is implemented

modularly, which allows for increased complexity. Inside the OM it has modules

concerning biological, fleets and covariates dynamics, and in the MP there are mod-

ules for observation, assessment and advice processes. Each of the module contains

functions that the user can choose or new ones can be coded in R and used within

FLBEIA to fulfil case specific requirements, as done in this thesis.

Figure 1.4: Schematic representation of different forms of MSE, modified from Punt
et al. (2016) and taken from ICES (2020a).
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1.4 Objectives

The general objective of this thesis is to use Monte Carlo simulation to test the im-

proved statistical models for species distribution models, stock assessment models

and management advice of fish stocks, taking as a case study the stock of sardine

in the Bay of Biscay.

In particular, the specific objectives of this thesis are:

- To propose and test via Monte Carlo simulation a habitat modelling approach that

meets the ecological niche theory.

- To compare the established stock assessment model for our case study to other

alternative models and to evaluate, using Monte Carlo simulation, uncertainty esti-

mation methods when introducing flexibility through non-parametric smoothing in

fishing mortality.

- To develop a full-feedback MSE for our case study introducing different uncertainty

sources through Monte Carlo simulation.

1.5 Structure

This thesis is structured in six chapters, with four annex documents that include

supplementary material.

After the general introduction provided in this first chapter (Chapter 1), a proposal

for species distribution modelling using shape-constrained GAMs is presented, to-

gether with real data applications for sardine and other species (Chapter 2). Then,

we summarise the current assessment methodology for sardine and we present two

alternatives using a simpler approach based on AD and a Bayesian ad-hoc approach

(Chapter 3). In the next chapter, we evaluate the uncertainty estimation in stock

assessment models with non-parametric effects on fishing mortality using different

estimation approaches (Chapter 4). In the last main chapter, we use the stock as-

sessment results for conditioning population dynamics for MSE, an we include the

assessment model explicitly in the process together with other uncertainty sources
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to evaluate the effect of each of uncertainty source in an MSE (Chapter 5). Each

of these main four chapters include their own introduction, material and methods,

results, and discussion. Finally, we summarize the main conclusions of the work and

propose further work (Chapter 6). A list of the scientific contributions derived from

the work presented in this dissertation is also provided.
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Chapter 2
Modeling species presence-absence in the

ecological niche theory framework using

shape-constrained GAMs

In this chaper we use Monte Carlo simulation to evaluate the use of shape-constrained

generalised additive models (SC-GAMs) to build species distribution models under

the ecological niche theory framework. Based on the simulation study and a real data

application, we compare their performance with respect to other regression models

without shape-constraints (such as standard GLMs and GAMs with varying degrees

of freedom) and also to models based on so-called “Plateau” climate-envelopes. The

proposed approach is applied to model the thermal niche of sardine eggs in the

Bay of Biscay and to characterize the egg distribution at the spawning of other two

pelagic species as a function of several environmental variables.

2.1 Introduction

Species distribution models (SDM) associate locations of species occurrence or abun-

dance with the characteristics of their environment in order to predict geographical

distributions (Elith and Leathwick 2009). A variety of statistical methods have

been applied to species distribution modelling (e.g. Guisan and Zimmermann 2000,

Merow et al. 2014) such as regression-based models (Guisan et al. 2002, Hastie

and Tibshirani 1990), environmental envelopes (BIOCLIM, Busby (1991), Cerdeira

et al. (2018)), mechanistic approaches (CLIMEX, Kriticos et al. (2015)), neural net-

works (Pearson et al. 2002) and maximum entropy models (MAXENT, Phillips et al.

(2006)). However, most of these methods can result in species responses along en-

25
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vironmental gradients that are convex or multimodal, and consequently not ecolog-

ically meaningful or otherwise difficult to interpret (see below for further discussion).

It has been often claimed that species distribution models need a stronger theoreti-

cal background (see Austin 2002, Elith and Leathwick 2009, Jiménez-Valverde et al.

2008 for a detailed review). Recently, several authors have attempted to clarify

the relationship between species distribution models and the concept of ecological

niche (Kearney 2006, Peterson et al. 2011, Pulliam 2000, Soberon and Nakamura

2009). Although the debate is still open (Halvorsen 2012), it is agreed that the

resulting statistical model should be ecologically plausible (Elith and Leathwick

2009). According to the ecological niche theory, species distributions should pro-

vide unimodal relationships with respect to environmental gradients (Hutchinson

1957). When environmental conditions become less favourable, various stages of

the life cycle (feeding, growth and reproduction) are affected, resulting in a lower

presence of the species (Austin 1987, Helaouet and Beaugrand 2009). Hutchinson

(1957) defined the niche as an “n-dimensional hypervolume”, where the dimensions

are environmental states within which a species can survive. Hutchinson (1957) also

distinguished “fundamental” from “realized” niches, to define the conditions under

which species could survive and those where they live, respectively: (1) the funda-

mental niche is determined by the physiological range of tolerance of the species to

environmental factors in the absence of biotic interactions (e.g. competition, preda-

tion or parasitism), and (2) the realized niche is the part of the fundamental niche

occupied by the species, given factors such as the presence of competitors/preda-

tors and dispersal limitations of the species (Soberón and Arroyo-Peña 2017). As a

result, the realized niche tends to be smaller than the fundamental niche (Soberón

and Arroyo-Peña 2017). Although the fundamental niche should be unimodal, the

realized niche can be bimodal when the centre of the niche gradient is affected by

interspecific competition or when the species is not occupying the most suitable

habitat due to dispersal limitation (Austin 2002). However, scarce species data and

the heterogeneous distribution of species occurrence along gradients are the most

problematic situation leading to multimodal and ecologically non-meaningful rela-

tionships with environmental variables. For instance, data on the occurrence of a

fish species which spawns in two river mouths, separated by a latitudinal distance,

can easily lead to a bimodal distribution along a temperature gradient.

The concept of niche has evolved after the 80’s and incorporates the impacts of
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the organism on environmental factors (Chase and Leibold 2003) to better explain

competition and species coexistence (Pocheville 2015). For the pragmatic purpose

of modelling species distribution, this can include several types of variables, as well

as those defining the niche namely, direct variables, resource variables, and indirect

variables (Austin and Smith 1990, Guisan and Zimmermann 2000, Huston 1994).

Direct variables are those environmental factors having a direct physiological im-

pact on the species but are not consumed, typical examples being pH affecting plant

growth or temperature affecting fish growth. Indirect variables do not have a di-

rect physiological impact, but might be highly correlated with the species through

the combination of related factors effects. For example, elevation can affect species

presence through the combined effect of atmospheric pressure, temperature and UV

radiation, and have ecophysiological implications. Resource variables refer to limit-

ing factors (i.e. essential resources consumed by the species, such as food and oxygen)

and biotic interactions (competition, predation or mutualism). The first two types

(direct and indirect) of variables are within the group of variables that do not inter-

act dynamically with the species and hence are not affected by species abundance.

These were termed “scenopoetic” variables by Hutchinson (1978). In contrast, re-

source variables interact with the species and are affected by species presence and

abundance. In the context of species distribution models, several authors (Austin

1980; 2007, Austin and Smith 1990) have discussed the shape of response curves

and how this depends on the variable type. While there is no theoretical expecta-

tion regarding the shape with respect to indirect variables, they advocated that the

fundamental niche as a function of direct variables should be unimodal (symmetric

or not), and for limiting factors should be logistic or Michaelis-Menten saturation

curves. SDMs based on non-scenopoetic variables might require more elaborate

mathematical methods to include species interaction (Peterson et al. 2011). Thus,

species distribution models need to combine environmental variables that are ex-

pected to meet the ecological niche theory with other explanatory variables having

no shape restrictions.

Commonly used methods to build species distribution models in the ecological

niche theory framework include regression-based methods, such as generalised linear

models (GLMs) and generalised additive models (GAMs). They have been well-

documented, both theoretically and empirically (Coudun and Gegout 2006, Guisan

et al. 2002, Lehmann et al. 2002, Scott et al. 2002). Generalised linear models

(Guisan et al. 2002, McCullagh and Nelder 1989) are widely used in statistical
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ecology as a simple parametric technique that may allow symmetric bell-shaped

ecological response curves (Coudun and Gegout 2006, Jamil and Ter Braak 2013).

However, this can be too restrictive as often non-symmetric responses have been

observed (Austin 2007, Huisman et al. 1993). Generalised additive models are also

very popular as semi-parametric and more flexible regression-like approaches (Austin

2002, Heikkinen and Makipaa 2010). Pedersen et al. (2019) proposed an extension

of GAMS called hierarchical GAMs (HGAMs) to model intergroup variability in

ecology; these models allow smooth functions to vary between groups and can be

used to test if the smooth functions are common across groups. In general, GAMs

and related extensions allow flexible non-symmetric shapes, but they can result in

implausible response curves, contrary to the ecological niche theory framework. Cur-

rent practice tends to use low degree smoothing functions, such as splines with a

low number of knots, in order to obtain response curves in agreement with the niche

theory (Chust et al. 2014). However, restrictions on the number of knots and/or the

degrees of freedom (by altering the smoothing parameter within GAMs, say) do not

guarantee this aim, and a visual evaluation of resulting fitted curves is still required.

Other attempts to build species distribution models under ecological niche theory in-

clude Beta functions (Minchin 1987) and Huisman-Olff-Fresco (HOF) curves (Huis-

man et al. 1993), fitting unimodal and monotonic response curves with or without

symmetry. A simulation study by Oksanen and Minchin (2002) concluded that HOF

curves obtained better results than Beta functions and Gaussian response models

which provided biased or inappropriate models. However, they are only allowed for

single-variable analysis. Alternatively, the “Plateau” method proposed by Brewer

et al. (2016) is an environmental envelope model based on a concave piece-wise

polynomial function. While providing an ecologically meaningful method (unimodal

even if not symmetric), this approach can be easily extended to multiple environ-

mental variables accounting for potential interactions between the climatic variables.

Shape-constrained generalised additive models (or simply SC-GAMs, Pya and Wood

2014) are based on the same statistical framework as GLMs and GAMs regres-

sion methods, but they allow us to incorporate monotonicity and concavity shape-

constraints in the component functions of the linear predictor of the GAMs. Impos-

ing concavity constraints should be an effective alternative to fitting non-symmetric

parametric response curves, while retaining the unimodality constraint, required by

the ecological niche theory, for direct variables and limiting factors. Recently, several
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successful applications of shape-constrained models to incorporate prior knowledge

about the shape of the response curve along variables of interest have been found

related to animal activity, pollution mortality, tree height-diameter relationships or

petroleum engineering (Guevara et al. 2018, Hofner et al. 2016, Schmidt et al. 2018).

The objective of this work is to assess the performance of SC-GAMs in fitting species

distribution models under the ecological niche theory in comparison with other ap-

proaches. We considered two different implementations of SC-GAMs: the maximum

likelihood implementation from the scam R (R Core Team 2018) package (Pya 2018);

and the component-wise boosting approach from the mboost R package (Hothorn

et al. 2018). First, we conducted a simulation study to assess performance in terms

of goodness-of-fit and agreement with the ecological niche theory—comparisons with

respect to GLMs, GAMs with different degrees of smoothness, and the “Plateau”

method. All methods were evaluated within a real case study, modelling the prob-

ability of the presence of sardine eggs in the Bay of Biscay as a function of sea

surface temperature. Secondly, SC-GAMs were used to model egg distribution at

the spawning of three pelagic species as a function of several environmental gra-

dients, combining direct and indirect variables, and accounting for model selection

and validation.

2.2 Material and methods

2.2.1 Regression models for presence-absence data

We considered six different approaches for fitting species distribution models. In

all of them, species presence-absence data were modelled as a function of an en-

vironmental variable x. Let Y be the response variable coming from a Binomial

distribution with probability of presence p(x). The logit transformation of p(x) is a

function of the environmental variable x (presented here using a single explanatory

variable for simplicity):

log
( p(x)

1− p(x)

)
= g(x). (2.1)

The simplest model is a binary logistic generalised linear model (GLM, McCullagh

and Nelder 1989,Oksanen et al. 2001, Ter Braak and Looman 1986) where the linear

predictor is a second order polynomial of the environmental variable:
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g(x) = β0 + β1x+ β2x
2. (2.2)

For β2 < 0, this results in a unimodal and symmetric relationship between the

species response and the environmental variable.

Generalised additive models (GAMs, Hastie and Tibshirani 1990, Wood 2006a) are

a generalisation of GLMs, where the linear predictor is a smooth function of the

explanatory variable. In a binary regression model with a logit link, we have the

form:

g(x) = β0 + f(x), (2.3)

where f(x) is a smooth function that can be represented from kernel smoothing or

local linear methods to splines-based regression methods (see chapter 1).

The R package mgcv (Wood 2019) is the most popular R package to fit GAMs.

The use of GAMs has already been proposed in the literature on habitat modelling

and ecological niche theory (Chust et al. 2014). Generally, the species response

curve is not constrained to a particular shape but instead is controlled by limiting

the flexibility of the model by selecting the number of knots. GCV (Generalised

Cross-Validation) criterion is used for smoothing parameters estimation as a default

method in the used mgcv package.

The methods proposed in this chapter, SC-GAMs, are based on generalised additive

models, allowing us to impose shape-constraints on the linear predictor function. In

Bollaerts et al. (2006) or Eilers (2017) an algorithm based on asymmetric penalties

in an iterative procedure is proposed. A similar approach is considered in Pya and

Wood (2014) using shape constraints (monotonicity, concavity/convexity or mixed-

typed constraints) with B-splines on the first or second derivates of the smooth

terms. The latter methods are implemented in the R package scam in a more gen-

eral framework, e.g. including bivariate tensor product smooths (Pya 2018).

For fitting species distribution models in agreement with the ecological niche the-

ory, we imposed concavity constraints in the linear predictor scale (f ′′(x) ≤ 0) for

which the condition θj ≤ θj−1 suffices (see Pya and Wood 2014 for further details).

As proved in Annex A, this implies unimodal probability response curves. The

implementation of the method allows for an automatic selection of the smoothing
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parameters by calling the gam function in the R package mgcv. However, we found

the algorithm fails to converge in some situations. This issue is discussed in the next

section.

Another method we considered is the so-called model-based boosting. Boosting is a

gradient descent algorithm for optimizing general risk functions using component-

wise penalized least squares for fitting GAMs (see Bühlmann and Hothorn 2007,

Hothorn et al. 2010 for further details). Boosting is a popular ensemble method

in machine learning, where multiple learners (usually known as base learners) are

trained to solve the same problem. In the particular case of modelling species dis-

tributions, shape constraints are implemented in the package mboost through the

base-learner bmono, based on P-spline base-learners with an additional symmet-

ric penalty in second-order differences on the linear predictor scale, as in Bollaerts

et al. (2006). The optimal number of boosting iterations can be achieved via cross-

validated estimation of the empirical risk for hyper-parameter selection. For more

technical details about theoretical aspects and software implementation, see Hothorn

et al. (2018) or Hofner et al. (2014).

Finally, the “Plateau” method, proposed by Brewer et al. (2016), performs climate

envelope fitting via an explicitly defined concave shape on the linear predictor scale.

This shape consists of an increasing slope, a possible plateau, and a decreasing slope.

In the univariate case, the envelope function is defined as a piece-wise function:

g(x) =


α1 + β1x x ≤ −α1/β1,

β0 −α1/β1 < x < α2/β2,

α2 + β2x x ≥ α2/β2,

(2.4)

where β1 > 0, β2 < 0 are increasing and decreasing slopes, α1, α1 are intercepts and

β0 is the plateau value.

2.2.2 Simulation

In order to evaluate and compare the performance of the proposed approaches for

fitting species distribution models, we carried out a Monte Carlo simulation study.

First, four different theoretical response curves depending on a single environmen-
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tal variable were generated within the simulation model, which are considered as

the true curves for performance statistics computation. Afterwards, sampling and

observation errors were introduced and presence-absence data sets were generated

based on the underlying theoretical probability curves. The simulated data sets

were then fitted according to the proposed models. Finally, the goodness-of-fit and

the concordance of the fitted model with the ecological niche theory were measured

through several performance statistics, described in section 2.2.6 below.

2.2.2.1 Environmental gradient

The real environmental variable used for data simulation was the sea surface tem-

perature (SST) in the Atlantic Ocean in 1999 (Edwards et al. 2012b). These data

are arranged on a grid with a spatial resolution of 1x1 degrees (1489 data points)

covering the region between 40◦ and 63◦ in latitude and −70◦ and 2◦ in longitude.

The average SST in the selected data is 9.92◦C with a standard deviation of 5.35◦C

and minimum and maximum values of -2◦C and 20.6◦C respectively.

2.2.2.2 Species responses

Theoretical species response curves along the environmental gradient of SST (x)

followed the generalised Beta function proposed by Minchin (1987):

b(x) =


P0
d

(
x−m
r + b

)α (
1− (x−mr + b

)γ
m− rb < x < m+ r(1− b)

0 otherwise

(2.5)

where m is the location of the optimum, P0 is the maximum probability of occurrence

at the mode, r is the range of occurrence along the gradient and α and γ are

shape parameters. The additional parameters b and d depend only on α and γ

and are introduced to reduce the complexity of the formula (b = α/(α + γ) and

d = bα(1−b)γ). Combining different values for the shape parameters, we generated 4

distinct curves representing different plausible scenarios: a symmetric curve (denoted

as curve1, with α = 4, γ = 4), a platykurtic curve (denoted as curve2, with α = 0.1,

γ = 0.4), a left skewed curve (denoted as curve3, with α = 1.5, γ = 0.5) and a right-

skewed curve (denoted as curve4, with α = 1, γ = 4) (Figure 2.1). All scenarios

were generated with the same maximum probability of occurrence (P0 = 1), location

of optima (m = 6.95 ◦C) and range of occurrence (r = 10 ◦C).
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Figure 2.1: Columns are the true curves (curve1-curve4) and rows are the generated
presence-absence data (grey dots) by sampling scenarios (smp1–smp4) for a single
replicate.

2.2.2.3 Sampling

For each type of curve, we generated a sample of 1000 observations according to

four different sampling schemes. As a first sampling option (smp1) samples were

generated randomly along with the whole range of the environmental gradient with

the same probability at all locations. In the second sampling scheme (smp2), the

sampling probability is proportional to b(x), so that the probability of sampling

locations is higher around the theoretical response curve mode than in the tails.

The last two options (smp3 and smp4) account for the cases where the whole range

of the environmental gradient is not observed, having a sampling probability of zero

above (or below) a specific value of the gradient (see the rows of Figure 2.1).

2.2.2.4 Presence-absence data

The presence-absence data y was generated via a Bernoulli distribution with prob-

ability of occurrence p(x), which is a noisy version of b(x) in equation (2.5). In

order to mimic the effect of (unobserved or unmodelled) environmental variables

other than x, p(x) was draw from a beta inflated distribution (BEINF, allowing
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for zero and one inflation) implemented in the R package gamlss.dist (Rigby and

Stasinopoulos 2005, Stasinopoulos et al. 2019):

p(x) = BEINF(b(x), σ, ν, τ), (2.6)

where the theoretical occurrence probability b(x) is the mean of the distribution, σ =

0.1 is the scale parameter and ν = τ = 0.1 are parameters modelling the probabilities

of zero and one respectively (ν = p0/p2, τ = p1/p2 , where p2 = 1 − p0 − p1 and p0

and p1 are probabilities of zero and one respectively). For further details on BEINF

parametrization see Stasinopoulos et al. (2019).

2.2.2.5 Model fit

For each type of curve and each sampling scheme, 100 replicated data sets were

generated (a total of 1600 data sets). Each generated data set, with 1000 obser-

vations each, was fitted using the proposed methods. Table 2.1 summarizes the

six approaches considered (namely “GLM”, “GAMhk”, “GAMlk”, “SCAMfixSP”,

“boost” and “Plateau”) and includes: the functional form of the model; constraints

(if any); type of basis function (or base learner in the case of boost); penalty (yes or

no); and finally the corresponding R packages and specific functions.

It is important to state some options we fixed in performing the simulations: i) for

GAM methods we consider a low number of knots (K = 3, in GAMlk) and a higher

number of knots (K = 10, in GAMhk), following Chust et al. (2014) for illustrative

purposes; ii) for the SC-GAM’s implementation in the R package scam, we found

several convergence problems in the current implementation (scam version 1.2-4),

and hence we decided to remove the penalty from the model by fixing the smooth-

ing parameter (with the argument sp) to 10−4 and controlling the smoothness with

a fixed number of knots in the construction of the model bases; iii) boosting is a

computationally more expensive method but overcomes the convergence problems

in scam (see Annex B for implementation details and code).

For each sampling scenario, fitted values were obtained along with the correspond-

ing sampled environmental gradient interval while predictions were computed for the

whole gradient interval. Analyses were performed using the computing environment

R (R Core Team 2018).
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Table 2.1: Summary of the six approaches considered.

Method Functional
form

Constraints Basis Penalty Package Function

GLM β0 + β1x+ β2x2 β2 < 0 2nd order poly-
nomial

No stats glm

GAMlk β0+
∑K
j=1 fj(x) K = 3 tprs Yes mgcv gam

Yes

GAMhk β0+
∑K
j=1 fj(x) K = 10 tprs Yes mgcv gam

Yes

SCAMfixSP β0+
∑K
j=1 fj(x) f ′′(x) ≤ 0 B-splines with

concavity
No scam scam

boost β0+
∑K
j=1 fj(x) f ′′(x) ≤ 0 concavity con-

straint
Yes mboost gamboost

Plateau See Eq. (2.4) β1 > 0, β2 < 0 piece-wise
parametric

No plateau fit.glm.env

2.2.2.6 Performance statistics

The goodness-of-fit of each method was evaluated in terms of the Root Mean Squared

Error (RMSE):

RMSE =

√∑
(p− p̂)2

n
, (2.7)

where p is the real, theoretical probability, p̂ is the estimated probability and n is

the sample size (n = 1000 in this case).

The level of agreement with the ecological niche theory was evaluated in terms of

the concavity constraint. Second derivatives along the environmental gradient were

approximated via finite differentiation. Negative second derivatives for the predicted

curves along the whole environmental gradient indicate that the concavity restric-

tion is respected on the linear predictor scale, while positive values at some point

would indicate that a non-concave shape has been estimated. When concavity is

held, we looked at the first derivatives, computing the number of changes of sign of

the fitted curve, to evaluate whether the method was capable of estimating a global

maximum, as defined in the theoretical curve, or not.

Uncertainty around estimated curves was compared by means of estimated variances

of predicted values along with the whole range of each curve. Coverage probabilities

were computed as the percentage of theoretical values along the whole gradient that
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fell inside the estimated 90% confidence intervals in each replicate (Morris et al.

2019).

2.3 Results

The six modelling approaches were applied to each replicated data set for each type

of curve and sampling scheme. The proposed shape-constrained GAM methods

(“SCAMfixSP”, “boost”) as well as the “Plateau” method does satisfy the con-

cavity restriction, resulting in unimodal response curves, and show closer estimated

probabilities to the true theoretical response curve compared to the rest of the meth-

ods, as illustrated in Figure 2.2 for a single replicate and single scenario. In contrast,

the “GAMhk” method, the most flexible option, does not fulfil the concavity restric-

tion and neither of the “GLM” and “GAMlk” methods are capable of detecting the

maximum. Estimated probabilities with these last two methods are far from the

theoretical curve, mainly for unsampled environmental gradient values (Figure 2.2).

Figure 2.2: Predicted response curves by method for curve2 and smp4 for a single
replicate. Dashed black lines represent the true theoretical response curves and
solid lines represent obtained fitted curves with their corresponding 90% confidence
intervals in gray. Vertical gray dashed lines represent the sampling range. Each
panel corresponds to a particular method.
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In order to summarize the performance statistics for all scenarios and methods,

median and 0.1, 0.25, 0.75 and 0.9 percentile values across the 100 replicates were

computed. The SC-GAM methods (“SCAMfixSP”, “boost”) and the “Plateau”

method all satisfy concavity restrictions in all cases, assuring unimodal response

curves are estimated in every scenario. They are able to detect a single global max-

imum in more than 80% of the replicates in most of the scenarios, with the “boost”

method having the highest success percentages on detecting global maxima for all

scenarios (Table 2.2). Furthermore, SC-GAMs result in better performance in terms

of RMSE, giving lower values than the rest of the methods, except for the most flex-

ible “GAMhk” method, which gives the lowest RMSE values (Figure 2.3). However,

when using “GAMhk”, estimated curves almost never satisfy the concavity restric-

tion (only 40 fitted curves out of 1600 simulations are concave). The “GLM” and

“GAMlk” methods are able to fit concave curves only for sampling options smp1

and smp2 and result in worse RMSE values than the shape-constrained methods.

For the rest of the sampling options (smp3 and smp4), these methods are not able

to always fit concave curves, and when concavity does hold, global maxima are not

detected in most cases (Table 2.2).

Table 2.2: Percentage of replicates for each scenario and method for which estimated
response curves are concave in the linear predictor scale and percentage of fitted
curves that detect a single global maximum.

curve1
smp1

curve1
smp2

curve1
smp3

curve1
smp4

curve2
smp1

curve2
smp2

curve2
smp3

curve2
smp4

curve3
smp1

curve3
smp2

curve3
smp3

curve3
smp4

curve4
smp1

curve4
smp2

curve4
smp3

curve4
smp4

GLM
concave % 100 100 85 0 100 100 15 100 100 100 100 0 100 100 19 0

max detected % 100 100 47 0 100 100 8 100 100 100 100 0 100 100 6 0

GAM lk
concave % 100 100 88 0 100 100 15 100 100 100 100 0 100 100 18 1

max detected % 100 100 2 0 100 57 0 12 100 100 2 0 100 74 0 0

GAM hk
concave % 0 2 0 0 0 31 0 2 0 6 0 0 0 0 0 0

max detected % 0 2 0 0 0 20 0 1 0 6 0 0 0 0 0 0

SCAM fix SP
concave % 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

max detected % 100 100 100 70 100 100 94 69 100 100 100 35 100 100 100 100

Boost
concave % 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100

max detected % 100 100 100 99 100 98 93 82 100 100 100 87 100 100 100 100

Plateau
concave % 100 100 100 100 100 100 98 100 100 100 100 100 100 100 100 100

max detected % 100 100 98 92 97 44 18 68 100 93 74 78 100 89 63 87
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Figure 2.3: Logarithm of RMSE for all curves and sampling scenarios. Points are
median RMSE values across replicates and vertical thick lines represent the 75%
interquartile range, while thin lines represent the 90% interquartile range. Black
elements: all obtained fitted curves are concave; grey elements: not all fitted curves
are concave. Each column corresponds to a curve type and each row to a sampling
scenario.

Concerning uncertainty indicators, standard deviations were computed for each

data-point and were used to compute 90% confidence intervals around the estimated

curves. Among the methods that are able to estimate concave shapes, SC-GAM

methods have higher coverage percentages (percentage of true theoretical values

that fall inside these confidence intervals, see Figure 2.4) in comparison to “GLM”

and “GAMlk” methods. The most flexible method, “GAMhk”, shows the highest

coverage percentages. However, we have noted that the underlying fitted curves are

often not concave. Although in most scenarios, the “Plateau” method and proposed

shape-constrained GAM methods show similar results (overlapping intervals), the

“Plateau” method presents higher variability in results, while the “boost” method

shows more stable interquartile ranges across replicates (see Figures 2.3 and 2.4).

