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Abstract
Non-local regularisations of scalar conservation laws

Xuban Diez Izagirre

This thesis focuses on studying equations related to a model problem derived in a Shallow-
Water limit. These equations are non-local higher-order regularisations of a scalar conservation
law with, typically, either a quadratic or a cubic non-linear flux. It is known that hyperbolic
conservation laws exhibit discontinuous solutions and, in general, weak solutions are non-
unique. The classical way to derive uniqueness for such systems is by regularising with viscous
terms, typically of second order, and then perform the vanishing viscosity limit. However,
other type of regularisations may arise depending on the physical or modelling set-up. An
example of such regularised equations is the model just mentioned. This is a generalised
Korteweg-de Vries-Burgers equation with a non-local linear diffusion, which is an operator of
the Riesz-Feller type, and a local and linear dispersion term.

It is the aim of this thesis to advance in the analysis of this particular model. First, the
purely viscous version of the equation is studied and the vanishing viscosity limit is proved
applying the double scale technique of Kružkov. Subsequently, a generalisation of this result to
a more general Riesz-Feller operator is given as well as the asymptotic behaviour of travelling
wave solutions in the tail. The second part of the thesis is devoted to proving the existence
of travelling waves for the full model with a cubic non-linearity. The existence of waves that
violate the classical Lax condition is shown. Formally, these solutions would ensue in the limit
of vanishing diffusion and dispersion, at the right rate, and give rise to non-classical shocks.
The work is completed with a study of large time behaviour in the purely viscous case. It is
concluded that, for the sub-critical case of a paradigm locally Lipschitz flux, the large time
asymptotic behaviour is given by the unique entropy solution of the scalar conservation law.





Laburpena
Kontserbazio lege eskalarren erregularizazio ez-lokalak

Xuban Diez Izagirre

Tesi honetan sakonera txikiko uren limitetik eratorritako problema eredu batekin lotutako
ekuazioak aztertu dira. Ekuazio horiek kontserbazio lege eskalar baten ordena goreneko erre-
gularizazio ez-lokalak dira, oro har, fluxu ez-lineal koadratiko edo kubiko batekin. Jakinekoa
da, kontserbazio lege hiperbolikoek soluzio ez-jarraiak dituztela eta, orokorrean, soluzio ahu-
lak ez direla bakarrak. Sistema horietarako bakartasuna ondorioztatzeko modu klasikoa gai
biskatsuekin erregularizatzea da, normalean bigarren ordenakoa, eta, ondoren, biskositate nu-
luaren limitea kalkulatzea. Hala ere, badira beste erregularizazio mota batzuk konfigurazio
fisikoen edo modelatze-konfigurazioen arabera sor daitezkeenak. Ekuazio erregularizatu horien
adibide bat aipatu berri dugun eredua da. Honako ekuazio hori, Korteweg-de Vries-Burgersen
ekuazio orokortu bat da, difusio lineal ez-lokal bat, bereziki Riesz-Feller motako eragile bat,
eta dispertsio lokaleko eta linealeko gai bat dituena.

Tesi honen helburua bereziki eredu horren azterketan aurrera egitea da. Lehenik, ekua-
zioaren bertsio biskatsu hutsa aztertu da, eta Kružkoven eskala bikoitzeko teknika aplikatuz
biskositate nuluaren limitea frogatu da. Ondoren, emaitza hori Riesz-Feller eragile oroko-
rrago batera orokortu da, eta uhin bidaiari soluzioen amaierako portaera asintotikoa ere eman
da. Tesi honen bigarren zatian, ez-linealtasun kubikodun eredu osorako uhin bidaiarien exis-
tentzia frogatu da. Laxen baldintza klasikoa betetzen ez duten uhinak daudela erakusten
da. Formalki, soluzio horiek difusioa eta dispertsioa, erritmo egokian, zerorantz bidaltzean
sortuko lirateke, eta klasikoak ez diren talka-uhinak sortuko lituzkete. Lana osatzeko, kasu
biskatsu hutsa kontsideratuz, denbora luzerako portaera asintotikoaren azterketa bat egin da.
Lokalki Lipschitz motako fluxu baten kasu subkritikorako denbora luzerako portaera asin-
totikoa kontserbazio lege eskalarraren entropia soluzio bakarrak ematen duela ondorioztatu
da.





Resumen
Regularizaciones no locales de leyes de conservación escalar

Xuban Diez Izagirre

En esta tesis se estudian ecuaciones relacionadas con un problema modelo derivado de un
límite de aguas poco profundas. Estas ecuaciones son regularizaciones no locales de orden
superior de una ley de conservación escalar, generalmente, con un flujo no lineal cuadrático o
cúbico. Es sabido que las leyes de conservación hiperbólicas presentan soluciones discontinuas
y, en general, las soluciones débiles no son únicas. La forma clásica de obtener unicidad para
tales sistemas es mediante regularización con términos viscosos, normalmente de segundo
orden, y posteriormente realizar el límite de viscosidad nula. Sin embargo, pueden surgir
otros tipos de regularizaciones dependiendo de la configuración física o de modelado. Un
ejemplo de estas ecuaciones regularizadas es el modelo que acabamos de mencionar. Se trata
de una ecuación de Korteweg-de Vries-Burgers generalizada con una difusión lineal no local,
que es un operador del tipo Riesz-Feller, y un término de dispersión local y lineal.

El objetivo de esta tesis es avanzar en el análisis de este modelo en particular. Primero, se
estudia la versión puramente viscosa de la ecuación y se demuestra el límite de viscosidad nula
aplicando la técnica de doble escala de Kružkov. Posteriormente, se generaliza el resultado
a un operador Riesz-Feller más general y también se da el comportamiento asintótico de las
soluciones de ondas viajeras en la cola. En la segunda parte de esta tesis, se demuestra
la existencia de ondas viajeras para el modelo completo con una no linealidad cúbica. Se
muestra la existencia de ondas que no satisfacen la condición clásica de Lax. Formalmente,
estas soluciones se obtendrían en el límite de la difusión y dispersión tendiendo a cero, al
ritmo adecuado, y darían lugar a ondas de choque no clásicas. El trabajo se completa con
un estudio del comportamiento asintótico para tiempo grande en el caso puramente viscoso.
Se concluye que, para el caso subcrítico de un paradigma de flujo localmente Lipschitz, el
comportamiento asintótico para tiempo grande viene dado por la única solución de entropía
de la ley de conservación escalar.
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Resumen de la tesis

Esta tesis se engloba dentro del area de análisis matemático de ecuaciones en derivadas par-
ciales (EDPs) de evolución no lineal. En particular, los sistemas de EDPs que se han tratado
tienen su motivación en la mecánica de fluidos y en esta tesis nos dedicamos al análisis
matemático cualitativo de las soluciones a dichos sistemas. Una característica común de
los sistemas a tratar es que son no locales y esto suma una dificultad e interés añadido desde
el punto de vista del análisis. Un ejemplo del tipo de análisis cualitativo de estos sistemas
es el estudio de los fenómenos de propagación en sistemas de leyes de conservación hiperbóli-
cas, como las ecuaciones de Euler de dinámica de gases, y en sus homólogos regularizados.
El objetivo de este análisis es estudiar soluciones que toman la forma de ondas de choque u
ondas viajeras (en sistemas regularizados), ondas de rarefacción, etc. Por tanto, el objetivo
principal de la tesis es estudiar el efecto regularizador de tales operadores no locales en una
ley de conservación escalar en el caso unidimensional y contribuir al análisis matemático de
dichas ecuaciones.

La tesis comienza con un capítulo introductorio donde presentamos los problemas matemáti-
cos de las leyes de conservación hiperbólicas, los operadores no locales que consideramos y un
resumen de los resultados que se demuestran en los capítulos 1, 2 y 3. Los tres problemas que
se estudian son los siguientes. En el Capítulo 1 estudiamos el límite de viscosidad nula para
una regularización puramente difusiva de una ley de conservación escalar. Una vez estudiado
el caso difusivo, en el Capítulo 2 pasamos a tratar una regularización difusiva/dispersiva y
estudiamos la existencia de ondas de choque no clásicas. Finalmente, en el Capítulo 3 anali-
zamos el comportamiento asintótico para tiempo grande de las soluciones para un caso más
concreto de leyes de conservación.

Por último, al final de la tesis se ha añadido un apartado de apéndices. En estos apéndices
se recogen algunos resultados que aplicamos durante la tesis pero son casos particulares de
resultados más generales o se adaptan fácilmente. Por tanto, se ha indicado en cada capítulo
cuales son los resultados que se demuestran en el apéndice para el lector interesado.

Capítulo 1: Límite de viscosidad nula de una ley de
conservación no local viscosa

En el Capítulo 1, estudiamos una regularización no local de una ley de conservación escalar
dada por una derivada fraccionaria de orden entre uno y dos. Más precisamente, el problema
esta dado como {

∂tu(t, x) + ∂xf(u) = ∂xDα[u], t > 0, x ∈ R,
u(0, x) = u0(x) x ∈ R,

(0.1)

iii



donde f ∈ C∞(R) y u0 ∈ L∞(R). En este capítulo, la notación Dα[·] denota el siguiente
operador no local, que actúa solo en la variable x,

Dα[g](x) = dα

∫ x

−∞

g′(z)

(x− z)α
dz, 0 < α < 1, dα :=

1

Γ(1− α)
. (0.2)

Este operador puede interpretarse como una derivada fraccionaria de tipo Caputo por la
izquierda de orden α, pero integrado desde −∞.

El propósito principal del capítulo es el estudio del límite de viscosidad nula para el pro-
blema de Cauchy (0.1). Por tanto, consideramos la siguiente regularización de la ley de
conservación escalar introduciendo un parámetro de control, ε > 0, delante del término no
local: {

∂tu
ε(t, x) + ∂xf(uε) = ε∂xDα[uε], t > 0, x ∈ R,

uε(0, x) = u0(x), x ∈ R,
(0.3)

con el mismo dato inicial. De esta manera, el límite de viscosidad tendiendo a cero para la
familia de problemas (0.3) se obtiene tomando ε→ 0+ y analizando el comportamiento de uε

en el límite.
En concreto, se ha demostrado que las soluciones uε del problema (0.3) convergen en L1 a

las soluciones entrópicas de la ley de conservación escalar. Se distinguen dos resultados uno
local y el otro global en espacio, dependiendo de si el dato inicial tiene variación acotada o
no. En particular este resultado corresponde al Teorema 1.18 y dice lo siguiente:

Teorema. (a) Sea u0 ∈ L∞(R). La solución mild de (0.3), uε, converge, cuando ε→ 0, a
la solución de entropía de la ley de conservación escalar asociada, u, en C([0, T ];L1

loc(R))
para todo T > 0.

(b) Sean u0 ∈ L∞(R) ∩ BV (R), uε la solución mild de (0.3) y u la solución de entropía
de la ley de conservación escalar asociada. Entonces, para todo t ∈ [0, T ], y ε > 0
suficientemente pequeño existe una constante C > 0 tal que

‖uε(t, ·)− u(t, ·)‖1 ≤ C (ε t)
1

α+1 |u0|BV .

En particular, para todo T > 0, ‖uε − u‖C([0,T ];L1(R)) = O
(
ε

1
α+1

)
cuando ε→ 0+.

Ambas demostraciones se basan en la técnica de Kružkov [52], que consiste en duplicar
las variables de espacio y tiempo y considerar en este caso la desigualdad de entropía débil
viscosa para las entropías de Kružkov. El primer resultado se adapta fácilmente de [24], donde
la principal diferencia es que nuestro operador pseudo-diferencial no es simétrico, y para el
límite se siguen las sugerencias dadas en [33]. Por otra parte, en [31] demuestran el límite de
viscosidad nula para operadores con símbolo de Fourier real. En cambio, nuestra demostración
se diferencia de ésta en que no requiere una división en la evolución temporal del problema
asumiendo soluciones entrópicas en una de ellas.

Antes de probar el límite de viscosidad tendiendo a cero, damos algunos resultados prelimi-
nares. Primero demostramos la existencia, unicidad y regularidad de soluciones “mild” para el
sistema (0.1), que se definen aplicando el principio de Duhamel. La existencia global en tiempo
se demuestra primero probando un principio del máximo y, en consecuencia, descartando un
posible “blow-up” en tiempo finito. Gran parte de los resultados mencionados anteriormente

iv



RESUMEN DE LA TESIS

se derivan de los resultados de [32], excepto algunas demostraciones en las que es más conve-
niente usar la transformada de Fourier y sus propiedades en lugar de dividir el operador no
local de una manera conveniente.

Una vez demostrados estos resultados preliminares, se demuestran una desigualdad de
entropía viscosa débil y la contracción L1, que se usan para demostrar el límite de viscosidad
nula.

Para terminar, se estudia el comportamiento de las soluciones de ondas viajeras asociadas
a (0.3). Estas ondas viajeras convergen puntualmente a las ondas de choque asociadas cuando
ε → 0+. La existencia de estas soluciones se muestra en [4], aquí completamos el análisis
demostrando que cuando ξ = x − ct → ∞ la solución decae de manera algebraica a la
constante que toma la onda de choque.

Finalmente, los últimos resultados se centran en dar una generalización del resultado de
límite de viscosidad nula para derivadas fraccionarias de Riesz-Feller más generales. De modo
que se considera una regularización viscosa más general de la ley de conservación escalar

{
∂tu+ ∂xf(u) = Dβ

γ [u], t > 0, x ∈ R,
u(0, x) = u0(x) x ∈ R,

(0.4)

donde β ∈ (1, 2] y |γ| ≤ min{β, 2 − β}. Dβ
γ [·] es un operador de Riesz-Feller de orden β y

coeficiente de asimetría γ, que para estos parámetros se define mediante la transformada de
Fourier como

F(Dβ
γ [u])(ξ) = ψβγ (ξ)F(u)(ξ), (0.5)

con el siguiente símbolo de Fourier

ψβγ (ξ) = −|ξ|β e
−i sgn(ξ)γ

π

2 . (0.6)

Una vez analizado el problema (0.3), la generalización a una difusión más general requiere un
mínimo esfuerzo si usamos la representación integral de operadores de Riesz-Feller dada en
[6, Proposition 2.3] (ver también [24, 58, 66]). Esta representación relaciona la definición de
operador tipo Riesz-Feller con la definición de un operador tipo Weyl-Marchaud y su adjunto.

Concluimos este breve resumen del Capítulo 1 mencionando que en los últimos años las
regularizaciones no locales de problemas hiperbólicos que generalizan el caso del laplaciano
fraccionario han sido objeto de numerosos estudios. Estos incluyen regularizaciones lineales
(ver [31]) tanto no lineales, regularizaciones de orden menor o igual a uno (ver e.g. [33] y
[9]) y el caso de diffusion degenerada (ver e.g. [34] y sus referencias). Aunque las técnicas de
doble escala que aplicamos sean similares a las técnicas usadas en las anteriores referencias,
en lo que respecta a resultados de convergencia, el tipo de operador que consideramos no esta
incluido en las clases de operadores consideradas en esta literatura. No obstante, Cifani y
Jakobsen, en [24], estudian la contracción L1 y otros resultados relacionados para operadores
más generales como los operadores Lévy no lineales y degenerados. A diferencia de los re-
sultados de contracción L1 obtenidos en [24], en el resultado demostrado aquí no hace falta
asumir a priori que las soluciones están en L1.
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Capítulo 2: Ondas de choque no clásicas para una ecuación de
Korteweg-de Vries-Burgers

En el Capítulo 2 se ha trabajado en el estudio de las soluciones de ondas viajeras de una
ecuación de Korteweg-de Vries-Burgers generalizada con el mismo término de difusión no
local y con un flujo cóncavo-convexo. En particular, consideramos la ecuación de evolución
unidimensional

∂tu+ ∂xu
3 = ∂xDα[u] + τ ∂3

xu , x ∈ R , t ≥ 0 (0.7)

con el parámetro de control τ > 0 y donde Dα[·] denota el operador no local que en este
capítulo se define nuevamente como en (0.2).

Como se ilustra en la introducción de la tesis, se sabe que las leyes de conservación hiper-
bólicas presentan soluciones discontinuas, cuyas discontinuidades viajan a velocidad constante.
Estas soluciones pertenecen a la clase de soluciones débiles, que no son únicas en general. La
forma más común de derivar condiciones de unicidad es mediante argumentos de viscosidad
nula. Sin embargo, para el caso cubico se pueden obtener choques admisibles que no satis-
facen la condición de entropía clásica de Lax [54, Chapter II.1] mediante una regularización
difusiva-dispersiva clásica (ver [46]). Hayes y Lefloch, en [44], definen este tipo de soluciones
como ondas de choque no clásicas. Así que, motivado por el caso clásico, nuestro objetivo es
demostrar la existencia de soluciones de ondas viajeras, tales que no satisfacen la condición
de entropía clásica, para una versión no local de este tipo de regularización.

Recordamos que la existencia de ondas viajeras se ha analizado en [4, 5] (τ = 0) para una
regularización puramente difusiva y flujo genuinamente no lineal; y en [3] (τ > 0) para un
flujo cuadrático. En estos casos, siempre se obtienen ondas de choque clásicas.

Observamos que el parámetro τ se obtiene al considerar el siguiente reescalamiento. De
manera análoga a [46], podemos considerar la ecuación (0.7) en la siguiente forma

∂tu+ ∂xu
3 = ε∂xDα[u] + δ∂3

xu , x ∈ R , t ≥ 0

donde ε y δ son constantes positivas que actúan como parámetros de control de la regulariza-
ción. Esto significa que dependiendo del orden en el que tiendan a cero ε y δ, puede dominar
la difusión (δ � ε2/α) o la dispersión (δ � ε2/α). En particular, el parámetro τ se obtiene al
considerar el reescalamiento (x, t)→ (ε1/αx, ε1/αt) de la variable espacial y temporal de modo
que τ = δ/ε2/α. Precisamente, cuando este parámetro es de orden uno es cuando esperamos
obtener soluciones del problema que no satisfacen la condición de entropía clásica.

En este capítulo, estudiamos el problema de ondas viajeras asociado a (0.7). Introducimos
la variable de ondas viajeras ξ = x − ct con velocidad de ondas c y buscamos soluciones
u(t, x) = φ(ξ) de (0.7) que conectan dos valores constantes reales diferentes φ− y φ+. Luego
el problema de ondas viajeras asociado queda como

− cφ′ + (φ3)′ = (Dα[φ])′ + τφ′′′ , (0.8)

donde ′ denota la derivada con respecto a ξ. Podemos integrar la ecuación (0.8) con respecto
a ξ para reducir el orden de la ecuación y obtener el siguiente problema de ondas viajeras:

τφ′′ +Dα[φ] = h(φ) , donde h(φ) := −c(φ− φ−) + φ3 − φ3
− , (0.9)

y las condiciones límite
lim

ξ→−∞
φ(ξ) = φ− (0.10)
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y
lim
ξ→∞

φ(ξ) = φ+ . (0.11)

Además, si φ′ decae a cero lo bastante rápido cuando ξ → ±∞, entonces integrando (0.9) en
toda la recta, obtenemos la condición de Rankine-Hugoniot

c =
φ3

+ − φ3
−

φ+ − φ−
= φ2

+ + φ2
− + φ−φ+ , (0.12)

que asumimos en todo momento.
Si las soluciones de ondas viajeras satisfacen la condición de entropía de Lax, uno espera

que estas correspondan a ondas de choque clásicas en el límite de los términos de difusión y
dispersión tendiendo a cero (en el orden o rango asintótico adecuado). Para este caso particular
de flujo no lineal, la condición de entropía de Lax se da como:

3φ2
+ < c < 3φ2

− . (0.13)

Sin embargo, en este capítulo estudiamos la existencia de soluciones de ondas viajeras que no
satisfacen (0.13). En particular, buscamos soluciones que satisfacen

c < 3 min{φ2
−, φ

2
+} . (0.14)

Sin pérdida de generalidad, asumimos que φ+ < φ− y requerimos a las raíces de h(φ), φ+, φ−
y φc := −(φ− + φ+), la siguiente desigualdad

φ+ < φc < φ− . (0.15)

Esto último garantiza que las soluciones que conectan φ− a φ+ satisfacen (0.14).
Bajo estas condiciones, las soluciones de ondas viajeras de (0.9) con (0.10) y (0.11) corres-

ponden a choques no clásicos en el sentido descrito anteriormente. Por otro lado, soluciones
que satisfacen (0.9) con (0.10) y

lim
ξ→∞

φ(ξ) = φc (0.16)

corresponden a choques clásicos (con la misma velocidad de onda). Como se da en el caso
local α = 1 (ver e.g. [46]), esperamos que el primer comportamiento sea un límite distintivo
en el sentido de que existe un único valor de τ que permite dicha conexión, mientras que existe
un conjunto abierto de valores de τ tales que se da el segundo comportamiento.

Una última condición necesaria para la existencia de soluciones de (0.9) que cumplen
(0.10)-(0.11) es que φ+ + φ− > 0. Esta condición se deriva como consecuencia de resultados
demostrados en [3]. Y el resultado principal que se demuestra en este capítulo corresponde al
Teorema 2.1 y dice lo siguiente:

Teorema. Sean φ− y φ+ ∈ R, tales que (0.15) con φc = −(φ+ + φ−) se cumple y tal que

φ+ + φ− > 0. (0.17)

Entonces, existe un valor de τ > 0, tal que (0.9)-(0.10)-(0.11) tiene una única solución en
C3
b (R) (salvo desplazamientos en ξ).
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La demostración se basa principalmente en una técnica llamada argumento de disparo.
Para comprobar las condiciones necesarias para aplicar dicha técnica, la dependencia continua
de la ecuación (0.9) con respecto al parámetro τ > 0 y el resultado de monotonía para flujo
genuinamente no lineal y τ suficientemente pequeño juegan un papel fundamental.

El capítulo se organiza de la siguiente manera. Primero, se dan algunos resultados preli-
minares sobre el operador no local. A continuación, se establece la existencia de soluciones del
problema (0.9) que satisfacen (0.10) y se dan los tres posibles comportamientos de las trayec-
torias cuando ξ →∞. Esto permite preparar el escenario del problema para un argumento de
disparo, con el parámetro de disparo τ . En concreto, teniendo en cuenta esto se definen tres
conjuntos de τ , tales que cada conjunto esta relacionado con uno de los tres posibles compor-
tamientos de las trayectorias. Y por último, se demuestra el teorema principal siguiendo esta
estrategia y también se da una construcción numérica de soluciones para (0.9)-(0.10)-(0.11).

Capítulo 3: Comportamiento asintótico de soluciones para leyes
de conservación regularizadas por operadores de tipo
Riesz-Feller

Finalmente, en el Capítulo 3 estudiamos el comportamiento asintótico para tiempo grande de
las soluciones para el mismo tipo de regularización no local de una ley de conservación escalar
que, más concretamente, se puede ver como la siguiente ecuación de convección-difusión{

∂tu(t, x) + |u(t, x)|q−1∂xu(t, x) = ∂xDα[u(t, ·)](x), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,

(0.18)

donde u0 ∈ L1(R) ∩ L∞(R) y q > 1. A diferencia de los otros capítulos, aquí se considera el
paradigma de flujo no lineal definido por la siguiente función localmente Lipschitz

f(u) = |u|q−1u

q
, para q > 1.

Además, el termino difusivo esta dado por una derivada fraccionaria de orden 1 + α ∈ (1, 2),
en concreto, un operador de tipo Riesz-Feller, donde el operador Dα[·] se define como

Dα[g](x) = dα+1

∫ 0

−∞

g(x+ z)− g(x)

|z|α+1
dz, para 0 < α < 1, dα+1 =

1

Γ(−α)
. (0.19)

Este operador también se puede ver como una derivada fraccionaria de Weyl-Marchaud por
la derecha de orden α.

Formalmente, el estudio del comportamiento para tiempo grande se puede convertir en un
problema límite usando un cambio de escala apropiado; para cualquier λ > 0, tomamos el
cambio de variables

t = λqs x = λy (0.20)

y definimos la función
uλ(s, y) := λu(λqs, λy). (0.21)

Entonces, si u es una solución de (0.18), uλ satisface{
∂suλ + |uλ|q−1∂yuλ = λq−1−α∂yDα [uλ(s, ·)] (y), s > 0, y ∈ R,
uλ(0, y) = λu0(λy), y ∈ R.

(0.22)

viii



RESUMEN DE LA TESIS

Observamos que cuando t → ∞, si tomamos s de orden uno, entonces se cumple que
λ → ∞, y en las variables nuevas esto significa que dependiendo del signo del exponente
q − 1 − α, un termino u otro domina el comportamiento límite cuando λ → ∞. De acuerdo
con este argumento heurístico, distinguimos tres regiones diferentes que conducen formalmente
a tres comportamientos diferentes, que son los siguientes:

(i) Caso subcrítico: 1 + α > q > 1: Domina la ley de conservación.

(ii) Caso crítico: q = 1 + α: Esperamos un comportamiento auto-similar asociado al equi-
librio de todos los términos.

(iii) Caso supercrítico: q > 1 + α: Domina la ecuación del calor no local.

En el Capítulo 3 nos hemos centrado en el caso subcrítico y los otros dos casos quedan para
un trabajo futuro. El teorema principal que se ha demostrado es el siguiente y corresponde al
Teorema 3.1:

Teorema. Para cualquier 1 + α > q > 1, y cualquier 1 ≤ p < ∞, dado un dato inicial
u0 ∈ L1(R) ∩ L∞(R) con

∫
R u0(x)dx = M > 0 y u0(x) ≥ 0 para todo x ∈ R, entonces u, la

única solución mild del sistema (0.18), satisface

lim
t→∞

t
1
q

(1− 1
p

)‖u(t, ·)− UM (t, ·)‖Lp(R) = 0, (0.23)

donde UM es la única solución de entropía de{
∂tUM + ∂x(|UM |q−1 UM/q) = 0, t > 0, x ∈ R,
UM (0, x) = Mδ0, x ∈ R.

(0.24)

La demostración sigue el método desarrollado por Kamin y Vázquez en [47]. Esto es,
teniendo en cuenta (0.20)-(0.21), el límite enunciado en el teorema, (0.23), es formalmente
equivalente a demostrar

‖uλ(s0, ·)− UM (s0, ·)‖Lp(R) → 0, cuando λ→∞, (0.25)

para un s0 > 0 fijo. Así pues, esto significa que estudiar el comportamiento asintótico de u
para tiempo grande es equivalente a estudiar el límite de uλ cuando λ→∞.

Recordamos que el caso local en RN para N ∈ N y para todo q > 1 ha sido analizado por
Escobedo, Vázquez y Zuazua. Los resultados para el caso crítico y supercrítico se demuestran
en [37], y los del caso subcrítico en [35, 36].

Para el caso de modelos no locales, Ignat y Stan, en [45], estudian el caso subcrítico en una
dimensión y para el laplaciano fraccionario de orden mayor que uno. En cambio, Biler, Karch
y Woyczynski, en [16, 17], estudian los casos crítico y supercrítico para un operador Lévy más
general, mostrando el comportamiento asintótico esperado. Para aplicar estos resultados, la
no negatividad del símbolo y la simetría del operador son condiciones necesarias. Por tanto,
la novedad de este capítulo es el tipo de difusión anómala que consideramos dado por un
operador no simétrico, como es el caso de los operadores de Riesz-Feller.

Por último, el capítulo esta organizado de la siguiente forma. Primero, se dan algunos
resultados preliminares con respecto al operador no local (0.19), el problema lineal y la solu-
ción de entropía asociada a la ley de conservación, y finalmente se deriva un principio de
comparación usando resultados del Capítulo 1.
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A continuación, derivamos una estimación a priori llamada desigualdad de entropía de
tipo Oleinik y una estimación de energía, que juegan un papel fundamental para demostrar el
límite. Para obtener estos resultados, primero, consideramos el problema para un dato inicial
positivo (en particular, esto hace que la función de flujo sea regular), en este caso podemos
demostrar la desigualdad de Oleinik, que por aproximación también se cumple para un dato
inicial no negativo. Las demostraciones son similares a [45], por esta razón, solo damos detalles
en aquellos casos en los que la no-simetría del operador nos obliga a argumentar de otra forma.

Finalmente, se demuestra el teorema enunciado. Primero, traducimos las estimaciones
demostradas al problema reescalado (0.22) y, antes de probar el límite de λ → ∞, tenemos
que acotar el comportamiento de uλ para |y| grande. Con estas estimaciones demostramos el
límite (0.25), con el que concluimos el comportamiento asintótico.

Acabamos el capítulo dando indicaciones de como generalizar los resultados de compor-
tamiento asintótico para el caso de operadores de tipo Riesz-Feller más generales.
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Introduction

This thesis falls within the framework of the mathematical analysis of nonlinear evolution
partial differential equations (PDEs). In particular, it deals with problems of PDE systems
that have their motivation in fluid mechanics and is dedicated to the qualitative mathematical
analysis of solutions. A common characteristic of the problems considered here is that they
are non-local and this has an added difficulty and interest from the mathematical point of
view. An example of the type of qualitative analysis studied here is the study of propagation
phenomena in hyperbolic systems of conservation laws, such as the Euler equations of gas
dynamics, and in their regularised counterparts. This aims to study solutions that take the
form of shock waves or travelling waves (in regularised systems), rarefaction waves, etc. The
main objective of the thesis is thus to study the regularising effect of such non-local operators
in a scalar conservation law in the one-dimensional setting and to contribute with some results
to the analysis of these particular equations.

It is known for hyperbolic conservation laws that classical solutions may not exist for all
time, this makes necessary to consider weak solutions. Nevertheless, within this wide class
of solutions uniqueness is not guaranteed in general, thus some extra condition is usually
necessary to select a single solution for the Cauchy problem. The most common way to derive
uniqueness is to use viscous regularisation arguments (see e.g. [68, 71]). For instance, for
conservation laws the so-called admissible shock waves are the ones that can be obtained from
travelling waves of the viscous equation, when this regularisation tends to zero. There are,
however, other types of regularisation that arise from physical considerations of the model. The
particular case that we study here (e.g. [10, 51, 75]) results from a non-local regularisation of a
scalar conservation law. In general, for genuinely nonlinear fluxes (either convex or concave),
one expects that all higher order regularisations lead, in the limit, to the same weak solution
defined as the entropy solution of the scalar conservation law. However, there are examples
where different regularisations of hyperbolic conservation laws lead to different weak solutions,
such as the case of conservation laws with a non-genuinely nonlinear flux (neither convex nor
concave). For instance in the cubic case, shock waves which do not satisfy the classical entropy
condition (see [60]) can be constructed by introducing a regularisation consisting of a term of
diffusion and a term of dispersion. This is proved in [44, 46] for Korteweg-de Vries-Burgers
(KdV-Burgers) type equations.

Motivated by these results, we consider such questions for non-local versions of the KdV-
Burgers equation. Namely, the kind of non-local conservation law considered here is given by
the following general model, for 0 < α < 1 and C1, C2 ≥ 0,

∂tu+ ∂x(f(u)) = C1∂xDα[u] + C2∂
3
xu, t > 0, x ∈ R, (0.26)
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where the flux function might be u2 or u3 and the non-local operator has the form:

Dα[g](x) = dα

∫ x

−∞

g′(z)

(x− z)α
dz, 0 < α < 1, dα :=

1

Γ(1− α)
.

In particular, equation (0.26) without the dispersion term, also known as the non-local gener-
alised Burgers’ equation, appears in [72] as a model for the far-field behaviour of uni-directional
viscoelastic waves. Moreover, in [51, 75] the whole equation with α = 1/3 has been derived
from one (quadratic flux) and two (cubic flux) layer shallow water flows, respectively. Apart
from these, there are other models of physical phenomena where this kind of non-local opera-
tor appears, see for instance the references listed in [7] and another example (although not as
a regularising term) can be found in [40], where a model for dune formation is presented.

In relation to shock formation in the full shallow water problem travelling wave solutions
are typically analysed and numerical simulations, in [75], indicate the existence of travelling
waves that resemble the inner structure in a very particular limit of small amplitude shock
waves for the original shallow water problem.

Before considering the full problem, we begin with the purely viscous version of the equa-
tion (0.26). For this simpler model, we study the regularising effect of such non-local operator
and compute the vanishing viscosity limit result for the Cauchy problem. Apart from this, we
complete the analysis of the associated travelling wave problem for genuinely nonlinear fluxes
by proving the rate of convergence of the travelling wave solution to the shock wave in the tail.
Subsequently, we consider the full diffusion/dispersion model and study the existence of trav-
elling waves that allow to obtain non-classical shock waves at the limit of the regularisation
tending to zero for a non-genuinely nonlinear flux, such as the cubic nonlinearity. Eventually,
we finish the thesis with the analysis of large time asymptotic behaviour of solutions to the
same kind of dissipative regularisation and a power-like flux function. Especially, we study
the sub-critical case where in the limit the conservation law dominates over the diffusion term.

In the next section we give a brief introduction to the research, the main purpose of this
introduction is to give an overview of scalar conservation laws and fractional derivatives. The
first part focuses on the so-called regularisation technique for solving nonlinear PDEs; for a
thorough discussion of the subject we refer, for example, to [68, 71]. The second part gives
a brief introduction to fractional derivatives, where we define certain classes of fractional
derivatives that are considered in the forthcoming chapters. This section is based on Mainardi
and Gorenflo [57] and the books [11, 50, 65]. For more information on fractional calculus
the author refers to [61, 66] as well. Finally, in Section 3 we give an overview of the results
obtained in this thesis.

1 Introduction to scalar conservation laws

A scalar conservation law is a Cauchy problem{
∂tu+ ∂x(f(u)) = 0, x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R,
(0.27)

where u is a real function of t and x. In this section, we introduce the issues of these con-
servation laws concerning well-posedness which are the main reason to consider regularised
versions. This kind of PDEs are called conservation laws because if we integrate the equation
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(0.27) assuming that u is a classical solution (such that (0.27) holds point-wise) in any interval
[a, b] ⊂ R we get,

d

dt

∫ b

a
u(t, x) dx =

∫ b

a
∂x(f(u)) dx = f(u(t, b))− f(u(t, a)).

This basically means that a change of the quantity
∫ b
a u dx is strictly connected to the values

of the flux function, f , on the boundary of the interval. Therefore, if the right hand side
vanishes, then the quantity

∫ b
a u dx is preserved in time. For instance, if the function u gives

the density of a certain material, then the equation (0.27) might be modelling the conservation
of mass.

In an attempt to solve the conservation law (0.27), it seems reasonable to consider classical
solutions. For the linear case (f(u) = c u, for c ∈ R) and u0 bounded and sufficiently regular,
the method of characteristics can be used to solve the problem. If the linear hypothesis is
abandoned and even if one considers the case where f ∈ C∞(R), the method of characteristics
will not solve (0.27) in the general case. The problem is that due to the nonlinearity, charac-
teristics may intersect and this makes impossible the construction of a classical solution. More
precisely, it is proved that the solution obtained by the method of characteristics exhibits a
blow-up in finite time if f ′(u0) is not increasing, which makes the characteristics intersect (see
[68]).

In general, the problem (0.27) is not well-posed on the class of classical solutions, thus
a wider class of solutions has to be considered, for instance, weak solutions. Since we are
interested in shock wave formation, piecewise continuous solutions seem the most relevant
solutions. Hence the choice of considering weak solutions makes sense from a mathematical
point of view. This kind of solution for (0.27) is defined as follows:

Definition 0.1 (Weak solution of (0.27)). A function u is said to be a weak solution of
the Cauchy problem (0.27) in the band [0, T ] × R for T > 0 if u ∈ L1

loc([0, T ] × R), f(u) ∈
L1
loc([0, T ]× R), and if for all test functions ϕ ∈ C∞c ([0, T ]× R),

∫ T

0

∫
R

(u∂tϕ+ f(u)∂xϕ) dxdt+

∫
R
u0(x)ϕ(0, x) dx = 0. (0.28)

Now in order to derive admissibility conditions for the discontinuity, we consider the case
of piecewise continuous solutions. Let ω be the domain of definition and Γ the regular curve
where the discontinuity occurs. Moreover, this curve divides ω into two connected components
ω± (see Figure 1). Assuming u and f(u) to be of class C1 in both subdomains, we conclude
that u satisfies the equation in the classical sense for each subdomain. Following [68], one can
define u±(t, x) as the limit of u(s, y) when (s, y) tends to (t, x) ∈ Γ and stays in ω±, and the
limits f(u+) and f(u−) along Γ are defined equivalently as well.

Since f is indeed Lipschitz continuous, thus the curve of discontinuity can be parametrised
by the variable t in the form

Γ = {(t,X(t)) : t ∈ (t1, t2)}.
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t

x

Γ = {(t,X(t))}

ω+
ω−

u+(t, x)u−(t, x)

ω

Figure 1: Curve of discontinuity and the jump of u. Based on [68,
Figure 2.1].

Hence, one can derive the following identity from the weak formulation (0.28) for the case
of piecewise continuous solutions. This identity is called the Rankine-Hugoniot condition and
can be expressed as

f(u+)− f(u−) =
dX

dt
(u+ − u−).

This identity represents that the proportion between the jump across the discontinuity Γ of
f(u) and the jump of u is equal to the velocity of the discontinuity. The problem with this kind
of solutions is that the equation (0.27) admits more than one weak solution in the case of a
nonlinear flux. A typical example is given when piecewise constant solutions are considered for
which the only thing we have to ensure is that the discontinuities fulfil the Rankine-Hugoniot
condition (see, e.g. [68, 71]).

Therefore, the so-called regularisation technique is the mathematical tool that is used to
pick up a unique solution among the class of weak solutions. An option to regularise (0.27) is
considering the effect of a residual diffusion which in one dimension can be given by a second
order derivative in space. Hence this regularisation of (0.27) is given as follows:

∂tu
ε + ∂x(f(uε)) = ε∂2

xu
ε. (0.29)

Here the small parameter ε > 0 is the diffusion coefficient, in general, also called the control
parameter. In particular, this equation is more precisely known as the generalised Burgers’
equation. Due to the added second order term, the Cauchy problem for (0.29) now has one
and only one classical solution uε.

From the previous equation and studying the limit ε → 0, one can derive the entropy
inequality which is the main criterion used to choose the physically relevant weak solution
and, consequently, resolve the uniqueness problem without losing the existence. The concept
of entropy or entropy-flux pair is associated to the pair of functions (η, q) for which one can
conclude that a classical solution of (0.27) also holds

∂tη(u) + ∂xq(u) = 0.

Besides, if we consider a regular pair of functions (η, q) such that η is convex and the flux
function is given by q′ = f ′η′, multiplying the equation (0.29) by η′(uε) one can conclude the
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following inequality for uε:

∂tη(uε) + ∂xq(u
ε) = η′(uε)(∂tu

ε + ∂xf(uε)) = εη′(uε)∂2
xu

ε

= ε∂2
xη(uε)− εη′′(uε)(∂xuε)2 ≤ ε∂2

xη(uε).

Let us assume that uε converges to a function u almost everywhere when ε → 0, thus inte-
grating the previous inequality, multiplied by a non-negative test function ϕ, over (0, T ]× R,
we get

0 ≤
∫ T

0

∫
R

(ε∂2
xη(uε)− ∂tη(uε)− ∂xq(uε))ϕdxdt

=

∫ T

0

∫
R

(η(uε)(ε∂2
xϕ+ ∂tϕ) + q(uε)∂xϕ) dxdt+

∫
R
η(u0(x))ϕ(0, x) dx

and letting ε→ 0:

0 ≤
∫ T

0

∫
R

(η(u)∂tϕ+ q(u)∂xϕ) dxdt+

∫
R
η(u0(x))ϕ(0, x) dx.

Additionally, under the previous assumptions, one can generalise this inequality for continuous
and convex entropy functions η and the entropy solution for (0.27) is defined as follows:

Definition 0.2 (Entropy solution of (0.27)). A weak solution of (0.27) is said to be an en-
tropy (or admissible) solution if it satisfies the entropy inequalities for every convex continuous
entropy η of flux q:∫ T

0

∫
R

(η(u)∂tϕ+ q(u)∂xϕ) dxdt+

∫
R
η(u0(x))ϕ(0, x) dx ≥ 0 (0.30)

for all non-negative test function ϕ ∈ C∞c ([0, T )× R) and q given as

q(u) = f ′(u)η(u)− f ′(0)η(0)−
∫ u

0
f ′′(z)η(z) dz.

However, this definition might not be so practical when solving a scalar conservation law,
and in this matter the next particular choice of entropy-flux pair plays a crucial role. Let
k ∈ R, the function u 7→ |u − k| is convex and continuous, its flux being equal to (f(u) −
f(k)) sgn(u− k), where

sgn(s) =


−1, s < 0,

0, s = 0,

1, s > 0.

Therefore, as a particular case of an entropy-flux pair, an entropy solution satisfies the follow-
ing inequality∫ T

0

∫
R

(|u−k| ∂tϕ+ (f(u)− f(k)) sgn(u−k) ∂xϕ) dxdt+

∫
R
|u0(x)−k|ϕ(0, x) dx ≥ 0, (0.31)

which is an obvious conclusion. However, the interesting part is that the converse does also
hold if (0.31) holds for all k ∈ R. This claim is proved, first of all, showing that a function u
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2. INTRODUCTION TO FRACTIONAL DERIVATIVES

that satisfies (0.31) for k ∈ R is indeed a weak solution of (0.27). Then one has to conclude
that it is indeed an entropy solution approximating a given continuous and convex entropy
function by a linear combination of absolute values, |u − k| for k ∈ R. This special choice of
entropy functions are called Kružkov’s entropy functions.

In addition, Kružkov [52] proved that the Cauchy problem (0.27) is well-posed in the
class of entropy solutions. It is proved that for every bounded measurable function u0 on R,
there exists one and only one entropy solution of (0.27) in L∞([0, T )×R)∩C([0, T );L1

loc(R)).
Moreover, it satisfies the maximum principle, the L1-contraction property and the bounded
variation property.

Another application of (0.31) is obtained considering piecewise smooth solutions. Notice
that this inequality is trivial for classical solutions, such as constant solutions. Therefore, one
can study a piecewise constant solution in ω and the curve of discontinuity Γ = {(t,X(t)) :
t ∈ (t1, t2)} as is done above. Then, using the entropy inequality and maximum principle, one
yields the Lax-Entropy inequality, also called the Lax shock condition, which characterises
admissible shocks and is written as

f ′(u+) ≤ dX

dt
≤ f ′(u−). (0.32)

In this case, one can conclude that characteristics are straight lines and the previous inequality
expresses that characteristics can end up in the curve Γ, where the discontinuity arises, but
they cannot originate from the curve Γ. Moreover, from this inequality one can also conclude
the following admissibility criteria given in [68] as a consequence of the Lax-Entropy inequality:

Case u− < u+ then a discontinuity is admissible if and only if the graph of f ,
restricted to the interval [u−, u+], is situated above its chord.

Case u− > u+ then a discontinuity is admissible if and only if the graph of f ,
restricted to the interval [u+, u−], is situated below its chord.

2 Introduction to fractional derivatives

In this section we introduce some kinds of non-local operators which are used to regularise
the scalar conservation law during the thesis. Within the area of mathematical analysis,
namely, fractional calculus, these operators are considered as generalisations of derivatives for
any arbitrary order. These generalisations are called fractional derivatives and it is believed
that the first attempt to consider such generalisation was made in the correspondence of
G.W. Leibniz (1646-1716) to G. L’Hôpital (1661-1704) and J. Wallis (1616-1703) around 1695.
In view of the notation for the n-th order derivative dng

dxn given by Leibniz, he suggested to
L’Hôpital and Wallis the possibility of considering the case n = 1/2 (for more information
check [65]).

Since then, a long list of mathematicians has contributed in the development of fractional
calculus and, in order to define those pseudo-differential operators, different approaches have
been considered which are not in general all equivalent.

We would like to distinguish two different manners of defining fractional derivatives in the
continuous setting: on the one hand, we have the Caputo type fractional derivatives and the
Weyl-Marchaud derivatives, and, on the other hand, the Riesz-Feller fractional derivatives and
the Lévy type fractional derivatives. The former were defined generalising the n-th integral
operator and the latter taking into account the Fourier symbol of the usual derivative and
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considering a generalisation of it. In the following sections we aim to give the definitions, some
general ideas of how to derive the formulae and the inclusion or equivalence relations between
them.

2.1 Caputo and Weyl-Marchaud fractional derivatives

With regard to the definition of pseudo-differential operators considered here, Riemann-
Liouville fractional derivatives were the first generalisation of this kind. Historically, Riemann-
Liouville type fractional derivatives were first investigated in papers by N.H. Abel (1823)
(1826) [1, 2] and by B. Riemann (1876) [63], although the concept itself was already consid-
ered by J. Liouville as well in a series of papers around the years 1832 and 1837. Abel, in order
to deal with the tautochrone problem, introduced the Abel’s integral equation for which the
left hand side of the equation is a fractional integral of order between 0 and 1. Nonetheless, it
was not until 1876, when [63] was published, that the current definition of Riemann-Liouville
type fractional derivative was given. Inspired by the works of Liouville, Riemann wrote this
paper in 1847 while he was still a student. However, the work was not published until ten
years after his death in 1876.

Later on the Weyl-Marchaud fractional derivatives were defined independently by H. Weyl
(1917) and A. Marchaud (1927) in [59, 77]. This definition was given to generalise the idea of
fractional derivatives to a wider class of functions (see for more information [39]). And, finally,
the Caputo fractional derivative the most recent among the three of them was introduced in the
late sixties (1967-1969) by M. Caputo in [21, 22] (for more information on historical remarks
see [65]).

