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Abstract: Lock-in vibrothermography has proven to be very useful to characterizing kissing cracks
producing ideal, homogeneous, and compact heat sources. Here, we approach real situations by
addressing the characterization of non-compact (strip-shaped) heat sources produced by open cracks
and inhomogeneous fluxes. We propose combining lock-in vibrothermography data at several
modulation frequencies in order to gather penetration and precision data. The approach consists in
inverting surface temperature amplitude and phase data by means of a least-squares minimization
algorithm without previous knowledge of the geometry of the heat source, only assuming knowledge
of the vertical plane where it is confined. We propose a methodology to solve this ill-posed inverse
problem by including in the objective function penalty terms based on the expected properties of the
solution. These terms are described in a comprehensive and intuitive manner. Inversions of synthetic
data show that the geometry of non-compact heat sources is identified correctly and that the contours
are rounded due to the penalization. Inhomogeneous smoothly varying fluxes are also qualitatively
retrieved, but steep variations of the flux are hard to recover. These findings are confirmed by
inversions of experimental data taken on calibrated samples. The proposed methodology is capable
of identifying heat sources generated in lock-in vibrothermography experiments.

Keywords: crack characterization; lock-in vibrothermography; ultrasound-excited thermography;
sonic-infrared; inverse problems; nondestructive testing

1. Introduction

Thermographic non-destructive testing (NDT) methods have demonstrated a high
potential for surface and subsurface defect detection and characterization [1]. Thermo-
graphic techniques consist in generating a thermal unbalance in the material and recording
the evolution of the surface temperature distribution by means of an infrared camera.
The thermal perturbation can be carried out by exciting the material with light (optically
excited infrared thermography (IRT)), ultrasounds (vibrothermography, thermosonics,
sonic IR), or electromagnetically (inductive thermography). The most popular modality
of infrared thermography uses light to heat the material surface. The presence of defects
perturbs the subsequent heat diffusion, giving rise to anomalies in the surface temperature
distribution with respect to a sound material. Consequently, the signature of the defect
needs to be identified in a pre-existent temperature field caused by the excitation. In this
regard, vibrothermography has attracted a great deal of interest in recent times due to its
defect-selective nature. In vibrothermography, the material is excited with high-amplitude
ultrasounds. In non-viscoelastic materials, the bulk dissipation is small and the mechanical
energy is converted into heat at cracks, mainly due to friction between the crack lips. This
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thermal energy diffuses in the material and eventually reaches the sample surface, produc-
ing a hot region above the defect, in a cold environment. For a comprehensive description
of vibrothermography, see [2]. If compared to optically excited thermography, there is a
double advantage in generating an internal heat source at the defect. First, the resulting
surface temperature distribution is background-free and only due to the heat generated at
the defect. Second, the heat travels only one way to reach the surface, which allows sensing
deeper regions in the material. These advantages apply to any NDT method generating heat
at defects, for instance, the identification of metallic inclusions embedded in an electrical
insulator when the parts are excited by eddy currents (inductive thermography).

The heat generated at cracks in vibrothermography is generally non-uniform. Actually,
in surface-breaking open cracks, the region where the crack lips are not in contact does not
produce heat (unless an induced breathing mode brings the two surfaces into contact [3])
and, close to the crack border, the closure stresses might lock the crack asperities, thus
preventing heat production [4]. Intermediate regions where the lips are in contact and
in relative motion produce heat, generally with a non-uniform distribution. Accordingly,
the geometry of this flux distribution is the information accessible from temperature data
measured at the surface, rather than the crack geometry.

The identification of the shape of internal heat sources from surface temperature data
is a severely ill-posed inverse problem due to the diffusive nature of heat propagation. The
strategies to solve this problem in a general form can be roughly categorized into least-
squares minimization methods, statistical methods, and the new “virtual wave concept”
method. In least-squares minimization, the cause of the observed temperature distribution
(here, the inner heat source distribution) is identified by minimizing the squared L2-norm
of the difference between the data and the prediction of the model (residual). The ill-posed
character of the inverse problem makes this minimization unstable, and in order to find a
sensible solution, the inversion needs to be regularized. An efficient strategy to stabilize
the inversion and incorporate information on the characteristics of the solution consists
in adding one or several terms to the residual that provide stability to the minimization.
The minimization can be carried out by either global methods (neural networks [5], genetic
algorithms [6], particle swarm optimization [7]), which search for the solution over large
ranges of parameter values, or local methods (Gauss-type or conjugate gradient [8]), which
modify the starting parameter values in a controlled way. Global methods are aimed at
finding the rough global minimum but are less precise in finding the optimum solution
and entail a high computational cost, whereas local methods may find the minimum more
precisely but risk getting trapped at local minima.

In statistical methods [9–11], the solution is characterized by featuring the highest
probability from a statistical point of view. Knowledge of the statistical uncertainty of the
data set is required, as well as having a forward model in order to calculate the probability
distribution to find the solution. Lastly, the recently developed virtual wave concept [12] is
configured as a two-step problem. The first problem consists in calculating the so-called
virtual wave, which can be understood as the wave equation solution counterpart of the
true heat diffusion problem. Once found, in the second step, back-projection techniques
allow finding the heat source distribution.

The main difference between least-squares minimization and statistical methods versus
the virtual wave concept is that the former need a physical model to describe the direct
or forward process (calculation of the surface temperature from knowledge of the heat
sources), whereas the later does not need modelization of the direct problem.

So far, statistical methods and the virtual wave concept have been applied to char-
acterize volumetric heat sources [12,13]. Least-squares minimization approaches have
been implemented to characterize ideal, compact, and homogeneous vertical planar heat
sources from lock-in vibrothermography data [14,15]. However, the heat generated by real
cracks does not follow ideal, compact, and homogeneous distributions, unlike the sources
treated in these previous works [14,15]. With the idea of approaching practical situations,
in this work, we address the characterization of heat sources typically generated by real



Sensors 2022, 22, 2336 3 of 20

surface-breaking vertical cracks with half-penny shape, as well as inhomogeneous heat
sources in vibrothermography experiments. We confine our study to the thermal diffusion
problem, leaving aside the mechanisms that give rise to the heat generation. We focus
on amplitude-modulated excitation and lock-in detection, as this modality is aimed at
reducing the noise in the data, which is crucial in ill-posed inverse problems. In Section 2,
we present the solution of the direct problem for the geometries addressed. In Section 3, we
present a comprehensive overview of a regularized least-squares minimization approach,
in order to give some insight on the meaning of regularization, and we describe the in-
version algorithm. The potential and limitations of Lasso (L1) [16,17] and Total Variation
(TV) [18,19] regularizations to identify open and inhomogeneous heat sources is shown
in Section 4 by inverting synthetic data with added noise. In Section 5, we present the
experimental set-up and inversions of experimental data, discussing the results. Finally, in
Section 6, we summarize and conclude.