Note that obtained coverage percentages are low in all cases due to the introduced

zero and one inflated error, making the estimated maximum probability lower than

the theoretically fixed value (P0 = 1), and estimated curve tails greater than 0 (see
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Figure2.2).

Figure 2.4: Coverage percentages for each scenario and method. Thick lines rep-
resent the 75% interquartile range, while thin lines represent the 90% interquartile
range. Points represent median values. Black color represents that all obtained
fitted curves are concave and grey color means that not all estimated curves are
concave. Each column corresponds to a curve and each row to a sampling scenario.

2.4 Case studies

The proposed methods were also used to model the spawning habitat of some fish

species in two different case studies. In the first case study, the six modelling ap-

proaches were tested and compared in univariable analysis, modelling the occurrence

of sardine (Sardine pilchardus) eggs in the Bay of Biscay as a function of Sea Sur-

face Temperature (SST). In the second case study, the use of the proposed shape

constrained methods was extended to more than one variable. An illustration of the

use of concavity restrictions for some variables in a more complex and realistic case

study is provided.
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2.4.1 Thermal niche for sardine eggs

Several studies have attempted to identify the main environmental variables and

timing that determine sardine spawning and found that temperature was an impor-

tant factor (Bernal et al. 2007, Planque et al. 2007).

We analysed the presence of sardine eggs as a function of sea surface temperature

(SST) using data collected in the BIOMAN survey (Santos et al. 2018). This sur-

vey is conducted yearly in May in order to estimate the spawning stock biomass

of anchovy in the Bay of Biscay by the Daily Egg Production Method (DEPM,

Lasker 1985, Parker 1980). In addition, in some years the DEPM is also used to

estimate the spawning stock biomass of sardine (see ICES 2017b technical report).

We compiled data from the years 1999, 2002, 2008, 2014 and 2017, for which the full

DEPM was applied for sardine. At each sampling location, presence-absence data

of sardine eggs, geographical position (longitude and latitude), and environmental

variables such as SST, were recorded. In total, 3472 data points were used for the

model fitting. The presence-absence data distribution along the environmental gra-

dient for this case study is similar to smp2 scenarios in the simulation study, with

overlapping distributions of presences and absences (see Figures C1 and C2 in An-

nex C for presence-absence data densities).

From the six proposed methods, “GLM” and “GAMhk” result in a convex and a

multimodal response curve respectively, that are incompatible with the niche the-

ory. Shape-constrained methods give concave unimodal curves which do agree with

the niche theory (see Figure 2.5). The GAM method with fewer degrees of freedom

(“GAMlk”) results in a monotone decreasing function. When predicting for tem-

peratures lower than observed the predicted probabilities of presence continue to

increase, being far from the expected bell-shaped response curve.

For each method, we computed the optimum temperature and the range of toler-

ance temperatures. The optimum was the value of the gradient with the highest

estimated probability of presence and the tolerance was determined by the range of

gradient where the predicted probability of species occurrence was higher than half

of the maximum value for predicted probability (Schröder et al. 2005). For “GLM”

and “GAMlk” the lower limit of the tolerance range could not be computed or can

be considered −∞ given that the estimated curve is monotonically increasing for
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decreasing values of the gradient. The optimum SST is estimated around 12.5◦C

for these two methods while for the rest of the methods it located around 13.5◦C.

The obtained tolerances with shape-constrained methods and “GAMhk” methods

are very similar giving a range from around 12 to 18◦C.

Figure 2.5: Fitted response curves (in black) and predicted curves (dashed curves)
for sardine egg real presence-absence data along the SST environmental gradient.
Vertical lines represent the optimum and dashed vertical lines tolerance limits. Each
panel corresponds to a specific method.

2.4.2 Spawning habitat of three pelagic species

Often when fitting species distribution models, the spatio-temporal coverage of the

data is limited and does not cover the range of the environmental gradient that

determines the biogeographic species area (Austin 2007). In those cases, the species

response is truncated and cannot be modelled adequately. The ample coverage of the

ICES triennial mackerel egg survey makes it an exception. Since 1977, the survey
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has been conducted every three years between January and July and covers a large

area from southern Spain to the north of Scotland, to estimate the total annual egg

production of the western Atlantic mackerel stock (ICES 2018a, Lockwood et al.

1981). The egg presence-absence and abundance data collected during the survey

have been used to characterize the spawning habitat of mackerel: see Borchers et al.

(1997), Bruge et al. (2016), Brunel et al. (2018). Within the framework of an EU

programme (INDICES, EU Study 97/017), the samples collected during the 1998

triennial survey were reanalyzed and eggs and larvae of other fish species were quan-

tified (Ibaibarriaga et al. 2007). We applied SC-GAMs to model the egg distribution

of three of these species: European anchovy (Engraulis encrasicolus); sardine (Sar-

dine pilchardus); and Atlantic mackerel (Scomber scombrus). Their performance

was compared with respect to the other methods considered. For each sampling

location of presence-absence of eggs, we compiled environmental and depth data.

Environmental data were extracted from the NCEP Global Ocean Data Assimila-

tion System, GODAS (Derber and Rosati 1989), which provides gridded 4D data

with a monthly temporal resolution and a vertical resolution of 10m on 0.333◦x1◦

latitude-longitude grid points of sea surface temperature (SST), salinity (SSS), the

temperature at 205 m (temp205), the difference between surface temperature and

temperature at 205 m (temp dif) and oceanic mixed layer (dbss obml). Depth

data were obtained from the bathymetric database ETOPO1 from NOAA using the

package marmap (Pante and Simon-Bouhet 2013) in R (R Core Team 2018) and in-

troduced in log scale (logbathy).

We applied the “SCAMfixSP’ method, which allows constructing models as a com-

bination of shape-constrained variables and non-restricted variables. Among the

variables available for these case study, all of them were treated as direct vari-

ables (Austin 2007), and therefore introduced with shape constraints, except for

bathymetry, which was considered to be an indirect variable, and so introduced

without shape restriction. Variable selection was based on AICc, as defined in Bar-

ton (2009), selecting for each species the model with the lowest AICc, after removing

the variables that were not significant in univariable analysis. Depth was selected

for all species models. Additionally, salinity, surface temperature and temp dif were

also selected for anchovy, obtaining a model fit with 61.1% of explained deviance. In

the sardine model salinity and temperature at 205m were included obtaining 33.7%

of explained deviance, while for mackerel salinity and temp dif were selected for

the final model with 29.97% of explained deviance. All selected variables and AICc
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values for each species are shown in Table 2.3.

All used variables except for depth were introduced in the models with the concavity

restriction on the linear prediction scale, assuring this way that the ecological niche

theory was met. These variables’ response curves of the selected direct variables (sea

surface temperature (SST), salinity (SSS), the temperature at 205 m (temp205),

the difference between surface temperature and temperature at 205 m (temp dif)

and the oceanic mixed layer (dbss obml)) are monotonic or unimodal, presenting

a single optimum at most. The optimum salinity value was estimated at 35.3 psu

for anchovy and 35.5 psu for mackerel, while for sardine the whole range could

not be captured, resulting in a monotonic decreasing response curve (Figure 2.6).

The optimum along the temp205 variable was estimated at 12.2◦C for sardine. All

marginal response curves for these variables and each species can be found in the

supplementary material (Annex C, Figures C3, C4, C5).

Figure 2.6: Predicted marginal response curves along salinity variable (SSS) for an-
chovy, sardine and mackerel fitted with three different methods; a proposed SC-GAM
method (“SCAMfixSP’) and no restricted GAM approaches with k=3 (“GAMlk’)
and k=10 (“GAMhk’).

This proposed SC-GAM approach was also compared with other unrestricted meth-
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ods for this multivariate case study. Presence-absence data for these three species

with the same selected explanatory variables were also fitted using more common

GAM approaches (“GAMlk” and “GAMhk”), showing that marginal response curves

are not in agreement with the ecological niche theory—some estimated response

curves do not satisfy the unimodality condition (Figure 2.6).

Validation for these models was conducted via k-fold cross-validation (with k = 5).

The data set was divided into k equally sized groups (Hijmans 2012), using 80%

of randomly selected observations to run the model and the remaining 20% for val-

idation, iteratively for each fold. Accuracy indicators, such as AUC (Area Under

the Receiver Operating Characteristic (ROC) curve) (Fielding and Bell 1997, Raes

and ter Steege 2007), sensitivity (true predicted presences) and specificity (true pre-

dicted absences) were computed for each k random subsets and then averaged. The

threshold for presence-absence classification for each species was obtained as the

values maximizing sensitivity plus specificity. Obtained AUC, sensitivity, and speci-

ficity indicators are above 70% for the three species (Table 2.3) and are similar to

the values obtained when using all data without a cross-validation process, showing

good out-of-sample performance of the models.

Table 2.3: For each species, selected variables in the final model (using method
“SCAMfixSP”), AICc, explained deviance (%), AUC, specificity and sensitivity (%)
derived from the whole data set (All data), and specificity and sensitivity (%) derived
from the cross-validation process (CV).

All data (%) CV (%)
Species Selected variables AICc expl.dev (%) AUC spec sens spec sens
Anchovy SSS,SST,temp dif,logbathy 375.75 61.10 0.92 90 93 90 93
Sardine SSS,temp205,logbathy 899.35 33.70 0.80 79 82 79 82

Mackerel SSS,temp dif,logbathy 1322.62 29.90 0.77 73 81 73 81

Predicted occurrence probabilities for each species have been mapped, using for pre-

diction environmental variables from GODAS for June 1998. Apart from optimum

detection for each explanatory environmental variable, extrapolated maps allow us

to identify the spawning distribution of each species (Figure 2.7). For mackerel, the

north-west part of the map shows a high probability area, although presences were

not collected in this area during 1998. However, it has been reported that these

species do lay in this area in recent years (Bruge et al. 2016), which confirms the

reliability of the model in this area. For anchovy, areas close to the coast in the
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Bay of Biscay are detected as locations with a high probability of presence, while

for sardine, this area is wider, extending it along the Portuguese coast and up to

the Celtic Sea (Figure 2.7).

This case study data set was also analyzed using the “boost” method, which is also

capable of dealing with restricted and unrestricted variables. Results were similar to

those described and can be found in the supplementary material (Annex C, Figure

C6).

Figure 2.7: Predicted occurrence probabilities (p) in each map cell along with pres-
ences (circles) and absences (small dots) for each species in the north-east Atlantic.

2.5 Discussion

This study proposes SC-GAMs for species distribution models under the ecological

niche theory framework. This emerges as a new approach in the centre-ground be-

tween pure statistical fitting and process-based (or mechanistic) models that apply
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physiological thresholds (Mart́ınez et al. 2015) or takes into account factors affect-

ing spatial population dynamics such as species interactions, reproduction, mortality

and migration rate; see the comparison in Melle et al. (2014), Robinson et al. (2011).

Our proposed model has been tested by simulation for various types of theoretical

curves and sampling schemes and has been applied successfully to real case studies.

The performance has been compared to other regression models without shape-

constraints (GLMs and GAMs with different degrees of freedom (Guisan et al. 2002,

Hastie and Tibshirani 1990, McCullagh and Nelder 1989)) and to models based on

climate envelopes such as “Plateau” (Brewer et al. 2016).

SC-GAMs are based on the same statistical framework as GLMs and GAMs that are

commonly used to fit species distribution models (Guisan et al. 2002). According

to the simulation results, in several scenarios, mainly when the range of the envi-

ronmental gradient was not fully covered, “GLM” and “GAMlk” methods were not

able to approximate correctly the underlying theoretical niche model. Increasing the

degrees of freedom of the GAM (“GAMhk”) helped to estimate curves that were

closer to the true theoretical curve; however, due to random noise, fitted curves

were mostly multimodal and not concave which renders them implausible under the

ecological niche theory framework. An essential challenge when modelling the re-

lationship between species occurrence and environmental drivers is to capture the

signal and to differentiate it from sampling and environmental noise (Burnham and

Anderson 2003). Therefore, for all models in general, and for GAMs in particular,

determining the appropriate model complexity is critical both for robust inference

and for accurate prediction. Excessive flexibility can lead to overfitted models where

resulting patterns can be spurious and affected by noise, and predictions based on

such models can be biased and unreliable (Burnham and Anderson 2003). Many

authors have favoured simpler versus more complex models (Merow et al. 2014 and

references therein), suggesting that researchers should constrain the complexity of

their models based on the study objective, attributes of the data, and an understand-

ing of how these interact with the underlying biological processes. Austin (2002)

suggested that complex functions produced by GAMs could be replaced by an equiv-

alent parametric function, simpler and ecologically easier to interpret. In practice,

other authors have manually changed the degrees of freedom of the smoothing func-

tions to achieve simpler curves (e.g., Bruge et al. (2016), Brunel et al. (2018)) or

even unimodal or monotonic shapes following the ecological niche theory (Chust

et al. 2014). In that context, SC-GAMs automatically provide response curves in
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agreement with the niche theory. In the simulations, obtained fits were closer to the

underlying theoretical curves in comparison to “GLM” and “GAMlk” approaches,

and in scenarios where the sampling did not cover the whole environmental range,

results were similar or even better than those obtained with the most flexible GAM.

SC-GAMs were also compared to “Plateau” (Brewer et al. 2016) which is a regression

model based on climatic envelopes. “Plateau” can provide the correct shape with

variance estimates from the hessian in a fast way. The extension to the multivari-

able functions is straightforward and more variables and their potential interactions

can be readily incorporated. The simulations indicated that there were no differ-

ences regarding the performance in terms of agreement with the ecological niche

theory. Both the “Plateau” and the SC-GAMs satisfied the concavity restrictions

and estimated the maximum correctly. However, the simulation results showed that

shape-constrained models were more robust across replicates, with less uncertainty

in point estimation and coverage probabilities.

The two SC-GAMs implementations tested in this study present statistically sound

methods that allow for robust estimation, model comparison, and prediction. How-

ever, they exhibited some differences in terms of uncertainty estimation, computing

time and ease of use. The “boost” approach seemed to be more robust to the gener-

ated uncertainties and showed more stable and narrower intervals for RMSE values

and for coverage probabilities. Variance estimation in this approach is performed

through bootstrapping which implies a high computational cost. Alternatively, the

“SCAM” approach builds on the framework of unconstrained generalised additive

models (Wood 2006b), being computationally efficient (Pya and Wood 2014). In

addition, it uses almost the same syntax as in mgcv R package which facilitates its

use.

SC-GAMs provide a unified framework to deal with different types of variables in

species distribution models. Direct variables and limiting factors are expected to

have a unimodal shape (symmetric or not), whereas there is no theoretical expec-

tation regarding direct variables. However, sometimes, there might be exceptions

in which the realized niche is not unimodal with respect to environmental gradi-

ents (Austin 2002). In those cases, the comparison between shape-constrained and

unconstrained methods could help to better disentangle the factors defining the

ecological niche of the species. When modelling species distribution based only on
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niche theory, results are limited by strong assumptions such as unlimited dispersal of

species, and no consideration of competition processes between species, population

dynamics and adaptation of the species (sensu population fitness).

The extent and resolution of the data are crucial to obtain an adequate characteriza-

tion of the niche of a species (Peterson et al. 2011). If the range of the environmental

gradient does not cover the limits of the species, the species response is truncated

and determining the actual shape of the response will be difficult (Austin 2007).

Thuiller et al. (2004) found that this could be especially problematic on the tails of

the species response curves, yielding spurious projections. In our simulations, the

performance of the shape-unconstrained methods was worse when the range of the

environmental gradient was not fully observed. In most of the cases they were not

able to fit concave curves, the single maximum was not found and presented high

RMSE values. However, shape-constrained methods performed similarly regardless

of the type of sampling. Therefore, adding the shape constraints warranted that the

species distribution model was ecologically meaningful within the observed range of

the environmental variable, and facilitating its subsequent use for extrapolation and

prediction.

Methods have been also tested in two different real case studies. The first case

study shows that shape-constrained methods can solve issues arising with the other

methods, as concluded with the simulation study. Optimum SST values and toler-

ance ranges obtained by SC-GAMs in the presented real case study are very similar

to those reported in Bernal et al. (2007). They compiled data from all the avail-

able ichthyoplankton surveys in the Northeast Atlantic and found that spawning is

restricted mainly to the shelf area and in a range of temperatures between 12◦C

and 17◦C. Stratoudakis et al. (2007) detected that spawning seasonality varies with

latitude following temperature gradients. The preferred temperatures for spawn-

ing were identified between 14 and 15◦C, while temperatures below 12◦C and above

16◦C were avoided. In the Bay of Biscay, thermal preference at the surface was found

between 12◦C and 15◦C (Planque et al. 2007). The second case study involves the

incorporation of several variables in order to find species probabilities of occurrence

combining different types of variables. Results are similar to those reported in other

studies that needed a manual selection of smoother parameters such as the proba-

bility of the presence of anchovy eggs along with salinity or sea surface temperature

reported in Erauskin-Extramiana et al. (2019) or the estimated optima for mackerel
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spawning along the salinity gradient in Brunel et al. (2018). It is shown that the

framework of SC-GAMs enables us to fit both unconstrained and shape-constrained

shapes for each of the included variables depending on the type and prior knowledge.

It also allows us to test the shape of each predictor consistently with the expected

ecological theory as suggested in Austin (2007).

We consider that proposed SC-GAMs can be readily applied for fitting distribution

models and are useful tools for modelling communities of a large number of species,

as they result in a good balance between the goodness of fit and agreement with

the ecological niche theory. They can incorporate multiple explanatory variables

with or without interaction, both shape-constrained and unconstrained, depending

on the nature of the variables involved. Thus, SC-GAMs offer the possibility of

investigating, for example, the effect of climate change on multiple species without

requiring sophisticated and time-consuming mechanistic models that depend on de-

tailed knowledge of vital rates and life traits for each species. Future applications of

SC-GAMs in the context of ecological models could go beyond the examples shown

in this work. Bivariable smooths with concavity restrictions would allow a better

understanding of the interactions between environmental variables, as in Brewer

et al. (2016). SC-GAMs could also be extended to include response shapes varying

per grouping level as in HGAMs (Pedersen et al. 2019). In this case, several species

could be modeled together including interactions between the explanatory variables

and the species as a factor obtaining a common effect and different response curves

for each species. Multivariate adaptive regression splines (MARS, Friedman et al.

1991) are also claimed to have a strong performance for multiresponse species distri-

bution models (Leathwick et al. 2006). Shape constraints could be also introduced,

for unimodality condition in the response curve, to obtain comparable results with

SC-GAMs. SDMs can be also fitted in a Bayesian framework, allowing to incorpo-

rate prior knowledge of species ecology (Golding and Purse 2016, Paradinas et al.

2015) or prior information on response curve shapes (Fraaije et al. 2015 - Appendix3)

using INLA as a tool to perform full Bayesian analysis of latent Gaussian models

using Integrated Nested Laplace Approximation (Rue et al. 2014).
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Chapter 3
Stock assessment models for sardine in the

Bay of Biscay

In this chapter, we describe the data and the stock assessment model that serves as

a basis to provide management advice for sardine in the Bay of Biscay. In addition,

we present an alternative model that will be used throughout the thesis and an ad-

hoc model developed specifically for this stock. The results of the three modelling

approaches are compared, while the main methodological differences and the benefits

of each of them are discussed.

3.1 Introduction

Since 2017 sardine in the Bay of Biscay is assessed yearly by the ICES Working

Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA) using an

age-structured model implemented in Stock Synthesis (SS, Methot and Wetzel 2013).

The methodology was first established in the Benchmark Workshop on Pelagic Stocks

(WKPELA) carried out in 2017 (ICES 2017a) and it was revised in 2019 in the Inter-

Benchmark Process on sardine in the Bay of Biscay (IBPSARDINE, ICES 2019b).

Stock Synthesis (SS) is a statistical age-structured population modelling framework

(Methot and Wetzel 2013, Punt and Maunder 2013) that can be cast within the

integrated analysis framework (Maunder and Punt 2013). It was first developed

in the 1980s by Richard Methot for the assessment of northern anchovy (Methot

1986; 1989) and since then, it has been continuously evolving, becoming one of

the most commonly used stock assessment models nowadays. It is extensively used

51
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in the United States of America (Dichmont et al. 2016), but it is common also in

Tuna-Regional Fisheries Management Organizations, Australia and Europe (Methot

and Wetzel 2013). Species such as Western Atlantic Bluefin tuna, Pacific sardine,

northern hake or Iberian sardine are currently assessed using this software. SS is

designed to flexibly incorporate multiple data sources and can deal with a wide

range of models, encompassing from data-limited stocks (Wetzel and Punt 2011)

to complex age-structured or length-structured models distributed across multiple

areas and seasonal patterns (Methot 2009). Most parameters can change over time

in response to environmental and ecosystem factors.

This flexibility of SS and its ability to handle a wide range of model configurations,

make it a complex program that requires advanced technical skills. Assessment for all

(a4a) (Jardim et al. 2014) is a newer alternative statistical model for age-structured

fish stock assessment designed to be flexible in terms of the model structure while

being simple for implementation and an easy to use option. The a4a model makes

use of the R’s syntax for model building (Chambers and Hastie 1992) and is framed

into the FLR platform (Kell et al. 2007). It was developed as part of the a4a ini-

tiative of the European Commission Joint Research Centre that aimed at providing

an accessible and versatile tool that could lead to an increase in the number of

stocks assessed in Europe (Jardim et al. 2014). Moreover, taking advantage of the

simplicity and flexibility for models implementation, it has been used to test spatial

heterogeneity of meta-populations, such as sardine in the Bay of Biscay, comparing

the assessment results of a meta-population with the combined results of its com-

ponents (Jardim et al. 2018).

Another alternative that allows exploring new options out of the pre-specified con-

figurations of the above-mentioned software is building an ad-hoc model (Dichmont

et al. 2016). It enables controlling and modifying model equations at any level and

even integrating new data sources. The ad-hoc stock assessment model developed

in this chapter mimics the official SS assessment and is explored as a more flexible

and transparent option within the Bayesian inference framework.

The main objective of this work is to detail the basis of the official SS assessment

model used by the Working Group on Southern Horse Mackerel, Anchovy and Sar-

dine (WGHANSA) in 2017 and 2018 (ICES 2017c; 2018b) and compare it to two

alternative stock assessment models: one based on the a4a approach and an ad-hoc
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Bayesian model. The three approaches are age-structured models and hence, they

share the same underlying population dynamics model and rely on the same data.

The main differences between the three approaches lie in the observation model and

the estimation method.

3.2 Material and methods

3.2.1 Data for sardine in the Bay of Biscay

Data to fit stock assessment models originate from different sources. Fishery depen-

dent data provide information on the activity of the fishing vessels, such as landings,

discards, their length or age composition and fishing effort exerted by the fleets. Al-

ternatively, additional data might be available from specific research surveys, like

acoustics, trawl, egg production or tagging surveys (Gunderson 1993). The advan-

tage of research surveys is that they can provide abundance indices independent

from the commercial or recreational activity of the fleets. In addition, they provide

additional information on the biology and ecology of the species. Thus, research

surveys are critical ingredients for stock assessment (Hilborn 1992) and have proved

to be particularly useful for the management of small pelagic fish such as sardine,

due to their particular life-history traits (Barange et al. 2009).

Data available to develop an age-structured stock assessment model for sardine in

the Bay of Biscay have been collected by different research institutes and have been

compiled by ICES (2017a; 2018b). Data are organised according to their type (Table

3.1). In what follows, first we summarise data from the fishery consisting of total

catch and catch-at-age. Then, we present data from the research surveys, namely,

annual total biomass and age composition from the PELGAS survey (Doray et al.

2018), annual total abundance index based on the egg counts from the BIOMAN sur-

vey (Santos et al. 2018) and triennial spawning stock biomass (SSB) index from the

application of the daily egg production method (DEPM, Lasker 1985, Parker 1980)

in the BIOMAN survey. Finally, we introduce biological data such as weight-at-age

in the catch and stock weight-at-age and maturity-at-age recorded in the PELGAS

survey. The period ranges from 2000 to 2018. However, not all data sources include

measurements for every year as summarized in Figure 3.1. The time series of catch-

at-age and weight-at-age in the catch started in 2002, and they are not available in

the assessment year (in this case, 2018). Additionally, the DEPM SSB estimates are
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only provided every three years since 2011.

Table 3.1: Data used for the assessment of sardine in the Bay of Biscay.

Symbol Description Year range Age range

Ĉtoty Catch in tonnes 2000-2018 -

Ĉa,y Catch-at-age in numbers 2002-2017 0-6+

Îaca,y PELGAS acoustic index at-age in numbers 2000-2018 1-6+

Îtoty PELGAS acoustic biomass index in tonnes 2000-2018 -

Îeggy BIOMAN egg count index in numbers 2000-2018 -

Îdepmy BIOMAN DEPM SSB index in tonnes 2011, 2014, 2017 -

Wa,y Stock weight-at-age in kg 2000-2018 1-6+

WC
a,y Catch weight-at-age in kg 2002-2017 0-6+

Ma,y Natural mortality year−1 2000-2018 0-6+

ma,y Maturity-at-age proportion 2000-2018 0-6+

PF Proportion of fishing mortality before spawning - -

PM Proportion of natural mortality before spawning - -

Figure 3.1: Summary of the time range coverage of the data used for the assessment
of sardine in the Bay of Biscay.
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3.2.1.1 Catch data

Commercial catch data for sardine in the Bay of Biscay include total catch from 2000

to 2018 and catch-at-age data from 2002 to 2018. The total catch in weight has in-

creased from around 15 thousand tonnes at the start of the time series, to around

30 thousand tonnes during the last decade (Figure 3.2). This increase in total catch

is mainly due to the increase of Spanish landings as reported in ICES (2018b). Dis-

cards are considered negligible and therefore, catches are equal to landings. Usually,

catch data are not available for the assessment year, but it is necessary to include

some value to fit the model until the assessment year. This allows us to estimate

the status of the stock in the assessment year and provide the most up-to-date man-

agement advice. One possible option is to assume that catch in the assessment year

corresponds to status quo fishing mortality (i.e. fishing mortality in the assessment

year is the same as the year before F2018 = F2017). Other options can be based on

the total catch advised by ICES for that year or on preliminary catch data for the

assessment year in comparison with the historical series. In this case, the total catch

in 2018 is taken as 32,776 tonnes, which is based on the F status quo (ICES 2018b).

Figure 3.2: Total catch (in thousand tonnes) of sardine in the Bay of Biscay from
2000 to 2018.
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Catch-at-age refers to number of caught individuals at each age group (Figure 3.3).

The values range from a maximum amount of 321 million fish to less than 1 million

fish depending on the year and show a general increase during the last years (see

ICES 2018b for details). The most exploited age classes are 1 and 2, with a slight

increase up to age 3 on the proportion of older fishes at the middle of the time series.

No catch-at-age data are given to the model for the assessment year (2018) as they

are not available. Therefore, the catch age composition in the assessment year will

be based on some assumption for the age selection pattern of the fishery in that year.

Figure 3.3: Catch-at-age data for sardine in the Bay of Biscay from 2002 to 2017.
Bubble sizes are proportional to the number of individuals caught in each year (x
axis) and age class (y axis). The black line represents the weighted average age of
captured fish in each year.