The Riemann-Liouville and Caputo type fractional derivatives are defined from considering
generalisations of the n-th order integral operator, for n ∈ N, defined by means of

Ina+ [g](x) =

∫ x

a

∫ y1

a
· · ·
∫ yn−1

a
g(yn) dyn . . . dy1

=
1

(n− 1)!

∫ x

a
(x− y)n−1g(y) dy, n ∈ N

and

Inb− [g](x) =

∫ b

x

∫ b

y1

· · ·
∫ b

yn−1

g(yn) dyn . . . dy1

=
1

(n− 1)!

∫ b

x
(y − x)n−1g(y) dy, n ∈ N.

for −∞ < a < b <∞.
In particular, combining first differentiation and then integration one can define the left-

and right-sided Caputo fractional derivatives, Dαa+ [·] and Dαb− [·], of order α ≥ 0 by means of,

Dαa+ [g](x) : = In−α
a+

[(
d

dx

)n
g

]
(x)

=
1

Γ(n− α)

∫ x

a

g(n)(y)

(x− y)α−n+1
dy, n = [α] + 1, x > a

(0.33)
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and

Dαb− [g](x) : = In−α
b−

[(
− d

dx

)n
g

]
(x)

=
1

Γ(n− α)
(−1)n

∫ b

x

g(n)(y)

(y − x)α−n+1
dy, n = [α] + 1, x < b,

(0.34)

where [α] denotes the integer part of α and the integral operators are just defined as natural
generalisations of the integer order case of the integral operator since (n − 1)! = Γ(n) and
everything in the previous formulae makes sense in the non-integer case. On the contrary,
interchanging the order of differentiation and integration one can define the Riemann-Liouville
type fractional derivatives. For the properties and more information on this operators defined
in finite intervals check [50, Section 2.1,2.4].

From now on, we focus on the fractional derivatives defined in the whole real line because
in the following chapters we will be dealing with problems which involve this kind of operators.
The functions under consideration are to be chosen so that the corresponding integrals converge
at infinity.

The Caputo type fractional derivatives on R are defined similarly to those defined previ-
ously. More precisely, the definitions of the left- and right-sided Caputo fractional derivatives
are given as follows,

Dα[g](x) := In−α
[
dn

dxn
g

]
(x) =

1

Γ(n− α)

∫ x

−∞

g(n)(y)

(x− y)α−n+1
dy (0.35)

and

Dα[g](x) := (−1)n In−α
[
dn

dxn
g

]
(x) =

(−1)n

Γ(n− α)

∫ ∞
x

g(n)(y)

(y − x)α−n+1
dy, (0.36)

where n = [α] + 1, α ≥ 0 and x ∈ R, respectively. Besides this, the bar over the notation of
the operators denotes the adjoint of the operator on L2(R).

Even though Caputo type fractional derivatives play a huge role in fractional PDEs, some
regularity assumptions on g are crucial in order the fractional derivatives to be finite. Con-
cerning this regularity issue the Weyl-Marchaud fractional derivatives are introduced so as to
avoid this complication. These fractional derivatives are defined, for instance, for bounded
functions satisfying a local Hölder condition of order λ > α. The definitions of the right- and
left-sided Weyl-Marchaud fractional derivatives of order 0 < α < 1 are given by means of,

Dα[g](x) :=
α

Γ(1− α)

∫ ∞
0

g(x)− g(x− y)

y1+α
dy (0.37)

and

Dα[g](x) :=
α

Γ(1− α)

∫ ∞
0

g(x)− g(x+ y)

y1+α
dy, (0.38)

respectively1.

1Note that there is a shift of a minus one from the definition of Dα[·] given in this chapter and the definition
we use with the same notation bar. This comes from the fact that we are interested in defining Dα[·] in such
a manner that the adjoint of ∂xDα[·] coincides with ∂xDα[·] for 0 < α < 1, which is in connection to the
anomalous diffusion considered during the thesis.
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Moreover, these definitions of fractional derivatives given over the section are equivalent
under certain conditions and the following computations show this equivalence. Let us now
consider the function g to be continuously differentiable and its derivative to vanish at infinity
as |x|α−1−ε, for ε > 0, thus for the fractional derivatives of order 0 < α < 1 one yields the
equivalence

1

Γ(1− α)

∫ x

−∞

g′(y)

(x− y)α
dy =

1

Γ(1− α)

∫ ∞
0

g′(x− z)
zα

dz

=
α

Γ(1− α)

∫ ∞
0

g′(x− z)
∫ ∞
z

1

σα+1
dσdz

=
α

Γ(1− α)

∫ ∞
0

∫ σ

0

g′(x− z)
σα+1

dzdσ

=
α

Γ(1− α)

∫ ∞
0

g(x)− g(x− σ)

σα+1
dσ,

(0.39)

where the change of variable y = x− z and integrability of g′ are used. Besides, one can get
the equivalence for Dα[·] with similar computations. Therefore, the equation above shows that
Caputo and Weyl-Marchaud fractional derivatives are equivalent for differentiable functions
with some decay at infinity (see, e.g. [65, Chapter 5]).

To close this section, the Fourier symbol of these operators are computed. Throughout
this thesis we use the following definition and notation for the Fourier transform:

F(g(x))(ξ) = ĝ(ξ) =
1√
2π

∫
R
g(x)e−iξx dx. (0.40)

In order to compute the Fourier transform of the Caputo type definition of Dα[g], we rewrite
it as a convolution,

Dα[g](x) = dα
(
θ(·) (·)−α ∗ g′

)
(x) (0.41)

where θ is the Heaviside function. Then (see, e.g. [10]) applying the Fourier transform, we
get that

F(Dα[g])(ξ) = (iξ)αF(g)(ξ), for 0 < α < 1. (0.42)

On the contrary, the Fourier symbol of the Weyl-Marchaud fractional derivatives can be
easily computed applying Fubini’s theorem, the translation property of Fourier transform
and considering the definition of Gamma function to yield the same formula (0.42), (see [65,
Chapter 7] for more information). Therefore, this implies that

F(Dα) = (iξ)α, for 0 < α < 1,

and similarly one can get that

F
(
Dα
)

= (−iξ)α, for 0 < α < 1.

2.2 Riesz-Feller fractional derivative and Lévy type operator

In this section two kinds of pseudo-differential operators are introduced, the Riesz-Feller
fractional derivatives and Lévy type fractional derivatives. The former where considered by
M. Riesz [64] and W. Feller [38] around the 1950’s and the latter can be found in [11, 66].

xix



2. INTRODUCTION TO FRACTIONAL DERIVATIVES

Those fractional derivatives were defined with the purpose of generalising the standard diffu-
sion operator. In particular, in an attempt to generalise the symbol of the Laplace operator,
in 1949 Riesz gave the definition of the Riesz potential and the Riesz fractional derivative.
Subsequently, in 1952 Feller [38] proposed a generalisation of the Riesz fractional derivative.
He gave a generalisation of the standard diffusion by a pseudo-differential operator whose
Fourier symbol coincides with the probability measure of a Lévy stable distribution. As is
explained in [57], this generalisation of the Riesz potential is obtained by adding a rotation
term to the symbol. We denote this new operator, the Feller potential, by Iβγ [·], whose symbol
is defined as follows:

F(Iβγ ) = |ξ|−β e
−i sgn(ξ)

γπ

2 , |γ| ≤

{
β, if 0 < β < 1,

2− β, if 1 < β ≤ 2,

with ξ ∈ R.
From the Feller potential one can define the so-called Riesz-Feller fractional derivative

Dβ
γ [·] of order β and skewness γ by means of (see e.g. [58])

Dβ
γ [·] := −I−βγ [·],

hence, getting the symbol

F(Dβ
γ ) = −|ξ|βe

−i sgn(ξ)
γπ

2 , |γ| ≤

{
β, if 0 < β ≤ 1,

2− β, if 1 < β ≤ 2.
(0.43)

Since in this case β = 1 is included, the condition for γ can be rewritten as follows

|γ| ≤ min{β, 2− β}, 0 < β ≤ 2.

In the plane (β, γ) the region for the parameters β and γ turns out to be a diamond with
vertices in the points (0, 0), (1, 1), (2, 0) and (1,−1) (see Figure 2). This diamond first
appeared in a book by Takayasu [73] in 1990 and, for this reason, it is called the Feller-Takayasu
diamond to honour Takayasu. Therefore, from Figure 2 one can realise that as particular cases
of the Riesz-Feller fractional derivatives given by (0.43), the fractional Laplace operator and
Weyl-Marchaud fractional derivatives of order 1 < 1 + α < 2 are obtained. The fractional
Laplace operator was introduced by Bochner [19] in 1949 and, for 0 < α < 2, this operator
can be defined in RN , N ∈ N, by means of,

|D|α[g](x) = (−∆)α/2[g](x) := F−1
(

(|ξ|2)α/2F(g)(ξ)
)

(x). (0.44)

Note that |D|α[·] = Dα
0 [·] is satisfied for β = α and γ = 0 (for more information on equivalent

definitions of the fractional Laplace operator we refer to [53]). On the contrary, the Weyl-
Marchaud fractional derivatives are obtained for the particular choice of β = 1 + α and
γ = ±(1− α) for α ∈ (0, 1). Finally, despite not satisfying the condition to be a Riesz-Feller
operator, one gets the symbol of the operator of order 0 < α < 1 for the choice β = α and
γ = ±(2− α).
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β

γ

∂x

Id

∂2x

∂3x

−∂x

Id

−∂3x

−∂xH

D1+α

D1+α

Dα

Dα

−(−∆)β/2

2

0

−2

1 2

1

−1

3

1− α

−(1− α)

1 + α

Dβ
γ2− α

−(2− α)

α

Figure 2: The Feller-Takayasu diamond represents the set of possible
values for (β, γ) such that they satisfy the conditions so as Dβ

γ [·] to
be a Riesz-Feller fractional derivative. This figure is based on another
one given in [4, Figure 1].

Apart from the definition given as a Fourier multiplier, one has the following equivalent
integral representation of the Riesz-Feller fractional derivative for C2

b (R) which can be derived
as in [6, Proposition 2.3] (or see [24, 58, 66]). These results give us the following identities for
any 0 < β < 2 and |γ| ≤ min{β, 2− β},

Dβ
γ [g](x) =c1

γ

∫ ∞
0

g(x− z)− g(x) + g′(x)z

z1+β
dz

+ c2
γ

∫ ∞
0

g(x+ z)− g(x)− g′(x)z

z1+β
dz, for 1 < β < 2,

(0.45)

and

Dβ
γ [g](x) =c1

γ

∫ ∞
0

g(x− z)− g(x)

z1+β
dz

+ c2
γ

∫ ∞
0

g(x+ z)− g(x)

z1+β
dz, for 0 < β < 1,

(0.46)
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in both identities the constants are given as (e.g. see [58])

c1
γ =

Γ(1 + β)

π
sin
(

(β + γ)
π

2

)
and c2

γ =
Γ(1 + β)

π
sin
(

(β − γ)
π

2

)
where c1

γ , c2
γ ≥ 0 with c1

γ + c2
γ > 0 is satisfied. These identities show that, in particular,

Weyl-Marchaud type fractional derivatives are an especial case of Riesz-Feller type fractional
derivatives.

Moreover, Riesz-Feller fractional derivatives are part of a wider class of fractional deriva-
tives called Lévy type operators. Even though we do not work directly with these operators,
some of the results that we cite here are proved for this kind of operators and for the sake of
completeness we give the definition of such operators and the connection with Riesz-Feller frac-
tional derivatives. This more general diffusion operator called Lévy type operator is defined
by means of a Fourier multiplier as follows,

F (L[g]) (ξ) := aL(ξ)F(g)(ξ), (0.47)

such that the symbol can be represented by the Lévy-Khintchine formula in the Fourier variable
(see [14, Chapter 1, Theorem 1])

aL(ξ) =

∫
RN

(
1− e−iη · ξ − iη · ξ χ|η|<1(η)

)
Π(dη), (0.48)

for Π a measure on RN \ {0} such that
∫
RN min{1, |x|2}Π(dx) <∞. This pseudo-differential

operator is the infinitesimal generator of a pure-jump Lévy process and applying [11, Theo-
rem 3.3.3] an equivalent integral representation can be yielded which is given by means of,

L[g](x) =

∫
RN−{0}

(
g(x+ z)− g(x)− z · ∇g(x)χ|z|<1(z)

)
Π(dz). (0.49)

In case the reader is interested in Lévy operators and their applications, we refer to [11, 25, 66]
for theoretical results and applications.

Eventually, as it is mentioned above, the Riesz-Feller type fractional derivatives are a
particular example of Lévy type operators in one dimension. One can verify this claim choosing
the measure Π = ν such that

ν(dz) =

{
c1
γz
−1−β, on (0,∞),

c2
γ |z|−1−β, on (0,−∞),

and thus conclude that

Lν [g](x) = Dβ
γ [g](x) +

c2
γ − c1

γ

1− β
g′(x)

for any β ∈ (0, 1) ∪ (1, 2) and |γ| ≤ min{β, 2 − β}. Moreover, the precise computations can
be seen in [6] which are derived from results given in [11, 66].

3 Overview of the thesis

In the context of regularised conservation laws, we analyse more precisely the following one-
dimensional evolution equation, for τ > 0,

∂tu+ ∂xu
3 = ∂xDα[u] + τ ∂3

xu , x ∈ R , t ≥ 0 (0.50)
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where we consider a non-genuinely nonlinear flux and a non-local operator, acting only on x,
given by means of

Dα[g](x) = dα

∫ x

−∞

g′(z)

(x− z)α
dz, 0 < α < 1, dα :=

1

Γ(1− α)
, (0.51)

which is a left-sided Caputo type fractional derivative of order α integrated from −∞. This
equation is also known as the non-local generalised Korteweg-de Vries-Burgers equation and
the diffusion operator, ∂xDα[·], can be interpreted as a Riesz-Feller type fractional derivative
with skewness two minus its order, 1 + α, given by the formula (0.43).

In this case, we are interested in studying the existence of travelling waves that allow to
obtain non-classical shock waves at the limit of the regularisation tending to zero. However,
before analysing such diffusion/dispersion model, we consider in Chapter 1 a simpler model
which is given by the purely diffusive regularisation of the scalar conservation law, for 0 <
α < 1, {

∂tu(t, x) + ∂xf(u) = ∂xDα[u], t > 0, x ∈ R,
u(0, x) = u0(x) x ∈ R,

(0.52)

where f ∈ C∞(R) and u0 ∈ L∞(R). The main purpose of the chapter is the study of the
vanishing viscosity limit of the Cauchy problem for equation (0.52). Hence, we consider the
following regularisation of the problem (0.27) introducing a control parameter in front of the
non-local term, ε > 0,{

∂tu
ε(t, x) + ∂xf(uε) = ε∂xDα[uε], t > 0, x ∈ R,

uε(0, x) = u0(x), x ∈ R,
(0.53)

with the same initial condition. The vanishing viscosity limit in the family of problems (0.53)
is yielded letting ε → 0+ and analysing the limiting behaviour of uε. We prove that the
family of solutions converges to the unique entropy solution of the initial value problem for
the scalar conservation law (0.27). The result is given in two parts, where in the first one
the convergence is local in space and the second one is a global result that needs further
assumptions. Especially, for the second result to be true, the initial data has to be of bounded
variation. These results correspond to Theorem 1.18, and they are summed up as the following
result:

Theorem. (a) Let u0 ∈ L∞(R). The mild solution to (0.53), uε, converges, as ε→ 0, to
the entropy solution of (0.27) u in C([0, T ];L1

loc(R)) for all T > 0.

(b) Let u0 ∈ L∞(R)∩BV (R), uε be the mild solution to (0.53) and u be the entropy solution
of (0.27). Then, for all t ∈ [0, T ], and ε > 0 small enough there exists a constant C > 0
such that

‖uε(t, ·)− u(t, ·)‖1 ≤ C (ε t)
1

α+1 |u0|BV .

In particular, for all T > 0, ‖uε − u‖C([0,T ];L1(R)) = O
(
ε

1
α+1

)
as ε→ 0+.

Both proofs are based on the doubling variable technique of Kružkov [52]. As the name
says this technique is based on doubling the space and time variables and considering, in
this case, the viscous weak entropy inequality for the Kružkov’s entropies. The first proof
is readily adapted from the work [24], the main difference being that our pseudo-differential
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operator is not symmetric. The vanishing viscosity limit follows the suggestions given in [33]
for symmetric operators; although the authors do not prove the limit, they do give indications
of the steps to be followed. The limit is proved in [31] for operators with real Fourier symbol,
but our proof differs from this one, in that it does not require a splitting in the time evolution
of the problem.

Even though the techniques we use are similar and based on doubling variables, the type of
operator, we are interested in, is not included in the classes analysed in this literature, as far as
convergence results are concerned. We notice, however, that the L1-contraction property and
other related results has been studied for a more general operator, a nonlinear degenerate Lévy
operator, in [24]. For further information on non-local problems for the fractional Laplacian
and more general operators we refer also to [9, 34].

Apart from this, we complete the analysis of the associated travelling wave problem for
genuinely nonlinear fluxes already considered in [4] by proving the rate of convergence in the
tail. We study the travelling wave solutions associated to (0.53), more precisely, the decay to
far-field values of travelling wave solutions. Indeed, we consider solutions of (0.53) of the form
uε(t, x) = φε(ξ) with ξ = x− ct that connect different far-field values φ−, φ+ ∈ R for a given
wave speed c > 0. After integrating once on the travelling wave variable, the travelling wave
problem can be stated as follows,−c(φε(ξ)− φ−) + f(φε(ξ))− f(φ−) = εDα[φε](ξ),

lim
ξ→−∞

φε(ξ) = φ− and lim
ξ→∞

φε(ξ) = φ+.

These solutions converge point-wise to a shock wave as ε → 0+. The existence of these
solutions is shown in [4], here we complete the analysis by showing that as ξ = x − ct → ∞
the decay of the travelling wave solution to the constant right value is algebraic.

Finally, the last section focuses on giving a generalisation of the vanishing viscosity limit
result for more general Riesz-Feller fractional derivatives. Here a more general viscous regu-
larisation of the scalar conservation law is considered:{

∂tu+ ∂xf(u) = Dβ
γ [u], t > 0, x ∈ R,

u(0, x) = u0(x) x ∈ R,
(0.54)

where β ∈ (1, 2] and |γ| ≤ min{β, 2− β}, and Dβ
γ [·] is a Riesz-Feller operator of order β and

skewness γ, that for these parameters is defined by means of a Fourier multiplier operator

F(Dβ
γ [u])(ξ) = ψβγ (ξ)F(u)(ξ), (0.55)

where the symbol reads

ψβγ (ξ) = −|ξ|β e
−i sgn(ξ)γ

π

2 . (0.56)

We observe that the Fourier symbol of the derivative of the Caputo type fractional derivative
considered before is of this form with β = 1 + α and γ = 1− α, see (0.42).

Once we have analysed problem (0.53), the generalisation to more general diffusion requires
a minimal effort if we use the integral representation of the Riesz-Feller operators defined in
(0.45). This equation shows that Riesz-Feller operators are a linear combination of both
(0.37) and its adjoint operator for smooth enough functions which makes the generalisation
straightforward.
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INTRODUCTION

After considering the purely diffusive case, in Chapter 2, we study travelling wave solutions
of the generalised KdV-Burgers equation introduced before with the same non-local diffusion
term and a concave-convex flux:

∂tu+ ∂xu
3 = ∂xDα[u] + τ ∂3

xu , x ∈ R , t ≥ 0

with τ > 0 and Dα[·] denotes the non-local operator which in this chapter is defined again as
in (0.51).

We recall, that in [4, 5] (τ = 0) and [3] (τ > 0), see also [27], travelling waves for (0.50)
with a quadratic flux function are analysed. Some of these results are the starting point of
the current chapter, as we shall describe later.

As illustrated in Section 1 of the Introduction, hyperbolic conservation laws exhibit non-
unique weak solutions, whose discontinuities or shocks may travel with constant speed and the
most common way to derive uniqueness conditions is to use vanishing diffusion arguments.
In the classical case, admissible shocks violating the classical Lax-Entropy condition, [54,
Chapter II.1], can be constructed by the classical diffusive-dispersive regularisation (see [46]).
This kind of solutions is defined by Hayes and Lefloch [44] as non-classical shock waves. Our
aim is thus to show the existence of such travelling wave solutions for a non-local version of
that regularisation.

We notice that the parameter τ results from a choice in the rescaling. Analogous to [46]
we can consider the equation in the following form

∂tu+ ∂xu
3 = ε∂xDα[u] + δ∂3

xu , x ∈ R , t ≥ 0

where ε and δ are positive constants that act as control parameters. This means that depending
on their relative size either diffusion (δ � ε2/α) or dispersion (δ � ε2/α) dominates in the
limit of both ε and δ → 0. The parameter τ results from the scaling (x, t) → (ε1/αx, ε1/αt)
so that τ = δ/ε2/α. It is when this parameter is of order one when we expect to get solutions
that violate the entropy condition.

Here we study the following travelling wave problem associated to (0.50). We introduce
the travelling wave variable ξ = x− ct with wave speed c and look for solutions u(t, x) = φ(ξ)
of

− cφ′ + (φ3)′ = (Dα[φ])′ + τφ′′′ (0.57)

which connect two different far-field real values φ− and φ+. Here ′ denotes differentiation
with respect to ξ. We can then integrate (0.57) with respect to ξ to arrive at the following
travelling wave equation:

τφ′′ +Dα[φ] = h(φ) , where h(φ) := −c(φ− φ−) + φ3 − φ3
− , (0.58)

where we have used
lim

ξ→−∞
φ(ξ) = φ− (0.59)

and
lim
ξ→∞

φ(ξ) = φ+ . (0.60)

Moreover, if φ′ decays to zero fast enough as ξ → ±∞, then we obtain the Rankine-Hugoniot
condition

c =
φ3

+ − φ3
−

φ+ − φ−
= φ2

+ + φ2
− + φ−φ+ , (0.61)
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that we assume throughout.
One expects that travelling wave solutions to correspond to classical shock waves in the

limit of the diffusive and dispersive terms tending to zero (in probably the right order or
at the right asymptotic rate) if the Lax-Entropy condition is satisfied, which for the current
nonlinear flux reads:

3φ2
+ < c < 3φ2

− . (0.62)

In this chapter, however, we investigate the existence of travelling wave solutions that do not
satisfy (0.62). In particular, we shall look for solutions that satisfy

c < 3 min{φ2
−, φ

2
+} . (0.63)

On the contrary, one could have studied the case

3 max{φ2
−, φ

2
+} < c ,

however, we consider the former since in the classical case the latter is related to the equilibria
(φ±, 0) being unstable and this makes imposible to construct a travelling wave solution joining
the two equilibria.

We assume without loss of generality that φ+ < φ− (observe that the equation is invariant
under the change φ→ −φ) and we require that the roots of h(φ), φ+, φ− and φc := −(φ−+φ+),
hold

φ+ < φc < φ− (0.64)

so that the next inequalities are satisfied

h′(φ−) > 0 , h′(φc) < 0 and h′(φ+) > 0 ,

which is equivalent to the condition (0.63).
Under these assumptions, travelling wave solutions of (0.58) with (0.59) and (0.60) corre-

spond to non-classical shocks in the sense described in the Introduction. On the other hand,
solutions that satisfy (0.58) with (0.59) and

lim
ξ→∞

φ(ξ) = φc (0.65)

correspond to classical shocks (with the same wave speed). We expect, as in the local case
α = 1 (see e.g. [46]), the former possibility to be a distinguished limit in the sense that there
is a unique value of τ that allows such connection, whereas there is an open set of values of τ
that allows the latter possibility.

There is a further necessary condition on the values φ− and φ+ so that (0.59) and (0.60)
can hold for solutions of (0.58), namely that φ+ + φ− > 0. We show this below, as this is
also a consequence of the results proved in [3]. Let us now state our main theorem which
corresponds to Theorem 2.1 in Chapter 2:

Theorem. Let φ− and φ+ ∈ R such that (0.64) with φc = −(φ+ + φ−) holds and such that

φ+ + φ− > 0. (0.66)

Then, there exists τ > 0 such that (0.58)-(0.59)-(0.60) has a unique solution (up to a shift in
ξ) in C3

b (R).
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The proof is based mainly on a technique called the shooting argument. Moreover, the
continuous dependence of the equation (0.58) with respect to the parameter τ > 0 and the
monotonicity result for genuinely nonlinear fluxes and for τ sufficiently small play a funda-
mental role on the process of checking the necessary conditions to apply this technique.

Before proving the main theorem we need to give some preliminary results and establish
the existence of solutions that satisfy (0.59) and we show the three possible behaviours as
ξ → ∞ that such trajectories will have. This allows us to set the problem for a shooting
argument, with shooting parameter τ . In particular, we define three sets of τ , each according
to one of the three possible behaviours. Then following this strategy of the shooting argument
we prove the main theorem. Finally, a numerical construction of solutions to (0.58)-(0.59)-
(0.60) is given by following the approach used in [26]. The main purpose of this approach is
to estimate a value of τ for which (0.58)-(0.59)-(0.60) is satisfied.

Eventually, we finish the thesis with Chapter 3 where the analysis of large time asymptotic
behaviour of solutions is given for the same kind of dissipative regularisation and a power-like
flux function. Especially, we study the sub-critical case where in the limit the conservation
law dominates over the diffusion term. Indeed, we analyse the following convection-diffusion
equation {

∂tu(t, x) + |u(t, x)|q−1∂xu(t, x) = ∂xDα[u(t, ·)](x), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,

(0.67)

where u0 ∈ L1(R) ∩ L∞(R) and q > 1. On the contrary, here the nonlinear flux is considered
to be a paradigm locally Lipschitz function defined as

f(u) = |u|q−1u

q
, for q > 1

and the diffusive term is given by a fractional derivative of order 1 + α ∈ (1, 2) which is a
Riesz-Feller type operator. Namely, the operator, acting on x, Dα[·] has α ∈ (0, 1) and is
defined by means of

Dα[g](x) = dα+1

∫ 0

−∞

g(x+ z)− g(x)

|z|α+1
dz, for 0 < α < 1, dα+1 =

1

Γ(−α)
. (0.68)

This operator, as shown in Section 2, can also be seen as a right Weyl-Marchaud fractional
derivative of order α.

Formally, the study of the large time behaviour can be transferred to a limit problem by
the appropriate scaling; for any λ > 0, let the change of variables

t = λqs x = λy (0.69)

and the function
uλ(s, y) := λu(λqs, λy). (0.70)

Then, if u is a solution of (0.67), uλ satisfies{
∂suλ + |uλ|q−1∂yuλ = λq−1−α∂yDα [uλ(s, ·)] (y), s > 0, y ∈ R,
uλ(0, y) = λu0(λy), y ∈ R.

(0.71)

Observe that when t → ∞, if we keep s of order one, then λ → ∞, and in the new variables
this means that depending on the sign of the exponent q − 1 − α different terms dominate
the limit behaviour as λ → ∞. According to this heuristic argument, we distinguish three
different regimes that formally lead to three different large time behaviours, namely:
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(i) Sub-critical case: 1 + α > q > 1: The conservation law dominates.

(ii) Critical case: q = 1 + α: We expect self-similar behaviour associated to the balance of
all the terms.

(iii) Super-critical case: q > 1 + α: The non-local heat equation dominates.

We focus on the sub-critical case and prove that the conservation law or the convective
term gives the dominant behaviour in the large time asymptotics. The other two cases are
left for a future work. Hence the main theorem that we prove in this chapter is the following
result referenced as Theorem 3.1 in Section 3.3:

Theorem. For any 1 + α > q > 1, and any 1 ≤ p < ∞, given the initial condition
u0 ∈ L1(R) ∩ L∞(R) with

∫
R u0(x)dx = M > 0 and u0(x) ≥ 0 for all x ∈ R, then u, the

unique mild solution of system (0.67), satisfies

lim
t→∞

t
1
q

(1− 1
p

)‖u(t, ·)− UM (t, ·)‖Lp(R) = 0, (0.72)

where UM is the unique entropy solution of{
∂tUM + ∂x(|UM |q−1 UM/q) = 0, t > 0, x ∈ R,
UM (0, x) = Mδ0, x ∈ R.

(0.73)

Since the dominant term is the convective term, we prove that the mild solution u behaves
as the entropy solution of the purely convective equation. Moreover, the proof follows the
method developed by Kamin and Vázquez in [47]. This is, noting that, with the rescaling
(0.69)-(0.70), (0.72) is formally equivalent to

‖uλ(s0, ·)− UM (s0, ·)‖Lp(R) → 0, as λ→∞, (0.74)

for some s0 > 0 fixed. Roughly speaking, the large time asymptotics of u are proved to be
equivalent to the limiting study of uλ as λ→∞, which makes the asymptotics so dependent
to the parameters α and q.

For completeness, we also consider the case of a general Riesz-Feller operator. Thus we
prove the analogous to Theorem 3.1 where the operator ∂xDα[·] is replaced by the Riesz-Feller
operator Dβ

γ [·] of order β ∈ (1, 2) and skewness γ ∈ R such that |γ| ≤ min{β, 2− β} (see e.g.
equations (0.55)-(0.56)).

We recall that, the local case in RN for N ∈ N and for all q > 1 has been analysed
by Escobedo, Vázquez and Zuazua. The results for the critical and super-critical case are
proved in [37], and the ones for the sub-critical case in [35, 36]. In non-local models, the sub-
critical case in one dimension, has been studied by Ignat and Stan in [45], where the non-local
diffusion term is the fractional Laplacian with order larger than one. Moreover, Biler, Karch
and Woyczyński in [16, 17] study the critical and super-critical cases for a more general Lévy
operator (see equations (0.47)-(0.48)), showing the expected asymptotic behaviour; this being
given by the self-similar solution and by the fractional heat kernel, respectively.

Inspired by these studies we consider the case of a non-symmetric Riesz-Feller operator
whose Fourier symbol is, in general, complex. Note that in all the previous results the non-
negativity of the symbol and symmetry are necessary conditions that the non-local operator
has to satisfy.
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The chapter is organised as follows. First of all, we recall some properties of the non-local
operator, then we derive some estimates on the fundamental solution of the linear problem
and, finally, we recall the necessary results on the entropy solution associated to the purely
convective equation. We also define mild solutions for problem (0.67) and recall the entropy
inequalities and results obtained in [30], as well as deriving a comparison principle.

For the purpose of proving the desired asymptotic behaviour result, some a priori esti-
mates are necessary, namely, an Oleinik type entropy inequality and an energy type estimate.
Therefore, we first consider a simplification given by the problem with a positive initial condi-
tion (which makes the nonlinear flux regular, since positivity is preserved, by the comparison
principle). In this case we can show the Oleinik type inequality, which is then preserved in
the limit to a non-negative initial condition. The proofs are similar to those in [45], we only
give the details where the non-symmetric nature of the operator makes it necessary to argue
differently.

Moreover, we note that the main reason to focus on non-negative solutions is justified
when u is considered to be certain density function. It might be possible, that after studying
the non-negative case, one could proceed as in [35, § 3] and [23, § 6] and prove the same kind
of results for changing sign solutions. However, we shall not investigate this case here.

Finally, at the end of the thesis several appendixes have been added for each chapter. Here
the author has collected some results which are used during the thesis but their proofs are
just either straightforward adaptations or particular cases of other results already published.
However, in case the reader is interested in those particular proofs, during the thesis we have
pointed out the ones available in the appendixes.
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Chapter 1

Vanishing viscosity limit of a non-local
viscous conservation law

In this chapter, the following non-local regularisation of a scalar conservation law is analysed{
∂tu(t, x) + ∂xf(u) = ∂xDα[u], t > 0, x ∈ R,
u(0, x) = u0(x) x ∈ R,

(1.1)

where f ∈ C∞(R), u0 ∈ L∞(R) and the non-local operator is given by means of

Dα[g](x) = dα

∫ x

−∞

g′(z)

(x− z)α
dz, 0 < α < 1, dα :=

1

Γ(1− α)
. (1.2)

Since we are interested in studying the vanishing viscosity limit, we introduce the regularised
problem adding a control parameter, ε > 0, in front of the regularising term and study the
limit of the family of solutions uε as ε→ 0,{

∂tu
ε(t, x) + ∂xf(uε) = ε∂xDα[uε], t > 0, x ∈ R,

uε(0, x) = u0(x), x ∈ R.
(1.3)

The main theorem of the chapter is the vanishing viscosity limit result and we prove that, as
ε→ 0, the family of solutions uε converges in L1 to the unique entropy solution of the scalar
conservation law {

∂tu+ ∂x(f(u)) = 0, x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R.
(1.4)

In order to prove this result, we use weak entropy inequalities and the double scale technique
of Kružkov. For completeness, we study the behaviour in the tail of travelling wave solutions
for genuinely nonlinear fluxes and, finally, we generalise the results concerning the vanishing
viscosity limit to Riesz-Feller operators.

The chapter is organised as follows. It begins with Section 1.1 where some preliminary
results on existence, uniqueness and regularity of mild solutions of (1.1) are given together with
some other results on the properties of the semigroup kernel generated by the linear part of the
equation. Subsequently, in Section 1.2, we prove the weak viscous entropy inequality for uε

and the L1-contraction property. Eventually, in Section 1.3, we prove the vanishing viscosity
limit result taking into account the previous results. This is followed by Section 1.4, where

1



1.1. PRELIMINARY RESULTS

the associated travelling wave problem is analysed. Namely, this section aims to complete the
study given in [4]. Finally, we close the chapter with Section 1.5 where the generalisation of
vanishing viscosity results and some related results are considered for the general case of a
Riesz-Feller operator.

Moreover, this chapter has been published as an article, see [30]1, in Monatshefte für
Mathematik.

1.1 Preliminary results

In this section, we define an equivalent formulation of the non-local scalar conservation law
(1.1), the mild formulation that is based on Duhamel’s principle. Then we give some properties
of the corresponding kernel (or semigroup) associated to this formulation. Many of the steps
in the proofs that follow are similar to those in [32] and in [4]. We have proved some properties
of the kernel differently and we report on them. Finally, we give the existence and uniqueness
results for the mild initial value problem and give a global existence result. The last step
requires to prove a maximum principle which is based on an equivalent representation of our
non-local operator applied to smooth enough functions.

Before we continue let us introduce some notation and give some properties of the fractional
derivative (1.2) and its derivative with respect to x.

Notice, that here and throughout we use the notation ‖ · ‖1 for the norm of L1(R), ‖ · ‖∞
for the norm of L∞(R), and for functions of bounded variation in x, we have

|u|BV := sup

{∫
R
u(x)φ′(x) dx : φ ∈ C1

c (R), ‖φ‖∞ ≤ 1

}
.

We recall that if u ∈W 1,1(R) then |u|BV = ‖u′‖1, and if also u ∈ C1(R), then
∫
R |u(x+ h)−

u(x)|dx ≤ |h||u|BV . Notice that this definition does not assume that BV functions are in
L1(R).

We use the definition and notation given in the Introduction for the Fourier transform.
In order to compute the Fourier transform of ∂xDα[u], we can argue as in Section 2 of the
Introduction and rewrite the operator as a convolution to, consequently, conclude that

F(∂xDα[u])(ξ) = (iξ)α+1 F(u)(ξ). (1.5)

It is not hard to see, splitting the integral and using integration by parts in one of the
resulting integrals, that the operator (1.2) is bounded from C1

b to Cb and from Hm+α to Hm.
This type of argument will be used in subsequent proofs to get more precise estimates.

1.1.1 Mild solutions

Let us define mild solutions for (1.1) using Duhamel’s principle and Fourier transform.
In view of (1.5) we define the kernel

K(t, x) = F−1
(
e(iξ)α+1t

)
(x) ∀t > 0, x ∈ R (1.6)

1Xuban Diez-Izagirre and Carlota M. Cuesta, Vanishing viscosity limit of a conservation law regularised
by a Riesz-Feller operator, Monatsh. Math. 192 (2020), no. 3, 513-550.
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and formally obtain, by Duhamel’s principle, the solution to (1.1)

u(t, x) = K(t, ·) ∗ u0(x)−
∫ t

0
K(t− s, ·) ∗ ∂xf(u(s, ·))(x) ds.

For convenience, we write the derivative of f(u) in K in the convolution, and we arrive at the
following definition of mild solution:

Definition 1.1 (Mild solution). Given T ∈ (0,+∞] and u0 ∈ L∞(R), we say that a mild
solution of (1.1) on (0, T )× R is a function u ∈ L∞((0, T )× R) which satisfies

u(t, x) = K(t, ·) ∗ u0(x)−
∫ t

0
∂xK(t− s, ·) ∗ f(u(s, ·))(x) ds

a.e. in (t, x) ∈ (0, T )× R.
(1.7)

Some properties of K associated have been already proved in [4], but we add two more
properties related to time derivatives of K.

Proposition 1.2 (Properties of the kernel K). For 0 < α < 1, the kernel K given in (1.6)
is non-negative. Additionally, the kernel K satisfies the properties:

(i) (Self-similarity) For all t > 0 and x ∈ R,

K(t, x) =
1

t
1

1+α

K

(
1,

x

t
1

1+α

)
.

(ii) (Mass conservation) For all t > 0, ‖K(t, ·)‖L1(R) = 1.

(iii) (Semigroup property) ∀a, b ∈ (0,∞),

K(a, ·) ∗K(b, ·) = K(a+ b, ·)

and
K(a, ·) ∗ ∂xK(b, ·) = ∂x (K(a+ b, ·)) .

(iv) (Space regularity) K(t, x) ∈ C∞((0,∞) × R) and for all m ≥ 0 there exists a Bm > 0
such that

|∂mx K(t, x)| ≤ 1

t
1+m
1+α

Bm

(1 + t
−(m+2)

1+α |x|m+2)
for all (t, x) ∈ (0,∞)× R.

In particular, there exist Cm > 0 such that for all m ≥ 1 and t > 0:

‖∂mx K(t, ·)‖L1(R) =
Cm

t
m

1+α

.

(v) (Time regularity) K(t, x) ∈ C∞((0,∞) × R) and for all m ≥ 0 there exists constants
Km > 0 such that, for all (t, x) ∈ (0,∞)× R,

|∂mt K(t, x)| ≤ 1

t
m(α+1)+1

α+1

Km

1 +
(

|x|
t1/(α+1)

)2 .

As a result there exists a Dm > 0 such that for all m ≥ 1 and t > 0:

‖∂mt K(t, ·)‖L1(R) =
Dm

tm
.
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Proof. The non-negativity of the kernel follows from the fact that the kernel is the scaled
probability measure of a Lévy strictly α + 1-stable distribution ([66]), hence it has to be a
non-negative function.

Even though, the proofs of (i), (ii) and (iii) can be done as in [32] or in [4], we give the
proofs of these properties for completeness. (i) is proved just using the change of variable
z = t

1
1+α ξ in (1.6),

K(t, x) = F−1
(
e(iξ)α+1t

)
(x) =

1√
2π

∫
R
e(iξ)α+1t eixξ dξ

=
1

t
1

1+α

1√
2π

∫
R
e(iz)α+1·1 e

i x

t1/1+α
z
dz =

1

t
1

1+α

K

(
1,

x

t
1

1+α

)
.

To prove (ii) we use the non-negativity and property (i) of the kernel. Make the change
of variable s = x

t
1

1+α
in the second identity,

‖K(t, ·)‖L1(R) =

∫
R
|K(t, x)|dx =

1

t
1

1+α

∫
R
K

(
1,

x

t
1

1+α

)
dx

=

∫
R
K(1, s)e−is·(0)ds = F(K(1, ·))(0) = 1.

The semigroup property, (iii), is just proved using straightforward computations. The first
identity is proved using the convolution property of the Fourier transform,

K(a, ·) ∗K(b, ·) =

∫
R
K(a, y)K(b, x− y) dy

=

∫
R
F−1

(
e(iξ)α+1a

)
(y) F−1

(
e(iξ)α+1b

)
(x− y) dy.

Then from the previous identity and the convolution property of the Fourier transform among
others we obtain,

K(a, ·) ∗K(b, ·) =

∫
R
F−1

(
e(iξ)α+1a

)
(y) F−1

(
e−ixξe(−iξ)α+1b

)
(y) dy

=
1√
2π

∫
R
F−1

([
e(i(·))α+1a ∗ e−ix(·)e(−i(·))α+1b

]
(ξ)
)

(y) dy

= F
(
F−1

([
e(i(·))α+1a ∗ e−ix(·)e(−i(·))α+1b

]
(ξ)
)

(y)
)

(0)

=
1√
2π

(
e(i(·))α+1a ∗ e−ix(·)e(−i(·))α+1b

)
(0)

=
1√
2π

∫
R
e(is)α+1(a+b)eixs ds = K(a+ b, ·).

Applying this identity is very simple to prove the last identity,

K(a, ·) ∗ ∂xK(b, ·) = ∂x (K(a, ·) ∗K(b, ·)) = ∂xK(a+ b, ·).
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Let us now prove (iv). By (i) and the change of variables y = x

t
1

1+α
, we get, for all m ≥ 1

and all t > 0, that

|∂mx K(t, x)| = 1

t
m+1
1+α

|∂my K(1, y)| = 1
√

2π t
m+1
1+α

∣∣∣∣∫
R

(iξ)me(iξ)α+1
eiyξ dξ

∣∣∣∣ ≤
√

2
√
π t

m+1
1+α

∫ ∞
0
|ξ|me−|ξ|α+1 sin(απ2 )dξ =

Cα,m

t
m+1
1+α

<∞
(1.8)

with

Cα,m =

√
2 Γ
(

1+m
1+α

)
√
π(α+ 1) sin

m+1
α+1

(
απ
2

) ,
where we have used the property ∂mξ F(ϕ(x))(ξ) = F((ix)mϕ(x))(ξ) for m ∈ N and the change
of variables z = sin

(
απ
2

)
ξα+1.

Let us finally show that the maximal decay of this |∂mx K(t, x)| is slower than or equal to
O
(
(|x|/t1/(α+1))−(m+2)

)
as |x|/t1/(α+1) →∞. We do this, using again (i) and the self-similar

variable y. We observe that K(1, y) = O
(

1
y2

)
as y → ∞. Indeed, applying integration by

parts twice, we have

K(1, y) =
1√
2π

α+ 1

y2

∫
R

(
α(iξ)α−1 + (α+ 1)(iξ)2α

)
e(iξ)α+1

eiyξ dξ.

Then, arguing as above, there exist constants C1, C2, such that

|K(1, y)| ≤ 1

y2

(
C1 Γ

(
α

α+ 1

)
+ C2 Γ

(
2α+ 1

α+ 1

))
.

We now apply induction. Observe that integration by parts of ∂my K(1, y), gives

|∂my K(1, y)| ≤ C

|y|m+2
+
α+ 1√

2π

1

|y|

∣∣∣∣∫
R

(iξ)m+αe(iξ)α+1
eiyξdξ

∣∣∣∣ ,
where we have applied the induction hypothesis to the first term. The second term can be
integrated by parts m+ 1 times and, as before, changing variables and using the definition of
the Gamma function, to get for some constants Ak.l > 0,

|∂my K(1, y)| ≤ 1

|y|m+2

C +

m+1∑
k,l=1

k+l=m+1

Ak,l Γ

(
(m− k) + (1 + l)α

α+ 1

) .

This and (1.8), by changing to the original variables, imply (iv). In addition, we get that
∂mx K(t, x) are continuous on (0,∞)× R for all m ≥ 0 by continuity under the integral sign.

Let us finally prove (v). We first observe that, using (i),

∂tK(t, x) = − 1

α+ 1

1

t
(K(t, x) + x ∂xK(t, x))

and, by induction, we have that there exist positive constants such that

∂mt K(t, x) =
1

tm

m∑
j=0

Cjx
j ∂jxK(t, x), Cj ∈ R for all 0 ≤ j ≤ m.

5
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Now, we apply (iv), then for all m ≥ 0

|∂mt K(t, x)| ≤ 1

tm+ 1
α+1

m∑
j=0

Cj

(
|x|

t1/(α+1)

)j(
1 +

(
|x|

t1/(α+1)

)j+2
) ≤ Km

tm+ 1
α+1

(
1 +

(
|x|

t1/(α+1)

)2
) ,

for all (t, x) ∈ (0,∞)× R.
Again that ∂mt K(t, x) are continuous on (0,∞)×R and for all m ≥ 0 follows by continuity

under the integral sign. And the L1 norm property is proved using the last inequality.

The following proposition shows that all the terms in Definition 1.1 are well-defined if
u ∈ L∞((0, T )× R):

Proposition 1.3. Let T > 0, u0 ∈ L∞(R) and v ∈ L∞((0, T )× R), then,

u(t, x) := K(t, ·) ∗ u0(x) +

∫ t

0
∂xK(t− s, ·) ∗ v(s, ·) ds ∈ Cb((0, T )× R).

Moreover, for all t0 ∈ (0, T ), x ∈ R and t ∈ (0, T − t0),

u(t0 + t, x) = K(t, ·) ∗ u(t0, ·)(x) +

∫ t

0
∂xK(t− s, ·) ∗ v(t0 + s, ·)(x) ds.

Proof. Even though the proof can be adapted easily to our case from that given in [32], we
give it for the sake of completeness. This proof is done term by term so first we prove it for
the first term of u.