2. Direct Problem

The direct problem consists in calculating the surface temperature distribution gener-
ated by a certain distribution of modulated heat sources (at frequency f,ω = 2πf ) located in
plane Π (x = 0) perpendicular to the sample surface (z = 0). We consider that the sample is
semi-infinite in the z direction and infinite in x and y directions, with thermal conductivity
K and diffusivity D. The geometry is depicted in Figure 1a.

Figure 1. (a) Geometry of the problem, with heat sources in red; (b) detail of the geometry of the heat
source, representing an open half-penny crack; (c) geometry of a rectangular heat source.

Neglecting heat losses by convection and radiation, the complex temperature at the
surface due to the thermal waves launched at frequency f from Ω can be calculated by
integrating the contribution of point-like modulated heat sources in plane Π (confined in
area Ω) [20]:

Tf (x, y, 0) =
x

Π

Q(
→
r
′
)

4πK
e−q f |

→
r −→r

′
|∣∣∣→r −→r ′∣∣∣ dS′ =

x

Ω

Q(
→
r
′
)

4πK
e−q f |

→
r −→r

′
|∣∣∣→r −→r ′∣∣∣ dS′ (1)

where Q(
→
r
′
) is the position-dependent flux amplitude (null outside Ω) and q f =

√
2πi f /D

is the thermal wave vector. In order to describe the heat produced by half-penny surface-
breaking cracks, we focus on heat sources featuring the shape of semi-circular bands of radii
r1 and r2 (r2 > r1). For the sake of generality, we allow the heat source to be slightly buried,
with the upper side located at a depth d with respect to the sample surface (Figure 1b). The
complex surface temperature distribution for this case is written as follows:

Tf (x, y, 0) =
r2∫

r1

π∫
0

Q(r′, ϕ′)

4πK
e−q f

√
x2+(y−r′ cos ϕ′)2+(d+r′ sin ϕ′)2√

x2 + (y− r′ cos ϕ′)2 + (d + r′ sin ϕ′)2
r′dr′dϕ′ (2)

This expression also includes the case of kissing half-penny cracks, by making r1 = 0.
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For the sake of comparison, we also present inversions corresponding to other ge-
ometries. Just to give an example, we deal with rectangular heat sources of width w and
height h buried at a depth d below the surface (Figure 1c). In this case, the expression of the
surface temperature distribution is written as follows:

Tf (x, y, 0) =
w/2∫
−w/2

−d∫
−(d+h)

Q(x′, y′)
4πK

e−q f

√
x2+(y−y′)2+z′2√

x2 + (y− y′)2 + z′2
dy′dz′ (3)

In Section 4, we present inversions of synthetic surface temperature data (amplitude
and phase) calculated using Equations (2) and (3). For the inversion, we combine data
obtained at modulation frequencies fk = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 Hz,
corresponding to thermal diffusion lengths µ f =

√
D/π f ranging from 0.3 to 5 mm:

high frequencies provide sharp details, whereas low frequencies penetrate deeper in
the material.

3. Inverse Problem

The general solution of the inverse problem consists in finding the heat flux distribu-

tion Q(
→
r
′
) in plane Π, responsible for the observed (noisy) surface temperature data Tδ

fk
,

(k = 1, . . . , kmax), δ being the noise level in the data (L2-norm of the noise).
This approach entails that:

1. The heat sources are known to be confined in a plane perpendicular to the surface
(prior knowledge).

2. No specific geometry of the heat source is supposed.
3. The thermal properties of the material are known.
4. The shape of the spatial distribution of heat sources is unaffected by the modulation

frequency.

Accordingly, even if the heat sources are known to be uniform within region Ω, the
inversion is not a mere parameter estimation problem (Q, r1, r2, and d in Equation (1); Q, w,
h, and d in Equation (2)) but entails meshing plane Π and determining the value of Q at
each mesh node. This gives generality to the solution and is of practical interest, because
the shape of the heat source is not known beforehand, but increases the difficulty of solving
the problem.

In this context, the formulation of the inverse problem in a least-squares sense consists
in finding the Q distribution in plane Π that minimizes the L2-norm of the difference
between the data and the calculated temperatures at each frequency, summed for all the
modulation frequencies fk, k = 1, . . . , kmax:

R2 =
kmax

∑
k=1

∥∥∥Tfk
(Q)− Tδ

fk

∥∥∥2
=

kmax

∑
k=1

∥∥∥A fk
Q fk
− Tδ

fk

∥∥∥2

2
=

kmax

∑
k=1

∥∥∥I fk
A fk

Q− Tδ
fk

∥∥∥2

2
(4)

Here, A fk
is the integral operator in Equation (1), and we have introduced a frequency-

dependent heat source distribution Q fk
(r′) = I fk

Q(r′) expressing Q fk
(r′) as the product of

two factors: a normalized heat source distribution, Q(r′), which, according to assumption 4,
is common to all modulation frequencies, and a set of intensities, I fk

, that only depend on
the modulation frequency. This allows using different ultrasound amplitudes depending
on the modulation frequency (typically, higher amplitude at high frequency, for which the
signal is weaker).

