
Vol.:(0123456789)

Empirical Software Engineering (2022) 27: 75
https://doi.org/10.1007/s10664-021-10101-6

1 3

Visualizing the customization endeavor
in product‑based‑evolving software product lines: a case
of action design research

Oscar Díaz1 · Leticia Montalvillo1 · Raul Medeiros1 · Maider Azanza1 ·
Thomas Fogdal2

Accepted: 6 December 2021 / Published online: 18 March 2022
© The Author(s) 2022, corrected publication 2022

Abstract
Software Product Lines (SPLs) aim at systematically reusing software assets, and deriving
products (a.k.a., variants) out of those assets. However, it is not always possible to handle
SPL evolution directly through these reusable assets. Time-to-market pressure, expedited
bug fixes, or product specifics lead to the evolution to first happen at the product level,
and to be later merged back into the SPL platform where the core assets reside. This is
referred to as product-based evolution. In this scenario, deciding when and what should
go into the next SPL release is far from trivial. Distinct questions arise. How much effort
are developers spending on product customization? Which are the most customized core
assets? To which extent is the core asset code being reused for a given product? We refer
to this endeavor as Customization Analysis, i.e., understanding the functional increments
in adjusting products from the last SPL platform release. The scale of the SPLs’ code-base
calls for customization analysis to be conducted through Visual Analytics tools. This work
addresses the design principles for such tools through a joint effort between academia and
industry, specifically, Danfoss Drives, a company division in charge of the P400 SPL.
Accordingly, we adopt an Action Design Research approach where answers are sought
by interacting with the practitioners in the studied situations. We contribute by providing
informed goals for customization analysis as well as an intervention in terms of a visual
analytics tool. We conclude by discussing to what extent this experience can be general-
ized to product-based evolving SPL organizations other than Danfoss Drives.

Keywords SPL evolution · Visual analytics · Code diffing · Action design research

Communicated by: Philippe Collet, Sarah Nadi, Christoph Seidl, and Leopoldo Motta Teixeira

This article belongs to the Topical Collection: Open Science

This article belongs to the Topical Collection: Software Product Lines and Variability-rich Systems (SPLC)

This paper has been awarded the Empirical Software Engineering (EMSE) open science badge

 * Maider Azanza
 maider.azanza@ehu.eus

Extended author information available on the last page of the article

http://orcid.org/0000-0002-4537-1572
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10101-6&domain=pdf

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 2 of 44

1 Introduction

A Software Product Line (SPL) is a set of software-intensive systems sharing a common,
managed set of features that satisfy the specific needs of a particular market segment or
mission and that are developed from a common set of core assets in a prescribed way (Cle-
ments and Northrop 2002). Prescription is given in terms of both developing for reuse and
developing with reuse. This results in the interplay of two distinct activities: (1) Domain
Engineering (DE), where the scope and variability of the system is defined and reusable
assets are developed to conform the SPL platform; and (2) Application Engineering (AE),
where products (a.k.a. variants) are derived by selecting and resolving variability, i.e., by
variability configuration (Pohl et al. 2005). To obtain the full benefits, AE should be lim-
ited to configuration without further modifying the derived products (Krueger 2006). How-
ever, this is not always possible. Time-to-market pressure, expedited bug fixes, or product
specifics lead to development to first happen at the product level and to be later merged
back into the SPL platform. Indeed, product-based evolution (a.k.a. variant-based evolu-
tion) is being acknowledged as a major strategy to drive the evolution of a product line
(Krüger et al. 2020). Kruger et al. observe that this way of working switches the typical
order of DE and AE, i.e., developers first customize core assets to product requirements
(AE) to next consolidate the product upgrades into the platform (DE). The bottom line is
that AE is no longer limited to mere configuration but it might also involve development.
We refer to this practice as ‘product customization’ as opposed to ‘product configuration’,
where AE is limited to selecting the features to be exhibited by the product with no devel-
opment involved.

Product-based SPL evolution might result in tensions between the quality and reuse
effectiveness required by DE, and the time-to-market and customer pressure faced by AE.
SPL managers need to analyze whether efforts invested in product customization pay off in
terms of better SPL scoping (i.e., deciding on the products, technical areas, and function-
alities that a product line should support). Questions might arise about how much effort is
dedicated to product customization; which are the most customized core assets; or to which
extent is core-asset code being reused in a given product. We refer to this endeavor as Cus-
tomization Analysis, i.e., understanding the functional increments in adjusting products
from the last SPL platform release. Customization analysis can help SPL managers in dif-
ferent ways: (1) identify which product developments should be promoted to the core-asset
base, (2) spot overloaded product teams with a heavy customization duty, (3) uncover inde-
cisive or exploratory design where developers’ hesitation is reflected in the volatility of the
code, or (4), spot eventual merging issues when product developments are merged back
into the core-asset base. Being able to quantify the customization activity might help man-
agers take informed decisions about both the SPL’s stability and the rearrangement of the
SPL task force.

Despite the importance of these decisions, support for customization analysis is rather
limited. We abound into this practice by making a case for the use of alluvial diagrams
(a.k.a. Sankey diagrams) as a suitable visualization for customization analysis. Specifically,
two research questions are tackled:

– RQ1 (Problem Space): Which are the information needs for customization analysis?
How much time is needed to fulfill these information needs?

– RQ2 (Solution Space): Might alluvial diagrams be useful for supporting customization
analysis visualization?

Empirical Software Engineering (2022) 27: 75

1 3

Page 3 of 44 75

We address these questions through a joint effort between academia and industry, specifi-
cally, Danfoss Drives, a company division in charge of P400, a product line for the soft-
ware embedded in frequency converters (Fogdal et al. 2016). On these grounds, we adopt
an Action Design Research (ADR) approach (Sein et al. 2011). The objective of action
research is to solve or at least explain, the problems of an analyzed situation (i.e., product
customization) by the researchers interacting with the participants (i.e., P400 engineers)
in the studied situations (i.e., customization analysis). Action research becomes action
design research if the problem is tackled through an artifact (i.e., a new method or a new
tool) whose design and evaluation is conducted within the organization (Sein et al. 2011).
Accordingly, we develop a Visual Analytics tool for customization analysis. Akin to the
ADR principles, we distill this experience in some general outcomes. By doing so, we aim
at contributing to the two previous RQs:

– RQ1. We characterize customization analysis through a Goal-Question-Metric (GQM)
model. Based on Danfoss Drives’ practices, we introduce a set of analysis questions,
and rate the importance and required time to answer such questions (Section 4).

– RQ2. We make a case for alluvial diagrams as an effective way to realize the previous
GQM model. We flesh out this case through CustomDIFF, a visual analytics tool that
uses Git as the SPL code repository, and pure::variants as the variability manager (Sec-
tion 6).

– RQ2. We distill general principles from first empirical evidence through an expert eval-
uation at Danfoss Drives (Section 8).

This article is an extension of a REVE’17 workshop paper (Montalvillo et al. 2017), which
is extended in three major aspects. First, we considerably expand the description about
the phenomenon at hand: product customization. Second, it is methodologically sounder
since it sticks to the Design Activity Framework proposed for visual analytics, and pro-
vides empirical evaluation. Third, this paper focuses on annotation-based SPLs using
pure::variants, whereas the REVE paper tackled component-based SPLs using Feature-
House. By conducting this research in close collaboration with an industrial partner, we
hope to facilitate a valuable transfer into practice. We start by introducing the phenomenon
under study: product customization.

2 The Phenomenon: Product Customization

Code development during AE (i.e., product customization) has been documented in dis-
tinct scenarios: to meet products’ deadline and budget (Deelstra et al. 2005; Jensen 2007;
Schackmann and Lichter 2006), to expedite bug fixes (Fogdal et al. 2016), to speed up
unexpected functional changes in customer needs (Nagamine et al. 2016; Carbon et al.
2008; Iida et al. 2016), to decrease reusable asset complexity for single-product needs
(Deelstra et al. 2005; Kircher and Hofman 2012; Bartholdt and Becker 2011), and, finally,
in the transition to a fully-configured SPL, product specifics might remain in product teams
(Kodama et al. 2014; Takebe et al. 2009). Even fully-configurable SPLs might reach the
scale and complexity that make maintenance in short time spans infeasible. Hence, when
organizations are faced with urgent customer or market requests, product-specific adjust-
ments are realized first in the product to be later propagated to the SPL platform (Deelstra
et al. 2005).

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 4 of 44

Implementation wise, this is normally realized through a version control system. Here,
a master branch keeps the core assets, i.e., those assets which are in the SPL baseline.
During product customization, it is allowed for this master to be branched off to support
(urgent) product specifics. This leads to a grow-and-prune branching model (Faust and
Verhoef 2003). This model states that, during a time-lapse, quick reaction to changes often
requires copying and specializing in the branches (grow) to be later cleaned up by refactor-
ing and merged back into the master (prune). The notion of time-lapse is important since
product branches are not intended to live for a long time but are to be periodically merged
back into the master. In this way, product needs drive the evolution of the SPL.

As an example, consider the WeatherStationSPL, an SPL for building web-based appli-
cations for weather stations. We borrow this example from the instructional material pro-
vided by pure::variants.1 Let us suppose that this SPL holds a baseline release Baseline-
v1.0, that accounts for seven features, clustered around three parent features,2 namely:
Sensors that encompasses AirPressure, Temperature, and WindSpeed; Warnings that com-
prises Gale and Heat; and Languages that is the parent feature for English and German.
Let us imagine that some urgent customization needs arise that prevent developers from
waiting until the next platform release. This causes Baseline-1.0 to be branched off into
three product branches: PR-NewYork, PR-Paris, and PR-Berlin (see Fig. 1). This unleashes
the grow-and-prune process:

– Grow-Customization. AE adjusts core assets to product specifics, potentially evolving
the product through different versions (e.g., PR-Paris-v1.0).

– Prune-Consolidation. Eventually, DE gets integration requests from AE. Missing to
reintegrate these product variants back to the master risks product-line engineering
becoming clone&own development (Krüger and Berger 2020).

It might happen that the customization might be of interest but not yet mature enough to be
offered to products other than the product that hosts it. Here, DE developers might integrate
the adjustment into the platform using spurious features, i.e., transient features that might
be exclusively used for the driving product. This allows AE developers to generate again

Fig. 1 WeatherStationSPL branching model: the master branch holds the core assets from where SPL prod-
ucts are branched off

1 http://www.pure-systems.com/products/pure-variants-9.html
2 In pure::variants terminology, a parent feature serves to aggregate semantically related features

Empirical Software Engineering (2022) 27: 75

1 3

Page 5 of 44 75

this product using traditional configuration mechanisms.3 This guarantees that the platform
is under control, and application projects may maintain their independence by providing
product-specific artifacts as new features. After a modification has been evaluated, a judg-
ment will be made as to whether the change should be applied to additional products and
so incorporated into the core assets (Fogdal et al. 2016). For Danfoss Drives, decision is
taken by the Change Control Board that includes domain experts but also application engi-
neers who were involved in the customization in the first place. The choice is not always
easy, as evidenced by the so-called configuration oscillation phenomenon (Faust and Ver-
hoef 2003). Here, engineers can be hesitant about which new assets should be promoted to
the platform.

The bottom line is that the Change Control Board regulates the tempos of this grow-
and-prune process. In this setting, customization analysis helps the Change Control Board
identify if the customization endeavor matches the plan by correlating where the customi-
zation is occurring with where the customization is planned to occur. A lot of customiza-
tion happening in unplanned areas may be an indicator of problematic code, that is, a code
that continuously requires patching. In general, customization analysis might help foresee
distinct problematic scenarios, namely:

– product units that are under heavy customer pressure in terms of specifics that need to
be accounted for. This might lead to reinforcing these units or to rescheduling customer
petitions,

– stable features that are passed (almost) untouched when deployed in distinct products.
This showcases mature features. This scenario might point to needing to consider devi-
ating programming resources to other units,

– unstable features which might require additional refactoring, and testing efforts to cope
with emerging scenarios coming from customer petitions. This might lead to reinforc-
ing the domain engineers in charge.