Since u0 ∈ L∞(R) and, for t > 0, K(t, ·) ∈ L1(R), K(t, ·) ∗ u0 is well-defined and by
Young’s inequalities for the convolution and using that ‖K(t, ·)‖L1(R) = 1, we have

|K(t, ·) ∗ u0(x)| ≤ ‖K(t, ·)‖L1(R)‖u0‖L∞(R) = ‖u0‖L∞(R) (1.9)

for all (t, x) ∈ (0,∞)×R. Besides, the theorem of continuity under the integral sign gives the
continuity of K(t, ·) ∗ u0(x) because u0 is bounded and K is continuous.

For the second term of u. Since v is bounded on (0, T )×R and ‖∂xK(t, ·)‖L1(R) ≤ C0

t1/(α+1)

implies that,∣∣∣∣∫ t

0
∂xK(t− s, ·) ∗ v(s, ·)(x) ds

∣∣∣∣ ≤ ∫ t

0

∫
R
|∂xK(t− s, x− y)| |v(s, y)| dyds

≤‖v‖L∞((0,T )×R)

∫ t

0

C0

(t− s)
1

α+1

ds ≤ C0(α+ 1)

α
T

α
α+1 ‖v‖L∞((0,T )×R) <∞.

(1.10)

Moreover, we know that ∂xK(t, x) is a continuous function and v is bounded. Thus, u is
continuous and bounded on (0, T ) × R. Finally, putting together the estimates (1.9) and
(1.10), we get,

‖u‖Cb((0,T )×R) ≤ ‖u0‖L∞(R) +
C0(α+ 1)

α
T

α
α+1 ‖v‖L∞((0,T )×R).

In order to prove the last identity we use the Definition 1.1 for u(t0 + t, x) which is written
as,

u(t0 + t, x) = K(t0 + t, ·) ∗ u0(x) +

∫ t0+t

0
∂xK(t+ t0 − s, ·) ∗ v(s, ·) ds.

6
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Now, by property Proposition 1.2 (v),

u(t0 + t, x) =K(t, ·) ∗K(t0, ·) ∗ u0(x)

+

∫ t0+t

0
∂x (K(t, ·) ∗K(t0 − s, ·)) ∗ v(s, ·) ds

=K(t, ·) ∗
[
K(t0, ·) ∗ u0(x) +

∫ t0

0
∂xK(t0 − s, ·) ∗ v(s, ·) ds

+

∫ t0+t

t0

∂xK(t0 − s, ·) ∗ v(s, ·) ds
]
.

Hence, using Definition 1.1 for u(t0, x) and also Proposition 1.2 (v), we find that,

u(t0 + t, x) = K(t, ·) ∗ u(t0, ·)(x) +

∫ t0+t

t0

∂xK(t+ t0 − s, ·) ∗ v(s, ·) ds.

Applying the change of variable τ = s− t0 inside the integral, we get the rest.

We shall need the following limiting results for the convolution with K:

Lemma 1.4. Let T > 0 and (t0, x0) ∈ (0, T )× R. If v ∈ Cb((0, T )× R), then

(i) For all s0 > 0, lim(s,t,x)→(s0,t0,x0)K(s, ·) ∗ v(t, ·)(x) = K(s0, ·) ∗ v(t0, ·)(x0).

(ii) lim(s,t,x)→(0,t0,x0)K(s, ·) ∗ v(t, ·)(x) = v(t0, x0).

The proof of this lemma uses the dominated convergence theorem and Proposition 1.2. In
case the reader happens to be interested in the proof, one can check it in Appendix A.1.

We can now show that the operator K(t, ·) ∗ u0 is a classical solution of the linear part of
problem (1.1):

Proposition 1.5. If u0 ∈ Cb(R), let U(t, x) := (K(t, ·) ∗ u0)(x) for all (t, x) ∈ (0,∞)×R,
then U ∈ C∞((0,∞)× R) and satisfies

∂tU = ∂xDα[U ] (1.11)

with limt→0+ U(0, x) = u0(x) for all x ∈ R.
If u0 ∈ L∞(R), then also U ∈ C∞((0,∞)×R) satisfies (1.11), but we can only assure that

U(t, ·)→ u0 as t→ 0+ in L1
loc(R).

For a proof we refer to [6], where the result is proved for general Riesz-Feller operators.
Therefore, this result can be adapted as is done in Appendix A.2. The last statement about
convergence to the initial condition follows by classical results about smoothing by convolution
(see e.g. [74]).

1.1.2 Existence and Regularity results

The proofs of local existence and uniqueness of mild solutions of this section are based on
those given in [32] and use Proposition 1.2, we shall not give all the details here.

7
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Proposition 1.6 (Existence, uniqueness and space regularity). Let u0 ∈ L∞(R) and f ∈
C∞(R), and let ‖u0‖∞ = R0. Then, there exists T0 > 0, only depending on R0, such that,
there exists a unique u ∈ C((0, T0), C∞(R)), that satisfies Definition 1.1.

Moreover, for all m ∈ N ∪ {0} there exists a Cm > 0 depending on t0 and T0 such that
‖∂mx u‖Cb((t0,T0)×R) < Cm, and where t0 = 0 if m = 0. Also, for every m ∈ N, t0 ∈ (0, T0) and
t ∈ (0, T0 − t0), it holds

∂mx u(t0 + t, ·) = K(t, ·) ∗ ∂mx u(t0, ·)−
∫ t

0
∂xK(t− s, ·) ∗ ∂mx (f(u(t0 + s, ·))) ds.

Proof. The proof uses a contraction mapping argument. For a fixed T0 > 0, one first defines
the following Banach space

ET0 = {v ∈ Cb((0, T0)× R) : ∂xv ∈ C((0, T0)× R) and t
1

α+1∂xv ∈ Cb((0, T0)× R)},

endowed with the norm

‖v‖ET0 = sup
t∈(0,T0)

{
‖v(t, ·)‖L∞(R) +

∥∥∥t 1
α+1∂xv(t, ·)

∥∥∥
L∞(R)

}
,

and, the fix-point map ΨT0 : Cb((0, T0)× R) −→ Cb((0, T0)× R) by means of

ΨT0(v)(t, x) = (K(t, ·) ∗ u0) (x)−
∫ t

0
(∂xK(t− s, ·) ∗ f(v(s, ·)) (x) ds.

With the aid of Lemma 1.4, Proposition 1.2 and Proposition 1.5, one can show that ΨT0(v)
belongs to ET0 for all v ∈ ET0 and that, in fact, ΨT0 maps BT0(R) into itself for some R > R0,
where BT0(R) denotes the closed ball in ET0 of center 0 and radius R > 0. Finally, one shows
that

‖ΨT0(u)−ΨT0(v)‖ET0 ≤ T0

α
α+1 C(R0) ‖u− v‖ET0 u, v ∈ BT0(R),

thus ΨT0 is a contraction in BT0(R) for a small enough T0. Then, there exists a unique fixed
point u ∈ BT0(R). This implies in particular, since ‖u‖ET0 ≤ R, that |u(t, x)| ≤ R for all
(t, x) ∈ (0, T0)× R and

|∂xu(t, x)| ≤ a
−1
α+1R for all (t, x) ∈ (a, T0)× R, a ∈ (0, T0).

Observe the last statement for m = 0 holds from Proposition 1.3.
The rest of the proof can be done by induction. Indeed, observe that differentiation of

(1.7) gives a fix-point map of the form

v −→ ∂mx K(t, ·) ∗ u0(x)−
∫ t

0

(
∂xK(t− s, ·) ∗

(
gm(s, ·) + f ′(u(s, ·))v(s, ·)

))
(x) ds

where gm is such that gm(t, x) + f ′(u(t, x))∂mx u = ∂mx (f(u)). This gives the regularity and
bounds on the derivatives of u. Observe that then, for t0 > 0 and using Proposition 1.3, one
can conclude the last statement also by induction and the regularity of u.

In the following proposition we prove the temporal regularity of the mild solution and also
show that this is a classical solution of (1.1). Notwithstanding that the proof is analogous to
that in [32], it is given here to illustrate how temporal regularity is proved using Lemma 1.4
and Propositions 1.5 and 1.6:
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Proposition 1.7. Let u0 ∈ L∞(R) and T0 ∈ (0,∞]. If u satisfies Definition 1.1 in (0, T0)×
R, then u is infinitely differentiable with respect to t > 0 and ∂tu + ∂x(f(u)) = ∂xDα[u] on
(0, T0)× R. Moreover, ∂mt u ∈ C∞((0, T0)× R) for m ∈ N.

Proof. Let t0 > 0, t ∈ (t0, T0) and s ∈ (0, t). Using the properties of the convolution and
defining

v : (t, x) ∈ (0, T0 − t0)× R −→ ∂x(f(u))(t0 + t, x) ∈ R

which is continuous and bounded, and has all its spatial derivatives continuous and bounded,
we can write, by Proposition 1.3,

u(t0 + t, x) = (K(t, ·) ∗ u(t0, ·)) (x)−
∫ t

0
(K(t− s, ·) ∗ v(s, ·)) (x) ds. (1.12)

The first term in the right-hand side of (1.12) is C∞ with respect to t by Proposition 1.5. It
remains to show this property for the second term. One can argue as in [32], we sketch the
argument here. Let us introduce the notation, for fixed x ∈ R,

H(t, x) :=

∫ t

0
K(t− s, ·) ∗ v(s, ·)(x) ds,

and also for some δ0 ∈ (0, T0 − t0), let δ ∈ (0, δ0), then for all t ∈ (δ0, T0 − t0) define

Hδ(t, x) :=

∫ t−δ

0
(K(t− s, ·) ∗ v(s, ·)) (x) ds.

Observe, that Hδ converges uniformly on (δ0, T0 − t0)× R to H as δ → 0+. Indeed,

|Hδ(t, x)−H(t, x)| ≤
∫ t

t−δ
|K(t− s, ·) ∗ v(s, ·)(x)| ds ≤ δ‖v‖Cb((0,T0−t0)×R).

Since δ0 > 0 is arbitrary the convergence holds on (0, T0 − t0)× R.
Observe that the family of functions, parametrised by s ≥ 0

U(t, x; s) = (K(t− s, ·) ∗ v(s, ·)) (x)

satisfy the linear equation (1.11) with the initial condition (see Proposition 1.5) U(s, x; s) =
v(s, x) with x ∈ R. In particular, (K(t− s, ·) ∗ v(s, ·)) (x) ∈ C∞((s,∞)× R) and is bounded
with bounded partial derivatives for all t ∈ (s, T0) (this follows from the fact that v(s, ·) ∈
Cb(R) and Proposition 1.2). Now, we can differentiate Hδ with respect to t, this gives:

∂tHδ(t, x) = (K(δ, ·) ∗ v(t− δ, ·)) (x) +

∫ t−δ

0
∂t (K(t− s, ·) ∗ v(s, ·)) (x) ds (1.13)

and the properties of U imply that this is a continuous function and remains bounded. Observe
that we can now pass to the point-wise limit δ → 0+ in (1.13). For the first term in the
right-hand side we use Lemma 1.4 (ii), and for the second term we can use the dominated
convergence theorem, for instance, since the integrand is uniformly bounded in (0, T0). Then

lim
δ→0+

∂tHδ(t, x) = v(t, x) +

∫ t

0
∂t (K(t− s, ·) ∗ v(s, ·)) (x) ds

9
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for all (t, x) ∈ (0, T0 − t0) × R. This function is continuous and bounded, and since Hδ

converges uniformly to H then, one claims that ∂tH = limδ ∂tHδ ∈ D′(0, T0). This limit being
a continuous function, implies that H is C1 with respect to t. This implies also that as δ → 0+

∂tu(t0 + t, x) = ∂xDα[K(t, ·) ∗ u(t0, ·)](x)− ∂x(f(u))(t0 + t, x)

+

∫ t

0
∂xDα[K(t− s, ·) ∗ v(s, ·)](x) ds

(1.14)

for all (t, x) ∈ (0, T0 − t0)× R. The time t0 > 0 being arbitrary, we get the continuity of ∂tu
with respect to t ∈ (0, T0). Let us now show that u satisfies (1.1) identically. According to
(1.14), let us prove that the first term added to the third one on the right-hand side equals
∂xDα[u(t+ t0, ·)](x). However, using (1.12), this is equivalent to proving that∫ t

0
∂xDα[K(t− s, ·) ∗ v(s, ·)](x) ds = ∂xDα

[∫ t

0
K(t− s, ·) ∗ v(s, ·) ds

]
.

This follows by applying differentiation under the integral sign and Fubini’s theorem. Then,
u satisfies (1.12) for all t ∈ (t0, T0), and since t0 is arbitrary, also (1.1).

We can now apply the same argument to the equation

w(t0 + t, x) = (K(t, ·) ∗ w(t0, ·)) (x)−
∫ t

0
(K(t− s, ·) ∗ V (s, ·)) (x) ds.

with V (t, x) = f ′′(u)∂xuw + f ′(u)∂xw and the initial condition w(t0, x) = ∂tu(t0, x). We can
then apply the same reasoning as above to conclude that w ∈ C1((0, T0) × R) and actually
C∞ with respect to x. In the same manner one can show that w satisfies the corresponding
equation in a classical way:

∂tw = ∂xDα[w]−
(
f ′′(u)∂xuw + f ′(u)wx

)
.

One can then argue by uniqueness that w = ∂tu so that u is C2 with respect to t for all
t ∈ (0, T0). In the same way, one can proceed for the next order derivative in time, and hence
by induction conclude the result.

1.1.3 A maximum principle and global existence

Here we prove the global existence of solutions of (1.1). Instead of using a splitting method,
as in [32], we show global existence by a maximum principle, as pointed out in [33].

In order to show the maximum principle, we first give an equivalent formulation of (1.2).
A related result appears in [6], Proposition 2.4, see also Section 1.5.

Lemma 1.8 (Equivalent representation of ∂xDα and Dα). If α ∈ (0, 1), then for all ϕ ∈
C2
b (R) and all x ∈ R,

∂xDα[ϕ](x) = dα+2

∫ 0

−∞

ϕ(x+ y)− ϕ(x)− ϕ′(x)y

|y|α+2
dy. (1.15)

Moreover, we can also get the analogous integral formula for the operator Dα[·] where α ∈
(0, 1). For all ϕ ∈ C1

b (R) and all x ∈ R,

Dα[ϕ](x) = dα+1

∫ 0

−∞

ϕ(x+ y)− ϕ(x)

|y|α+1
dy. (1.16)

10
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Remark 1.9. We observe that the representation (1.16) corresponds to the Weyl-Marchaud
right derivative of order α, after the change of variables y → −y, see [77] and [59].

Remark 1.10. Notice that the representation (1.15) corresponds to a representation in the
form of a Lévy operator.

Proof. First, we observe that the assumption on ϕ and that α ∈ (0, 1) imply that the expres-
sions on the left-hand side of (1.15) and of (1.16) are well-defined.

We can now manipulate these integrals. In order to obtain (1.15), we apply the Funda-
mental Theorem of Calculus twice and interchanging a derivative with the integrals:∫ 0

−∞

ϕ(x+ z)− ϕ(x)− ϕ′(x)z

|z|α+2
dz =

∫ 0

−∞

∫ z
0 ϕ
′(x+ y) dy − ϕ′(x)z

(−z)α+2
dz

= ∂x

∫ 0

−∞

∫ z

0

ϕ(x+ y)− ϕ(x)

(−z)α+2
dy dz = ∂x

∫ 0

−∞

∫ z

0

∫ y

0

ϕ′(x+ r)

(−z)α+2
dr dy dz

= ∂x

∫ 0

−∞

∫ y

−∞

∫ y

0

ϕ′(x+ r)

(−z)α+2
drdzdy =

1

α+ 1
∂x

∫ 0

−∞

∫ y

0

ϕ′(x+ r)

(−y)α+1
drdy

=
1

α+ 1
∂x

∫ 0

−∞

∫ r

−∞

ϕ′(x+ r)

(−y)α+1
dydr =

1

(α+ 1)α
∂x

∫ 0

−∞

ϕ′(x+ r)

(−r)α
dr.

Observe that, by the properties of the Gamma function, α(α + 1)dα = dα+2, then (1.15)
follows. Applying similar manipulations one obtains (1.16). In this case −αdα = dα+1.

From (1.15) and (1.16), it is obvious that if ϕ attains its global maximum at x, then we
have ∂xDα[ϕ](x) ≤ 0 and Dα[ϕ](x) ≥ 0, with the identity holding if ϕ is constant. And
from this property we formulate the following lemma, that can be proved as in [33] using the
continuity of the non-local operators.

Lemma 1.11 (A maximum principle). Let α ∈ (0, 1) and ϕ ∈ C2
b (R). If {xn}∞n=1 ⊂ R such

that ϕ(xn)→ supR ϕ as n→∞, then limn→∞ ϕ
′(xn) = 0 and

lim supn→∞∂xDα[ϕ](xn) ≤ 0. (1.17)

Moreover, under the same assumptions except that ϕ ∈ C1
b (R), we obtain

lim supn→∞Dα[ϕ](xn) ≥ 0. (1.18)

Proof. Since the second derivative of ϕ is bounded, there exists C constant such that, for all
n ≥ 1 and all y ∈ R,

sup
R
ϕ(·) ≥ ϕ(xn + y) ≥ ϕ(xn) + ϕ′(xn)y − C|y|2. (1.19)

Up to a subsequence, we can assume that ϕ′(xn) → p due to its boundedness. Taking the
limit n → ∞ in (1.19), it implies that 0 ≥ py − C|y|2. Choosing y = tp, letting t → 0+ and
assuming p 6= 0, we get

0 ≥ p2(t− Ct2)⇒ 0 ≥ t− Ct2,

but this is a contradiction because t − Ct2 > 0, when t ∈
(
0, 1

C

)
. Hence, p = 0 must hold,

which proves that limn→∞ ϕ
′(xn) = 0.

11
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So first we observe that, since ϕ(xn + y)− ϕ(xn) ≤ supR ϕ(·)− ϕ(xn)→ 0 as n→∞ and
for all y ∈ R, then

lim supn→∞(ϕ(xn + y)− ϕ(xn)) ≤ 0, (1.20)

lim supn→∞(ϕ(xn + y)− ϕ(xn)− ϕ′(xn)y) ≤ 0. (1.21)

We also have that for any r > 0,

|ϕ(xn + y)− ϕ(xn)− ϕ′(xn)y|
|y|α+2

≤
2‖ϕ‖L∞(R)

|y|α+2
+
‖ϕ′‖L∞(R)

|y|α+1
∈ L1(−∞,−r)

and
|ϕ(xn + y)− ϕ(xn)− ϕ′(xn)y|

|y|α+2
≤
‖ϕ′′‖L∞(R)|y|2

|y|α+2
=
‖ϕ′′‖L∞(R)

|y|α
∈ L1(−r, 0).

Then, applying Fatou’s lemma (over the integral on (−∞,−r) and the integral on (−r, 0))
and (1.20) and (1.21), imply

0 ≥
∫ −r
−∞

+

∫ 0

−r
lim supn→∞

ϕ(xn + y)− ϕ(xn)− ϕ′(xn)y

|y|α+2
dy

≥lim supn→∞

∫ 0

−∞

ϕ(xn + y)− ϕ(xn)− ϕ′(xn)y

|y|α+2
dy.

This and (1.15) imply (1.17), on the contrary, (1.18) follows similarly and note that dα+1 < 0
for α ∈ (0, 1).

In the following proposition we give the global existence:

Proposition 1.12 (Global existence). Let α ∈ (0, 1), T > 0. If u ∈ C2((0, T ) × R) ∩
Cb((0, T )× R) satisfies (1.1), then, we have, for all 0 < t′ < t < T ,

‖u(t, ·)‖∞ ≤ ‖u(t′, ·)‖∞.

Moreover, if u is a solution as constructed in Proposition 1.6, then

‖u(t, ·)‖∞ ≤ ‖u0‖∞ for all t ∈ (0, T )

and the solution can be extended globally in time.

Proof. Let δ ∈ (0, T ). Since, |∂2
t u| is bounded on ( δ2 , T )×R by some Cδ, we have, by performing

a Taylor expansion and using the equation, that for all t ∈ (δ, T ), all 0 < τ < δ
2 and all x ∈ R,

u(t, x) ≤ u(t− τ, x) + τ∂tu(t, x) + Cδτ
2

≤ sup
x∈R

u(t− τ, x)− τf ′(u(t, x))∂xu(t, x) + τ∂xDα[u(t, ·)](x) + Cδτ
2. (1.22)

For a t ∈ (δ, T ) let {xn}n∈N ⊂ R be a sequence such that u(t, xn)→ supx∈R u(t, ·) and let
Mt = supx∈R |f ′(u(t, x))|. Then, by (1.22), we obtain for all 0 < τ < δ

2 ,

u(t, xn) ≤ sup
x∈R

u(t− τ, ·) + τMt|∂xu(t, xn)|+ τ∂xDα[u(t, ·)](xn) + Cδτ
2,

12
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and Lemma 1.11 implies, taking the limit n→∞, that

sup
x∈R

u(t, x) ≤ sup
x∈R

u(t− τ, x) + Cδτ
2.

This also implies that

max{sup
x∈R

u(t, x), 0} ≤ max{sup
x∈R

u(t− τ, x), 0}+ Cδτ
2. (1.23)

We observe that max{supx∈R u(t, x), 0} ∈ W 1,∞(δ, T ), because it is Lipschitz continuous in
(δ, T ). Indeed,

|max{sup
x∈R

u(t, x), 0} −max{sup
x∈R

u(t′, x), 0}| ≤ max{| sup
x
u(t, x)− sup

x
u(t′, x)|, 0}

≤ sup
x
|u(t, x)− u(t′, x)| ≤ sup

(t,x)
|∂tu(t, x)| |t− t′|

but |∂tu| is bounded on (δ, T ) × R. In particular, (1.23) implies that max{0, supx u(t, x)}
decreases, so for all 0 < t′ < t < T ,

max{0, sup
x
u(t, x)} −max{0, sup

x
u(t′, x)} ≤ 0.

The same reasoning applied to v = −u, which is a solution of

∂tv + ∂xg(v) = ∂xDα[v] with g(v) = −f(−v),

gives that for all 0 < t′ < t < T , max{0, supx(−u(t, x))} −max{0, supx(−u(t′, x))} ≤ 0, and
we conclude the proof of the first statement.

It remains to prove the last statement by taking the limit of t′ → 0+. This follows from
Definition 1.1 and Proposition 1.2, since for all t′ > 0

‖u(t′, ·)‖∞ ≤ ‖u0‖∞ + C(t′)
α
α+1 sup

t∈(0,t′)
‖u(t, ·)‖∞

thus lim supt′→0+ ‖u(t′, ·)‖∞ ≤ ‖u0‖∞.
Now, we can apply the continuity in t > 0 and the uniqueness of Proposition 1.7 to extend

the solution for t ∈ (0,∞), since we have a uniform bound in t.

1.2 Entropy inequalities and L1 contraction

In the limit ε → 0+ we expect to recover the entropy solution of (1.4), that is the solution
that satisfies the entropy inequality for all convex entropy function. Observe that, formally,
multiplying the equation in (1.3) by η′(u), for some convex η ∈ C2(R), we get:

∂tη(uε(t, x)) + ∂xq(u
ε(t, x)) = εη′(uε)∂xDα[uε](x) (1.24)

where q is such that q′(u) = η′(u)f ′(u). Let us prove a weak version of (1.24). We first need
the following lemma:

13
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Lemma 1.13. Let α ∈ (0, 1), u ∈ C2
b ((0,∞)× R) and ϕ ∈ C∞c (R). Then,∫ ∞

0

∫
R
ϕ(x)∂xDα[u(t, ·)](x) dxdt =

∫ ∞
0

∫
R
∂xDα[ϕ](x)u(t, x) dxdt,

where Dα[·] is defined by means of

Dα[g](x) = dα

∫ ∞
x

g′(y)

(y − x)α
dy.

Moreover, for g ∈ C2
b (R),

Dα[g](x) = −dα+1

∫ ∞
0

g(x+ z)− g(x)

|z|α+1
dz,

∂xDα[g](x) = dα+2

∫ ∞
0

g(x+ z)− g(x)− g′(x)z

|z|α+2
dz.

Remark 1.14. We notice that the equivalent representation of Dα[g](x) given in this lemma
is minus the left Weyl-Marchaud ([77], [59]) fractional derivative of order α.

Proof. We start with ∂xDα[·]. First we integrate by parts, then we interchange the order of
integration, and we integrate by parts a second time, this gives:∫

R
∂xDα[u(t, ·)](x)ϕ(x) dx =

∫
R
u(t, y)∂yDα[ϕ](y) dy − lim

y→−∞
u(t, y)Dα[ϕ](y) (1.25)

(observe that the first boundary term vanishes trivially). Let us show that the last term
vanishes. Since u ∈ C2

b , it is enough to show that limy→−∞Dα[ϕ](y) = 0 for all ϕ ∈ C∞c (R).
We observe that, for any r > 0, we can write

lim
y→−∞

Dα[ϕ](y) = lim
y→−∞

∫ r

0

ϕ′(z + y)

zα
dz + lim

y→−∞

∫ ∞
r

ϕ′(z + y)

zα
dz, (1.26)

and the first term vanishes by the dominated convergence theorem. For the second term in
(1.26), we apply integration by parts, to get

lim
y→−∞

Dα[ϕ](y) = lim
y→−∞

(
ϕ(z + y)

zα

∣∣∣∣∞
r

)
+ α lim

y→−∞

∫ ∞
r

ϕ(z + y)

zα+1
dz.

The first term in the last identity clearly vanishes, and the second does too, again, by
applying the dominated convergence theorem. This implies that (1.26) vanishes, and so does
the last term in (1.25).

It remains to prove the equivalent integral representations of Dα[·] and ∂xDα[·]. These are
shown as in the proof of Lemma 1.8, we do not write it here.

We can now prove the entropy inequality for continuous entropies. First we prove the
result for C2(R) functions and then the result is extended by an approximation technique.

Theorem 1.15 (Weak viscous entropy inequality). Given ε > 0, η ∈ C(R) convex and
uε ∈ C2

b ((0,∞)× R) a solution of (1.3), then for all non-negative ϕ ∈ C∞c ((0,∞)× R)∫ ∞
0

∫
R

(
η(uε(t, x))∂tϕ(t, x) + q(uε(t, x))∂xϕ(t, x) + ε η(uε(t, x))∂xDα[ϕ(t, ·)](x)

)
dx dt ≥ 0,

(1.27)

14
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where q is given by

q(u) = f ′(u)η(u)− f ′(0)η(0)−
∫ u

0
f ′′(z)η(z) dz. (1.28)

Proof. First we assume that η ∈ C2(R). We then notice that

∂xDα[η(ϕ)](x) ≥ η′(ϕ)∂xDα[ϕ](x). (1.29)

This follows from the convexity of η applied in the representation of ∂xDα[η(ϕ)](x) given by
Lemma 1.8 (1.15). Since η is convex, we have η(b)− η(a) ≥ η′(a)(b− a). Hence, we have for
a = ϕ(x) and b = ϕ(x+ y)

η(ϕ(x+ y))− η(ϕ(x)) ≥ η′(ϕ(x))(ϕ(x+ y)− ϕ(x))

and we can add and subtract (η(ϕ))′(x)y = η′(ϕ(x))ϕ′(x)y and rewrite the inequality as,

η(ϕ(x+ y))− η(ϕ(x))− (η(ϕ))′(x)y ≥ η′(ϕ(x))(ϕ(x+ y)− ϕ(x)− ϕ′(x)y). (1.30)

Indeed, inequality (1.29) is a direct consequence of (1.30),

∂xDα[η(ϕ)](x) =cα

∫ 0

−∞

η(ϕ(x+ y))− η(ϕ(x))− (η(ϕ))′(x)y

|y|α+2
dy

≥η′(ϕ(x)) cα

∫ 0

−∞

ϕ(x+ y)− ϕ(x)− ϕ′(x)y

|y|α+2
dy

=η′(ϕ)∂xDα[ϕ](x).

Now, using this and multiplying the equation in (1.3) by η′(uε(t, x)) gives the entropy-type
inequality

∂tη(uε(t, x)) + ∂xq(u
ε(t, x)) ≤ ε ∂xDα[η(uε(t, ·))](x). (1.31)

We need a weak version of (1.31), thus we multiply it by a non-negative test function
ϕ ∈ C∞c ((0,∞)×R) and integrate over the whole domain. After integration by parts, we get∫ ∞

0

∫
R

(
η(uε(t, x))∂tϕ(t, x) + q(uε(t, x))∂xϕ(t, x) + ε ∂xDα[η(uε(t, ·))](x)ϕ(t, x)

)
dx dt ≥ 0.

With application of Lemma 1.13 we conclude (1.27).
It remains to show the result for continuous convex entropies. Let η ∈ C(R) convex,

and let ωn ∈ C∞c (R) such that ωn(x) = nω(nx) with ω ≥ 0,
∫
R ω = 1, then the functions

ηn = ωn ∗ η ∈ C2(R) are convex and converge locally uniformly to η.
Associated to each element of this sequence of entropies we have an entropy flux qn(x) =∫ x

0 f
′(z)η′n(z) dz. Integrating by parts and taking the limit n → ∞ one obtains that qn

converges locally uniformly to (1.28). Since the inequality (1.27) is satisfied for all smooth
entropy pairs (ηn, qn), then passage to the limit as n→∞ gives the desired inequality.

We then show the L1-contraction property:

Theorem 1.16 (L1-contraction). For all ε > 0, given uε0, v
ε
0 ∈ L∞(R) such that uε0 − vε0 ∈

L1(R), let uε and vε be the corresponding mild solutions of (1.1) with these initial conditions,
respectively. Then, for all t ∈ (0,∞), uε(t, ·)− vε(t, ·) ∈ L1(R), and

‖uε(t, ·)− vε(t, ·)‖1 ≤ ‖uε0 − vε0‖1.

15
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We recall that uniqueness immediately follows from this theorem.

Proof. For simplicity of notation and without loss of generality, we take ε = 1 throughout this
proof. We thus skip the ε dependency in the notation of the solutions. The proof is based
on Kružkov’s doubling variable technique and on specific choices of test functions of the right
weak entropy inequality. Similar arguments can be found in [24, 48].

First, we show that u(t, ·)− v(t, ·) ∈ L1(R). This follows from the mild formulation (1.7),
using that u0 − v0 ∈ L1(R), that u(t, ·), v(t, ·) ∈ L∞(R) and Proposition 1.2 (iv), so that:

‖u(t, ·)− v(t, ·)‖1 ≤ ‖K(t, ·)‖1‖u0 − v0‖1

+ C (‖u(t, ·)‖∞, ‖v(t, ·)‖∞)

∫ t

0

∫
R
|∂xK(t− s, y)|dy ds

≤ ‖u0 − v0‖1 (1.32)

+ C (‖u(t, ·)‖∞, ‖v(t, ·)‖∞)

∫ t

0

B1

(t− s)
2

1+α

∫
R

dy

1 + (t− s)−
3

1+α |y|3
ds

= ‖u0 − v0‖1

+ C (‖u(t, ·)‖∞, ‖v(t, ·)‖∞)B1
1 + α

α
t
α

1+α

∫
R

1

1 + |z|3
dz <∞.

We now proceed as in the proof of Lemma 1.15, but we leave the terms with integrand of
the form η′∂xDα[·] as such, then we can argue, similarly for just continuous entropies, so that
instead of (1.27) we obtain for any finite T > 0∫ T

0

∫
R

(
η(u(t, x))∂tϕ(t, x) + q(u(t, x))∂xϕ(t, x) + η′(u(t, x))∂xDα[u(t, ·)](x)ϕ(t, x)

)
dx dt ≥ 0.

(1.33)

Let ψ = ψ(t, x, s, y) ∈ C∞c ((0, T ) × R × (0, T ) × R) be a non-negative test function. We
consider the family of Kružkov’s entropies ηv(u(t, x)) = |u(t, x) − v(s, y)| and ηu(v(s, y)) =
|v(s, y)−u(t, x)|, respectively, and write the corresponding entropy inequality (1.33) for u(t, x)
and v(s, y) separately. Then, integrating over (s, y) ∈ (0, T )× R and over (t, x) ∈ (0, T )× R,
respectively, each of these entropy inequalities, we add them up and apply Fubini’s theorem,
to obtain∫ T

0

∫
R

∫ T

0

∫
R

{
|u(t, x)− v(s, y)|(∂t + ∂s)ψ(t, x, s, y)

+ sgn (u(t, x)− v(s, y)) (f(u(t, x))− f(v(s, y))) (∂x + ∂y)ψ(t, x, s, y) (1.34)

+ sgn (u(t, x)− v(s, y)) (∂xDα[u(t, ·)](x)− ∂yDα[v(s, ·)](y))ψ(t, x, s, y)
}

dx dt dy ds ≥ 0.

In order to find a suitable entropy inequality, we have to manipulate the last term of (1.34),

I :=

∫ T

0

∫
R

∫ T

0

∫
R

sgn(u(t, x)− v(s, y)) (∂xDα[u(t, ·)](x)− ∂yDα[v(s, ·)](y))

ψ(t, x, s, y)dx dt dy ds.

(1.35)
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We use Lemma 1.8 in the integrand of I:

sgn(u(t, x)− v(s, y)) (∂xDα[u(t, ·)](x)− ∂yDα[v(s, ·)](y))

= dα+2 sgn(u(t, x)− v(s, y))

·
∫ 0

−∞

u(t, x+ z)− v(s, y + z)− (u(t, x)− v(s, y))− (ux(t, x) + vy(s, y))z

|z|α+2
dz (1.36)

≤ dα+2

∫ 0

−∞

|u(t, x+ z)− v(s, y + z)| − |u(t, x)− v(s, y)| − (∂x + ∂y) (|u(t, x)− v(s, y)|) z
|z|α+2

dz.

For simplicity of notation, we define the following operator acting on functions of two variables:

Dα+1
x,y [g](x, y) := dα+2

∫ 0

−∞

g(x+ z, y + z)− g(x, y)− (∂x + ∂y)g(x, y) z

|z|α+2
dz. (1.37)

We can rewrite the estimate on I based on (1.36) as

I ≤
∫ T

0

∫
R

∫ T

0

∫
R
Dα+1
x,y [|u(t, ·)− v(s, ·)|](x, y)ψ(t, x, s, y)dx dt dy ds. (1.38)

It is now convenient to split the operator (1.37) into two integrals. For any r > 0, we write

Dα+1
x,y [|u(t, ·)− v(s, ·)|](x, y) = (rDα+1

x,y + rDα+1
x,y )[|u(t, ·)− v(s, ·)|](x, y)

with, for a function g(x, y),

rDα+1
x,y [g](x, y) = dα+2

∫ 0

−r

g(x+ z, y + z)− g(x, y)− (∂x + ∂y)g(x, y) z

|z|α+2
dz.

and with the obvious definition for rDα+1
x,y [·].

With this splitting, from (1.34) and (1.38), we obtain the following entropy type inequality:∫ T

0

∫
R

∫ T

0

∫
R

{
|u(t, x)− v(s, y)|(∂t + ∂s)ψ(t, x, s, y)

+ sgn(u(t, x)− v(s, y)) (f(u(t, x))− f(v(s, y)) (∂x + ∂y)ψ(t, x, s, y)

+
(
rDα+1

x,y [|u(t, ·)− v(s, ·)|](x, y) + rDα+1
x,y [|u(t, ·)− v(s, ·)|](x, y)

)
ψ(t, x, s, y)

}
dx dt dy ds ≥ 0.

(1.39)

We observe that, since r > 0, the last term can be seen as three finite integrals. Using Fubini’s
theorem and the change of variables (x+z, y+z, z)→ (x, y,−z) in the first, Fubini’s theorem
and the change of variable z → −z in the second and the third, and also integration by parts
in the third, we obtain∫ T

0

∫
R

∫ T

0

∫
R

rDα+1
x,y [|u(t, ·)− v(s, ·)|] (x, y)ψ(t, x, s, y)dx dt dy ds

=

∫ T

0

∫
R

∫ T

0

∫
R
|u(t, x)− v(s, y)|rDα+1

x,y [ψ(t, ·, s, ·)](x, y)dx dt dy ds,

with

rDα+1
x,y [g](x, y) = dα+2

∫ ∞
r

g(x+ z, y + z)− g(x, y)− (∂x + ∂y)g(x, y) z

|z|α+2
dz. (1.40)
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Now, taking the limit r → 0 in (1.39), with the last term as above, we finally get, by the
dominated convergence theorem, the entropy inequality∫ T

0

∫
R

∫ T

0

∫
R

(
|u(t, x)− v(s, y)|(∂t + ∂s)ψ(t, x, s, y)

+ sgn (u(t, x)− v(s, y)) (f(u(t, x))− f(v(s, y))) (∂x + ∂y)ψ(t, x, s, y)

+ |u(t, x)− v(s, y)| Dα+1
x,y [ψ(t, ·, s, ·)](x, y)

)
dx dt dy ds ≥ 0

(1.41)

where
Dα+1
x,y [g](x, y) = 0Dα+1

x,y [g](x, y).

We now specify the test functions ψ in order to derive the L1-contraction from (1.41). We
take:

ψ(t, x, s, y) = ωρ

(
s− t

2

)
ωρ

(
y − x

2

)
ϕ

(
t+ s

2
,
x+ y

2

)
,

where for any ρ > 0, and ωρ(s) = ω(s/ρ)/ρ for a non-negative ω ∈ C∞c (R) satisfying, ω(−s) =
ω(s), ω(0) = 1, ω(s) = 0 for all |s| ≥ 1 and

∫
R ω(s) ds = 1. And, for the moment we ask

ϕ ∈ C∞c ((0,∞)× R) to be non-negative, we will specify the choice of this function later.
In this way, we obtain that

(∂t + ∂s)ψ(t, x, s, y) = ωρ
(
s−t
2

)
ωρ
(y−x

2

)
(∂t + ∂s)ϕ

(
t+s
2 , x+y

2

)
,

(∂x + ∂y)ψ(t, x, s, y) = ωρ
(
s−t
2

)
ωρ
(y−x

2

)
(∂x + ∂y)ϕ

(
t+s
2 , x+y

2

)
,

Dα+1
x,y [ψ(t, ·, s, ·)](x, y) = ωρ

(
s−t
2

)
ωρ
(y−x

2

)
Dα+1
x,y

[
ϕ
(
t+s
2 , ·+·2

)]
(x, y).

With the changes of variables:

r =
s− t

2
, r′ =

s+ t

2
, z =

y − x
2

, z′ =
x+ y

2

we obtain

(∂t + ∂s)ϕ

(
t+ s

2
,
x+ y

2

)
= ∂r′ϕ(r′, z′),

(∂x + ∂y)ϕ

(
t+ s

2
,
x+ y

2

)
= ∂z′ϕ(r′, z′),

Dα+1
x,y

[
ϕ

(
t+ s

2
,
·+ ·

2

)]
(x, y) = ∂z′Dα[ϕ(r′, ·)](z′),

(see the last statement of Lemma 1.13 for the expression of ∂z′Dα[·]). With these test functions
and the above change of variables, (1.41) becomes:∫ T

0

∫
R

∫ T
2

−T
2

∫
R
ωρ(r)ωρ(z)

(
|u(r′ − r, z′ − z)− v(r + r′, z′ + z)|∂′rϕ(r′, z′)

+ sgn(u(r′ − r, z′ − z)− v(r + r′, z′ + z))

· (f(u(r′ − r, z′ − z))− f(v((r + r′, z′ + z)))∂z′ϕ(r′, z′)

+|u(r′ − r, z′ − z)− v(r + r′, z′ + z)|∂z′Dα[ϕ(r′, ·)](z′)
)
dz dr dz′ dr′ ≥ 0.

(1.42)
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Applying the Lebesgue differentiability theorem, taking the limit ρ → 0+, (1.42) reduces
to ∫ T

0

∫
R
|u(t, x)− v(t, x)|∂tϕ(t, x)

+ sgn(u(t, x)− v(t, x))(f(u(t, x))− f(v(t, x)))∂xϕ(t, x)

+ |u(t, x)− v(t, x)|∂xDα[ϕ(t, ·)](x) dx dt ≥ 0,

(1.43)

where we have renamed the variables ((t, x) instead of (r′, z′)).
In order to conclude the proof, we now choose for µ, R > 0, ϕ(t, x) = φµ(x)ΘR(t) where,

φµ(x) =

∫
R
ω(x− y)χ|y|<µdy =

∫ x+µ

x−µ
ω(z)dz,

thus all derivatives of φµ are bounded uniformly in µ and vanish for all ||x| − µ| > 1. And,
for any pair 0 < R < t1 < t2, we choose

ΘR(t) =

∫ t

−∞
(ωR(τ − t1)− ωR(τ − t2))dτ.

First, we observe that taking the limit µ→∞, the inequality (1.43) reduces to∫ T

0

∫
R
|u(t, x)− v(t, x)|Θ′R(t) dxdt ≥ 0. (1.44)

Indeed, concerning the flux-term in (1.43), we find that∫ T

0

∫
R

sgn(u(t, x)− v(t, x)) (f(u(t, x))− f(v(t, x))) ∂xϕ(x, t)dx dt

≤ L‖ΘR‖L∞(0,∞)

∫ T

0

∫
R
|u(t, x)− v(t, x)| |ω(x+ µ)− ω(x− µ)|dx dt µ→∞−−−→ 0.

Here, we have applied the dominated convergence theorem, since u− v ∈ L1 and |ω(x+ µ)−
ω(x− µ)| → 0 as µ→∞ for all x ∈ R.

The term in (1.43) containing the non-local operator also tends to zero as µ→∞. To see
this, note that

∣∣∂xDα[φµ](x)
∣∣ is uniformly bounded in µ, since, arguing as for the operator

∂xDα[·], one obtains for some C > 0 independent of µ∣∣∂xDα[φµ](x)
∣∣ ≤ C0 max{‖φµ‖∞, ‖φ′µ‖∞, ‖φ′′µ‖∞} ≤ C.

Now, by integrability of u− v in x and Hölder’s inequality, we obtain∫ T

0

∫
R
|u(t, x)− v(t, x)|

∣∣∂xDα[φµ](x)
∣∣ dx dt ≤ TC sup

t∈(0,T )
‖u(t, ·)− v(t, ·)‖1.

Observe that

Dα[φµ](x) = dα

∫ ∞
x

ω(z + µ)− ω(z − µ)

(z − x)α
dz → 0 as µ→∞ a.e.
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because we can take, for each x, µ large enough so that x+ µ > 1 and x− µ < −1:

Dα[φµ](x) = −dα
∫ ∞
x

ω(z − µ)

(z − x)α
dz = −dα

∫ 1−x+µ

−1−x+µ

ω(z + x− µ)

zα
dz,

and we can apply the dominated convergence theorem. With this, we can conclude, also by
the dominated convergence theorem, that

lim
µ→∞

∫ ∞
0

∫
R
|u(t, x)− v(t, x)|

∣∣∂xDα[φµ](x)
∣∣ dx dt = 0.

We use now the definition of ΘR in (1.44). Since Θ′R(t) = ωR(t− t1)−ωR(t− t2), we have∫ T

0

∫
R
|u(t, x)− v(t, x)|ωR(t− t2) dx dt ≤

∫ T

0

∫
R
|u(t, x)− v(t, x)|ωR(t− t1)dx dt,

that can be written as

1

R

∫ R

−R

∫
R
|u(s+ t2, x)− v(s+ t2, x)|ω

( s
R

)
dx ds

≤ 1

R

∫ R

−R

∫
R
|u(s+ t1, x)− v(s+ t1, x)|ω

( s
R

)
dx ds.

(1.45)

We now take the limit R → 0 in (1.45), and by the Lebesgue differentiability theorem we
obtain

‖(u− v)(t2, ·)‖1 ≤ ‖(u− v)(t1, ·)‖1.
Finally, the theorem follows by renaming t2 to t and taking the limit t1 → 0, since using

(1.32), we obtain
lim sup
t1→0+

‖(u− v)(t1, ·)‖1 ≤ ‖u0 − v0‖1,

thus the result follows.

1.3 The vanishing viscosity limit

In this section we show that in the limit when ε→ 0+ in (1.3) we obtain the entropy solution
associated to (1.4). We follow a doubling variable technique as in [31], but with the pertinent
changes due to the different non-local operator in the viscous term.

We need the following technical Lemma:

Lemma 1.17. Let ϕ ∈ C∞c ((0,∞)× R), then the maps

t ∈ (0,∞) 7→ Dα[ϕ(t, ·)] ∈ L1(R) t ∈ (0,∞) 7→ Dα[ϕ(t, ·)] ∈ L1(R)

and
t ∈ (0,∞) 7→ ∂xDα[ϕ(t, ·)] ∈ L1(R) t ∈ (0,∞) 7→ ∂xDα[ϕ(t, ·)] ∈ L1(R)

are continuous, and as functions of (t, x), Dα[ϕ(t, ·)](x), Dα[ϕ(t, ·)](x), ∂xDα[ϕ(t, ·)](x) and
∂xDα[ϕ(t, ·)](x) are integrable over (0,∞)× R. Moreover, there exists Cα > 0 such that

‖Dα[ϕ]‖1 ≤ Cα
(
‖ϕ′‖1 + ‖ϕ‖1

)
, ‖Dα[ϕ]‖1 ≤ Cα

(
‖ϕ′‖1 + ‖ϕ‖1

)
, (1.46)

and

‖∂xDα[ϕ]‖1 ≤ Cα
(
‖ϕ′′‖1 + ‖ϕ′‖1

)
, ‖∂xDα[ϕ]‖1 ≤ Cα

(
‖ϕ′′‖1 + ‖ϕ′‖1

)
. (1.47)
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Proof. We only prove the statements for Dα[·] and ∂xDα[·], the rest of the proofs are analogous.
By the properties of ϕ, we can write, for an arbitrary r > 0,

Dα[ϕ](x) = dα

(∫ 0

−r

ϕ′(x− z)
|z|α

dz +

∫ −r
−∞

ϕ′(x− z)
|z|α

dz

)
,

and

∂xDα[ϕ](x) = dα

(∫ 0

−r

ϕ′′(x− z)
|z|α

dz +

∫ −r
−∞

ϕ′′(x− z)
|z|α

dz

)
.