In this framework, in the inversion, the temperatures are not calculated using
Equations (2) or (3) (or the corresponding expression for a particular geometry) but are
obtained as the superposition of the point-like contributions of each mesh node in plane Π
(Equation (1)). Accordingly, the number of unknowns in the inversion is significantly high
(number of mesh nodes in plane Π). Given the ill-posed character of the inverse problem,
the minimization of R2 is very unstable, and solving the problem requires stabilizing the
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inversion. A very popular method to stabilize ill-posed inverse problems is truncated
singular-value decomposition (SVD). We opt for a different solution, which consists in
minimizing a modified version of R2 by adding stabilizing terms to the right hand side of
Equation (4), because this strategy allows introducing in the inversion prior information
about the solution. In the next sub-section, following [8], we present a comprehensive and
progressive introduction to the penalty terms that we incorporate in our inversion, taking
truncated SVD as the starting point: from the well-known zero-order Tikhonov to more
sophisticated functionals such as Lasso (L1-norm) or Total Variation (TV). We start with a
quite general formulation, and later on, we particularize for the problem we are addressing.
We have prioritized the smoothness of an intuitive description over rigor in formalism
and notation.

3.1. Regularization Functionals
3.1.1. Truncated Singular-Value Decomposition

We start by writing the direct problem in an operator form:

AQ = T (5)

where A is a linear matrix operator that maps the discretized heat source distribution
Q in plane Π into the surface temperature data T. The least-squares problem is written
as follows:

A∗AQ = A∗T (6)

where A∗ stands for a complex conjugate of A. The solution is:

Q = (A∗A)−1A∗T (7)

If A has full column rank, (A*A)−1 exists, but if it was rank-deficient, (A*A)−1 would
not exist and Q could not be calculated using Equation (7). The SVD method allows solving
Equation (6) for rank-deficient matrices. Just as a reminder, in SVD, matrix A (m by n) is
factored into 3 matrices:

A = USV∗ (8)

where U is an m by m matrix whose columns are orthogonal vectors spanning the data
space, V is an n by n matrix whose columns are orthogonal vectors spanning the model
space, and S is an m by n diagonal matrix whose diagonal elements si (singular values) are
arranged in decreasing order. If only the first p singular values are non-zero (p < m), S can
written as

S =

[
Sp 0
0 0

]
(9)

and Equation (8) can be simplified to A = Up Sp Vp
∗, where Up and Vp denote the matrices

whose columns are the first p columns of U and V, respectively. The SVD can be used to
compute a generalized inverse of A, the so-called Moore–Penrose pseudoinverse, A†,

A† = (A∗A)−1A∗ = Vp S−1
p U∗p (10)

which always exists. The pseudoinverse solution is then:

Q† = A†T = Vp S−1
p U∗p T (11)

In an explicit form, the pseudo-inverse is written as follows:

Q† =
p

∑
i=1

U∗.,i T
si

V.,i (12)

where U.,i and V.,i represent each of the p columns of Up and Vp, respectively.
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Equation (12) presents the solution as a linear combination of model space vectors,
multiplied by factors containing the corresponding singular value si at the denominator.
The summation may include terms with very small singular values that give rise to very
large coefficients for the corresponding high-frequency model space vectors V.,i, which
may eventually dominate the solution, acting as noise amplifiers.

A natural way to stabilize the solution consists in discarding Equation (12) model
space vectors with very small associated singular values. This is so-called truncated SVD
regularization. However, this stability comes at the expense of reducing the accuracy of
the solution. Therefore, the criterion to discard model space vectors must be a trade-off
between stability and accuracy of the solution.

3.1.2. Zero-Order Tikhonov Regularization

A successful solution of an inverse problem generally involves reformulation as an
approximate well-posed problem. The zero-order Tikhonov regularization [21] modifies
the least-squares equation by adding a smoothing term in order to reduce the unstable
effects of noise in the data.

When the data are noisy, there might be many solutions that adequately fit the data, so
that ||AQ − T||2 is small enough. In zero-order Tikhonov regularization, the solutions
are sought among those that meet ||AQ − T||2 ≤ δ (δ being a specific residual misfit
value), selecting the one that minimizes the L2-norm of Q:

min‖Q‖2, subject to ‖AQ−T‖2 ≤ δ (13)

Introducing zero-order Tikhonov regularization (for a specific regularization parameter
αTK), the problem formulated in Equation (13) can be written as the minimization of:

R2 = ‖AQ− T‖2
2 + αTK‖Q‖

2
2 (14)

Equation (14) is the so-called objective function, and the first and second terms on the
right hand side are the so-called discrepancy term and regularization term, respectively. The
regularization term is the product of a regularization parameter, αTK, and a regularization
functional, ‖Q‖2

2 in this case. The larger the αTK, the more powerful the regularization and
the larger the error in the solution. We describe our strategy to determine the optimum
value of the regularization parameter in Section 3.2.1.

The zero-order Tikhonov solution is equivalent to an ordinary least-squares problem
augmented according to:

QαTK = arg min
Q∈Rn

∥∥∥∥[ A√
αTKI

]
Q−

[
T
0

]∥∥∥∥2

2
= arg min

Q∈Rn

∥∥∥∥AaugQ−
[

T
0

]∥∥∥∥2

2
(15)

The size of A remains m by n, and I is the n by n identity matrix. As long as αTK is non-
zero, the last n rows of matrix Aaug are linearly independent, so Equation (15) represents a
full-rank least-squares problem that can be solved by its normal equations:

A∗augAaugQαTK = A∗augT (16)

Using the SVD of A and following the steps indicated in Section 3.1.1, the solution can
be written as:

QαTK =
k

∑
i=1

si
si

2 + αTK
U∗·,i T V·,i (17)

where k = min (m,n), and all non-zero singular values and vectors are included. Equation (17)
can be rewritten as:

QαTK =
k

∑
i=1

si
2

si
2 + αTK

U∗.,i T
si

V.,i =
k

∑
i=1

fi
U∗.,i T

si
V.,i (18)
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where fi = s2
i /(s2

i + αTK) are the so-called filter factors, which control the contribution
of the different terms to the sum, in the fashion of a low-pass filter. Comparison of
Equations (12) and (18) shows that the penalization of different model space vectors
depends on the relation between αTK and their associated singular values. Accordingly,
the degree of regularization varies between two limiting cases: for si >> αTK, fi ≈ 1, and
the contribution of the corresponding model space vectors in Equation (18) remains the
same as in Equation (12), whereas for si << αTK, fi ≈ 0, i.e., the associated model space
vectors are highly damped. For intermediate singular values, as si decreases, fi produces a
decreasing contribution of the corresponding model space vectors. The result is a filtering
of model space vectors with small singular values softer than applying truncated SVD. As a
consequence, zero-order Tikhonov regularization produces a smooth solution, since sharp,
high-frequency model space vectors are filtered out.