Tracking these scenarios directly from code is time consuming and error prone. Tools are
needed that abstract from the code-base. We tackle this challenge as a joint effort between
academia and industry. On these premises, we decided to follow Action Design Research
as our research methodology (Sein et al. 2011).

3 A Brief on Action Design Research

Sein et al. define Action Design Research (ADR) as a research method for generating
prescriptive design knowledge through building and evaluating IT ensemble artifacts
in an organizational setting (Sein et al. 2011, p. 40). A key insight is the role played by
the organization (i.e., Danfoss) in driving and shaping the design knowledge that ends
up being instantiated in the IT artifact (i.e., the CustomDIFF visualization tool). Hence,
the term ensemble artifact denotes the artifact taking its full meaning in conjunction
with the context where it displays its utility (i.e., CustomDIFF reflects the practice and
brings utility to Danfoss). Therefore, ADR conceives artifact design as a result of a

3 Notice that spurious features are transient. They are in trial for a period of time until they are finally inte-
grated (and hence available for other products of the SPL) or discarded.

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 6 of 44

researcher-practitioner collaboration within an organization. Figure 2 reproduces ADR
stages and principles (Sein et al. 2011).

Problem Formulation. The first stage is triggered by a problem encountered in prac-
tice or predicted by researchers. It serves as a catalyst for developing a research strategy.
This stage draws on two principles: Practice-Inspired Research and Theory-Ingrained
Artifact (Sein et al. 2011). The former emphasizes viewing organization problems as
knowledge-creation opportunities. The second principle highlights that the intervention
(e.g., the IT artifact) is to be informed by theories, existing knowledge that grounds
design decisions.

Building, Intervention, and Evaluation. This stage builds upon the problem fram-
ing and theoretical premises adopted in stage one. These premises provide a platform
for generating the initial design of the IT artifact. From here on, the IT artifact is fur-
ther shaped by organizational use and subsequent design cycles (Sein et al. 2011). Or
using Sein et al’s principles: reciprocal shaping (i.e., the IT artifact and the organization
feedback each other: prototypes serve to profile the interpretation of the organizational
environment that help a better fit in subsequent versions), mutually influential roles (i.e.,
researchers and practitioners bring complementary insights), and authentic and concur-
rent evaluation (i.e., authenticity is a more crucial element for ADR than controlled
conditions, thus assessment should take place within the company and throughout the
research).

Fig. 2 The ADR Method: the first three stages conform an iterative cycle where tasks are intermingled till
distilled into the final learnings at the end of the project (taken from Sein et al. 2011). Arrows stand for
influential flows

Empirical Software Engineering (2022) 27: 75

1 3

Page 7 of 44 75

Reflection and Learning. ADR involves more than merely solving a problem to an
organization. To guarantee that contributions to knowledge are made, conscious reflection
on the problem framing, theories adopted, and the emerging IT artifact are critical. The
principle is termed as guided emergence where ‘emergence’ captures this notion of unan-
ticipated consequences that arise during the intervention in the organization and to which
researchers should be sensitive to (Sein et al. 2011).

Formulation of Learning. At this point, we reach an artifact that brings with it some
premises about the problem framing and the organization setting (i.e., an ensemble arti-
fact). It represents a solution to a problem. Both can be generalized. Sein et al. suggest
three levels for this effort: (1) generalization of the problem instance, (2) generalization
of the solution instance, and (3) generalization of mechanisms through design principles.
Design principles abstract away from the specific IT implementation into the abstract
mechanisms that brought the utility, and underlie the solution.

The rest of the paper is structured along these stages.

4 Problem Formulation

Problem formulation draws on two principles: practice-inspired research and theory-
ingrained artifact. The former reflects the premise that IT artifacts are ensembles shaped by
the organizational context (Sein et al. 2011). Therefore, it is most important to describe the
organization whose practices and characteristics will inform the artifact design. The second
principle highlights that ADR does not stop at identifying a problem, but provides an inter-
vention to alleviate the problem. This intervention should be informed by existing theories.
This section sets this research’s problem along with these two principles.

4.1 Practice‑Inspired Research

This research builds upon the fifteen-year experience of Danfoss Drives, a company divi-
sion in charge of P400, a product line for the software embedded in frequency convert-
ers (Fogdal et al. 2016). P400 is a member of the SPLC’s Product Line Hall of Fame.4
Table 1 characterizes P400 in terms three main contextual dimensions: the stakeholders,
the complexity of the task (i.e., customization analysis), and the setting that frames the
problem (i.e., the technical infrastructure and features of the SPL that might be relevant for
the problem at hand).

Danfoss follows an Annotation-Based Approach to P400 definition. This implies that
variations are supported through pre-compilation directives. A directive states when a
block code is to be included in the final product based on the presence or absence of a fea-
ture selection at configuration time. In pure::variants, these directives start with an open-
ing directive //PV:IFCOND and end with a closing directive //PV:ENDCOND. Figure 3
shows an example. The snippet illustrates two variation points, i.e., VP-1 and VP-2 that
correspond to two ifdef blocks. In the example, VP-1 comprises lines 24 to 49, whereas
VP-2 expands along lines 30 to 46.

Danfoss follows a Product-Based Approach to P400 evolution This implies that
DE and AE co-exist not only at the onset but throughout the SPL life-cycle. We aim at

4 https://splc.net/fame.html

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 8 of 44

Table 1 Contextual characterization

Stakeholder User Role Change Control Board (CCB)
Developers

Experience 7-year average SPL experience
Task Frequency 2–4 weeks

Complexity Feature Tangling (max.) 11
Feature Scattering (max.) 21
No. Products (max.) up to 20 products per platform release
No. Features (approx.) 10–20 features per platform release
Code churn (approx.) 2.7K LOC

Setting Technical environment Programming language C++
Branching strategy Grow-and-prune
Variability manager pure::variants

SPL Attributes Lifespan + 15 years
Size (approx.) 800 features & 20 products
Domain Embedded systems
Variability model Annotation-based

Fig. 3 Variation Points for Sensors.js at Baseline-v1.0. VP1 applies when either WindSpeed or AirPressure
are selected. VP2 applies for Temperature. Notice how VP2 is scoped within VP1

Empirical Software Engineering (2022) 27: 75

1 3

Page 9 of 44 75

understanding how DE-AE fluctuates throughout this life-cycle. Here, finding out cus-
tomization endeavors involves looking at the differences between core assets (kept in the
master branch) and the namesake assets once customized by the product (kept in the prod-
uct branches). Differences between branches are traditionally spotted through file diffing:
DIFF(C0.file, C1.file). Back to the WeatherStationSPL example, Fig. 4 illustrates the case
for sensors.js, using the unified format for diff display (van van Rossum 2018). This figure
illustrates the customization diffing in terms of LOC (Lines Of Code) being changed. For
each change hunk, the outcome indicates: the hunk header (i.e., starting and ending line
numbers together with the heading of the function the change hunk is part of), the added
lines (denoted by a plus sign with a greenish background), the deleted lines (denoted by a
minus sign with a reddish background), and the context (i.e., the three nearest unchanged
lines that precede and follow the change). The latter is especially important since it pro-
vides the context in which the change happened. However, sensors.js is just one of the
thirty files the WeatherStationSPL encompasses. And these thirty files might potentially
suffer changes by any of the three products. This implies 30 × 3 potential DIFFs. Now
move to Danfoss Drives.

Danfoss faces scalability issues when conducting Customization analysis for P400.
P400 holds over 10,000 core assets and 20 products. Though only a fraction of these assets
needs to be upgraded by a limited number of products in the interim that goes between two
SPL releases, this number is still high enough to be handled through traditional DIFF utili-
ties. The complexity of conducting customization analysis is felt to be proportional to the
number of products, features and LOC that are affected in the interim between two SPL
releases. In addition, this complexity might also be impacted by the tangling degree and
the scattering degree that the SPL exhibits. Table 1 collects some figures about these con-
cerns after the work of Zhang et al. (2013).

For single-off development, traditional DIFF utilities include Microsoft’s Azure DevOps
Server, and GitHub’s code frequency graph (see Fig. 5). Here, code churn is aggregated in
terms of modules like files, package and so on. Yet, these units of aggregation might not fit

Fig. 4 Visualizing code churn: diffing sensors.js between the copy at the master branch and the customized
copy at the productBerlin branch

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 10 of 44

the abstractions SPL analysts think about. Therefore, in adopting traditional DIFF utilities,
customization analysis faces two main issues:

– Scalability. Traditional DIFF utilities might not scale to the myriad of artifacts that
SPLs exhibit,

– Abstraction. Traditional DIFF aggregation is conducted in terms of files while features
are crosscuts that need to be abstracted out of a set variation points spread around dif-
ferent files.

The problem can then be stated in terms of current DIFF tools not being suitable
for accounting for the Change Control Board’ information needs. To provide some
empirical evidence about this problem, we conducted a survey among Danfoss’ engi-
neers about what would be the time it would take them to answer some customization-
analysis questions using traditional DIFF utilities. Figure 6 depicts the results. Though

Fig. 5 Code Churn visualization: (Left) Microsoft’s Azure opts for a chronological plot where different
color shades account for lines added, deleted or modified throughout; (Right) GitHub reflects code addi-
tions (above) and code deletions (below) along with a common axis in a weekly basis

Empirical Software Engineering (2022) 27: 75

1 3

Page 11 of 44 75

the rationales for the questions are not provided until Section 5, this figure evidences
that some questions might require a few hours to be answered. And this is just for one
question, let alone a full analysis that might well involve several questions. This is
especially so for the holistic perspective and the product perspective (see Fig. 6). Here,
answering most of the questions required a few hours. This time effort is what moti-
vates this research in the first place.

Fig. 6 Time effort in conducting distinct Customization Analysis questions. IDs help link to Table 2

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 12 of 44

4.2 Theory‑Ingrained Artifact

The previous section makes the case for current DIFF tools not scaling up to SPL analy-
sis needs. After all, DIFF tools are not designed for analysis of product-based evolving
SPLs but for code peering in single-off development. Therefore, the challenge is not
so much about the metric itself (i.e., code churn) but providing the right abstraction at
the scale of SPLs. To this end, we resort to theory on Visual Analytics to inform our
intervention.

Visual Analytics is defined as the science of analytical reasoning facilitated by inter-
active visual interfaces (Cook and Thomas 2005). The basic idea is to visually represent
the data to allow the human to directly interact with the information, to gain insights,
and to ultimately make optimal decisions. Broadly speaking, Visual Analytics helps cre-
ate a path from data to decision. In this process, visualization plays a twofold role (Red-
divari et al. 2014):

– as an abstraction means, by highlighting certain constructs and relationships while
ignoring others;

– as an interaction medium, by supporting the workflows for decision making.

By introducing Visual Analytics, decision makers can focus their full cognitive and per-
ceptual attention on visualization-enabled analytical reasoning while taking advantage
of automatic data processing techniques. The Design Activity Framework is a process
model for visualization design (McKenna et al. 2014). Once we are aware of the prob-
lem and equipped with the theory, we can now move to the next stage: Building, Inter-
vention, and Evaluation. Figure 7 depicts the three main cycles that ended up in Cus-
tomDIFF, the Visual Analytics tool. Next, we abound in each of these cycles.

Fig. 7 Evolution of the CustomDIFF project. Y axis stands for the team members. X axis stands for the
evolution in time along with the three main cycles that output distinct artifacts (i.e., the GQM model, the
developer perspective, the CustomDIFF prototype)

Empirical Software Engineering (2022) 27: 75

1 3

Page 13 of 44 75

5 Building, Intervention, and Evaluation: Cycle 1

So far, we have identified information needs whose fulfillment can hardly be satisfied with
current tools. Our hypothesis is that dedicated Visual Analytics can improve this situation.
Specifically, we adopt the Design Activity Framework framework to inform our building5
(McKenna et al. 2014).

5.1 Building & Intervention

The first step is understand i.e., grasping the problem domain and target users. This activ-
ity aims at acquiring knowledge about the phenomenon of interest (i.e., customization
analysis), domain-specific questions, and the types of measurements to appreciate this phe-
nomenon (Reddivari et al. 2014). To this end, we resort to a Goal-Question-Metric (GQM)
model (Basili et al. 1994) (see Fig. 8).