However, we notice that, by integration by parts (see also [28]) and that ϕ ∈ C∞c (R) we can
write:

Dα[ϕ](x) = dα

∫ 0

−r

ϕ′(x− z)
(−z)α

dz − dα+1

∫ −r
−∞

ϕ(x− z)
(−z)α+1

dz + dα
ϕ(x+ r)

rα
(1.48)

and

∂xDα[ϕ](x) = dα

∫ 0

−r

ϕ′′(x− z)
(−z)α

dz − dα+1

∫ −r
−∞

ϕ′(x− z)
(−z)α+1

dz + dα
ϕ′(x+ r)

rα
. (1.49)

Now, taking r = 1 for definiteness, applying Young’s inequality in the first and second terms of
the right-hand side of (1.48) and of (1.49), we obtain (1.46) and (1.47). If ϕ ∈ C∞c ((0,∞)×R),
then t ∈ (0,∞) 7→ ϕ′(t, ·) ∈ L1(R) and t ∈ (0,∞) 7→ ϕ′′(t, ·) ∈ L1(R) are continuous. We
use the inequality (1.46) and the linearity of Dα[·] to get that the function t ∈ (0,∞) 7→
Dα[ϕ(t, ·)] is continuous. In particular, since ϕ(t, ·) = 0 for t large enough, we get that
(t, x) 7→ Dα[ϕ(t, ·)](x) is integrable on (0,∞)× R. A similar argument is applied to ∂xDα[ϕ]
to conclude the proof.

We can now prove the main theorem of this section.

Theorem 1.18. (a) Let u0 ∈ L∞(R). The mild solution to (1.3), uε, converges, as ε→ 0,
to the entropy solution of (1.4) u in C([0, T ];L1

loc(R)) for all T > 0.

(b) Let u0 ∈ L∞(R)∩BV (R), uε be the mild solution to (1.3) and u be the entropy solution
of (1.4). Then, for all t ∈ [0, T ], and ε > 0 small enough there exists a constant C > 0
such that

‖uε(t, ·)− u(t, ·)‖1 ≤ C (ε t)
1

α+1 |u0|BV . (1.50)

In particular, for all T > 0, ‖uε − u‖C([0,T ];L1(R)) = O
(
ε

1
α+1

)
as ε→ 0+.

Proof. First, we recall that u the entropy solution of (1.4) is in C([0, T ];L1
loc(R)) and satisfies

(1.27) with ε = 0 (see [68]).
For all ε > 0 let uε ∈ C∞b ((0,∞) × R) be the regular mild solution of (1.3) with the

same initial condition for all ε. Then, each uε satisfies Theorem 1.15. These inequalities
can be written for test functions of four variables (thus doubling the variables), ψ(t, x, s, y) ∈
C∞c ((0,∞)× R× (0,∞)× R). Indeed, we have for two entropy pairs (η, q) and (η0, q0),∫ ∞

0

∫
R

∫ ∞
0

∫
R

(
η(uε(t, x))∂tψ(t, x, s, y) + q(uε(t, x))∂xψ(t, x, s, y)

+ ε η(uε(t, x))∂xDα[ψ(t, ·, s, y)](x)

+ η0(u(s, y))∂sψ(t, x, s, y) + q0(u(s, t))∂yψ(t, x, s, y)
)
dx dt dy ds ≥ 0,
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where we have applied Fubini’s theorem in the last integral. We take the Kružkov entropies
η(uε(t, x)) = |uε(t, x)−u(s, y)| and η0(u(s, y)) = |uε(t, x)−u(s, y)|, and a test function of the
form

ψ(t, x, s, y) = θµ(s− t)ωρ(y − x)ϕ(t, x)

where, for ρ > 0, we take ωρ ∈ C∞c (R), as in the proof of Theorem 1.16. In partic-
ular,

∫
R ωρ(y)dy = 1 and supp(ωρ) ⊂ (−ρ, ρ). For µ > 0, we take θµ ∈ C∞c (R) such

that
∫∞

0 θµ(s)ds = 1 with supp(θµ) ⊂ (0, µ), and that µθµ(µ/2) = 1 (for example taking
θµ(x) = ωµ/2(x + µ/2)). Observe that then, for any x ∈ R and t > 0,

∫∞
0 θµ(s − t)ds =∫

R ωρ(y − x)dy = 1. We take ϕ ∈ C∞c ((0,∞)× R) to be a non-negative function that will be
specified later.

With these choices we get∫ ∞
0

∫
R

∫ ∞
0

∫
R

(
|uε(t, x)− u(s, y)|θµ(s− t)ωρ(y − x)∂tϕ(t, x)

+ sgn(uε(t, x)− u(s, y)) (f(uε(t, x))− f(u(s, y))) θµ(s− t)ωρ(y − x)∂xϕ(t, x)

+ ε|uε(t, x)− u(s, y)|θµ(s− t)∂xDα[ωρ(y − ·)ϕ(t, ·)](x)
)
dx dt dy ds ≥ 0.

(1.51)

We then estimate the following terms separately:

I1 :=

∫ ∞
0

∫
R

∫ ∞
0

∫
R
|uε(t, x)− u(s, y)|θµ(s− t)ωρ(y − x)∂tϕ(t, x)dx dt dy ds,

I2 :=

∫ ∞
0

∫
R

∫ ∞
0

∫
R

sgn(uε(t, x)− u(s, y)) (f(uε(t, x))− f(u(s, y)))

· θµ(s− t)ωρ(y − x)∂xϕ(t, x)dx dt dy ds,

I3 := ε

∫ ∞
0

∫
R

∫ ∞
0

∫
R
|uε(t, x)− u(s, y)|θµ(s− t)∂xDα[ωρ(y − ·)ϕ(t, ·)](x)dx dt dy ds.

(1.52)

For that we proceed as in [32]. Suppose that for every T > 0, supp(ϕ) ⊂ (0, T ]×B, for some
ball B ⊂ R, then∣∣∣∣I1 −

∫ ∞
0

∫
R
|uε(t, x)− u(t, x)|∂tϕ(t, x)dx dt

∣∣∣∣
≤
∫ T

0

∫
R

∫ ∞
0

∫
R

∣∣∣|uε(t, x)− u(s, y)| − |uε(t, x)− u(t, x)|
∣∣∣

· ωρ(y − x)θµ(s− t) |∂tϕ(t, x)|dx dt dy ds

≤‖∂tϕ‖L1(0,T ;L∞(R)) sup
0<t<T

{∫ ∞
0

∫
R

∫
B
|u(t, x)− u(s, y)|ωρ(y − x)θµ(s− t)dx dy ds

}
,

(1.53)

where we have used that
∫∞

0 θµ(s− t)ds =
∫
R ωρ(y − x)dy = 1.

For the second integral, we apply that f is locally Lipschitz continuous, and that ‖uε‖∞,
‖u‖∞ ≤ ‖u0‖∞. Thus, there exists a constant L(‖u0‖∞) > 0 such that

|sgn(uε(t, x)− u(s, y)) (f(uε(t, x))− f(u(s, y)))| ≤ L(‖u0‖∞) |uε(t, x)− u(s, y)|,
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and therefore, by the triangle inequality after adding and subtracting u(x, t) appropriately,
we conclude that

|I2| ≤ L(‖u0‖∞)

(∫ ∞
0

∫
R
|uε(t, x)− u(t, x)| |∂xϕ(t, x)|dx dt

+‖∂xϕ‖L1(0,T ;L∞(R)) sup
0<t<T

{∫ ∞
0

∫
R

∫
B
|u(t, x)− u(s, y)|ωρ(y − x)θµ(s− t)dx dy ds

})
.

(1.54)

For the last integral I3 we get that

|I3| ≤ 2ε ‖u0‖∞
∫
R

∫ ∞
0

∫
R

∣∣∂xDα[ωρ(y − ·)ϕ(t, ·)](x)
∣∣ dx dt dy ≤ εC, (1.55)

where C is a constant proportional to

‖u0‖∞ sup
0≤t≤T

max{‖ϕ(t, ·)‖1, ‖∂xϕ(t, ·)‖1, ‖∂2
xϕ(t, ·)‖1}(1 + ρ).

This is because ϕ has compact support in (0, T ] × R, and then y ∈ [−a − ρ, a + ρ] for some
a > 0. Also Lemma 1.17 applies.

For brevity, and in view of (1.53) and (1.54), let us introduce the notation:

wB(ρ, µ) := sup
0<t<T

{∫ ∞
0

∫
R

∫
B
|u(t, x)− u(s, y)|ωρ(y − x)θµ(s− t)dx dy ds

}
. (1.56)

We observe that, after the change of variables z = y − x and r = s− t+ µ/2, leaving x and t
unchanged, we get

wB(ρ, µ) = sup
0<t<T

{
1

ρ

2

µ

∫ ∞
0

∫
R

∫
B
|u(t, x)− u(r + t− µ/2, z + x)|ω

(
z

ρ

)
ω

(
2r

µ

)
dx dz dr

}
,

(1.57)
a form which is better suited to take limits of the parameters ρ and µ to 0, as we shall need
to do below.

With this notation and summarising, the inequalities (1.53), (1.54) and (1.55) applied in
(1.51), give that there exist L, C ′, C > 0 such that∫ ∞

0

∫
R
|uε(t, x)− u(t, x)| (∂tϕ(t, x) + L|∂xϕ(t, x)|) dx dt+ C ′wB(ρ, µ) + ε C ≥ 0, (1.58)

where

L ∝ ‖u0‖∞,
C ′ ∝ ‖u0‖∞ sup

0≤t≤T
‖∂xϕ(t, ·)‖1,

C ∝ ‖u0‖∞ sup
0≤t≤T

max{‖ϕ(t, ·)‖1, ‖∂xϕ(t, ·)‖1, ‖∂2
xϕ(t, ·)‖1},

(1.59)

and none of these three constants depend on ρ and µ.
We now choose a ϕ that is close to a solution of the factor ∂tϕ(t, x)+L|∂xϕ(t, x)|. For any

T > 0, letM > 0 be such thatM > LT and let also ζM ∈ C∞c ([0,∞)) be non-increasing, with
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values in [0, 1] where ζM ≡ 1 on [0,M ] and supp(ζM ) ⊂ [0,M + 1]. We let also Θ ∈ C∞c (0, T )
with values in [0, 1], the precise choice of functions will be specified later. Then we take

ϕ(t, x) = ζM (|x|+ Lt)Θ(t).

Observe, that this is a non-negative function, that belongs to C∞c ((0,∞) × R) (the function
Θ has its support in [0, T ) and (t, x) 7→ ζM (|x| + Lt) is regular on [0, T ) × R since, in a
neighbourhood of [0, T ]×{0}, ζM (|x|+Lt) = 1) and supp(ϕ) ⊂ (0, T )× (−M − 1,M + 1), so
we can take B = (−M − 1,M + 1). This test function satisfies

∂tϕ(t, x) = Lζ ′M (|x|+ Lt)Θ(t) + ζM (|x|+ Lt)Θ′(t),

|∂xϕ(t, x)| =
∣∣ζ ′M (|x|+ Lt) sgn(x)Θ(t)

∣∣ = −ζ ′M (|x|+ Lt)Θ(t),

the last identity is true because ζM is non-increasing.
Now, substituting this into (1.58) gives∫ T

0

∫
R
|uε(t, x)− u(t, x)|ζM (|x|+ Lt)Θ′(t)dx dt+ C ′wB(ρ, µ) + ε C ≥ 0. (1.60)

With this choice of ϕ, the constants C ′ and C are of the form

C ∝ max{1, ‖ζ ′′M‖∞} and C ′ ∝
∫ T

0
|Θ(t)|dt.

We now specify Θ(t). For every t0 ∈ [0, T ) we take a one parameter family of functions
Θ(t) = Θt0,β(t) in the proofs below, where β < T − t0, namely

Θt0,β(t) =

∫ ∞
t

θβ(s− t0) ds. (1.61)

Proof of (a) We first observe that applying the Lebesgue differentiability theorem to (1.57),
we obtain that

wB(ρ, µ)→ 0 as (ρ, µ)→ (0, 0). (1.62)

We can even take µ = ρ and take the limit ρ→ 0+ in (1.60). Then∫ T

0

∫ M+1−Lt

−(M+1)+Lt
|uε(t, x)− u(t, x)| ζM (|x|+ Lt)Θ′(t)dx dt+ ε C ≥ 0.

Now we take for all t0 ∈ [0, T ], Θ(t) = Θt0,β(t) as in (1.61). In this way Θ′t0,β(t) = −θβ(t−t0) ≤
0, and we have

−
∫ T

0

∫ M−LT

−M+LT
|uε(t, x)− u(t, x)| ζM (|x|+ Lt)θβ(t− t0)dx dt+ ε C ≥ 0. (1.63)

But ζM (|x|+ Lt) = 1 if x ∈ (−M + LT,M − LT ), and taking the limit β → 0+ in (1.63) we
find for all t0 ∈ [0, T ] (again using the Lebesgue differentiability theorem) that∫ M−LT

−M+LT
|uε(t0, x)− u(t0, x)|ζM (|x|+ Lt0)dx ≤ ε C. (1.64)
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The estimate for t0 = T is obtained by letting t0 → T in (1.64). An taking the limit ε→ 0+

shows that uε → u in C([0, T ];L1
loc(R)) for all T > 0. Observe that C depends on ζ ′′M , and for

any T , and thus for any M > LT , we can choose ζM such that ‖ζ ′′M‖∞ = 2, for instance.
Proof of (b) We now leave the term I3 unchanged, and we proceed as above for the rest of

the argument, so that for all t0 ∈ [0, T ], instead of at (1.64), we arrive at∫ M−LT

−M+LT
|uε(t0, x)− u(t0, x)| dx ≤ C ′wB(ρ, µ)

+ ε lim
β→0

∫ ∞
0

∫
R

∫ ∞
0

∫
R

Θt0,β(t)θµ(s− t)

· |uε(t, x)− u(s, y)|∂xDα[ωρ(y − ·)ζM (| · |+ Lt)](x)dx dt dy ds,

then, observing that limβ→0 Θt0,β ≤ χ[0,t0], we obtain∫ M−LT

−M+LT
|uε(t0, x)− u(t0, x)| dx ≤ C ′wB(ρ, µ)

+ ε

∫ ∞
0

∫
R

∫ t0

0

∫
R
θµ(s− t)|uε(t, x)− u(s, y)|

· ∂xDα[ωρ(y − ·)ζM (| · |+ Lt)](x)dx dt dy ds.

(1.65)

We now observe that the limit µ→ 0 in (1.57) gives

lim
µ→0

(wB(ρ, µ)) =
1

ρ
sup

0<t<T

{∫
R
ω

(
z

ρ

)∫
B
|u(t, x)− u(t, z + x)|dx dz

}
≤ 1

ρ
sup

0<t<T

{
|u(t, ·)|BV

∫ ρ

−ρ
ω

(
z

ρ

)
|z|dz

}
≤ sup

0<t<T

{
|u(t, ·)|BV

∫ ρ

−ρ
ω

(
z

ρ

)
dz

}
≤ ρ sup

0<t<T
|u(t, ·)|BV .

Since u0 ∈ L∞(R) ∩ BV (R), the entropy solution of (1.4) satisfies that |u(t, ·)|BV ≤ |u0|BV
(see e.g. [68]), and we have

lim
µ→0

(wB(ρ, µ)) ≤ ρ |u0|BV .

Thus, the limit µ→ 0 of (1.65) is∫ M−LT

−M+LT
|uε(t0, x)− u(t0, x)| dx ≤ C ′ρ|u0|BV

+ ε lim
µ→0

∫ ∞
0

∫
R

∫ t0

0

∫
R
θµ(s− t)

· |uε(t, x)− u(s, y)|∂xDα[ωρ(y − ·)ζM (| · |+ Lt)](x)dx dt dy ds.

(1.66)

Let us get an estimate on the second term of the right-hand side of (1.66). We integrate
by parts with respect to x, then we estimate the absolute value:∣∣∣∣∫ ∞

0

∫
R

∫ t0

0

∫
R
θµ(s− t)|uε(t, x)− u(s, y)|∂xDα[ωρ(y − ·)ζM (| · |+ Lt)](x)dx dt dy ds

∣∣∣∣
≤
∫ ∞

0

∫
R

∫ t0

0

∫
R
θµ(s− t) |∂xuε(t, x)|

∣∣Dα[ωρ(y − ·)ζM (| · |+ Lt)](x)
∣∣ dx dt dy ds.
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The first two factors of the integrand do not depend on y, so we can integrate with respect
to y the remaining one. This one reads, applying Lemma 1.17 and Fubini’s theorem, and for
some arbitrary r > 0:∫

R

∣∣Dα[ωρ(y − ·)ζM (| · |+ Lt)](x)
∣∣ dy

≤
∫
R

{∫ r

0
|z|−α

(
|ω′ρ(y − x+ z)| |ζM (|x− z|+ Lt)|

+ ωρ(y − x+ z) |∂zζM (|x− z|+ Lt)|
)
dz

+

∣∣∣∣∫ ∞
r

αz−α−1 ωρ(y − x+ z)ζM (|x− z|+ Lt) dz

∣∣∣∣
}
dy

≤
(
‖ω′ρ‖1 ‖ζM‖∞ + ‖ωρ‖1 ‖ζ ′M‖∞

)r−α+1

1− α
+ α2r−α‖ωρ‖1 ‖ζM‖∞.

(1.67)

We now use that ‖ωρ‖1 = 1, ‖ω′ρ‖1 ∝ 1
ρ and ‖ζM‖∞ = 1, ‖ζ ′M‖∞ < C for some C. This gives

that there exist C1, C2 > 0 independent of ε, ρ, µ and r, such that∫
R

∣∣Dα[ωρ(y − ·)ϕ(·, t)](x)
∣∣ (x) dy ≤ C1

(
r−α+1

ρ
+ r−α+1

)
+ C2r

−α. (1.68)

By this last inequality, (1.66) and the fact that
∫∞

0 θµ(s− t) ds = 1, we find, for all T > 0
and M > LT there is C3 > 0, such that∫ M−LT

−M+LT
|uε(t0, x)− u(t0, x)| dx ≤ C ′ρ|u0|BV

+ εC3

∫ t0

0
|uε(t, ·)|BV dt

(
r−α+1

ρ
+ r−α+1 + r−α

)
.

(1.69)

On the other hand, by the L1-contraction property, Theorem 1.16, and the translation invari-
ance of the equation in (1.1), we have (see [68])

|uε(t, ·)|BV < |u0|BV ,

which applied to (1.69) gives∫ M−LT

−M+LT
|uε(t0, x)− u(t0, x)| dx ≤ C ′ρ|u0|BV + εC3 t0 |u0|BV

(
r−α+1

ρ
+ r−α+1 + r−α

)
.

(1.70)
We then let M → ∞ in (1.70). We may take ρ < 1/2, for instance, then there exists a

constant C > 0, such that, for all t0 ∈ [0, T ],

‖uε(t0, ·)− u(t0, ·)‖1 ≤ C|u0|BV
(
ρ+ ε t0

(
r−α+1

ρ
+ r−α

))
.

Minimising the right-hand side of this inequality with respect to the variables ρ and r, we
obtain that the minimum is attained at ρ = (εt0)1/(α+1)(α/1−α)(1−α)/(1+α) and r = ρα/(1−
α), then for all t0 ∈ [0, T ] we obtain (1.50) with t0 replaced by t. Taking the supremum over
t ∈ (0, T ) we obtain the last assertion.
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1.4 The travelling wave problem

In this section we study the vanishing viscosity limit for the travelling wave problem. In
particular we consider solutions of (1.1) of the form u(t, x) = φ(ξ) with ξ = x − ct that
connect different far-field values φ−, φ+ ∈ R. Then, the travelling wave problem reads:−c(φ(ξ)− φ−) + f(φ(ξ))− f(φ−) = Dα[φ](ξ),

lim
ξ→−∞

φ(ξ) = φ− and lim
ξ→∞

φ(ξ) = φ+,
(1.71)

where after substitution of the new variables the equation has been integrated once using one
of the far-field values. Moreover, evaluation of equation (1.71) at infinity gives that the wave
speed c must be given by the Rankine-Hugoniot condition

c =
f(φ+)− f(φ−)

φ+ − φ−
> 0. (1.72)

It is convenient to introduce the following notation for the left-hand side of the equation
in (1.71)

h(φ) := −c(φ(ξ)− φ−) + f(φ(ξ))− f(φ−). (1.73)

We further assume that f is a convex function and that φ− > φ+, then h(φ−) = h(φ+) = 0
and

h′(φ−) > 0 and h′(φ+) < 0.

Existence of this problem has been established in [4]. In particular, the authors obtain, under
the more general assumption that the flux function f is genuinely nonlinear (see also [5]), the
following result:

Theorem 1.19 (Achleitner, Hittmeir, Schmeiser [4]). There exists a solution φ ∈ C2
b (R) of

(1.71) such that
φ+ ≤ φ(ξ) ≤ φ− for all ξ ∈ R

and φ′(ξ) < 0, that is unique (up to a shift in ξ) among all φ ∈ φ−+H3(−∞, 0)∩C3
b (−∞, 0).

This theorem in [4] appears with different notation and divided in a series of results that
are proved step by step. Also, their results give less regularity than in the version above, it is,
however, straightforward to show higher regularity of the solutions, see [3, 27].

In this section we prove the following vanishing viscosity result:

Theorem 1.20. If φε is a solution of−c(φε(ξ)− φ−) + f(φε(ξ))− f(φ−) = εDα[φε](ξ),

lim
ξ→−∞

φε(ξ) = φ− and lim
ξ→∞

φε(ξ) = φ+,
(1.74)

then φε → φ0 as ε→ 0 point-wise in R, where

φ0(ξ) =

{
φ− if ξ < ξ0

φ+ if ξ > ξ0
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for some ξ0. Moreover,

|φε(ξ)− φ−| = O (exp(λεξ)) when ξ → −∞, with λε =

(
h′(φ−)

ε

) 1
α

> 0 (1.75)

and
|φε(ξ)− φ+| = O

(
ε

ξα

)
when ξ → +∞. (1.76)

Proof. We observe that the change of variable φ(ξ) = φ( ξ′

ε1/α
) = φε(ξ

′) transforms problem
(1.71) into problem (1.74), so we can apply the existence result to (1.74) with the same
conclusion, by simply adding the ε dependency. Then the point-wise limit follows from (1.75)
and (1.76).

For the rest of the proof we take ε = 1 without loss of generality, by the rescaling specified
above. The behaviour (1.75) of the travelling wave solutions for ξ very negative is done in
Lemma 2 of [4]. This is in fact the starting point of the existence proof.

It remains to prove (1.76). In this case, we already have the existence of solutions, and
we can take φ as a known function and focus in the terms that involve very large ξ. We can
rewrite the equation as follows, for some ξ∞ � 1,

h(φ(ξ)) = g(ξ) +Dαξ∞ [φ](ξ), (1.77)

where we use the notation

Dαξ∞ [φ](ξ) := dα

∫ ξ

ξ∞

φ′(y)

(ξ − y)α
dy,

which is, up to a shift, a classical Caputo derivative, and the function

g(ξ) := dα

∫ ξ∞

−∞

φ′(y)

(ξ − y)α
dy ≤ 0,

(here we use that φ is decreasing). We can now solve the equation implicitly, by the corre-
sponding variation of constants formula, that is derived by using Laplace transform as it is
done in [42]. Namely, we introduce the new dependent variable W (ξ − ξ∞) = φ(ξ)− φ+, and
a new independent one, z = ξ − ξ∞, so that W satisfies

Dα0 [W ](z) = h′(φ+)W (z) +R(φ(z + ξ∞), φ+)− g(z + ξ∞), (1.78)

where
R(φ, φ+) = h(φ)− h(φ+)− h′(φ+)(φ− φ+) ≥ 0. (1.79)

For the last inequality we use the convexity of f in the interval (φ+, φ−). We observe, that
since φ is uniformly bounded and regular with bounded derivatives, there exists a constant
C > 0 such that

|R(φ(z + ξ∞), φ+)| = R(φ(z + ξ∞), φ+) ≤ C (W (z))2 , z ≥ 0. (1.80)

If W solves (1.78)-(1.79) with a given initial conditions W (0), then it also satisfies

W (z) = W (0)v(z) +
1

h′(φ+)

∫ z

0
v′(y)Q(z − y) dy

with Q(z) = R(φ(z + ξ∞), φ+)− g(z + ξ∞) ≥ 0,

(1.81)
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where

v(z) =
1

2πi

∫ +∞i+σ

−∞i+σ
esz

sα−1

sα − h′(φ+)
ds with σ ≥ 1. (1.82)

We recall that v is a positive decreasing function such that limz→0+ v(z) = 1, limz→∞ v(z) = 0,
limz→0+ v

′(z) = −∞ and limz→∞ v
′(z) = 0, with the behaviours

v(z) ∼ C

zα
as z →∞ (1.83)

for some positive constant C and

v′(z) ∼ h′(φ+)

Γ(α)
zα−1 as z → 0+ (1.84)

(see [42]).
We notice that the second term on the right-hand side of (1.81) is non-negative, since φ is

a decreasing function and h′(φ+) < 0. Then, also applying (1.80), we obtain

W (0) v(z) ≤W (z) ≤W (0) v(z) + C1

∫ z

0
(−v′(y))W (z − y)2 dy

+ C2

∫ z

0
v′(y) g(z + ξ∞ − y) dy

(1.85)

with

|g(z + ξ∞ − y)| = dα

∫ 0

−∞

(−W ′(r))
(z − y − r)α

dr,

for some positive constants C1 and C2.
Let us first get an estimate on the last term of (1.85). We take M > 0 large enough such

that |v′(z)| ≤ C/z1+α for all z ≥M . Then, we split the integral of this term as follows:

I :=

∫ M

0
|v′(y)||g(z + ξ∞ − y)| dy +

∫ z

M
|v′(y)||g(z + ξ∞ − y)| dy

=dα

∫ M

0
|v′(y)|

∫ 0

−∞

(−W ′(r))
(z − y − r)α

dr dy + dα

∫ z

M
|v′(y)|

∫ 0

−∞

(−W ′(r))
(z − y − r)α

dr dy.

(1.86)

We notice that, by Lemma 1.8 (1.16) and the fact that W is decreasing, we can write:∫ 0

−∞

(−W ′(r))
(z − y − r)α

dr = α

∫ 0

−∞

W (r)−W (z − y)

(z − y − r)α+1
dr +

W (z − y)−W (0)

(z − y)α
. (1.87)

Then, we have two estimates, one deduced directly from the integral on the left-hand side of
(1.87), ∫ 0

−∞

|W ′(r)|
(z − y − r)α

dr ≤
∫ 0

−1

C1

(z − y − r)α
dr +

∫ −1

−∞

C2e
λr

(z − y + 1)α
dr

≤ C

1 + (z − y)α
,

(1.88)

and another that can be deduced from the right-hand side of (1.87),∫ 0

−∞

|W (s)−W (z − y)|
(z − y − s)α+1

ds ≤ C1

(z − y)α+1
+ C2

W (z − y)

(z − y)α
(1.89)
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since W is non-negative.
Then, for the first integral term in (1.86), using (1.89) and that W is decreasing and

non-negative, we get that ∫ M

0
|v′(y)|

∫ 0

−∞

(−W ′(r))
(z − y − r)α

dr dy

≤
∫ M

0
Cyα−1

(
C1
W (z − y)

(z − y)α
+

C2

(z − y)α+1

)
dy

≤ C
(
MαW (z −M)

(z −M)α
+

Mα

(z −M)α+1

)
.

(1.90)

Now we take M(z) as follows:

M(z) = σz for σ ∈ (0, 1),

where we will later take σ as small as necessary. This gives, for some positive constant C
independent of σ,∫ σz

0
|v′(y)|

∫ 0

−∞

(−W ′(r))
(z − y − r)α

dr dy ≤ C
(
σαW (z −M) +

1

(z −M)

)
. (1.91)

Observe that z −M(z) = (1− σ)z.
For the second term of (1.86) (an integral over (M(z), z)) we get,∫ z

σz
|v′(y)|

∫ 0

−∞

−W ′(r)
(z − y − r)α

dr dy ≤C
∫ z

σz

1

y1+α

1

1 + (z − y)α
dy

≤C
∫ z

σz

1

y1+α
dy ≤ C 1

zα
.

(1.92)

Combining (1.91) and (1.92), we obtain

I ≤ C
(
σαW (z(1− σ)) +

1

zα
+

1

z(1− σ)

)
. (1.93)

It remains to get an estimate on the second term of (1.85). We proceed similarly, by
splitting the integral:

I ′ :=

∫ M ′

0
(−v′(z))W (z − y)2dy +

∫ z

M ′
(−v′(z))W (z − y)2dy

≤C
(

(M ′)αW (z −M ′)2 − W (0)2

zα
+
W (0)2

(M ′)α

)
.

(1.94)

We then take M ′ such that M ′(z)α = δ/W (z) with δ ∈ (0, 1) for z large. For each z fixed and
large, we can take σ and δ small enough, such that, the estimate (1.93) together with (1.94)
imply that

1

C
W (z) ≤W (z)

(
1− cσα − c′δ

(
1 +

W (0)2

δ2

))
≤ C 1

zα
.

for some C > 1. This is possible by taking W (0) as small as necessary once σ and δ are
fixed. Recall that W (0) = φ(ξ∞)− φ+, and ξ∞ can be chosen sufficiently large so that W (0)
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is arbitrary small. Also all other constants are independent of ξ∞, σ and δ, also δ and σ are
independent of each other.

On the other hand, applying the right hand side inequality of (1.85) and the behaviour of
v(z) for z large (1.83), we obtain that there exists a constant, depending on ξ∞, such that

1

C∞

1

zα
≤W (z) ≤ C∞

1

zα
as z →∞.

This finishes the proof.

1.5 Generalisation to regularisations by general Riesz-Feller
operators

As anticipated in the Introduction, the chapter is closed by this section where we explain how
our results of sections 1.1, 1.2 and 1.3 also hold for{

∂tu+ ∂xf(u) = Dβ
γ [u], t > 0, x ∈ R,

u(0, x) = u0(x) x ∈ R,
(1.95)

where β ∈ (1, 2], |γ| ≤ min{β, 2− β} and the non-local regularisation, Dβ
γ [·], is given by

F(Dβ
γ [u])(ξ) = ψβγ (ξ)F(u)(ξ), (1.96)

where the symbol reads

ψβγ (ξ) = −|ξ|β e
−i sgn(ξ)γ

π

2 . (1.97)

Existence and regularity results are obtained similarly by defining mild solutions as in
Definition 1.1 with the kernel

Kβ
γ (t, x) := F−1

(
etψ

β
γ (·)
)

(x)

instead of K, and deriving the properties of Kβ
γ , that hold as in Proposition 1.2 (for the proofs

we refer to [6] Lemma 2.1). One can also show all the other results of Section 1.1 in a similar
way. In particular, the obvious extensions of Proposition 1.6 and Proposition 1.7 hold.

Concerning the results of sections 1.2 and 1.3, we observe that generalisations can be ob-
tained with minimal effort. This is because equivalent integral representations of the operators
(1.96)-(1.97) acting on C2 functions can be obtained, see e.g. [66] and [6]. Thus we need to
generalise the weak entropy inequalities, for both the L1 contraction property and the zero
viscosity limit. The key integral representation of this type of operator is the following:

Proposition 1.21 ([6] Proposition 2.3 and, e.g., [66]). If 1 < β < 2 and |γ| ≤ min{β, 2−β},
then for all v ∈ S(R) and x ∈ R

Dβ
γ [v](x) = c1

γ

∫ ∞
0

v(x+ z)− v(x)− v′(x)z

z1+β
dz + c2

γ

∫ ∞
0

v(x− z)− v(x) + v′(x)z

z1+β
dz (1.98)

for some constants c1
γ, c2

γ ≥ 0 with c1
γ + c2

γ > 0. This singular integral representation is
well-defined for C2

b functions and is such that Dβ
γ [·] maps C2

b (R) to Cb(R) and is a bounded
operator.
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Moreover, for v ∈ C2
b (R) one has the estimate

sup
x∈R
|Dβ

γ [v](x)| ≤ 1

2
(c1
γ + c2

γ)‖v′′‖Cb(R)
M2−β

2− β
+ 2(c1

γ + c2
γ)‖v′‖Cb(R)

M1−β

β − 1
<∞

for some positive constant M and c1
γ and c2

γ as above.

Now, the maximum principle as stated in Lemma 1.11 holds for Dβ
γ [·] (the proof is similar

by first using the representation (1.98)) and thus global existence for (1.95) is proved similarly.
In particular, the analogous of Proposition 1.12 is satisfied for mild solutions of (1.95).

We note that the last estimate in Proposition 1.21 above follows also by proving the
equivalent representation for regular functions of the integral terms in (1.98), that is:∫ ∞

0

v(x+ z)− v(x)− v′(x)z

z1+β
dz =

1

β(β − 1)
∂x

∫ 0

−∞

v′(x+ r)

|r|β−1
dr,

and ∫ ∞
0

v(x− z)− v(x) + v′(x)z

z1+β
dz =

1

β(β − 1)
∂x

∫ ∞
0

v′(x+ r)

|r|β−1
dr.

These identities follow from the steps in the proof of Lemma 1.8. Then for C2 functions we
have

Dβ
γ [v](x) =

1

dβ+1

(
c1
γ∂xDβ−1[v](x) + c2

γ∂xDβ−1[v](x)
)
, (1.99)

where ∂xDβ−1[·] and Dβ−1[·] are defined and characterised in Lemma 1.13 with β − 1 = α.
With the representation of Proposition 1.21 and that in (1.99) we obtain the following:

Proposition 1.22. Let u ∈ C2
b ((0,∞)× R), then

(i) For all η ∈ C2(R) convex and ϕ ∈ C1
b (R), it holds

Dβ
γ [η(ϕ)](x) ≥ η′(ϕ)Dβ

γ [ϕ](x).

(ii) For all ϕ ∈ C∞c (R), then∫ ∞
0

∫
R
ϕ(x)Dβ

γ [u(t, ·)](x) dx dt =

∫ ∞
0

∫
R
Dβ
γ [ϕ](x)u(t, x) dx dt,

where
Dβ
γ [g](x) =

1

dβ+1

(
c1
γ∂xDβ−1[v](x) + c2

γ∂xDβ−1[v](x)
)
.

(iii) If u(t, ·)− v(t, ·) ∈ L1(R) ∩ C2
b (R), then

sgn(u(t, x)− v(s, y))
(
∂xDβ−1[u(t, ·)](x)− ∂yDβ−1[v(s, ·)](y)

)
≤ Dβx,y[|u(t, ·)− v(s, ·)|](x, y),

where the operator Dβx,y[·] stands for 0Dβx,y[·], and rDβx,y[·] is defined in (1.40).
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Proof. (i) is proved by using the integral representation and the convexity of η (as for (1.29)).
(ii) This follows from (1.99) and Lemma 1.13.
(iii) This estimate follows as in (1.36).

With (i) and (ii) of Proposition 1.22, the following generalisation of Theorem 1.15 holds,
the proof being analogous:

Theorem 1.23. Given η ∈ C(R) convex and u ∈ C2
b ((0,∞)×R) a solution of (1.95), then

for all non-negative ϕ ∈ C∞c ((0,∞)× R)∫ ∞
0

∫
R

(
η(u(t, x))∂tϕ(t, x)+q(u(t, x))∂xϕ(t, x)+η(u(t, x))Dβ

γ [ϕ(t, ·)](x)
)
dx dt ≥ 0. (1.100)

Remark 1.24. In [24] similar results to Proposition 1.22 and Theorem 1.23 are done for
more general Lévy type operators.

Theorem 1.16 holds unchanged for (1.95). In order to prove this, we follow the same
steps, the main difference is that we have one more term in the non-local operator, which
can be written as (1.99). This is no substantial difference, since the crucial estimate, that
allows to show the pertinent entropy inequality, is (1.36). But with this same one and (iii) of
Proposition 1.22 above, we obtain

sgn(u(t, x)− v(s, y))
(
Dβ
γ [u(t, ·)](x)−Dβ

γ [v(s, ·)](y)
)
≤ Dβ

γ,x,y[|u(t, ·)− v(s, ·)|](x, y),

where the operator Dβ
γ,x,y[·] is defined by means of

Dβ
γ,x,y[g](x, y) =

1

dβ+1

(
c1
γDβx,y[v](x, y) + c2

γD
β
x,y[g](x, y)

)
.

This gives, with the same choice of test functions, the entropy inequality (1.42) where the
non-local operator in the last term of the integrand is replaced by

1

dβ+1

(
c1
γ∂z′Dβ−1[ϕ(r′, ·)](z′) + c2

γ∂z′Dβ−1[ϕ(r′, ·)](z′)
)
.

The rest of the proof follows similarly, the treatment of the terms coming from this being
analogous.

Finally, the zero viscosity limit results follow similarly with the aid of Theorem 1.23 above.
The treatment of the non-local term being analogous, once the non-local operators are written
using (1.99) and (ii) of Proposition 1.22. In this way, Theorem 1.18 holds unchanged for (1.95).
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Chapter 2

Non-classical shocks in a non-local
Korteweg-de Vries-Burgers equation

In relation with shock formation and for a non-genuinely nonlinear flux function (neither
convex nor concave), we study the existence of travelling wave solutions of the generalised
Korteweg-de Vries-Burgers equation, for τ > 0,

∂tu+ ∂xu
3 = ∂xDα[u] + τ ∂3

xu , x ∈ R , t ≥ 0 , (2.1)

with a local dispersion term and the non-local diffusion term that applied to a real valued
function g is given as

Dα[g](x) = dα

∫ x

−∞

g′(z)

(x− z)α
dz, 0 < α < 1, dα :=

1

Γ(1− α)
. (2.2)

The model equation (2.1) arises in the analysis of a shallow water flow. Especially, we are
interested in studying travelling wave solutions that connect two different far-field values but
do not satisfy the classical Lax-Entropy condition. Formally, these solutions would give rise
to non-classical shocks in the limit as is the case of the local regularisation already studied
(see [44, 46]).

On the other hand, introducing the travelling wave variable ξ = x− ct for the wave speed
c > 0 and denoting φ(ξ) = u(t, x), we obtain the associated travelling wave problem

− cφ′ + (φ3)′ = (Dα[φ])′ + τφ′′′ . (2.3)

Now we can integrate the previous equation with respect to the variable ξ and get the equiv-
alent problem

τφ′′ +Dα[φ] = h(φ) , where h(φ) := −c(φ− φ−) + φ3 − φ3
− , (2.4)

together with the far-field behaviour

lim
ξ→−∞

φ(ξ) = φ− (2.5)

and
lim
ξ→∞

φ(ξ) = φ+ (2.6)
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for two different real constants φ− and φ+. Without loss of generality we can assume that
φ+ < φ− and we require that φ−, φ+ and φc = −(φ+ + φ−) satisfy

φ+ < φc < φ− , (2.7)

which opens the possibility of travelling wave solutions exhibiting a non-classical connection.
This chapter is mainly devoted to the proof of the following result where we show rigorously

the existence of such travelling waves that in the limit of vanishing diffusion and dispersion
would give rise to non-classical shocks:

Theorem 2.1. Let φ− and φ+ ∈ R such that (2.7) with φc = −(φ+ + φ−) holds and such
that

φ+ + φ− > 0. (2.8)

Then, there exists τ > 0 such that (2.4)-(2.5)-(2.6) has a unique solution (up to a shift in ξ)
in C3

b (R).

The proof is given via an argument called the shooting argument with the shooting pa-
rameter τ . In order to apply such technique, we shall complete the proof of monotonicity for
a genuinely nonlinear flux and τ > 0 small enough, introduced in [3], and we need as well the
continuous dependence of the problem (2.4) with respect to the parameter τ .

The chapter is organised as follows. In Section 2.1, we give some preliminary results on the
non-local operator. In Section 2.1.2, we establish the existence of solutions that satisfy (2.5)
and give the three possible behaviours as ξ → ∞ that such trajectories will have. Namely,
the unbounded case is proved here and the other two cases are derived from the genuinely
nonlinear case (see [3]). This is followed by Section 2.2 where we set the problem for a shooting
argument with parameter τ . Subsequently, in the same section the proof of Theorem 2.1 is
given in a series of lemmas, where we check the conditions to apply such technique. Finally,
in Section 2.3, we give a numerical construction of solutions to (2.4)-(2.5)-(2.6).1

2.1 Preliminary results

2.1.1 The non-local operator and some elementary lemmas

Let us first recall some basic properties of the fractional differential operator Dα[·]. The
computations of its Fourier symbol suggests that Dα[·] can be interpreted as a differentiation
operator of order α. We also observe that Dα[·] is a bounded linear operator from Hs to Hs−α

for all s ≥ 1.
On the other hand, for m ∈ N≥0, let Cmb (R) denote the set of functions, whose derivatives

up to order m are continuous and bounded, then one can also infer that Dα[·] is a bounded
linear operator from C1

b (R) to Cb(R). As explained in [4], this can be easily seen by splitting
the domain of integration in (2.2) into (−∞, x−M ] and [x−M,x] for some positive M > 0.
Then integration by parts in the first integral shows the boundedness of Dα[·]. Moreover, we
will need the following improved estimate:

1This chapter is based on: Franz Achleitner, Carlota M. Cuesta and Xuban Diez-Izagirre, Non-classical
shocks in a non-local generalised Korteweg-de Vries-Burgers equation, (In preparation).
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Lemma 2.2. For α ∈ (0, 1), let x ∈ R and g ∈ C1
b (−∞, x), then for every z ∈ R with z ≤ x

|Dα[g](z)| ≤ Cα

(
sup

y∈(−∞,z]
|g(y)|

)1−α(
sup

y∈(−∞,z]
|g′(y)|

)α
where

Cα = dα

(
2(2α)−α

1− α

)
.

In particular, if g ∈ C1
b (R), then Dα[g] ∈ Cb(R) with

‖Dα[g]‖∞ ≤ Cα ‖g′‖α∞ ‖g‖1−α∞ .

Proof. The proof is similar to the estimate for Riesz-Feller operators, see e.g. [6, Proposi-
tion 2.4]. Let z ≤ x, and let us denote for simplicity

A =

(
sup

y∈(−∞,z]
|g(y)|

)
and A′ =

(
sup

y∈(−∞,z]
|g′(y)|

)
.

Then

|Dα[g](z)| = dα

∣∣∣∣∫ ∞
0

g′(z − s)
sα

ds

∣∣∣∣ ≤ dα ∣∣∣∣∫ M

0

g′(z − s)
sα

ds

∣∣∣∣+ dα

∣∣∣∣∫ ∞
M

g′(z − s)
sα

ds

∣∣∣∣ . (2.9)

We estimate the first integral by taking the supremum in g′ and computing the remaining
integral, thus ∣∣∣∣∫ M

0

g′(z − s)
sα

ds

∣∣∣∣ ≤ A′ ∫ M

0

ds

sα
=

A′

1− α
M1−α.

In the second integral, we first integrate by parts and pull out the supremum of g to deduce∣∣∣∣∫ ∞
M

g′(z − s)
sα

ds

∣∣∣∣ ≤ α ∣∣∣∣∫ ∞
M

g(z − s)
sα+1

ds

∣∣∣∣+AM−α ≤ 2AM−α.

Using these estimates in (2.9) yields

|Dα[g](z)| ≤ dα
(

A′

1− α
M1−α + 2AM−α

)
. (2.10)

An easy computation shows that the minimum of the right-hand side of (2.10) is attained at
M = 2αA/A′ and this implies the first statement. The second is a consequence of the first by
taking the supremum over all values in R.

In some instances we shall also need to split the integral operator (2.2) as follows

Dα[g](x) = dα

∫ x0

−∞

g′(y)

(x− y)α
dy + dα

∫ x

x0

g′(y)

(x− y)α
dy , for some x0 < x , (2.11)

and treat the first term as a known function, whereas the second one can be viewed as a
left-sided Caputo derivative, see e.g. [49], and that we denote by Dαx0 [·], indicating that the
integration is from a finite value x0, i.e. g ∈ C1

b ([x0,∞)) and α ∈ (0, 1]

Dαx0 [g](x) = I1−α
x0 [g′](x) =

1

Γ(1− α)

∫ x

x0

g′(y)

(x− y)α
dy . (2.12)
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Notice that the first term in the right-hand side of (2.11), which is a function of x, is not equal
to Dα[g](x0), which is a number for fixed x0.

We shall use the following technical lemma several times:

Lemma 2.3. For all φ ≤ −φ−(< 0)

2φ3 ≤ h(φ) < Chφ
3(< 0) and (0 <)H(φ)−H(φ−) < CHφ

4

where
0 < Ch ≤ −

2(φ− + φ+)φ+

(φ−)2
(< 1) and CH ≤ 2 .

The proof is an elementary calculus exercise. It is important to recall that constants here
only depend on φ+ and φ−.

2.1.2 Existence of trajectories that satisfy (2.5) and the derivation of
(2.8)

In this section we prove the existence of solutions that satisfy (2.5) as ξ → −∞. Next, we
prove that there are three possible behaviours of such trajectories as ξ becomes large. The
existence of these trajectories follows directly from the results of [3], this means that we shall
not need to prove some steps, although we recall the proofs of those for completeness.