Finally, let us mention that it is also possible to apply penalty terms that minimize
the L2-norm of the first or second derivatives of the solution, rather than the L2-norm of
solution itself. These are the so-called first- and second-order Tikhonov functionals, which
are mentioned in the next section.

3.1.3. Lasso and Total Variation Regularizations

Focusing now on the particular inverse problem that we are addressing, we come
back to Equation (4). As mentioned at the beginning of this section, our goal is to retrieve
the vertical heat source distribution Q that minimizes a regularized version of the squared
L2-norm in Equation (4). In practice, this is carried out by meshing plane Π with n nodes.

If a zero-order Tikhonov penalty term is applied, the regularized version of Equation (4)
is written as follows:

R2 =
kmax

∑
k=1

∥∥∥I fk
A fk

Q − Tδ
fk

∥∥∥2

2
+ αTKTK(Q) with TK(Q) =

x

Π

|Q|2dS ≈
n

∑
i=1
|Qi|2∆S (19)

Zero-order Tikhonov regularization penalizes all nodes in plane Π equally, as it applies
the same regularization parameter to each one, with no further information regarding possi-
ble locations of the heat sources. However, in order to optimize the degree of regularization,
other non-linear regularization procedures based on local information can be implemented,
aimed at performing a position-dependent penalization.

Lasso (L1) [16,17] and total variation [18,19] regularization methods allow performing
a position-dependent penalization by assigning a different regularization parameter to each
node in plane Π, which, in turn, is made feasible by implementing iterative methods that
make use of the heat source distribution retrieved in a previous iteration. This way, it is
possible to have an idea of which nodes need to be penalized more in a following iteration,
in order to force some of them to remain damped and keep others dominating the solution.

Let us consider a penalty term based on a zero-order Tikhonov functional, as the one
considered in Equation (19), but with a regularization parameter that takes into account the
solution in a previous iteration:

αTKi = αL1
1∣∣∣QαL1

i,k−1

∣∣∣ (20)

where i denotes the node in plane Π, k is the iteration, and we assume that
∣∣∣QαL1

i,k−1

∣∣∣ 6= 0. The
explicit expansion of this new discretized penalty term for all nodes is written as follows:

n
∑

i=1
αTKi

∣∣∣QαL1
i,k

∣∣∣2∆S =
n
∑

i=1
αL1

∣∣∣QαL1
i,k

∣∣∣2∣∣∣QαL1
i,k−1

∣∣∣∆S =

αL1

(
1∣∣∣QαL1

1,k−1

∣∣∣
∣∣∣QαL1

1,k

∣∣∣2 + 1∣∣∣QαL1
2,k−1

∣∣∣
∣∣∣QαL1

2,k

∣∣∣2 + . . . + 1∣∣∣QαL1
n,k−1

∣∣∣
∣∣∣QαL1

n,k

∣∣∣2)∆S.
(21)
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As can be seen, despite αL1 being common for all terms, each term is affected by a
different penalization, because the QαL1 values are divided by the local values obtained
in the previous iteration. In this way, if

∣∣∣QαL1
i,k−1

∣∣∣ is small and thus 1/
∣∣∣QαL1

i,k−1

∣∣∣ is large, then∣∣∣QαL1
i,k

∣∣∣ is forced to remain small. Otherwise, 1/
∣∣∣QαL1

i,k−1

∣∣∣ is small and
∣∣∣Qδ,αL1

i,k

∣∣∣ is free to
increase or vary.

Over iterations, eventually
∣∣∣QαL1

i,k−1

∣∣∣ ≈ ∣∣∣QαL1
i,k

∣∣∣, and the penalty term in Equation (21)
approaches:

n

∑
i=1

αTKi,j

∣∣∣QαL1
i,k

∣∣∣2∆S ≈ αL1

(∣∣∣QαL1
1,k

∣∣∣+ ∣∣∣QαL1
2,k

∣∣∣+ . . . +
∣∣∣QαL1

n,k

∣∣∣)∆S (22)

which represents the L1-norm of QαL1 multiplied by the regularization parameter αL1. Thus,
penalizing the least-squares minimization with a penalty term based on the lasso (L1)
functional:

L1(Q) =
x

Π

|Q| dS = ‖Q‖ 1 ' lim
k→∞

x

Π

|Qk|2√
ε + |Qk−1|2

dS (23)

can be interpreted as performing a position-dependent penalization of zero-order Tikhonov
penalization. The presence of a small constant ε in the denominator of Equation (23) is
aimed at avoiding computing errors when |Qk−1| ≈ 0. Equations (21) and (22) describe the
lagged fix-point iterations algorithm that can be used to approximate the non-quadratic L1
penalty term defined in Equation (23).

Regularization with a total variation penalty term:

TV(Q) =
x

Π

|∇Q| dS = ‖∇Q‖ 1 (24)

is based on the same principle as L1, but acting over |∇Q| instead of |Q|. It can be
interpreted as the implementation of a first-order Tikhonov functional with a position-
dependent regularization parameter. The lasso functional penalizes the L1 norm of the
solution, and TV penalizes the L1 norm of the gradient of the solution. In practice, the main
difference between L1 and TV for the solution of the inverse problem is that L1 favours
sparse solutions in plane Π (compressive sensing effect), whereas TV favours solutions
with areas of null derivatives, which yields blocky solutions. The combination of both
is appropriate to characterize the confined heat sources representing cracks that we are
seeking. Similarly to Equation (22), which approximates the L1-norm of the solution, since
TV is a non-quadratic operator, it can be approximated from first-order Tikhonov penalty
functional using lagged fix-point iterations:

TV(Q) ' lim
k→∞

x

Π

|∇Qk|2√
ε + |∇Qk−1|2

dS = lim
k→∞

x

Π

(∂yQk)
2 + (∂zQk)

2√
ε + (∂yQk−1)

2 + (∂zQk−1)
2

dS (25)

Throughout this section, we have seen that particular regularization functionals pro-
duce specific types of solutions: zero-order Tikhonov yields smooth solutions, TV generates
blocky functions, and lasso produces a compressive sensing effect. This indicates that, in
ill-posed inverse problems, given some prior knowledge of the properties of the solution,
the mere selection of the penalty functional is a tool to incorporate this prior information in
the inversion.