Goal. Following Basili et al.’s recommendations (Basili et al. 1994), we state our
goal as follows: evaluate the effort trend (issue) in product customization (object) from

Fig. 8 The GQM model

5 This framework encompasses the following steps: understand (i.e., grasping the problem domain and tar-
get users), ideate (i.e., generating ideas for supporting the understand outcomes), make (i.e., concretizing
ideas into tangible prototypes) and deploy (i.e., bringing a prototype into effective action in a real-world
setting to support the target users’ work).

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 14 of 44

Ta
bl

e
2

 V
al

id
at

in
g

th
e

G
Q

M
. R

at
in

g
th

e
im

po
rta

nc
e

of
 in

fo
rm

at
io

n
ne

ed
s u

si
ng

 a
 L

IK
ER

T
sc

al
e

fro
m

 1
 (N

ot
 Im

po
rta

nt
) t

o
5

(V
er

y
Im

po
rta

nt
)

Q
ue

sti
on

 ID
Li

ke
rt

sc
al

e
A

vg
.

1
2

3
4

5

 --
--

--
--

--
H

ol
ist

ic
 p

er
sp

ec
tiv

e:
 I

co
ns

id
er

 im
po

rta
nt

 to
 k

no
w

 ..
.

H
1

...
 w

hi
ch

 fe
at

ur
es

 a
re

 (n
ot

) b
ei

ng
 c

us
to

m
iz

ed
 b

y
pr

od
uc

ts
0

1
3

3
1

3.
5

H
2

...
 w

hi
ch

 p
ro

du
ct

s a
re

 c
us

to
m

iz
in

g
(n

o)
 fe

at
ur

es
0

1
2

3
2

3.
75

H
3

...
 h

ow
 m

uc
h

eff
or

t (
i.e

.,
co

de
 c

hu
rn

) h
as

 b
ee

n
sp

en
t o

n
cu

sto
m

iz
in

g
ea

ch
 fe

at
ur

e,
 in

 to
ta

l,
no

 m
at

te
r t

he

pr
od

uc
t

2
1

4
0

1
2.

87

H
4

...
 h

ow
 m

uc
h

eff
or

t (
i.e

.,
co

de
 c

hu
rn

) e
ac

h
pr

od
uc

t i
s s

pe
nd

in
g

on
 c

us
to

m
iz

in
g

ea
ch

 fe
at

ur
e

2
2

2
1

1
2.

62
H

5
...

w
hi

ch
 fi

le
s a

re
 b

ei
ng

 c
ha

ng
ed

 o
n

ea
ch

 p
ro

du
ct

 to
 c

us
to

m
iz

e
ea

ch
 fe

at
ur

e
2

0
2

4
0

3
 --

--
--

--
--

Fe
at

ur
e

pe
rs

pe
ct

iv
e:

 fo
r f

ea
tu

re
 F

1,
 I

co
ns

id
er

 im
po

rta
nt

 to
 k

no
w

 ..
.

F1
...

 w
hi

ch
 p

ro
du

ct
s a

re
 c

us
to

m
iz

in
g

it
0

0
1

3
3

4
F2

...
 w

hi
ch

 h
as

 b
ee

n
th

e
to

ta
l c

us
to

m
iz

at
io

n
di

ffi
ng

 (i
.e

.,
co

de
-c

hu
rn

 a
gg

re
ga

te
)

2
1

3
1

1
2.

75
F3

...
 w

hi
ch

 h
as

 b
ee

n
th

e
to

ta
l c

us
to

m
iz

at
io

n
di

ffi
ng

 (i
.e

.,
co

de
-c

hu
rn

 a
gg

re
ga

te
),

br
ok

en
 d

ow
n

by
 p

ro
du

ct
2

1
3

1
1

2.
75

F4
...

 w
hi

ch
 fi

le
s h

av
e

be
en

 c
ha

ng
ed

1
2

1
1

3
3.

37
--

--
--

--
--

Pr

od
uc

t p
er

sp
ec

tiv
e:

 fo
r p

ro
du

ct
 P

1,
 I

co
ns

id
er

 im
po

rta
nt

 to
 k

no
w

 ..
.

P1
...

 w
hi

ch
 fe

at
ur

es
 a

re
 c

us
to

m
iz

ed
0

1
1

2
4

4.
12

P2
...

 h
ow

 m
uc

h
eff

or
t (

i.e
. c

od
e

ch
ur

n)
 h

as
 b

ee
n

sp
en

t o
n

cu
sto

m
iz

at
io

n,
 n

o
m

at
te

r t
he

 fe
at

ur
e

2
1

2
2

1
2.

87
P3

...
 h

ow
 m

uc
h

eff
or

t (
i.e

. c
od

e
ch

ur
n)

 h
as

 b
ee

n
sp

en
t o

n
cu

sto
m

iz
in

g
ea

ch
 fe

at
ur

e
2

1
3

1
1

2.
75

P4
...

 w
hi

ch
 fi

le
s h

av
e

be
en

 c
ha

ng
ed

2
1

3
1

1
2.

75

Empirical Software Engineering (2022) 27: 75

1 3

Page 15 of 44 75

the Change Control Board perspective (viewpoint). Our goal is to trace how much effort
is being put into product customization.

Question. Questions are posed to characterize the way the assessment/achievement
of a specific goal is going to be performed based on some characterized model (Basili
et al. 1994). For this model, feature and product emerge as natural constructs. Indeed,
SPL releases, product configuration, programming assignments, or work positions are
commonly described in terms of features and products. Using the notions of ‘feature’
and ‘product’, we can arrange the questions along with three distinct scopes (refer to
Table 2 for the full list of questions):

– the feature-focused scope, e.g., for a given feature, which products are customizing
it,

– the product-focused scope, e.g., for a given product, which features have been custom-
ized; if a product has made no change, it is not considered.

– the holistic scope, e.g., which is the whole customization effort from the last platform
release,

Measurement. Once the questions have been developed, we proceed by associating
the questions with appropriate metrics. Factors to be considered for this selection include
(Basili et al. 1994): the quantity and quality of the existing data, and the maturity of the
measurements. On these grounds, we resort to code churn, a well-established metric to
assess evolution in one-off development (Ajila and Dumitrescu 2007; Hall and Munson
2000).

Code churn is a popular measure to inform about the rate at which the code evolves
(Khoshgoftaar and Szabo 1994). The churn for a file over a specified period is computed
as: [LinesAdded] + [LinesDeleted] + [LinesModified] (Faragó et al. 2015). Traditionally,
this is achieved by diffing files (Schulze et al. 2016): DIFF(aFilet1, aFilet0) displays the
code churn for file aFile in the interval [t0,t1]. In single-off development, code churn is
being extensively used for defect prediction (Nagappan and Ball 2005), assess code erosion
(Ohlsson et al. 1999), or detect code volatility (Faragó et al. 2015).

Moving back to SPLs, code churn could also be a valuable metric for customization
analysis: DIFF(aFilet1, aFilet0) where t0 stands from the time where the product branch
is generated out of the master’s, and t1 corresponds to a time before the product branch is
merged back to the master’s. Though the notion of churn might be appropriate, the object
of the churn is not. Rather than files, the GQM’s questions are posed in terms of ‘features’
and ‘products’. Needed are mechanisms that move from file-based diffing to higher abstrac-
tion terms. Specifically, consider DIFF, a function that returns the code churn for aFile as
it is kept in the master branch (i.e., aFile.core) vs. how it has been customized in a prod-
uct branch (aFile.aProduct). Rather than DIFF(aFile.core, aFile.aProduct, we long for
DIFF(aFeature.core, aFeature.aProduct) utilities that abstract out dozens of DIFF(aFile,
aFile) for those aFiles that realize aFeature as it is being customized for aProduct. That is,
DIFF(aFeature.core, aFeature.aProduct) outputs the code-churn aggregate of customizing
aFeature for aProduct, no matter the files the aFeature is spread over.

On these grounds, we could define three sort of aggregates to measure the customiza-
tion diffing (see Fig. 8), namely: (1) feature-focused DIFF (i.e., DIFF(aFeature, *)) where
aFeature stands for the set of aFile realizing this feature, and ‘*’ indicates no matter the
product branch; (2) product-focused DIFF (i.e., DIFF(*, aProduct)) where aProduct stands
for the set of aFiles realizing this product, and ‘*’ indicates no matter the feature; and (3),
holistic DIFF (i.e., DIFF(*, *)) where ‘*’ corresponds for all aFile no matter the feature

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 16 of 44

nor the product. These aggregates compute the sum of code churn for the underlying
involved files.

5.2 Evaluation

ADR promotes continuous assessment of the intervention (principle 5: authentic and con-
current evaluation) (Sein et al. 2011). The intervention is not only the IT artifact but also
the design principles this artifact realizes. This includes the information needs the IT arti-
fact aims to fulfill. This section provides a first validation of the GQM model.

Participants. Participants were selected who had at least one-year experience on Dan-
foss Drives. Among the eight participants that took part in this evaluation, three had 10
years of experience while the other five accounted for 9, 7, 6, 3, and 1 year of experience,
respectively.

Process. A questionnaire was prepared to assess the relevance of the above mentioned
GQM model in terms of the importance given to the different questions raised by it. Face
validity was conducted, that is, we checked whether the questionnaire seemed to corre-
spond to the GQM model. A first draft of the questionnaire was prepared by the authors
and next, the questionnaire was delivered to this paper’s Danfoss Drives’ author. Based on
his comments, some amendments were added to clarify the purpose and adapt the termi-
nology to that of the practitioners. Next, practitioners were requested to indicate the impor-
tance given to each question using a LIKERT scale from 1 (Not Important) to 5 (Very
Important).

Results. Table 2 shows the results. Some conclusions can be drawn from them:

– Perspective wise, both feature-focused and product-focused are similarly rated. The
highest rated questions are “for the feature F1, which products are customizing it” (avg.
4) and its sibling, i.e., “for the product P1, which are the features being customized”
(avg. 4.12). The lowest rated questions correspond to the fine-grained holistic perspec-
tive. This might be due to this information being better captured at either the feature
perspective or the product perspective.

– Aggregation-level wise, quite an unexpected result: intermediary aggregates were not
prioritized. When pondering analysis needs, participants seem to favor either a general
overview of the customization diffing or, instead, being able to dive into the specifics.

The bottom line is that all questions rate above 2.5, with four questions going beyond 3.5
(i.e., above “Moderately Important”). This provides first evidence about the interest in cus-
tomization analysis. Yet, Visual Analytics does not stop at identifying the right data. Mak-
ing better decisions also depends on the ability to understand and communicate adequately
the measurement to the decision-makers. This moves us to the next cycle.

6 Building, Intervention, and Evaluation: Cycle 2

The basic idea is to visually represent the information, allowing humans to interact directly
with such information, to gain insight, to draw conclusions, and to ultimately make better
decisions. Figure 9 depicts the main ingredients of Visual Analytics tools (Reddivari et al.
2014). For our purposes, the Data is kept in a Git repository. This data corresponds to code
files whose versions are arranged w.r.t the Git version control system model. This code is

Empirical Software Engineering (2022) 27: 75

1 3

Page 17 of 44 75

pre-processed to distill the metrics to be used to assess the customization effort (i.e., code
churn). As a result, code churn is obtained and described along with a Model that serves
the information needs which were identified in the GQM analysis. This Model ends up
being realized through a database that acts as the back-end for a Web application that sup-
ports the Visualization strategy. Main architectural components include: a mining compo-
nent that extracts data from Git repositories; a database that holds mined data along with
the data Model; and a front-end component that queries the database and display results
using appropriate visualization means.