Namely, one obtains the following theorem by a direct application of the previous results
and a soft argument for the unbounded case.

Theorem 2.4. Given τ > 0, φ− and φ+ ∈ R such that (2.7) with φc = −(φ+ + φ−) < 0
holds. Then,

(i) There exists a solution φ ∈ C3(−∞, 0) of (2.3) such that

lim
ξ→−∞

φ(ξ) = φ−

and φ′(ξ) < 0 for all ξ ∈ (−∞, 0) that is unique (up to a shift in ξ) among all φ ∈
φ− +H2(−∞, 0) ∩ C3

b (−∞, 0).

(ii) Such solutions satisfy φ(ξ) < φ− for all ξ in the interval of existence.

(iii) If such solutions are uniformly bounded, they exist for all ξ ∈ R and ∃ limξ→∞ φ(ξ) ∈
{φ+, φc}. Otherwise, there exists a finite ξ∗ ∈ R such that limξ→ξ∗ φ(ξ) = −∞.

The proofs of (i), (ii) and the first part of (iii) are a consequence of the results in [3]. We
recall some of the steps of the proof for these parts below. Thus, it remains to prove the second
statement of (iii): that unbounded solutions cannot be extended to the whole R. In the latter
case we first exclude the oscillatory behaviour (Lemma 2.7 below), i.e. show that the limit is
−∞, and then we prove that this limit is reached at a finite value of ξ (Lemma 2.8).

Let us first summarise the implications of the results from [3] in the proof of Theorem 2.4.
For (i), one shows a ‘local’ existence result [3, Lemma 2] on (−∞, ξ̃] with ξ̃ < 0 and |ξ̃|
sufficiently large, that is based on linearisation about φ = φ− as ξ = −∞. For τ ≥ 0, all
solutions of the linearised equation

τv′′ +Dα[v] = h′(φ−)v , (2.13)
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in the spaces Hs(−∞, ξ̃) with s ≥ 2 are of the form v(ξ) = beλξ, b ∈ R, where λ is the only
real and positive root of

P (z) = τz2 + zα − h′(φ−) . (2.14)

The statement can be proved as in [27], where a genuinely nonlinear flux function has been
considered. The requirement in this proof is only to have h′(φ−) > 0. Then we can construct
solutions of the nonlinear problem (2.4) on (−∞, ξ̃] as small perturbations of the exponential
ones as in [3]. The next step is to extend these solutions by a continuation principle [3,
Lemma 3] and show that there is uniqueness up to translation in ξ [3, Lemma 5].

Statement (ii) follows by the same arguments as in the proof of [3, Lemma 4]. Then the
first statement of (iii) is a direct consequence of [3, Lemma 6] that guarantees that under the
given assumption, the value of the limit must be a zero of h different from φ−. We recall
that for the quadratic case, h has only two zeros, φ+ and φ−, but in the current case h has
three zeros, being φc the additional one. The argument in the proof of [3, Lemma 6] is by
contradiction, assuming that the constant value of the limit of φ is not a zero of h, hence we
obtain the conclusion in Theorem 2.4 allowing the third possibility, φc.

For the quadratic flux one can show that solutions remain bounded and that this implies
the existence of a limit value as ξ → ∞ and therefore the only possible connection is to the
constant value φ+, and this implies the existence (and uniqueness up to translation in ξ). In
the cubic case we cannot show that solutions of (2.4) subject to (2.5) remain bounded from
below, however. The main difference in the arguments come from the functional

H(φ) =

∫ φ

0
h(y) dy = −cφ

2

2
+
φ4

4
+Aφ , with A = cφ− − φ3

− . (2.15)

The difference H(φ) − H(φ−) being non-negative plays a crucial role. On the one hand, it
is a necessary condition for existence. And in the quadratic case (and more generally for a
genuinely nonlinear flux) this function has a zero φ̄ < φ+ that gives a lower bound of the
solutions, because in the interval (φ+, φ−), H(φ)−H(φ−) > 0. In the current case this is no
longer the case, if we want that this H(φ) −H(φ−) ≥ 0 is satisfied in (φ+, φ−), then, there
cannot be another zero different from φ−, and hence the lower bound is lost.

In the next Lemma we gather some information from H:

Lemma 2.5. Let φ be a solution of (2.4) that satisfies (2.5) and let (−∞, ξexist) be its interval
of existence, where ξexist ∈ R ∪ {+∞}. Then,∫ ξ

−∞
φ′(y)Dα[φ](y) dy ≥ 0 , ∀ξ ∈ (−∞, ξexist).

Moreover, the integral vanishes if and only if φ ≡ φ−.
As a consequence, for all ξ ∈ (−∞, ξexist), the following holds:

0 ≤ τ

2
(φ′(ξ))2 +

∫ ξ

−∞
φ′(y)Dα[φ](y) dy = H(φ(ξ))−H(φ−) . (2.16)

The first statement appears in the proof of [3, Lemma 4] (see also [27] for a similar result)
and adapts the arguments of [55]. The second part of the lemma follows by multiplying (2.4)
by φ′ and integrating with respect to ξ.

Next, we show (2.8), which is a necessary condition on the far-field values for a solution
of (2.4)-(2.5)-(2.6) to exist.
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Lemma 2.6. Let φ− and φ+ satisfy (2.7). Then, the inequality

H(φ+)−H(φ−) > 0 (2.17)

is a necessary condition to obtain a global solution φ of (2.4) that satisfies both (2.5) and (2.6).
Moreover, (2.17) is equivalent to the following inequalities:

c < φ2
− and φ− + φ+ > 0 . (2.18)

Proof. Suppose that φ is a global solution of (2.4) satisfying (2.5) and (2.6). Lemma 2.5-(2.16)
holds, then taking the limit ξ →∞ yields

H(φ+)−H(φ−) =

∫
R
φ′(ξ)Dα[φ](ξ) dξ ≥ 0.

We observe that H(φ) > H(φ−) for all φ 6= φ−, and in particular (2.17) holds by (2.7). The
assertion (2.18) follows from (2.17) by elementary computations.

Next we show that if a trajectory φ that satisfies (2.5) becomes unbounded, then it cannot
oscillate below a certain value:

Lemma 2.7 (Non-oscillatory behaviour). Let φ ∈ C3
b (−∞, 0) be a solution as constructed

in Theorem 2.4 (i)-(ii). If the continuation of φ becomes unbounded, then there exists ξ∗ ∈
R ∪ {+∞} such that limξ→ξ∗ φ(ξ) = −∞.

Proof. Since φ(ξ) < φ− for all ξ ∈ R and, by assumption, φ is unbounded, there must exists
ξ∗ ∈ R ∪ {+∞} such that lim inf

ξ→ξ∗
φ(ξ) = −∞. We have to prove that lim

ξ→ξ∗
φ(ξ) = −∞.

We argue by contradiction, and assume that lim
ξ→ξ∗

φ(ξ) does not exist. In this case, and by

the regularity, φ becomes unbounded in an oscillatory fashion. Then, there exists a decreasing
sequence of local minima: there exist {ξnmin}n≥0 such that ξnmin → ξ∗, φ′(ξnmin) = 0, φ′′(ξnmin) >
0 and φ(ξnmin) < −φ− for all n ≥ 0 and such that {φ(ξnmin)}n≥0 is a monotone decreasing
sequence with limn→∞ φ(ξnmin) = −∞.

Observe that then also h(φ(ξnmin)) < 0 for all n ≥ 0, and this gives

Dα[φ](ξnmin) = h(φ(ξnmin))− τφ′′(ξnmin) < 0, for all n ∈ N. (2.19)

Lemma 2.2 gives a bound for the fractional derivative in terms of φ and its first derivative.
Namely, there exists Cα > 0 (independent of τ) such that

|Dα[φ](ξ)| ≤ Cα‖φ‖1−αL∞(−∞,ξ)‖φ
′‖αL∞(−∞,ξ) for all ξ ∈ (−∞, ξ∗)

and, in particular, for each ξ = ξnmin we get the lower bound

0 > Dα[φ](ξnmin) ≥ −Cα‖φ‖1−αL∞(−∞,ξnmin)‖φ
′‖αL∞(−∞,ξnmin). (2.20)

On the other hand, considering Lemma 2.3 and that φ′′(ξnmin) > 0, we get the upper bound

Dα[φ](ξnmin) < h(φ(ξnmin)) < −Ch|φ(ξnmin)|3 = −Ch‖φ‖3L∞(−∞,ξnmin). (2.21)

Now, combining (2.20) and (2.21), we obtain

−Cα‖φ‖1−αL∞(−∞,ξnmin)‖φ
′‖αL∞(−∞,ξnmin) ≤ −Ch‖φ‖

3
L∞(−∞,ξnmin)
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which is equivalent to

‖φ‖α+2
L∞(−∞,ξnmin) ≤

Cα
Ch
‖φ′‖αL∞(−∞,ξnmin). (2.22)

We can now obtain an upper bound on ‖φ′‖L∞(−∞,ξnmin) using Lemma 2.5 and Lemma 2.3:

τ

2

(
φ′(ξ)

)2 ≤ H(φ(ξ))−H(φ−) ≤ CHφ4(ξ) ≤ 2 (φ(ξnmin)))4 , ∀ξ ∈ (−∞, ξnmin)

which implies

‖φ′‖2L∞(−∞,ξnmin) ≤
4

τ
‖φ‖4L∞(−∞,ξnmin). (2.23)

Finally, combining (2.22) and (2.23) implies for all n ∈ N that

‖φ‖2−αL∞(−∞,ξnmin) < τ−α/2C,

with C = 2αCαCh . But this contradicts that limn→∞ φ(ξnmin) = −∞ and such sequences of local
minima cannot exists. Thus it must be that limξ→ξ∗ φ(ξ) = −∞.

Next we show that ξ∗ of the previous lemma is a finite value.

Lemma 2.8. Let φ be an unbounded solution of (2.4). Then there exists ξ∗ ∈ R such that

lim
ξ→ξ∗

φ(ξ) = −∞, (2.24)

and, therefore, φ cannot be extended to R. Moreover, the asymptotic behaviour of φ is given
by,

lim
ξ→(ξ∗)−

|φ(ξ)| (ξ∗ − ξ) < +∞.

Proof. Since φ is unbounded, by Lemma 2.7 there exist ξ∗ ∈ R∪ {+∞} and ξ1 ∈ R such that

lim
ξ→(ξ∗)−

φ(ξ) = −∞ and φ′(ξ) < 0, ∀ξ ∈ (ξ1, ξ
∗). (2.25)

It is now convenient to rewrite the equation (2.4), as a first order system by making the
change of variables u(ξ) = φ(ξ) and v(ξ) = φ′(ξ) for ξ ∈ (−∞, ξ∗). This gives:u

′ = v,

v′ =
1

τ
(h(u)−Dα[u]) .

(2.26)

We first notice that there exist some ξ0 ∈ [ξ1, ξ
∗) and Cv > 0 such that

−∞ < u(ξ) < −φ− ∀ξ ∈ [ξ0, ξ
∗), u(ξ0) ≤ u(ξ) < φ− ∀ξ ≤ ξ0 (2.27)

and
v(ξ) < −Cv, ∀ξ ∈ (ξ0, ξ

∗). (2.28)

The bounds (2.27) hold by (2.25). Let us show (2.28): If v becomes unbounded there is
nothing to prove, again by (2.25). On the other hand, if v is bounded, we get an upper bound
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of v′(ξ), which diverges to −∞ as ξ → ξ∗. Indeed, applying Lemma 2.2, Lemma 2.3 and an
estimate like (2.23) yield

v′(ξ) =
1

τ
h(u(ξ))− 1

τ
Dα[u](ξ) ≤ Ch

τ
u(ξ)3 +

2αCα

τ1+α/2
|u(ξ)|1+α

=u(ξ)3

(
Ch
τ
− 2αCα

τ1+α/2

1

|u(ξ)|2−α

)
.

The right-hand side of this inequality tends to −∞ as ξ → ξ∗, therefore, limξ→ξ∗ v
′(ξ) = −∞.

This implies (2.28). We can adjust the value of ξ0 by taking it closer to ξ∗ as necessary so
that both bounds hold in the same interval.

Once (2.27) and (2.28) are established for ξ ∈ (ξ0, ξ
∗), we introduce the variables

z :=
1

u
< 0 and w := − v

u2
≥ 0

in such interval. The system (2.26) then reads:
dz

ds
= −zw,

dw

ds
= −2w2 +

1

τ

(
h

(
1

z

)
−Dα

[
1

z

])
z3.

(2.29)

Where we also have changed the independent variable, in order to absorb z in the derivative,
as follows:

s = s0 −
∫ ξ

ξ0

dy

z(y)
, s0 > 0.

Notice that z < 0, thus s is strictly increasing with respect to ξ.
CASE I: We first analyse the possibilities of ‘extinction’ and of ‘blow-up’ for w at a finite

s. Let us assume the former: there exists a finite s∗ > s0 such that lims→s∗ w(s) = 0. Then,
at ξ∗, given by s∗ = s0 −

∫ ξ∗
ξ0
u(y)dy, either v(ξ∗) = 0 or limξ→ξ∗ u(ξ) = −∞. The former

contradicts (2.28) and the latter case finishes the proof.
Let us assume now that w exhibits ‘blow-up’. Then there exists a finite s∗ > s0 such that

lims→s∗ w(s) =∞. Thus, for ξ ∈ (ξ0, ξ
∗) sufficiently close to ξ∗,

− u
′(ξ)

u2(ξ)
� 1

and, integrating this over (ξ0, ξ), yields

u(ξ) <
1

ξ − ξ0 + 1/u(ξ0)
,

which implies (2.24) with ξ∗ ≤ ξ0 − 1/u(ξ0), and finishes the proof.
CASE II: Let us now assume that w is defined for all s ∈ R. We shall show that

∃ lims→∞w(s) < ∞, and then apply the definition of the new variables and integrate to get
the result. First, we obtain estimates from (2.29).

Integrating the first equation in (2.29), we get the following:

z(s) = z0e
−
∫ s
s0
w(s) ds → 0− as s→∞. (2.30)
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This limit is clear if
∫∞
s0
w(s) ds = +∞. If

∫∞
s0
w(s) ds < +∞, in particular lims→∞w(s) = 0,

then an argument as for the extinction of w gives that either lims→∞ v(s) = 0, which is in
contradiction with (2.28), or that lims→∞ u(s) = −∞, which also implies that z(s) → 0 as
s→∞.

Now, we observe that Dα[u] < 0 for all ξ ∈ (ξ0, ξ
∗). To prove this we first split Dα[u](ξ)

as follows,
1

dα
Dα[u](ξ) =

∫ ξ0

−∞

v(y)

(ξ − y)α
dy +

∫ ξ

ξ0

v(y)

(ξ − y)α
dy.

The second integral is negative due to (2.28). And the first is also negative, since integrating
by parts and using (2.27) we get:∫ ξ0

−∞

v(y)

(ξ − y)α
dy =− α

∫ ξ0

−∞

u(y)

(ξ − y)α+1
dy +

u(ξ0)

(ξ − ξ0)α

< α|u(ξ0)|
∫ ξ0

−∞

dy

(ξ − y)α+1
+

u(ξ0)

(ξ − ξ0)α
= 0.

Let us now get a lower bound for Dα[1/z] = Dα[u] by rewriting Lemma 2.2 in terms of z
and w. We have two cases for all s > s1 for some s1 ≥ s0 large enough:

0 < −Dα
[

1

z

]
≤ D(z, w) :=

{
C ′α
∣∣1
z

∣∣1−α , if |v| stays bounded,
Cα
∣∣1
z

∣∣1+α
(sups>s1 w)α, if |v| becomes unbounded,

(2.31)

for some C ′α, Cα > 0.
We now get bounds for the nonlinear term using (2.30): Let s2 ≥ s0 large enough such

that for all s > s2

|z(s)| < min

{
c

−(cφ− − φ3
−)
,

1√
c

}
,

then

0 <
1

τ
− c

τ
z2 ≤ 1

τ
z3h

(
1

z

)
=

1

τ
− 1

τ
(c− (cφ− − φ3

−)z)z2 ≤ 1

τ
for all s > s2. (2.32)

With (2.31) and (2.32) we have the following bounds on dw/ds using the second equation
in (2.29):

1

τ
− c

τ
z2 − 2w2 − 1

τ
(−z)3D(z, w) ≤ dw

ds
≤ 1

τ
− 2w2, ∀s > max{s1, s2}. (2.33)

In order to prove that w → C > 0 as s → ∞, we now argue by contradiction. First,
we assume that w becomes unbounded, then (2.33) implies that w is decreasing as long as
w > 1/

√
2τ , but this contradicts that 0 < w(s) becomes unbounded. Now we assume that

the limit is finite with C = 0, since also lims→∞ z(s) = 0, these implies that dw(s)/ds > 0 for
all s large enough. This contradicts that C = 0 and w(s) > 0.

The last possibility that we have to exclude is that w oscillates without limit. Let M =
sups>max{s1,s2}w(s) < ∞, then using (2.33) we get there exists C > 0 and s3 ≥ max{s1, s2}
such that

1

τ
− 2w(s)2 − C|z(s)|2−α ≤ dw(s)

ds
≤ 1

τ
− 2w(s)2 for all s > s3. (2.34)
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Here we have used (2.31) and noticed that for |z| small enough we have |z|2+α, |z|2 < |z|2−α.
Observe that if M < 1/

√
2τ , no oscillations are possible in the limit, because there exists

s4 ≥ s3 such that

0 <
1

τ
− 2M2 − C|z(s)|2−α ≤ dw(s)

ds
, for all s > s4.

Then lims→∞w(s) = M > 0, and we obtained the desired result.
If M = 1/

√
2τ , there exists s ∈ R such that w(s) < 1/

√
2τ , because we are assuming that

the limit of w does not exist. If M > 1/
√

2τ , then by (2.34), with s > s3,

dw(s)

ds
≤ 1

τ
− 2w(s)2 ≤ 0, as long as

1√
2τ
≤ w(s) ≤M.

This means that on the intervals of s for which 1√
2τ
≤ w(s) ≤ M , w is not increasing, so w

cannot oscillate in this range. This implies that w(s) ∈ (0, 1/
√

2τ ], for all s > s4 with s4 > s3

large enough, oscillating without limit.
Then, there exists also an increasing sequence {sn}n≥0 > s4, where local minima of w are

attained, with dw(sn)/ds = 0, 0 < w(sn) ≤ 1/
√

2τ and sn →∞ as n→∞. Let the sequence
{δn}n≥0 be defined by evaluating the right-hand side of (2.34) at each s = sn,

0 < δn :=
1

τ
− 2w2(sn) <

1

τ
. (2.35)

Again there are two possibilities: either {δn}n≥0 is bounded from below by a positive constant
K, or δn → 0 as n→∞. In the former case, we get from (2.34) that for all n,

K − C|z(sn)|2−α ≤ dw

ds
(sn) = 0.

Applying (2.30) as n→∞, we deduce that there exists n0 ≥ 0 such that the left hand side is
strictly positive for all n ≥ n0, a contradiction.

If δn → 0 as n → ∞, then w(sn) → 1/
√

2τ as n → ∞. This means that this sequence
of local minima is converging to the supremum of w on s > s4, but this contradicts that w
oscillates without a limit and, moreover, this implies that lims→∞w(s) = 1/

√
2τ .

Now that we have shown that ∃ lims→∞w(s) <∞ and taking into account the regularity
of w, we get that there exists positive constants C1 and C2, such that for all ξ > ξ0

C1 <
u′(ξ)

−u2(ξ)
< C2.

Then, integrating over the interval (ξ0, ξ) for ξ < ξ∗, gives

1

C2(ξ − ξ0) + 1/u(ξ0)
< u(ξ) <

1

C1(ξ − ξ0) + 1/u(ξ0)
.

The upper bound implies the result with ξ∗ ≤ ξ0 − 1
C1u(ξ0) .

Proof of (iii) of Theorem 2.4. We recall that the proofs of (i), (ii) and the first part of (iii)
follow from [3]. One can prove the last part of (iii) applying the previous lemmas. First,
Lemma 2.7 rules out the oscillatory behaviour of φ and then Lemma 2.8 ensures that (2.24)
is satisfied.
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2.2 Proof of Theorem 2.1

In the forthcoming, for every value of τ > 0 we will let φτ (ξ) denote a solution of equation (2.4)
satisfying (2.5) as constructed in Theorem 2.4. According to the three possible behaviours of
such trajectories, established in Theorem 2.4 (iii), we define the following sets of τ ’s:

Definition 2.9. For every τ > 0 let φτ be a solution as constructed in Theorem 2.4. Then
we define the sets

Σu =

{
τ > 0 : lim

ξ→ξ∗
φτ (ξ) = −∞ for some ξ∗ ∈ R

}
,

Σc =

{
τ > 0 : lim

ξ→∞
φτ (ξ) = φc

}
.

In analogy with the local case, we expect that these sets comprise the generic behaviours
of φτ , while the third possibility, i.e. τ does not belong to neither Σc nor Σc and thus
limξ→∞ φτ (ξ) = φ+, is a distinguished one. We have to show that the latter possibility is
realised. We do this by a shooting argument, where τ is the shooting parameter. We shall
prove that the sets Σc and Σu are nonempty, open and disjoint. This implies that there
are values of τ that do not belong to neither of these sets. For such values, there exists a
solution φτ of the problem (2.4)-(2.5), such that limξ→∞ φτ (ξ) = φ+, and this gives the proof
of Theorem 2.1.

We divide the rest of the section in three parts. In the first part we show that Σu is
non-empty and open. In the second we show that Σc is non-empty and open. In the proofs
for Σc, we need the monotonicity for τ sufficiently small and boundedness of solutions to a
modified problem. These results are shown later in the last part of the section.

2.2.1 The set Σu

We first show that Σu is non-empty:

Lemma 2.10. Consider φ− and φ+ satisfying (2.7) and (2.18). Let φτ denote the unique
(up to shifts in ξ) solution of (2.4) satisfying (2.5) as constructed in Theorem 2.4. Then, there
exists τm > 0 such that for all τ > τm there exists ξ∗τ ∈ R such that limξ→ξ∗τ φτ (ξ) = −∞.

Proof. Let us argue by contradiction. Assume that for all τ0 > 0 there exists at least one
τ > τ0 such that φτ (ξ) is defined for all ξ ∈ R. By Theorem 2.4, we know that φτ is smooth,
φτ (ξ) < φ− for all ξ ∈ R, and limξ→∞ φτ (ξ) = φ∗ ∈ {φc, φ+}. Moreover, −φ− < φ+ < φc < 0
due to (2.18), see also Proposition 2.6.

First, we prove that ‖φτ‖∞ = φ− and deduce estimates on ‖φ′τ‖∞ and ‖Dα[φτ ]‖∞.
At this point, one has just a lower bound for ‖φτ‖∞ ≥ φ−. Then, we distinguish two cases:

Either infξ∈R φτ (ξ) = φ∗ or there exists a value ξmin ∈ R such that φτ (ξmin) = minξ∈R φτ (ξ) =:
φmin. If infξ∈R φτ (ξ) = φ∗ then ‖φτ‖∞ ≤ max{|φ∗|, φ−} = φ− due to (2.18) in Proposition 2.6.

In the other case, let us assume that the minimum of φτ is attained at some ξmin ∈ R.
Let us first prove that φτ (ξmin) =: φmin ∈ (−φ−, φc) (recall that φ+ > −φ− by (2.18) of
Proposition 2.6). Indeed, we argue by contradiction and assume to the contrary that φmin <
−φ−, then, since we know that φτ (ξ) < φ− for all ξ ∈ R, we conclude that ‖φτ‖∞ = −φmin.
Using that φ′′τ (ξmin) ≥ 0 in the travelling wave equation (2.4) yields

0 > h(φmin) = τφ′′τ (ξmin) +Dα[φτ ](ξmin) ≥ Dα[φτ ](ξmin), (2.36)
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and, by Lemma 2.2, there exists Cα > 0 (independent of τ) such that

|Dα[φτ ](ξ)| ≤ Cα‖φτ‖1−α∞ ‖φ′τ‖α∞ for all ξ ∈ R. (2.37)

Then, combining (2.36) and (2.37), we conclude that

0 > Dα[φτ ](ξmin) ≥ −Cα‖φτ‖1−α∞ ‖φ′τ‖α∞. (2.38)

Now, Lemma 2.3, implies that there exists a constant Ch > 0, depending only on φ− and φ+,
such that

Dα[φτ ](ξmin) ≤ h(φmin) < Chφ
3
min = −Ch‖φτ‖3∞ < 0. (2.39)

Combining (2.38) and (2.39), then gives

‖φτ‖2+α
∞ ≤ Cα

Ch
‖φ′τ‖α∞ (2.40)

where the constants Cα and Ch depend on α, φ− and φ+ but are independent of τ .
On the other hand, lemmas 2.5 and 2.3 imply that

τ

2
(φ′τ (ξ))2 ≤ H(φτ (ξ))−H(φ−) ≤ 2‖φτ‖4∞ for all ξ ∈ R,

and taking the supremum with respect to ξ ∈ R yields

τ

2
‖φ′τ‖2∞ ≤ 2‖φτ‖4∞. (2.41)

Finally, with (2.40) and (2.41), we obtain

φ2−α
− < ‖φτ‖2−α∞ < τ−α/2C, (2.42)

with C = 2αCα/Ch > 0, which is independent of τ . Now, our assumption φ(ξmin) < −φ−
implies that the inequalities in (2.42) are strict, then, necessarily τ < C2/αφ

2−4/α
− , if this holds.

That means that for τ > τα := C2/αφ
2−4/α
− the bounded solution φτ satisfies ‖φτ‖∞ = φ−.

Thus, we have proved that for τ0 ≥ τα the bounded solution has ‖φτ‖∞ = φ−. At this
point we can recast the estimates (2.41) and (2.37) in the following form

‖φ′τ‖∞ ≤ τ−
1
2 2φ2

−, and ‖Dα[φτ ]‖∞ ≤ τ−
α
2Cα2αφα+1

− . (2.43)

In order to finish the proof, we have to get a contradiction with the assumption that there
are such bounded solutions if τ is large enough. For the argument, we rescale the variables as
follows

ξ =
√
τX and φτ (ξ) = Φτ (X)

and (2.4)
d2

dX2
Φτ + τ−

α
2DαX [Φτ ] = h(Φτ ). (2.44)

Then the estimates (2.43) induce the uniform bounds:

∃C > 0 (independent of τ) : ‖DαX [Φτ ]‖∞ < C, ‖Φ′τ‖∞ < C. (2.45)

Due to Theorem 2.4(i) and its proof, for sufficiently small ε > 0 there exists X0 ∈ R such
that Φτ (X0) = φ− − ε and Φ′τ (X0) < 0 with φ− − ε > φm where φm ∈ (φc, φ−) such that
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h′(φm) = 0. Let X1 ∈ R such that Φ(X1) ∈ (φc, φm) and h(Φ(X1)) = h(Φ(X0)). Choosing
ε even smaller, we can ensure that φc < Φ(X1) < 0 < φm. Then, integrating (2.44) on the
interval (X0, X) and using (2.45) yields

Φ′τ (X) ≤ Φ′τ (X0) + τ−α/2C(X −X0) +

∫ X

X0

h(Φτ (Y )) dY .

For all X ∈ (X0, X1), we deduce h(Φτ (X)) ≤ h(Φτ (X0)) = h(φ− − ε) < 0 and

Φ′τ (X) ≤ Φ′τ (X0) +
{
τ−α/2C + h(φ− − ε)

}
(X −X0).

Choosing τ0 > 0 sufficiently large, such that the associated τ > τ0 satisfies τ−α/2 < |h(φ−−ε)|
2C ,

implies that Φ′τ (X) < 0 for all X ∈ (X0, X1). And therefore, also, Φτ decreases monotonically
for all X ∈ (−∞, X1) with φc < Φ(X1) < 0.

If Φτ is not monotone for all X ∈ R then it attains its first local minimum at some
Xmin > X1.

We now evaluate the energy estimate (2.16), rescaled as for (2.44), at Xmin and using the
bound (2.45) for DαX [·] yields:

0 ≤ H(Φτ (Xmin))−H(φ−) = τ−α/2
∫ Xmin

−∞
Φ′τ (Y )DαY [Φτ ] dY < τ−α/2C

∫ Xmin

−∞
|Φ′τ (Y )| dY .

Using that Φτ is decreasing in (−∞, Xmin) and that ‖Φτ‖∞ = φ−, implies

0 ≤ H(Φτ (Xmin))−H(φ−) < τ−α/2C

∫ Xmin

−∞
|Φ′τ (Y )| dY = τ−α/2C(φ− − Φτ (Xmin))

< 2τ−α/2Cφ−.

(2.46)

Observe that, H(Φτ (Xmin)) − H(φ−) ≥ H(φ+) − H(φ−) > 0, since Φ(Xmin) ≤ Φ(X1) < 0
and by Proposition 2.6 (H −H(φ−) has two local minima, one at φ− which is zero, and the
other at φ+, which is strictly positive; at φc it attains a local maximum). On the other hand,
the upper bound in (2.46) can be made arbitrarily small by choosing τ0 sufficiently large. This
gives a contradiction, thus Φτ does not attain a minimum and decreases for all X ∈ R.

We have thus concluded that the bounded solution Φτ converges either to φ+ or φc in a
monotonically decreasing way. We can use the previous argument again and take the limit
Xmin →∞ in the energy estimate, this gives

0 < H(φ∗)−H(φ−) < τ−α/2C(φ− − φ∗) < 2τ−α/2Cφ−.

However, 0 < H(φ+)−H(φ−) ≤ H(φc)−H(φ−) is a fixed positive number whereas the upper
bound can be made arbitrarily small by choosing τ0 sufficiently large. This yields again the
contradiction, and so there cannot exist such bounded solutions if τ is large enough.

Lemma 2.11. Σu is an open set.

Proof. Recalling Lemma 2.10, there exists a value τm > 0 such that (τm,+∞) ⊂ Σu. Hence,
the points τ ∈ (τm,+∞) are inner points of Σu with the usual topology in (0,+∞). Thus, we
are left to prove that points in the intersection (0, τm] ∩ Σu are again inner points of Σu.
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Suppose τ0 ∈ (0, τm] ∩ Σu, then we have to prove the existence of ε > 0 such that (τ0 −
ε, τ0 + ε) ⊂ Σu. Given limξ→ξ∗τ0

φτ0(ξ) = −∞, one has to verify that for all τ ∈ (τ0− ε, τ0 + ε),
the solution φτ of (2.4) and (2.5) satisfies limξ→ξ∗τ φτ = −∞ for some ξ∗τ ∈ R.

We use the continuous dependence on the parameter τ on finite intervals (see Appendix B.1)
to capture solutions φτ that are as negative as we want for sufficiently small ε > 0 for all
τ ∈ (τ0 − ε, τ0 + ε).

Let I be a bounded interval such that φτ0(ξ) < −φ− for all ξ ∈ I. Then, by the continuous
dependence on τ , for all δ > 0 there exists ε > 0 such that

|φτ0(ξ)− φτ (ξ)| < δ, for ξ ∈ I and τ ∈ (τ0 − ε, τ0 + ε). (2.47)

Let C = 2αCα/Ch, as in the proof of Lemma 2.10, and δ > 0 fixed. We then choose a bounded
interval I by means of,

I := {ξ ∈ R : −(2 max{φ−, (τ
−α

2
0 C)

1
2−α }+ δ) < φτ0(ξ) < −(max{φ−, (τ

−α
2

0 C)
1

2−α }+ δ)}.

Then, there exists ε > 0 such that (2.47) holds. Then, we can take another smaller value
of ε, that we denote by ε again for simplicity, sufficiently small (in particular, such that
ε < (1− 2−2/α)τ0 or smaller), and we define a sub-interval J ⊆ I such that

φτ0(ξ) < −(max{φ−, ((τ0 − ε)−
α
2C)

1
2−α }+ δ) for all ξ ∈ J .

Then, we deduce

|φτ0(ξ)| − |φτ (ξ)| < δ =⇒ |φτ (ξ)| > |φτ0(ξ)| − δ >
(

(τ0 − ε)−α/2C
) 1

2−α
, (2.48)

for all ξ ∈ J and τ ∈ (τ0 − ε, τ0 + ε) for ε sufficiently small.
Let us now argue by contradiction and suppose that there exists some τ ∈ (τ0 − ε, τ0 + ε)

such that τ /∈ Σu. Then this means that φτ is bounded and one can apply the first part of the
proof of Lemma 2.10 and get,

‖φτ‖∞ ≤ (τ−α/2C)
1

2−α ,

where C as above (we recall that to get to this inequality the starting assumption is that φτ has
its minimum in the interval (−∞,−φ−)). However, this contradicts (2.48), since τ0 − ε < τ .
Therefore, (τ0 − ε, τ0 + ε) ⊂ Σu and we have that Σu is open with the usual topology in
(0,+∞).

2.2.2 The set Σc

In this section we first prove that Σc is non-empty. We can show that this is true for τ ≥ 0
sufficiently small. In order to show this, we shall use the results in [3, 4, 5, 27] and the results
on the next section, regarding the problem with a C1 modification of h that has only the zeros
φ− and φc. The idea is to use that for a genuinely nonlinear flux the travelling wave solutions
are monotone for τ sufficiently small. This is what we prove in the next section, or at least
for a suitable modification of h.

Let us introduce some useful notation. We shall denote by φ0 the solutions of the equation

Dα[φ0] = h(φ0) , (2.49)
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such that
lim

ξ→−∞
φ0(ξ) = φ− and lim

ξ→+∞
φ0(ξ) = φc. (2.50)

These, are constructed in [4] (see also [5]) and are monotone decreasing, as we show below.
We will also consider the alternative equation

τφ′′τ +Dα[φτ ] = h̃(φτ ) , (2.51)

where

h̃(φ) :=

{
h(φ) ∀φ ≥ −

√
c/3

Pc(φ) ∀φ ≤ −
√
c/3 .

(2.52)

where Pc(φ) is a function such that Pc(−
√
c/3) = h(−

√
c/3), P ′c(−

√
c/3) = h′(−

√
c/3) = 0

and P ′′c (−
√
c/3) = h′′(−

√
c/3), and such that Pc(φ) > 0 for all φ ≤ −

√
c/32. Observe that

at φ = −
√
c/3, h attains its local maximum and that −

√
c/3 < φc < 0, thus this modification

of h is C2 at the point −
√
c/3. We observe also that h̃ has only two roots, φc and φ−, and

the necessary condition

0 ≤ H̃(φ)− H̃(φ−) =

∫ φ

φ−

h̃(y) dy (2.53)

holds only for φ ∈ [φ̄, φ−], where φ̄ is the second root of H̃(φ)− H̃(φ−) and satisfies φ̄ < φc.
One can then easily adapt the results of [3] to this equation subject to the far-field behaviour

lim
ξ→−∞

φτ (ξ) = φ− and lim
ξ→+∞

φτ (ξ) = φc. (2.54)

In fact, solutions to this problem exist for all τ > 0 and lie in the interval (φ̄, φ−). We recall
that φ− and φc satisfy the Rankine-Hugoniot condition, giving the same wave speed c as for
φ− and φ+, because φc is also a root of h.

Lemma 2.12. Let (φ−, φ+; c) satisfy the Rankine-Hugoniot condition and (2.7) with φc =
−φ− − φ+. If τ = 0 then there exists a decreasing solution φ ∈ C1

b (R) of the problem (2.49)-
(2.50). It is unique (up to a shift) among all φ ∈ φ− +H2(−∞, 0) ∩ C1

b (R).
If τ > 0 is sufficiently small then there exists a decreasing solution φ ∈ C3

b (R) of the trav-
elling wave problem (2.4)-(2.54). It is unique (up to a shift) among all φ ∈ φ−+H2(−∞, 0)∩
C3
b (R).

Proof. If τ = 0 then the result follows directly from [4, Theorem 2], and observe that [27,
Theorem 1.1] allows to remove an assumption on the kernel of the linearised problem.

If τ > 0, the existence of solutions to (2.51)-(2.54) is shown as in [3]. We now use
Theorem 2.17 of the next section, where we prove that the profile φτ is monotone decreasing
for this modified problem. In particular, for such sufficiently small τ , these monotone solutions
satisfy φc < φ(ξ) < φ− for all ξ ∈ R, an interval where h = h̃. Thus, they are also solutions
of the original equation (2.4), since they satisfy (2.54), this finishes the proof.

2 For example, we can choose

Pc(φ) = Aφ4 +Bφ3 + Cφ2 +Dφ+ E

such that A > 0 and the rest of coefficients are chosen such that, Pc(−
√
c/3) = h(−

√
c/3), P ′c(−

√
c/3) =

h′(−
√
c/3) = 0 and P ′′c (−

√
c/3) = h′′(−

√
c/3) < −6

√
c/3 < 0 (these give C and D as a linear combination

of A and B), and such that the local minimum at some φmin < −
√
c/3 (this gives a linear relation for A and

B, and choosing B very negative guarantees that A is positive) has Pc(φmin) > 0 (this is achieved by taking
E > 0 as large as necessary). This last condition guarantees that h̃(φ) > 0 for all φ ≤ −

√
c/3.
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We finish the section by showing the following lemma:

Lemma 2.13. Σc is an open set.

Proof. The result will follow again by using the continuous dependence of solutions on the
parameter τ and using the modified equation (2.51). We need to prove now that for any
τ0 ∈ Σc then (τ0 − ε, τ0 + ε) ⊂ Σc for some ε > 0, that is that τ0 is an inner point of Σc.

Since τ0 ∈ Σc, the far-field behaviour of φτ0 is given by (2.54). We recall the construction
of solutions (see [3, Lemma 2]) satisfying (2.5), for all τ > 0, let λτ be the positive root of
τz2 +zα−h′(φ−)z = 0 and for any δ > 0 let also Iτ,δ = (−∞, ξτ,δ] with ξτ,δ = log δ/λτ . Then,
there exists an order one constant C > 0, such that:

φτ ∈ φ− +H2(Iτ,δ) ‖φτ − φ− − eλτ ξ‖H2(Iτ,δ) ≤ Cδ
2 .

Then, we conclude, that for all δ > 0 there exists ε > 0 and ξ1, defined by,

ξ1 = inf
τ∈(τ0−ε,τ0+ε)

{
log δ

λτ

}
, (2.55)

such that for all τ ∈ (τ0 − ε, τ0 + ε)

∀ξ < ξ1 : |φτ0(ξ)− φτ (ξ)|, |φ′τ0(ξ)− φ′τ (ξ)| < δ . (2.56)

Now we can apply continuous dependence on finite intervals, to get a smaller neighbour-
hood of τ0 for which solutions and their first derivative are close by δ to φτ0 in a much larger
interval (−∞, ξ2] with ξ2 > ξ1.

It remains to show that for such, maybe smaller, neighbourhood of τ0, all solutions tend
to φc. This can be shown by an argument based on the linearisation about φc of the equation
(in the spirit of the next section). We do not give the details here, but we notice that the
linearised equation: τψ′′ + Dα[ψ] − h′(φc)ψ = 0 has solutions that tend to 0 as ξ → ∞.
This can be shown by splitting the integral operator at a ξ = 0 and considering the equation
τψ′′+Dα0 [ψ]−h′(φc)ψ = R, where Dα0 [ψ] is a Caputo derivative, and R is a term that contains
the reminder of the operator. Such equations are solved explicitly in [50] in terms of Wright-
Fox functions. The equation has two linearly independent solutions that, for all coefficients
being positive here, decay to 0 as ξ →∞, with ψ ∼ 1

ξα , and span all solutions. Then, we can
use a variation of constants formulation, as in Appendix B.2-(B.14), to express the solutions of
the original equation in terms of ψ. Subsequently, we can use the behaviour for large enough
ξ of solutions to the linear equation on a large interval of ξ, for τ in a neighbourhood of τ0 as
above, to conclude that in such an interval φτ and φ′τ are close by δ to φτ0 and φ′τ0 point-wise.
This allows to control the additional quadratic terms and the one coming from dividing into
two the non-local term (as is done in the next section). Finally, a Gronwall type argument
shows that φτ − φc ∼ ψ for large ξ and thus φτ → φc.

2.2.3 Monotonicity for (2.51)

In this section we first prove monotonicity of solutions to the problem (2.51)-(2.54) provided
that τ is sufficiently small.

At this step, we introduce a different formulation of the equations (2.4) and (2.51), since
we will use it in the proofs that follow. We write the equation as the linearised equation
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around φc together with the reminder terms. We write such formulation for equation (2.51)
with the obvious changes for (2.4), the linearised part being the same.

Let ξδ � 1 (which will be chosen appropriately in the proofs). Where the δ subscript
refers to the value:

|φτ (ξδ)− φc| =: δ > 0 .

For convenience we also introduce the notation:

h′c := h′(φc) = h̃′(φc) < 0 . (2.57)

Now, let us split the interval of integration on the non-local operator at ξδ, so the integral
part for ξ > ξδ can be considered as a classical Caputo derivative, and the other as a known
inhomogeneity. This gives:

τφ′′τ +Dαξδ [φτ ]− h′cφτ = h̃(φτ )− h′cφτ − dα
∫ ξδ

−∞

φ′τ (y)

(ξ − y)α
dy , (2.58)

where we have used the notation, written here with more generality,

Dαξ0 [g] := dα

∫ ξ

ξ0

g′(y)

(ξ − y)α
dy.

It is convenient to also translate the independent variable by means of η = ξ− ξδ and then to
introduce the function

Φτ (η) = φτ (ξ)− φc.

These changes of variables give the equation:

τΦ′′τ (η) +Dα0 [Φτ (η)]− h′cΦτ (η) = Q(η) (2.59)

where Q is defined as follows

Q(η) := h̃(φτ (η + ξδ))− h′cΦτ (η)− dα
∫ 0

−∞

Φ′τ (z)

(η − z)α
dz. (2.60)

Now, we can implicitly write the solution to (2.59)-(2.60), by Appendix B.2 and, e.g., [15].
This gives:

Φτ (η) = Φτ (0+)v(η) +
τ

h′c
Φ′τ (0+)v′(η) +

1

h′c

∫ η

0
v′(r)Q(η − r) dr (2.61)

where v is the solution to the homogeneous equation and is given by

v(η) = L−1

(
τs+ sα−1

τs2 + sα − h′c

)
(η),

where L denotes the Laplace transform and L−1 the inverse Laplace transform. The properties
and behaviour of v and its derivatives are given in the Appendix B.2.2, Lemma B.3. Observe
that v is the same for both associated problems (2.4) and (2.51).

With regard to the monotonicity analysis, one can also check that the following holds:
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Theorem 2.14 ([3, Theorem 9]). If τ is sufficiently small, then there exists an interval Iτ =

(−∞, ξτ ] with ξτ = O(τ−
1

2−α ) as τ → 0, and a value ξ = ξ0
τ < ξτ such that φτ (ξ0

τ ) = φ0(ξ0
τ ),

moreover, |φτ (ξ) − φ0(ξ)| ≤ τC and |φ′τ (ξ) − φ′0(ξ)| ≤ τ1/(2−α)C for all ξ ∈ Iτ . Thus for τ
sufficiently small, φτ is also monotone decreasing in Iτ .

Lemma 2.15. If Φ′τ (η) < 0 in the interval (−∞, 0), then:∫ 0

−∞

|Φ′τ (z)|
(η − z)α

dz ≤ C

ηα+1
+
C ′ |Φτ (η)|

ηα
(2.62)

and ∫ 0

−∞

|Φ′τ (z)|
(η − z)α

dz ≤ C

1 + ηα
. (2.63)

Moreover, for the modified problem (2.51)-(2.54), we have the following upper and lower
bounds, there exists Ch ≥ 0, such that

Q(η) ≥ −ChΦ2
τ (η) + dα

∫ 0

−M

−Φ′τ (z)

(η − z)α
dz (2.64)

for any 0 < M <∞ and

Q(η) ≤ Ch Φ2
τ (η) + dα

∫ 0

−∞

−Φ′τ (z)

(η − z)α
dz ≤ Ch Φ2

τ (η)−Dα[Φτ ](0+) (2.65)

Proof. Observe that (2.62) and (2.63) are obtained as in Chapter 1. The last estimate might
be used for small values of η, and the first one for moderate or large values of η. The constants
C in both estimates are at most of order one, but we cannot guarantee that they are small.

The last two inequalities (2.64) and (2.65), simply follow by applying Taylor’s theorem to
h̃(φ) centred at φc, since there exists, for each η > 0, φ̃η ∈ [infξ∈R φτ , φ−), such that

h̃(φτ (η + ξδ))− h′cΦτ (η) =
h̃′′(φ̃η)

2
(Φτ (η))2. (2.66)

We recall that solutions of (2.51)-(2.54) lie in (φ̄, φ−), where φ̄ < φ− is the other zero of (2.53).
Thus infξ∈R φτ (ξ) ≥ φ̄. Then |h̃′′(φ̃η)| ≤ maxφ∈[φ̄,φ−] |h̃′′(φ)| =: Ch.

Remark 2.16. Observe that, by Lemma 2.15 as long as Φτ decreases and stays positive
(φτ > φc) but close to 0 (so h̃(φτ ) < 0, but small) then Q is positive:

Q(η) ≥ − ChΦ2
τ (η) + dα

∫ 0

−M

−Φ′τ (z)

(η − z)α
dz

≥ − Chδ2 +
dα

(η +M)α
(
−Φτ (0+) + Φτ (−M)

)
.