According to the previous results, we stabilize our inversion by penalizing the mini-
mization with two functionals based on TV and L1, plus an auxiliary zero-order Tikhonov
penalty term. The properties of TV and L1 motivate this selection, as we seek confined heat
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sources produced at cracks in well-defined areas. The regularized version of Equation (4)
to be minimized is written as follows:

R2
α =

kmax
∑

k=1

∥∥∥Iα
fk

A fk
Qα − Tδ

fk

∥∥∥2

2
+ αTKTk(Qα) + αL1L1(Qα) + αTV TV(Qα),

with α = (αTK, αL1, αTV)

(26)

3.2. Inversion Algorithm

The regularization parameters αTK, αL1, and αTV in Equation (26) determine how large
the different regularization terms are with respect to the discrepancy term. The degree of
regularization can be varied by modifying the values of the regularization parameters: large
values increase the stability of the inversion process, in the sense that the solution becomes
less sensitive to noise in the data, but this stability comes at the expense of introducing an
error in the solution.

3.2.1. Regularization Parameters

In order to find the optimum regularization parameters, our choice is to start iterations
with rather high initial values, αTK0 , αL10 , and αTV0 , and reduce them in each iteration
according to different decay factors: γTK = 0.3, γL1 = 0.75, and γTV = 0.75, respectively.
The Tikhonov regularization parameter αTK0 decays much faster than αL10 and αTV0 , so
the effect of Tikhonov regularization is basically significant in the first iteration (iteration
zero). Tikhonov provides smooth solutions, which is beneficial at the beginning of the
inversion and guarantees that the first solution does not get dominated by noise, but
sharper solutions are then sought. Moreover, L1 and total variation cannot be implemented
at the beginning, because they make use of the solution in a previous iteration. Theoretical
results [21] suggest that it is prudent to stop minimization iterations before achieving the
noise level δ. Keeping this in mind, in this problem, we have found that stopping iterations
when the minimum discrepancy term is found delivers good results. This is a heuristic
stopping criterion, which probably works because we are solving a highly overdetermined
problem with quite uncorrelated data noise and gives us optimum results for the retrieved
normalized heat source distribution. An important aspect that is worth mentioning about
the chosen stopping criterion is that there is no over-fitting of the data, i.e., fitting the noise
rather than the underlying function. Regarding the optimum values of the decay factors,
there is a lack of theoretical results on this subject. Small values decrease the number of
iterations needed to reach the solution, but reduction factors below 0.5 may lead to steps
in the discrepancy term being too large for the solution to bet retrieved accurately. The
initial values of the regularization parameters as well as their decay factors are chosen
by performing systematic batteries of inversions until achieving solutions in a reasonable
number of iterations, about 20. Next, we describe the iterative process implemented to find
the solution.

3.2.2. Iterations

For the inversion procedure, we use domain decomposition iterations to retrieve
the normalized heat source distribution, Qα, and the set of intensities, Iα

fk
, in successive

iterations, known as non-linear Gauss–Seidel iterations by blocks. It is a local minimization
method used in bi-linear problems such as this one.

Coming back to our problem,

Tδ
fk
≈ A fk

[
Qα

fk

]
= Iα

fk
A fk

[Qα] for k = 1, . . . , kmax (27)
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the inversion starts from a zero iteration (different from the rest of the iterations), in
which we solve the approximated Equation (27) for each modulation frequency separately,
regularized with Tikhonov:

Qα
fk ,0 =

(
A∗fk

A fk
+ αTK0 I

)−1
A∗fk

Tδ
fk

(28)

where A∗fk
stands for complex conjugate of A fk

. Taking into account that the right-hand
side of Equation (28) is complex and the heat source distribution being real, we obtain
Qα

fk ,0 as

Qα
fk ,0 =

(
Re
(

A∗fk
A fk

)
+ αTK0 I

)−1
Re
(

A∗fk
Tδ

fk

)
(29)

and calculate a first approximation of the separate intensities as

Iα
fk ,0 = max

(
Qα

fk ,0

)
(30)

The intensities obtained are now introduced as an initial guess in Equation (27),
combining all modulation frequencies together,

Iα
f1,0 A f1

Iα
f2,0 A f2

. . .
Iα

fkmax ,0 A fkmax

Qδ,α
(1) ≈


Tδ

f1

Tδ
f2

. . .
Tδ

fkmax

 (31)

regularized only with Tikhonov (using again the initial value of the regularization pa-
rameter αTK0) to obtain a first approximation of the reconstructed normalized heat source
distribution, Qδ,α

(1). This finalizes iteration zero. In iteration 1, the Tikhonov regularization
parameter is reduced for the first time, whereas the regularization parameters correspond-
ing to L1 and TV, αL10 and αTV0, are used for the first time with their initial values. Qα

(1) is
introduced in Equation (27) for each modulation frequency separately, so that a new set of
intensities Iα

fk ,1 is obtained as

Iδ,α
fk ,1 =

∥∥∥Tδ
fk

∥∥∥∥∥∥A fk

[
Qδ,α

(1)

]∥∥∥ (32)

Now, the set of intensities Iα
fk ,1 is introduced into the equation combining all frequen-

cies together, similarly to Equation (31) but now employing L1 and TV in addition to
Tikhonov, to obtain a second approximation of the reconstructed normalized heat source
distribution, Qδ,α

(2). The subsequent iterations operate the same way, with successive re-
ductions of the regularization parameters, until the criterion described in Section 3.2.1 is
fulfilled.

4. Inversions of Synthetic Data

We analyze in this section the performance of the algorithm by inverting synthetic
data with added uniform noise, which represents a worse scenario than Gaussian noise.
The noise is added to the complex temperature, from which amplitude and phase data
are calculated, and is specified as a percentage that represents the ratio of the L2-norm
of the noise over the L2-norm of the temperature data. The data are generated for the
geometries in Figure 1b,c, using Equations (2) and (3), respectively, with the thermal
parameters of AISI 304 stainless steel (D = 4 mm2/s, K = 15 Wm−1K−1), which is the
material our samples are made of. Other geometries are presented as well, in order to
illustrate the effect of the regularization functionals. Similarly to the experiments, the data
introduced in the algorithm are the amplitude and the phase of the surface temperature
at each modulation frequency. As mentioned in Section 2, we combine data obtained at
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modulation frequencies fk = 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 Hz in order to gather
precision and penetration data. In the next subsections, we analyze the effect of several
factors on the quality of the reconstructions.