This section instantiates this architecture for CustomDIFF, a web-based tool for cus-
tomization analysis. CustomDIFF uses pure::variants (Pure-Systems 2018) and Git as the
variability management tool and version control system, respectively. Three additional
resources are made available:

– an interactive online version of CustomDIFF which the reader is encouraged to access:
http://customdiff.onekin.org/,

– a video describing CustomDIFF (6’): https://vimeo.com/577936099,
– a Zenodo replication package for the CustomDIFF implementation: https://doi.

org/10.5281/zenodo.5728000

6.1 Building & Intervention

6.1.1 The Model

Dimensional Modeling is a data structure technique that is specifically designed for data
storage when used for decision taking. This implies a sharp distinction between two sort
of tables: “fact” and “dimensions” (see Fig. 10). The “fact” table collects the events of
the phenomenon under study. For our purposes, the phenomenon under study is “prod-
uct customization”. We consider an event of this phenomenon to occur when it happens
the consecutive deletion/addition of code churn for a file. Each code churn gives rise

Fig. 9 Visual analytics main interactions (adapted from Reddivari et al. (2014))

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 18 of 44

to a fact tuple. Fact properties include: the number of lines added, the number of lines
deleted or the actual code being changed (custom_diff) in a customization episode.

Facts are the finest grain of the customization endeavor. Obtaining a higher perspec-
tive of the customization endeavor requires these facts to be aggregated along differ-
ent dimensions: “the what” (i.e., the variation point being affected by the customiza-
tion), “the where” (i.e., the product in which the customization occurred), “the when”
(i.e., the time of the product release), and “the who” (i.e., developers who conducted the
customization).

Figure 10 displays the database schema. This schema will be instantiated from the code-
base of the SPL at hand. The SPL codebase is held in a Git repository where the master
branch contains the core-asset baseline while products branch off the master. This moves
us to the next sub-section.

6.1.2 The Data

In data warehousing, ETL, which stands for extract, transform and load, is a data inte-
gration process whereby data is extracted from data sources (that are not optimized for
analytics), and moved to a central host (which is). In our setting, ETL mines the SPL’s
Git repository, runs the corresponding diffing, and populates the tables. Specifically, facts
(i.e., customization_fact tuples) are obtained by working out a DIFF between the name-
sake artifacts of the master branch and the product branches. For the DIFF depicted in
Fig. 4, two facts would be obtained. Fact #1 would stand for the changes introduced in line
29, whereas Fact #2 would correspond to those changes introduced in lines 34–38. Details
about the mining algorithm are provided in the Appendix. A related approach is described
by Zhang et al. (2013).

Fig. 10 CustomDIFF’s data model

Empirical Software Engineering (2022) 27: 75

1 3

Page 19 of 44 75

6.1.3 The Visualization

This section makes a case for the use of alluvial diagrams (a.k.a. Sankey diagrams) as
a suitable visualization for customization analysis, measured in terms code churn from
diffing. Broadly, we advocate to ideate the notion of customization diffing as an energy
flow. The metaphor of energy flow is used in domains familiar with the dynamics of
mass flow (e.g., energy, capital, transportation). Examples can be found for resource
use (Lupton and Allwood 2017), energy flow (Schmidt 2008; Subramanyam et al. 2015)
or material flows (Schmidt 2008), to name a few. For our purposes, the flow stands for
the customization energy spent on attending products’ specifics. This flow moves from
products to features, and from there, it percolates down to the files where these features
end up being realized. For flow display, alluvial diagrams are commonly used.

We resort to alluvial diagrams to factor out the customization effort. Figure 11 shows
the case for the WeatherStationSPL. On the left, flow emitters: the products where AE
spends energy to account for their specifics. On the right, flow sink: the features where
the energy produced during AE ends up. Arrows connect products with those features
being the subject of a customization intervention.

Nodes are the issuers of the flow. The larger the node area, the larger the flow poten-
tial. If the node stands for a product, then the node width corresponds to the effort in
customizing this product. If the node stands for a feature, then the node width corre-
sponds to the effort in adjusting this feature no matter the product. On the other hand,

Fig. 11 Customization diffing are visualized as flows from products (as customization emitters) to features
(as customization sinks). For example: ProductLondon-v1.0 requires customization for three features: Wind-
Speed, AirPressure & Temperature

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 20 of 44

arrows stand for the flow between nodes. If the arrow connects product P to feature F,
then the arrow’s width captures the effort involved in adjusting F to P demands.

Alluvials pursue a prompt answer to the GQM’s questions. Take Fig. 11 as an exam-
ple. Which features are being customized? AirPressure, Temperature, WindSpeed, Gale
and German. Which products are customizing features? productBerlin, productLondon,
etc. How much effort (i.e., code churn) has been spent on customizing the feature Air-
Pressure? This is reflected in the node width; the tool also shows the customization
diffing (i.e., 36 LOC) on a mouse over. How much effort has spent productParis in cus-
tomizing AirPressure? This is reflected in the arrow width; mouse over to get 31 LOC.
This anecdotal evaluation looks promising. Yet, there exists a first stumbling block:
scalability.

SPLs can hold hundreds of features that can be combined into thousands of prod-
ucts. Although not every feature/product is involved in each customization cycle, visu-
alization might become cluttered for a larger number of features or products. Filters and
grouping are the most common techniques to reduce the number of nodes. Filters limit
the flow to either the products or the features that meet the filtering criteria. Grouping
permits products/features to be grouped into clusters. Products could be grouped based
on product units. A product unit might be in charge of one or several products. Group-
ing permits this effort to be visualized for the whole unit. Likewise, features might be
grouped based on their parent features so that the effort is displayed for the whole set
of child features. The grouping of nodes also implies a grouping of the adjacent edges.
Figure 12 shows groupings for the case of features. Now the flow concentrates along
WeatherStationSPL’s parent features, i.e., Sensors, Languages, and Warnings.

Fig. 12 Grouping. The Feature bar aggregates values by parent features. Likewise, the Product bar could
also aggregate values by product units

Empirical Software Engineering (2022) 27: 75

1 3

Page 21 of 44 75

6.2 Evaluation

To assess the suitability of alluvial diagrams, informal demo sessions were conducted.
Interestingly enough, during the demo sessions two sort of clusters, similar to those that
emerged during the understand evaluation phase, started to surface: coarse-grained (pre-
ferred by the Change Control Board) and fine-grained (preferred by developers). At the
onset, researchers were mainly concerned about an intervention for correlating where
the customization was occurring with where the customization was planned to occur.
Here, the stakeholders are SPL managers interested in tracing the balance between
DE and AE. Yet, as the interaction with practitioners advanced, a new role started to
emerge, i.e., developers, who were concerned not only about the high-level customiza-
tion representation but also about the code behind it. Rationales rest on the grow-and-
prune model. Single-off development is more about growing than about pruning. That
is, single-off development does not face later consolidation of upgrades into a common
platform (i.e. the master). Applications evolve at their own pace. By contrast, product
developers at SPLs are well aware that sooner or later their upgrades need to be merged
back into the SPL platform. The bottom line is that developers’ concerns include not
only customizing but also consolidating the upgrade. The alluvial diagram so far seems
to be appropriate to capture the customization diffing but falls short to assess the con-
solidation effort. This requires moving down to code, to how features are fleshed out.

7 Building, Intervention, and Evaluation: Cycle 3

This section moves the developer perspective to the forefront. The alluvial diagram so
far might be sufficient for managers to evaluate the effort trend in product customization
(i.e., the GQM model in Fig. 8). Yet, developers do not stop at the big picture. When it
comes to calibrating the consolidation effort, developers might need to go down to how
features are both spread along distinct classes (i.e., scattering) and mixed up with other
features (i.e., tangling).

7.1 Building & Intervention

CustomDIFF needs to cater for scattering and tangling. Nevertheless, the introduction
of additional details might lead to cluttered interfaces. Hence, we should care not only
for the visualization as such, but also for the interaction workflows that allow users to
smoothly transit between the distinct perspectives. Accordingly, this subsection is struc-
tured along these two concerns: fine-grained visualization and workflows.

7.1.1 Extending The Visualization

So far, alluvial diagrams stopped at products and features. This alluvial is now extended
to account for scattering, tangling and code peering.

Scattering. We resort to extending the scope of the alluvial flow by incorporating the
package bar at both ends (see Fig. 13). Details follow:

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 22 of 44

Fig. 13 Scattering visualization. Two additional Package bars are added at each extreme to expand the flow
down to files. For example: customization on AirPressure (no matter the product) goes across files scale.js,
sensors.js & settings.js

Fig. 14 Tangling visualization for feature WindSpeed. Customizations involving #ifdef blocks that include
WindSpeed in their directives are broken down into two FS sets: ‘FeatureSibling: WindSpeed’ and ‘Featu-
reSibling: AirPressure-WindSpeed’

Empirical Software Engineering (2022) 27: 75

1 3

Page 23 of 44 75

– On the right side, the package bar extends the flow from feature to file so that DE
developers can have a piece-meal perspective on how their core assets are being
adjusted. This permits an estimation of the eventual consolidation effort. For
instance, the code churn for file scale.js is three times larger than the one for sen-
sors.js. Accordingly, engineers might now foresee that merging scale.js might most
likely demand more time than merging sensors.js.

– On the left side, the package bar extends the flow from product to file so that prod-
uct units can assess what other units are working on the same files. This permits
promptly spotting overlapping risks. For instance, developers at productBerlin-
v1.0 and productSeville-v1.0 might probably arrange a meeting together to prevent
redundant efforts. This in turn, might alleviate the burden at consolidation time by
smoothing out their differences in advance.

Tangling. We resort to grouping (see Fig. 14). So far, the Feature bar captures the
customization diffing along with the features being updated. Nodes might account for
parent features that can be next broken down into their child features. We can further
break down feature nodes into Feature Sibling (FS) Sets, a set of features that appear
together in at least one ifdef directive, no matter the boolean expression that links them
together. Figure 14 shows the case of WindSpeed. This feature is broken down into two
FS sets. First, the WindSpeed set which accounts for modified ifdef blocks with Wind-
Speed as the only feature in their pre-compilation directive. Second, the AirPressure
- WindSpeed set that agglutinates ifdef blocks where these two features are referred to
in their directives, no matter the boolean operator. The flow from productBerlin-v1.0 to
AirPressure - WindSpeed depicts the tangled effort made to evolve the AirPressure and
WindSpeed features. By zooming into FS sets, developers can have a first insight into
the extent of tangling along with the customization diffing.

Code Peering. CustomDIFF sticks to the traditional DIFF view for code peering.
Yet, some subtle changes are needed. Traditionally, the DIFF context refers to the three
nearest unchanged lines that precede and follow the change (see Fig. 4). The context
serves as a reference to locate the places of the changed lines. However, this might
not be enough for variability-intensive code. Here, the code holds variability points
where a pre-compilation directive regulates whether the block code is to be included
in the final product. This pre-compilation directive is a main contextual clue to know
which features are affected. Yet, these pre-compilation directives are right at the start
of the block, potentially away from where the change has occurred, and hence, these
directives might not show up in a traditional DIFF context. Figure 4 illustrates this
situation. The change is located at line 29. However, the context (i.e., lines 26, 27, 28)
does not include the pre-compilation directive. This deprives engineers from promptly
knowing which features are affected. Therefore, feature-minded DIFF utilities should
include pre-compilation directives as part of the DIFF context. Figure 15(c) mimics
the case of Fig. 4, but now information about the pre-compilation directive is included
into the hunk headings. The hunk corresponds to the changes in lines 43 and 50 under
the scope of VP-1 (WindSpeed or AirPressure). In the case that VP-1 is nested within
another variation point (e.g., VP-2), this is reflected in the hunk’s heading along the
pattern :< enclosingVP > −− > nestedinto − − >< enclosedVP > . In short, pre-compi-
lation directives should become a main ingredient of the DIFF context for variability-
intensive code.

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 24 of 44

7.1.2 The Workflows

Based on insights gained during the GQM evaluation, CustomDIFF considers two main
perspectives: coarse-grained (preferred by the Change Control Board) and fine-grained
(preferred by developers).

The Change Control Board Workflow. Here, stakeholders are interested in corre-
lating where the customization is occurring with where the customization is planned
to occur. They aim at differentiating between mature features (none or minimal cus-
tomization needed) vs. immature features (recurrent customization required). They
could start by displaying the alluvial diagram for the selected features at the highest
abstraction level (see Fig. 12). Next, they can click on the grouping button to unfold
parent features into their child features (see Fig. 11), or even further, moving down to
the feature siblings where the feature participates (see Fig. 14). Notice that alluvials are
abstracted from the customized code, hence, only product, features or variation points
that have been customized will appear in the alluvial. Additional details can be obtained
by extending the flow to the right/left by introducing the Package bar alongside the Fea-
ture/Product bar (see Fig. 13).