(2.67)

The first term is dominated by the second if we take M ≥ η and large enough, but such that
Mα � δ−2, since we also have that 0 < −Φτ (0+)+Φτ (−M) = −φτ (ξδ)+φ(ξδ−M) ≤ φ−−φc.

Theorem 2.17. Let φτ be a solution of (2.51)-(2.54). If τ > 0 is sufficiently small, then the
solution φτ is monotone decreasing in the interval (ξτ ,∞) with ξτ = O

(
τ−

1
2−α
)
as τ → 0.

52



CHAPTER 2. NON-CLASSICAL SHOCKS IN A KDVB EQUATION

Proof. We divide the proof into several steps. We first write the equation in a more convenient
way. Then we gather the estimates that will be used in specific terms of the reformulated
equation. Finally, we show the result.

STEP 1: We recall that φ→ φc as ξ →∞ and using the information from Theorem 2.14,
we can take ξδ < ξ̄τ of Theorem 2.14 above, such that

ξδ = O
(
τ−

1
2−α
)

for τ > 0 sufficiently small. The δ here is

φτ (ξδ)− φc =: δ > 0.

This difference can be made positive, by taking τ sufficiently small. Indeed, this holds since
φ0(ξ) > φc, the fact that φ0(ξδ) ∼ τα/(2−α), see Chapter 1, and Theorem 2.14 (observe that
α/(2− α) < 1, so φ is closer to φ0 than φ0 is to φc at ξδ).

In order to show the monotonicity of Φτ , we need to get that Φ′τ (η) < 0 for all η if τ is
sufficiently small. We shall then use the equation

Φ′τ (η) = Φτ (0+)v′(η) +
τ

h′c
Φ′τ (0+)v′′(η) +

1

h′c

∫ η

0
v′′(y)Q(η − y) dy, (2.68)

that results from differentiating (2.61) and using that v′(0) = 0 by Lemma B.3 of Ap-
pendix B.2.2. In order to show the monotonicity, we will have to guarantee that Φτ (η) > 0
(given by equation (2.61)) at the same time as Φ′τ (η) < 0 by making τ as small as necessary.

We will use the results of the Appendix B.2.2, Lemma B.3, to get the sign of the different
terms and estimates on v and its derivatives as appropriate. In particular, we know that
v′(η) < 0 for all η if τ is sufficiently small. And we know that, for τ sufficiently small,
Φτ (0+) = δ > 0 and Φ′τ (0+) < 0. This means that the first term in (2.68) is negative.
The second is negative when v′′(η) < 0, we know that this holds for τ sufficiently small and
for η ≤ η′ with η′ = O(τ

α
2−α ) and v′′ is non-negative otherwise. Then the proof consists of

controlling this term and the third one in different regimes of η, essentially, in the one for
which η < η′ (or v′′(η) ≤ 0) and the one for which η ≥ η′ (or v′′(η) ≥ 0).

STEP 2: Let us gather some estimates that will be used repeatedly. Let us recall the
result of Chapter 1 on the behaviour of φ0, more precisely, we have that there exists a constant
C > 0 such that

1

Cξα
≤ φ0(ξ)− φc ≤

C

ξα
, (2.69)

for all ξ > 0, then, using also Theorem 2.14, we get the following estimates on δ :

δ ≤ |φτ (ξδ)− φ0(ξδ)|+ |φ0(ξδ)− φc| ≤ τ C ′ +
C

ξαδ
∼ τ

α
2−α as τ → 0+.

Also, since φ0(ξδ)− φc > 0 and, we obtain a lower bound for δ, also using (2.69):

δ = φτ (ξδ)− φ0(ξδ) + φ0(ξδ)− φc ≥− |φτ (ξδ)− φ0(ξδ)|+
1

Cξαδ

∼− τ C + C ′ τ
α

2−α ∼ τ
α

2−α , as τ → 0+.

Combining both bounds we have that

δ = Φτ (0) ∼ τ
α

2−α , as τ → 0+. (2.70)
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Similarly, one gets for τ small enough, the upper bound

0 ≤ −φ′τ (ξδ) ≤ |φ′τ (ξδ)− φ′0(ξδ)|+ |φ′0(ξδ)| ≤ C ′τ
1

2−α +
C

ξα+1
δ

as τ → 0+ .

This implies
|φ′τ (ξδ)| ≤ C(τ) where C(τ) ∼ τ

1
2−α as τ → 0+ . (2.71)

Due to the definition of ξδ we know that Φτ (0+) = φτ (ξ+
δ ) − φc = δ and Φ′τ (0+) =

φ′τ (ξ+
δ ) = φ′τ (ξ−δ ) < 0 by the regularity of the solution and Theorem 2.14 as long as τ > 0 is

small enough.
Write

−Dα[Φτ ](0+) =

∫ ξδ−ε

−∞

−φ′(z)
(ξδ − z)α

dz +

∫ ξδ

ξδ−ε

−φ′(z)
(ξδ − z)α

dz , (2.72)

we estimate the first integral as follows∫ ξδ−ε

−∞

−φ′(z)
(ξδ − z)α

dz =

∫ 0

−∞

−φ′(z + ξδ − ε)
(ε− z)α

dz = −α
∫ 0

−∞

φ(z + ξδ − ε)
(ε− z)α+1

dz +
φ(ξδ − ε)

εα
,

then∫ ξδ−ε

−∞

−φ′(z)
(ξδ − z)α

dz = −α
∫ 0

−∞

φ(z + ξδ − ε)− φc
(ε− z)α+1

dz +
φ(ξδ − ε)− φc

εα
≤ φ(ξδ − ε)− φc

εα
.

(2.73)
For the second integral term in (2.72) we have∫ ξδ

ξδ−ε

−φ′(z)
(ξδ − z)α

dz ≤ 1

1− α
sup

ξ∈[ξδ−ε,ξδ]
|φ′(ξ)|ε1−α. (2.74)

Let us choose ε large such that sup |φ′|ε1−α ∼ δ/εα � 1. We take, for example, ε = ξδτ
β ,

where β > 0 and β < 1/(2 − α). Observe that, arguing as in (2.71), we have that there are
positive constants C1 and C2, such that

sup
ξ∈[ξδ−ε,ξδ]

|φ′(ξ)| ≤ C1τ
1

2−α + C2

(
τ

1−β(2−α)
2−α

)1+α

,

then
ε1−α sup

ξ∈[ξδ−ε,ξδ]
|φ′(ξ)| ≤ C

(
τ
α+(1−α)β(2−α)

2−α + τ
2α(1−β(2−α))

2−α

)
� 1 . (2.75)

Combining these observations with (2.73) and (2.74) we get:

−Dα[Φτ ](0+) ≤ C
(
δε−α + τγα,β

)
∼
(
τ

α
2−α τα

1−β(2−α)
2−α + τγα,β

)
(2.76)

with
γα,β = min

{
α+ (1− α)β(2− α)

2− α
,
2α(1− β(2− α))

2− α

}
. (2.77)

Observe that, by choosing β < 1
2(2−α) , we have that

γα,β >
α

2− α
. (2.78)
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STEP 3: Suppose that η is in the range for which v′′(η) ≤ 0, that is for η ∈ (0, ηinflex]
where ηinflex ∼ τ1/(2−α) (see Appendix B.2.2 Lemma B.3). Then we have that the first term
in (2.68) is negative, the second is positive and the third contains two terms, that can be
estimated as follows: First, we observe that

0 ≥
∫ 0

−∞

Φ′τ (z)

(η − z)α
dz ≥ Dα[Φτ ](0+)

thus,

0 ≤ dα
h′c

∫ η

0
v′′(y)

∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dz dy ≤ 1

h′c

∫ η

0
v′′(y)(−Dα[Φτ ](0+)) dy

and (2.76) implies that there is a constant C > 0 of order one such that

0 ≤ dα
h′c

∫ η

0
v′′(y)

∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dz dy ≤ C

h′c
v′(η)

(
τ

α
2−α τα

1−β(2−α)
2−α + τγα,β

)
. (2.79)

Observe that as long as Φτ (η) > 0 and Φ′τ (η) ≤ 0, then (h(φτ (η + ξδ))− h′(φc)Φτ (η)) ≤ 0. If
this holds in the range η ∈ (0, ηinflex), then

1

h′c

∫ η

0
v′′(y)

(
h̃(φτ (η − y + ξδ))− h′cΦτ (η − y)

)
dy ≤ 0.

We have to guarantee now that η in this range then Φτ stays positive. Observe that
from equation (2.61) we get that for Q initially positive, then Φτ stays positive as long as
η < Φτ (0+)/|Φ′τ (0+)|. This is fine if τ1/(2−α) ≤ Cδ/|Φ′τ (0+)|, for some order one C. Indeed,
we can guarantee this by taking τ small enough and using (2.70) and (2.71).

With this observation and (2.79) applied to (2.68), we obtain

Φ′τ (η) ≤ Φτ (0+)v′(η) +
C

h′c
v′(η)

(
τ

α
2−α τα

1−β(2−α)
2−α + τγα,β

)
,

where we have also applied that in this range of η the second term in (2.68) is non-positive.
Now, we can use (2.70) and (2.78) to conclude that for τ small enough in this range Φ′τ (η) < 0.

STEP 4: Values of η pass the inflexion point of v′′(η). Here η > ηinflex an interval where
v′′(η) > 0 if τ is very small (see Appendix B.2.2 Lemma B.3). We identify the signs of the
terms in (2.68) in this range. The first term is negative. The second is non-negative but either
is very small (near the inflexion point) or can be absorbed in the first by using the behaviour
of v′(η) and v′′(η), and (2.70) and (2.71), since this requires η > Cτ1+ 1−α

2−α and in this range
the smaller behaviour that we have is η ∼ τ

1
2−α .

The integral term does not have a clear sign. We consider it in two steps, first, we focus on
the integral term that contains the non-local operator in the integrand. There are two cases,
first if ∫ η

0
v′′(y)

∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dz dy ≥ 0,

there is nothing to do.
Let us now assume that∫ η

0
v′′(y)

∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dz dy < 0.
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The behaviour of v′′, which is positive for η > ηinflex, implies that for τ sufficiently small,
there exists η∗ < ηinflex such that∫ η∗

0
v′′(y)

∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dz dy =

∫ η

0
v′′(y)

∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dz dy

i.e. η∗ is the value for which∫ η

η∗

v′′(y)

∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dz dy = 0. (2.80)

We now observe that if y′ ∈ (η∗, ηinflex] then∫ 0

−∞

(−Φ′τ (z))

(η − y′ − z)α
dy′ ≤

∫ 0

−∞

(−Φ′τ (z))

(η − ηinflex − z)α

and if y ∈ [ηinflex, η) then∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dy ≥

∫ 0

−∞

(−Φ′τ (z))

(η − ηinflex − z)α
.

Also, (2.80) implies that∫ η

ηinflex

|v′′(y)|
∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dz dy =

∫ ηinflex

η∗

|v′′(y′)|
∫ 0

−∞

(−Φ′τ (z))

(η − y′ − z)α
dz dy′

and applying the above inequalities, we get that, as long as η > ηinflex,∫ η

ηinflex

|v′′(y)|dy ≤
∫ ηinflex

η∗

|v′′(y′)|dy′.

Now, since v′′(y) ≥ 0 for y ∈ (ηinflex, η) and v′′(y′) ≤ 0 for y′ ∈ (η∗, ηinflex), integrating the
above inequality gives

v′(η) ≤ v′(η∗) < 0. (2.81)

Then an argument as in STEP 3 gives the control of this integral term. Indeed, we have now
that using (2.76)

0 ≤ dα
h′c

∫ η∗

0
v′′(y)

∫ 0

−∞

(−Φ′τ (z))

(η − y − z)α
dz dy ≤ Cdα

h′c

(
τ

α
2−α τα

1−β(2−α)
2−α + τγα,β

)
v′(η∗)

with γα,β given in (2.77). Then this term can be absorbed by the first using (2.70), (2.78) and
(2.81) taking τ smaller if necessary.

STEP 5: For η > ηinflex, if τ is sufficiently small, it remains to control the integral term
that contains the quadratic part of the equation. By continuity we know that initially near
ηinflex in this range Φτ (η) > 0 and Φ′τ (η) < 0, and since initially we can take τ small enough
such that φτ (ξδ) < 0 (i.e. Φτ (0) < −φc), then also h̃′′(φ) < 0 just passed ηinflex. In that case
we have:

1

h′c

∫ ηinflex

0
v′′(y)

(
h̃(φτ (η − y + ξδ))− h′cΦτ (η − y)

)
≤ 0
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notice that here η − ηinflex ≤ η − y ≤ η, and

1

h′c

∫ η

ηinflex

v′′(y)
(
h̃(φτ (η − y + ξδ))− h′cΦτ (η − y)

)
≥ 0.

As above, we can distinguish two cases,

1

h′c

∫ η

0
v′′(y)

(
h̃(φτ (η − y + ξδ))− h′cΦτ (η − y)

)
≤ 0

and there is nothing to do, or

1

h′c

∫ η

0
v′′(y)

(
h̃(φτ (η − y + ξδ))− h′cΦτ (η − y)

)
> 0

in this range where
(
h̃(φτ (η − y + ξδ))− h′cΦτ (η − y)

)
≤ 0. In this case there exists η∗∗ ∈

(ηinflex, η) such that

1

h′c

∫ η∗∗

0
v′′(y)

(
h̃(φτ (η − y + ξδ))− h′cΦτ (η − y)

)
= 0 .

Then, the term that must be controlled is:

0 ≤ 1

h′c

∫ η

η∗∗

v′′(y)
(
h̃(φτ (η − y + ξδ))− h′cΦτ (η − y)

)
≤ Ch
|h′c|

δ2(v′(η)− v′(η∗∗)) .

If η∗∗ and η are close to each other and to ηinflex then this term is negligible. If they are away
from the inflexion point then, we can use the mean value theorem to v′ and that v′′ is small for
larger value of η to control this term. There is a third case, when η∗∗ is close to the inflexion
point, but η is away from it. But, if this is the case, since we have that (by the definition of
η∗∗) ∫ η∗∗

ηinflex

v′′(y′)
∣∣∣h̃(φτ (η − y′ + ξδ))− h′cΦτ (η − y′)

∣∣∣ dy′
=

∫ ηinflex

0
(−v′′(y))

∣∣∣h̃(φτ (η − y + ξδ))− h′cΦτ (η − y)
∣∣∣ dy ,

it means that both terms are very small, since the integrand of left-hand side is very small (v′′

is very close to zero, and the other factor at most of order δ2 and the integral is over a very
small interval), but this contradicts that |v′′(y)| ∼ τ−1 for y < ηinflex.

As η becomes larger, it might happen that h′′(φτ ) becomes positive. This would happen by
either φτ crossing the value φc (thus Φτ becomes negative) and reaching a value below −

√
c/3,

or by φτ turning up before reaching φc and becoming positive (this means that Φτ becomes
larger than −φc > 0). The former is not possible, because before reaching that possibility we
have that Φ′τ < 0 which reinforces that Φτ > 0 (the integral term in (2.59) with the quadratic
part gets more positive). The latter is also not possible either, because before that happens
Φ′τ < 0 and Φτ > 0 and for τ small enough, one reinforces the other (the integral terms with
the quadratic part of the equation that have the bad sign for (2.59) have the good sign for
(2.68) pass the inflexion point, and vice-versa).
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For completeness we give the following result on the asymptotic behaviour of solutions as
η →∞ for monotone solutions:

Proposition 2.18. If τ > 0 is sufficiently small and φτ is decreasing then

lim
ξ→∞

|φτ (ξ)− φc| ξα < +∞.

Proof. We fix τ sufficiently small such that Lemma B.3 of the Appendix B.2.2 holds, in
particular 0 < v(η) < 1 and v′(η) < 0 for all η > 0.

Since here we assume that φ′τ < 0 we take ξδ � 1 (and possibly larger than ξτ of Theo-
rem 2.14 above). The assumption implies also that Φτ > 0 and that Φ′τ < 0. Then we follow
an argument similar to that in Chapter 1. Here we can take, if necessary, δ as small as we
want, by assumption. This means that we can choose the shift ξδ a posteriori to get the result.

A lower bound is obtained by applying that Q(η) > 0. Notice that this is possible for very
small δ and large η so that M in (2.67) can be taken 1� η ≤M and Mα � δ−2. Then:

Φτ (η) ≥ δv(η) +
τΦ′τ (0+)

h′c
v′(η) (2.82)

and this is valid for very large η with η � δ−2/α. The second term is negative, but for all
η ≥ η′ such that

η′ � τ

δ

Φ′τ (0+)

h′c

then there exists C > 0 such that

Φτ (η) ≥ Cη−α for 1� η � δ−2/α, (2.83)

with δ � 1 sufficiently small. Here we are using the behaviour of v and its derivatives given in
Lemma B.3 of the Appendix B.2.2. Notice that if the decay of Φτ is slower than exponentially
then δ = Φτ (0+) ≥ |Φ′τ (0+)|, so that η′ is not necessarily large and both conditions on η are
compatible.

Let us obtain an upper bound. Since the second term in (2.61) is negative, we have

Φτ (η) ≤ δv(η) +
1

h′c

∫ η

0
v′(r)Q(η − r) dr .

Then, we can apply the estimates (2.64)-(2.65) of the Lemma 2.15 on Q. But we may split
the integral into several parts. Before that, let us introduce the following notation:

I1 :=
1

h′c

∫ η

0
v′(r)

(
h̃(φτ (η − r + ξδ))− h′cΦτ (η − r)

)
dr

and

I2 :=
dα
h′c

∫ η

0
v′(r)

∫ 0

−∞

−Φ′τ (z)

(η − r − z)α
dz dr .

We observe that, by hypothesis, we can start for a ξδ large enough such that h′′(φ(φδ)) < 0
so that I1 ≤ 0 is non-positive. The assumption on φτ being decreasing up to ξδ also implies
that I2 ≥ 0. Then we have that

Φτ (η) ≤ δv(η) + I2.
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We get an upper bound for I2 using (2.62) and (2.63) of Lemma 2.15 and splitting the
interval of integration at some R > 0:

I2 ≤
dα
h′c

(∫ R

0
v′(r)

(
C

(η − r)α+1
+
C ′ |Φτ (η − r)|

(η − r)α

)
dr +

∫ η

R
v′(r)

(
C

1 + (η − r)α

)
dr

)
≤ C1

R2

2τ

(
C

(η −R)α+1
+
C ′ |Φτ (η −R)|

(η −R)α

)
+
C2

α

(
1

Rα
− 1

ηα

)
.

(2.84)

Now, we take R depending on η, once that τ and δ (taken as small as necessary) are fixed:

R(η) = (ση)α/2, for σ ∈ (0, 1).

We take σ such that R(η) ≤ 1. In particular for each η we have

σ < η−1. (2.85)

Then we can say that
1

Rα
≤
(

1

Rα

)2/α

=
1

R2
.

The previous estimate and inequality (2.84) applied to (2.61) yield,

Φτ (η) ≤ δv(η) +
R2

2τ

C

(η −R)α+1
+
R2

2τ

C ′|Φτ (η −R)|
(η −R)α

+
C3

α

1

R2
− C4

α

1

ηα
. (2.86)

Therefore, we can deduce the following upper bound from (2.86), where the worst case
scenario is (

1− C5

2τ
σα
)

Φτ (η) ≤ C6

ηα
,

for some C5, C6 > 0 of order one, and, therefore, it is sufficient to take σ small enough such
that

σ < τ1/α . (2.87)

Since, we can choose δ = Φτ (0+) arbitrarily small once τ is fixed and we have (2.83), we can
conclude that for 1 � η � δ−2/α (large enough but in this range), we can take σ satisfying
(2.85) and (2.87), then, there exists C > 0 such that

Φτ (η) ≤ C

ηα
for 1� η � δ−2/α. (2.88)

Now taking the limit ξ →∞ implies that δ → 0 so we can increase the range of η in the limit
and we obtain the result.

2.3 Numerical Computations

In this section we show numerical simulations that confirm the existence of solutions of (2.4)-
(2.6) for a value of τ > 0 under the assumptions (2.7) and (2.6). Namely and for definiteness,
in this section we take

φ− = 1 , φ+ = −0.6 (φc = −0.4) , (2.89)
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that, indeed, the required conditions are satisfied.
First, we show numerical computations of (2.4) performed with the method described and

analysed in [26]. Once the travelling wave problem (2.4) is rewritten as a system making the
change ψ = φ′ {

φ′ = ψ,

τψ′ = h(φ)− dα
∫ ξ
−∞

ψ(y)
(ξ−y)α dy,

(2.90)

the singularity of the integral term Dα[φ] is removed by integrating by parts this operator and
taking into account the regularity and far-field behaviour of φ, which implies that∫ ξ

−∞

ψ(y)

(ξ − y)α
dy =

1

1− α

∫ ξ

−∞
ψ′(y)(ξ − y)1−α dy. (2.91)

Then the scheme that solves the initial value problem (2.90)-(2.91) is given by the Heun’s
method (see e.g. [13]). Let ξ0 be the initial step of the numerical integration, ∆ξ be the
integration step size and (φn, ψn) denote the solution at the point ξn = ξ0 + n∆ξ for all
n ∈ N≥0, then the solution at the point ξn+1 is given by means of

φn+1 = φn +
∆ξ

2
(k1,φ + k2,φ),

ψn+1 = ψn +
∆ξ

2
(k1,ψ + k2,ψ),

with

k1,φ = ψn,

k1,ψ =
1

τ

(
−Dα∆ξψn + h(φn)

)
,

k2,φ = ψn + (∆ξ)k1,ψ,

k2,ψ =
1

τ

(
−Dα∆ξ(ψn + (∆ξ)k1,ψ) + h(φn + (∆ξ)k1,φ)

)
,

where the discrete operator Dα∆ξ[·] represents the truncation of (2.91) at ξ0 which was previ-
ously denoted as Dαξ0 [·]. Moreover, the discretisation of this operator is obtained by means
of,

Dα∆ξψn =
∆ξ

2

1

Γ(2− α)

n−1∑
k=0

(
D∆ξψ

k(ξn − ξk)1−α +D∆ξψ
k+1(ξn − ξk+1)1−α

)
+

1

Γ(2− α)
ψ0(ξn − ξ0)1−α.

For more information on the numerical scheme see [26], where the convergence of the method
is proved and the order is shown to be just above 1.

Having described the scheme, the shooting argument proceeds as follows. First, we identify
two values of τ , τc and τu such that τc ∈ Σc and τu ∈ Σu. This is done by integrating the
equations for a long enough interval, typically of length 500, then if the solution approaches
the value φc = −0.4 in the tail, we assume that the corresponding τ is in Σc. If the solution
decays to negative values beyond say −10, then we assume that the corresponding τ is in
Σu. This operation allows to choose initial values for τc and τu. Then, we start an iterative
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process, which consists of computing the solution for τm = (τu + τc)/2, and apply the same
criteria to either set τm = τc or τm = τu. We repeat this process as long as |τc− τm| < 10e−15.

Figure 2.1 shows solutions for α = 0.9, in this case the iteration stops at the value τ ≈
2.80018.
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Figure 2.1: α = 0.9 and τ ≈ 2.80018

Figure 2.2 shows solutions for α = 0.5, in this case the iteration stops at the value τ =
72.821821443764975.
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Figure 2.2: α = 0.5 and τ ≈ 72.82182
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Chapter 3

Asymptotic behaviour of solutions to
a conservation law regularised by a
Riesz-Feller operator

In this chapter, we study the large time asymptotic behaviour of solutions to the convection-
diffusion equation{

∂tu(t, x) + |u(t, x)|q−1∂xu(t, x) = ∂xDα[u(t, ·)](x), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,

(3.1)

for u0 ∈ L1(R) ∩ L∞(R) and a particular power-like locally Lipschitz flux function for q > 1.
Here the non-local operator, Dα[·], applied to a real valued function g is defined by means of

Dα[g](x) = dα+1

∫ 0

−∞

g(x+ z)− g(x)

|z|α+1
dz, for 0 < α < 1, dα+1 =

1

Γ(−α)
, (3.2)

which is called the right sided Weyl-Marchaud fractional derivative of order α. However,
notice that the diffusion operator, ∂xDα[·], can also be seen as a Riesz-Feller operator of order
1 + α and skewness 1− α as we discuss below.

In order to analyse the asymptotic behaviour of solutions as t → ∞, we first turn this
study into a limiting problem of a regularised problem by applying the appropriate scaling.
For any λ > 0, let us consider the change of variables

t = λqs x = λy (3.3)

and define the function
uλ(s, y) := λu(λqs, λy). (3.4)

Then, if u is a solution of (3.1), uλ satisfies{
∂suλ + |uλ|q−1∂yuλ = λq−1−α∂yDα [uλ(s, ·)] (y), s > 0, y ∈ R,
uλ(0, y) = λu0(λy), y ∈ R.

(3.5)

Here we prove that in the sub-critical case (1+α > q > 1) the large time asymptotic behaviour
of the solution to (3.1) is given by the unique entropy solution of the scalar conservation law
and the main result is summarised as follows:
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Theorem 3.1. For any 1 + α > q > 1, and any 1 ≤ p < ∞, given the initial condition
u0 ∈ L1(R) ∩ L∞(R) with

∫
R u0(x)dx = M > 0 and u0(x) ≥ 0 for all x ∈ R, then u, the

unique mild solution of system (3.1), satisfies

lim
t→∞

t
1
q

(1− 1
p

)‖u(t, ·)− UM (t, ·)‖Lp(R) = 0, (3.6)

where UM is the unique entropy solution of{
∂tUM + ∂x(|UM |q−1 UM/q) = 0, t > 0, x ∈ R,
UM (0, x) = Mδ0, x ∈ R.

(3.7)

The theorem is proved applying the method developed by Kamin and Vázquez in [47] and,
subsequently, using a compactness argument from [69] and some estimates on the solutions
which are consequences of an Oleinik type inequality. Moreover, the method mentioned previ-
ously rests on noting that with the rescaling (3.3)-(3.4), the limit (3.6) is formally equivalent
to

‖uλ(s0, ·)− UM (s0, ·)‖Lp(R) → 0, as λ→∞, (3.8)

for some s0 > 0 fixed. Therefore, the last limit is proved and, basically, this concludes the
proof of the main theorem.

On the other hand, the following sections are organised as follows. Section 3.1 contains
preliminary results. Among other results, we recall some properties of the non-local operator
(3.2) and its derivative such as equivalent integral representations, their Fourier symbols and
certain forms of dual operators. Apart from these, we derive some estimates of the fundamental
solutions of the linear problem and we recall the necessary results on the entropy solution
associate to the purely convective equation which some of them are obtained in [30]. Finally,
we derive a comparison principle which is used later on to show that solutions of (3.1) for a
positive initial data preserve positivity.

In Section 3.2, an Oleinik type entropy inequality is proved and we conclude the necessary
estimates to prove Theorem 3.1 which is given in Section 3.3. The main difference from the
results in the literature is that our operator, in general, is not symmetric and its Fourier
symbol is not real.

Finally, even though all the proofs are done for the operator mentioned previously, in
Section 3.4 we show how to generalise the results to all Riesz-Feller operators.1

3.1 Preliminary results

3.1.1 Derivation and integration by parts rules

In this section we give alternative formulations, which under certain smoothness conditions
are equivalent, of the operator (3.2) and its derivative. Then we derive an integration by parts
rule. We also recall the integration by part rule and product rule for the fractional Laplacian.

We recall the following result that can be found in Chapter 1 (see Lemma 1.8).

1This chapter is based on: Carlota M. Cuesta and Xuban Diez-Izagirre, Asymptotic behaviour of solutions
to a conservation law regularised by a Riesz-Feller operator, (In preparation).
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Lemma 3.2 (Equivalent representations of ∂xDα and Dα). If α ∈ (0, 1), then for all ϕ ∈
C1
b (R) and all x ∈ R,

Dα[ϕ](x) := dα+1

∫ 0

−∞

g(x+ z)− g(x)

|z|1+α
dz = dα

∫ x

−∞

ϕ′(z)

(x− z)α
dz.

Moreover, for all ϕ ∈ C2
b (R) and all x ∈ R,

∂xDα[ϕ](x) : = dα+2

∫ 0

−∞

ϕ(x+ z)− ϕ(x)− ϕ′(x)z

|z|α+2
dz

= dα

∫ x

−∞

ϕ′′(z)

(x− z)α
dz.

We also recall the following integration by parts result (see Lemma 1.13 in Chapter 1):

Lemma 3.3. Let α ∈ (0, 1), u ∈ C2
b (R) and ϕ ∈ C∞c (R). Then, for all t > 0∫

R
ϕ(x)∂xDα[u(t, ·)](x) dx =

∫
R
∂xDα[ϕ](x)u(t, x) dx,

where Dα[·] is defined by means of

Dα[g](x) = −dα+1

∫ ∞
0

g(x+ z)− g(x)

|z|α+1
dz. (3.9)

Moreover, for g ∈ C2
b (R),

∂xDα[g](x) = dα+2

∫ ∞
0

g(x+ z)− g(x)− g′(x)z

|z|α+2
dz. (3.10)

And for bounded regular functions:

Dα[g](x) = dα

∫ ∞
x

g′(z)

(z − x)α
dz

and
∂xDα[g](x) = dα

∫ ∞
x

g′′(z)

(z − x)α
dz.

The proof is analogous to that of Lemma 3.2 above.
With the following definition and notation for the Fourier transform,

F(g(x))(ξ) = ĝ(ξ) =
1√
2π

∫
R
g(x)e−iξx dx, (3.11)

we obtain, formally, the Fourier symbol of Dα[·] (see e.g. [65, Chapter 7]),

F (Dα[g](x)) (ξ) = (iξ)αF(g)(ξ), (3.12)

and that of Dα[·],
F
(
Dα[g](x)

)
(ξ) = −(−iξ)αF(g)(ξ). (3.13)
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In particular Dα[·] is not of Riesz-Feller type because its symbol has β = α and γ = 2−α,
but Dα[·] belongs to this class, since β = α and γ = α. We observe that their symbols satisfy
(iξ)α = −−(−iξ)α, where the bar on the right-hand side denotes complex conjugation.

We can then conclude that

F(∂xDα[u])(ξ) = (iξ)α+1F(u)(ξ). (3.14)

We observe that

(iξ)α+1 = −|ξ|α+1
(

cos
(

(1− α)
π

2

)
− i sgn(ξ) sin

(
(1− α)

π

2

))
,

this means that ∂xDα[·] is an operator of Riesz-Feller type with β = 1 +α and γ = 1−α. We
notice that the definition we use here for Riesz-Feller operators differs from the usual one. In
fact the symbol we obtain is the complex conjugate of the one with the standard definition,
because such definition uses the complex conjugate of (3.11) as Fourier transform (up to a
scaling factor).

We also then get:

F(∂xDα[u])(ξ) = (−iξ)α+1 F(u)(ξ), for 0 < α < 1. (3.15)

With this Fourier representation formulas we can now prove the following integration by
parts rule:

Lemma 3.4. Let 0 < α < 1 and 0 < s1, s2 < 1 such that 1 + α = s1 + s2, assume also that
g ∈ H2(R) so that ∂xDα[g], Ds1 [g], Ds2 [h] ∈ L2(R), and let h ∈ L2(R), then∫

R
∂xDα[g](x)h(x) dx = −

∫
R
Ds1 [g](x)Ds2 [h](x) dx.

Proof. Since ∂xDα[g], h ∈ L2(R), then Plancherel’s theorem yields∫
R
∂xDα[g](x)h(x) dx =

∫
R

(iξ)1+αF(g)(ξ)F(h)(ξ) dξ

= −
∫
R

(iξ)s1 F(g)(ξ) (−(−iξ)s2)F(h)(ξ) dξ

= −
∫
R
F(Ds1 [g])(ξ)F(Ds2 [h])(ξ) dξ = −

∫
R
Ds1 [g](x)Ds2 [h](x) dx,

for 0 < s1, s2 < 1 such that 1 + α = s1 + s2, where we have used the identity (iξ)s2 = (−iξ)s2
(the bar indicating complex conjugation).

We now recall some facts about the fractional Laplacian that we need later to conclude
Lp-regularity of the solution and an energy estimate.

From the equivalent definitions of the fractional Laplacian (see [53]), if we consider the
one given by the Fourier symbol, for 0 < α < 2, we get

|D|α[g](x) = (−∆)α/2[g](x) := F−1 (|ξ|αF(g)(ξ)) (x), (3.16)

then, formally, applying Plancherel’s theorem, we get that

‖Dα[g]‖L2(R) = ‖(i ·)αF(g)(·)‖L2(R) = ‖| · |αF(g)(·)‖L2(R) = ‖|D|α[g]‖L2(R). (3.17)

We shall also need the following lemma taken from [41, Theorem 3, Corollary of Theorem 5]
and [76, Proposition A.1]:
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Lemma 3.5 (Chain rule and Product rule in norm). Given 0 < α < 1 and |D|α[·] be defined
by (3.16) we have:

(i) Let 1 < r, q <∞ and 1 < p ≤ ∞ such that 1
r = 1

p + 1
q , and let g such that gβ−1 ∈ Lp(R)

for some β ≥ 2 and |D|α[g] ∈ Lq(R), then

‖|D|α[gβ]‖Lr(R) . ‖β gβ−1‖Lp(R) ‖|D|α[g]‖Lq(R).

(ii) Let 1 < r, p1, q1 < ∞ and 1 < p2, q2 ≤ ∞ such that 1
r = 1

p1
+ 1

p2
= 1

q1
+ 1

q2
, then, for

all functions g and h, we have the inequality

‖|D|α [g h] ‖Lr(R) .‖|D|α[g]‖Lp1 (R) ‖h‖Lp2 (R)

+ ‖|D|α[h]‖Lq1 (R) ‖g‖Lq2 (R).

(iii) Let 0 < β < 1, then for every 0 < σ < β, 1 < r <∞ and α/β < σ < 1, we have

‖|D|α[|v|β]‖Lr(R) ≤ ‖|D|σ[v]‖α/σLr1 (R) ‖|v|
β−α

σ ‖Lr2 (R)

provided 1
r = α

r1σ
+ 1

r2
and r2

(
1− α

βσ

)
> 1.

3.1.2 Linear fractional diffusion equation

In this section we recall some results concerning the linear problem{
∂tU(t, x)− ∂xDα

[
U(t, ·)

]
(x) = 0, t > 0, x ∈ R,

U(0, x) = u0(x), x ∈ R,
(3.18)

for initial data u0 ∈ L∞(R) the solution of (3.18) can be represented as follows,

U(t, x) = (K(t, ·) ∗ u0) (x) =

∫
R
K(t, x− y)u0(y) dy,

such that the kernel, K(t, x), is defined by means of

K(t, x) = F−1
(
e(iξ)α+1t

)
(x), ∀t > 0, x ∈ R

which can be formally obtained using Fourier transform (see [6] for the proof). Some pertinent
properties of the kernel are derived in [4] and [30] (see Proposition 1.2 in Chapter 1). In
particular we recall that,

K(t, x) =
1

t
1

1+α

K

(
1,

x

t
1

1+α

)
, ∀t > 0, x ∈ R, (3.19)

K is non-negative andK(t, x) ∈ C∞((0,∞)×R), it also preserves mass and has the semi-group
property.

Since the regularity of solutions is established with respect to derivation with the fractional
Laplacian, we need the following estimates (that will combine with Lemma 3.5 above for the
non-linear problem).
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Lemma 3.6 (Time behaviour of K). For all α, s ∈ (0, 1), and 1 ≤ p ≤ ∞, K(t, x) satisfies
the following estimates for any t > 0:

‖K(t, ·)‖Lp(R) = Ct
− 1

1+α
(1− 1

p
)
,

‖∂xK(t, ·)‖Lp(R) . t
− 1

1+α
(1− 1

p
)− 1

1+α ,

‖|D|s[K(t, ·)]‖Lp(R) . t
− 1

1+α
(1− 1

p
)− s

1+α ,

‖|D|s[∂xK(t, ·)]‖Lp(R) . t
− 1

1+α
(1− 1

p
)− 1+s

1+α ,

for some constant C > 0.

Proof. The first and second identities follow from (3.19), the mass-conservation property of
K and ∂xK and that they are bounded on (0, T )× R for any T > 0.

For the third estimate we first use (3.19), then we rescale the fractional Laplacian:

||D|s[K(t, ·)](x)| = 1

t
1

1+α

∣∣∣∣|D|s [K (1,
·

t
1

1+α

)]
(x)

∣∣∣∣ =
1

t
1+s
1+α

∣∣∣∣|D|s[K(1, ·)]
(

x

t
1

1+α

)∣∣∣∣ . (3.20)

Now, when computing the Lp-norm we apply the change of variable X = x

t
1

1+α
:

‖|D|s[K(t, ·)](x)‖Lp(R) =
1

t
1+s
1+α

(∫
R

∣∣∣∣|D|s[K(1, ·)]
(

x

t
1

1+α

)∣∣∣∣p dx)1/p

=
1

t
1+s
1+α

t
1/p
1+α

(∫
R
||D|s[K(1, ·)] (X)|p dX

)1/p

.

(3.21)

It remains to prove that the Lp-norm of |D|s[K(1, ·)] is finite.
In order to show this, we first observe that using (3.16), the integrand of (3.21) is bounded:

||D|s[K(1, ·)] (X)| = 1√
2π

∣∣∣∣∫
R
|ξ|s e(iξ)1+αeiXξdξ

∣∣∣∣
≤ 1√

2π

∫
R
|ξ|s e−|ξ|1+α sin(απ2 ) dξ <∞.

(3.22)

Next we show that ||D|s[K(1, ·)](X)|p is integrable for large |X|. We first write,

|D|s[K(1, ·)](X) =
1√
2π

∫
R
|ξ|s e(iξ)1+αeiXξ dξ

=
1√
2π

∫
R
|ξ|s e−|ξ|1+α(sin(απ2 )−i sgn(ξ) cos(απ2 ))eiXξ dξ

=
1√
2π

∫ ∞
0

ξs e−ξ
1+α(sin(απ2 )−i cos(απ2 ))e−i(−X)ξ dξ

+
1√
2π

∫ ∞
0

ξs e−ξ
1+α(sin(απ2 )+i cos(απ2 ))e−iXξ dξ,

note that we have applied the change of variables ξ → −ξ in the second integral.
We adopt the notation

σ = sin
(απ

2

)
− i cos

(απ
2

)
,
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to conclude that we can apply [62, Lemma 2], which implies

||D|s[K(1, ·)](X)| . 1

|X|1+s
, |X| � 1. (3.23)

The condition that has to be satisfied, since s > 0, in order to apply such lemma, is

σ, σ ∈
{
a+ ib ∈ C : − cos

(
(α+ 1)π

2

)
≤ a ≤ 1, |b| ≤ − tan

(
(α+ 1)π

2

)}
,

which is fulfilled since in both cases

a = sin
(απ

2

)
= − cos

(
(α+ 1)π

2

)
and the imaginary part has

|b| =
∣∣∣cos

(απ
2

)∣∣∣ =

∣∣∣∣sin((α+ 1)π

2

)∣∣∣∣ ≤ − tan

(
(α+ 1)π

2

)
.

Then, (3.22) and (3.23), imply |D|s[K(1, ·)](X) ∈ Lp(R) for p ≥ 1, which together with
(3.21) implies the third estimate.

Finally, the fourth estimate is obtained in a similar way. The main difference being that
we have to differentiate the kernel first this gives a factor iξ in the integrand, but we can still
apply [62, Lemma 2]:

||D|s[∂XK(1, ·)](X)| = 1√
2π

∣∣∣∣∫
R
|ξ|s(iξ) e(iξ)1+αeiXξ dξ

∣∣∣∣
=

1√
2π

∣∣∣∣∣i
∫ ∞

0
ξ1+s e−ξ

1+α(sin(απ2 )−i cos(απ2 ))eiXξ dξ

− i
∫ 0

−∞
(−ξ)1+s e−(−ξ)1+α(sin(απ2 )+i cos(απ2 ))eiXξ dξ

∣∣∣∣∣
≤ 1√

2π

∣∣∣∣∫ ∞
0

ξ1+s e−ξ
1+α(sin(απ2 )−i cos(απ2 ))e−i(−X)ξ dξ

∣∣∣∣
+

1√
2π

∣∣∣∣∫ ∞
0

ξ1+s e−ξ
1+α(sin(απ2 )+i cos(απ2 ))e−iXξ dξ

∣∣∣∣
.

1

|X|2+s
, for |X| � 1.

Then, with this and (3.19), we can argue as for (3.20) to conclude the fourth estimate.

3.1.3 Entropy solution and mild formulation

In this section, we recall some classical result for the purely convective problem (3.7) and for
the non-local regularisation of the conservation law{

∂tu(t, x) + |u(t, x)|q−1∂xu(t, x) = ∂xDα[u(t, ·)](x), t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R.

(3.24)

For the former we recall the results of [56], first we give the definition of entropy solution in
the sense of Kružkov (see [52]):
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Definition 3.7. Let UM be a weak solution of (3.7) such that

UM ∈ L∞((0,∞), L1(R)) ∩ L∞((τ,∞)× R), ∀τ ∈ (0,∞),

then UM is said to be an entropy solution of (3.7) if, and only if, the following inequality holds
for every k ∈ R and ϕ ∈ C∞c ((0,∞)× R) non-negative∫ ∞

0

∫
R

(|UM − k|∂tϕ+ sgn(UM − k)(f(UM )− f(k))∂xϕ) dxdt ≥ 0, (3.25)

with f(u) = |u|q−1u/q, and for any ψ ∈ Cb(R)

lim ess
t↓0

∫
R
UM (t, x)ψ(x) dx = Mψ(0). (3.26)

We recall that this unique entropy solution is given by the N -wave profile

UM (t, x) =


(x
t

) 1
q−1

, 0 < x < r(t),

0, otherwise,

with r(t) =

(
q

q − 1

) q−1
q

M
q−1
q t

1
q . (3.27)

We now define the mild formulation associated to (3.24):

Definition 3.8 (Mild solution). Given T ∈ (0,∞] and u0 ∈ L∞(R), we say that a mild
solution of (3.24) on (0, T )× R is a function u ∈ Cb((0, T )× R) which satisfies

u(t, x) = K(t, ·) ∗ u0(x)−
∫ t

0
∂xK(t− s, ·) ∗ f(u(s, ·))(x) ds (3.28)

in a.e. (t, x) ∈ (0, T )× R, where f(u) = |u|q−1u/q with q > 1.

Regarding existence and uniqueness of mild solutions, we have the following:

Theorem 3.9 (Existence and uniqueness). Let u0 ∈ L∞(R), then there exists a unique global
mild solution u to the initial value problem (3.24) with u ∈ C((0,∞), C1(R))∩Cb((0,∞)×R)
and such that

ess inf{u0} ≤ u(t, x) ≤ ess sup{u0}, t > 0 , x ∈ R . (3.29)

If u0 ∈ L∞(R) ∩ L1(R), then also u ∈ C([0,∞), L1(R)) and

‖u(t, ·)‖1 ≤ ‖u0‖1 for all t > 0. (3.30)

Proof. The existence and uniqueness result, the upper bound of (3.29) and (3.30) have already
been proved in [30] for a regular flux function (see Chapter 1). We observe that, in order to
obtain regularity we can proceed as in Proposition 1.6 and Proposition 1.7, but since the flux
function is only continuous with bounded first derivative, we can only apply two steps of the
argument. This means that we can only gain C1 regularity in x and continuity for t ∈ (0, T0)
for any T0 > 0.

Now, in order to prove (3.29) and (3.30) we first regularise the flux function (to at least a
C2 function) and apply the results of Chapter 1, then we have to pass to the limit to get the
result for the original flux.
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We define the function fν by means of

fν(v) :=
(
ν2 + v2

) q−1
2
v

q
. (3.31)

Notice that the function fν is C2 for ν > 0 and converges uniformly to |v|q−1v/q.
Let uν be the solution of{

∂tuν(t, x) + ∂x (fν(uν(t, x))) = ∂xDα [uν(t, ·)] (x), t > 0, x ∈ R,
uν(0, x) = u0(x), x ∈ R.

(3.32)

We apply the results in Chapter 1 to conclude global existence, uniqueness and regularity as
well as the upper bound analogous to the one in (3.29) for (3.32). The lower bound analogous
to the one in (3.29) is proved following the proofs of Lemma 1.11 and Proposition 1.12 by
changing the role of the supremum by the infimum. We prove this in Appendix C.1.

As a consequence we obtain the global existence in time for (3.32). Therefore, by continuity
in t > 0 and the uniqueness result we can extend the solution for t ∈ (0,∞) and it satisfies

ess inf u0 ≤ uν(t, x) ≤ ess supu0

for all (t, x) ∈ (0,∞)× R.
Now, we extend the result of (3.32) to (3.24). First, we prove that for any T > 0, uν

converges uniformly to u as ν → 0 in (t, x) ∈ (0, T )× R, where u is a mild solution of (3.24).
We compute:

‖uν(t, ·)− u(t, ·)‖L∞(R) =

∥∥∥∥∫ t

0
∂xK(t− s, ·) ∗ (fν(uν)− f(u))(x) ds

∥∥∥∥
L∞(R)

≤
∫ t

0
‖∂xK(t− s, ·)‖L1(R)‖fν(uν(s, ·))− f(u(s, ·))‖L∞(R) ds

≤C
∫ t

0
(t− s)−

1
1+α ‖fν(uν(s, ·))− f(uν(s, ·))‖L∞(R) ds

+ C

∫ t

0
(t− s)−

1
1+α ‖f(uν(s, ·))− f(u(s, ·))‖L∞(R) ds

≤C ν
∫ t

0
(t− s)−

1
1+α ds

+ CLf

∫ t

0
(t− s)−

1
1+α ‖uν(s, ·)− u(s, ·)‖L∞(R) ds

=C ν
1 + α

α
t
α

1+α + CLf

∫ t

0
(t− s)−

1
1+α ‖uν(s, ·)− u(s, ·)‖L∞(R) ds,

where we have used the second estimate with p = 1 of Lemma 3.6, that fν → f as ν → 0
uniformly and the Lipschitz continuity of f .