4.1. Uniform Heat Flux

First, we analyze reconstructions of synthetic data calculated for homogeneous heat
fluxes. We start with the geometry of interest, semi-circular bands, as sketched in Figure 1b.
In Figure 2a, we show normalized amplitude and phase thermograms calculated for a
semi-circular band (r1 = 1 mm, r2 = 1.4 mm, d = 0.1 mm) at a modulation frequency of
0.2 Hz, with 5% added uniform noise, together with the fitted thermograms (Figure 2b).
The discontinuities in the phase are due to the π, −π jump.

Figure 2. (a) Synthetic Ln(|T|) (left) and Ψ (right) thermograms with 5% added uniform noise,
generated at a modulation frequency of 0.2 Hz, for a homogeneous semicircular open heat source
of inner radius r1 = 1 mm and outer radius r2 = 1.4 mm buried at a depth d = 0.1 mm; (b) fitted
thermograms.

The reconstruction is depicted in Figure 3d, together with reconstructions of semi-
circular stripes of the same inner radius and smaller outer radii, namely, r2 = 1.15, 1.3 and
1.35 mm, all with 5% added uniform noise. The reconstructions are displayed in a grey-level
representation of the normalized heat flux distribution, white being the maximum value of
1 and black, absence of heat sources. The red line represents the contour of the real heat
source that was used to generate the temperature data.
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Figure 3. Grey-level representation of the reconstructions of synthetic data with added 5% noise
corresponding to homogeneous semi-circular strips of inner radius r1 = 1 mm and outer radii
(a) r2 = 1.15; (b) r2 = 1.3; (c) r2 = 1.35; (d) r2 = 1.4 mm. The depth of the upper side is d = 0.1 mm in all
cases. Real heat source represented by the red contour. Quality factor F, under the figure.

As can be seen, although some “shadowing effect” appears for thin strips, whose
tips are brighter than the reconstructed deep central part (fainter and more diffuse), for
increasing strip thicknesses, lasso functional works properly and keeps the reconstructed
area within the limits of the true heat source, providing very accurate reconstructions. This
proves that the methodology is appropriate to identify “hollow” heat sources typically
generated by open cracks.

In order to quantify the quality of the reconstructions, we introduce a quality factor F,
which takes into account the values of the retrieved Qα inside and outside the real contour:

F =

M
∑

i=1
Qα

i −
P
∑

j=1
Qα

j

M
(33)

where M is the number of nodes within the real geometry and P is the number of nodes
in plane Π outside the real geometry. According to this definition, F = 1 corresponds to a
perfect reconstruction. The value of F decreases as the quality of the reconstruction worsens,
and F can reach negative values. If we define an “accurate reconstruction” as one with
F > 0, we see that the algorithm produces accurate reconstruction for thicknesses above
1.3 mm. Note that F ≤ 0 means that the heat power retrieved from outside the true heat
source area is as large as (or larger than) the reconstructed power emitted from inside the
true area.

In order to further illustrate the effect of the regularization functionals, we also in-
verted synthetic data generated for “hollow” heat sources (as in Figure 3), but whose
contours feature sharper corners, rather than being smooth circular lines. Figure 4 displays
reconstructions of synthetic data with 5% added noise corresponding to uniform heat
sources, with the shapes indicated by the red lines.

Figure 4. Grey-level representation of the normalized heat source distribution obtained from in-
versions from synthetic data with 5% added uniform noise corresponding to (a) homogeneous
rectangular open heat sources; (b) triangular open heat sources. In all cases, the upper edges are
buried d = 0.2 mm. Real contours depicted in red, and values of the quality factor F under each
reconstruction.
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The first notable feature of Figure 4 is that all reconstructions feature rounded con-
tours. This illustrates the impact of the presence of TV regularization in the inversion. As
mentioned in Section 3.1, TV penalizes the norm of the derivative of the solution, which
yields rounded shapes, as the circle is the figure with the shortest contour for a given area.
Despite this bias in the reconstruction, and some shadowing effect for the deepest cases
(Figure 4a right and 4b right), the hollow region in the middle is identified, and the quality
factors are all above the cutoff value.

To finish the analysis of homogeneous heat sources, we consider the case of kissing
half-penny cracks, as a particular case of the geometry depicted in Figure 1b, with r1 = 0. In
Figure 5, we present reconstructions of synthetic data calculated for a kissing half-penny
crack (r1 = 0, r2 = 0.8 mm, d = 0.2 mm) with different noise levels: 5%, 10% and 15%.
As can be observed, the inversion algorithm is robust to noise, as the noise level does
not significantly affect the quality of the reconstructions. It is worth mentioning that the
adequate confinement of the heat sources in all the reconstructions presented is due to the
effect of L1 regularization.

Figure 5. Grey-level representation of the normalized heat source distribution in inversions from
synthetic data affected by 5%, 10% and 15% uniform noise, corresponding to a semi-circle of radius
r2 = 0.8 mm, buried at d = 0.2 mm. Real contours depicted in red, values of the noise level in the data
and quality factor F on top of and under each reconstruction, respectively.

4.2. Inhomogeneous Heat Flux

Let us analyze now how the algorithm performs with inhomogeneous heat fluxes. We
start with a simple geometry, the rectangles depicted in Figure 1c. In Figure 6, we present
reconstructions of heat sources with the shape of wide and short rectangles (w = 2 mm,
h = 0.3 mm, d = 0.2 mm) with linear variations of the flux in the direction parallel to the
surface: a monotonic linear variation along the width and a linear variation from the center
to the edges. The real heat sources used to generate the data are displayed under each
reconstruction.