3.2.1.2 Abundance indices

Two research surveys (PELGAS and BIOMAN) carried out yearly in spring provide

the four abundance indices used for the assessment of sardine in the Bay of Biscay

(see Chapter 1 for details). The PELGAS acoustic survey provides total biomass

and age composition estimates, whereas BIOMAN gives an annual abundance index
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and a triennial SSB estimate from the application of the DEPM.

The age-structured abundance index obtained from the acoustic PELGAS survey

is given in numbers of individuals by age class (Figure 3.4). The numbers-at-age

range from a maximum measurement of 8661 million fish to 8 million fish, depend-

ing on the year and the age class (see ICES 2018b for details). This information

allows to track the cohorts and identify strong year classes such as 2008, 2012, 2014

or 2016, and weaker ones like the 2005 cohort. The most abundant age classes

are 1 and 2, while age 0 is not recorded in these spring surveys. The average age

decreases along time from age 3 at the beginning of the time series to age 1.5 in 2018.

Figure 3.4: PELGAS age-structured abundance index data for sardine in the Bay
of Biscay. Bubble sizes are proportional to the number of individuals in each year
(x-axis) and age class (y-axis) and colours represent different cohorts. The black
line represents the weighted average age for each year.

Aggregated abundance indices consist of the total biomass index from PELGAS

and the egg count and DEPM SSB indices from BIOMAN. PELGAS total biomass

index and the BIOMAN SSB index from the DEPM are given in thousand tonnes

while the egg count is given in billions of eggs (Figure 3.5). None of the time series
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shows any clear contrasting trend. PELGAS highest biomass values correspond to

2002 and 2004 with a new peak in 2017, while BIOMAN egg count shows a peak

in 2005, followed by 2010 and 2008 estimates. In both cases 2003 and 2007 present

among the lowest values of each times series. Regarding the SSB estimates from the

DEPM, there are only three indices available, from which 2014 presents the highest

SSB value.

Figure 3.5: Aggregated abundance indices for sardine in the Bay of Biscay. From
top to bottom: PELGAS biomass index (thousand tonnes), BIOMAN egg count
index (billion of eggs) and BIOMAN DEPM SSB index (thousand tonnes).

3.2.1.3 Biological data

Weights-at-age are obtained both from the monitoring of the fishery and from the

PELGAS acoustic survey. The former is used in the stock assessment model as
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the catch weight-at-age, while the latter represents the stock weight-at-age at the

survey time. Weights are given in kg with the highest values around 0.12kg for the

oldest fishes (Figure 3.6). Both catch and stock weights show a decreasing trend

along time for all the age classes, with higher values at the beginning of the time

series and lower weights in the most recent years as studied in Véron et al. (2020).

Weights-at-age for age 0 in the survey are set to 0 given that this age class is not

observed.

Maturity-at-age data are also obtained from the PELGAS survey and represent the

proportion of mature individuals found in each year and age class. All age 0 individ-

uals are non-mature while the proportion of mature individuals at age 2 and older

is almost 1. Maturity of age 1 individuals shows more variability, ranging between

0.4 and 0.8 with the largest value in the year 2006 and lowest in 2012 (Figure 3.7).

The annual rate of natural mortality constitutes one of the crucial and most influ-

ential processes in stock assessment models (Maunder and Piner 2015). However,

usually, there are no direct estimates available and alternative indirect methods,

such as those described by Kenchington (2014) and Then et al. (2015), must be

used. Natural mortality for sardine in the Bay of Biscay was established by ICES

(2017a). First, several natural mortality-at-age vectors were computed based on the

models by Gislason et al. (2010) and Lorenzen (1996) and they were re-scaled by

different values to obtain a range of potential options. Then, the best estimates of

natural mortality-at-age were selected based on the lowest AIC value of several stock

assessment fits under different natural mortality scenarios. The final time-invariant

vector of annual rates of natural mortality for ages 0 to 6+ corresponded to the

Gislason’s expected natural mortality-at-age vector (Gislason et al. 2010) multiplied

by 0.9 (Table 3.2).

Table 3.2: Annual rate of natural mortality-at-age of sardine in the Bay of Biscay.

0 1 2 3 4 5 6+

Ma(yr−1) 1.0171 0.692 0.546 0.475 0.435 0.412 0.400
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Figure 3.6: Weight-at-age in the catch (in the left) and weight-at-age in the stock
obtained from PELGAS survey at spawning time (in the right) for sardine in the
Bay of Biscay. Cell colours indicate the weight value (in kg) for each year (x-axis)
and age class (y-axis) according to the colour scale in the right.

Figure 3.7: Maturity-at-age for sardine in the Bay of Biscay, obtained from the
PELGAS survey. Cell colours represent the proportion of mature individuals at
each year (x axis) and age class (y axis) according to the colour scale in the right.
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3.2.2 Modelisation for sardine in the Bay of Biscay

In this section, we first describe the common elements of the three modelling ap-

proaches, with special emphasis on the foundation of age-structured models, and

then, we cover the specificities of each approach.

3.2.2.1 Common elements

Let Na,y be the total number of individuals at-age a at the beginning of year y. The

index y = 1, . . . , Y represents the assessment years and the index a = ar, . . . , A−1, A

the age groups, being ar the age at which recruitment occurs (i.e. age at which new

individuals enter into the population) and A the age of the plus-group (i.e. the age

group including individuals of age A and older). This plus-group age A can be based

either on the ability to predict the age of an individual or on the age above which

very few individuals are observed. For sardine in the Bay of Biscay, ar is established

at 0 and the plus-group is set at age 6+.

The transition along time of the number of individuals at each age group is given

by the survival equation. For y ≥ 2:

Na,y = Na−1,y−1 e
−Za−1,y−1 , for a = 1, . . . , 5 (3.1)

and

N6+,y = N5,y−1 e
−Z5,y−1 +N6+,y−1 e

−Z6+,y−1 , (3.2)

where Za,y is the total annual mortality rate of individuals of age a in year y that can

be decomposed as the sum of the fishing mortality Fa,y and the natural mortality

Ma,y as follows:

Za,y = Fa,y +Ma,y. (3.3)

For sardine in the Bay of Biscay annual natural mortality-at-age is assumed to be

time-invariant (i.e. Ma,y = Ma) and equal to the values given in Table 3.2. In turn,

fishing mortality by age and year (Fa,y) is modelled assuming a separable structure:

Fa,y = fysa, (3.4)
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where fy is the year component that refers to the fishing intensity in year y and

sa is the age component that represents the fishery selection pattern at age a. For

sardine, age classes 3 and older are assumed to be fully selected by the fishery. So,

the shape of the age selection pattern is assumed to increase from age 0 to 2 and is

kept constant from age 3 to 6+ (ICES 2017a).

From the number of individuals in the population Na,y, the Baranov’s catch equation

(Baranov 1918) defines the total number of captured individuals at age a in year y,

Ca,y, as the proportion of dead individuals attributed to fishing:

Ca,y = Na,y(1− e−Za,y)Fa,y/Za,y. (3.5)

Then, the catch proportion-at-age a in year y, CP a,y, can be calculated as:

CP a,y = Ca,y/

6+∑
a=0

Ca,y, (3.6)

and the total catch in weight in year y, Ctoty , is defined as:

Ctoty =
6+∑
a=0

Ca,yW
c
a,y,

where W c
a,y is the weight-at-age a in year y of the caught fish.

From these basic population dynamic equations, other derived quantities of interest

are Total Biomass (By,t) and Biomass of age 1 and older individuals (B1y,t) at time

instant t of year y:

By,t =

6+∑
a=0

Na,ye
(−Za,yt)Wa,y,t, (3.7)

B1y,t =

6+∑
a=1

Na,ye
(−Za,yt)Wa,y,t, (3.8)

where Wa,y,t is the weight-at-age a of the population at time instant t of year y.

Similarly, Spawning Stock Biomass (SSB) is the total weight of all individuals in a
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fish stock that is capable of reproducing and is computed as:

SSBy,tspw =
6+∑
a=0

Na,ye
−(Fa,y PF+Ma,y PM)Wa,y,tspwma,y, (3.9)

where tspw is the breeding time instant, PF is the proportion of fishing mortality

before spawning, PM is the proportion of natural mortality before spawning (both

set to 0 in this case study) and ma,y is the proportion of mature individuals at-age

a in year y.

The number of individuals entering the population at the start of each year y is

named recruitment and is denoted by Ry. In this case study, new individuals en-

ter the population at age zero (ar = 0), so recruits are age 0 individuals at the

beginning of the year (Ry = N0,y). Recruitment can be estimated as individual

parameters for each year or can be modelled using a stock-recruitment relationship.

Stock-Recruitment relationships (S-R) associate the parental fish stock, usually the

spawning stock biomass, and the subsequent number of recruits produced by that

spawning (Hilborn and Walters 1992, Quinn and Deriso 1999). This idea is common

to all self renewable populations. Two of the most common S-R models are the

Beverton-Holt (Beverton and Holt 1957) and the Ricker model (Ricker 1954), but

more general or alternative models have been proposed by Deriso (1980), Schnute

(1985) or Barrowman and Myers (2000) among others. See Needle (2001) for a sum-

mary on S-R models and Subbey et al. (2014) or Sharma et al. (2019) for recent

discussions and developments on S-R models.

Given the population dynamics described above, the abundance indices are assumed

to be linearly related to the available population at survey time. The numbers-at-

age from the acoustic survey PELGAS at age a in year y, Iaca,y, is modelled through

the following equation:

Iaca,y = Qac qaNa,ye
−Za,y tac , (3.10)

where tac represents the timing of the acoustic survey, Qac is the overall catchability

coefficient of the acoustic survey and qa ∈ [0, 1] is the survey selectivity at age a. For

sardine in the Bay of Biscay, qa is kept fixed and equal to 1 from ages 2 to 5 (ICES

2017a). Given that age 0 is not observed in this survey, only the survey selectivities
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for ages 1 and 6+ must be estimated.

From the above, the proportion-at-age a in year y from the acoustic survey is given

by:

IP a,y = Iaca,y/

6+∑
a=0

Iaca,y. (3.11)

Similarly, the aggregated acoustic biomass index from the PELGAS acoustic survey

Itoty is assumed to be linearly related to the population biomass at survey time:

Iacy = QtotBy,tac , (3.12)

and the annual egg abundance index Ieggy and the triennial DEPM index Idepmy from

the BIOMAN survey are linearly related to the population SSB at their respective

time instants:

Ieggy = QeggSSBy,tegg , (3.13)

Idepmy = QdepmSSBy,tdepm , (3.14)

where Qtot, Qegg and Qdepm are the catchability parameters for each of the aggre-

gated indices. Given that all the surveys are carried out during spring approximately

at the same time, it is further assumed that all surveys time instants are equal to

0.4 (tac = tegg = tdepm = 0.4).

Model structure and statistical distribution particularities for recruitment, first-year

population numbers, fishing mortality parameters and catch and indices observation

equations are detailed in the following sections for each modelling approach. The

hat symbol (̂) will be used to represent observed data and distinguish them from

the model quantities.
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3.2.2.2 SS approach

Stock synthesis model specifications as setting up by WKPELA (ICES 2017a) for

the Bay of Biscay sardine case study are described below.

Population dynamics model:

Annual recruitments (Ry) are estimated yearly and are modelled as lognormal

(LN) deviations from a constant mean value in log-scale (Rm) with a standard

deviation of σR = 0.55.

Ry ∼ LN(ln(Rm), σR), for y = 1, . . . , Y. (3.15)

Since there are no data providing information on the recruitment in the assess-

ment year, recruitment in that year is assumed to be the historical geometric mean

(R2018 = RGM ).

The initial population numbers (i.e. population numbers-at-age in the first year

of the assessment, 2000) are calculated by estimating an initial equilibrium popula-

tion modified by the age composition data in the first year of the assessment (Methot

and Wetzel, 2013). The initial equilibrium population is derived assuming an ini-

tial catch of 13 000 tons, which is the average catch between the years 1990 and 1999.

Fishing mortality is estimated using the hybrid method described by Methot and

Wetzel (2013). This method does a Pope’s approximation (Pope 1972) to provide

initial values and then iteratively adjusts the continuous F values to closely approx-

imate the observed total catch.

In SS fishery age selectivity (sa) is such that the parameter for each age is mod-

elled as a random walk from the previous age (Methot 2009). Selectivity-at-age 0

is not estimated and is used as the reference age against which subsequent changes

occur. The rest selectivity estimates are computed from a set of internally defined

parameters (positive values are associated with increasing selectivity between ages,

and negative values are associated with decreasing selectivity between ages) with the

property that the maximum selectivity is equal to 1. In order to mimic the sardine

dome-shaped selectivity pattern with an increasing or flat shape from ages 0 to 3,
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selectivity parameters are estimated for ages 1, 2, and 3, while selectivity at ages

3 to 5 in the fishery are bound, meaning that parameters for ages 4 and 5 are not

estimated but assumed to be equal to the parameter estimated for age 3.

Observation model:

SS assumes that the absolute level of total catch is known precisely so that the

annual fishing mortality values are tuned to approximately match the total catch

biomass by year (standard deviation in log-scale σC = 0.05):

Ĉtoty ∼ LN(Ctoty , σC = 0.05), y = 1, . . . , Y. (3.16)

The observed fishery age composition, ĈP 1...6+,y, derived from catch-at-age data

is assumed to follow a multinomial distribution depending on the population age

composition as follows:

ĈP 1...6+,y ∼Multinomial(nC , CP1,y, . . . , CP6+,y), y = 1, . . . , Y. (3.17)

The sample size (nC) sets the precision of the age composition data. If the multino-

mial error model is strictly correct and the observations in a sample are independent,

nC should correspond to the actual number of fish in the age samples. However,

age samples are usually autocorrelated and it is difficult to obtain reliable values for

nC . Although the levels of age sampling for the sardine stock are high in both the

fishery and the acoustic survey, approximate sample sizes are calculated taking into

account the harmonic mean of expected sample sizes provided by the model. The

sample size for fishery age compositions is set equal to 54.

Similarly, the acoustic survey age composition is assumed to follow a multino-

mial distribution:

ÎP 1...6+,y ∼Multinomial(nI , IP1,y, . . . , IP6+,y), y = 1, . . . , Y, (3.18)

where ÎP 1...6+,y is the observed age composition derived from the acoustic survey

numbers-at-age. The sample size for acoustic survey age composition (nI) is fixed

to 40, following the same process as for the fishery age composition described above.

Similarly to the fishery selectivity, selectivity for this abundance at-age index (qa) is
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such that the parameter for each age is estimated as a random walk from the previ-

ous age. However, this applies only to ages 1, 2, and 6+ in the survey. Selectivity at

ages 2 to 5 years in the survey are bound, meaning that parameters for ages 3,4 and

5 are not estimated but assumed to be equal to the parameter estimated for age 2.

Selectivity-at-age 0 is not estimated and is used as the reference age against which

subsequent changes occur. This selectivity parameterization mimics a dome-shaped

pattern, with an increasing or flat shape from ages 0 to 2 and a declining or flat

shape at the 6+ group.

The three aggregated abundance indices by year are assumed to follow a log-

normal distribution centred at the modelled abundance index in log scale with a

standard deviation coming from an iterative process where these values are updated

iteratively until approximate convergence of the root mean squared error of each

aggregated indices (McAllister and Ianelli 1997).

In particular, the PELGAS biomass index Îacy is lognormally distributed:

Îacy ∼ LN(ln(Iacy ), σIacy ), y = 1, . . . , Y, (3.19)

where the standard deviations (σItoty ) are first set to the values estimated by the sur-

vey and are then increased after the tuning iterative process. The resulting values

range between 0.3 and 0.7 depending on the year.

The egg count index Îeggy is modelled as:

Îeggy ∼ LN(ln(Ieggy ), σIegg), y = 1, . . . , Y, (3.20)

where the standard deviation σIegg = 0.448 is constant along years and is derived

from the iterative process described above.

Similarly, the DEPM index Îdepmy follows a lognormal distribution:

Îdepmy ∼ LN(ln(Idepmy ), σIdepm), y = 1, . . . , Y, (3.21)

where the standard deviation is constant along years and is set as σIdepm = 0.567.



68 Chapter 3.

Estimation method:

The version of SS used in this work is 3.24 (Methot 2009). The model and a graph-

ical user interface are available at the NOAA Fisheries Stock Assessment Toolbox

website: http://nft.nefsc.noaa.gov/. Although the first SS version was coded in

Fortran, subsequent versions have been programmed and compiled using Automatic

Differentiation Model Builder (ADMB, Fournier et al. (2012) ). This allows SS to

benefit from rapid model convergence and uncertainty estimation through inverse

Hessian MCMC approaches are also available (Methot and Wetzel 2013). Model

inspection and figures showed in this section are generated using the r4ss package

(Taylor et al. 2019).

3.2.2.3 a4a approach

The a4a model for sardine in the Bay of Biscay in this work is set to mimic the

official SS assessment.

In general, the a4a model structure is defined via five submodels: a model for re-

cruitment, a model for the initial age-structured population, a model for the fishing

mortality-at-age, a model for the abundance indices’ catchabilities and a model for

the variances of the catch-at-age and abundance indices observation equations that

are also estimated within the model. All these submodels have linear forms that

have to be defined. Specifications of each of these submodels for the sardine case

study are described below.

Population dynamics model:

Recruitment Ry is estimated as single and independent parameters for each year

y. Similarly, initial population numbers-at-age Na,1 are estimated as single and

independent parameters for each age a.

In the separable structure of the fishing mortality, the last value for the year com-

ponent is fixed to be equal to the previous year (f2018 = f2017), otherwise this param-

eter could not be correctly estimated given that there is no catch-at-age information

in the last year. Fishery age selectivity (sa) is restricted so that s3 = s4 = s5 = s6+,

in order to get the same selectivity shape as in SS.

http://nft.nefsc.noaa.gov/
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Observation model:

The a4a approach does not include any observation equation for the total catch.

Catches-at-age are assumed to follow lognormal distributions independent by age

and year:

Ĉa,y ∼ LN(ln(Ca,y), σC), y = 1, . . . , Y, a = 0, . . . , 6 + . (3.22)

Although the standard deviation of the observation equation for catch-at-age is one

of the submodels of a4a that can be specified for each case study, for sardine the

default option of constant variance across ages and years are used (i.e. σC not de-

pendent on age or year). This standard deviation σC is also estimated in the model

fit.

The acoustic survey age structured index is also assumed to follow a lognormal

distribution:

Îaca,y ∼ LN(ln(Iaca,y), σIac), y = 1, . . . , Y, a = 1, . . . , 6+, (3.23)

where the standard deviation σIac is assumed to be constant across all years and

ages and will be estimated by the model. The survey age selectivity qa is restricted

so that q2 = q3 = q4 = q5, to get the same selectivity shape as in SS.

Besides age-disaggregated indices, the a4a package only allows to include total

biomass indices or biomass indices over a given age range. Thus, the egg abundance

and DEPM aggregated indices cannot be related to SSB. As an approximation,

and given that age 0 is not present in these surveys, the three aggregated indices

are modelled as B1+ indices:

Îtoty ∼ LN(ln(B1y,tacQtot), σItot), y = 1, . . . , Y, (3.24)

Îeggy ∼ LN(ln(B1y,teggQegg), σIegg), y = 1, . . . , Y, (3.25)

Îdepmy ∼ LN(ln(B1y,tdepmQdepm), σIdepm), y = 1, . . . , Y. (3.26)
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where σItot , σIegg and σIdepm are standard deviations and Qtot, Qegg and Qdepm are

survey catchabilities for each index. Both standard deviations and catchabilities are

assumed constant across all years and will be estimated by the model.

The R commands used to define the fishing mortality, catchabilities and variance

submodels within the a4a approach can be found in Annex D.

Estimation method:

Parameter estimation in a4a is performed via optimization of the likelihood function

and conducted using automatic differentiation through ADMB (Fournier et al. 2012).

Thus, Markov Chain Monte Carlo (MCMC,Gilks et al. 1996 ) methods can be also

used inherited from ADMB capabilities. Uncertainty estimates are based on the

variance-covariance matrix computed from the inverse Hessian returned by ADMB,

and could be also obtained from the MCMC methods available in ADMB. The FLa4a

(Jardim 2017) R package has been used to fit the model, perform diagnostics and

generate output figures.

3.2.2.4 Bayesian approach

In contrast with the two previous approaches where specific stock assessment soft-

ware have been used, in this section, we present an ad-hoc Bayesian counterpart that

mimics the official SS assessment. The model is developed using JAGS (Plummer

2003).

In this approach standard deviations of lognormal distributions are represented as

the square root of one divided by the precision (σ. =
√

1/τ.), given that the selected

tool, JAGS, works with precisions.

Population dynamics model:

Annual recruitments (Ry) are lognormally distributed with mean µrec and preci-

sion τrec:

Ry ∼ LN(µrec,
√

1/τrec), y = 1, . . . , Y. (3.27)
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The year component of the fishing mortality (fy) is assumed to be lognormally

distributed with mean µf and precision τf :

fy ∼ LN(µf ,
√

1/τf ), y = 1, . . . , Y. (3.28)

The age selectivity of the fishery for age 3 and older is fixed at 1 (sa = 1 for

a ∈ {3, 4, 5, 6+}) and only selectivity for ages 0, 1 and 2 is estimated.

Observation model:

Catch-at-age in numbers is assumed to follow a lognormal distribution, centred at

Ca,y coming from the Baranov equation and precision τC :

Ĉa,y ∼ LN(ln(Ca,y),
√

1/τC), y = 1, . . . , Y, a = 0, . . . , 6 + . (3.29)

Total catch in biomass is assumed to follow a lognormal distribution, centred at

ln(Ctoty ) and precision τCtot :

Ĉtoty ∼ LN(ln(Ctoty ),
√

1/τCtot), y = 1, . . . , Y. (3.30)

Acoustic survey indices, both age structured and biomass aggregated indices,

are assumed to follow lognormal indices with mean values modelled as indicated in

equation (3.10) and (3.12) and setting qa = 1 for a ∈ {2, 3, 4, 5}:

Îaca,y ∼ LN(ln(Iaca,y),
√

1/τIac), y = 1, . . . , Y, a = 1, . . . , 6+, (3.31)

Îtoty ∼ LN(ln(Itoty ),
√

1/τItot), y = 1, . . . , Y. (3.32)

Egg count index is modelled through a lognormal distribution, with the mean

defined as in equation (3.13):

Îeggy ∼ LN(ln(Ieggy ),
√

1/τIegg), y = 1, . . . , Y. (3.33)

DEPM index is modelled through a lognormal distribution, with the mean defined

as in equation (3.14) :

Îdepmy ∼ LN(ln(Idepmy ),
√

1/τIdepm), y ∈ {2011, 2014, 2017}. (3.34)
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Prior distributions:

The prior distributions for all the unknowns are established as follows:

µrec ∼ LN(νrec,
√

1/τνrec),

τrec ∼ Gamma(αrec, βrec),

Na,1 ∼ LN(µN1,
√

1/τN1), a = 0, . . . , 6+,

µf ∼ LN(νf ,
√

1/τνf ),

τf ∼ Gamma(αf , βf ),

sa ∼ LN(µs,
√

1/τs), a ∈ {0, 1, 2},

Qac ∼ LN(µQac ,
√

1/τQac),

Qtot ∼ LN(µQtot ,
√

1/τQtot),

qa ∼ LN(µq, τq), a ∈ {1, 6+},

Qegg ∼ LN(µQegg , τQegg),

Qdepm ∼ LN(µQdepm , τQdepm),

τC ∼ Gamma(αC , βC),

τCtot ∼ Gamma(αCtot , βCtot .)

τIac ∼ Gamma(αIac , βIac),

τItot ∼ Gamma(αItot , βItot),

τIegg ∼ Gamma(αIegg , βIegg),

τIdepm ∼ Gamma(αIdepm , βIdepm),

The hyperparameters of the prior distributions are selected to be centred at values

considered reasonable and with substantial dispersion, reflecting little prior infor-

mation. The precision hyperparameters τ· of the lognormal priors are set equal to

1, resulting in a coefficient of variation (CV) of 1 for all the unknown parameters.

The shape α· and rate β· hyperparameters are set at 16 and 1 respectively, which

lead to prior distributions with a CV of 0.25 for the precisions of the observation

equations. The exception is the gamma prior distribution set for the total catch that

is established with parameters that gave a CV of 0.05 for the total catch, emulating

the high precision assumption on the total catch in the SS approach. All the prior

distributions, their corresponding hyperparameters and the 95% central probability
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intervals are summarized in Table 3.3.

Table 3.3: Prior distributions, hyperparameters and 95% central probability inter-
vals for the Bayesian approach for sardine in the Bay of Biscay.

Distribution Hyperparameters 95% Prob. Int.

µrec ∼ LN(νrec,
√

1/τνrec) νrec = 13 τνrec = 1 (62320,3140724)

τrec ∼ Gamma(αrec, βrec) αrec = 16 βrec = 1 (9.15 ,24.74)

Na,1 ∼ LN(µN1,
√

1/τN1) µN1 = 13 τN1 = 1 (62320,3140724)

µf ∼ LN(νf ,
√

1/τνf ) νfy = ln(0.1) τνf (0.01,0.71)

τf ∼ Gamma(αf , βf ) αfy = 16 βfy = 1 (9.15 ,24.74)

sa ∼ LN(µs,
√

1/τs), a ∈ {0, 1, 2} µs = 0 τs = 1 (0.14 ,7.10 )

τC ∼ Gamma(αC , βC) αC = 16 βC = 1 (285.8,533.1)

τCtot ∼ Gamma(αCtot , βCtot) αCtot = 40 βCtot = 0.1 (9.15,24.74)

τIac ∼ Gamma(αIac , βIac) αIac = 16 βIac = 1 (9.15,24.74)

τItot ∼ Gamma(αItot , βItot) αItot = 16 βItot = 1 (9.15,24.74)

τIegg ∼ Gamma(αIegg , βIegg ) αIegg = 16 βIegg = 1 (9.15,24.74)

τIdepm ∼ Gamma(αIdepm , βIdepm) αIdepm = 16 βIdepm = 1 (9.15,24.74)

Qac ∼ LN(µQac ,
√

1/τQac) µQac = 0 τQac = 1 (0.14,7.10)

Qtot ∼ LN(µQtot ,
√

1/τQtot) µQtot = 0 τQtot = 1 (0.14,7.10)

qa ∼ LN(µq, τq), a ∈ {1, 6+} µq = 0 τq = 1 (0.14 ,7.10)

Qegg ∼ LN(µQegg , τQegg ) µQegg = 0 τQegg = 1 (0.14,7.10)

Qdepm ∼ LN(µQdepm , τQdepm) µQdepm = 0 τQdepm = 1 (0.14,7.10)

Estimation method:

The model is implemented in JAGS (Plummer 2003) and is run from R (R Core Team

2018) using the package R2jags (Su et al. 2015). 150000 iterations are run for each of

the 2 chains with a thinning of 100 and a burn-in period of 50000. Convergence has

been tested by visual inspection and the Geweke test (Z scores to test the equality

of means between first and last part of a chain), the Gelman and Rubin test (tests

within and between chain variance) and the Heidelberg and Welch stationarity test

(Cramer-von Mises statistic to accept or reject that the Markov chain is from a

stationary distribution) has been also conducted. These convergence diagnostics are

checked using the coda package (Plummer et al. 2019). The developed JAGS code

for this approach can be found in Annex D.
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3.3 Results

3.3.1 SS approach

SS approach results presented in this section correspond to the official stock assess-

ment estimates provided in the ICES WGHANSA 2018 annual report (ICES 2018b)

for Bay of Biscay sardine.