Since 1 + α > 1, we can apply the fractional Gronwall Lemma, see [20, Lemma 2.4], to
obtain that for any T > 0 and ν > 0 there exists a positive constant C(T ) such that

‖uν(t, ·)− u(t, ·)‖L∞(R) ≤ νC(T ), ∀t ∈ [0, T ].

This inequality and the continuity of uν and u with respect to (t, x) imply the desired uniform
convergence on (0, T )× R for any T > 0. In particular, this implies that u satisfies the same
bounds as uν , which proves global existence and (3.29).

Finally, (3.30) follows as in Theorem 1.16.
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As a corollary we obtain positivity of the solutions for positive initial conditions:

Corollary 3.10. Let u0 ∈ L∞(R) with u0(x) ≥ ε > 0, then the unique mild solution of
(3.24) satisfies

ε ≤ u(t, x) ≤ ‖u0‖∞, for all t > 0, x ∈ R. (3.33)

Moreover, u ∈ C∞b ((0,∞)× R).

Proof. The estimate (3.33) is a direct consequence of (3.29).
Since now u is positive this means that |u| = u so the flux is f(u) = uq

q and belongs to
C∞((ε, ‖u0‖∞)). This implies that then u ∈ C∞b ((0,∞) × R) by Chapter 1 Propositions 1.6
and 1.7.

We now give some Lp-regularity of the mild solution. Here we consider the homogeneous
Sobolev spaces

Ḣs,p(R) :=
{
g ∈ S ′(R) : F−1

[
(|ξ|2)

s
2F(g)

]
∈ Lp(R)

}
. (3.34)

For more information on fractional Sobolev spaces see for example [8]. The following regularity
result is proved for the mild solution of (3.24):

Proposition 3.11 (Mild solution’s Lp-regularity). Let u be the unique mild solution of
(3.24) with u0 ∈ L∞(R) ∩ L1(R), then ∂tu ∈ C((0,∞), Lp(R)) and u ∈ C((0,∞), Lp(R) ∩
Ḣs,p(R)) for any s < 1 + α+ min{α, q − 1} and 1 < p <∞.

The proof is based on applying the fractional Laplacian to the mild formulation (3.28)
followed by the bootstrap argument used in [45, Proposition 3.1]. Due to the time behaviour
of the kernel concluded in Lemma 3.6 and the estimates in norm of Lemma 3.5, one can
mimic the proof given in the previous reference, for completeness the proof is given in the
Appendix C.2.

Finally, we give another auxiliary result that we will need later on. Namely, after studying
existence, uniqueness and gaining certain regularity, one can prove that the mild solution of
(3.24) satisfies the weak entropy inequality for the Kružkov’s entropies (see Theorem 1.15 in
Chapter 1):

Theorem 3.12 (Weak viscous entropy inequality). For all k ∈ R, let ηk(v) = |v−k| ∈ C(R)
be a convex entropy function and u ∈ C((0,∞), C1(R))∩Cb((0,∞)×R) a solution of (3.24),
then for all non-negative ϕ ∈ C∞c ((0,∞)× R)∫ ∞

0

∫
R

(
|u(t, x)− k|∂tϕ+ sgn(u(t, x)− k)(f(u(t, x))− f(k))∂xϕ

+|u(t, x)− k|∂xDα[ϕ(t, ·)](x)
)
dxdt ≥ 0,

(3.35)

where f(u) = |u|q−1u/q.

We remark that the proof of this result is as in Chapter 1, but for the problem with the
regularised flux (3.31), as above. The proof is completed by passing to the limit ν → 0. We
omit the details here.
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3.2 Oleinik type inequality for non-negative solutions

In this section we derive an Oleinik type inequality. We prove it for non-negative solutions by
first deriving the inequality for positive ones (for which the flux is regular).

Let u0 ∈ L∞(R) be non-negative, then we consider the following approximating problem,{
∂tuε(t, x) + (uε)

q−1∂xuε(t, x) = ∂xDα[uε(t, ·)](x), t > 0, x ∈ R,
uε(0, x) = u0(x) + ε, x ∈ R.

(3.36)

The existence and uniqueness of this problem is guaranteed by Corollary 3.10. Then, the
following holds:

Lemma 3.13. Let u(t, x) be the solution of (3.24) with initial condition 0 ≤ u0 ∈ L∞(R)
and let uε(t, x) be the solution of (3.36) with initial condition u0 + ε. Then for every T > 0,

max
t∈[0,T ]

‖uε(t, ·)− u(t, ·)‖L∞(R) → 0 as ε→ 0.

The proof is analogous to that in [45], we do not prove it here. It is based on the comparison
of the mild solutions in norm and on the application of the fractional Gronwall lemma [20].

We can now prove an Oleinik type entropy inequality. The proof is similar to that in [45],
although there are slight modifications due to having a different non-local operator.

Proposition 3.14 (Oleinik entropy inequality). Let u0 ∈ L∞(R). Then, for any ε > 0,
the solution uε of (3.36) satisfies

∂x
(
uq−1
ε (t, x)

)
≤ 1

t
, ∀t > 0, x ∈ R.

Proof. Let ε > 0 be fixed, and let z := uq−1
ε . We recall that as a result of Corollary 3.10,

0 < z ∈ C∞b ((0,∞)× R). We rewrite (3.36) in terms of z(t, x), to get

∂tz = −z ∂xz + (q − 1)z
1− 1

q−1 ∂xDα
[
z

1
q−1 (t, ·)

]
(x). (3.37)

We now differentiate (3.37) with respect to x, and defining w(t, x) = ∂xz(t, x), we get

∂tw = −w2 − z∂xw + z
− 1
q−1N [w, z] (3.38)

where N is the nonlinear operator

N [w, z] := −(2− q)w ∂xDα
[
z

1
q−1 (t, ·)

]
(x) + z ∂xDα

[
z

2−q
q−1 (t, ·)w(t, ·)

]
(x). (3.39)

We now observe that, letting W (t) = supx∈Rw(t, x), it is enough to prove the inequality
W (t) ≤ 1/t, ∀t > 0 to obtain the result. We also observe that W (t) ∈ W 1,∞(δ, T ) for any
δ > 0, because it is Lipschitz continuous in (δ, T ). Now, we use a Taylor expansion in the
time variable, for 0 < s < t centred at t and get the following inequality

w(t, x) ≤ w(t− s, x) + s ∂tw(t, x) + Cs2 ≤W (t− s) + s ∂tw(t, x) + Cs2.

for some C > 0. Now, we substitute ∂tw(t, x) by the right hand side of (3.38), this yields,

w(t, x) + s
(
w2(t, x) + z(t, x) ∂xw(t, x)− z−

1
q−1 (t, x)N [w, z]

)
≤W (t− s) + Cs2. (3.40)
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Moreover, this inequality holds at a sequence {xn}n∈N such that w(t, xn) = W (t) − 1
n for

all n ∈ N. On the other hand, one can easily prove that lim
n→∞

∂xw(t, xn) = 0 and that
{z(t, xn)}n∈N is uniformly bounded from above and positive. Then, up to a subsequence,
z(t, xn) → Z(t) as n → ∞ where Z(t) ∈

[
εq−1, sup{u0(x) + ε}q−1

]
. We assume for the

moment that there exists a sequence of continuous non-negative functions In(t) such that

−N [w, z](t, xn) ≥W (t)In(t)− o(1) (3.41)

and that is uniformly bounded for t ∈ (0, T ]. In particular, In(t)→ Z̃(t) as n→∞ point-wise,
for some Z̃(t) ≥ 0. Hence, taking the limit n → ∞, in (3.40) evaluated at x = xn converges,
up to a subsequence, to

W (t)−W (t− s)
s

+W 2(t) + Z(t)
− 1
q−1 Z̃(t)W (t) ≤ Cs, t > 0,

here we have divided by s and rearranged terms. Now, taking the limit s → 0, we get that
W (t) satisfies

W ′(t) +W 2(t) + Z(t)
− 1
q−1 Z̃(t)W (t) ≤ 0, t > 0.

Applying classical ODE arguments, (see for example [23, p. 3136]), we obtain

max
t>0
{W (t), 0} ≤ 1

t
, ∀t > 0, (3.42)

which implies the result.
In order to close the proof, we then have to prove the assumption (3.41). First of all, we

split both integral terms in (3.39) at a point −r < 0 and define the sum of the integrals on
the interval (−r, 0) as R(r, w, z). Then, rearranging the terms we get

−N [w, z](x, t)

dα+2

=

∫ −r
−∞

[
w(t, x)

(
z

1
q−1 (t, x)

1
q−1

+
z

1
q−1 (t, x+ y)

1
2−q

)
− w(t, x+ y)z

2−q
q−1 (t, x+ y)z(t, x)

]
dy

|y|α+2

+

∫ −r
−∞

z
1
q−1 (t, x)∂xw(t, x)

y

|y|α+2
dy +R(r, w, z).

(3.43)

Now, the regularity and boundedness of z implies

|R(r, w, z)| ≤ r1−α
(
‖z‖L∞

∥∥∥∂2
x

(
z

2−q
q−1w

)∥∥∥
L∞

+ ‖w‖L∞
∥∥∥z 1

q−1

∥∥∥
L∞

)
≤ C1

(
‖z‖C3

b (R)

)
r1−α

(3.44)
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for some C1 > 0. We now evaluate (3.43) at xn (recalling that w(t, xn) = W (t) − 1/n) and
use also (3.44). This gives, for some C > 0,

−N [w, z](t, xn)

dα+2

≥W (t)

∫ −r
−∞

[(
z

1
q−1 (t, xn)

1
q−1

+
z

1
q−1 (t, xn + y)

1
2−q

)
− z

2−q
q−1 (t, xn + y)z(t, xn)

]
dy

|y|α+2

− 1

n

∫ −r
−∞

(
z

1
q−1 (t, xn)

1
q−1

+
z

1
q−1 (t, xn + y)

1
2−q

)
dy

|y|α+2

− ∂xw(t, xn)

∫ −r
−∞

z
1
q−1 (t, xn)

dy

|y|α+1
− Cr1−α.

(3.45)

We observe that the second and the last integrals are bounded uniformly for t ∈ (0, T ].
Then, recalling that ∂xw(t, xn) → 0, we choose a sequence {rn}∞n=1 such that rn → 0 and
r−αn |∂xw(t, xn)| → 0 and r−(α+1)

n n−1 → 0. Finally, we define

In(t) = dα+2

∫ −rn
−∞

[(
z

1
q−1 (t, xn)

1
q−1

+
z

1
q−1 (t, xn + y)

1
2−q

)
− z

2−q
q−1 (t, xn + y)z(t, xn)

]
dy

|y|α+2
.

Then, from (3.45) on each r = rn, we have for some positive constants Ci, for i = 1, 2, 3,

−N [w, z](t, xn) ≥W (t)In(t)− C1(rn)1−α − C2

n(rn)α+1
− C3

rαn
|∂xw(t, xn)|.

In order to finish the proof, we check that In(t) is well-defined, continuous and non-negative.
The non-negativity follows from Young’s inequality. Whereas with the argument in [45,
Lemma 3.5] one concludes that In(t) is well-defined. The proof of this step is based on
the fact that for any ν > 0,

νρν+1 + 1− (ν + 1)ρν ∼ (ρ− 1)2 as ρ ∼ 1.

Therefore, one can conclude that

|νρν+1 + 1− (ν + 1)ρν | ≤ C(ν) max{1, ρν−1} |ρ− 1|2, ∀ρ > 0, (3.46)

and applying this inequality for ρ = z(t, xn+y)/z(t, xn) and ν = 2−q
q−1 > 0 on In(t) we get that

In(t) =dα+2

∫ −rn
−∞

(
z

1
q−1 (t, xn)

1
q−1

+
z

1
q−1 (t, xn + y)

1
2−q

− z(t, xn) z
2−q
q−1 (t, xn + y)

)
1

|y|α+2
dy

≤C
∫ −rn
−∞

|z(t, xn + y)− z(t, xn)|2

|y|2+α
dy

≤C
(
‖∂xz‖2L∞(R)

∫ 1

0

dy

yα
+ ‖z‖2L∞(R)

∫ ∞
1

dy

y2+α

)
≤ C ′‖z‖2C1

b (R).

(3.47)

We observe that the constant C ′ depends on q, ε, ‖z‖∞ and α, but this does not affect the
estimate (3.42).
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We can now translate many properties of the family uε to the solution of (3.24) by taking
the limit ε→ 0. Namely,

Lemma 3.15. Let u be the solution of problem (3.24) with non-negative initial data u0 ∈
L1(R) ∩ L∞(R). Then, the following estimates hold:

(i) (Mass conservation)
∫
R u(t, x) dx = M , ∀t > 0 where M is defined as M =

∫
R u0(x) dx.

(ii) (Oleinik entropy condition) ∂x
(
uq−1(t, x)

)
≤ 1

t for all t > 0 in a weak distributional
sense.

(iii) (Upper bound) 0 ≤ u(t, x) ≤
(

q
q−1M

)1/q
t−1/q for all t > 0 and x ∈ R.

(iv) (Decay in Lp-norm) For 1 ≤ p ≤ ∞,

‖u(t, ·)‖Lp(R) ≤
(

q

q − 1

) p−1
pq

M
p−1
pq

+ 1
p t
− 1
q

(1− 1
p

)
, ∀t > 0.

(v) (Decay of the spatial derivative) ∂xu(t, x) ≤ C(q)M
2−q
q t
− 2
q , for all t > 0 and a.e. x ∈ R.

(vi) (W 1,1
loc (R) estimate) For any R > 0,

∫
|x|<R

|∂xu(t, x)| dx ≤ 2RC(q)M
2−q
q t
− 2
q + 2

(
q

q − 1
M

) 1
q

t
− 1
q , ∀t > 0.

(vii) (Energy estimate) For every 0 < τ < T ,

∫ T

τ

∫
R

∣∣∣D α+1
2 [u(t, ·)](x)

∣∣∣2 dxdt ≤ 1

2

∫
R
u2(τ, x) dx ≤ 1

2

(
q

q − 1

) 1
q

τ
− 1
q M

q+1
q .

Proof. The proof of (i) is as in [45].
We recall the proof of (ii): First we recall that u ∈ C((0,∞), Lp(R) ∩ Ḣs,p(R)) for any

s < 1 + α + min{α, q − 1} and uε ∈ C∞b ((0,∞) × R), then using Lemma 3.13, uε → u as
ε→ 0 point-wise for all t > 0 and x ∈ R. As a result, (ii) holds by taking the limit ε→ 0 and
Proposition 3.14. With this one can again proceed as in [45] to conclude (iii) and (iv). The
proofs of (v) and (vi) follow as in [45] too, they do not depend on the form of the non-local
operator.

We now prove (vii). First, we multiply (3.24) by u and get the following identity, after
integrating with respect to x,

1

2

d

dt

∫
R
u2 dx−

∫
R
u∂xDα[u](x) dx = 0. (3.48)

We observe that, using integration by parts

−
∫
R
u∂xDα[u](x) dx =

∫
R
∂xuDα[u](x) dx ≥ 0,
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the last inequality is shown in [27, Lemma 2.2]. Then proceeding as in the proof of Lemma 3.4
with s1 = s2, and (3.12)-(3.13) with α replaced by (α+ 1)/2, we have

1

2

d

dt

∫
R
u2(t, x) dx+

∫
R

∣∣∣D α+1
2 [u(t, ·)](x)

∣∣∣2 dx = 0. (3.49)

The conditions to be able to apply Lemma 3.4 follow from (iv) and Proposition 3.11. Finally,
we integrate (3.49) over (τ, T ) for some τ > 0, to get

1

2

∫
R
u2(T, x) dx− 1

2

∫
R
u2(τ, x) dx+

∫ T

τ

∫
R

∣∣∣D α+1
2 [u(t, ·)](x)

∣∣∣2 dx dt = 0.

Then, (vii) follows taking into account that the first term is non-negative and applying (iv)
for p = 2.

3.3 Asymptotic behaviour

In this section we prove Theorem 3.1, which is, as we shall see, equivalent to proving the limit
(3.8) for some fixed time. Here, we have followed the proof given by Ignat and Stan in [45,
Theorem 1.1] for the fractional Laplacian. We shall focus on the differences that arise in our
case.

Throughout this section we let u be a mild solution of (3.24) with 0 ≤ u0 ∈ L∞(R)∩L1(R).
In particular, Theorem 3.9 and Proposition 3.11 apply, hence u ∈ C((0,∞), Lp(R)∩Ḣβ,p(R))∩
L∞((0,∞)× R) for β < 1 + α+ min{α, q − 1} and 1 < p <∞. We also let, for all λ > 1, uλ
be defined by means of (3.3)-(3.4).

The first step is to interpret the estimates of Lemma 3.15 for uλ:

Lemma 3.16. Let λ > 1 and uλ be the solution of (3.5) with initial condition 0 ≤ u0 ∈
L1(R) ∩ L∞(R). Then:

(i) (Mass conservation)
∫
R uλ(s, y) dy = M , ∀s > 0.

(ii) (Decay in Lp-norm) For 1 ≤ p ≤ ∞,

‖uλ(s, ·)‖Lp(R) ≤
(

q

q − 1

) p−1
pq

M
p−1
pq

+ 1
p s
− 1
q

(
1− 1

p

)
, ∀s > 0.

(iii) (W 1,1
loc (R) estimate) For any R > 0,

∫
|y|<R

|∂yuλ(s, y)| dy ≤ 2RC(q)M
2−q
q s

− 2
q + 2

(
q

q − 1
M

) 1
q

s
− 1
q , ∀s > 0.

(iv) (Energy estimate) For every 0 < τ < T ,

λq−1−α
∫ T

τ

∫
R

∣∣∣D α+1
2 [uλ(s, ·)](y)

∣∣∣2 dyds ≤ 1

2

∫
R
u2
λ(τ, y) dy ≤ 1

2

(
q

q − 1

) 1
q

τ
− 1
q M

q+1
q .
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(v) (Tail control estimate) For any λ > 1 and R > 0, there exists a constant C(M, q) > 0
such that∫

|y|>2R
uλ(s, y) dy ≤

∫
|y|>R

u0(y) dy + C(M, q)

(
sλq−1−α

Rα+1
+
s1/q

R

)
, ∀s > 0.

Proof. Properties (i)-(iv) are shown rescaling according to (3.3)-(3.4) the corresponding prop-
erties of Lemma 3.15 for u. For example, in (iv), we use that

Dα[uλ(s, ·)](y) = λα+1Dα[u(λqs, ·)](λy).

We now prove (v). First, let us consider a regular function ϕ ∈ C2(R) such that

0 ≤ ϕ ≤ 1, ϕ ≡ 1 for |y| ≥ 2 and ϕ ≡ 0 for |y| ≤ 1.

and define
ϕR(y) = ϕ

( y
R

)
for R > 0.

Then, we multiply (3.5) by ϕR, integrate in space and time and apply integration by parts,
to obtain,∫

R
uλ(s, y)ϕR(y) dy =

∫
R
uλ(0, y)ϕR(y) dy + λq−1−α

∫ s

0

∫
R
uλ(τ, y)∂yDα[ϕR](y) dydτ

+

∫ s

0

∫
R
uqλ(τ, y)ϕ′R(y) dydτ.

(3.50)

In the second integral term on the right-hand side of (3.50) we have applied Lemma 3.3.
In what follows we estimate the three integral terms on the right-hand side of (3.50)

separately. The first term can be estimated as follows,∫
R
uλ(0, y)ϕR(y) dy ≤

∫
|y|≥R

uλ(0, y) dy =

∫
|y|≥R

λu(0, λy) dy

=

∫
|y′|>λR

u0(y′) dy′ ≤
∫
|y|>R

u0(y) dy.

(3.51)

For the second term, we first prove the following estimate: there exists C > 0 such that

∣∣∂yDα[ϕR](y)
∣∣ =

∣∣∣∣dα+2

∫ ∞
0

ϕR(y + z)− ϕR(y)− ϕ′R(y)z

zα+2
dz

∣∣∣∣
=

1

Rα+1

∣∣∂YDα[ϕ](Y )
∣∣ ≤ C

Rα+1
.

(3.52)

Here we have applied the change of variable Z = z/R, renamed Y = y/R and used the
boundedness of ∂xDα[ϕ], since ϕ ∈ C2

b (R).
Now, with (3.52) and (i), we get∫ s

0

∫
R
uλ(τ, y)∂yDα[ϕR](y) dydτ ≤

∥∥∂yDα[ϕR]
∥∥
L∞(R)

∫ s

0

∫
R
uλ(τ, y) dydτ ≤ C sM

Rα+1
. (3.53)
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We estimate the third term. We use (ii) of Lemma 3.16 and that ϕ ∈ C2
b (R):

∫ s

0

∫
R
uqλ(τ, y)ϕ′R(y) dydτ ≤ ‖ϕ′R‖L∞(R)

∫ s

0
‖uλ(τ, ·)‖qLq(R) dτ

≤ 1

R
‖ϕ′‖L∞(R)

(
q

q − 1

) q−1
q

M
2q−1
q

∫ s

0
τ
− 1
q

(q−1)
dτ ≤ CM

2q−1
q

1

R
s

1
q .

(3.54)

Applying the inequalities (3.51), (3.53) and (3.54) to (3.50) and recalling that ϕR(y) ≡ 1 for
|y| > 2R, we get the desired estimate.

With the Lemma 3.16 we can then pass to the limit λ→∞ using a compactness argument,
then we can now prove the main result of the chapter:

Proof of Theorem 3.1. First, we show that (3.6) and (3.8) are equivalent. Without loss of
generality we consider s0 = 1, applying the scaling (3.3)-(3.4), we get that for any λ > 1,

uλ(1, y)− UM (1, y) = λu(λq, λy)− UM (1, y) = t
1
q u(t, x)− UM

(
1,
x

λ

)
. (3.55)

From (3.27) we obtain

UM

(
1,
x

λ

)
= λUM (λq, x) = t

1
qUM (t, x). (3.56)

Thus, uλ(1, y) − UM (1, y) = t
1
q (u(t, x)− UM (t, x)). And performing the change of variables

in the integral, we finally get

‖uλ(1, y)− UM (1, y)‖Lp(R) = t
1
q

(
1− 1

p

)
‖u(t, x)− UM (t, x)‖Lp(R).

Let us then prove (3.8). We divide the proof into several steps. Let us first show the
convergence of a subsequence of {uλ}λ>0. Using, [69, Theorem 5] we shall get that {uλ}λ>0

is relatively compact in C([s1, s2], L2
loc(R)) for any 0 < s1 < s2 <∞.

We let BR = (−R,R) and we apply [69, Theorem 5] to the triple W 1,1(BR) ↪→ L2(BR) ↪→
H−1(BR). Observe that (i) and (iii) in Lemma 3.16, imply that {uλ}λ>0 is uniformly bounded
in L∞((s1, s2),W 1,1(BR)), and this gives the first condition of this theorem. Then, by [69,
Lemma 4] we can conclude that

‖uλ(s+ h, ·)− uλ(s, ·)‖L∞((0,T−h),H−1(BR)) → 0 as h→ 0 uniformly for λ > 0 (3.57)

provided that {∂suλ}λ>1 is uniformly bounded in Lp((s1, s2), H−1(BR)) for some p <∞. Let
us show this with p = 2. First, let us choose ϕ ∈ Cc((0,∞) × BR) and extend it by zero
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outside BR, for such ϕ and λ > 1 we have∣∣∣∣∣
∫ s2

s1

∫
R

(∂suλ)ϕdyds

∣∣∣∣∣ ≤
∣∣∣∣∫ s2

s1

∫
R
∂y(uλ)q ϕdyds

∣∣∣∣+ λq−1−α
∣∣∣∣∫ s2

s1

∫
R
∂yDα[uλ]ϕdyds

∣∣∣∣
=

∣∣∣∣∫ s2

s1

∫
R
uqλ ∂yϕdyds

∣∣∣∣+ λq−1−α
∣∣∣∣∫ s2

s1

∫
R
D

1+α
2 [uλ]D

1+α
2 [ϕ] dyds

∣∣∣∣
≤
∥∥uqλ∥∥L2((s1,s2),L2(R))

‖ϕ‖L2((s1,s2),H1(R))

+ λ
q−1−α

2

(
λq−1−α

∫ s2

s1

∫
R

∣∣∣D 1+α
2 [uλ]

∣∣∣2 dyds) 1
2

(∫ s2

s1

∫
R

∣∣∣∣D 1+α
2 [ϕ]

∣∣∣∣2 dyds
) 1

2

≤C ′(M, q, s1, s2)‖ϕ‖L2((s1,s2),H1(R))

+ λ
q−1−α

2
1√
2

(
q

q − 1

) 1
2q

M
1+q
2q s
− 1

2q

1 ‖ϕ‖
L2

(
(s1,s2),Ḣ

1+α
2 (R)

)
≤C(M, q, s1, s2)‖ϕ‖L2((s1,s2),H1(R)).

(3.58)

Here, we have applied Lemma 3.4 in the second inequality and the energy estimate Lemma 3.16
(iv). All these steps can be performed since conservation of mass and the regularity of u is
transferred to uλ (see Proposition 3.11, in particular) and by the choice of ϕ. Now, the Riesz
representation theorem and [29, Chapter IV Corollary 4], (3.58) imply that

‖∂suλ‖L2((s1,s2),H−1(BR)) ≤ C(M, q, s1, s2), ∀λ > 1,

and we can conclude (3.57). Hence, we can apply [69, Theorem 5], this means that {uλ}λ>1

is relatively compact in C([s1, s2], L2(BR)).
As a consequence there exist U ∈ C([s1, s2], L2(BR)) such that, up to a subsequence,

uλ → U as λ → ∞ in C([s1, s2], L2(BR)). By a diagonal argument we can conclude the
convergence for any compact set and, therefore,

uλ −→ U, as λ→∞ in C([s1, s2], L2
loc(R)). (3.59)

We observe that (3.59) implies also that uλ → U in C([s1, s2], L1
loc(R)). In order to extend

this convergence to C([s1, s2], L1(R)), we use Lemma 3.16 (v). Hence,

uλ −→ U, as λ→∞ in C([s1, s2], L1(R)).

The next step is to prove that the limit U is indeed an entropy solution of (3.7), i.e. that
it satisfies Definition 3.7. First, we recall that u satisfies (3.35) of Theorem 3.12. Therefore,
uλ satisfies the following inequality for any non-negative ϕ ∈ C∞c ((0,∞)× R):∫ ∞

0

∫
R

(
|uλ − k|∂sϕ+

1

q
sgn(uλ − k) ((uλ)q − kq)∂yϕ

+ λq−1−α ∂yDα[|uλ − k|](y)ϕ
)
dyds ≥ 0.

(3.60)
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In what follows we pass to the limit λ → ∞ in (3.60). We prove that the last term tends to
zero as λ→∞. We split this integral term into two as follows, given r > 0,∫ ∞

0

∫
R
∂yDα[|uλ − k|](y)ϕ(s, y)dyds

= dα+2

∫ ∞
0

∫
R

∫ −r
−∞

|uλ(s, y + z)− k| − |uλ(s, y)− k| − ∂y(|uλ − k|)z
|z|α+2

ϕ(s, y) dzdyds

+ dα+2

∫ ∞
0

∫
R
|uλ(s, y)− k|

∫ r

0

ϕ(s, y + z)− ϕ(s, y)− ∂yϕz
|z|α+2

dzdyds

= I1 + I2.

The second integral term has been obtained by using Fubini’s theorem, integration by parts in
y in the third term, and the pertinent changes of variables in the first term of the integrand.

We let T > 0 and R > 0 such that the support of ϕ is contained in (0, T )×(−R,R). Then,
so the first term satisfies

|I1| ≤dα+2‖ϕ‖∞
∫ T

0

∫ R

−R

∫ −r
−∞

|uλ(s, y + z)− uλ(s, y)|
|z|α+2

dzdyds

+ dα+2‖∂yϕ‖∞
∫ T

0

∫ R

−R

∫ −r
−∞

|uλ(s, y)− k| |z|
|z|α+2

dzdyds

≤dα+2‖ϕ‖∞
∫ T

0

∫ −r
−∞

∫
R uλ(s, y + z) dy +

∫
R uλ(s, y) dy

|z|α+2
dzds

+ dα+2‖∂yϕ‖∞
∫ T

0

∫ −r
−∞

|z|
(∫ R
−R uλ(s, y) dy +

∫ R
−R k dy

)
|z|α+2

dzds

≤dα+2C(M,R, k, T )

(
‖ϕ‖∞

∫ −r
−∞

dz

|z|α+2
+ ‖∂yϕ‖∞

∫ −r
−∞

dz

|z|α+1

)
≤dα+2C(M,R, k, T )

(3.61)

note that apart from the regularity property of ϕ ∈ C∞c ((0,∞)×R), we have just applied the
non-negativity and conservation of mass of uλ. In I2 we use the regularity of ϕ, conservation
of mass, and the boundedness of the interval, we get

|I2| ≤dα+2‖∂2
yϕ‖∞

∫ T

0

∫
|y|≤R+r

|uλ(s, y)− k|
∫ r

0

dz

|z|α
dyds

≤dα+2C(M,R, k, T ).

(3.62)

Then, (3.61) and (3.62) imply that the last term in (3.60), which is (I1 + I2)λq−1−α, goes to
zero as λ→∞.

Since uλ → U in C((0,∞), L1(R)), we can pass to the limit in property (i) of Lemma 3.16,
so that

∫
R U(s, y) dy = M . Moreover, uλ → U a.e. in (0,∞) × R which shows that property

(ii) of Lemma 3.16 with p =∞ is transferred to U :

‖U(s, ·)‖L∞(R) ≤ C(M)s
− 1
q .

This last inequality is sufficient to prove that (uλ)q → (U)q as λ → ∞ in C((0,∞), L1(R))
and, therefore, passage to the limit λ → ∞ in (3.60) gives Definition 3.7-(3.25) (with UM
replaced by U) for every constant k ∈ R and ϕ ∈ C∞c ((0,∞)× R), ϕ ≥ 0.
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Finally, we have to check that U satisfies Definition 3.7-(3.26) for any ψ ∈ Cb(R). The
proof of this fact is as in [45], we do not repeat it here, we only recall the steps. First, one
proves it for any ψ ∈ C2

b (R), which, by density, can be generalised to ψ ∈ H2(R). Finally, the
result with ψ ∈ Cb(R) follows by an approximation argument and the tail control estimate for
U , which is derived from the tail control of uλ.

Thus we have shown that U satisfies Definition 3.7. Since (3.7) has a unique entropy
solution, UM , then the whole sequence {uλ}λ>0 converges to U = UM in C([s1, s2], L1(R)).

In conclusion, we have proved for p = 1 that uλ(s, ·) → UM (s, ·) as λ → ∞ in L1(R) for
any s > 0. In order to finish the proof, we have to extend this convergence to Lp(R) with
1 ≤ p <∞. Indeed, applying interpolation for 1

p = 1−θ
1 + θ

2p with θ = 2(p−1)
2p−1 , we get

‖uλ(s, ·)− UM (s, ·)‖Lp(R) ≤‖uλ(s, ·)− UM (s, ·)‖1/(2p−1)
L1(R)

·
(
‖uλ(s, ·)‖L2p(R) + ‖UM (s, ·)‖L2p(R)

)2(p−1)/(2p−1)
.

And passing to the limit λ→∞ we obtain the result.

3.4 Generalisation for a general Riesz-Feller operator

In this section, we focus on showing how to generalise the previous results of Sects. 3.1, 3.2
and 3.3 for the problem{

∂tu(t, x) + |u(t, x)|q−1∂x(u(t, x)) = Dβ
γ [u(t, ·)](x), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(3.63)

where the diffusion is given by a general Riesz-Feller operator (see Section 2 of the Introduc-
tion). Here β and γ satisfy the assumptions of such definition and u0 ∈ L1(R) ∩ L∞(R).

We use the following formulation of the non-local operator, given in [6, Proposition 2.3]
(or see [24, 58, 66]): for any 0 < β < 2 and |γ| ≤ min{β, 2− β},

Dβ
γ [g](x) =c1

γ

∫ ∞
0

g(x− z)− g(x) + g′(x)z

z1+β
dz

+ c2
γ

∫ ∞
0

g(x+ z)− g(x)− g′(x)z

z1+β
dz, for 1 < β < 2,

(3.64)

where (e.g. see [58])

c1
γ =

Γ(1 + β)

π
sin
(

(β − γ)
π

2

)
and c2

γ =
Γ(1 + β)

π
sin
(

(β + γ)
π

2

)
,

in particular c1
γ + c2

γ > 0.
Using Lemma 3.2 and Lemma 3.3 it is easy to show that

Dβ
γ [g](x) =

1

dβ+1

(
c1
γ∂xDβ−1[g](x) + c2

γ∂xDβ−1[g](x)
)
. (3.65)

Existence and regularity results for (3.63) are proved similarly by defining mild solutions
as in Definition 3.8 with the kernel

Kβ
γ (t, x) := F−1

(
etψ

β
γ (·)
)

(x), (3.66)

82



CHAPTER 3. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

these steps have already been explained in Section 1.5 of Chapter 1. This is because, Kβ
γ

satisfies similar properties as K does, the proofs are given in e.g. [6, Lemma 2.1]. Thus, we
can say that Theorem 3.9 and Corollary 3.10 hold unchanged for (3.63).

In order to generalise Proposition 3.11 for (3.63), we need the following lemma (analogous
to Lemma 3.6):

Lemma 3.17 (Time behaviour ofKβ
γ ). For all s ∈ (0, 1) and 1 ≤ p ≤ ∞, the kernel Kβ

γ (t, x),
such that β ∈ (1, 2) and |γ| ≤ min{β, 2− β}, satisfies the following estimates for any t > 0:

‖Kβ
γ (t, ·)‖Lp(R) = Ct

− 1
β

(1− 1
p

)
,

‖∂xKβ
γ (t, ·)‖Lp(R) . t

− 1
β

(1− 1
p

)− 1
β ,

‖|D|s[Kβ
γ (t, ·)]‖Lp(R) . t

− 1
β

(1− 1
p

)− s
β ,

‖|D|s[∂xKβ
γ (t, ·)]‖Lp(R) . t

− 1
β

(1− 1
p

)− 1+s
β ,

for some constant C > 0.

Proof. The properties of Kβ
γ are given in [6, Lemma 2.1], and combining the self-similarity,

the mass conservation of the kernel Kβ
γ and ∂xK

β
γ and the fact that they are bounded on

(0, T )× R for any T > 0, we conclude the first and second estimates.
For the third estimate, we get the exponent of the time variable applying the self-similarity

property of the kernel and the scaling property of the fractional Laplacian:

||D|s[Kβ
γ (t, ·)](x)| = 1

t1/β

∣∣∣|D|s [Kβ
γ

(
1,
·

t1/β

)]
(x)
∣∣∣ =

1

t
1+s
β

∣∣∣|D|s[Kβ
γ (1, ·)]

( x

t1/β

)∣∣∣ . (3.67)

Computing the Lp-norm of the previous identity and applying the change of variable X = x
t1/β

we get,

‖|D|s[Kβ
γ (t, ·)](x)‖Lp(R) =

1

t
1+s
β

(∫
R

∣∣∣∣|D|s[Kβ
γ (1, ·)]

(
x

t
1
β

)∣∣∣∣p dx)1/p

=
1

t
1+s
β

t
1/p
β

(∫
R

∣∣∣|D|s[Kβ
γ (1, ·)] (X)

∣∣∣p dX)1/p

.t
− 1

1+α

(
1− 1

p

)
− s

1+α .

(3.68)

In conclusion, we have to check that the previous Lp-norm is finite to yield the desired esti-
mate. One gets the boundedness of the integrand using the definition (3.16) of the fractional
Laplacian, ∣∣∣|D|s[Kβ

γ (1, ·)] (X)
∣∣∣ =

1√
2π

∣∣∣∣∫
R
|ξ|s e−|ξ|βe

i sgn(ξ)γ π2 eiXξdξ

∣∣∣∣
≤ 1√

2π

∫
R
|ξ|s e−|ξ|β cos( γπ2 ) dξ <∞,

(3.69)

where |γ| ≤ 2 − β < 1 which implies that cos
(γπ

2

)
> 0. Hence, in order to conclude the Lp-

norm estimate, it is sufficient to prove the following behaviour for X large enough. Starting
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with the identity (3.69) we rewrite the expression as follows,

|D|s[Kβ
γ (1, ·)](X) =

1√
2π

∫
R
|ξ|s e−|ξ|βe

i sgn(ξ)γ π2 eiXξ dξ

=
1√
2π

∫
R
|ξ|s e−|ξ|β(cos( γπ2 )+i sgn(ξ) sin( γπ2 ))eiXξ dξ

=
1√
2π

∫ ∞
0

ξs e−ξ
β(cos( γπ2 )+i sin( γπ2 ))e−i(−X)ξ dξ

+
1√
2π

∫ ∞
0

ξs e−ξ
β(cos( γπ2 )−i sin( γπ2 ))e−iXξ dξ,

note that in the second integral the change of variable ξ → −ξ is applied. Let

σ = cos
(γπ

2

)
+ i sin

(γπ
2

)
,

subsequently, we apply [62, Lemma 2] for each integral with respective constants σ and σ in
order to get the following behaviour,∣∣∣|D|s[Kβ

γ (1, ·)](X)
∣∣∣ . 1

|X|1+s
, |X| � 1. (3.70)

Since s > 0, in order to apply the cited lemma for the two integrals the only condition that
has to be satisfied is the following

σ, σ ∈
{
u+ iv ∈ C : − cos

(
βπ

2

)
≤ u ≤ 1, |v| ≤ − tan

(
βπ

2

)}
,

which is fulfilled since

|γ| ≤ min{β, 2− β} =⇒ γπ

2
∈
(
−(2− β)π

2
,
(2− β)π

2

)
⊂
(
−π

2
,
π

2

)
and in both cases this implies that

1 ≥ u = cos
(γπ

2

)
≥ cos

(
(2− β)π

2

)
= − cos

(
βπ

2

)
and the imaginary part holds

|v| =
∣∣∣sin(γπ

2

)∣∣∣ ≤ sin

(
(2− β)π

2

)
≤ tan

(
(2− β)π

2

)
= − tan

(
βπ

2

)
.

As a result of (3.69) and the previous behaviour given in (3.70), we conclude that

|D|s[Kβ
γ (1, ·)](X) ∈ Lp(R) for any 1 ≤ p ≤ ∞.

Finally, the same procedure works for the fourth estimate. The only difference here being the
application of the differentiation property for the Fourier transform, and one can still apply
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[62, Lemma 2] for the following integrals to yield that

||D|s[∂XK(1, ·)](X)| = 1√
2π

∣∣∣∣∫
R
|ξ|s(iξ) e−|ξ|βe

i sgn(ξ)γ π2 eiXξ dξ

∣∣∣∣
≤ 1√

2π

∣∣∣∣∫ ∞
0

ξ1+s e−ξ
β(cos( γπ2 )+i sin( γπ2 ))e−i(−X)ξ dξ

∣∣∣∣
+

1√
2π

∣∣∣∣∫ ∞
0

ξ1+s e−ξ
β(cos( γπ2 )−i sin( γπ2 ))e−iXξ dξ

∣∣∣∣
.

1

|X|2+s
, for |X| � 1.

We conclude the fourth estimate using the previous inequality and the self-similarity property
of the kernel as is done in (3.67).

Now with Lemma 3.17, we can proceed as in the proof of [45, Proposition 3.1], to obtain
Proposition 3.11 for (3.63).

In order to conclude the corresponding weak viscous entropy inequality, similar to The-
orem 3.12 and the Oleinik type of inequality and all other a priori estimates, similar to
Proposition 3.14 and Lemma 3.15, for positive solutions, we need the following lemma:

Lemma 3.18 (Partial integration by parts and energy estimate). Let β ∈ (1, 2) and |γ| ≤
min{β, 2− β}, then

(i) For functions g and h such that Dβ
γ [g], Ds1 [g], h, Ds2 [h] ∈ L2(R), then∫

R
Dβ
γ [g](x)h(x) dx = − 1

dβ+1
(c1
γ + c2

γ)

∫
R
Ds1 [g](x)Ds2 [h](x) dx

where 0 < s1, s2 < 1 and β = s1 + s2.

(ii) Moreover, for 1 < β < 2 and g, Dβ
γ [g] ∈ L2(R) ∩ C2

b (R), we have

−
∫
R
g(x)Dβ

γ [g](x) dx ≥ 0.

Proof. We note that Lemma 3.4 has the easy generalisation∫
R
∂xDβ−1[g](x)h(x) dx = −

∫
R
Ds1 [g](x)Ds2 [h](x) dx (3.71)

for 0 < s1, s2 < 1 with β = s1 + s2. This and Lemma 3.4 with α = β − 1 implies (i), using
the representation (3.65).

In order to show (ii), we use again the representation (3.65) and Lemma 3.3, this gives∫
R
g Dβ

γ [g](x) dx =
1

dβ+1

(
c1
γ

∫
R
g ∂xDβ−1[g](x) dx+ c2

γ

∫
R
g ∂xDβ−1[g](x) dx

)
=

1

dβ+1
(c1
γ + c2

γ)

∫
R
g ∂xDβ−1[g](x) dx ≤ 0,

where the last inequality is proved as in e.g. [27].
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Part (i) of the above lemma, allows to prove a weak entropy inequality, namely:∫ ∞
0

∫
R

(
|u(t, x)− k|∂tϕ+

1

q
sgn(u(t, x)− k)(|u(t, x)|q−1u(t, x)− |k|q−1k)∂xϕ

+|u(t, x)− k|Dβ
γ [ϕ(t, ·)](x)

)
dxdt ≥ 0,

where, as we have defined also in Chapter 1,

Dβ
γ [g](x) =

1

dβ+1

(
c1
γ∂xDβ−1[g](x) + c2

γ∂xDβ−1[g](x)
)
.

We observe that the above lemma is necessary to conclude the analogous of Lemma 3.15,
in particular property (vii). Indeed, we need an energy estimate similar to (3.49). Let us
briefly indicate how this is obtained. First, we multiply the equation by u and integrate by
parts

1

2

d

dt

∫
R
u2 dx−

∫
R
uDβ

γ [u](x) dx = 0.

Now, using (i) above, we obtain the energy type of identity:

1

2

d

dt

∫
R
u2 dx+

1

dβ+1
(c1
γ + c2

γ)

∫
R
Dβ/2[u](x)Dβ/2[u](x) dx = 0.

The second term is positive by (ii), this means that, in fact,

1

2

d

dt

∫
R
u2 dx+

1

dβ+1
(c1
γ + c2

γ)

∫
R
|Dβ/2[u](x)|2 dx = 0.

The rest of the argument follows unchanged, combining all the results that we have men-
tioned. Thus, we can generalise the large time asymptotic result Theorem 3.1 for the equation
(3.63) in the sub-critical case, 1 < q < β, for non-negative solutions, obtaining the same rate
of convergence.
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Appendix to Chapter 1

A.1 Proof of the limiting behaviour of the kernel

In this appendix we give the proof of Lemma 1.4 which is based on the dominated convergence
theorem and some properties of the kernel given in Proposition 1.2. More precisely, this lemma
is stated as follows:

Lemma A.1. Let T > 0 and (t0, x0) ∈ (0, T )× R. If v ∈ Cb((0, T )× R), then

(i) For all s0 > 0, lim(s,t,x)→(s0,t0,x0)K(s, ·) ∗ v(t, ·)(x) = K(s0, ·) ∗ v(t0, ·)(x0).

(ii) lim(s,t,x)→(0,t0,x0)K(s, ·) ∗ v(t, ·)(x) = v(t0, x0).

Proof. The point-wise convergence of these convolutions for the variables s, t and x are proved
by the dominated convergence theorem. The assumptions that we have to verify are the
following:

• The integral
∫
R |K(s, x− y)v(t, y)| dy is finite. It holds because v ∈ Cb((0, T )×R) and

‖K(s, ·)‖L1(R) = 1.

• ∀(s, t, x) ∈ (0, T )× (0, T )× R, ∃F ∈ L1(R) s.t. |K(s, x− y)v(t, y)| ≤ F (y).

It is enough to prove it for K(s, x− y) because for some constant C > 0, we have

|K(s, x− y)v(t, y)| ≤ C |K(s, x− y)|.

Then, for all δ0 ∈ (0, T ), and by Proposition 1.2 (ii), we have

∀(s, x, y) ∈ (δ0, T )× R× R : |K(s, x− y)| ≤ C1

C2 + |x− y|2
. (A.1)

for some positive constants C1 and C2.
Finally, by the triangle inequality, we have

|y − x0|2 ≤ |y − x|2 + |x− x0|2 ≤
C2

2
+ |y − x|2,

for x ∈ R such that |x− x0|2 ≤ C2
2 . Applying this inequality to (A.1), we show that

|K(s, x− y)| ≤ C1

C2
2 + |y − x0|2

= F (y) ∈ L1(R).
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Part (ii) can be proved as the last property and taking into account that the kernel
converges point-wise to the Dirac delta distribution as s tends 0, i.e. K(s, x) → δ(x) as
s→ 0.