Figure 6. Grey-level representation of the normalized heat source distribution in inversions from
synthetic data affected by 5% uniform noise corresponding to an inhomogeneous rectangular heat
source w = 2 mm and h = 0.3 mm, buried at a depth d = 0.2 mm, with variable flux in horizontal
direction. (a) Monotonic linear variation; (b) Symmetric linear variation from the center to the edges.
Real contours depicted in red.
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The results show that the inversion algorithm is able to retrieve smooth flux varia-
tions parallel to the surface qualitatively. This result is surprising, as TV favours blocky
reconstructions. We believe that the “soft” approximation that we use to introduce TV
(Equation (25)) from the first-order Tikhonov functional helps in identifying these flux
gradients.

Finally, we consider flux variations in the geometry of interest, the semi-circular stripes
of Figure 1b, representing open half-penny cracks. Figure 7 displays reconstructions of
synthetic data with 5% noise corresponding to stripes of inner and outer radii r1 = 1 mm
and r2 = 1.4 mm, respectively, with linear depth and angular variations of the flux. We
also show the inversion corresponding to a strip of the same inner radius, r1 = 1 mm, but
a larger outer radius, r2 = 0.8 mm, featuring a linear radial dependence of the flux. In all
cases, the depth is d = 0.1 mm.

Figure 7. Grey-level representation of the normalized heat source distribution inverting synthetic
data affected by 5% uniform noise, corresponding to semi-circular open heat sources, buried at a
depth d = 0.1 mm. Three linear inhomogeneous fluxes are considered: (a) flux varying with depth
(r1 = 1 mm and r2 = 1.4 mm); (b) flux varying with angle (r1 = 1 mm and r2 = 1.4 mm); (c) flux
varying with radius (r1 = 1 mm and r2 = 1.8 mm). Real contours depicted in red, and real heat source
distributions represented under each reconstruction.

As for flux varying with depth, it is clear that the absence of heat emitted from the
shallower tips allows the central deep part to dominate the reconstruction, and thus,
the shadowing effect disappears. In any case, the flux dependence is identified in the
reconstruction.

Regarding flux varying with angle, the algorithm behaves very well: the right tip is
accurately defined, and the variation from maximum to null flux is nicely recovered, just as
in the case of the geometry shown in Figure 6a, which further proves that flux variations
with a main component parallel to the surface can be accurately retrieved in wide and
narrow geometries. Lastly, the radial dependence of the flux is not identified.

From the previous analysis, we can conclude that short-distance variations (such
as the radial dependence in Figure 7c) cannot be identified by the algorithm. However,
long-distance variations of the flux in narrow figures are qualitatively identified, especially
if the variation is parallel to the sample surface.

5. Experiments and Inversions of Experimental Data

We have checked the ability of the inversion algorithm to reconstruct open and non-
uniform heat sources by inverting experimental data obtained on samples that generate
calibrated heat sources under ultrasonic excitation. The samples were described else-
where [20]. They basically consist of two twin AISI 304 stainless steel parts (D = 4 mm2/s,
K = 15 Wm−1K−1), each machined with one flat and polished surface (the “common sur-
face” in Figure 8a). A Cu foil, 38 µm thick, of calibrated dimensions is sandwiched between
the common surfaces at a well-known distance (depth) from the surface where data are
taken. The two steel parts are joined together by means of screws. Under the action of
ultrasounds, the friction of the Cu foil with the steel surfaces produces a calibrated heat
source. With the aim of generating a controlled homogeneous flux, two more Cu slabs
of the same thickness are introduced at the deeper far ends of the surface containing the
calibrated heat source (far enough from the surface where data are taken so as not to disturb
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the temperature field at the front surface). This guarantees a reasonable parallelism of the
common surfaces and homogeneity of the induced heat sources. A sketch of the samples is
shown in Figure 8a, together with examples of amplitude and phase images obtained at a
modulation frequency of 6.4 Hz for a rectangular Cu slab of width w = 1.4 mm and height
h = 2.3 mm, buried at a depth of d = 95 µm.

Figure 8. (a) Diagram of the AISI 304 stainless steel sample open with a calibrated heat source on the
common surface between the two twin parts; (b) amplitude and (c) phase thermograms obtained at
6.4 Hz with a semi-circular Cu film of radius r2 = 0.8 mm, buried at a depth of d = 0.1 mm.

We excite the sample by means of UTVis equipment from Edevis, tuneable between 15
and 25 kHz, with maximum power of 2.2 kW at 20 kHz. We work at 23 kHz, the optimum
frequency for our samples, and we modulate the ultrasound’s amplitude at much lower
frequencies, namely, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, and 12.8 Hz, by means of a function
generator. The modulation is carried out by means of a function generator, whose output is
fed into the ultrasounds generator. A reference signal coming from the function generator
serves as a reference for the lock-in analysis. The sample is supported by a Teflon block,
and a thin tape of Al is inserted between sample and the sonotrode to improve mechanical
coupling.

The surface of the material is covered with a thin layer of high-emissivity paint, and
the infrared radiation emitted by the surface is collected by an IR video camera (JADE
J550M, from Cedip, France) equipped with a 320 × 256 pixel InSb detector working in the
3.5–5 µm range with NETD of 25 mK. The camera lens has a focal length of 50 mm. Placing
the sample at the minimum working distance, we achieve a spatial resolution of 135 µm. A
picture of the experimental set-up can be seen in Figure 9.

Modulating the ultrasound’s amplitude and applying lock-in processing to the image
sequence reduces the noise in phase and amplitude images and allows applying very
limited ultrasound power (between 25 and 50 W, depending on the modulation frequency).
We typically analyse sequences of 20000 images at a frame rate of 320 images per second (at
half frame), which reduces the average noise in amplitude images down to 0.4 mK in about
1 min acquisition time, well below the noise equivalent temperature difference (NETD) of
the camera, according to [22]:

〈
Aamp

〉
= 2

NETD√
Nimages

(34)

This is beneficial to reaching the steady state quickly and to preventing any damage to
the sample. In experiments with real samples, this noise reduction also enables detecting
deep or small heat sources that produce week signals.

As an example of experimental data, in Figure 10, we show experimental ampli-
tude and phase thermograms corresponding to a semi-circular Cu strip of inner radius
r1 = 1.2 mm and outer radius r2 = 2 mm buried at a depth of d = 0.32 mm, obtained at
0.2 Hz.
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Figure 9. (a) Picture of the excitation system; (b) detail of the sample closed and in contact with the
sonotrode for excitation.