The SS model converged adequately and the model estimates were considered reli-

able. The final convergence indicator that measures the change in the log-likelihood

was equal to 3.08579e-6, below the recommended convergence criterion of < 0.0001.

The contributions of each model component to the total likelihood are shown in

Table 3.4.

Table 3.4: Contributions of each model component to the total negative log likeli-
hood for the SS approach.

-log likelihood

TOTAL 67.63

Catch 48e-10

Equil catch 51e-6

Survey -13.23

Age comp 74.75

Recruitment 6.09

Forecast Recruitment 0.00

Parm priors 0.00

Parm softbounds 0.01

Parm devs 0.00

The most meaningful assessment outputs, namely, time series of recruitment, SSB,

total catch and fishing mortality (averaged from age 2 to 5) are shown in Table

3.5. Spawning stock biomass was estimated around 122 thousand tonnes in the first

year 2000 and it increased to a maximum of more than 170 thousand tonnes in the

year 2005. After various years of successive decreases, SSB increased slightly in the

last two years (Figure 3.8). Estimated recruitment is variable over the years and

has been oscillating between 2200 million individuals in 2005 and 8700 in 2008. The

probability intervals of recruitment in the last years are larger representing the larger
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uncertainty in the last years of the assessment because the cohorts have not been

observed along their whole trajectories. The fishing mortality reflects two periods

of different exploitation levels: until 2011 the time series was below 0.25, while in

the last 7 years it has increased being around 0.4. (Table 3.5).

Table 3.5: Annual recruitment (million of individuals), SSB (in tonnes), total catch
(in tonnes) and fishing mortality (averaged for ages 2 to 5) estimated using the SS
approach.

Recruitment SSB Catch F (2-5)

2000 4570 122462 15097 0.144

2001 5475 116007 15005 0.145

2002 3591 143372 18277 0.165

2003 3914 135227 16607 0.132

2004 7338 148814 14197 0.124

2005 2216 173287 16360 0.123

2006 3556 154630 16741 0.135

2007 7139 134657 17323 0.143

2008 8673 143645 21821 0.201

2009 3382 136855 20855 0.166

2010 2482 150824 20127 0.162

2011 4220 121343 23208 0.216

2012 7496 88495 30900 0.382

2013 5226 90798 32489 0.407

2014 7307 93923 33943 0.466

2015 2670 88921 27284 0.353

2016 7834 89522 25498 0.402

2017 8282 109062 30318 0.410

2018 125246 0.388
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Figure 3.8: Main outputs plots, from top to bottom, SSB, recruitment and fishing
mortality (averaged for ages 2 to 5), along with 90% confidence intervals, estimated
using the SS approach and generated with the r4ss package.
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All parameter estimates are given in Table 3.9. The fishery age selectivity sa was

almost equal to zero for age 0 as this age class is caught in very small quantities

and then increased at ages 1 and 2, being flat for age 3 and older (Figure 3.9).

The survey age selectivity at age 1 was around 0.5 and flat at 1 for ages 2-5, but

then decreased again for the 6+ group until 0.8, resulting in a dome-shaped pattern

(Figure 3.9). The catchability parameters of the PELGAS and DEPM indices were

both above 2. These values are quite high as they indicate that the actual biomass

of the population is less than half of the biomass indicated by the indices. This issue

was discussed intensively by (ICES 2018b) and lead ICES to consider the assessment

results only in relative terms.

Figure 3.9: Selectivities across ages estimated using the SS approach and generated
with the r4ss package.

For model diagnostics, the residuals plots of age structured data, such as catch-

at-age and acoustic index at-age, were inspected and no significant patterns were

detected (Figure 3.10).
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Figure 3.10: Standardized residuals plots for age structured data (catch-at-age data
at the top, acoustic survey data at the bottom).

3.3.2 a4a approach

The FLa4a package includes a flag on convergence, 0 for true and 1 for false, coming

from ADMB convergence indicators. The present model did converge adequately

according to this indicator, with a final negative log-likelihood equal to 203.56.

Estimates obtained using the a4a approach are similar in trends to the results ob-

tained by the SS approach. All estimated parameters, both point estimates and

variances, are shown in Table 3.9, while most relevant outputs of stock status are

summarised in Table 3.6. Spawning biomass in 2002 (first time series year used in

this approach) was estimated at 111 thousand tonnes. After attaining the minimum

value in 2012, SSB has increased in recent years (Figure 3.11). Recruitment is highly

variable along time and shows upwards and downwards peaks like 2016 and 2015

or 2005 respectively. The average fishing mortality for ages 2-5 is estimated below
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0.25 until 2011, increasing for the last years up to almost 0.5 in 2014 (Figure 3.11).

Although total catch in biomass is not included in the observation model, it can

be derived from the catch-at-age estimated by the model and the observed catch

weight-at-age (Table 3.6 and Figure 3.11). Uncertainty in the total catch is derived

from estimated catch-at-age variances.

Table 3.6: Recruitment (million of individuals), SSB (in tonnes), total catch (in
tonnes) and fishing mortality (averaged for ages 2 to 5) estimated using the a4a
approach.

Recruitment SSB Catch F (2-5)

2002 2705 111001 16695 0.210

2003 3374 104552 16185 0.177

2004 6888 115749 14111 0.168

2005 2164 145285 19349 0.192

2006 3016 131509 19949 0.207

2007 7802 110943 18336 0.195

2008 7274 129546 16960 0.184

2009 4070 128736 23581 0.218

2010 2275 138138 18884 0.171

2011 3573 115854 20422 0.205

2012 7237 83818 23258 0.306

2013 6206 88751 29935 0.402

2014 8731 96937 35478 0.498

2015 1990 98455 19939 0.235

2016 11172 107784 33536 0.490

2017 7076 134739 35498 0.423

2018 139308 0.423
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Figure 3.11: Main outputs plots, from top to bottom, recruitment, SSB, catch and
fishing mortality (averaged for ages 2 to 5), along with 75% (red) and 90% (light
red) confidence intervals estimated using the a4a approach and generated with the
FLa4a package.

For model diagnostics, the residuals plots obtained using the FLa4a package did not

show any significant pattern for catch estimates while a year related pattern was

detected at the start of the time series for the acoustic index (Figure 3.12). Note

that both age-structured and aggregated data, in this case, were assumed to follow

lognormal distributions independent by age and year.
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Figure 3.12: Standardized residuals plots for the a4a approach, generated with the
FLa4a package.

3.3.3 Bayesian approach

Visual inspections of the autocorrelation and trace plots (Figure 3.13) did not indi-

cate bad mixing or any other convergence issue of the MCMC draws. All the pa-

rameters passed the Geweke test that tests the equality of means between the first

and last part of a chain (Figure 3.14), the Gelman and Rubin test for within and

between chain variance and the Heidelberg and Welch stationarity test. Therefore,

the MCMC samples were considered to represent adequately the posterior distribu-

tions of the parameters.

Results obtained with the Bayesian approach consist of posterior distributions for

all the model parameters as well as for other derived quantities. The point estimates

computed as the median of the posterior distribution, and the corresponding vari-

ances for all the parameters are listed in Table 3.9. Stock status was summarised

in terms of the posterior distributions of recruitment, SSB, total catch and fishing

mortality (Figure 3.15). Besides the interannual changes of the estimates, this plot

represents also the associated uncertainty. In general, the most recent years have
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wider distributions, reflecting a larger uncertainty. Table 3.7 summarizes the me-

dians of these posterior distributions. When comparing the posterior distributions

of recruitment and the annual component of the fishing mortality with respect to

the prior distributions, posterior distributions are less dispersed and are centred at

different values, indicating that data are providing information on model parameters

(Figure 3.15).

Standardised residuals which were computed using posterior median values as point

estimates, did not show any significant pattern for catch estimates while a year re-

lated pattern was detected for the acoustic index (Figure 3.16).

Figure 3.13: Trace plot of MCMC draws (left) and estimated posterior density
functions (right) for four parameters (µrec, µf , τrec, τf ) for two chains (chain 1 in
blue and chain 2 in red).
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Figure 3.14: Geweke test’s Z values for estimated parameters with the Bayesian
approach.

Table 3.7: Posterior medians of recruitment (millions of individuals), SSB (in
tonnes), total catch (in tonnes) and fishing mortality (averaged for ages 2 to 5)
using the Bayesian approach.

Recruitment SSB Catch F(2-5)

2000 4309 106254 15276 0.169

2001 4444 102499 15185 0.165

2002 2895 123665 18251 0.191

2003 3488 111621 16721 0.160

2004 6094 123842 14364 0.153

2005 2569 143625 16662 0.151

2006 3508 134171 16967 0.165

2007 8304 120518 17537 0.165

2008 8008 142180 21436 0.198

2009 5036 138633 21148 0.168

2010 3001 155570 20111 0.154

2011 4506 136710 22873 0.189

2012 8206 101377 29800 0.313

2013 6913 105444 31976 0.335

2014 9284 114102 33517 0.359

2015 2814 118358 26422 0.247

2016 10677 123249 25597 0.288

2017 6903 153771 29988 0.274

2018 5149 154266 32419 0.292
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Figure 3.15: Posterior distributions for recruitment, SSB, fishing mortality year com-
ponent (fy) and total catch, along years (y axis). For recruitment and fy parameters
the prior distributions are plotted at the top of each panel.
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Figure 3.16: Standardized residuals plots for the Bayesian approach. Sizes of the
dot represent the absolute value of the residuals, while positive values are coloured
in black and negatives in grey.

3.3.4 Comparison

The a4a approach and the Bayesian ad-hoc model were implemented to mimic the

features of the official ICES stock assessment model based on the SS approach.

Therefore, the comparison between the results of the three approaches took also as

reference the SS approach. The three modelling approaches relied on the same popu-

lation dynamics model but differed on the statistical distributions used for modelling

observations. The a4a and Bayesian approaches assumed lognormal distributions for

all the observation equations including age-structured catch and abundance indices,

while SS modelled the age-structured observations through the multinomial distri-

bution (Table 3.8). However, the observation equations for the aggregated indices

were not exactly the same, since the a4a model did not allow to include SSB indices

and were replaced by the biomass of age 1 and older. In addition, observation equa-

tions for the total catch were only included in the SS and Bayesian ad-hoc models.

Estimated key quantities for describing stock status (SSB, recruitment and fishing

mortality) showed similar trends with the three approaches. The estimates did

not take exactly the same values, at the beginning of the period the SS approach

estimated the highest abundance while the SSB estimate in the final year was higher

for the Bayesian approach than the SS approach. In terms of fishing mortality,

similar estimates were obtained for the first year, while the final year estimates were
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around 0.4 for a4a and SS approach and lower for the Bayesian estimate, with the

median around 0.3. However, probability intervals around these values overlapped

along with the whole time series, meaning that obtained results were consistent

between three approaches (Figure 3.17). Concerning estimated uncertainties, a4a

showed the widest confidence intervals being this effect higher in the most recent

part of the time series. Note that a4a approach did not include any prior information

as in the Bayesian approach nor initial assumptions for some parameters as in SS

the approach, such as selectivities’ shapes, initial catch in equilibrium or variance

parameters for aggregated catch and indices.

Table 3.8: Assumed statistical distributions for each observation dataset for each of
the three approaches (SS, a4a and Bayesian ad-hoc).

SS a4a Bayesian ad-hoc

Ĉa,y multinomial lognormal lognormal

Ĉtoty lognormal Not included lognormal

Îaca,y multinomial lognormal lognormal

Îtoty lognormal lognormal lognormal

Îeggy lognormal lognormal lognormal

Îdepmy lognormal lognormal lognormal

The rest of the estimated parameters were summarized in Table 3.9 including point

estimates and the corresponding standard deviations. Estimated catchability values

for all aggregated indices (Qtot, Qegg, Qdepm) were very similar, slightly higher for

the a4a approach, as well as the Qac for the age-structured index, estimated just

with the a4a and Bayesian approach. Selectivity for this age-structured index, fixed

to 1 for ages 2 to 5, was estimated for all approaches obtaining values between 0.55

and 0.6 for q1 and between 0.68 and 0.8 for q6. Selectivities for the fishery (com-

mercial vessel) obtained with a4a and the Bayesian approach were also very similar

to the ones estimated by SS (Figure 3.9). Finally, estimated variances, for indices

and catches, did not show a big difference among approaches. In SS these val-

ues were not estimated but provided to the model as inputs, however, the resulting

estimated σs by the other two approaches were not far from these values (Table 3.9).
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Figure 3.17: Estimated SSB, recruitment and fishing mortality (averaged for ages
2-5) with each of the assessment approaches, along with the corresponding 95%
confidence interval for SS and a4a approaches and 95% credible interval for the
Bayesian approach.
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Table 3.9: Point estimates of model parameters, along with the corresponding stan-
dard deviation in brackets, obtained with each of the approaches (SS, a4a and
Bayesian). Numbers in grey are given values and velues not estimated by the model
are marked with ”-”.

SS a4a Bayesian

s0 0.016 0.009 (0.004) 0.010 (0.002)

s1 0.472 0.412 (0.173) 0.496 (0.076)

s2 0.783 0.727 (0.309) 0.773 (0.115)

q1 0.556 0.587 (0.124) 0.590 (0.114)

q6 0.804 0.794 (0.188) 0.683 (0.146)

Qac - 3.621 (0.537) 3.177 (0.486)

Qtot 2.987 3.229 (0.468) 2.865 (0.381)

Qegg 0.462 0.598 (0.083) 0.598 (0.097)

Qdepm 1.895 2.076 (0.828) 1.920 (1.145)

σC - 0.455 (0.034) 0.482 (0.033)

σCtot 0.05 - 0.050 (0.004)

σIac - 0.721 (0.054) 0.679 (0.042)

σItot 0.480 0.438 (0.079) 0.332 (0.036)

σIegg 0.477 0.405 (0.075) 0.480 (0.081)

σIdepm 0.595 0.598 (0.283) 0.805 (0.451)

3.4 Discussion

Having an analytical stock assessment is a step forward towards the adequate man-

agement of any stock. On the one hand, it allows to define the stock status with

respect to biological reference points and evaluate the effect of management mea-

sures in the short term. On the other hand, it serves to set the basis for evaluating

tactical decisions in the medium or long term. The Bay of Biscay sardine stock was

assessed analytically for the first time in 2017 when a statistical-catch-at-age stock

assessment model implemented in SS was proposed and accepted as part of an ICES

benchmark process (ICES 2017a). These settings were used to provide management

advice in 2017 and 2018 (ICES 2017c; 2018b). In this chapter, we have reviewed

this official assessment implementation. As shown by the model diagnostics, the

official SS assessment summarised well all the data sources and provided meaning-

ful estimates of the quantities of interest. However, some difficulties were faced to
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accept the obtained absolute level of the assessment, due mainly to the fact that the

estimated catchability parameter for the acoustic index was too high (ICES 2017a).

This lead ICES to consider the results just in relative terms and to classify the stock

in Category 2 (stocks with analytical assessments and forecasts that are only treated

qualitatively). However, since then, the assessment has continued evolving. Dur-

ing the Inter-benchmark process held in 2019 (ICES 2019b), several improvements

were proposed and implemented in the SS model, such as changes concerning selec-

tivity estimation and the stock-recruitment relationship. Consequently, the stock

was upgraded to Category 1 (stocks with quantitative assessments) and served to

restart the dialogue with the stakeholders on the development of a management plan.

As an alternative to the official SS assessment, we have explored two approaches:

the a4a approach that intends to be a simpler approach in terms of implementa-

tion, and an ad-hoc developed model that aims at testing the Bayesian inference

paradigm. Both approaches were designed to mimic the official SS assessment. Al-

though some of the assumptions for each of the approaches differ, resulting trends

in time for quantities of interest were found to be similar. Statistical distributions

used for modelling age-structured observations were also different, having lognormal

distributions in the a4a and Bayesian approach and multinomial distributions in

SS. However, all approaches resulted in similar estimates concerning age structured

catchability and selectivity parameters. Aggregated observations were all modelled

through lognormal distributions, in the SS approach the variances were given to

the model while in the other two approaches they were estimated obtaining similar

values to the given ones. Concerning confidence intervals for the main quantities of

interest, i.e. SSB, recruitment and fishing mortality, they were wider for the a4a

approach which does not include any prior information as in the Bayesian approach

nor initial assumptions for some parameters as in the SS approach. The estimated

status of the stock in the terminal year in terms of SSB was higher for the Bayesian

approach and lowest for SS, however in general terms, the three different approaches

presented here were capable of estimating similar trends in time of stock status, as

well as absolute values of estimated parameters.

The election of a software or method for stock assessment has been discussed ex-

tensively in the literature (Deroba et al. 2014, Dichmont et al. 2016, Schnute et al.

1997, Thorson 2019). Besides reasons such as data availability and model complex-

ity or flexibility (Edwards et al. 2012a), there might be additional considerations
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like the technical skills of the analysts (Berkson et al. 2009), time or computational

constraints and the history of the assessments in a region or the locations where the

developers of the tools are based (Dichmont et al. 2016). The range of potential

assessment tools goes beyond existing packages and software since ad-hoc stock as-

sessment models can also be self-developed for a specific stock, as presented in this

chapter or in de Moor and Butterworth (2007), Fernandez et al. (2010), Ibaibarriaga

et al. (2008). Each of the different options for stock assessment presents strengths

and weaknesses.

The main advantages of using general stock assessment programs can be the con-

fidence in the correct coding of the model due to the testing of several users, the

ease to explore different available and implemented model configurations, a faster

obtaining of results, easy to peer-reviewing if reviewers are familiar with the selected

software or the help of a large user community for improvement or error detection.

This can be the case of SS, which is a well-known software with has a big users

community and a large number of model configurations implemented. However, as

noted in Dichmont et al. (2016), the most flexible and complex software are more

likely to be treated as a ”black box” and the possibility of mistakes by non-experts

is a concern. Most of this type of packages provide results that may look correct

in any case and detecting an erroneous configuration can be difficult. This was also

our experience with the SS assessment of sardine in the Bay of Biscay, where small

configuration issues had to be corrected as we gained experience with the tool.

Many authors have advocated simpler models (Cotter et al. 2004, Hilborn 2003).

The a4a initiative can fit into this context. The a4a approach used in this chapter

presents a balance between simplicity of use and model flexibility allowing to ex-

plore different configurations and combination of sub-models in an easy and fast way

(Jardim et al. 2014). The age effect, year effect and cohort effect are easily modelled

for any of the submodels allowing also to incorporate non-linear effects. Setting up

each submodel is done using R’s syntax for equations, which is intuitive and makes

it accessible for any R user. ADMB, used by a4a to perform statistical analysis, is

also a flexible tool that allows to incorporate different estimation methods such as a

maximum likelihood or MCMC methods. All this makes a4a a very versatile option

for stock assessment modelling, being able to incorporate external covariates and

multiple sources of uncertainty (Scott et al. 2016). It is also an intuitive framework,

where fishery scientists can easily and efficiently translate ideas into mathematical
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models and thus is presented as useful interface for addressing a range of plausible

hypotheses through model averaging (Millar et al. 2014). As shown in this work, it

is appropriate for single species and single fleet stock assessments, however, multi-

species or multi fleet case studies can not be implemented in a4a.

User-developed ad-hoc code, such as the Bayesian approach presented in this work

provides the flexibility to explore configurations or new ideas that are not imple-

mented in other packages. Moreover, the ”black box” issue is avoided and aspects

of the assessment that are specific for the case study can be incorporated without

being restricted by the package’s options, which could be restricting innovation in

stock assessment science (Dichmont et al. 2016). On the contrary, implementing the

model is more time-consuming and requires further testing. Simulation testing like

in Deroba et al. (2014) can be used to check that the results are coherent and that

the estimation method is working appropriately under the model assumptions.

Another issue that differentiates presented stock assessment approaches is the proce-

dure for the estimation of some parameters, such as sample size for the age-structured

data and standard deviations for aggregated indices in our models. a4a and the

Bayesian approach are able to estimate these parameters within the model, while

SS relies on ”tuning algorithms”. These tuning algorithms consist of specifying an

initial value for the tuning parameter, running the model, adjusting the value of

the parameter and repeating the process until a small change is detected. These

processes can be time-consuming, difficult to replicate, convergence is rarely defined

and uncertainty on these parameters cannot be obtained. In our case study several

parameters were obtained following this process and thus no uncertainty could be

obtained for these parameters. These tuning process is conducted independently

of standard parameter estimation and could be replaced and improved by incorpo-

rating mixed-effects (Thorson 2019). On the other hand, Bayesian approaches can

easily incorporate the estimation of these parameters that are obtained by ”tuning

algorithms” in SS. In this work, standard deviations for indices lognormal distribu-

tions, are considered parameters with their corresponding prior distributions and are

estimated using standard techniques, being able to obtain the uncertainty as well.

Thorson (2019) recommends converting existing stock assessment packages to use

modern statistical tools such as TMB (Kristensen et al. 2016) or Stan (Carpenter

et al. 2017), however, this can be difficult for a model like SS with thousand of code

lines.
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In fact, estimating uncertainty is crucial in stock assessment (Hilborn 1992). All

of the packages or approaches are able to quantify estimation uncertainty, although

methods may differ among packages. Uncertainty estimation is conditioned on the

data and the model structure and can be obtained using different statistical tools

such as the delta method, bootstrap, likelihood profiling or Markov chain Monte

Carlo (MCMC). Despite the potential for estimating the uncertainty of MCMC

methods (Magnusson et al. 2012, Stewart et al. 2012), they are not very extended

given that most of these models have to be written ad-hoc. Their use is often re-

stricted to the capabilities inherited from ADMB or TMB, i.e. SS and a4a, which are

based on ADMB, can be run with an MCMC option (detailed at Monnahan et al.

2014), obtaining the uncertainty estimations through this method. The Bayesian

approach in this work was coded in JAGS from where the MCMC estimates were

obtained with a run time of a few minutes. However long run times are usually

needed for integrated stock assessment models with higher complexity or longer

time-series. The improvement of MCMC methods is proposed as a solution in Mon-

nahan and Kristensen (2018) and Monnahan et al. (2019), where the use of the

no-U-turn sampler (NUTS, Hoffman and Gelman 2014) within ADMB or TMB is

presented. The NUTS algorithm is executed by Stan (Carpenter et al. 2017) which is

compared to JAGS through a simulation study in Monnahan et al. (2017), conclud-

ing that the preferred software depends on model characteristics, being Stan more

efficient in most of the studied cases, but remarking that ”JAGS clearly remain a

valuable tool when run-time is not prohibitive”.

The resulting uncertainties from stock assessment models are then used for manage-

ment advice and risk assessment, and could affect when the evaluation of different

management actions. In the next chapter, three different methods for uncertainty

estimation are compared and their performance is studied under different model

complexity scenarios using the a4a approach as the most simple option for dealing

with several distinct models. The management advice is studied in the last chapter of

the thesis, using the results obtained in these previous two chapters for conditioning

the MSE and for introducing model uncertainty in the process explicitly.



Chapter 4
Uncertainty estimation and model selection in

stock assessment models with non-parametric

effects on fishing mortality

In this chapter we describe the Monte Carlo simulation study carried out to compare

three different methods for uncertainty estimation in stock assessment models: mul-

tivariate normal distribution, bootstrap (without and with relative bias correction)

and Markov chain Monte Carlo (MCMC). In all approaches model fitting is carried

out using the a4a framework and the generated population is an emulation of the

Bay of Biscay sardine population.

4.1 Introduction

The current management system for marine fish and shellfish resources relies in stock

assessments to set appropriate exploitation levels for commercial stocks. Stock as-

sessments provide estimates of population and fleet dynamics, as well as past and

current status of fish populations. This information constitutes the main product

provided by science to policy makers and managers, in order for these to take evi-

dence supported management decisions. Therefore, in this framework, stock assess-

ment models should provide accurate estimates of the relevant parameters including

their uncertainty. Such information is important to communicate the levels of con-

fidence on scientific results and to allow the development of risk analysis (Francis

and Shotton 1997, Hilborn et al. 2001).

93
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Brooks and Deroba (2015) classified the uncertainty of stock assessment estimates

into three broad categories: observation, structural and estimation uncertainty. Ob-

servation uncertainty is inherent to the input data whereas structural uncertainty

is related to the model configuration describing the dynamics of the population.

Estimation uncertainty is conditioned on the data and the model structure and

can be quantified using different statistical tools such as the delta method, boot-

strap, likelihood profiling or Markov chain Monte Carlo (MCMC). According to

Patterson et al. (2001) these tools can be classified within the frequentist, likeli-

hood or Bayesian paradigms. Previous works have compared the performance of

different uncertainty methods using real or simulated data sets. Magnusson et al.

(2012) compared the delta method, bootstrap and MCMC using simulated data and

suggested that MCMC was the most reliable method given the dataset and the as-

sessment method. Stewart et al. (2012) compared maximum likelihood (MLE) and

Bayesian methods, concluding that MLE approximation under or overestimates the

upper and lower portion of long tailed distributions. MacCall (2013) presented the

delta method as a quick and practical solution for estimating precision of assess-

ment quantities and in Elvarsson et al. (2014) bootstrap method was compared to

Hessian-based approximations and proposed a comparison with MCMC methods as

future work.

Stock assessment models have typically relied on parametric functions that can be

easy to implement, but may lack enough flexibility to capture all the data features

(Hillary 2012, Maunder and Harley 2011). Non-parametric models where the model

structure is not fixed beforehand are well-established in regression models like gen-

eralized additive models (Hardle 1994). Similar smooth functions are being progres-

sively introduced into assessment models (Aarts and Poos 2009, Thorson and Taylor

2014) because they capture the underlying nonlinear structure of parameters like se-

lectivity or catchability (Crone et al. 2013, Maunder and Piner 2015). However,

little is known about how this might affect the uncertainty estimates. In general,

the model fit improves when using smooth functions. However, the confidence inter-

vals of the smooth functions are wider at the data extremes where less observations

are available (Marra and Wood 2012). This is expected to affect especially highly

complex functions and the final assessment years, where some cohorts have not been

observed in full. Aarts and Poos (2009) found wider confidence intervals at the be-

ginning of the time series and they suggest that uncertainty in the last years of the

assessment could be underestimated. In other studies, such as Thorson and Taylor
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(2014), uncertainty increased both at the beginning and at the end of the time series

depending on the shape of the selectivity. In the first case confidence intervals are

derived from a multivariate distribution generated from maximum likelihood esti-

mations and the corresponding hessian matrix using the percentile method and in

the second case uncertainty is reported as 80% simulation intervals. This diverges

from the usual approach in GAM’s where the confidence intervals provided for the

smooths are computed using a Bayesian approach (Marra and Wood 2012, Wahba

1983, Wood 2006b). So, it seems important not only to understand the uncertainty

level when smooth functions are introduced into stock assessment models, but also

to analyse if they differ depending on the estimation method.