One key characteristic of interactive alluvials is the tracing of flows throughout the
graph. Users may select a node or edge, and the contributions of all flows are high-
lighted and moved to the foreground. In this way, interactive alluvials draw the attention
of the analyst to the largest flows, the largest consumer, or the main flow deviations or
losses.

The Developer Workflow. Here, stakeholders are interested in assessing the complex-
ity of integrating product branches back into the master. This might require moving down
to code, i.e., from alluvials to DIFF views. This is achieved through a ‘gateway panel’. As
an example, consider we would like to get insights on the effort of merging back customi-
zations on WindSpeed to the master. We start by filtering upon WindSpeed (see Fig. 15a).
Four products turn out to be responsible for having customized WindSpeed: productBer-
lin, productLondon, productParis, and productSeville. By displaying the Package bar, we
also note that two files are being affected: scale.js and sensors.js. The visualization so far
might help to get a global view, yet it is insufficient for developers who need to foresee the
integration difficulties ahead. To this end, both nodes and arcs of alluvials are turned into
hyper-links. Click on an arrow and a new browser tab opens a gateway panel. This panel
displays a list of the affected ifdefs blocks (Fig. 15b). Click on an ifdef block for the corre-
sponding code to appear in the DIFF view (Fig. 15c). In the example, the DIFF view shows
that WindSpeed is tangled with other features (e.g., AirPressure). Hence, consolidating
WindSpeed might also impact AirPressure. The developer might now wonder the extent
to which AirPressure is being customized, which can be analyzed by moving back to an
alluvial view. This workflow might then need to move back and forth between the alluvial
view and the DIFF view. To this end, the DIFF view is turned into a hypertext, i.e., feature
names in the DIFF context (variation points) are turned into URLs. Click on an URL and
a new browser tab shows the alluvial view for the feature at hand (Fig. 15d. In this way,
a CustomDIFF session is realized as a succession of tabs where alluvial views and DIFF
views intermingle as consecutive browser tabs.

Fig. 15 The Developer workflow. Moving down to code through hypertext navigation along with three
HTML pages: (a) alluvial diagram; (b) gateway panel; (c) DIFF View; and (d) back to the alluvial diagram
for a related feature

▸

Empirical Software Engineering (2022) 27: 75

1 3

Page 25 of 44 75

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 26 of 44

7.2 Evaluation

According to the GQM in Fig. 8, we aim at evaluating the effort trend in product cus-
tomization. This is broken down into three perspectives: holistic, feature-centric and prod-
uct-centric. These are the information needs. Yet, the added value of visual analytics goes
beyond the information needs to care also for the way this information is delivered. There-
fore, this section evaluates CustomDIFF from the analytical side (i.e., usefulness) but also
the visual side (i.e., ease of use). Perceived usefulness is the degree to which a person
believes that using a particular system would enhance his or her job performance. On the
other hand, perceived ease of use is the degree to which a person believes that using a par-
ticular system would be free of effort (Davis 1989). Accordingly, we can state our evalua-
tion goal as:

Assess the ease of use and usefulness of CustomDIFF with respect to conducting
customization analysis from the point of view of SPL practitioners in the context of
Danfoss Drives.

The question remains how to conduct the evaluation. Sein et al. emphasize that authenticity
is a more important ingredient for ADR than controlled settings (Sein et al. 2011). For an
authentic evaluation, Sjøberg et al. (2002) introduce three factors: (1) realistic participants,
(2) realistic tasks, and (3) a realistic environment. Sjøberg et al. recognize the difficulties
to meet all factors simultaneously, given the incipient nature of the interventions being
checked out. SPLs are no exception, quite the contrary. In our case, it was not possible to
use real tasks from Danfoss Drives, but we could tap into engineers from Danfoss Drives to
check out complex-enough tasks upon the WeatherStationSPL. This subsection reports this
expert evaluation.

7.2.1 Participants

Our evaluation derives its value from the expertise of participants in handling product-
based SPL evolution. As customization analysis allows for different perspectives (fea-
ture vs. product) that might depend on the participants’ role, the selection was balanced
between DE and AE. To attain this goal, we had the invaluable collaboration of a person
with managerial responsibilities in Danfoss Drives, who encouraged participation through
an open call. This call stated that participation was voluntary and that results would be
gathered anonymously. No rewarding procedure was set except a coffee after the evalua-
tion. Six people were able to participate: 1 product release manager, 3 software developers
with a hybrid role in both domain and application engineering tasks, and 2 code reviewers
in charge of branch integration. Participants’ average expertise in Danfoss Drives was 7
years.

7.2.2 Measurement Tool

Perceived Ease of Use We resorted to a questionnaire based on the Technology Acceptance
Model (TAM) (Davis 1989) (see Table 4). Questions are arranged along a LIKERT scale
from 1 (strongly disagree) to 7 (strongly agree).

Perceived Usefulness We could have resorted again to the TAM questionnaire. How-
ever, TAM’s perceived usefulness questionnaire has been criticized for being too general

Empirical Software Engineering (2022) 27: 75

1 3

Page 27 of 44 75

(Hornbæk and Hertzum 2017). Hence, we decided to create our own questionnaire (see
Table 5). This questionnaire was checked for reliability. The reliability of any given meas-
urement refers to the extent to which it is a consistent measure of a concept, i.e., the ques-
tionnaire’s items all reflect the same concern. Cronbach’s alpha is one way of measuring
the strength of that consistency. The Cronbach’s alpha for the questionnaire in Table 5 is
0.93. A general accepted rule is that � of 0.6-0.7 indicates an acceptable level of reliability,
and 0.8 or greater a very good level (Ursachi et al. 2015).

7.2.3 Procedure

The procedure was designed with two goals in mind. On one hand, the tasks presented to
participants needed to be meaningful enough to allow them to understand CustomDIFF
and its application for visual analytics. On the other hand, given that participants have a
busy agenda, it had to be limited in time with the aim of not disrupting their jobs more
than necessary. To this end, the WeatherStationSPL was used as the running example. This
SPL is included in the pure::variants experimental material, and hence, participants were
already familiar with it. Consequently, participants could focus on customization issues
rather than spending time understanding the SPL domain itself.

For the evaluation, three product variants were created: productParis, productBerlin,
and productNewYork, each with a set of customizations. Customizations were designed to
mimic the complexity that could be found in Danfoss in terms of affected features and
products.

Upon this setting, participants were requested to conduct distinct tasks to assess the
three perspectives identified in Section 5: holistic perspective, feature perspective, and
product perspective (see Table 3). These tasks are felt representative of the information
needs identified in Table 2.

The evaluation was conducted in two sessions. The first session presented CustomDIFF
(1h 45’) to participants. CustomDIFF’s rationale and operations were introduced with the
help of the WeatherStationSPL. The second session was a hands-on experience, where par-
ticipants explored CustomDIFF on their own (1h 30’). The aforementioned sample cases
were introduced. Next, participants were asked to fill two on-line questionnaires to assess
CustomDIFF’s usefulness and ease of use. Due to agenda constraints, participants were
divided into two groups, with 2 and 4 participants each. During the sessions, a researcher
was observing participants’ interactions with the tool. Participants raised questions, doubts,
and comments that were noted by the researcher.

7.2.4 Results

Ease of Use (see Table 4) Participants rated CustomDIFF with an average of 5.44.
Although results seem to suggest that CustomDIFF is affordable enough, the lowest ranked
question was the second one, which seems to suggest that some analysis workflows might
not be as direct as expected. In addition, the researcher observing the participants noted
a caveat for the interaction with CustomDIFF. Specifically, the difference between node
clicking and arrow clicking was not apparent, and some participants expressed confusion.
For instance, when looking at the customization effort undertaken in productParis to adjust
the Sensors feature, some participants first clicked on the productParis. Although partici-
pants were not expected to write anything concrete, just to explore customization, direct

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 28 of 44

Ta
bl

e
3

 T
as

ks
 fo

r t
he

 e
xp

er
t e

va
lu

at
io

n

Pe
rs

pe
ct

iv
e

Ta
sk

O
ut

lie
r i

de
nt

ifi
ca

tio
n

ta
sk

H
ol

ist
ic

W
hi

ch
 p

ar
en

t f
ea

tu
re

s a
re

 n
ot

 c
us

to
m

iz
ed

 b
y

th
e

pr
od

uc
ts

?
A

na
ly

ze
 h

ow
 p

ro
du

ct
Pa

ri
s i

s c
ha

ng
in

g
th

e
im

pl
em

en
ta

tio
n

of

th
e

Se
ns

or
s p

ar
en

t f
ea

tu
re

Fe
at

ur
e-

ce
nt

ric
W

hi
ch

 p
ro

du
ct

s a
re

 c
us

to
m

iz
in

g
th

e
Ai

rP
re

ss
ur

e
ch

ild
-fe

at
ur

e?
A

na
ly

ze
 h

ow
 th

e
co

de
 th

at
 re

al
iz

es
 A

ir
Pr

es
su

re
 h

as
 b

ee
n

ch
an

ge
d

by
 th

e
pr

od
uc

t p
or

tfo
lio

Pr
od

uc
t-c

en
tri

c
W

hi
ch

 p
ar

en
t-f

ea
tu

re
s i

s p
ro

du
ct

Be
rli

n
cu

sto
m

iz
in

g?
A

na
ly

ze
 h

ow
 th

e
im

pl
em

en
ta

tio
n

of
 p

ro
du

ct
Be

rli
n

ha
s e

vo
lv

ed

Empirical Software Engineering (2022) 27: 75

1 3

Page 29 of 44 75

observation of the participants showed that not all of them selected the Sensors-product-
Paris arrow. Some participants first clicked on productParis and, in a second interaction,
determined the adjustment for Sensors.

Usefulness (see Table 5) The questionnaire aims at capturing usefulness for conducting
the tasks at hand. As long as these tasks have first been validated as relevant for customiza-
tion analysis (the GQM model), they might conform to a sort of benchmark against which
analysis tools can be evaluated. On these grounds, CustomDIFF yields good results from
6 (U1) to 5.33 (U6). That said, a difference can be appreciated between those questions
aimed for the Change Control Board (coarse-grained: U1, U2, U3, U4) vs. those questions
thought for application engineers (fine-grained: U5, U6). The latter outputs worse average
and standard deviation outcomes. This might be due to Change Control Board members
appreciating the novelty of alluvial diagrams, while application engineers did not see major
differences w.r.t. the traditional DIFF view.

These results seem to suggest that participants found CustomDIFF easy to use (items
ranked above 5 out of 7) and useful (items ranked above 5.33) for fulfilling the information
needs in Table 3.

7.2.5 Threats to Validity

Construct Validity refers to the degree of accuracy with which the variables defined in
a study measure the constructs of interest. Here, the constructs are ease of use and useful-
ness. As for the former, we resort to Davis’ questionnaire whose validity and reliability
have been previously endorsed (Mathieson et al. 2001; Agarwal and Prasad 1998). Riskier
is the use of our own questionnaire to assess usefulness. To ensure internal consistency,
Cronbach’s alpha is calculated for the questionnaire which resulted in an � value of 0.93,
showing a high reliability, though the low number of participants needs to be considered.

Internal Validity refers to the extent to which the intervention or independent
variable(s) were actually responsible for the effects seen in the dependent variable. Here,
the intervention is CustomDIFF. Yet, other factors besides CustomDIFF might influence
the results. First, the participants’ background. In this respect, we were especially careful to
focus on SPL engineers who had at least one-year experience. Second, the questionnaire’s

Table 4 CustomDIFF’s perceived ease of use

The six practitioners (P1, P2...) were asked the extent of their agreement for each item along a LIKERT
scale that ranges from 1 (strongly disagree) to 7 (strongly agree)

ID Item: P1 P2 P3 P4 P5 P6 Avg. St. Dev.