Figure 10. (a) Experimental natural logarithm of amplitude (left) and phase (right) obtained for a
sample containing a semi-circular Cu strip of inner radius r1 = 1.2 mm and outer radius r2 = 2 mm
buried at d = 0.32 mm, obtained at 0.2 Hz; (b) fitted thermograms.

The reconstruction obtained by combining data taken in the whole frequency set
(0.05 up to 12.8 Hz) is depicted in Figure 11, together with a reconstruction of the same
slab buried at d = 0.71 mm and reconstructions corresponding to other open heat source
geometries.
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Figure 11. Grey-level representation of the normalized heat source distribution in inversions from
experimental data corresponding to (a) semicircular Cu bands of inner and outer radii r1 = 1.2 mm
and r2 = 2 mm, respectively, buried at depths d = 0.32 and 0.71 mm; (b) a square Cu band of outer
width 2.8 mm, outer height 1.7 mm, and thickness 0.7 mm buried at a depth d = 0.55 mm; (c) triangular
Cu bands of outer width 3.6 mm, outer height 2 mm, and thickness 0.9 mm buried at depths d = 0.36
and 0.71 mm. Real contours depicted in red, and values of the depth of the heat sources and quality
factor F on top and under of each reconstruction, respectively.

The results confirm some of the features observed in the inversion of synthetic data.
On the one hand, rounded contours dominate the reconstructions, which, as explained in
Section 4.1, is due to the presence of a TV term in the regularization penalty. Furthermore,
the shadowing effect is visible, due to the stronger contribution of the shallowest heat
sources that dominate the reconstruction. Nevertheless, in all geometries, the deeper central
areas correctly show the path the bands follow, and all depths are well-recovered. The
quality factors are in all cases above the cutoff value of F = 0.

Next, we tried to obtain experimental data corresponding to inhomogeneous heat
sources. As mentioned above, our samples are intended to produce homogeneous heat
sources, so we decided to take data combining in the same experiment two strips with
the shape of a quarter of a circle to form a semi-circular band with two homogeneous
but different heat fluxes on its two halves. In Figure 12, we present the experimental
amplitude and phase thermograms obtained by combining two quarters of circular strips
made of stainless steel and W (both 25 µm thick) with inner and outer radii r1 = 4.2 mm
and r2 = 5.1 mm, respectively, buried at a depth of d = 0.16 mm below the surface, at a
modulation frequency of 1.6 Hz. Unfortunately, we do not have an independent estimate
of the ratios of fluxes generated by the two halves in these combinations.

The reconstruction obtained by combining amplitude and phase data in the whole
frequency set is depicted in Figure 13a (right), together with two more reconstructions,
from data obtained using other combinations of materials: on the left, annealed and hard
Cu foils, both 38 µm thick, and at the center, 25 µm thick hard Cu and stainless steel foils.
In Figure 13b, we display the reconstructions obtained for the same material combinations
but with triangular geometries.

As may be noted, for either geometry, similar results are obtained regarding the heat
flux generated by each material combination: the annealed and hard Cu halves (left) act as
a homogeneous heat source, whereas differences in the retrieved heat source distribution
are more significant for the other two material combinations: Cu–stainless steel (center)
and stainless steel–W (right). These differences in the retrieved fluxes are similar for both
geometries, which proves the consistency of the inversions. Although the shadowing
effect makes the retrieved areas miss the contribution of the central deeper positions in the
deepest cases, the overall geometry and the depths of all heat sources are well-recovered.
These results prove that differences in the heat flux distributions can be qualitatively
characterized with the proposed algorithm.
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Figure 12. (a) Experimental natural logarithm of amplitude (left) and phase (right) obtained at
a modulation frequency of 1.6 Hz in a sample containing two quarters of circular strips made of
stainless steel and W (both 25 µm thick) with inner and outer radii r1 = 4.2 mm and r2 = 5.1 mm,
respectively, buried at a depth of d = 0.16 mm below the surface; (b) fitted thermograms.

Figure 13. Grey-level representation of the normalized heat source distribution of inversions from
experimental data corresponding to (a) two quarters of circular bands of inner radius r1 = 4.2 mm and
outer radius r2 = 5.1 mm buried at depths d = 0.2, 0.27, and 0.16 mm and (b) two halves of triangular
bands of outer width 5.6 mm, outer height 2.4 mm, and thickness 0.9 mm, buried at depths 0.35 and
0.36 mm. For both geometries, the material combinations for the left and right halves of the bands are
the following: 38 µm thick annealed Cu and hard Cu foils (left), 25 µm thick Cu and stainless steel
foils (centre), and 25 µm thick stainless steel and W foils (right). Real contours depicted in red and
values of the depth of the heat sources on top of each reconstruction.
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6. Summary and Conclusions

In this work, we have demonstrated that multi-frequency lock-in vibrothermography
data in combination with a least-squares minimization algorithm regularized by TV and
lasso functionals allows characterizing ”hollow” non-compact vertical heat sources typically
generated by real open cracks in vibrothermography experiments. We have obtained
semi-analytical expressions of the surface temperature distribution generated by vertical
heat sources with the shape of semi-circular stripes, representing the behavior of open
half-penny cracks excited with ultrasounds. A detailed description of the regularization
strategies (starting from truncated SVD to Tikhonov, total variation, and lasso) as well as of
the inversion algorithm has been presented, and we have proposed a criterion to evaluate
the quality of the reconstructions. The inversions of synthetic data with added noise show
that the algorithm is able to identify “hollow” uniform heat fluxes and reveal that when the
heat source spans a large range of depths, the reconstructions are affected by the shadowing
effect, which blurs the deepest part of the heat source, due to the stronger contribution of
shallow locations. Inhomogeneities in the heat flux are qualitatively identified except in the
case of radial dependence of the flux. The predictions of the reconstructions with synthetic
data were confirmed by inversions of experimental data taken on calibrated samples. The
results confirm that it is possible to characterize the shape of heat sources generated by open
cracks is lock-in vibrothermography experiments. The lock-in processing of modulated
data allows detecting signals below the NETD of the camera. The possibility of identifying
the regions of the crack that produce heat and the distribution of these heat sources in
lock-in vibrothermography open the way to understanding the configuration and dynamics
of cracks in this kind of experiment.
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