The inclusion of smooth functions has been advocated as a way forward to avoid

model miss-specification (Maunder and Harley 2011), although it makes the model

selection more difficult. Different criteria like AIC (Akaike 1974) and BIC (Schwarz

1978) are used to determine which parameters and which shapes are more appropri-

ate in a specific assessment model. AIC tends to select models with a larger number

of parameters while BIC tends to choose simpler models (Dziak et al. 2012). Some

examples in fisheries include Wang and Liu (2006) or Butterworth and Rademeyer

(2008), but their use in models with smooth functions have not been compared.

The main objective of this work is to compare various uncertainty estimation meth-

ods and model selection statistics when nonlinear functions are included into the

assessment model, specially, when fishing mortality is modelled by smooth functions

depending on age and year.

4.2 Material and methods

A comparison of three uncertainty estimation methods, approximate multivariate

normal distribution based on the Hessian matrix, posterior probability intervals

from Markov chain Monte Carlo and parametric bootstrap (without and with bias-

correction), is done within a Monte Carlo simulation framework (Deroba et al. 2014)

using the R package Assessment for all (a4a) (Jardim et al. 2014). This is a new

statistical framework for age-based fish stock assessment designed to be flexible in

terms of model structure, using R’s syntax for model building. For this study,

smooth functions have been introduced for fishing mortality, which range from the

classical separable age and year effect as factors to bi-dimensional smooths allowing
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the interaction between age and year.

4.2.1 Operating model and scenarios

In this study the operating model that represents the true population dynamics,

is based on the a4a age-structured model fitted to sardine (Sardina pilchardus) in

the Bay of Biscay (WGHANSA, 2015). Real data on this stock consists of 13 years

(2002-2014) of landings and catch-at-age (ICES 2015), numbers-at-age and weights-

at-age from the acoustic survey PELGAS (Massé et al. 2016) and an abundance

index from the Daily Egg Production Method survey BIOMAN (Santos et al. 2018;

2011). There is observation data from surveys for every year in the model, being

each survey an independent data source.

Let Na,y denote the number of individuals of age a at the beginning of year y.

Then, according to a4a framework (Jardim et al. 2014) the population dynamics are

described by the usual equations:

Na,y = Na−1,y−1e
−Za−1,y−1 , (4.1)

NA,y = NA−1,y−1e
−ZA−1,y−1 +NA,y−1e

−ZA,y−1 , (4.2)

where A represents the plus group with individuals aged A and older, which in

this case is 6+. The total mortality of age a individuals during year y (Za,y) is de-

composed as the sum of fishing mortality and natural mortality (Za,y = Fa,y+Ma,y).

According to the Baranov equation, catch-at-age (Ca,y) are computed as the fraction

of fishes dying each year due to fishing:

Ca,y = Na,y(1− e−Za,y)Fa,y/Za,y. (4.3)

The a4a model observations equations include observed catch-at-age, an age-structured

abundance index and it might also include an aggregated abundance index. Catch-

at-age, Ĉa,y, are assumed to be lognormally (LN) distributed with variance σC :

Ĉa,y ∼ LN(Ca,y, σC). (4.4)

The age-structured and aggregated abundance indices are also assumed to be log-
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normally distributed with variances σIac and σIegg :

Îaca,y ∼ LN(QacNa,y, σIac), (4.5)

Îeggy ∼ LN(QeggSSBy, σIegg), (4.6)

where Qac and Qegg are survey catchabilities and SSBy denotes spawning stock

biomass in year y.

Natural mortality is assumed known, although it can have a different value for

each year and age class. Therefore, the parameters to be estimated are related to

recruitment , number of individuals at initial year, fishing mortality , survey catch-

abilities and observation variances components. The a4a framework allows a variety

of structures for each of these components: from the simplest constant value case to

more complex and flexible structures represented by smooth functions depending on

age, year or any additional covariate. Parameters are log transformed for estimation.

In the present study, five different scenarios (Table 4.1) have been considered based

on the fishing mortality (F) shape depending on age and year, where smoothing

is introduced. In the first scenario ages and years are taken as categorical covari-

ates while the rest of the scenarios include smoothing functions with different levels

of complexity over ages and years. The first three scenarios represent a separable

structure for F while the last ones are non-separable and allow interactions between

age and year. Different levels of smoothing were tested by increasing the number of

knots in the smoothers. Implementation of smooth functions in a4a is done through

the mgcv package (Wood 2006a) in R. mgcv package is used to construct the structure

of the selected smooth function with a given number of knots, i.e. the only thing im-

ported from mgcv are the design matrices, which are created using ‘smooth.construct’

type functions from this package for each particular smoothing option. a4a uses s( )

and te( ) methods which are used to set up the smoothers. s( ), given a fixed num-

ber of knots, sets up fixed degrees of freedom unpenalised thin plate spline for one

dimension, while te( ), given also the number of knots, sets up an unpenalised ten-

sor product of cubic splines for multi-dimensional cases. Thus, smoothness is fixed

by the user for the generation of the design matrix through ‘mgcv’ given that the

parameter estimation method is done in ADMB and it has not been implemented

as a method to estimate smoothing parameter numbers inside the assessment model.
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Table 4.1: F structure definition in each scenario.

Scenario Name Notation in R Description

S1 age x year ∼ factor(age)+factor(year) Classical age-year separable

structure.

S2 hifh order splines ∼ s(age,k=6)+s(year,k=8) Separable structure based on

splines with 5 degrees of freedom

for age and 7 for year.

S3 low order splines ∼ s(age,k=3)+s(year,k=4) Separable structure based on

splines with 3 degrees of freedom

for age and 4 for year.

S4 high order tensor ∼ te(age,year,k=c(6,5)) Non-separable structure based

on a tensor product with 29 de-

grees of freedom.

S5 low order tensor ∼ te(age,year,k=c(3,3)) Non-separable structure based

on a tensor product with 8 de-

grees of freedom.

Figure 4.1: Selected fishing mortality shapes for each scenario as function of age and
year.



4.2. Material and methods 99

For the sake of simplicity, constant catchabilities, and constant observations vari-

ances, across ages and years were assumed. Recruitment and initial year numbers-at-

age are estimated for each year and each age respectively. Under these assumptions

the models for each scenario were fitted to sardine data. F shapes derived from these

structures for each scenario are shown in Figure 4.1. The estimated parameters were

taken as the true values for the operating models in the simulation study.

4.2.2 Data simulation

True values were generated fitting real data to the defined operating model for each

of the scenarios. Taking estimates of catch and indices (an acoustic index and a

biomass index) from this initial run for each scenario as true values, new simulated

datasets, consisting of catch-at-age and indices data, were generated multiplying

a lognormal error. The coefficient of variation of these errors was set as 25% for

catch data and 20% for indices data so that these values remain constant across all

scenarios (Magnusson and Hilborn 2007). For each scenario 100 simulated datasets

were generated.

4.2.3 Implemented approaches

For each simulated dataset, the a4a assessment model was fitted using three different

approaches for uncertainty estimation. The assessment settings were equal to the op-

erating model used for data simulation, i.e. same parametrizations were used in the

operating model and the assessment model of each scenario (Magnusson et al. 2012).

The a4a stock assessment model is fitted with maximum likelihood and implemented

in R/FLR/ADMB, (Kell et al. 2007, Team 2015). Automatic differentiation is used

for likelihood maximization through ADMB (Fournier et al. 2012). Convergence

from ADMB was checked obtaining that 100% of the fits had converged.

4.2.3.1 Multivariate normal approach

The first estimation method is based on the general maximum likelihood theory,

according to which the maximum likelihood estimates are asymptotically unbiased,

normally distributed with variance given by the inverse of the hessian matrix (Vaart

and W. 1998). Thus, the empirical distribution of the parameters was approximated
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by obtaining a random sample of size 1000 from a multivariate normal distribution

centred on the maximum likelihood point estimates with variance-covariance matrix

given by the inverse of the hessian matrix. This variance-covariance matrix accounts

for the correlation between the estimated parameters. Derived quantities, such as

SSB, are computed for each sample, so that their empirical distribution can be de-

rived.

4.2.3.2 MCMC in ADMB

Markov Chain Monte Carlo (MCMC) methods, used to sample from complex multi-

dimensional distributions, are widely used in Bayesian inference. ADMB has an

option for Bayesian analysis using MCMC, (Monnahan et al. 2014), which has been

implemented in the a4a framework. It consists in sampling the maximum likeli-

hood surface using MCMC, with a multivariate normal distribution as the proposal

function. Although priors are not specified for this study, a flat prior based on

parameters bounds is always assumed in ADMB (Millar 2011). Note that ADMB

developers suggest using MCMC results with caution given that there is no docu-

mentation available about this implementation. They recommend comparing results

using another MCMC software and looking at standard diagnostics. Both recom-

mendations have been followed in this work, looking at convergence diagnostics and

obtaining equivalent results in JAGS (Plummer 2003), verifying this way that ob-

tained MCMC results are valid.

In order to determine the number of draws and the thinning for MCMC convergence

was checked using original datasets for the fittings. Posterior traces and autocor-

relations where checked and Geweke and Raftery and Lewis’s diagnostic tests were

performed and passed. 100,000 draws were obtained with a thinning of 100. Thus,

a sample of size 1000 was saved for subsequent analysis.

4.2.3.3 Parametric Bootstrapping

A parametric bootstrap (Efron and Tibshirani 1994) was performed for each sim-

ulated dataset. From the a4a model estimates 1000 catch and indices bootstrap

samples were generated according to the observation equations in (4.4) to (4.6). For

each bootstrap sample the model is fitted obtaining 1000 estimates. A relative bias
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correction (BC) algorithm has been applied to these results. The applied algorithm

is a relative bias correction and acceleration algorithm, setting the acceleration co-

efficient to zero. It adjusts for differences between the median of the bootstrap

percentile density function and the estimate obtained with the original data sample

(Efron and Tibshirani 1994).

4.2.4 Performance evaluation

Performance of these methods was evaluated for the following estimated parameters

and derived quantities: SSBy (spawning stock biomass for each year y),Ry (recruit-

ment for each year y), F0,y, F2,y, F6+,y (fishing mortality for ages 0, 2 and 6+ for each

year y), Qac, Qegg (survey catchabilities) and σC , σIac , σIegg (observations variances).

For each scenario and each simulated dataset (i), the uncertainty estimation of each

parameters (in general denoted as θ) has been measured in terms of:

� Point estimate, θ̂i , defined as the median of the 1000 iterations saved in

simulation i.

� Coefficient of variation,CVθ̂i , defined as the cv (ratio of the standard deviation

to the mean) of the 1000 iterations saved in simulation i.

� Relative bias, Bθ̂i , defined as (θi − θ)/θ, where θ are parameters’ true values.

� Skewness, SKθ̂i
, defined as µ3θi/σ

3
θi

, where µ3 is the third central moment

and σθi is the standard deviation of the 1000 iterations saved in simulation i.

� Coverage probability, CPθ̂ , is defined as Pr(θ ∈ PIθi) the proportion (out of

the 100 simulations) of 90% confidence intervals (computed using 5th and95th

percentiles of the 1000 iterations saved in simulation i) that contain the true

value.

Point estimates, coefficient of variations, relative bias and skewness measures defined

above have been analysed through their corresponding medians and 5th and 95th

quantiles across simulation.

4.2.5 AIC and BIC accuracy

In order to evaluate the accuracy of AIC and BIC in choosing the correct model,

all simulated datasets have been fitted using the 5 different models defined for each

scenario and the AICs and BICs have been computed. In each case the model with
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the lowest value of either AIC or BIC was defined as the selected model, computing

afterwards the proportion of cases in which a correct selection was done for each

scenario.

4.3 Results

All methods (bootstrap, bias corrected bootstrap, maximum likelihood and MCMC)

give nearly the same point estimates for SSB, recruitment, fishing mortality and

catchability parameters, but different for the estimated variability for catch and in-

dices. The median across the 100 simulations of the relative bias for SSB are slightly

positive (around 0.01) but the 90% confidence intervals do not show a trend toward

positive or negative relative bias (Figure 4.2). The 90% confidence intervals of the

relative bias increase slightly for the last two years, related with higher coefficient

of variations, being (-0.12, 0.12) in the last year. The empirical distributions of the

CVs of SSB increase from less than 5% in the first years to nearly 10% in the last

year (Figure 4.2). When comparing the different approaches the ’multivariate nor-

mal’ and the two types of bootstraps show nearly the same coefficients of variation

while the MCMC option in ADMB results in nearly 15% higher CVs in most of the

cases. When comparing scenarios, High order tensor scenario (S4) presents slightly

higher values in the last two years and especially for the MCMC approach.

Similar results were obtained in terms of relative bias and CV’s for recruitments

(Figure 4.3). The 90% confidence intervals of relative bias for recruitment, around

(-0.1, 0.1), do not indicate systematic under or overestimation. The increase of the

confidence intervals of relative bias in the last year ranges from a ratio of 3.5 with

respect to middle years in scenario S1 and S2 to nearly a ratio of 5 in scenario S4.

For the CV’s in recruitment estimates larger values than for biomass were found,

especially in scenario S4 where median CVs in the last year are 5 times greater than

those for SSB, reaching values from 45% to 60% depending on the method. For the

rest of the years this difference is lower (around 2.5 times) taking CV values near 6%.

Medians across simulations for catchability parameters (Qac and Qegg) do not show

significant relative bias in any of the scenarios and methods with 90% confidence in-

tervals around (-0.08, 0.07) for Qac and (-0.1, 0.1) for Qegg (Figure 4.4). Observation

variances are systematically underestimated in the maximum likelihood (ML) fit. As

a result, generated samples for bootstrapping, where estimated variances are used,
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present lower variances, and when replicating the fitting it is again underestimated,

obtaining even lower observation variance estimates than in the ‘multivariate nor-

mal’ approach. The bias corrected version corrects this underestimation for these

three parameters, with no significant effects in the rest of estimates. Figure 4.4

shows relative bias median values taken over the 100 simulations where negatives

values are detected for bootstrap and multivariate normal approaches, indicating

this underestimation. Most of the 90% confidence intervals for these parameters

include the zero value, except for σC and σIac using Bootstrap method. For mul-

tivariate normal approach median values are higher but still negative ranging from

medians near -0.12 for σC to -0.05 for σIegg . BC and MCMC approach seem to per-

form better in term of bias, showing nearly null median values. Except for scenario

S4, where the two bootstrap approaches and the multivariate normal approach show

lower median relative bias values for σC , similar results were obtained for the rest

of scenarios. In all scenarios and with all methods σIegg show wider relative bias

confidence intervals, around 2.5 times σIac intervals.

Figure 4.2: Medians (points) and 90% CIs (vertical bars) of the relative bias (top
row) and the coefficient of variation (bottom row) of SSB for each year (x-axis).
From left to right scenarios age x year, high order splines, and high order tensor
(S1, S2, and S4) are represented in each column. Each point symbol and colour
corresponds to an estimation approach.
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Regarding the CVs of the catchability and observation variances, Qegg presents

slightly higher median CVs (around 6.5%) than Qac (4.5%) with wider 90% confi-

dence intervals for all scenarios and methods (Figure 4.4). σC and σIac present sim-

ilar CV values with a common pattern where BC method shows lower values with

wider 90% confidence intervals around (6.5-8.5)% in contrast with non-overlapping

intervals for bootstrap approach. For σIegg a similar pattern is observed with higher

CVs around 23%.

Fishing mortality estimates do not show any trend in bias with 90% confidence in-

tervals narrower than (-0.3, 0.3) in most of the cases (Figure 4.5). A small increase

of the intervals width can be seen for first and last ages as well as an increase for

the last year (30% - 40% increase with respect to other ages or years), especially

for High order tensor scenario (S4), where fishing mortality is modelled as a tensor

product with high flexibility. In this last scenario estimates for the first age in the

Figure 4.3: Medians (points) and 90% CIs (vertical bars) of the relative bias (top
row) and the coefficient of variation (bottom row) of recruitment for each year (x-
axis). From left to right scenarios age x year, high order splines, and high order
tensor (S1, S2, and S4) are represented in each column. Each point symbol and
colour corresponds to an estimation approach.
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last year shows a more than 3 times wider confidence interval in contrast to middle

years, ranging from -0.5 to 1.5. Concerning CV medians for F estimates (Figure 4.6),

different shapes are observed depending on the scenario, having similar structures

across methods. Scenarios where F was modelled with a separable submodel present

a flatter shape, with median CV values around 11% and a small increase for the last

year, taking values up to 16%. Scenarios where F was modelled as non-separable

the increase in median CVs was not only for last year but also for first years and

first and last ages, ranging from 12% for middle years and ages to 50% for the most

extreme value.

All selected parameter distributions seem to be symmetric as the skewness statistic

range between -1 and 1 (Figure 4.7).

Coverage probabilities for parameters in the last year (Table 4.2) for the ’multivari-

ate normal’ approach and bootstrapping are lower, taking values between 0.75 and

0.85 while MCMC method gives coverage probabilities above 0.9, as shown in Figure

Figure 4.4: Medians (points) and 90% CIs (vertical bars) of the relative bias (top
row) and the coefficient of variation (bottom row) of catchabilities and observation
variances for scenario S2. Each point symbol and colour corresponds to an estimation
approach.
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4.8 for the whole time series of SSB, recruitment and fishing mortality parameters.

Comparisons of coverage probabilities that are not shown in the table (for the rest

of the years) are similar to the presented values. For biased estimations, such as

observation variances, coverage probabilities are very low, mostly below 0.5, except

Figure 4.5: Medians (points) and 90% CIs (vertical bars) of the relative bias fishing
mortality for each year (x-axis) for the MCMC approach. From left to right scenarios
age x year, high order splines, and high order tensor (S1, S2, and S4) are represented
in each column. Each colour corresponds to an age.

Figure 4.6: Median coefficients of variation of fishing mortality as a function of age
and year for the MCMC approach. From left to right the panels correspond to
scenarios age x year, high order splines, and high order tensor (S1, S2, and S4)
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for the MCMC approach where values near 0.9 are reached.

When comparing across methods, the MCMC shows a more stable performance in

face of more complex F models. The results obtained were always close to 0.9, in-

cluding when the F model complexity increased to a tensor product (S4). The other

methods show a deterioration of the coverage in S4 when comparing with S1 and S2.

Concerning AIC and BIC accuracy evaluation for model selection, in the case of

AIC selection criteria, the scenario with the smallest number of parameter show the

lowest model selection accuracy, while the scenario with the highest number of pa-

rameters, low order splines scenario, has been selected correctly with an accuracy of

100% (Figure 4.9). The rest of scenarios present an accuracy of around 75-85%. For

BIC selection criteria, all scenarios except the classical separable one, were selected

correctly 100% of the times. For the classical separable scenario, the scenario with

high order splines was selected 75% of the times. This scenario is the most similar

one in terms of number of parameters and separability assumption. In miselection

cases AIC and BIC values appear to be very close.

Figure 4.7: Medians (points) and 90% CIs (vertical bars) of the skewness SSB in
the last year, catchabilities and observation variances for scenario S2. Each point
symbol and colour corresponds to an estimation approach.
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Figure 4.8: Coverage probabilities for each year and each method for SSB, recruit-
ment (rec) and fishing mortality-at-age 2 (F2) parameters in scenario S4.

Table 4.2: Coverage probabilities for each scenario and each estimation method for
catchabilities, observation standard deviations and for SSB, R, fishing mortality-at-
ages 0, 2, and 6+ in the last year.

Scenario Method SSB R f0 f2 f6 Qac Qegg σC σIac σIegg

S1 Relative bias corr. 0.89 0.80 0.77 0.83 0.85 0.86 0.86 0.24 0.86 0.79
S1 Bootstrap 0.89 0.80 0.78 0.82 0.83 0.87 0.86 0.00 0.54 0.75
S1 MCMC 0.91 0.89 0.88 0.89 0.86 0.92 0.91 0.92 0.89 0.83
S1 MNorm 0.91 0.80 0.78 0.82 0.83 0.87 0.88 0.35 0.75 0.78
S2 Relative bias corr. 0.86 0.85 0.90 0.88 0.91 0.92 0.90 0.54 0.79 0.83
S2 Bootstrap 0.86 0.85 0.90 0.89 0.92 0.92 0.93 0.14 0.40 0.75
S2 MCMC 0.92 0.90 0.97 0.92 0.94 0.93 0.94 0.91 0.93 0.90
S2 MNorm 0.87 0.85 0.92 0.88 0.92 0.92 0.91 0.50 0.65 0.82
S3 Relative bias corr. 0.85 0.84 0.88 0.89 0.88 0.91 0.92 0.89 0.73 0.85
S3 Bootstrap 0.85 0.84 0.88 0.89 0.86 0.91 0.92 0.37 0.38 0.74
S3 MCMC 0.89 0.88 0.91 0.90 0.90 0.93 0.95 0.91 0.93 0.89
S3 MNorm 0.85 0.85 0.88 0.89 0.89 0.91 0.93 0.74 0.60 0.82
S4 Relative bias corr. 0.87 0.77 0.74 0.82 0.90 0.88 0.89 0.05 0.76 0.84
S4 Bootstrap 0.87 0.77 0.73 0.82 0.89 0.89 0.90 0.00 0.38 0.74
S4 MCMC 0.92 0.90 0.88 0.90 0.94 0.90 0.90 0.84 0.93 0.88
S4 MNorm 0.87 0.77 0.75 0.83 0.90 0.87 0.90 0.18 0.64 0.80
S5 Relative bias corr. 0.90 0.87 0.86 0.86 0.81 0.87 0.93 0.78 0.76 0.85
S5 Bootstrap 0.90 0.87 0.86 0.86 0.83 0.87 0.93 0.29 0.35 0.70
S5 MCMC 0.92 0.90 0.89 0.89 0.88 0.92 0.94 0.90 0.94 0.89
S5 MNorm 0.90 0.85 0.86 0.87 0.80 0.88 0.93 0.62 0.61 0.83
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Figure 4.9: Selections proportion when using AIC (top) and when using BIC (bot-
tom). Each panel corresponds to a scenario from which data was generated and
x-axis represents the range of eligible models.

4.4 Discussion

The interest in incorporating uncertainty in management processes is increasing

given that the lack of consideration of different sources of uncertainty has caused

many failures in fisheries management (Hilborn and Peterman 1996). Thus, it be-

comes crucial to quantify correctly the uncertainty in fisheries assessments. In this

work different methodologies were compared, focusing on estimation uncertainty.

The work is focused on the introduction of non-parametric functions to model fish-

ing mortality in stock assessment models. In addition, the accuracy of AIC and BIC

in model selection has been analysed.

General results from the comparison of methods agreed with previous studies: Mag-

nusson et al. (2012) identified MCMC method as the most reliable one and Stewart

et al. (2012) suggest that MLEs generally misestimate skewed distributions in the
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tails which does not happen when using MCMC methods. As in Magnusson et al.

(2012) the bias correction algorithm for bootstrapping resulted in an improvement of

results. However, in comparison to Magnusson et al. (2012) results, in this study it

was not detected a systematic underestimation of coverage probabilities for MCMC

method.

Parametric models are sometimes considered too restrictive to capture the complex

dynamics of fish populations and the fleets exploiting them (Hillary 2012). In Fron-

czyk et al. (2011) a Bayesian non-parametric approach based on a mixture model for

the joint distribution of log-reproductive success and stock biomass is proposed and

compared with simpler parametric and semi-parametric models for North Atlantic

cod data. They conclude that the non-parametric model outperforms the simpler

ones. In Hillary (2012) a Ricker model was compared with a non-parametric alter-

native and found the latter had better performance.

Most recent works have focused on introducing more flexibility in fishing mortality

estimates using different approaches. In Fernandez et al. (2010) autocorrelation pro-

cesses are used to model a more flexible selectivity and in Nielsen and Berg (2014)

the incorporation of a correlation parameter to capture the temporal smooth de-

velopment in selectivity is proposed. In these approximations a single parameter is

included and is estimated from the data instead of pre-specifying the smoothness

degree. Other works, such as Thorson and Taylor (2014) or Martell and Stewart

(2013) have studied the usage of non-parametric functions to model selectivity in

assessment models, finding in the first case, that non-parametric models have less

relative bias and greater precision when the parametric function is misspecified. In

the second case the authors suggested that when there is no precise knowledge about

the fishery or catch data, adopting a flexible selectivity, such as an age-based selec-

tivity interpolated over age and year using a bicubic spline, may be more appropriate

than assuming constant selectivity.

Some available software for stock assessment include options for non-parametric

modelling. Stock Synthesis (Methot and Wetzel 2013) includes a non-parametric

submodel for size selectivity, using waypoints and a set of linear segments while

MULTIFAN-CL (Fournier et al. 1998) uses cubic splines to model selectivity.
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As mentioned above, non-parametric functions, splines and their tensor products in

this study, present advantages in terms of the ability to capture flexible shapes in

comparison with parametric options. It has been seen that more flexible shapes re-

sult in greater uncertainties, finding greater CVs and relative bias at terminal years

and at terminal ages for most complex scenarios, probably due to a larger number of

estimated parameters. Coverage probabilities were also found to deteriorate for the

most complex model, although not for MCMC method. As in our case study, the

extra freedom in non-parametric models used in Hillary (2012) resulted in higher

uncertainty level. The differences in uncertainty quantification could have an effect

in management advice and risk assessment when evaluating the consequences of dif-

ferent management actions under uncertainty.

The changing level of uncertainty estimated for last periods related to the degree

of flexibility in submodels could be handled using model selection. In this work

the most commonly used criteria (AIC and BIC) have been evaluated in terms

of accuracy in selecting the correct model resulting in a better accuracy for BIC.

Thorson et al. (2013) propose a stepwise model selection using AIC to select the

degree of smoothness for time-varying parameters and Maunder and Harley (2011)

state the need for an alternative to AIC and BIC criteria and perform cross validation

model selection to determine non-parametric selectivity curves. An alternative to

selecting a single model is performing model averaging, which eliminates the need

for selecting a ‘best’ model and rejecting all alternative assumptions as proposed

in Millar et al. (2014) and references therein. Model selection or model averaging

are not very common practices in stock assessment yet, although the incorporation

of these kind of approaches is an issue with an increasing interest (Anderson et al.

2017).
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Chapter 5
Development of a full-feedback MSE for the

Bay of Biscay sardine

In this chapter we develop a full-feedback Management Strategy Evaluation(MSE)

for the Bay of Biscay sardine. We start from a simple Monte Carlo simulation ap-

proach, where only process uncertainty is considered, and we introduce gradually

assessment, observation and initial population uncertainties. We study the effects

of each of these uncertainty sources in the MSE process in terms of the main perfor-

mance statistics, such as biological risk, expected biomass or catches, and we discuss

their impact in the development of a management plan for this stock.

5.1 Introduction

The aim of performing MSE for fish stocks is to evaluate by Monte Carlo simulation

the effect of different management actions before they are put in place. This al-

lows to assess their performance with respect to the management objectives and to

select strategies that are robust to different sources of uncertainty (Punt et al. 2016).