E1 Learning to operate CustomDIFF would be easy for me 6 4 7 6 6 6 5.83 0.98
E2 It would be easy for me to become skillful at using Cus-

tomDIFF
7 4 6 6 6 5 5.67 1.03

E3 My interaction with CustomDIFF would be clear and
understandable

6 4 6 6 6 5 5.5 0.84

E4 I would find CustomDIFF easy to use 6 4 6 6 6 5 5.5 0.87
E5 I would find CustomDIFF to be flexible to interact with 5 4 6 5 6 5 5.17 0.75
E6 I would find it easy to get CustomDIFF to do what I want

it to do
5 4 6 6 5 4 5 0.89

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 30 of 44

Ta
bl

e
5

 C
us

to
m

D
IF

F’
s p

er
ce

iv
ed

 u
se

fu
ln

es
s.

LI
K

ER
T

sc
al

e
ra

ng
es

 fr
om

 1
 (s

tro
ng

ly
 d

is
ag

re
e)

 to
 7

 (s
tro

ng
ly

 a
gr

ee
)

ID
Ite

m
:

P1
P2

P3
P4

P5
P6

A
vg

.
St

. D
ev

.

U
1

C
us

to
m

D
IF

F
w

as
 u

se
fu

l t
o

de
te

rm
in

e
w

hi
ch

 p
ar

en
t-f

ea
tu

re
s a

re
 n

ot
 c

us
to

m
iz

ed
 b

y
th

e
pr

od
uc

ts
7

5
6

6
6

6
6

0.
63

U
2

C
us

to
m

D
IF

F
w

as
 u

se
fu

l t
o

de
te

rm
in

e
w

hi
ch

 p
ar

en
t-f

ea
tu

re
s i

s p
ro

du
ct

Be
rli

n
cu

sto
m

iz
in

g
7

4
6

6
6

6
5.

83
0.

98
U

3
C

us
to

m
D

IF
F

w
as

 u
se

fu
l t

o
de

te
rm

in
e

ho
w

 p
ro

du
ct

Pa
ri

s i
s c

ha
ng

in
g

th
e

im
pl

em
en

ta
tio

n
of

 th
e

Se
ns

or
s

pa
re

nt
-fe

at
ur

e
6

5
6

6
7

5
5.

83
0.

75

U
4

C
us

to
m

D
IF

F
w

as
 u

se
fu

l t
o

de
te

rm
in

e
w

hi
ch

 p
ro

du
ct

s a
re

 c
us

to
m

iz
in

g
th

e
Ai

rP
re

ss
ur

e
ch

ild
-fe

at
ur

e
6

4
6

6
6

6
5.

67
0.

82
U

5
C

us
to

m
D

IF
F

w
as

 u
se

fu
l t

o
de

te
rm

in
e

ho
w

 is
 e

ac
h

pr
od

uc
t c

us
to

m
iz

in
g

th
e

co
de

 th
at

 re
al

iz
es

 th
e

Ai
rP

re
s-

su
re

 fe
at

ur
e

6
4

6
6

7
4

5.
5

1.
22

U
6

C
us

to
m

D
IF

F
w

as
 u

se
fu

l t
o

de
te

rm
in

e
ho

w
 th

e
im

pl
em

en
ta

tio
n

of
 p

ro
du

ct
Be

rli
n

ha
s e

vo
lv

ed
6

4
6

6
6

4
5.

33
1.

03

Empirical Software Engineering (2022) 27: 75

1 3

Page 31 of 44 75

understandability. To reduce its influence, we carefully designed a running example that
aimed at helping participants contextualize the different questions and ensuring a common
understanding.

External Validity tackles the representativeness of the study and the ability to general-
ize the conclusions beyond the scope of the study itself. Representativeness can be chal-
lenged by the participants or the evaluation tasks. As for the former, we resorted to Danfoss
engineers. To account for different perspectives, we aimed at involving practitioners with
experience in both DE and AE. As for the tasks, the WeatherStationSPL is a rather small
SPL compared to industrial SPLs. It is explicitly designed to help new users understand the
concepts of pure::variants and, thus, it is expected to be cleanly engineered (which is, quite
safe to say, not the case for industrial SPLs). Yet, for an incipient tool such as CustomDIFF
to be put to the test using industrial code is difficult. Moving to variability-intensive open
applications could have been an option. This would have brought more realistic tasks, yet
at the expense of reducing the realism of participants and environment. The latter are how-
ever pivotal in a decision-taking scenario such as customization analysis.

8 Formalization of Learning

In accordance with ADR, the situated learning from the project should be further devel-
oped into general solution concepts for a class of field problems (Sein et al. 2011). Sein
et al. suggest three levels for this conceptual move:

– generalization of the problem instance, i.e., to what extent is customization analysis a
problem for organizations other than Danfoss Drives;

– generalization of the solution instance, i.e., to what extent is CustomDIFF a solution to
customization analysis; and

– derivation of design principles, i.e., what sort of design knowledge can be distilled from
the CustomDIFF experience that might inform other tool builders.

The rest of this section tackles these questions.

8.1 Generalization of the Problem Instance

We tackle product customization at Danfoss Drives. This section elaborates on generalizing
this experience to product-based evolving SPLs. Product customization challenges the tra-
ditional vision whereby new requirements are transmitted to domain engineering, features
are built on the platform, and the product is then finally created. This conventional vision is
increasingly called into question. Indeed, Krueger et al. report that an increasing number of
companies and open-source projects add new variations or platform features using feature
forks through version control systems (e.g., Git) (Krüger et al. 2020). Here, the platform,
kept in the master branch, evolves through re-integrating these forks. If the master branch
holds the SPL core assets, and the forks account for transient product enhancements, then
we are talking about product-based evolving SPLs.

Provided this way of SPL evolution, the question remains whether customization anal-
ysis is also a problem in these organizations. It could be argued that SPLs in an earlier
stage of their life-cycle might be the ones subject to a larger customization endeavor while
more mature SPLs can obtain most of their products out of the core assets with minimal

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 32 of 44

customization. That said, Danfoss Drives can be considered a mature SPL, and yet product
customization is still very relevant. As usual in SPLs, the rationales might rest on scalabil-
ity. SPLs handle a large number of products. Hence, perfective maintenance needs to scale
up to the petitions of not one product’s stakeholders but a myriad of products. Timeliness
might require the products’ perfective maintenance to develop in parallel. If this is your
organization’s case, chances are you need to track how customization is conducted, i.e.,
customization analysis.

8.2 Generalization of the Solution Instance

This project develops CustomDIFF as an intervention for tackling customization analysis.
We resort to visual analytics, using Git repositories as the data mines. This is not new. Dis-
tinct authors tackle both mining code repositories (we claim no contribution in this area)
and software visualization for SPLs (our main contribution). The question arises about how
alluvial diagrams compare w.r.t. other visualizations proposed in an SPL setting. Lopez-
Herrejon et al. (2018) conduct a systematic survey where interventions are categorized
based on the SPL stage to which the visualization technique applies. We enlarge this study
for the stage maintenance and evolution along three dimensions (Novais et al. 2013): (1)
the point of view, i.e., who is the user group that will use the visualization, (2) the object of
study, i.e., what is being analyzed, and (3) the purpose and the focus, i.e., why is the analy-
sis being done. Table 6 shows the results. Specifically, CustomDIFF can be pigeonholed as
helping the Change Control Board (who) conduct customization analysis (what) for assess-
ing SPL scoping (why). We use the visualization means as a way to structure the rest of the
paragraphs.

Trees. Its intuitiveness and the large support of graphical libraries make trees the most
popular intervention. Trees naturally convey the notion of hierarchy as well as setting node
clusters in terms of family dependencies (e.g., ancestors, siblings, descendants, etc). These
affordabilities are put into play for different purposes. Kanda et al. aim at helping engi-
neers in migrating a set of products, created through clone&own, to an SPL (Kanda et al.
2013). For the sake of better identifying commonalities and variability, engineers require to
understand how products are derived from each one. This can be challenging if no tracing
records exist. In these instances, Kanda et al. introduce the Product Evolution Tree visu-
alization whereby derivation relationships among products are displayed in a way similar
to VCS branching (Kanda et al. 2013). If the aim is not migration but testing, De Oliveira
et al. introduce the Product Genealogy Tree with the aim of identifying products to be re-
tested when a bug is found in a product (de Oliveira et al. 2012). This tree captures three
traces: (1) which products were derived from which core assets, (2) which products are
created from already derived products, and (3) which products have propagated changes
to which products. When a bug is detected in a product, this visualization can help testers
identify which other related products also need to be tested.

Tree-Map. This approach arranges data in a hierarchical, tree-structured diagram
where the size of the rectangles is organized from the largest to the smallest. Main ben-
efits include showing the ratio of each part to the whole. Tenev et al. resort to tree-maps
for helping domain engineers identify the reuse potential of a number of similar software
variants created through clone&own (Tenev et al. 2017). They compute the similarities of
the source code of multiple software systems, and visualizes the commonalities and vari-
abilities by means of multiple visualization means, such as, bar diagrams, tree-maps and
phylogenetic diagrams. These diagrams provide domain engineers information about code

Empirical Software Engineering (2022) 27: 75

1 3

Page 33 of 44 75

Ta
bl

e
6

 R
el

at
ed

 w
or

k
on

 S
PL

 v
is

ua
liz

at
io

n,
 a

lo
ng

 fa
ce

ts
:w

ho
, w

ha
t,

w
hy

 a
nd

 v
is

ua
liz

at
io

n
m

ea
ns

Re
fe

re
nc

e
W

ho
W

ha
t

W
hy

H
ow

K
an

da
 e

t a
l.

(2
01

3)
D

om
ai

n
en

gi
ne

er
s

Pr
od

uc
t-t

o-
pr

od
uc

t r
el

at
io

ns
hi

ps
SP

L
m

ig
ra

tio
n

Pr
od

uc
t e

vo
lu

tio
n

tre
e

FR
O

M
 p

ro
du

ct
 c

od
e

de
 O

liv
ei

ra
 e

t a
l.

(2
01

2)
SP

L
te

ste
rs

C
o-

pr
od

uc
t t

es
tin

g
Pr

od
uc

t t
es

tin
g

Te
sti

ng
 tr

ee
 F

R
O

M
 p

ro
du

ct
 c

od
e

Te
ne

v
et

 a
l.

(2
01

7)
D

om
ai

n
en

gi
ne

er
s

C
od

e
si

m
ila

rit
y

Sp
ot

tin
g

re
us

e
op

po
rtu

ni
-

tie
s f

or
 S

PL
 a

do
pt

io
n

Tr
ee

m
ap

s F
R

O
M

 p
ro

du
ct

 c
od

e

W
nu

k
et

 a
l.

(2
00

9)
C

ha
ng

e
co

nt
ro

l b
oa

rd
Fe

at
ur

e
su

rv
iv

ab
ili

ty
SP

L
sc

op
in

g
Fe

at
ur

e
su

rv
iv

al
 tr

ee
 F

R
O

M
 re

qu
ire

m
en

t d
oc

um
en

ts
H

in
te

rr
ei

te
r e

t a
l.

(2
02

0)
C

ha
ng

e
co

nt
ro

l b
oa

rd
C

us
to

m
iz

at
io

n
di

ffi
ng

SP
L

sc
op

in
g

Fe
at

ur
e

ev
ol

ut
io

n
pl

ot
 F

R
O

M
 p

la
tfo

rm
 c

od
e

C
us

to
m

D
IF

F
C

ha
ng

e
co

nt
ro

l b
oa

rd
C

us
to

m
iz

at
io

n
di

ffi
ng

SP
L

sc
op

in
g

A
llu

vi
al

 d
ia

gr
am

s F
R

O
M

 p
ro

du
ct

 c
od

e

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 34 of 44

similarity across a group of cloned software systems at different abstraction levels, i.e.,
from a single code line through files, folders and subsystems up to the whole system, which
can then identify reuse potential and schedule an SPL migration plan.