A.2 Fractional Heat equation and regularity of solution

Here we show that the solution to the linear part of the equation, which is known as the
Fractional Heat equation for ∂xDα[·], is given as K(t, ·) ∗ u0 and is a classical solution. This
proves Proposition 1.5 and has been adapted from a more general proof given in [6].

Proposition A.2. If u0 ∈ Cb(R), let U(t, x) := (K(t, ·) ∗ u0)(x) for all (t, x) ∈ (0,∞)×R,
then U ∈ C∞((0,∞)× R) and satisfies

∂tU = ∂xDα[U ] (A.2)

with limt→0+ U(0, x) = u0(x) for all x ∈ R.
If u0 ∈ L∞(R), then also U ∈ C∞((0,∞)×R) satisfies (A.2), but we can only assure that

U(t, ·)→ u0 as t→ 0+ in L1
loc(R).

Proof. That U ∈ C∞((0,∞) × R), follows from K ∈ C∞((0,∞) × R), and that we can pass
the time derivatives under the integral sign by applying Proposition 1.2 (indeed, integrability
of the resulting integrands is guaranteed by (iv)-(v)).

First of all, we prove the identity (A.2) for an approximation of u0 which will converge
point-wise to u0. So we consider the following approximation of u0,

un0 (x) = u0(x)χ[−n,n](x), ∀n ∈ N .

It is obvious that un0 converges point-wise to u0 on R as n→∞.
Therefore, we consider the equation (A.2) with the initial condition un0 , which is bounded

and has a compact support. This allows us to compute the Fourier transform of un0 because
now it belongs to every Lebesgue space and in particular to L2(R).

One has to prove that Un = (K(t, ·) ∗ un0 ) (x) solves the equation (A.2) for all (t, x) ∈
(0,∞)×R. In this case the regularity of Un is obtained by the same argument and integrability
of the resulting integrands is also guaranteed.

We can now apply Fubini-Tonelli’s theorem to compute

∂t(K(t, ·) ∗ un0 )(x) = ∂t

∫
R
K(t, x− y)un0 (y) dy

=

∫
R

1√
2π

∫
R

(iξ)α+1e(iξ)α+1tei(x−y)ξ dξ un0 (y) dy

=

∫
R

(iξ)α+1e(iξ)α+1teixξF(un0 )(ξ) dξ .

On the other hand, again interchanging the order of integration and differentiating K instead
of un0 ,

∂xDα[K(t, ·) ∗ un0 ](x) = dα∂x

(∫ x

−∞

1

(x− y)α

∫
R

(iξ)e(iξ)α+1teiyξ F(un0 )(ξ) dξdy

)
.
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In this integral, we then exchange the order of integration once again and then we use the
changes of variables r = x− y and z = irξ, to get

∂xDα[K(t, ·) ∗ un0 ] = dα∂x

(∫ ∞
0

z−αe−z dz

∫
R
F(un0 )(ξ) e(iξ)α+1t eixξ(iξ)αdξ

)
=

∫
R

(iξ)α+1e(iξ)α+1teixξF(un0 )(ξ) dξ .

Note that the first integral is just the Gamma function evaluated at 1− α and this last term
is equal to ∂t(K(t, ·) ∗ un0 )(x).

Before letting n→∞, one can rewrite the two terms as convolutions by noticing that just
K depends on t in the first term and applying Fubini and some change of variables in the
second one,

∂t (K(t, ·) ∗ un0 ) (x) = (∂tK(t, ·) ∗ un0 ) (x),

∂xDα [K(t, ·) ∗ un0 ] (x) = (∂xDα [K(t, ·)] ∗ un0 ) (x).

Now taking the limit on n → ∞ and applying the dominated convergence theorem and
afterwards undoing the previous changes, one can show that the identity also holds in the
limit because the two terms converges point-wise to ∂t (K(t, ·) ∗ u0) and ∂xDα [K(t, ·) ∗ u0],
respectively, as a consequence of the point-wise convergence of un0 .

For the case t → 0 we refer to [74, Lemma 3.2], and get that U(t, x) → u0(x) in L∞(R)
weak-* as t → 0. The only assumption which must be satisfied is that K(t, x) has to be a
smoothing sequence with respect to the variable t (see [74, Chapter 3] for more information).
One can check this using the properties Proposition 1.2 (i)-(ii) and the non-negativity of
K.
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Appendix to Chapter 2

B.1 Continuous dependence on τ

In this section, we aim to prove the continuous dependence on the parameter τ using the
general theory for functional differential equations, e.g. see [43, §2] and [67]. First, we recall
the general result we want to apply and then we formulate our problem within that framework
and show that the necessary conditions to apply the result are fulfilled.

After rewriting the problem as a functional differential equation, we check the necessary
hypotheses in order to apply the auxiliary lemmas and the continuous dependence result from
[43, §2].

First, we rewrite (2.4) as a system of first-order delay functional differential equations with
infinite delay 

φ′ = ψ,

ψ′ = 1
τ h(φ)− dα

τ

∫ 0

−∞

ψ(ξ + s)

|s|α
ds.

To study the continuous dependence of solutions on τ , we add τ as an independent variable.
However, it is easier to consider instead of τ > 0 its inverse ν := 1/τ such that the augmented
system of first-order differential equations reads

φ′ = ψ,

ψ′ = νh(φ)− ν dα
∫ 0
−∞

ψ(ξ+s)
|s|α ds,

ν ′ = 0.

(B.1)

Either one studies this system of delay functional differential equations with infinite delay, e.g.
see [43, §12.9] or one frames it as a system of functional differential equations with finite delay.
Following the latter option, we consider the function φ to be given (w.l.o.g.) for ξ ∈ (−∞, 0)
and split the fractional derivative in two parts

Dα[φ] = dα

∫ 0

−∞

φ′(y)

(ξ − y)α
dy + dα

∫ ξ

0

φ′(y)

(ξ − y)α
dy = R(ξ) +Dα0 [φ](ξ),

where R(ξ) := dα
∫ 0
−∞

φ′(y)
(ξ−y)αdy is now a given function. To write Dα0 [φ](ξ) as a term with

finite delay, we choose r > 0 such that, for all ξ ≤ r,

Dα0 [φ](ξ) = dα

∫ ξ

0

φ′(y)

(ξ − y)α
dy = dα

∫ 0

−ξ

φ′(ξ + s)

|s|α
ds = dα

∫ 0

−r

χ(−ξ,0)(s)

|s|α
φ′(ξ + s) ds.
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Using φ′ = ψ, System (B.1) can be written as
φ′ = ψ,

ψ′ = νh(φ)− ν dα
∫ 0
−r

χ(−ξ,0)(s)

|s|α ψ(ξ + s) ds− νR(ξ),

ν ′ = 0,

(B.2)

for all ξ ≤ r. The first and the third equations are ordinary differential equations, whereas the
second one is an integro-differential equation with finite delay in the integral term. Following
the notation of [43, §2], equation (B.2) is a functional differential equation of the form

ẋ = F (ξ, xξ) (B.3)

where x = (φ, ψ, ν), and F = (F1, F2, F3) is identified as

F1 (ξ, (φ, ψ, ν)) = ψ,

F2 (ξ, (φ, ψ, ν)) = νh(φ)− ν dα
∫ 0

−r

χ(−ξ,0)(s)

|s|α
ψ(ξ + s) ds− νR(ξ),

F3 (ξ, (φ, ψ, ν)) = 0.

Moreover, we consider the operator F as F : D → R3 with domainD ⊆ (−∞, r)×C([−r, 0],R3).
We recall C = C([−r, 0],R3) is a Banach space with norm ‖ϕ‖∞ = sup−r≤s≤0 |ϕ(s)| for func-
tions ϕ ∈ C. Finally, we consider the delay functional differential equation (B.2) for a starting
time σ = 0. Due to the presence of χ(−ξ,0) in the integral term, we only need the vector
(φ, ψ, ν)(0) as initial datum, the history of ψ(ξ) for ξ < 0 is incorporated in R(ξ). Besides,
notice that the application of [3, Lemma 3] gives us the integrability of ψ on (−∞, ξ0) for
ξ0 < ξexist defined in Lemma 2.5. Since ξ = 0 is just an arbitrary splitting point, the previous
argument proves the finiteness of R(ξ) for all ξ > 0.

We want to apply the following theorem.

Theorem B.1 (Continuous dependence ([43, Theorem 2.2])). Suppose Ω ⊆ R× C is open,
(σ0, γ0) ∈ Ω, F 0 ∈ C(Ω,Rn), and x0 is a solution of the problem (B.3) (F 0) through (σ0, γ0)
which exists and is unique on [σ0 − r, b]. Let W 0 ⊆ Ω be the compact set defined by

W 0 =
{

(ξ, x0
ξ) : ξ ∈ [σ0, b]

}
and let V 0 be a neighbourhood of W 0 on which F 0 is bounded. If (σk, γk, F k), k = 1, 2, . . .
satisfies σk → σ0, γk → γ0 and

∣∣F k − F 0
∣∣
V 0 → 0 as k →∞, then there is a k∗ such that the

problem (B.3) (F k) for k ≥ k∗ is such that each solution xk = xk(σk, γk, F k) through (σk, γk)
exists on [σk − r, b] and xk → x0 uniformly on [σk − r, b]. Since all xk may not be defined on
[σk − r, b], by xk → x0 uniformly on [σk − r, b], we mean that for any ε > 0, there is a k∗(ε)
such that xk, k ≥ k∗(ε), is defined on [σ0− r+ ε, b], and xk → x0 uniformly on [σ0− r+ ε, b].

Next we proceed to check that F : R × C → R3 is continuous in both variables. It is
obvious F1 and, in particular, F3 are continuous because given (ξ, (φ, ψ, τ)) ∈ R × C then
F1(ξ, (φ, ψ, τ)) = ψ(ξ) and F3(ξ, (φ, ψ, τ)) = 0. In this case, F1 is the projection of the second
component and F3 is just the zero constant function. In the case of the second component
F2, the first term, h(φ(ξ)), is continuous because it is a composition of continuous functions,
the integral term is continuous as a result that one can show that it maps Cb(R) into Cb(R)

92



APPENDIX B. APPENDIX TO CHAPTER 2

and, finally, the last term, R(ξ) is continuous because of the regularity of φ for ξ ∈ (−∞, 0)
and finiteness is obtained as is explained above.

To study the existence of solutions for (B.2) starting at σ = 0, we only need to prescribe
the values for (φ, ψ, ν)(ξ) at −r < ξ < 0, since the history of ψ(ξ) for ξ < 0 is incorporated in
R(ξ) which we treat as a given function. To study the continuous dependence of solutions on
τ (or equivalently ν) in a neighbourhood of τ0, we consider the following initial data

σk ≡ 0, φk → φ0, ψk → ψ0, νk → 1
τ0
, as k →∞.

Note that the delicate point is that changing τ (or ν) influences the profile φ(ξ), ψ(ξ) = φ′(ξ),
for ξ < 0, hence, also F through its dependence on R(ξ). Therefore, we have to prove
continuous dependence of local solutions in Theorem 2.4 on τ , to justify the assumptions on
φ(ξ), ψ(ξ) and F k.

Considering the behaviour of the travelling wave solution and its derivative at −∞ we
know that for all νk = 1/τk > 0

lim
ξ→−∞

φk(ξ) = lim
ξ→−∞

φτk(ξ) = φ− and lim
ξ→−∞

ψk(ξ) = lim
ξ→−∞

φ′τk(ξ) = 0.

Therefore, by [3, Lemma 2] and for all fixed k > 0 natural number, there exists some ξk =
log(1/k)/λk such that

|φk(ξ)− φ−| <
1

k
, |ψk(ξ)| < 1

k
, ∀ξ < ξk.

Since it is know that

lim
ξ→−∞

φ0(ξ) = lim
ξ→−∞

φτ0(ξ) = φ− and lim
ξ→−∞

ψ0(ξ) = lim
ξ→−∞

φ′τ0(ξ) = 0,

then by the triangle inequality we get that

|φk(ξ)− φ0(ξ)| < 2

k
, |ψk(ξ)− ψ0(ξ)| < 2

k
, ∀ξ < ξk.

Now, for each fixed 1/k > 0, we can apply continuous dependence on τ in the interval [ξk, 0]
taking as initial condition an arbitrary sequence of νk = 1/τk that converges to 1/τ0 as k →∞,
σk = ξk, F k = F , φk = φτk and ψk = φ′τk . Therefore, by the continuous dependence result we
yield that

∀εk =
1

k
> 0, ∃k0 > 0, k > k0 : |φk(ξ)− φ0(ξ)| < 1

k
and |ψk(ξ)− ψ0(ξ)| < 1

k
, ∀ξ ∈ [ξk, 0].

Note that since τk → τ0 as k → ∞ then for all δk > 0 small, there exists some k0 > 0 such
that for all k > k0, τk ∈ (τ0 − δk, τ0 + δk). If we define a new subsequence taking the values
νk for k > k0 and rename this subsequence again as {νk}k∈N, therefore, for this new sequence
and taking σk ≡ 0 we conclude that

φk(ξ)→ φ0(ξ), ψk(ξ)→ ψ0(ξ), ∀ξ ≤ 0,

which is sufficient to apply Theorem B.1 of continuous dependence on τ for the system (B.2)
in an arbitrary bounded interval [0, b] for any b > 0.
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B.2 The linearised equation

In this appendix we recall a way of solving implicitly the linear inhomogeneous equation:

τψ′′ +Dα0 [ψ] + aψ = Q(η) , ′ =
d

dη
(B.4)

with initial conditions
ψ(0+) = C0 , ψ′(0+) = C1 . (B.5)

The method is by using the Laplace transform and the computations can be found in e.g. [15]
and applying the Laplace transform L, yields

L(ψ)(s) =
1

τs2 + sα + a

(
L(Q)(s) + (τs+ sα−1)ψ(0+) + τψ′(0+))

)
, (B.6)

where L(f)(s) =
∫∞

0 e−sηf(η) dη. Using L(f ∗ g)(s) = L(f)(s)L(g)(s), we deduce

ψ = ψ(0+)L−1

(
τs+ sα−1

τs2 + sα + a

)
+ τψ′(0+)L−1

(
1

τs2 + sα + a

)
+ L−1

(
1

τs2 + sα + a

)
∗Q .

Define

v(η) := L−1

(
τs+ sα−1

τs2 + sα + a

)
(η) and ṽ(s) :=

τs+ sα−1

τs2 + sα + a
. (B.7)

Observing that limη→0+ v(η) = lims→∞ sṽ(s) = 1 and

1

τs2 + sα + a
=

1

a
(1− sṽ(s)) = −1

a

(
sL(v)(s)− v(0+)

)
implies

L−1

(
1

τs2 + sα + a

)
(η) = −1

a
v′(η) .

Consequently,
lim
η→0+

v′(η) = 0 . (B.8)

Writing the expression for ψ in terms of v reads

ψ(η) = ψ(0+)v(η)− τ

a
ψ′(0+)v′(η)− 1

a

∫ η

0
v′(y)Q(η − y) dy . (B.9)

For a > 0, let us sketch the computation of v(η), we recall that since this is the inverse
Laplace transform of ṽ(s), we have to compute:

v(η) =
1

2πi

∫
Br
esη

τs+ sα−1

τs2 + sα + a
ds (B.10)

where Br ⊂ C is a Bromwich contour:

Br := {s : Re(s) = σ ≥ 1 & Im(s) ∈ (−∞,∞)}. (B.11)

Moreover, we restrict to the principal representation of s, namely, here arg(s) ∈ (−π, π].
Following the approach in [42] and [15] and denoting by s1 and s2 = s1 the zeros of τz2 +
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zα + a = 0, which are the poles of the integrand in (B.10). The contribution to the integral
of these poles can be computed away from the Riemann surface cut (since α ∈ (0, 1)) that is
the negative part of the real line. One can then split the integral as follows:

v(η) =
a sin(απ)

π

∫ ∞
0

e−ηrK(r) dr + 2Re
(
es1η

τs1 + sα−1
1

2τs1 + αsα−1
1

)
, (B.12)

where

K(r) = rα−1K̃(r) with K̃(r) =
1

(τr2 + a)2 + 2(τr2 + a)rα cos(απ) + r2α
. (B.13)

The integral term is bounded since K ∈ L1((0,∞)). The asymptotic behaviour of the integral
term for η → ∞ can be studied by a refined Watson’s Lemma in [70, p. 65] and [18, §4].
We note that the function K̃(r) is not differentiable at r = 0, but we have that ε > 0, the
properties K ∈ L1((0,∞)) and K = o(rα−1+ε) for r → 0 imply that L(K)(η) = o(η−α−ε) for
η →∞. Using a Puiseux series expansion of K(r) for r → 0, allows to deduce for η →∞,∫ ∞

0
e−ηrK(r) dr =

Γ(α)

a2

1

ηα
+O(η−2α) (B.14)

B.2.1 Small τ expansions of the characteristic equations

Let us recall some results about the zeros of the functions

τz2 + bzα − a for a , b > 0 , α ∈ (0, 1), (B.15)

and
τz2 + bzα + a for a , b > 0 , α ∈ (0, 1), (B.16)

we can give the following result:

Lemma B.2. For α ∈ (0, 1), consider the principal branch of zα (−π < arg(z) < π). Then
(B.15) has exactly one positive real root and two complex conjugate roots with negative real
part, and (B.16) has exactly two complex conjugate roots with negative real part on the principal
branch of zα.

The statement about (B.15) and (B.16) are proven in [3] and [15], respectively, using
variants of Rouche’s theorem.

Let us now compute the two term expansion of the roots of (B.15) and (B.16) for very
small values of τ . Observe that the characteristic equations of the linearised problems (for
Caputo type derivatives) are of one of these forms.

A regular expansion gives the real root for (B.15), in this case it is easy to obtain by
inserting the ansatz λ = λ0 + τλ1 +O(τ2), and one gets that

λ = a
1
α − τ

α
a

3−α
α +O(τ2) . (B.17)

The complex conjugated roots are obtained by first performing the scaling λ = τ−
1

2−α λ̄, and
inserting the ansatz λ̄ = λ̄0 + τ

α
2−α λ̄1 in the rescaled equation λ̄2 + bλ̄α − τ

α
2−αa = 0. To

leading order one gets three zeros, namely λ̄0 = 0, b
1

α−2 eiπ/(α−2) and b
1

α−2 e−iπ/(α−2). The
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first one corresponds to the real one already found, from the other two one then gets (in the
original scaling):

z = b
1

α−2 e±iπ
1

α−2
1

τ
1

2−α
+

a

2b
1

α−2 e±iπ
1

α−2 + b
α−1
α−2αe±iπ

α−1
α−2

1

τ
1−α
2−α

+O

(
1

τ
1−2α
2−α

)
as τ → 0+ .

The same approach gives the expansion of the zeros of (B.16) provided that a and b are
of order 1 as τ → 0+:

z = b
1

α−2 e±iπ
1

α−2
1

τ
1

2−α
− a

2b
1

α−2 e±iπ
1

α−2 + b
α−1
α−2αe±iπ

α−1
α−2

1

τ
1−α
2−α

+O

(
1

τ
1−2α
2−α

)
as τ → 0+ .

(B.18)

B.2.2 Monotonicity of v for small values of τ

In this section we study the behaviour of v, v′ and v′′. The main idea here is that one can
absorb the non-monotone part of each function into the monotone part for τ > 0 sufficiently
small. From [3, Lemma 13 (iii)], we know that the three functions are uniformly bounded on
[0,∞), the first one by a constant independent of τ and the other two by a constant dependent
of τ which gets unbounded as τ → 0+.

Lemma B.3. For a > 0 and τ > 0, let v(η) be the function defined by (B.12)-(B.13) for
η > 0. Then for τ > 0 sufficiently small, 0 < v(η) < 1, v′(η) < 0 for all η > 0. Moreover,
and there exists some ηinflex ∼ τ1/(2−α) as τ → 0+, such that

v′′(η) < 0 for 0 < η < ηinflex and v′′(η) > 0 for η > ηinflex.

Also, there exists some η0 ∼ τ
1

2−α as τ → 0+ such that

v(η) ∼ K(τ)

ηα
, v′(η) ∼ −K

′(τ)

ηα+1
for all η > η0

with K(τ), K ′(τ) ∼ τ2α/(2−α) as τ → 0.
Finally, for τ � 1 and η → 0, valid in a layer of order τ1/(2−α), we have

v(η) ∼ 1− a

2τ
η2 +

1

(4− α)(3− α)(2− α)

a

τ2
η4−α as η → 0 ,

v′(η) ∼ −a
τ
η +

1

(3− α)(2− α)

a

τ2
η3−α as η → 0

and
v′′(η) ∼ −a

τ
+

1

2− α
a

τ2
η2−α as η → 0 .

Proof. Considering the expression (B.12) of v(η), one can get the following upper and lower
bounds for the integral term:∫ ∞

0
e−ηr

rα−1

(τr2 + a)2 + 2(τr2 + a)rα cos(απ) + r2α
dr ≤

∫ ∞
0

e−ηr
rα−1

(τr2 + a)2 sin2(απ)
dr

≤ 1

a2 sin2(απ)
Γ(α)

1

ηα
.

(B.19)
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In order to get the first inequality, we rewrite the denominator as

(τr2 + a)2 + 2(τr2 + a)rα cos(απ) + r2α =
(
(τr2 + a) cos(απ) + rα

)2
+ (τr2 + a)2 sin2(απ),

while the last one is obtained computing the minimum of the denominator which is attained
at zero and applying the change of variable ηr = R. On the other hand, taking into account
that the integrand is non-negative and proceeding in the same way, one gets this lower bound,
for any 0 ≤ A < B∫ ∞

0
e−ηrrα−1K̃(r)dr ≥

∫ B

A
e−ηr

rα−1

(τr2 + a+ rα)2
dr ≥ e−ηB(Bα −Aα)

α(τB2 + a+Bα)2
. (B.20)

We rewrite the second term in (B.12) as follows:

Re
(
es1η

τs1 + sα−1
1

2τs1 + αsα−1
1

)
= epη (C1 cos(qη) + C2 sin(qη)))

thus p = Re(s1) < 0 and q = Im(s1), and

C1 = Re
(

τs1 + sα−1
1

2τs1 + αsα−1
1

)
, C2 = −Im

(
τs1 + sα−1

1

2τs1 + αsα−1
1

)
.

With this notation, we apply the upper bound (B.19) in (B.12), to get (observe that
sin(απ) > 0):

v(η) ≤ Cr(α)
1

ηα
+ 2epηC(τ) ,

with constants
Cr(α) =

πΓ(α)

a sin(απ)
, C(τ) = |C1|+ |C2| .

Observe that the maximum of the function Cr(α)+2ηαepηC(τ) is attained at ηmax = −α/p >
0, thus

v(η) ≤ 1

ηα

(
Cr(α) + 2

(
−α
p

)α
e−αC(τ)

)
. (B.21)

We observe that for τ � 1 the constant C(τ) is of order τ
α

2−α . We deduce this fact by
applying (B.18) of the Appendix B.2.11.

1 taking into account that τs21 + sα1 = −a

C1 = Re
(

−a
−2a− (2− α)sα1

)
= Re

(
a

2a+ (2− α)sα1

)
=

2a2 + a(2− α)Re(sα1 )
|2a+ (2− α)sα1 |2

= O(τ
α

2−α ) .

To leading order, the sign of Re(sα1 ) ∼ cos(απ/(α − 2))τ−α/(2−α) as τ → 0+ depends on α: positive when
α < 2/3, negative when α > 2/3, zero when α = 2/3.

We also have

C2 = −Im
(

−a
−2a− (2− α)sα1

)
= −Im

(
a

2a+ (2− α)sα1

)
=

a(2− α)Im(sα1 )

|2a+ (2− α)sα1 |2
= O(τ

α
2−α )

which is negative to leading order as τ → 0+, since sin(απ/(α − 2)) < 0 (see the expansion of s1 with a = 1

in (B.18) and that Re(s1sα−1
1 ) = Re(s1sα−1

1 ) ∼ τ−α/(2−α)(cos(π/(α− 2)) cos((α− 1)π/(α− 2)) + sin(π/(α−
2)) sin((α− 1)π/(α− 2))) + · · · = τ−α/(2−α) cos(π/(α− 2)− (α− 1)π/(α− 2)) = −τ−α/(2−α)).
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This is a good estimate for sufficiently large η. For small and large values of η we have a
uniform, in τ ∈ [0, 1], upper bound. For example, we obtain:∫ ∞

0
e−ηrrα−1K̃(r) dr ≤ 1

a2 sin2(απ)

∫ 1

0
rα−1 dr +

∫ ∞
1

1

(τr2 + a)2 sin2(απ)
dr (B.22)

≤ 1

αa2 sin2(απ)
+

1

sin2(απ)

∫ ∞
1

1

(τr2 + a)2
dr (B.23)

≤ 1

αa2 sin2(απ)
+

1
√
τa3 sin2(απ)

∫ ∞
1/
√
τ

1

(Z2 + 1)2
dZ =

1

αa2 sin2(απ)
+O(τ) (B.24)

so that, for all η > 0 for τ � 1

v(η) ≤ 1

απa sin(απ)
+ 2C(τ) +O(τ) . (B.25)

The same bounds, clearly hold replacing v(η) by |v(η)|. Let us see that, indeed v(η) > 0
for all η if τ is sufficiently small.

We also observe that although p < 0, in the limit τ → 0+ we have the following behaviours:

ηRe(s1)→ 0, if η � τ
1

2−α ,

ηRe(s1)→ −C, if η ∼ τ
1

2−α

and
ηRe(s1)→ −∞ if η > τ

1
2−α .

In the third case we then have as a lower bound for v, using (B.20) with A = 0 and
B = 1/η

1

ηα

(
a sin(απ)

eαπ

η4

(τ + aη2 + η2−α)2
− 2epηηαC(τ)

)
≤ v(η) .

Since the function η4

(τ+aη2+η2−α)2
is increasing and the minimum of the second term is attained

at ηmax = −α/p = O(τ1/(2−α)) we have that, there exists η0 > ηmax with limτ→0+ η0/ηmax =
∞, such that

0 <
1

ηα

(
a sin(απ)

eαπ

η4
0

(τ + aη2
0 + η2−α

0 )2
− 2epη0ηα0C(τ)

)
≤ v(η) for all η ≥ η0 .

We can improve this for η0 = Kηmax with K > 1 sufficiently large, with the estimate

0 <
1

ηα

(
a sin(απ)

eαπ

η4
0

(τ + aη2
0 + η2−α

0 )2
− 2epηmaxηαmaxC(τ)

)
≤ v(η) for all η ≥ η0

since both terms are of order τ2α/(2−α) in that case, but the first has the freedom for K which
can be made large2.

2

η40
(τ + aη20 + η2−α0 )2

∼ τ2α/(2−α) K4

(1 + aα2C2K2τα/(2−α) +K2−αα2−αC2−α)2
.
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More generally, from (B.20) with A = 0, take 0 < B < |p|, then,

e−Bη
(
a sin(απ)

π

Bα

α(τB2 + a+Bα)2
− 2eη(−|p|+B)C(τ)

)
≤ v(η),

so, for all η ∈ (0, η0)

e−Bη
(
a sin(απ)

π

Bα

α(τB2 + a+Bα)2
− 2C(τ)

)
≤ v(η),

then we can choose B = O(1) as τ → 0 to guarantee that the right-hand side is strictly
positive.

Observe that

v′(η) =− a sin(απ)

π

∫ ∞
0

e−rηrαK̃(r)dr

+ 2epη ((p cos(qη)− q sin(qη))C1 − (p sin(qη) + q cos(qη)C2)

=− a sin(απ)

π

∫ ∞
0

e−rηrαK̃(r)dr + Re
(
eiqηs1

τs1 + sα−1
1

2τs1 + αsα−1
1

)
epη

=− a sin(απ)

π

∫ ∞
0

e−rηrαK̃(r)dr − Re
(
eiqη

a

2τs1 + αsα−1
1

)
epη .

Then, we have the lower bounds for v′ (obtained similarly to the upper bounds of v):

v′(η) ≥ − 1

ηα+1

(
Γ(α+ 1)

aπ sin(απ)
+

(
α+ 1

|p|

)α+1

e−(α+1)C ′(τ)

)
(B.26)

and

v′(η) ≥ − τ−1

2(1− α) sin(απ)
− 1

(α+ 1)πa sin(απ)
− 2C ′(τ)epη , (B.27)

where C ′(τ) = 2(|C1|+ |C2|)(|p|+ |q|) = O(τ−
1−α
2−α ) as τ → 0+ (we can even improve the first

term3).
We use now that for any 0 ≤ A < B∫ ∞

0
e−ηrrαK̃(r)dr ≥

∫ B

A
e−ηr

rα

(τr2 + a+ rα)2
dr ≥ e−ηB(Bα+1 −Aα+1)

(α+ 1)(τB2 + a+Bα)2
(B.28)

3 Here we use for τ � 1∫ ∞
0

e−ηrrαK̃(r) dr ≤ 1

a2 sin2(απ)

∫ 1

0

rα dr +

∫ ∞
1

rα

(τr2 + a)2 sin2(απ)
dr

≤ 1

(α+ 1)a2 sin2(απ)
+

1

2τa sin2(απ)

∫ ∞
1

rα−2 dr .

We can also use: ∫ ∞
0

e−ηrrαK̃(r) dr ≤ 1

2aτ sin2(απ)

∫ ∞
0

e−ηrrα−2 dr ≤ C η
1−α

τ

or ∫ ∞
0

e−ηrrαK̃(r) dr ≤ 1

a2τ2 sin2(απ)

∫ ∞
0

e−ηrrα−4 dr ≤ C η
3−α

τ2
.
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Taking A = 0 and B = 1/η, we get that there exists η′0 > η′max = −(α + 1)/p such that, for
all η ≥ η′0,

v′(η) ≤ − 1

ηα+1

(
a sin(απ)

e(α+ 1)π

(η′0)4

(τ + a(η′0)2 + (η′0)2−α)2
− 2epη

′
0(η′0)α+1C ′(τ)

)
< 0 .

Which can again be improved, as before, for τ sufficiently small, for η′0 = K ′η′max for some
K ′ > 1 sufficiently large, so that for all η ≥ η′0,

v′(η) ≤ − 1

ηα+1

(
a sin(απ)

e(α+ 1)π

(η′0)4

(τ + a(η′0)2 + (η′0)2−α)2
− 2epη

′
max(η′max)α+1C ′(τ)

)
< 0.

In this case the term in brackets is also of the order τ
2α
2−α .

For very small values of η, we can take B = K ′|p| and choose K ′ > 1 large enough, so that
for τ sufficiently small, we get that(

a sin(απ)

e(α+ 1)π

Bα+1

(τB2 + a+Bα)2
− 2C ′(τ)

)
> 0

observe that both terms are of the same order as τ → 0, but making K ′ large makes the first
larger. Thus, there exists K ′ > 1 large enough so that for all 0 < η ≤ (K ′|p|)−1 and for τ
small enough, we have

v′(η) ≤ 0.

Apart from this, one can get the asymptotic behaviour at zero and the sign applying the
Initial Value Theorem in order to compute the limits of the corresponding Laplace transform
(see [12, Chapter 2] to get more information about Tauberian Theorems). First, assuming
that τ > 0 is fixed, we obtain:

lim
η→0

v(η) = lim
s→+∞

sL(v)(s) = lim
s→+∞

s
τs+ sα−1

τs2 + sα + a
= 1,

lim
η→0

v′(η) = lim
s→+∞

s (sL(v)(s)− v(0)) = lim
s→+∞

−a s
τs2 + sα + a

= 0

and

lim
η→0

v′′(η) = lim
s→+∞

s
(
s2L(v)(s)− sv(0)− v′(0)

)
= lim

s→+∞

−a s2

τs2 + sα + a
= −a

τ
< 0 .

A next order correction can be obtained from the third derivative, and putting all together
we get the expansion

v′′(η) ∼ −a
τ

+
1

2− α
a

τ2
η2−α as η → 0

thus there is a value ηinflex � 1 if τ is sufficiently small such that v′′(ηinflex) = 0 and has

ηinflex ∼ (2− α)
1

2−α τ
1

2−α as τ → 0.

Then we deduce that

v′(η) ∼ −a
τ
η +

1

(3− α)(2− α)

a

τ2
η3−α as η → 0
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and
v(η) ∼ 1− a

2τ
η2 +

1

(4− α)(3− α)(2− α)

a

τ2
η4−α as η → 0 .

These limits are valid as long as η ≤ ηinflex for τ small enough.
From the linear equation satisfied by v, which is τv′′ +Dα0 [v] + av = 0 with v(η) > 0 and

v′(η) < 0 for all η > 0 if τ is sufficiently small, we deduce that τv′′ + av > 0 for all η > 0
if τ is sufficiently small. If initially v′′ < 0 and on the other hand v > 0 decreases for all η,
then v′′ must change sign and the estimate around ηmax and η′max, that are of order τ1/(2−α)

as τ → 0, imply that for τ small enough this change of sign of v′′ occurs only once.
We observe that there is a boundary layer of size O(τ1/(2−α)) as τ → 0. In particu-

lar the behaviours obtained above are consistent for η ∼ ηinflex with the behaviour of the
corresponding solution v0 of the linear problem when τ = 0 as η → 0, since (see e.g. [42])

lim
η→0

v0(η) = 1 and v′0(η) ∼ −aηα−1 as η → 0+.
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Appendix to Chapter 3

C.1 Proof of (3.29) for uν

In this appendix we show the lower bound satisfied by the solution of the regularised problem
(3.32). The upper bound is proved as in [30].

Before we proceed, we recall that since uν ∈ C∞b ((0, T ) × R) the sequence {xn}n∈N ⊂ R
such that

uν(t, xn)→ inf
x∈R

uν(t, ·) as n→∞ for any t > 0,

satisfies that ∂xuν(t, xn) → 0 as n → ∞. This can be shown considering the case of the
supremum in [33, Theorem 2].

A related result to [33, Theorem 2] might be proved for the infimum with slight modifica-
tions in the proof. One has that for {xn}n∈N ⊂ R and ϕ ∈ C2

b (R),

lim infn→∞∂xDα[ϕ](xn) ≥ 0 (C.1)

provided that ϕ(xn)→ infx∈R ϕ(x) as n→∞.
Let δ ∈ (0, T ), we use the Taylor expansion of uν(t − τ, x) on τ ∈ (0, δ/2) centred at

t ∈ (δ, T ) up to the second order. Then we substitute the equation (3.1) in the second term
and use the boundedness of |∂2

t uν | on (δ, T ) by some C ′δ > 0 and the fact that |f ′ν(uν)| <
supuν∈[− sup{u0},sup{u0}] |f

′(uν)| < Mt for some Mt > 0. Finally, we get that

uν(t, x) ≥uν(t− τ, x) + τ ∂tuν(t, x)− C ′δ τ2

≥ inf
x∈R

uν(t− τ, x)− τf ′ν(uν(t, x))∂xuν(t, x) + τ ∂xDα[uν(t, ·)](x)− C ′δ τ2

≥ inf
x∈R

uν(t− τ, x)− τMt |∂xuν(t, x)|+ τ ∂xDα[uν(t, ·)](x)− C ′δ τ2.

Evaluation of the last inequality at x = xn gives

uν(t, xn) ≥ inf
x∈R

uν(t− τ, ·)− τMt |∂xuν(t, xn)|+ τ ∂xDα[uν(t, ·)](xn)− C ′δ τ2, (C.2)

hence, taking the limit n→∞ in (C.2), we get

inf
x∈R

uν(t, x) ≥ inf
x∈R

uν(t− τ, x)− C ′δ τ2. (C.3)
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We now observe that infx∈R uν(t, x) ∈ W 1,∞(δ, T ), because it is Lipschitz continuous on
(δ, T ). Indeed, for t, t′ > 0∣∣∣∣ inf

x∈R
uν(t, x)− inf

x∈R
uν(t′, x)

∣∣∣∣ ≤ sup
x∈R

∣∣uν(t, x)− uν(t′, x)
∣∣ ≤ sup

x∈R
|∂tuν(t, x)| |t− t′|,

since ∂tuν is bounded on (δ, T )×R, we obtain Lipschitz continuity of infx∈R uν(t, x) in (δ, T ).
Therefore, (C.3) implies that for all 0 < t′ < t < T ,

inf
x∈R

uν(t, x)− inf
x∈R

uν(t′, x) ≥ 0. (C.4)

On the contrary, taking into account the mild formulation for uν and the fact that ‖K(t, ·)‖L1(R) =
1, one obtains the following lower bound for uν(t, x) and C > 0,

uν(t, x) ≥ inf
x∈R

u0

∫
R
K(t, x) dx−

∫ t

0
∂xK(t− s, ·) ∗ fν(uν(s, ·))(x) ds

≥ inf
x∈R

u0 − sup
s∈(0,t)

sup
x∈R
|fν(uν(s, x))|

∫ t

0
‖∂xK(t− s, ·)‖L1(R) ds

≥ inf
x∈R

u0 − C
∫ t

0

1

(t− s)
1

1+α

ds

= inf
x∈R

u0 − C t
α

1+α .

Finally, we get the desired lower bound for uν using the previous inequality, (C.4) and taking
the limit t′ → 0:

uν(t, x) ≥ inf
x∈R

uν(t, x) ≥ inf
x∈R

uν(t′, x) ≥ inf
x∈R

u0 − C (t′)
α

1+α −→ inf
x∈R

u0.

C.2 Lp-regularity of the mild solution

We sketch the proof of Proposition 3.11, which is analogous to that of [45, Proposition 3.1].

Proposition C.1 (Mild solution’s Lp-regularity). Let u be the unique mild solution of (3.1)
with u0 ∈ L∞(R) ∩ L1(R), then ∂tu ∈ C((0,∞), Lp(R)) and u ∈ C((0,∞), Lp(R) ∩ Ḣs,p(R))
for any s < 1 + α+ min{α, q − 1} and 1 < p <∞.

Proof. The proof is a bootstrap argument. One starts with some regularity of u on the right
hand side of the mild formulation and proves that it is slightly more regular. This enables to
improve the initial hypothesis on the regularity of u and proceed recursively.

Here u0 ∈ L∞(R) ∩ L1(R), then, by Theorem 3.9, u ∈ C([0,∞), L1(R)) ∩ Cb((0,∞)× R).
This implies that |u|q−1 u

q ∈ C([0,∞), L1(R))∩Cb((0,∞)×R) as well. Moreover, u(t, ·) ∈ Lp(R)

for any p ≥ 1 for t ≥ 0. Then we only have to prove that for any t > 0, u(t, ·) ∈ Ḣs,p(R).
Let us fix T > 0. First, one shows that u ∈ C((0, T ), Lp(R) ∩ Ḣs,p(R)) for any 0 < s < α

and 1 < p < ∞. Thus we have to show that ‖|D|s[u(t, ·)]‖Lp(R) < ∞ for any 0 < s < α and
1 < p <∞. From the mild formulation, we obtain that

|D|s[u(t, ·)](x) = |D|s[K(t, ·)] ∗ u0(x) +

∫ t

0
|D|s [∂xK(t− σ, ·)] ∗ (|u(σ, ·)|q−1u(σ, ·)/q) dσ.
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Here we have used that (see [32, Lemma 5.1])

|D|s
[∫ t

0
∂xK(t− σ, ·) ∗ f(u(σ, ·)) dσ

]
(x) =

∫ t

0
|D|s [∂xK(t− σ, ·)] ∗ f(u(σ, ·)) dσ.

Then, we have the following estimate:

‖|D|s[u(t, ·)]‖Lp(R) ≤ ‖|D|s[K(t, ·)]‖L1(R) ‖u0‖Lp(R)

+

∫ t

0
‖|D|s[∂xK(t− σ, ·)]‖L1(R)‖|u(σ, ·)|q/q‖Lp(R) dσ ≤ C(T ) t−

s
1+α ,

(C.5)

for some C(T ) > 0. Here we have used the third and fourth estimates of Lemma 3.6 and that
|u(σ, ·))|q ∈ Lp(R) for p > 1 (since u(σ, ·) ∈ L∞(R) ∩ L1(R)). The inequality (C.5), then,
implies that ‖|D|s[u(t, ·)]‖Lp(R) <∞, provided that 0 < s < α for all t ∈ (0, T ).

For larger values s ≥ α, we let s1 and s2 such that 0 < s1 < α, 0 < s2 < 1 and s = s1 + s2.
Now, we apply |D|s[·] to both sides of (3.28) to get, for some C(T ) > 0,

‖|D|s[u(t, ·)]‖Lp(R) ≤‖|D|s[K(t, ·)]‖L1(R) ‖u0‖Lp(R)

+

∫ t

0
‖|D|s1 [∂xK(t− σ, ·)]‖L1(R)‖|D|s2 [f(u(σ, ·))]‖Lp(R) dσ

≤C(T ) t−
s

1+α +

∫ t

0
(t− σ)−

1+s1
1+α ‖|D|s2 [u(σ, ·)]‖Lp(R).

(C.6)

Here, before applying Young’s inequality we perform integration by parts (a result in the spirit
of Lemma 3.4, see e.g. [45]), to get the first inequality (observe that the functions involved
are in L2(R)) and Lemma 3.5 (i) with r = p, p =∞ and q = p. We have also used the third
and fourth estimates of Lemma 3.6.

Now, if
‖|D|s2 [u(t, ·)]‖Lp(R) . t−

s2
1+α ∀t ∈ (0, T ), (C.7)

there exist C(T ) > 0 such that

‖|D|s[u(t, ·)]‖Lp(R) ≤ C(T )t−
s

1+α , ∀t ∈ (0, T ). (C.8)

In order to obtain (C.7) we can repeat the argument for s2 (which we can write as s2 = s3 +s4

with s3 < α and s4 < 1), and we indeed get (C.7), provided the same is true but replacing s2

by s4, and so on. Then, after a finite number of steps of this recursive argument one gets that
s2n < α and hence (C.7) is indeed satisfied with s2 replaced by s2n, and the inequality then
follows for the previous steps. This proves that for any s ∈ (0, 1 + α) and any 1 < p < ∞,
u ∈ Ḣs,p(R), more precisely, (C.8) holds with this s.

Let now s = s1 + s2 with 0 < s1 < α and 0 < s2 < min{α, q − 1}, let us show that
|D|s[∂xu(t, ·)] ∈ Lp(R) for all t > 0.

Applying |D|s[·] to the derivative of the mild solution and computing the Lp-norm we
obtain that,

‖|D|s[∂xu(t, ·)]‖Lp(R) ≤ ‖|D|s[∂xK(t, ·)]‖L1(R)‖u0‖Lp(R)

+

∫ t

0
‖|D|s1 [∂xK(t− σ, ·)]‖L1(R) ‖|D|s2

[
∂x(|u(σ, ·)|q−1u(σ, ·)/q)

]
‖Lp(R) dσ

.t−
1+s
1+α +

∫ t

0
(t− σ)−

1+s1
1+α ‖|D|s2

[
∂x(|u(σ, ·)|q−1u(σ, ·)/q

]
‖Lp(R) dσ,

(C.9)
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where we have used integration by parts for the fractional Laplacian, Lemma 3.6, that u(t, ·) ∈
L∞(R) ∩ L1(R) and (C.8).

Now, the second term in (C.9) is estimated using Lemma 3.5 (ii): for any 1 < p1, p2 <∞
such that 1

p = 1
p1

+ 1
p2
, we have

‖|D|s2
[
|u(σ, ·)|q−1∂xu(σ, ·)

]
‖Lp(R) .‖|D|s2 [(|u(σ, ·)|q−1]‖Lp1 (R) ‖∂xu(σ, ·)‖Lp2 (R)

+ ‖|D|s2 [∂xu(σ, ·)]‖Lp(R) ‖|u(σ, ·)|q‖L∞(R).

We observe also that (C.8) with s ∈ [1, α+ 1) implies that for any s2 ∈ [0, α)

‖|D|s2 [∂xu(t, ·)]‖Lp(R) . t−
1+s2
1+α , ∀t ∈ (0, T ). (C.10)

We, therefore, get that

‖|D|s[∂xu]‖Lp(R) . t−
1+s
1+α + t−

2+s
1+α

+1

+

∫ t

0
(t− σ)−

1+s1
1+α σ−

1
1+α ‖|D|s2 [|u(σ, ·)|q−1]‖Lp1 (R) dσ.

(C.11)

It remains to estimate the last term in (C.11): for s2, β > 0 such that

0 < s2 < min{q − 1, 1}, 0 <
s2

q − 1
< β < 1,

we can apply Lemma 3.5 (iii) to get the following bound,

‖|D|s2 [|u|q−1]‖Lp1 (R) ≤ ‖|D|β[u]‖s2/βLr1 (R) ‖|u|
q−1− s2

β ‖Lr2 (R) (C.12)

where 1
p1

= s2
r1β

+ 1
r2
, and r2

(
1− s2

(q−1)β

)
> 1. Taking r2 ≥ q − 1− s2/β, the choice of r1, β

and p1 are guaranteed as it is shown in [45, Proposition 3.1]. On the other hand, for β < 1 we
have the estimate (C.8) for s replaced by and p replaced by r1. Therefore, combining these
last estimates on (C.11), we get that there exists a constant C(T ) > 0 such that

‖|D|s[∂xu]‖Lp(R) . t−
1+s
1+α + t−

2+s
1+α

+1 +

∫ t

0
(t− σ)−

1+s1
1+α σ−

1
1+ασ

− β
1+α

s2
β dσ . t−

1+s
1+α . (C.13)
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