The success of a MSE depends, among others, on how well uncertainty is represented

(Butterworth and Punt 1999, Punt et al. 2016). However, identifying and deciding

on what are the specific sources of uncertainty that will be included in the MSE re-

mains a major challenge. Kraak et al. (2010) claimed that the choice of uncertainty

sources in MSE often seems to be quite arbitrary and does not necessarily reflect

a lack of scientific knowledge of the relevant process. From the experience gained

in the development of a management procedure for Southern Bluefin Tuna, Kolody

113
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et al. (2008) recognized that there is no simple prescription for quantifying uncer-

tainty and commended efforts to ensure that a broad range of uncertainty sources

are included.

Punt et al. (2016) distinguished five sources of uncertainty in a MSE (as listed in the

introduction in section 1.3.3) and considered that a MSE should include minimally

process uncertainty, parameter uncertainty and observation error. Examples incor-

porating process uncertainty can be found in Irwin et al. (2008) which used a multi-

nomial distribution for recruitment proportions, in Punt et al. (2008) where tem-

porally autocorrelated error structures were used or in Garcia et al. (2013) through

an autoregressive recruitment model with normally distributed uncertainty. Con-

cerning parameter uncertainty examples, it was included in the stock–recruitment

relationship through a Bernoulli distribution for ”high” recruitment probability and

a multivariate normal distribution for Ricker parameters in Irwin et al. (2008) while

the posterior distributions of the Bayesian statistical catch-at-age assessment model

were taken in Garcia et al. (2013) to include parameter uncertainty in the initial

population. Observation error was included in Needle (2008) through lognormal

errors for catches and survey data, as well as in Garcia et al. (2013) who added

observation error in the ageing by using a multinomial distribution. Implementa-

tion uncertainty was also found in Punt et al. (2008) or Irwin et al. (2008) where

normally distributed error were included.

Concerning the assessment process for a full-feedback approach, Garcia et al. (2013)

did incorporate the full assessment in some scenarios for the Pagellus bogaraveo

case study, where XSA model (Shepherd 1999) was applied to observed data within

the MSE Monte Carlo simulation. The same assessment model was also incorpo-

rated in Needle (2008). Other stock assessment models have been also used in MSE

works, such as SAM model for North Sea cod (ICES 2020a), Stock Synthesis for

West Coast groundfish (Punt 2003) or ad-hoc models such as the age-structured

assessment model developed with ADMB in A’mar et al. (2009). This last work,

reports a bias between the true SSB and the estimated by the assessment model,

which is another issue to be taken into account when a full-feedback approach is

implemented. Thus, when evaluating the performance of a ”full feedback” MSE,

statistics such as the bias or mean square error of the assessment model need to

me included, in order to measure how well the stock assessment method estimates

quantities of interest for management (Patterson and Kirkwood 1995, Punt et al.
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2001). For data-limited case studies several works have reported biased results in

stock assessment models (Chen et al. 2003, Wetzel and Punt 2011). Not reliable

catch data, due to discards or misreporting issues, is considered as a source of bias

in assessment (Pomarede et al. 2010) and fishery-independent, survey-based manage-

ment procedures have been proposed as an alternative (De Oliveira and Butterworth

2004, Pomarede et al. 2010). However, none of them explores explicitly the effect

of introducing such sources of uncertainty on the management actions’ performance.

Given the intensive computational requirements for a full-feedback approach, al-

ternative shortcut options are usually implemented which try to mimic the stock

assessment model error. However there is a lack of guidance on how to select the

appropriate values for the common approach of using a stochastic process with an

assumed level of autocorrelated estimation error. Wiedenmann et al. (2015) anal-

ysed the implications of this autocorrelation for MSE. Shortcut approaches can be

also achieved by adding estimation error based on the variance covariance matrix of

a reference assessment model or using analytical retrospective analysis (ICES 2020a).

The main objective of this work is to develop a full-feedback MSE for sardine in the

Bay of Biscay, while quantifying the impact of each of the different sources of uncer-

tainty introduced in the MSE process. The operating model has been conditioned

according to the population and fleet dynamics of sardine in the Bay of Biscay. Two

different types of harvest control rules were considered: the ICES advice rule and

a catch-based rule. Process, parameter, observation and assessment uncertainties

were included one by one, in order to analyse their effect separately. This allowed

us to identify the major sources of risk and discuss future steps towards the final

adoption of a management plan for this stock.

5.2 Material and methods

5.2.1 Operating model

The settings for representing the real dynamics for the Bay of Biscay sardine case

study were based on the 2019 stock assessment model (ICES, 2019a) using SS (Stock

Synthesis; Methot and Wetzel, 2013). This model assumes a single area, a sin-

gle fishery, a unique season by year and both genders combined. Spawning stock

biomass (SSB) is computed on 1st January. The population is age-structured with



116 Chapter 5.

age classes from age 0 to 6+ (the plus group is set at age 6) and the assessment

period goes from 2000 to 2019, being the later an interim year in the assessment (so

only provisionally assessed). See section ”SS approach” in Chapter 3 for a detailed

description of the SS stock assessment model settings. In the MSE framework, the

historical part was equal to the assessment period (2000-2019), from which estimates

of numbers-at-age, fishing mortality-at-age, catch-at-age in numbers and total catch

in tonnes were computed as the medians of resulting MCMC iterations from the SS

stock assessment model. Then, the population was projected forward for 25 years

(2020-2044).

5.2.1.1 Population dynamics

Annual recruitment Ry was modelled as a function of spawning stock biomass SSBy

in year y, according to a segmented regression stock-recruitment model with the

breakpoint fixed at Blim (56,300 tonnes from IBPSardine: ICES, 2019b). The seg-

mented regression model was considered the most appropriate model for the simu-

lations as it makes the least assumptions about the shape of the curve out of the

observed ranges. It is formulated as a piecewise linear regression (see Figure 5.1)

which must pass through the origin and take a constant value after the breakpoint

as follows:

Ry =


aSSBy SSBy < Blim,

aBlim SSBy ≥ Blim,
(5.1)

where the slope parameter a is estimated from the historical period. In our case study

a = 87, which corresponds to the median value across all a parameters estimated

for each of the MCMC iterations from the SS assessment model.

Regarding the rest of biological parameters, natural mortality-at-age was set con-

stant along time at the same values as in the historical series, as agreed in the

benchmark (ICES, 2017a). Maturity-at-age was set to the average of historical val-

ues rounded off to two decimals (Table 5.1). Weights-at-age for the stock show a

decreasing trend in the historical period (ICES 2019b, Véron et al. 2020). Thus, for

the projection period, weight-at-age for the stock were assumed to be constant and

equal to the average of the last 5 years (2015-2019) (Table 5.1). Similarly, given the
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decreasing trend of the weight-at-age in the catch for all ages in the historical series,

weight-at-age in the catch were taken as the average of the period 2014-2018 (Table

5.1). In this case, weight-at-age in the catch in 2019 were not used given that in the

assessment year, weight-at-age in the catch are not known and are assumed to be

the average over the last three years.

Table 5.1: Maturity-at-age proportion, stock weight and catch weight-at-age values
in kg used for projection years.

age maturity stock weight catch weight

0 0.00 0.00 0.02

1 0.69 0.02 0.04

2 1.00 0.04 0.05

3 1.00 0.05 0.06

4 1.00 0.06 0.06

5 1.00 0.07 0.07

6 1.00 0.08 0.08

Figure 5.1: Graphical representation of the implemented segmented regression stock-
recruitment model.
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5.2.1.2 Fleet dynamics

A single fleet with one métier was considered for the Bay of Biscay sardine case

study. This represented the international catches by France and Spain, the two

main countries participating in this fishery. Given that no effort data were avail-

able, effort was fixed to 1 along the past historical period (2000-2019). Discards in

this fishery are negligible, so they were assumed to be equal to zero and catches were

equal to the landings.

The Cobb-Douglas production function (Cobb and Douglas, 1928, Clark, 1990) es-

tablishes the annual catches as a function of effort and biomass as follows:

Ca,y = qCDa,y E
α
yB

β
a,y, (5.2)

where Ca,y stands for catches in year y and age a, qCDa is the catchability-at-age

parameter, E represents the effort and B the biomass. The catchability-at-age pa-

rameters for this function, qCDa , were calculated yearly (assuming α = β = 1) in the

historical period as the ratio between catch and biomass by age at the middle of the

year, when catches were assumed to be taken instantaneously. For the simulation

period, yearly catchability-at-age parameters for the Cobb-Douglas model were as-

sumed to be constant along time and equal to the average over the last five years

(2015-2019), qCDa = (0.01, 0.20, 0.31, 0.39, 0.39, 0.38, 0.38). In the simulation period,

based on the true biomass and the Cobb-Douglas parameters, the effort needed to

get the TAC established by the harvest control rule is computed for each year.

5.2.2 Management procedure

Data needed for the stock assessment were generated from the operating model

defined above and were used as input for the management procedure. The manage-

ment procedure consisted of conducting the stock assessment, doing the short-term

forecast and applying a harvest control rule for management advice. Subsequently,

the Monte Carlo simulation was closed by subtracting the advised catches from the

real population in the operating model.
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5.2.2.1 Harvest control rules

Two types of harvest control rules (HCRs) were implemented to set the TAC for

management year y+1 based on the expected SSB ̂SSBy+1 that is obtained through

the short-term forecast.

The first one is the ICES MSY advice rule (IcesHCR; ICES 2019a). This is an

F-based rule that sets the fishing mortality rate of no more than Fmsy, while main-

taining the stock above Blim with at least 95% probability. In particular, the TAC

for year y+ 1 corresponds to a fishing mortality that is set as a function of ̂SSBy+1

as follows (see Figure 5.2 for a graphical representation):

Fy+1 =


0, if ̂SSBy+1 < Blim,

Fmsy
̂SSBy+1

MSY Btrigger
, if Blim < ̂SSBy+1 < MSY Btrigger,

Fmsy, if ̂SSBy+1 > MSY Btrigger,

(5.3)

where Fmsy = 0.453 year−1, MSY Btrigger = 78, 700 tonnes and Blim = 56, 300

tonnes are the reference points for this stock (ICES 2019c).

The second type of harvest control rule is a catch-based rule (CbasedHCRtacmax),

where the TAC for year y + 1 is set as a function of ̂SSBy+1 as follows (see Figure

5.2 for graphical representation):

TACy+1 =


0, if ̂SSBy+1 < B0,

TACmin + γ( ̂SSBy+1 −B0), if B0 < ̂SSBy+1 < B1,

TACmax, if ̂SSBy+1 > B1.

(5.4)

This rule depends on five parameters (the biomass trigger points B0 and B1, the

minimum and maximum TAC allowed by the rule TACmin and TACmax, and the ex-

ploitation rate γ) that result in different rules. To ensure that the rule is continuous

at the biomass trigger point B1, B1 was defined as:

B1 = B0 +
TACmax − TACmin

γ
. (5.5)

The biomass trigger points B0 and B1 were taken as Blim and MSY Btrigger re-

spectively. The rest of the parameters (γ, TACmax and TACmin) can be fixed to
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different values, which will define the specific shape of the HCR. Combining dif-

ferent values for all described parameters on the HCRs definition, lots of different

rules could be set and tested. The analysis of comparing different rules is out of

the scope of this work. In order to see the effect of introducing different sources

of uncertainty on the MSE process, we focused on the particular catch-based rule

with TACmin = 7, 500, TACmax = 35, 000 and γ = 0.5. This rule was selected from

a previous work, where it showed a good performance in terms of risks without a

full-feedback MSE approach (Uriarte et al. 2020).

Figure 5.2: Graphical representation of the implemented harvest control rules
(IcesHCR and CbasedHCRtacmax).

5.2.3 Uncertainty sources

The MSE framework allows to take into account the full range of uncertainty sources

(Punt et al. 2016). In this case study we included the following sources of uncer-

tainty: process uncertainty in the recruitment dynamics, initial population uncer-

tainty through the uncertainty in the parameters that define the historical pop-

ulation, observation uncertainty in the catch and in the abundance indices and

uncertainty due to the stock assessment model.

5.2.3.1 Process uncertainty

Uncertainty in the recruitment process was implemented by adding a lognormally

distributed error (with zero mean and variance equal to the variance of the residuals

from the model fit) around expected recruitment for each iteration.
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5.2.3.2 Initial population uncertainty

Initial population uncertainty, referred as ”parameter uncertainty” in Punt et al.

(2016), was introduced by incorporating into the MSE conditioning the uncertainty

of the parameters estimated by the stock assessment model that define the initial

population and propagating these uncertainties to other derived quantities in the

conditioning.

The official SS assessment was run activating the MCMC option, which in addition

to point estimates, returns a value for each parameter for each MCMC iteration.

This capability is inherited from ADMB (Monnahan et al. 2014) which samples the

maximum likelihood surface using MCMC, with a multivariate normal distribution

as the proposal function. As recommended by ADMB developers, MCMC results

from ADMB were compared to another MCMC software (compared to JAGS in

Chapter 3) obtaining consistent results for our case study model. A thin-in interval

of 10 and a burn-in of 1000 iterations was set, obtaining a final set of 1000 iterations.

Output from each MCMC iteration was taken as a different population to condition

the operating model. All the estimated parameters (population numbers-at-age,

fishing mortalities, selectivities and indices’ catchabilities) take the corresponding

different values from each MCMC iteration. Stock recruitment parameter’s esti-

mation was done for each iteration as well as the computation of Cobb-Douglas

catchability parameters. Thus, initial population uncertainty was also propagated

to the conditioning process via other parameters.

5.2.3.3 Observation error

Observation error was introduced for the catch-at-age data and for the abundance

indices needed to run the stock assessment model, namely, numbers-at-age and to-

tal biomass from PELGAS acoustic survey and egg count and DEPM (Daily Egg

Production Method) SSB index from BIOMAN survey. For the historical period

(2000-2019) catch-at-age and abundance indices were equal to the values estimated

by the SS official 2019 assessment (WGHANSA2019). For the projection years

(2020-2044) these indices were generated according to the same assumptions as in

the assessment model as described below.
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Catch-at-age were generated according to a multinomial observation error:

Ĉ0,. . . 6+,y ∼Multinomial(nC , CP0,y, . . . , CP6+,y) ∗
6+∑
a=0

Ca,y, (5.6)

where CPa,y =
Ca,y∑6+
a=0 Ca,y

denotes the true catch proportion for age group a and year

y and nC is the sample size that determines the variability of the observation error

and was set to the same value as used in the SS assessment model.

The aggregated abundance indices were generated according to a lognormal obser-

vation error centred at the true expected index as follows:

Îtoty ∼ LN(Itoty , σtot), (5.7)

Îeggy ∼ LN(Ieggy , σegg), (5.8)

Îdepmy ∼ LN(Idepmy , σdepm), (5.9)

where Î stands for the observed indices with error, I denote the true expected in-

dex and σ’s are the standard deviations of the indices which were taken from the

input given to the SS assessment model: σtot = 0.418, σegg = 0.448, σdepm = 0.567.

Each of the expected indices I was the product between the catchability parameter

(Qtot = 4.20, Qegg = 43.40, Qdepm = 1.78, assumed to be constant across years) es-

timated in the WGHANSA2019 assessment and the corresponding total abundance

quantity (SSB, biomass or population numbers) as detailed in Chapter 3 section ”SS

approach”.

The numbers-at-age indices from the acoustic survey were generated according to a

multinomial observation error:

Îac1,. . . 6+,y ∼Multinomial(nI , IP
ac
1,y, . . . , IP

ac
6+,y) ∗

6+∑
a=1

Iaca,y, (5.10)

where Î are index observed with error, IP aca,y =
Iaca,y∑6+
a=1 I

ac
a,y

are indices proportions

for age a and year y and nI is the sample sizes given to the SS assessment model,

which determine here the variability of the observation error we are introducing to
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age structured data.

Weight-at-age and maturity data were assumed to be observed without uncertainty.

Observed total catch was also generated with no error, following the SS stock as-

sessment model assumptions, which fits the data with nearly no error in total catch.

5.2.3.4 Stock assessment error

A full assessment process was implemented by the inclusion within the management

procedure of the SS assessment model that is yearly used in the corresponding ICES

working group WGHANSA (ICES 2019c). For each projection year in the MSE

Monte Carlo simulation, input data for the assessment model was taken from the

operating model, then the observation process (with or without error) was applied

and fitting the SS assessment model an estimation of the parameters of interest was

obtained and provided for the following steps in the loop.

Through this assessment process an estimated time series of SSB was obtained until

year y (assessment year). In order to obtain the SSB for the management year (y+1)

a short-term forecast of one year was carried out. The short-term forecast followed

the same approach as established in the ICES working group (ICES 2019c). The

biological parameters for the forecast were taken as the average of the last three

observed years, i.e., from year y− 3 to year y− 1. Concerning the fishing mortality,

catches in year y were assumed equal to the advised TAC for this year. The resulting

̂SSBy+1 was then used for the HCR in the management procedure.

5.2.4 Simulations and software

Simulations were carried out using the FLBEIA (Garćıa et al., 2017), projecting the

population forward for 25 years (2020-2044).

Uncertainty sources were introduced gradually starting from a process with perfect

observation including only uncertainty on recruitment (R). Initial population uncer-

tainty (I), observation (O) and full assessment error (F) were introduced separately

in different steps to evaluate their individual effects. Finally, in the last step, all

uncertainty sources were included. Therefore, the following scenarios were defined:
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� R: Recruitment (base case)

� RI: Recruitment + initial population

� RF: Recruitment + full assessment

� RFO: Recruitment + full assessment + observation error

� RIFO: Recruitment + initial population + full assessment + observation error

1000 iterations were run for each of the listed scenarios (R, RI, RF, RFO, RIFO).

5.2.4.1 Developed code

As the FLBEIA package does not incorporate the option to implement a full-feedback

MSE including the SS assessment model, a specific R function was developed to use

SS inside the Monte Carlo simulations. The function calls SS and writes the input

and output files in the needed formats, transforming FLR objects into SS files and

vice versa. All files used for a SS assessment need to be provided, from where data,

control and additional files are read using the r4ss (Taylor et al. 2019) package.

For each projection year observed new catch and indices data are included into the

files and the SS executable is called. Apart from saving the estimated SSB and F

in the last year for the management procedure part, estimated catchabilities, selec-

tivities recruitment, fishing mortalities and SSB complete time series from SS runs

are saved in the ”covars” component of the OM, in order to check the performance

of the assessment process (i.e. detection of biased assessment).

Part of the developed code was added in a tutorial within the FLBEIA documentation

(https://flr-project.org/doc/FLBEIA_Incorporating_SSassessment_MP.html).

This function is specific for our case study and should be adapted to be used for

another stock.

A new function to incorporate multinomial observation error was also developed.

Nowadays FLBEIA only incorporates functions for multiplicative errors, which need

to be fixed at the beginning of the process for every projection year. In order to

implement multinomial error for age-structured data, it is necessary to generate

such error in each projection year and cannot be generated at the beginning. The

developed code allows introducing this type of error and reading the age-structure of

https://flr-project.org/doc/FLBEIA_Incorporating_SSassessment_MP.html
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the true population or catch and sampling from a multinomial distribution in each

projection year. The sample size to be used for each dataset is read from SS files

and fixed in the conditioning part as a covariate.

5.2.5 Performance indicators

In order to assess the effect of the inclusion of different sources of uncertainty in the

MSE process, and to evaluate the performance of each HCR, several performance

indicators were defined related to both biological status and exploitation status. In

particular, we computed the median catch and median SSB across projection years

(y > 2019) and iterations (i = 1, ..., Niter):

Median catch = med(Cy,i), (5.11)

Median SSB = med(SSBy,i). (5.12)

Average standard deviations across projection years and iterations for catch and

SSB:

Mean sd catch =

∑Niter
i=1

√∑2044
y=2020(Cy,i−Ci)2
Nyproj−1

Niter
, (5.13)

Mean sd SSB =

∑Niter
i=1

√∑2044
y=2020(SSBy,i−SSBi)2

Nyproj−1

Niter
. (5.14)

Risk of type 3 or maximum probability of the SSB falling belowBlim in the projection

period:

Risk3 = max

(∑Niter
i=1 I(SSBy,i < Blim)

Niter

)
. (5.15)

Average probability of fishery closure in any year of the projection period:

Closure =

∑Niter
i=1

∑2044
y=2020 I(TACy,i = 0)

NiterNyproj
, (5.16)

where I is an indicator function that takes the value 1 if the condition within the

brackets is fulfilled and 0 otherwise and Nyproj denotes the number of years in the

projection period.
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Apart from that, the coefficient of variation (CV) of SSB, total catch and recruitment

was computed across all iterations for each year and bias of the assessment output

from the real population was also measured.

5.3 Results

5.3.1 Base case

In the base case (R), when only recruitment uncertainty is included in the MSE pro-

cess, median SSB stabilises around 89,500 tonnes for IcesHCR and around 94,200

for CbasedHCRtacmax, whereas median catch reaches around 26,800 tonnes for

IcesHCR and around 25,200 tonnes for CbasedHCRtacmax (Figure 5.3). In most of

the projection period, catch is smaller in CbasedHCRtacmax than in IcesHCR. As

a result, SSB is larger in CbasedHCRtacmax than in IcesHCR. Uncertainty around

SSB and catch is represented by the interval conformed by the 5th and 95th quan-

tiles out of the performed 1000 iterations. Uncertainty around SSB is similar in

both rules, as both intervals have similar width. On the contrary, the upper limit

of the total catch interval in CbasedHCRtacmax is trimmed due to the maximum

TAC imposed by this rule.

The performance indicators allow to summarise the behaviour of each rule and sce-

nario along the projection period (Figure 5.4). Median catches along the whole pro-

jection period for IcesHCR and CbasedHCRtacmax are 27,200 and 25,600 tonnes

respectively, while median SSB along the projection period are 90,100 and 94,700

tonnes respectively. Average standard deviation values are similar in both rules for

SSB and catch, being the uncertainty in catch slighly larger in CbasedHCRtacmax

than in IcesHCR. The risk of being below Blim is 0.55 for IcesHCR and 0.025 for

CbasedHCRtacmax. This means that in the base case scenario (R), only Cbased-

HCRtacmax is precautionary according to the ICES principles (Risk3 <0.05). Con-

cerning the fishery closures, the probability of closure is larger for IcesHCR (0.009)

than for CbasedHCRtacmax (0.001).
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Figure 5.3: Median SSB (in the top) and total catch (in the bottom) along with 5th
and 95th quantiles (shaded ribbon) for historical and projection years for the two
harvest control rules (IcesHCR and CbasedHCRtacmax) in the base case scenario
(R).

Figure 5.4: Performance indicators for the base case (R) for the two harvest control
rules (IcesHCR and CbasedHCRtacmax).
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5.3.2 Initial population uncertainty

Initial population uncertainty through the MCMC output of the SS assessment

model was propagated along the conditioning of the operating model. This resulted

in additional uncertainty in some of the parameters used in the projection period,

such as the parameters of the stock-recruitment model or the catchability parame-

ters of the Cobb-Douglas model. In the base case (R), the median value of the slope

parameter of the hockey-stick stock-recruitment model was 87. When incorporating

the initial uncertainty (scenario RI) this value ranged from 72 to 108, with 5th and

95th quantiles at 79 and 98 (Figure 5.5). Uncertainty of the catchability parameters

of the Cobb-Douglas model in the historical period are shown in Figure 5.6. Given

the catch-at-age structure of the assessment model, this parameter has a increasing

shape from age 0 to age 3 and a constant shape for ages above 3. These catchability

values show an increasing trend along time, with values around 0.17 during the first

historical years to values around 0.4 in the most recent years.

When incorporating uncertainty on initial population (scenario RI), SSB and catches

along the projection period become more uncertain, showing wider intervals around

median values for both rules (Figure 5.7). In terms of performance indicators, me-

dian SSB and catch values are similar to the base case (scenario R) for both rules.

However, the additional uncertainty in the RI scenario results in higher risk of being

below Blim (from 0.055 to 0.062 for IcesHCR and from 0.025 to 0.026 for Cbased-

HCRtacmax) and higher probability of closure (from 0.009 to 0.013 for IcesHCR and

from 0.001 to 0.003 for CbasedHCRtacmax) (Figure 5.11). In terms of variability,

the standard deviations of SSB and catches along years increase slightly (Figure

5.11), while coefficients of variation for SSB, catches and recruitment, computed

across iterations for each year, increase compared to the base case (Figure 5.12).

These effects are similar for both rules.
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Figure 5.5: Histogram for the segmented regression S-R model’s slope parameter
when initial population uncertainty is introduced. The solid line represents the
median and the dashed lines 5th and 95th quantiles.

Figure 5.6: Catchability-at-age parameters of the Cobb-Douglas model during the
historical period when initial population uncertainty is introduced (RI scenario).
The solid lines represent the median values and the shaded ribbons the 5th and
95th quantiles.
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Figure 5.7: SSB (top row) and total catch (bottom row) median values along with
5th and 95th quantiles (shaded ribbon) for historical and projection years for the
two harvest control rules (in columns) in the base case (R) and in the RI scenarios.

5.3.3 Assessment and observation error

When the SS assessment model is incorporated in the MSE process (scenario RF),

a bias effect has been found. Compared to the real SSB in the operating model, the

SSB estimated by the SS assessment model within the MSE process for each pro-

jection year is negatively biased during the first years of the projection period and

positively biased afterwards (Figure 5.8). Thus, at the beginning of the projection

period SSB is underestimated by the stock assessment, resulting in a lower TAC

in the RF scenario than in the base case scenario (R), that makes the true SSB to

be higher (Figure 5.10). On the contrary, during the rest of the projection years,

SSB is overestimated by the assesment model, resulting in a higher TAC than that

corresponding to the real SSB (R scenario), and subsequently giving a lower SSB

than in the base case (Figure 5.10).

Performance indicators show that catch and SSB median values in the RF scenario

are similar compared to the base case (R scenario), while the risk of being below Blim

gets two times larger (Figure 5.11). Uncertainty around median SSB gets higher,
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both in terms of standard deviation across across years (Figure 5.11) and in terms

of computed CV values across iterations (Figure 5.12). However, when looking at

total catch, uncertainty decreases with respect to the base case, both in terms of

computed standard deviations and coefficient of variations (Figures 5.11 and 5.12).

This unexpected decrease of the uncertainty on total catches when introducing the

assessment process was due to a lower uncertainty in the SSB estimated by the SS

stock assessment model in the assessment year when compared to the real SSB from

the operating model (Figure 5.13). As a result, the adviced TAC based on the SSB

estimated in the stock assessment present lower uncertainty than the advised TAC

when no assessment model is used.

Figure 5.8: Assessment median bias (lines) along with 5th and 95th quantiles (shaded
ribbon) for real SSB for each assessment year (colours) for the CbasedHCRtacmax
and no observation and initial population uncertainty (RF scenario).

Besides the assessment error, when introducing also the observation error (scenario

RFO), very similar effects are obtained in terms of bias in SSB, with higher absolute

median bias values and larger uncertainty (Figure 5.9). The trajectories of SSB

and catch have wider intervals around medians, meaning that the resulting SSB

and catch values are more uncertain (Figure 5.10). This is also reflected in larger

computed standard deviations and CVs (Figures 5.11 and 5.12 respectively). The

risk of being below Blim increases around 0.03 for both rules and the probability of

closure increases around 0.003.
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Figure 5.9: Assessment median bias (lines) along with 5th and 95th quantiles (shaded
ribbon) for real SSB for each assessment year (colours) for the CbasedHCRtacmax
and observation error but not initial population uncertainty (RFO scenario).