Charts. Unlike trees, charts are more convenient when a longitudinal analysis is
required. Wnuk et al. introduce the Feature Survival Chart for the visualization of scop-
ing change dynamics: the X-axis stands for time while the Y-axis holds the features (Wnuk
et al. 2009). In this way, the complete life-cycle of a single feature can be followed by
looking at the same Y-axis position over time. This work does not tackle code but docu-
ments that formulate features for an upcoming platform project. A feature in this case is
a concept of grouping requirements that constitute a new functional enhancement to the
platform. At this stage, the features usually contain a description, their market values, and
effort estimates. Features are refined to requirements which are specified, reviewed, and
approved. The requirements are written in domain-specific natural language. The final
scope is decided and agreed with the development resources. Wnuk et al. tap into these
requirement documents to build up the Feature Survival Chart where the introduction/dele-
tion of features are monitored. In this way, the visualization shows the decision process of
including or excluding features that are candidates for the next SPL release. The aim is to
prevent two sorts of problems: (1) setting too large scope compared to available resources
and (2), setting a limited scope early, missing market opportunities. More recently, Hin-
terreiter et al. (2020) propose an IDE tool for developing and evolving a clone-and-own
SPL. Their approach rests on an ad-hoc variability-aware VCS. Their tool supports a code-
diff view that allows engineers to view how a given feature evolved for a given product
(i.e., the product perspective). Specifically, Hinterreiter et al. (2020) propose two metrics to
reflect how the code evolves: the relative change of the realizing artifact size (a sort of code
churn), and the feature’s scattering change. In contrast, CustomDIFF is based on Git and
pure::variants (i.e., annotation-based SPLs), reflecting a more industrial setting. In addi-
tion, visualization aims to account not only for the product perspective, but also the holistic
perspective and the feature perspective.

Both Hinterreiter et al. and Wnuk et al. track SPL evolution based on requirement docu-
ments and the codebase, respectively (Hinterreiter et al. 2020; Wnuk et al. 2009). By con-
trast, CustomDIFF does not tackle the visualization of the evolution of the SPL. Rather, we
focus on how to inform the follow-on SPL release. Alluvial diagrams depict the customiza-
tion endeavor in the interim between SPL releases.

8.3 Derivation of Design Principles

So far, we have looked at CustomDIFF as a whole. Now, we disentangle the distinct
mechanisms that on balance are responsible for the usefulness and perceived ease of use
as detailed in Section 7.2. Table 7 outlines the main design principles. Design principles
reflect knowledge of both IT and human behavior (Gregor et al. 2020). Accordingly, a
design principle should provide cues about the effect (i.e., Change Control Board activity
made possible), the cause (affordability brought about by CustomDIFF), and the context
where this cause can be expected to yield the effect for the target audience (i.e., the Change
Control Board and the application engineers).

Table 7 outlines the four principles we consider more relevant. Principles flow-ness
and grouping collect the benefits brought about by alluvials. On the other hand, principles
zoom-ness and filtering are common principles in Visual Analytics. At this point, we also
consider it significant to collect stakeholders’ opinions about each mechanism in isolation.

Empirical Software Engineering (2022) 27: 75

1 3

Page 35 of 44 75

Ta
bl

e
7

 D
es

ig
n

pr
in

ci
pl

es
 fr

om
 th

e
C

us
to

m
D

IF
F

ex
pe

rie
nc

e

Pr
ov

id
e

vi
su

al
 a

na
ly

tic
s t

oo
l w

ith
 ..

.
in

 o
rd

er
 fo

r t
he

 C
ha

ng
e

C
on

tro
l B

oa
rd

 to
 ..

.
C

us
to

m
D

IF
F

re
al

iz
at

io
n

Fl
ow

 d
ia

gr
am

s
Tr

ac
k

cu
sto

m
iz

at
io

n
eff

or
ts

 a
lo

ng
 S

PL
-r

el
ev

an
t c

on
ce

rn
s

A
llu

vi
al

 d
ia

gr
am

s
G

ro
up

in
g

fa
ci

lit
ie

s
O

bt
ai

n
ag

gr
eg

at
es

 a
lo

ng
 w

ith
 S

PL
-r

el
ev

an
t c

on
ce

rn
s

Pa
re

nt
-fe

at
ur

e
gr

ou
pi

ng
Ex

pa
ns

io
n/

co
nt

ra
ct

io
n

ut
ili

tie
s

H
an

dl
e

di
sti

nc
t d

at
a-

gr
an

ul
ar

ity
 le

ve
ls

Pa
ck

ag
e

ba
r

Fi
lte

rin
g

an
d

tra
ci

ng
 o

f fl
ow

s t
hr

ou
gh

ou
t t

he
 a

llu
vi

al
 d

ia
gr

am
N

ot
 fe

el
 lo

st
in

 th
e

ta
ng

le
 o

f fl
ow

 b
ra

nc
he

s
Fe

at
ur

e-
pr

od
uc

t fi
lte

rin
g

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 36 of 44

Ta
bl

e
8

 Q
ue

sti
on

na
ire

 o
n

C
us

to
m

D
IF

F’
s m

ec
ha

ni
sm

St
at

em
en

t a
gr

ee
m

en
t i

s a
rr

an
ge

d
al

on
g

w
ith

 a
 L

IK
ER

T
sc

al
e

fro
m

 1
 (“

St
ro

ng
ly

 d
is

ag
re

e”
) t

o
7

(“
St

ro
ng

ly
 a

gr
ee

”)
 fo

r t
he

 si
x

pa
rti

ci
pa

nt
s

M
ec

ha
ni

sm
:

Ite
m

:
P1

P2
P3

P4
P5

P6
A

vg
.

St
. D

ev
.

A
llu

vi
al

 d
ia

gr
am

s
I w

ou
ld

 fi
nd

 a
llu

vi
al

 d
ia

gr
am

s u
se

fu
l f

or
 g

ra
sp

in
g

th
e

cu
sto

m
iz

at
io

n
di

ffi
ng

6
5

6
6

6
6

5.
84

0.
41

Fe
at

ur
e-

pr
od

uc
t fi

lte
rin

g
I w

ou
ld

 fi
nd

 fe
at

ur
e-

ba
se

d
fil

te
rin

g
ut

ili
ty

 u
se

fu
l t

o
ea

sy
 fo

cu
s

7
4

6
6

6
6

5.
83

0.
98

Pa
re

nt
-fe

at
ur

e
gr

ou
pi

ng
I w

ou
ld

 fi
nd

 th
e

pa
re

nt
-fe

at
ur

e
gr

ou
pi

ng
 w

as
 u

se
fu

l t
o

ab
str

ac
t a

w
ay

 fr
om

 in
di

vi
du

al
 fe

at
ur

es
6

5
5

5
6

6
5.

5
0.

58
Pa

ck
ag

e
ba

r
I w

ou
ld

 fi
nd

 th
e

“P
ac

ka
ge

”
ba

r w
as

 u
se

fu
l t

o
fu

rth
er

 re
fin

e
th

e
flo

w
5

5
6

5
6

5
5.

33
0.

52
n.

a.
I w

ou
ld

 fi
nd

 th
e

V
P-

en
ric

he
d

co
nt

ex
t D

IF
F

us
ef

ul
 to

 e
as

y
lo

ca
te

 c
ha

ng
e

pl
ac

em
en

t i
nt

o
th

e
co

de
6

5
7

6
5

4
5.

5
1.

05

Empirical Software Engineering (2022) 27: 75

1 3

Page 37 of 44 75

Participants were the same throughout the research. We limited ourselves to one question
for each mechanism. Table 8 collects the results. Mechanisms are in general appreciated
with an average above 5 out of 7. Dispersion wise, the VP-enriched context is the mecha-
nism with the larger dispersion. Rationales might rest on this mechanism being of interest
only for application engineers while the Change Control Board might not need to delve
into the code.

9 Conclusions

This research started with a phenomenon perceived in practice, i.e., product customization
at Danfoss Drives. In this setting, we raised two questions: (1) which are the information
needs for customization analysis? and (2), might alluvial diagrams be useful for support-
ing customization analysis visualization? As for the former, we provided some estimates
on the cost of answering some questions, and developed a GQM model. We proposed the
adjustment of the popular metric of code churn for SPL constructs: feature and product.
However, the potentially high number of feature churns and product churns require appro-
priate visualization means. This moved us to the second question. Here, we made the case
of alluvial diagrams. Proof-of-concept was provided through CustomDIFF, a publicly-
available Web application using pure::variants as the variability manager, and Git as the
code repository. Proof-of-value was conducted for ease of use and usefulness using Dan-
foss practitioners as the subjects. Results seem to suggest that alluvial diagrams facilitate
a natural way to describe the flow dispersion at different levels of detail. On one hand, the
Change Control Board gets the big picture along with products and features. On the other
hand, developers can expand the flow to packages and files, down to the raw code. In this
way, CustomDIFF advances traditional DIFF utilities for SPL specifics. We ended by gen-
eralizing this experience to SPLs other than Danfoss Drives. In short, we contribute to the
existing literature by identifying information needs and advocating for alluvial diagrams as
a feasible and effective way to reflect product customization in SPLs.

Additional empirical studies are needed to assess the value of customization analysis
for actionable interventions. Our first evaluations indicate that customization diffing is a
factor, but it is certainly not the only one that intervenes during decision making. In this
respect, we plan to supplement Git data with data about products, customers, and devel-
opers, and to see what other kinds of analysis these additional sources would permit. In
the same vein, metrics other than code churn might be of use. Besides tangling and scat-
tering, more traditional metrics such as cyclomatic complexity and Halstead’s, might also
be useful. Another interesting follow-on would be integrating CustomDIFF into a DevOps
framework. Here, customization endeavors can be continuously tracked, so that actions can
be attached to some customization thresholds being surpassed. Other scenarios include the
use of CustomDIFF by application engineers to gaze at what other colleagues are custom-
izing. For instance, a feature enhancement introduced in a given product might be promptly
and directly incorporated into other products, without waiting for this enhancement to be
promoted as a core asset. This opens up new scenarios for SPL evolution. Here, longitu-
dinal evolution (between core assets and products) might coexist with traversal evolution
where products sharing the same features might decide to incorporate enhancements from
other products, and later on, be jointly consolidated. The aim is to find ways to alleviate the

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 38 of 44

tension between the quality and reuse effectiveness required by domain engineering, and
the time-to-market and customer pressure faced by application engineering.

Appendix: Mining at CustomDIFF

CustomDIFF supports the grow-and-prune model (Faust and Verhoef 2003). Here, product
branches are derived off the master branch (see Fig. 1). This appendix outlines how Cus-
tomDIFF derives customization facts from so-organized Git repositories. More details can
be found at the CustomDIFF repository itself: https://github.com/onekin/customdiff

The process starts with the main function Mine_Customizations:6
“List <Customization_Facts> Mine_Customizations(GitRepository gitRepo, String

baseline_tag)”
This function takes a GitRepository as input, and returns the set of customization_facts

that have been performed to a given baseline by all the products derived from it.7 In addi-
tion, baseline_tag stands for the name of the git tag that identifies the baseline for which the
customization facts will be computed. A running example, take the content of Fig. 1 as the
GitRepo; “Baseline-v1.0” as the value for baseline_tag, “PR-” as the value for pr_pattern,

6 This algorithm was implemented in Java, using the JGit library http:// www. eclip se. org/ jgit/
7 For automated processing, the following parameters need to be configured beforehand: (1) pr_pattern, i.e
the pattern that product release tags should match (e.g., “PR-*”); (2) baseline_pattern, i.e., the pattern that
baseline release tags should match (e.g., “Baseline-*”), (3) vp_init_clause, i.e. the pattern that variation
point opening clauses should match (e.g., “PV:IFCOND*”), and (4) vp_end_clause, i.e. the pattern that
product release tag should match (e.g., “ENDCOND*”).

http://www.eclipse.org/jgit/

Empirical Software Engineering (2022) 27: 75

1 3

Page 39 of 44 75

“Baseline-” as the value for baseline_pattern, and “PV:INFOND” and “PV:ENDCOND”
as the values for vp_init_clause and vp_end_clause, respectively.

Algorithm 1 provides the details:

1. Identify which is the baselineCommit to analyze (line 4). The function getCommitByTag-
Name returns the commit to which the baseline_tag points to. For our running example,
baselineCommit holds the commit c5.