Figure 5.10: Total catch and SSB median values along with 5th and 95th quantiles
(shaded ribbon) for historical and projection years for the base case scenario (R)
and for RF and RFO scenarios for the two harvest control rules (IcesHCR and
CbasedHCRtacmax).
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5.3.4 All uncertainty sources together

As a final step, all described sources of uncertainty were included all together (sce-

nario RIFO). As in the previous steps, median catch and SSB values for the whole

projection period were similar across scenarios. Median catch tends to increase as

uncertainty is included, being the largest when all sources of uncertainty are in-

cluded (Figure 5.11).

In terms of uncertainty, the computed standard deviation in SSB is higher than in

the other scenarios. This is also reflected in a higher risk of SSB being below Blim.

None of the HCRs is precautionary when all the uncertainty sources are considered.

The probability of SSB being below Blim raises to 0.16 for the IcesHCR and to

0.085 for the CbasedHCRtacmax. The probability of closure gets increased as well

being the scenario with the highest values, with a probability of 0.02 for IcesHCR

and 0.006 for the CbasedHCRtacmax. Concerning the uncertainty of catches, the

standard deviation of median catches for the whole projection period is higher in

the RIFO scenario than in the RFO scenario. However, in comparison to the base

case, the standard deviation of catch in the RIFO scenario is not higher than the R

scenario, due to the uncertainty decreasing effect of the assessment process (Figure

5.11).

Figure 5.11: Performance indicators for the base case scenario (R) and for RI, RF,
RFO and RIFO scenarios for the two harvest control rules (IcesHCR and Cbased-
HCRtacmax).
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Concerning the CV values across iterations for each projection year (Figure 5.12),

this last scenario shows the highest values for SSB and recruitment for both rules,

while total catch CVs do not show this trend due to the uncertainty decreasing effect

of the assessment process described above.

Figure 5.12: Coefficient of variation of SSB, total catch and recruitment for historical
and projection years for the base case scenario (R) and for RI, RF, RFO and RIFO
scenarios for the two harvest control rules (IcesHCR and CbasedHCRtacmax).
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Figure 5.13: Real SSB median values (black line) along with 5th and 95th quantiles
(shaded grey ribbon) for historical and projection years for the base case (R). Colored
lines represent estimated SSB medians by the SS stock assessment model along with
5th and 95th quantiles (color shaded ribbons), for some assessment years along the
projection years.

5.3.5 Rule selection

Although the election of the best rule was out of the scope of this work, we show how

performance indicators can be used to compare the relative performance of several

rules in order to achieve the management objectives established for that stock.

When incorporating all the sources of uncertainty presented above (RIFO scenario),

the two rules used in this work were not precautionary according to ICES principles

(Risk3 <0.05). Thus, for illustrative purposes regarding the rule selection, we evalu-

ated additional alternative rules fixing a maximum TAC of 25,000 or 30,000 tonnes

for the above described IcesHCR, or changing the gamma value from 0.2 to 0.6 for

the CbasedHCRtacmax rule. We evaluated these rules in terms of the six perfor-

mance statistics presented above. The selected indicators were scaled to the [0,1]

interval, using the transformation xscaled = x−min(x)
max(x)−min(x) , in order to represent them

jointly in a radar plot (Figure 5.11). This allows selecting the best rule, according

to the management objectives that should be agreed by the stakeholders before the

analysis. We can see in this example that the Risk3 decreases when the TACmax or



136 Chapter 5.

gamma values decrease, obtaining precautionary rule with the CbasedHCRtacmax

with γ < 0.4. The increment of γ values results in higher median catches with higher

risks and variability along with lower median SSB values. Moreover, we observe that

imposing a maximum TAC to IcesHCR decreases the median catches as well as the

risk and the probability of closure and increases the median SSB level respect to the

IcesHCR with no TAC limit.

Figure 5.14: Scaled performance indicators for alternative harvest control rules for
scenario RIFO. Rule names are composed by the type of rule (IcesHCR or Cbased-
HCRtacmax), gamma value, minimum TAC value and maximum TAC value. The
black cross in the Risk3 axis represents the scaled value of 0.05.

5.4 Discussion

In this chapter a full-feedback MSE has been developed for sardine in the Bay of

Biscay. As recommended in the existing literature, different sources of uncertainty

have been sequentially incorporated into the Monte Carlo simulations (Punt et al.

2016), being the assessment uncertainty the one that had a larger impact in the risk

estimates.

In comparison to the most traditional management approach based on providing the

‘best assessment’ of the resource, one of the main advantages of MSE is that all the

sources of uncertainty can be taken into account. However, characterizing uncer-
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tainty remains a key challenge for the effective use of MSE (Butterworth and Punt

1999, Punt et al. 2016). Punt et al. (2016) distinguished five different sources of un-

certainties in a MSE and considered that minimally process uncertainty, parameter

uncertainty and observation error should always be included. In this work these three

uncertainty sources were included. Process uncertainty was introduced through vari-

ation in annual recruitment and formed the base case for comparison with the other

scenarios. This type of uncertainty is commonly included adding independent er-

rors to expected values (Garcia et al. 2013, Jardim et al. 2010) and environmental

autocorrelation effects can be also be accounted for in more complex approaches

(Dichmont et al. 2006, Punt et al. 2014, Tommasi et al. 2017, Wayte 2013). Param-

eter uncertainty was included by incorporating the uncertainty in the parameters

that define the initial population, coming from the last assessment’s MCMC output

as recommended by Punt et al. (2016), which was identified as the most reliable

uncertainty estimation method in Chapter 4 in agreement with Magnusson et al.

(2012). Furthermore, parameter uncertainty was propagated to other parameters of

the MSE like the stock-recruitment model parameters and catchability-at-age pa-

rameters of the Cobb-Douglas model, conforming the initial population uncertainty.

Observation error was included when generating annual data according to the assess-

ment model assumptions. In general, as more uncertainty sources were included, the

risk to be below Blim and the level catches increased, while spawning stock biomass

decreased. This means that the ICES precautionary criterion (Risk3 < 0.05) will

be met for a lower level of total catches in comparison with the base case, where

only process error were considered.

Ideally, the management strategy should be simulated as it would be applied in re-

ality. Thus, MSE for model-based HCRs should explicitly incorporate the annual

stock assessment model and the short-term forecast in the MSE, thus having a full-

feedback MSE according to ICES terminology (ICES 2020a). In our case study,

the inclusion of the annual assessment model in this MSE process had several im-

plications. On the one hand, a bias effect was detected in the estimated final year

SSB by the SS model, negative in the first three years and positive afterwards in a

range of 0-5% median bias without observations error and 5-10% when introducing

observation error. On the other hand, the variability of the estimated SSB by the

assessment model was reduced in contrast to the true SSB. The former increased the

risk of being below Blim, whereas the later reduced the variability in total catches

and, as a result, the probability of closures. As noted by ICES (2019d), the full
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feedback approach can be useful to identify bias or lags in the assessment output.

Garcia et al. (2013) found that XSA model incorporated in their MSE estimated

an overexploited stock when it had healthy status and A’mar et al. (2009) found

a bias on the estimated SSB by the assessment model of around 10%. Potential

explanations of the assessments’ output bias can be related to differences between

the stock assessment model assumptions and the operating model or to noisy data

that prevent the model parameters to be estimated reliably. The lower variation

in catches of model-based management strategies have been already found in other

case studies (Butterworth and Punt 1999), which is desirable in order to avoid mar-

keting problems. For model-free management strategies, this effect is minimized

when maximum interannual catch variations are added to the HCR to seek for catch

stability along time. These latter option can be easier to test but may lack a basis

to determine strategies for long-term equilibrium of the resource.

The use of the full-feedback approach is still a hot topic and divergent views about

the pros and cons of full versus shortcut approaches were gathered in ICES (2020a).

The full-feedback approach is very time consuming and could present additional con-

vergence issues, while the uncertainty in the shortcut approach could be inappropri-

ately characterized. As a compromise solution both approaches could be combined:

the shortcut approach could help for initial and fast explorations of a wide set of

options, but it is recommended to confirm the outcomes with a full-feedback MSE,

particularly when comparing alternative operating models (ICES 2020a). Follow-

ing this line, the next-generation assessment models should be designed to facilitate

their use in MSE. On the one hand, they should be used easily as an OM for an

MSE and, on the other hand, they should incorporate a ”quick-mode” in order to

act as the estimation model in the assessment process, without so much computa-

tional demand (Punt et al. 2020). Developers of the SS model used in this work,

are already working on a R-based system to conduct MSE within the SS framework

(Hoyle et al. 2020).

Other sources of uncertainty not considered in this work but that could be very im-

portant in MSEs are structural uncertainty (Brodziak and Piner 2010, Stewart and

Martell 2015) and implementation uncertainty (Dichmont et al. 2008). Regarding

structural uncertainty, different scientists tend to construct different models for the

same stock (Stewart and Martell 2015), being the structure of the assessment model

a potential uncertainty source to incorporate in MSE processes. Implementation un-
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certainty represents situations such as decision-makers not implementing the TACs

suggested, or other situations related to discard regulations (Punt et al. 2016). This

can be implicitly acknowledged by setting lower catch limits than the adviced TAC

or introducing uncertainty on the TAC overshoot, assumed to be non-reported which

can alter the HCRs performance reaching different SSB levels (Garcia et al. 2013).

The simulation framework was used to compare two alternative HCRs: the F-based

ICES MSY advice rule that aims at fishing at Fmsy and an alternative catch-based

HCR. None of them were precautionary when incorporating all proposed uncertainty

sources. In the case of the ICES advice rule, this might indicate differences in the

uncertainty sources and the methodology used to define the reference points and the

ones used in MSE and should be further explored. The major detected effect was

related to assessment bias. This effect was reduced in the catch-based rule due to the

maximum catch which restricts the exploitation even if the SSB is overestimated by

the assessment. Among the tested options, precautionary results are only obtained

with the catch-based HCR with a maximum TAC, when no assessment uncertainty

is included, or when the γ values are reduced to 0.3 or below for this rule.

FLBEIA resulted to be an effective tool to carry out MSE for sardine in the Bay of Bis-

cay. The composability of the software allowed us to use the functions already built

in, but also to code new functions to satisfy specific needs, such as the stock asess-

ment model or the multinomial observation error for the age composition. However,

we did not take advantage of the potential of FLBEIA to incorporate uncertainty in

the biological parameters such as weights, maturity or mortality-at-age or to analyse

the economic impact of the HCRs (Garcia et al. 2013, Prellezo et al. 2016). The

configuration of a MSE including biological, ecosystem, fleet and economic dynamics

along with all possible sources of uncertainty can result in a very complex model. It

has been shown that the relationship between model complexity and the ability to

provide understandable and useful results has a bell shape (Grimm and Railsback

2005), so complexity should be chosen with regards to question of interest and ob-

jectives of the model to reach the optimum (Leutha et al. 2016). In this case, these

additional options provided by FLBEIA were postponed for future work.
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Chapter 6
Conclusions and further work

Monte Carlo simulation has been shown to be a powerful tool to evaluate statisti-

cal methods (Morris et al. 2019) and to test assumptions that cannot be evaluated

experimentally. Simulation can also facilitate objective and transparent processes

for decision-making (Goethel et al. 2019) as the performance of potential measures

or strategies can be tested before their implementation. This thesis has focused on

testing by means of Monte Carlo simulation statistical methods in three different

fields of fishery science, namely habitat modelling, assessment and management of

fish stocks. In what follows we provide the main conclusions in relation to each

specific objective:

- To propose and test via Monte Carlo simulation a habitat modelling approach that

meets the ecological niche theory.

We addressed the study of habitats of marine species through regression-based

species distribution models (SDM). According to the ecological niche theory, species

distribution models should provide unimodal relationships with respect to environ-

mental gradients (Hutchinson 1957). However, most of the methods currently used

for SDM do not account explicitly for this unimodal relationship and thus, can re-

sult in shapes than are not ecologically meaningful or interpretable. In order to

address this issue, we proposed the use of shape-constrained Generalised additive

models (SC-GAMs) that by imposing concavity shape-constraints in the response

curves lead to unimodality along the chosen environmental gradients. The proposed

methodology presented a good balance between the goodness of fit and agreement

with ecological niche theory when applied to various simulated species distributions.

141
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We demonstrated that SC-GAM performed better than commonly used regression-

based approaches, like Generalised linear models (GLMs) and generalised additive

models (GAMs) of different degrees of flexibilities, obtaining fitted curves that were

closer to the real responses. When the tested datasets did not cover the whole

range of the environmental gradient, similar or even better results were obtained in

comparison with the most flexible GAMs, which tended to estimate multimodal or

convex shapes that did not match with the underlying simulated shape. SC-GAMs

were also compared to the “Plateau” environmental envelope model (Brewer et al.

2016). This method was able to provide the correct shapes in agreement with ecolog-

ical niche theory, but resulted to be less robust to replicates with higher uncertainty.

The two evaluated implementations of SC-GAMs, the maximum likelihood approach

in scam and the component-wise boosting approach in mboost, presented differences

in terms of uncertainty estimation, computing time and ease of use. The mboost

approach was more robust to introduced uncertainties but slower due to the high

computational cost for variance estimation, while the scam implementation was com-

putationally efficient and faster. In addition, scam is based in the popular mgcv

package syntax, which can facilitate its use.

Based on the simulation study, we concluded that proposed SC-GAMs are appro-

priate and useful tools for SDM that enable fitting both unconstrained and shape-

constrained responses in a unified framework and that can be readily applied for

modelling a large number of species. As a first application, egg data from our case

study, sardine in the Bay of Biscay, was used to model the spawning thermal habitat

of this species. Application to other two pelagic species was carried out, concluding

that results obtained through SC-GAMs for these species, were as good as reported

results from corresponding models that need manual tuning of parameters to obtain

the desired shape.

- To compare the established stock assessment model for our case study to other

alternative models and to evaluate, using Monte Carlo simulation, uncertainty es-

timation methods when introducing flexibility through non-parametric smoothing in

fishing mortality.

Having reliable estimates of the status of exploited fish stocks and the associated

uncertainty is crucial for an adequate management of the resources. Among the
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large number of available stock assessment models the selection of a model for a

particular stock can be based on the available data or complexity level, but also on

the technical skills of the analyst, computational constraints or the history of the as-

sessment in the region. The well established Stock Synthesis (SS) model was selected

by the ICES working group WGHANSA (ICES 2017c) for the first analytical stock

assessment of sardine in the Bay of Biscay. In this thesis we compared it to two al-

ternative approaches: the simpler a4a approach and an ad-hoc Bayesian approach.

By making the configuration of the two alternative models as similar as possible

to the official SS approach, we showed that the three approaches provided similar

trends along time for the quantities of interest, such as biomass or fishing mortality,

in spite of differences in the underlying assumptions or structures inherent to the

type of model. The selected SS model incorporated the total catch data and used

a multinomial distribution for age-structured data, however it had the limitation of

relying on iterative tuning processes for some variance parameters’ estimation. The

newer a4a approach did not incorporate observation equations for the total catch

and the age-structured data followed independent lognormal distributions, but it

was able to estimate all variance parameters. In addition, it was fast and simple to

implement, while very flexible in terms of parameter modelization. The proposed

Bayesian approach, incorporated prior distributions and was also able to estimate

variances directly. In contrast to SS and a4a that are well-known software that

allow implementing a large number of configurations tested by a big community of

users, the ad-hoc Bayesian model was developed and tailored for this specific case

study. This provided the opportunity to compare official assessment results to a non

”black-box” approach where all assumptions and equations were self-developed. We

concluded that obtained estimates were all consistent and that the presented three

approaches could be used to estimate Bay of Biscay sardine’s stock status similarly.

Furthermore, we identified a4a as a fast and simple approach that could be appro-

priate to replace the official assessment in simulation studies where thousands of

iterations must be run.

Nowadays most stock assessment models are able to quantify estimation uncertainty,

however, they use different methods. We carried out a Monte Carlo simulation study

to compare different methods for uncertainty estimation in stock assessment models

with non-parametric effects on fishing mortality. Using a4a, which was identified

above as the most suitable for simulation, the assessment models were fitted with

three different approaches for uncertainty estimation: the multivariate normal distri-
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bution, the Markov chain Monte Carlo (MCMC) algorithm implemented in ADMB

and the parametric bootstrap. In agreement with previous studies in the litera-

ture, we concluded that MCMC was the most reliable method. When uncertainty

estimation was compared across models of different levels of complexity for fishing

mortality, we found that non-parametric functions, such as splines and tensor prod-

ucts, were able to estimate flexible shapes that parametric models cannot capture.

However, the most flexible configurations increased the number of parameters and

resulted in greater uncertainty, with greater CVs and relative bias at terminal years

and ages. Deterioration of coverage probabilities was also observed for the most

complex scenarios, except for the MCMC method. In order to handle the degree of

flexibility and the goodness of fit, model selection is usually based on AIC or BIC

criteria. Both indicators were tested in terms of accuracy in selecting the correct

model, obtaining better results for BIC.

The results from this study enabled having a better understanding of uncertainty

estimation in stock assessments, identifying MCMC as the best option for quanti-

fying uncertainty in real case studies that will have an impact on the management

strategy evaluation process.

- To develop a full-feedback management strategy evaluation for our case study in-

troducing different uncertainty sources through Monte Carlo simulation.

Managing a fish stock requires making decisions about possible actions. Manage-

ment Strategy Evaluation (MSE) aims at evaluating by means of simulation the

effect of different management actions before they are put in place in order to find

strategies that meet the management objectives and are robust to different sources

of uncertainty. This requires that the most relevant sources of uncertainty are cor-

rectly identified and the ones to be included in the MSE are properly selected. We

used Monte Carlo simulation to provide a detailed analysis of the impact of the most

relevant uncertainty sources for sardine in the Bay of Biscay. Starting from the base

case that only incorporated uncertainty on recruitment, we added gradually addi-

tional sources of uncertainty like parameter uncertainty, observation uncertainty and

estimation uncertainty, that resulted in a successive increase of the probability of

SSB being below the limit reference point Blim and a decrease of the average catches.
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One of the major achievements in this chapter was the incorporation of the annual

SS stock assessment model within the MSE loop, providing a full-feedback MSE for

these stock. This allowed us to detect a bias in the estimation of SSB by the SS

model, negative in the first three years and positive afterwards, that resulted in an

increase of the risk of being below Blim and of the variability in SSB. In addition,

the SSB variability estimated by SS was lower than the real one, which lead to a

decrease in the probability of closure in comparison with the non full-feedback ap-

proach. The bias induced by the SS model has not been fully understood yet, and

deserves further work.

For the rest of uncertainty sources, when multinomial and lognormally distributed

observation errors were included, variability in SSB, risks and probability of closure

increased, as well as the bias effect in the SSB estimated from the SS stock assess-

ment. Similarly, the incorporation of initial population uncertainty, given by the

MCMC output of the most recent SS assessment, resulted in an increment of the

risk to be below Blim, and of other indicators such as, the probability of closure and

the mean standard deviation of catches and SSB along the projection year.

In general, adding uncertainty leaded to larger risks. So, we concluded that the ICES

precautionary criterion (Riks3 < 0.05) would be obtained with a lower level of total

catches in comparison with an MSE that does not include the studied sources of

uncertainty. The two rules implemented for the Bay of Biscay sardine in this work,

were considered precautionary by the base case MSE, but not when incorporating

all the proposed sources of uncertainty. Although the selection of the best harvest

control rule for BoB sardine was out of the scope of this work, we provided an ex-

ample where several additional HCRs were compared, so that the best rule could be

selected according to predefined management objectives.

The MSE was developed in FLBEIA. The modular structure allowed us to create com-

plementary functions to incorporate the most relevant uncertainty sources for our

case study. In particular, we created a function to include the SS assessment model

within the MSE simulation or a function to incorporate non-multiplicative multi-

nomial errors for age-structured data observation. The code developed for our case

study is publicly available, although it is a case-specific code, it could be adapted

to other stocks assessed by the SS model.
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In general terms, we can say that Monte Carlo simulation has been a very useful

framework for the all the studied fishery science fields. It allowed testing the mod-

elization of ecological premises that could not have been possible using only real

data. Through the generation of several types of responses along an environmental

gradient based on a particular ecological theory and using Monte Carlo simulation

we could test the proposed method, being able to compare the resulting responses

with the true underlying theoretical shape and evaluating the performance of the

our proposal. Moreover, the simulation framework allowed comparing different un-

certainty estimation methods under controlled variability and population structures

of different levels of complexity, which are not known for the real case study pop-

ulations. Accuracy of model selection criteria could be also tested thanks to the

knowledge of the real underlying ”truth”. Monte Carlo simulation has shown to be

also a key tool for management advice, where complexity is being gradually incor-

porated and tested, as done here, in order to obtain reliable results, before their

application to the real world. High computational power was sometimes required

by the presented simulation studies, however, this was alleviated thanks to the easy

parallelization of Monte Carlo simulation. This framework has provided the needed

type of results for each of the objectives of this thesis and we definitely will incor-

porate in future studies that could be reinforced by it.

Further work

This thesis have resulted in considerable advances concerning the addressed issues,

from which further research topics have emerged.

Firstly, species distribution modelling in agreement with the ecological niche theory

has been addressed from a frequentist approach. Bayesian approaches are also pop-

ular for SDM (Golding and Purse 2016, Paradinas et al. 2015) and the proposal of

SC-GAMs in this thesis, could be extended to a Bayesian framework. INLA (Rue

et al. 2014) is increasingly used for Bayesian SDM, for which a SC-GAMs implemen-

tation could be proposed and tested. This could be done either imposing the needed

constraints in the linear predictor scale as done in Chapter 1, or taking advantage

of the Bayesian framework and using informative priors for certain parameters in

order to obtain the desired response shapes in agreement with the niche theory. For
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this purpose the interface for mgcv and JAGS (Wood et al. 2017) could be also tried

and extended.

Concerning the assessment and management of fish stocks, the bias found when in-

troducing the SS stock assessment in the MSE remained unresolved. A self-testing

study for this model could help to understand if the bias is due to model misspec-

ification or to some other aspect related to the simulation assumptions. Moreover,

the factors impacting the magnitude of bias could be also studied. Some ideas have

been already proposed, such as issues related to the stock-recruitment relationship,

differences between the stock-recruitment used for the conditioning the MSE and

the stock-recruitment in the assessment model, or changes in the production of the

stock that no longer are in concordance with the fitted stock-recruitment at the

beginning of the time series.

This assessment bias has an effect on management strategy evaluation that should

be studied for a better decision making process, through a new simulation study

where the generated bias would be known and controlled. In this line, short-cut ap-

proaches could be compared to the full-feedback MSE. This would require to develop

a short-cut approach that can capture all the characteristics of the stock assessment

model as realistically and thoroughly as possible, while being faster and efficient to

run.

Finally, in line with fisheries sciences trend towards holistic approaches, the linkage

between habitat modelling and assessment and management process could be ad-

dressed. The use of very complex ecosystem based models, which take in to account,

economical, social and ecological aspects, is expanding rapidly. However, increas-

ing model complexity does no always lead to a better understanding of the system

and may increase uncertainty and model errors. Thus, caution is suggested when

using them for management due to a possible lack of robustness, especially for un-

known future climate scenarios (Storch et al. 2017). As an intermediate more simple

approach, species interaction with the ecosystem could be studied through the pro-

posed SDM using SC-GAMs, obtaining simple response curves for future climate

change scenarios, that could be incorporated in the a4a stock assessment framework

as covariates, and also in FLBEIA for MSE, taking advantage of the unified syntax

of FLR and mgcv libraries.
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6.1 Contributions

The scientific and technical material produced during the period of this doctoral

thesis are detailed in this section:

First author scientific articles

� L. Citores, S. Sanchez-Maroño, L. Ibaibarriaga, A. Uriarte. (In preparation). ”Devel-

opment of a full-feed back MSE for the Bay of Biscay sardine”.

� L. Citores, L. Ibaibarriaga, D.J. Lee, M.J. Brewer, M. Santos, G. Chust. (2020).

”Modelling species presence–absence in the ecological niche theory framework using

shape-constrained generalized additive models”. Ecological Modelling, 418, 108926.

� L. Citores, L. Ibaibarriaga, E. Jardim. (2017). ”Uncertainty estimation and model

selection in stock assessment models with non-parametric effects on fishing mortality”.

ICES Journal of Marine Science, 75(2), 585-595.

Other scientific articles

� S. Sanchez, A. Uriarte, L. Ibaibarriaga, L. Citores. (2021). ”Adapting simple index-

based catch rules for data-limited stocks to short-lived fish stocks’ characteristics”.

Frontiers in Marine Science, 8, 550.

� A. Silva, S. Garrido, L. Ibaibarriaga, L. Pawlowski, I. Riveiro, V. Marques, F. Ramos,

E. Duhamel, M. Iglesias, P. Bryère, A. Mangin, L. Citores, P. Carrera, A. Uriarte.

(2019). ”Adult-mediated connectivity and spatial population structure of sardine in

the Bay of Biscay and Iberian coast”. Deep Sea Research Part II: Topical Studies in

Oceanography, 159, 62-74.

� E. Villarino , J. R. Watson, B. Jönsson, J. M. Gasol, G. Salazar, S. G. Acinas, M.

Estrada, R. Massana, R. Logares, C. R. Giner, M. C. Pernice, M. P. Olivar, L. Citores

, J. Corell , N. Rodŕıguez-Ezpeleta , J. L. Acuña, A. Molina-Ramı́rez, J. I. González-

Gordillo, A. Cózar, E. Mart́ı, J. A. Cuesta, S. Agust́ı, E. Fraile-Nuez, C. M. Duarte,

X. Irigoien, G. Chust. (2018). ”Large-scale ocean connectivity and planktonic body

size”. Nature communications, 9(1), 1-13.

� E. Jardim, M. Eero, A. Silva, C. Ulrich, L. Pawlowski, S. J. Holmes, L. Ibaibarriaga, J.

A. De Oliveira, I. Riveiro, N. Alzorriz, L. Citores, F. Scott, A. Uriarte, P. Carrera, E.

Duhamel, I. Mosqueira. (2018). ”Testing spatial heterogeneity with stock assessment

models”. PloS one, 13(1), e0190791.
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Scientific reports

� Workshop on Data-limited Stocks of Short-Lived Species (WKDLSSLS2) (2020). ICES

Scientific Reports. 2:99. 119 pp. http://doi.org/10.17895/ices.pub.5984

� Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA).

(2020). ICES Scientific Reports. 2:41. 655 pp. http://doi.org/10.17895/ices.

pub.5977

� Inter-benchmark process on sardine (Sardina pilchardus) in the Bay of Biscay (IBP-

Sardine). (2019). ICES Scientific Reports. 1:80. 50 pp. http://doi.org/10.17895/

ices.pub.5552

� Workshop on the Iberian Sardine Management and Recovery Plan (WKSARMP).

(2019). Lisbon, Portugal. ICES Scientific Reports. 1:18. 168 pp. http://doi.org/

10.17895/ices.pub.5251

� Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA).

(2017). Bilbao, Spain. ICES CM 2017/ACOM:17.640 pp.

� Assessment for All initiative (a4a) – Workshop on development of MSE algorithms

with R/FLR/a4a. (2017). Ispra, Italy. Publications Office of the European Union,

Luxembourg, 2017, ISBN 978-92-79-71290-6, https://doi.org/10.2760/18924.

� Benchmark Workshop on Pelagic Stocks (WKPELA). (2017). Lisbon, Portugal. ICES

CM 2017/ACOM:35. 278 pp.

� Workshop on Atlantic Sardine (WKSAR). (2016). Lisbon, Portugal. ICES CM

2016/ACOM:41. 351 pp.

Conferences

� L. Citores, S. Sánchez, A. Uriarte, L. Pawlowski, E. Duhamel, L. Ibaibarriaga. From

data-limited to data-rich: the evolution of sardine in the bay of Biscay (Oral commu-

nication). ICES Annual Science Conference, Gothenburg, Sweden, 2019. (Presented

by A. Uriarte).

� L. Citores, S. Sánchez, A. Uriarte, L. Pawlowski, E. Duhamel, L. Ibaibarriaga. From

data-limited to data-rich: Management Strategy Evaluation for the sardine in the bay

of Biscay (Oral communication). IV Jornadas de Estudiantes de la Sociedad Española

de Biometŕıa. UCM, Albacete, Spain, 2019.

� L. Citores, L. Ibaibarriaga, M. Brewer, D.J. Lee, G. Chust. Modelling probability of

presence curves in the ecological niche theory framework: The case study of sardine

egg data in the Bay of Biscay (Oral communication). Biostatnet 4th General Meeting.

Santiago de Compostela, Spain, 2019.

http://doi.org/10.17895/ices.pub.5984
http://doi.org/10.17895/ices.pub.5977
http://doi.org/10.17895/ices.pub.5977
http://doi.org/10.17895/ices.pub.5552
http://doi.org/10.17895/ices.pub.5552
http://doi.org/ 10.17895/ices.pub.5251
http://doi.org/ 10.17895/ices.pub.5251
https://doi.org/10.2760/18924
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� L. Citores, L. Ibaibarriaga, M. Brewer, D.J. Lee, G. Chust. Modelling presence-

absence response curves in the ecological niche theory framework (Oral communica-

tion). International Statistical Ecology Conference, ISEC18. Univesity of St Andrews,

St Andrews, Scotland, 2018.

� L. Citores, L. Ibaibarriaga, M. Brewer, D.J. Lee, G. Chust. Modelling presence-

absence response curves in the ecological niche theory framework (Oral communi-

cation). Young Researchers Using Statistics. Royal Statistical Society, Aberdeen,

Scotland, 2018.

� L. Citores, L. Ibaibarriaga, D.J. Lee, G. Chust. Preliminary results on modelling

presence-absence response curves in the ecological niche theory framework(Oral com-

munication). III Jornadas de Estudiantes de la Sociedad Española de Biometŕıa.

BCAM, Bilbao, Spain, 2018.

� L. Citores, L. Ibaibarriaga, L. Pawlowski, A. Uriarte, D.J. Lee. A Bayesian stock

assessment model for the Sardine in the Bay of Biscay (Oral communication). Second

Bilbao Data Science Workshop. BCAM, Bilbao, Spain, 2017.

� L. Citores, L. Ibaibarriaga, L. Pawlowski, A. Uriarte, D.J. Lee. A statistical catch at

age stock assessment model for Sardine in the Bay of Biscay (Oral communication).

XVI Spanish Biometric Conference. IMUS, Sevilla, Spain, 2017.

� L. Citores, L. Ibaibarriaga, L. Pawlowski, A. Uriarte, D.J. Lee. A Bayesian stock

assessment model for the Sardine in the Bay of Biscay (Poster). Valencia International

Bayesian Analysis Workshop. UV, Valencia, Spain, 2017.

� L. Citores, L. Ibaibarriaga, D.J. Lee. Statistical modelling for fish meta-population

management (Oral communication). First Bilbao Data Science Workshop. BCAM,

Bilbao, Spain, 2016.

� L. Citores, L. Ibaibarriaga. Comparison of different methods to estimate stock as-

sessment models uncertainty (Oral communication). II Jornadas de Estudiantes de la

Sociedad Española de Biometŕıa. SEB, Barcelona, Spain, 2016.
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S., Thuiller, W., Wüest, R. O., Zimmermann, N. E., and Elith, J. (2014). What do

we gain from simplicity versus complexity in species distribution models? Ecography,

37(12):1267–1281.

Methot, R. (1986). Synthetic estimates of historical abundance and mortality for

northern anchovy, engraulis mordax. NMFS, Southwest Fish. Cent., Admin. Rep.

LJ.

Methot, R. (2009). User manual for stock synthesis. NOAA Fisheries, Seattle, USA.



References 169

Methot, R. D. (1989). Synthetic estimates of historical abundance and mortality

for northern anchovy. In American Fisheries Society Symposium, volume 6, pages

66–82.

Methot, R. D. and Wetzel, C. R. (2013). Stock synthesis: A biological and statistical

framework for fish stock assessment and fishery management. Fisheries Research,

142:86–99.

Meyer, R. and Millar, R. B. (1999). Bayesian stock assessment using a state–space

implementation of the delay difference model. Canadian Journal of Fisheries and

Aquatic Sciences, 56(1):37–52.

Michielsens, C. G., McAllister, M. K., Kuikka, S., Pakarinen, T., Karlsson, L.,
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Schröder, H. K., Andersen, H. E., and Kiehl, K. (2005). Rejecting the mean: Es-

timating the response of fen plant species to environmental factors by non-linear

quantile regression. Journal of Vegetation Science, 16(4):373–382.

Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics,

6:461–464.

Scott, F., Jardim, E., Millar, C. P., and Cerviño, S. (2016). An applied framework

for incorporating multiple sources of uncertainty in fisheries stock assessments. PloS

one, 11(5):e0154922.

Scott, J., Heglund, P., Morrison, M., Haufler, J., Raphael, M., Wall, W., and Sam-

son, F. (2002). Predicting species occurrences: issues of scale and accuracy.

Sharma, R., Porch, C. E., Babcock, E. A., Maunder, M. N., and Punt, A. E. (2019).

Recruitment: Theory, estimation, and application in fishery stock assessment mod-

els. Fisheries Research.

Shepherd, J. (1999). Extended survivors analysis: An improved method for the anal-

ysis of catch-at-age data and abundance indices. ICES Journal of Marine Science,

56(5):584–591.

Silva, A., Garrido, S., Ibaibarriaga, L., Pawlowski, L., Riveiro, I., Marques, V.,

Ramos, F., Duhamel, E., Iglesias, M., Bryere, P., et al. (2019). Adult-mediated

connectivity and spatial population structure of sardine in the bay of biscay and

iberian coast. Deep Sea Research Part II: Topical Studies in Oceanography, 159:62–

74.

Smith, A. (1994). Management strategy evaluation: the light on the hill. Population

dynamics for fisheries management, pages 249–253.

Soberón, J. and Arroyo-Peña, B. (2017). Are fundamental niches larger than the

realized? testing a 50-year-old prediction by hutchinson. PloS one, 12(4):e0175138.

Soberon, J. and Nakamura, M. (2009). Niches and distributional areas: concepts,

methods, and assumptions. Proceedings of the National Academy of Sciences of the

United States of America, 106 Suppl 2:19644–50.

Stasinopoulos, M., Rigby, B., Akantziliotou, C., Heller, G., Ospina, R., and

Stasinopoulos, M. M. (2019). Package ‘gamlss. dist’.



References 177

STECF (2020). Monitoring the performance of the common fisheries policy (STECF-

adhoc-20-01). Publications Office of the European Union, Luxembourg, 2020, ISBN

978-92-76-18115-6.

Stewart, I. J., Hicks, A. C., Taylor, I. G., Thorson, J. T., Wetzel, C., and Kupschus,

S. (2012). A comparison of stock assessment uncertainty estimates using maximum

likelihood and Bayesian methods implemented with the same model framework.

Fisheries Research, 142:37–46.

Stewart, I. J. and Martell, S. J. (2015). Reconciling stock assessment paradigms to

better inform fisheries management. ICES Journal of Marine Science, 72(8):2187–

2196.

Storch, L. S., Glaser, S. M., Ye, H., and Rosenberg, A. A. (2017). Stock assess-

ment and end-to-end ecosystem models alter dynamics of fisheries data. PloS one,

12(2):e0171644.

Stratoudakis, Y., Coombs, S., de Lanzós, A. L., Halliday, N., Costas, G., Caneco,

B., Franco, C., Conway, D., Santos, M. B., Silva, A., et al. (2007). Sardine (sar-

dina pilchardus) spawning seasonality in european waters of the northeast atlantic.

Marine Biology, 152(1):201–212.

Su, Y.-S., Yajima, M., Su, M. Y.-S., and SystemRequirements, J. (2015). Package

‘R2jags’. http://CRAN. R-project. org/package= R2jags.

Subbey, S., Devine, J. A., Schaarschmidt, U., and Nash, R. D. (2014). Modelling

and forecasting stock–recruitment: current and future perspectives. ICES Journal

of Marine Science, 71(8):2307–2322.

Taylor, I., Stewart, I., Hicks, A., Garrison, T., Punt, A., Wallace, J., Wetzel, C.,

Thorson, J. T., Takeuchi, Y., Ono, K., et al. (2019). Package ‘r4ss’. https://cran.r-

project.org/web/packages/r4ss/r4ss.pdf.

Team, R. C. (2015). A language and environment for statistical computing. R

Foundation for Statistical Computing, Vienna, Austria.

Ter Braak, C. J. and Looman, C. W. (1986). Weighted averaging, logistic regression

and the gaussian response model. Vegetatio, 65(1):3–11.

Then, A. Y., Hoenig, J. M., Hall, N. G., Hewitt, D. A., and editor: Ernesto Jardim,

H. (2015). Evaluating the predictive performance of empirical estimators of natural



178 References

mortality rate using information on over 200 fish species. ICES Journal of Marine

Science, 72(1):82–92.

Thomas, L., Buckland, S. T., Newman, K. B., and Harwood, J. (2005). A unified

framework for modelling wildlife population dynamics. Australian & New Zealand

Journal of Statistics, 47(1):19–34.

Thorson, J. T. (2019). Perspective: Let’s simplify stock assessment by replacing

tuning algorithms with statistics. Fisheries Research, 217:133–139.

Thorson, J. T. and Taylor, I. G. (2014). A comparison of parametric, semi-

parametric, and non-parametric approaches to selectivity in age-structured assess-

ment models. Fisheries Research, 158:74–83.

Thorson, J. T., Zhou, S., E. Punt, A., and Smith, A. D. M. (2013). Astepwise-

selected spline approximation to time-varying parameters,with application to occu-

pancy modelling. Methods in Ecology and Evolution, 4:123–132.
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Wood, S. N., Pya, N., and Säfken, B. (2017). Smoothing parameter and model

selection for general smooth models. Journal of the American Statistical Association,

111(516):1548–1563.

Worm, B., Hilborn, R., Baum, J. K., Branch, T. A., Collie, J. S., Costello, C.,

Fogarty, M. J., Fulton, E. A., Hutchings, J. A., Jennings, S., et al. (2009). Rebuilding

global fisheries. science, 325(5940):578–585.

Yin, Y. and Sampson, D. B. (2004). Bias and precision of estimates from an age-

structured stock assessment program in relation to stock and data characteristics.

North American Journal of Fisheries Management, 24(3):865–879.

Zimmermann, N. E., Yoccoz, N. G., Edwards, T. C., Meier, E. S., Thuiller, W.,

Guisan, A., Schmatz, D. R., and Pearman, P. B. (2009). Climatic extremes improve

predictions of spatial patterns of tree species. Proceedings of the National Academy

of Sciences, 106(2):19723–19728.



Annex A

In this annex we proof that imposing concavity constraints in the linear predictor

scale, with a logit link function, result in unimodal probability curves, as mentioned

in Chapter 2:

Let p(x), x ∈ R be the estimated response probability curve obtained when imposing

concavity restrictions in the linear predictor scale, with h = logit as link function.

Then,

h(p(x)) is concave
1)
=⇒ h(p(x)) is quasiconcave

2)
=⇒ h−1(h(p(x))) = p(x) is quasicon-

cave
3)
=⇒ p(x) is unimodal

1)

Definition 2.2 (Avriel et al. 1988): A function f defined on the convex set C ∈ Rn

is called concave if for every x1, x2 ∈ C and 0 ≤ λ ≤ 1 we have f(λ(x1+(1−λ)x2)) ≥
λf(x1) + (1− λ)f(x2).

Theorem 3.1 (Avriel et al. 1988): Let f be defined on the convex set C ∈ Rn. It

is a quasiconcave function if and only if f(λ(x1 + (1 − λ)x2)) ≥ min(f(x1), f(x2))

for every x1, x2 ∈ C and 0 ≤ λ ≤ 1.

It is clear that a concave function is also quasiconcave (not vice versa), since

f(λ(x1 + (1− λ)x2)) ≥ λf(x1) + (1− λ)f(x2) ≥ min(f(x1), f(x2))

2)

Proposition 3.2 (Avriel et al. 1988): Let φ be a quasiconcave function defined on

C ∈ Rn and let f be a nondecreasing function on D ∈ R, containing the range of φ.

Then the composite function fφ(x) is also quasiconcave.

Thus, this proof can be generalized to any link function h whose inverse h−1 is
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nondecreasing (in our case h(p(x)) is quasiconcave, and h−1 (antilogit function)

is a non decreasing function obtaining that the composite h−1(h(p(x))) = p(x) is

quasiconcave).

3)

Proposition 3.8 (Avriel et al. 1988): Let f be defined on the interval C ∈ R and

suppose that it attains its maximum at a point x∗ ∈ C. Then f is quasiconcave if

and only if it is unimodal on C.

Proofs for Theorem 3.1, Proposition 3.2 and Proposition 3.8 can be found in Avriel

et al. (1988).
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In this annex we present the code for data generation and fitting with each of the

proposed methods in Chapter 2. Data for this example is generated using the pro-

vided code, and no external dataset needs to be uploaded.

First, we load the required R libraries and we fix the random number generation

seed.

library(coenocliner)

library(scam)

library(gamlss)

library(mboost)

library(plateau)

set.seed(18)

Data generation

For this example, both the environmental variable and the response probability curve

for a certain species are simulated. The environmental variable x, is simulated from

a normal distribution with µ = 12 and σ = 3 (note that the simulation study pre-

sented in the work is based on real Sea Surface Temperature data). The reponse

probability curve along this variable is generated using the Minchin’s function (gen-

eralised Beta function), implemented in the Coenocliner package with a maximum

probability of presence of 1 around x = 14, a range of 10 and parameters α = γ = 4

that control the shape of the curve (Figure B1).

In order to mimic real observations, errors are introduced in the generated curve
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using the zero and one inflated BEINF distribution from the gamlss.dist package

(https://cran.r-project.org/web/packages/gamlss.dist/gamlss.dist.pdf),

and finally presence absence data are simulated from a binomial distribution with

probabilities coming from the generated response curve. Figure B1 shows the theo-

retical curve and the resulting presence-absence datapoints after the data generating

process.

#generate einvironmental gradient x with nn points:

nn<-200

x<-sort(rnorm(nn,12,3))

#define paramters for Minchins generalised beta function

Ao <- 1;m <- median(x)+2;r <- 10;a <- 4;g <- 4

params <- list(m = m, A0 = Ao, r = r, alpha = a, gamma = g)

#generate probability curve with the Beta function and

#defined parameters

p_real_all <- as.matrix(coenocline(x, responseModel = "beta",

params = params,countModel = "bernoulli", expectation = TRUE)+1e-6)

#add error from a zero and one inflated dsitribution (BEINF)

sig<-0.1

expit<-rBEINF(length(p_real_all), mu=p_real_all, sigma=sig, nu=sig,

tau=sig)

#generate presence absecence data from the previous probabilities

pa = rbinom(length(p_real_all),1,expit)

#create data frame with generated data for fitting

df = data.frame(y=pa,x=x,real=p_real_all,real_error=expit)

Data fitting

Generated data are fitted using 6 different approaches: GLM, GAM lk, GAM hk,

SCAM fixsp, boost and Plateau, using the code provided below. Resulting fitted

https://cran.r-project.org/web/packages/gamlss.dist/gamlss.dist.pdf
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Figure B1: Generated reponse curve using Minchin’s generalised Beta function
(black) and simulated presence.absence datapoints (grey).

response curves with each of the methods for this particular example are shown in

Figure B2. For this particular simulated dataset all methods are able to detect the

maximum around the same value (m˜14), however they result in different shapes,

with GAM hk not fulfilling the unimodality condition.

#GLM code

reg1<-glm( y~x+I(x^2),data=df,family="binomial")

For GAM fitting (with mgcv package) default smoothing basis (thin plate regression

splines) have been used, as found in literature (Chust et al., 2014). No potential

change in the estimated curve shape is expected when changing basis in terms of

penalized basis type (from default, to penalised splines, bs=“tp”) or in terms of

the order of the penalty (m=3, third order penalty instead of second order, m=2)

(Figure B3).

#GAM_lk k=3 code

reg2<-gam(y ~ s(x,k=3), family=binomial(link="logit"),data=df)

#GAM_hk k=10 code

reg3<-gam(y ~ s(x,k=10), family=binomial(link="logit"),data=df)
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#different basis

reg32<-gam(y ~ s(x,k=10,bs="ps",m=2) ,family=binomial(link="logit"),

data=df)

reg33<-gam(y ~ s(x,k=10,bs="ps",m=3) ,family=binomial(link="logit"),

data=df)

For SCAM fitting the smoothing parameter was fixed due to the instability of results

when trying to estimate the smoothing parameter. For some of the datasets, conver-

gence was not held. As ilustration, a new dataset was simulated where estimating

the smoothing parameter with SCAM or fixing it to 1 lead to no convergent results

while fixing it to a low number lead to stable values (Figure B4). Thus, regression

splines where used, controlling the smoothness with the number of knots, fixed to 8

for this study and fixing the smoothing parameter to a small value (0.0001), so that

convergence was reached for all datasets.

#SCAM_fixsp code

reg4<-scam(y ~ s(x,k=8,bs="cv",m=2), family=binomial(link="logit"),

data=df,sp=0.0001)

When using GAMBOOST the base learner bmono was selected, being the only one

that is able to include concavity restrictions. The number of knots and degrees of

freedom are set to 15 so that the fitting is flexible enough and not dependent on

these parameters. It was seen that increasing the number of knots or degrees of

freedom did not improve the fit but did increase computational time.

#boosting code

reg5<-gamboost(factor(y) ~ bmono(x, knots = 15, df = 15,constraint =

c("concave")),data=df, family = Binomial(link = c("logit")))

Plateau method needs some initial values for the optimisation process. They were

set to 1 arbitrarily. If convergence is not held, different initial values have to be

selected.

#Plateau code

initial.pars <- rep(1,5)

reg6<-fit.glm.env(y="y",x.clim=c("x"),initial.pars.input=initial.pars,

data=df)
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Figure B2: Estimated response curves for each method and simulated presence
absence data (grey).
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Figure B3: Estimated response curves with different smoothing basis for GAM fit-
tings. The black line corresponds to the default option, thin plate regression splines,
whereas the red and green lines represent penalised splines with the order of the
penalty equal to 2 and 3 respectively.
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Figure B4: Estimated response curves with SCAM when estimating the smoothing
parameter (red), when fixing it to 1 (green) or to 0.0001 (blue).
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In this annex we provide additional plots mentioned in Chapter 2.

Figure C1: Presence data points and density (in grey) and absence data points and
density (in black) along the environmental gradient for each simulation scenario for
a single replicate.
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Figure C2: Presence data points and density (in grey) and absence data points and
density (in black) along the environmental gradient (SST in this case) for real data
used in ”Thermal niche for sardine eggs” case study (section 4.1).
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Figure C3: Anchovy (Engraulis encrasicolus) egg real presence-absence data (grey
points), fitted response curves (in black), with the 95% CI (shaded area) along the
selected 4 environmental variables.
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Figure C4: Sardine (Sardine pilchardus) egg real presence-absence data (grey
points), fitted response curves (in black), with the 95% CI (shaded area) along
the selected 3 environmental variables.
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Figure C5: Mackerel (Scomber scombrus) egg real presence-absence data (grey
points), fitted response curves (in black), with the 95% CI (shaded area) along
the selected 3 environmental variables.
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Figure C6: Predicted occurrence probabilities (p) in each map cell for each species
(from left to right, anchovy, sardine and mackerel) with SCAM method (up) and
Boosting method (bottom).



Annex D

JAGS code for the Bayesian approach of the Bay of Biscay sardine assessment de-

scribed in Chapter 3:

model{

## Recruitment

mu.recru ˜ dlnorm(logmu.sr ,tau.sr)

tau.recru ˜ dgamma(a.recru ,b.recru)

#Priors on first row and column

for(y in 1:(Y)) {

N[y,1] ˜ dlnorm(log(mu.recru),tau.recru) }

N[Y+1,1] <- N[Y,1]

for(a in 2:(A)) {

N[1,a] ˜ dlnorm(logmu.n1 ,tau.n1)}

## Population dinamics

for(y in 2:(Y+1)){

195
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#survival eq.

for(a in 2:(A -1)){N[y,a] <- N[y-1,a-1]* exp(-Z[y-1,a -1])}

N[y,A]<-N[y-1,A-1]* exp(-Z[y-1,A-1]) +N[y-1,A]*exp(-Z[y-1,A])

}

#catch equation:

for(y in 1:Y){

for(a in 1:A) {

Ca[y,a]<-N[y,a]*(1-exp(-Z[y,a]))*F[y,a]/Z[y,a]

catch[y,a]<-Ca[y,a]*WC[y,a]

}

logmu.C[y]<-log(sum(catch[y,1:A]))

#total catch by year

Ctot[y]<-sum(Ca[y,1:A])

#total catch in tons lognormal

Ctons[y] ˜ dlnorm(logmu.C[y],tau.Ctot)

reslogC[y]<-log(Ctons[y])-logmu.C[y]/( sqrt(tau.Ctot))

}

for(y in 1:(Y)){

#CP[y,1:A] ˜ dmulti(Cprop[y,],ss)

for(a in 1:A){

C[y,a] ˜ dlnorm(log(Ca[y,a]),tau.C)

reslogCa[y,a]<-(log(C[y,a])-log(Ca[y,a]))/( sqrt(tau.C))

}
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}

## Observation equations indices:

for(y in 1:Y){

for(a in 1:A){

tons[y,a]<-N[y,a]*WI[y,a]*mat[y,a]

tonsI[y,a]<-N[y,a]*exp(-Z[y,a]* t_depm )*WI[y,a]*mat[y,a]

tonsIac[y,a]<-N[y,a]*exp(-Z[y,a]* t_depm )*WI[y,a]}

SSB[y]<-sum(tons[y,1:A])

SSBI[y]<-sum(tonsI[y,1:A])

BI[y]<-sum(tonsIac[y,1:A])

#indicecs numbers

for(a in 2:A) {

Ia[y,a-1]<-N[y,a]*exp(-Z[y,a]*t_ac)*qac[a-1]*Q

index[y,a-1]<-Ia[y,a-1]*WI[y,a]

}

logmu.Iac[y]<-log(Qac*BI[y])

#pelgas acoustic

Iactons[y] ˜ dlnorm(logmu.Iac[y],tau.Iactons)

reslogIactons[y]<-(log(Iactons[y])-logmu.Iac[y])/ sqrt(tau.Iac)

for(a in 1:(A -1)){

Iac[y,a] ˜ dlnorm(log(Ia[y,a]),tau.Iac)

reslogIac[y,a]<-((log(Iac[y,a])-log(Ia[y,a])))/ sqrt(tau.Iac)
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}

#depm egg

logmu.Idepm[y]<-log(SSBI[y]*qdepm)

Idepm[y] ˜ dlnorm(logmu.Idepm[y],tau.Idepm)

#reslogIdepm[y]<-(log(Idepm[y])-logmu.Idepm[y])/ sqrt(tau.Idepm)

}

#DEPM

for(y in 1: length(idx.depm2 )){

logmu.Idepm2[y]<-log(SSBI[idx.depm2[y]]* qdepm2)

Idepm2[y] ˜ dlnorm(logmu.Idepm2[y],tau.Idepm2)

#reslogIdepm2[y]<-(log(Idepm2[y])-logmu.Idepm2[y])/ sqrt(tau.Idepm2)

}

##F

for(y in 1:Y){

for(a in 1:A){

F[y,a]<-fy[y]*sa[a]

Z[y,a]<-F[y,a]+M[a]

}

}

## PRIORS

mu.fm ˜ dlnorm(logmu.f,tau.f)

tau.fm ˜ dgamma(a.recru ,b.recru)

for(y in 1:(Y)){ fy[y] ˜ dlnorm(log(mu.fm),tau.fm)}
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#fix s[refages ]=1 as fixed in ss3

for(a in refages) {sa[a]<-1}

for(a in 1:( refages [1] -1)){sa[a] ˜ dlnorm(logmu.s,tau.s)}

for(a in (refages[length(refages )]+1):A){sa[a]<-1}

qdepm ˜ dlnorm(logmu.qdepm ,tau.qdepm)

qdepm2 ˜ dlnorm(logmu.qdepm ,tau.qdepm)

#fix qac[refageq ]=1 as fixed in ss3

for(a in refageq) {qac[a]<-1}

for(a in 1:( refageq [1] -1)){ qac[a] ˜ dlnorm(logmu.s,tau.s)}

for(a in (refageq[length(refageq )]+1):(A -1)){

qac[a] ˜ dlnorm(logmu.s,tau.s)}

Q ˜ dlnorm(logmu.qac ,tau.qac)

Qac ˜ dlnorm(logmu.qac ,tau.qac)

#precisions

tau.C ˜ dgamma(a.C,b.C)

tau.Ctot ˜ dgamma(a.Ctot ,b.Ctot)

tau.Iac ˜ dgamma(a.Iac ,b.Iac)

tau.Iactons ˜ dgamma(a.Iactons ,b.Iactons)

tau.Idepm ˜ dgamma(a.Idepm ,b.Idepm)

tau.Idepm2 ˜ dgamma(a.Idepm ,b.Idepm)

for(y in 1: length(idx.depm2 )){

muIdepm2[y]<-exp(logmu.Idepm2[y])}

####### quantities to save #########
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sdC <-1/sqrt(tau.C)

sdI <-1/sqrt(tau.Iac)

sdCtot <-1/sqrt(tau.Ctot)

for(a in 1:A){

N0[a]<-N[1,a]}

for(y in 1:Y){

for(a in 1:(A -1)){

muIac[y,a]<-Ia[y,a]}

for(a in 1:A){

muC[y,a]<-Ca[y,a]}

Catch[y]<-exp(logmu.C[y])

muIdepm[y]<-exp(logmu.Idepm[y])

rec[y]<-N[y,1]

}

}

R commands used to define the fishing mortality, catchabilities and variance submod-

els the a4a approach of the Bay of Biscay sardine assessment described in Chapter 3:

fmodel <- ˜ factor(replace(year ,year >2017 ,2017))+

factor(replace(age ,age >3&age <7,3))

qmodel <-list( ˜ factor(replace(age ,age >2&age <6,2)), ˜ 1, ˜ 1, ˜ 1)

vmodel <-list( ˜ 1, ˜ 1, ˜ 1, ˜ 1, ˜ 1)
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