2. Identify the product releases that were derived from the baselineCommit (lines 6–11).
This implies to:

– For all the tags in gitRepo, identify those that are product releases (lines 6–9). First,
collect all the existing tags in the repository (line 6). For our running example, the
variable all_tags holds now: London-v1.0, NewYork-v1.0, Paris-v1.0, Berlin-v4.0,
Baseline-v0.5 and Baseline-v1.0. Second, filter out those tags that are not product
releases. i.e., those that do not match the pr_pattern (line 7–9). For our running
example tags Baseline-v0.5, and Baseline-v1.0 are filtered out.

– Filter out the product releases that were not actually derived from the baselineCom-
mit (lines 10-11). This is achieved in two steps. First, we identify the baseline com-
mit from which each product release was derived. This is calculated by getBaseline-
ForRelease (line 10). This method takes a product release tag (e.g., Berlin-v4.0),
traverses the git history (e.g backwards from c17) until it finds a commit tagged
with a label that matches the pattern baseline_pattern (e.g., Baseline-v1.0), and
finally, returns the commit it points to (e.g. c5). Second, we filter out those product
releases whose baseline is not equal to baselineCommit (line 11). For our running
example, the product release London-v1.0 would be filtered out, as the baseline it
was derived from is c3 instead of c5.

3. Finally, compute the customization facts for each product release that was indeed derived
from baselineCommit (lines 12–16). This implies for each product release to:

– Perform a DIFF operation between the baselineCommit and the commit to which
the product release tag is pointing to (line 12). For instance, the DIFF operation for
the product release tag Berlin-v4.0 would be as follows: diff(c5, c17). The result of
the operation, i.e., diffs, is the list of diff-outputs (a.k.a patches), one per file that the
product has changed from the baseline. For instance, if the product release Berlin-
v4.0 changes five files from the baseline, then diffs would contain five diff-output
files, each per file changed (see Listing 1 as an example of a diff-output).

– For each diff-output, extract the customization facts by calling the method extract-
CustomizationFacts (line 14). This method, parses the diff-output, identifies the set
of consecutive changes performed to the same variation point, and returns the cor-
responding customization facts.

– Finally, add the extracted customization facts to the global container customizations
(line 15). Return this container when all product releases are mined (line 20).

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 40 of 44

Acknowledgements Thanks are due to the developers of Danfoss Drives. This project has benefited from a
grantfrom pure::systems’s GoSPLC initiative.

Author Contributions Conceptualization: Oscar Díaz; Methodology: Oscar Díaz; Formal analysis and
investigation: Oscar Díaz, Leticia Montalvillo, Thomas Fogdal; Development: Leticia Montalvillo, Raul
Medeiros; Evaluation: Leticia Montalvillo, Thomas Fogdal and Maider Azanza; Writing - original draft
preparation: Oscar Díaz, Leticia Montalvillo; Writing - review and editing: Raul Medeiros and Maider
Azanza; Funding acquisition: Oscar Díaz.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This
work is supported by the Spanish Ministry of Science, Innovation and Universities grant number RTI2018-
099818-B-I00 and MCIU-AEI TIN2017-90644-REDT (TASOVA). ONEKIN enjoys support from the pro-
gram ‘Grupos de Investigación del Sistema Univesitario Vasco 2019–2021’ under contract IT1235-19. Raul
Medeiros enjoys a doctoral grant from the Spanish Ministry of Science and Innovation.

Data, Materials and Code Availability An interactive online version of CustomDIFF: http:// custo mdiff.
onekin. org/; a video describing CustomDIFF (6’): https:// vimeo. com/ 57793 6099 and a GitHub project for
the CustomDIFF implementation: https:// github. com/ onekin/ custo mdiff. https:// github. com/ onekin/ custo
mdiff.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not

http://customdiff.onekin.org/
http://customdiff.onekin.org/
https://vimeo.com/577936099
https://github.com/onekin/customdiff
https://github.com/onekin/customdiff
https://github.com/onekin/customdiff

Empirical Software Engineering (2022) 27: 75

1 3

Page 41 of 44 75

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Agarwal R, Prasad J (1998) A conceptual and operational definition of personal innovativeness in the
domain of information technology. Information Systems Research 9(2):204–215. https:// doi. org/ 10.
1287/ isre.9. 2. 204

Ajila S, Dumitrescu RT (2007) Experimental use of code delta, code churn, and rate of change to under-
stand software product line evolution. Journal of Systems and Software 80(1):74–91. https:// doi. org/
10. 1016/j. jss. 2006. 05. 034

Bartholdt J, Becker D (2011) Re-engineering of a hierarchical product line. In: de Almeida ES, Kishi T,
Schwanninger C, John I, Schmid K (eds) Software product lines - 15th international conference, SPLC
2011, Munich, Germany, August 22–26, 2011. IEEE Computer Society, pp 232–240. https:// doi. org/
10. 1109/ SPLC. 2011. 16

Basili VR, Caldiera G, Rombach HD (1994) The goal question metric approach. Encyclopedia of Software
Engineering 2:528–532, http://www.csri.utoronto.ca/~sme/CSC444F/handouts/GQM-paper.pdf

Carbon R, Knodel J, Muthig D, Meier G (2008) Providing feedback from application to family engineering
- the product line planning game at the testo AG. In: 12th International conference on software product
lines, SPLC 2008, Limerick, Ireland, September 8–12, 2008, Proceedings. IEEE Computer Society, pp
180–189. https:// doi. org/ 10. 1109/ SPLC. 2008. 21

Clements P, Northrop LM (2002) Software product lines - practices and patterns. SEI series in software
engineering, Addison-Wesley

Cook KA, Thomas JJ (2005) Illuminating the path: The research and development agenda for visual analyt-
ics. Tech. rep., Pacific Northwest National Lab.(PNNL), Richland, WA (United States)

Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technol-
ogy. MIS Quarterly 13(3):319–340. https:// doi. org/ 10. 2307/ 249008

de Oliveira THB, Becker M, Nakagawa EY (2012) Supporting the analysis of bug prevalence in software
product lines with product genealogy. In: 16th International software product line conference, SPLC
’12, Salvador, Brazil - September 2–7, 2012, vol 1. ACM, pp 181–185. https:// doi. org/ 10. 1145/ 23625
36. 23625 61

Deelstra S, Sinnema M, Bosch J (2005) Product derivation in software product families: a case study. Jour-
nal of Systems and Software 74(2):173–194. https:// doi. org/ 10. 1016/j. jss. 2003. 11. 012

Faragó C, Hegedüs P, Ferenc R (2015) Cumulative code churn: impact on maintainability. In: Godfrey
MW, Lo D, Khomh F (eds) 15th IEEE international working conference on source code analysis and
manipulation, SCAM 2015, Bremen, Germany, September 27–28, 2015. IEEE Computer Society, pp
141–150. https:// doi. org/ 10. 1109/ SCAM. 2015. 73354 10

Faust D, Verhoef C (2003) Software product line migration and deployment. Software: Practice and Experi-
ence 33(10):933–955. https:// doi. org/ 10. 1002/ spe. 530

Fogdal T, Scherrebeck H, Kuusela J, Becker M, Zhang B (2016) Ten years of product line engineering at
danfoss: lessons learned and way ahead. In: Mei H (ed) Proceedings of the 20th international systems
and software product line conference, SPLC 2016, Beijing, China, September 16–23, 2016. ACM, pp
252–261. https:// doi. org/ 10. 1145/ 29344 66. 29344 91

Gregor S, Kruse LC, Seidel S (2020) Research perspectives: the anatomy of a design principle. Journal of
the Association for Information Systems 21(6):2. https:// aisel. aisnet. org/ jais/ vol21/ iss6/2

Hall GA, Munson JC (2000) Software evolution: code delta and code churn. Journal of Systems and Soft-
ware 54(2):111–118. https:// doi. org/ 10. 1016/ S0164- 1212(00) 00031-5

Hinterreiter D, Grünbacher P, Prähofer H (2020) Visualizing feature-level evolution in product lines: a
research preview. In: Madhavji NH, Pasquale L, Ferrari A, Gnesi S (eds) Requirements engineering:
foundation for software quality - 26th international working conference, REFSQ 2020, Pisa, Italy,
March 24–27, 2020, Proceedings [REFSQ 2020 was postponed], Springer, Lecture Notes in Computer
Science, vol 12045, pp 300–306. https:// doi. org/ 10. 1007/ 978-3- 030- 44429-7_ 21

Hornbæk K, Hertzum M (2017) Technology acceptance and user experience: a review of the experiential
component in HCI. ACM Transactions on Computer-Human Interaction (TOCHI) 24(5):33:1–33:30.
https:// doi. org/ 10. 1145/ 31273 58

Iida T, Matsubara M, Yoshimura K, Kojima H, Nishino K (2016) PLE for automotive braking system
with management of impacts from equipment interactions. In: Mei H (ed) Proceedings of the 20th

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1287/isre.9.2.204
https://doi.org/10.1287/isre.9.2.204
https://doi.org/10.1016/j.jss.2006.05.034
https://doi.org/10.1016/j.jss.2006.05.034
https://doi.org/10.1109/SPLC.2011.16
https://doi.org/10.1109/SPLC.2011.16
https://doi.org/10.1109/SPLC.2008.21
https://doi.org/10.2307/249008
https://doi.org/10.1145/2362536.2362561
https://doi.org/10.1145/2362536.2362561
https://doi.org/10.1016/j.jss.2003.11.012
https://doi.org/10.1109/SCAM.2015.7335410
https://doi.org/10.1002/spe.530
https://doi.org/10.1145/2934466.2934491
https://aisel.aisnet.org/jais/vol21/iss6/2
https://doi.org/10.1016/S0164-1212(00)00031-5
https://doi.org/10.1007/978-3-030-44429-7_21
https://doi.org/10.1145/3127358

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 42 of 44

international systems and software product line conference, SPLC 2016, Beijing, China, September
16–23, 2016. ACM, pp 232–241. https:// doi. org/ 10. 1145/ 29344 66. 29344 90

Jensen P (2007) Experiences with product line development of multi-discipline analysis software at over-
watch textron systems. In: 11th international conference on software product lines, SPLC 2007, Kyoto,
Japan, September 10–14, 2007, Proceedings. IEEE Computer Society, pp 35–43. https:// doi. org/ 10.
1109/ SPLINE. 2007. 25

Kanda T, Ishio T, Inoue K (2013) Extraction of product evolution tree from source code of product variants.
In: Kishi T, Jarzabek S, Gnesi S (eds) 17th International software product line conference, SPLC 2013,
Tokyo, Japan - August 26–30, 2013. ACM, pp 141–150. https:// doi. org/ 10. 1145/ 24916 27. 24916 37

Khoshgoftaar TM, Szabo RM (1994) Improving code churn predictions during the system test and mainte-
nance phases. In: Müller HA, Georges M (eds) Proceedings of the international conference on software
maintenance, ICSM 1994, Victoria, BC, Canada, September 1994. IEEE Computer Society, pp 58–67.
https:// doi. org/ 10. 1109/ ICSM. 1994. 336789

Kircher M, Hofman P (2012) Combining systematic reuse with agile development: experience report. In: de
Almeida ES, Schwanninger C, Benavides D (eds) 16th International software product line conference,
SPLC ’12, Salvador, Brazil - September 2–7, 2012, vol 1. ACM, pp 215–219. https:// doi. org/ 10. 1145/
23625 36. 23625 66

Kodama R, Shimabukuro J, Takagi Y, Koizumi S, Tano S (2014) Experiences with commonality control
procedures to develop clinical instrument system. In: Gnesi S, Fantechi A, Heymans P, Rubin J, Czar-
necki K, Dhungana D (eds) 18th International software product line conference, SPLC ’14, Florence,
Italy, September 15–19, 2014. ACM, pp 254–263. https:// doi. org/ 10. 1145/ 26485 11. 26485 40

Krueger CW (2006) New methods in software product line practice. Communications of the ACM
49(12):37–40. https:// doi. org/ 10. 1145/ 11832 36. 11832 62

Krüger J, Berger T (2020) An empirical analysis of the costs of clone- and platform-oriented software reuse.
In: Devanbu P, Cohen MB, Zimmermann T (eds) ESEC/FSE ’20: 28th ACM joint European soft-
ware engineering conference and symposium on the foundations of software engineering, virtual event,
USA, November 8–13, 2020. ACM, pp 432–444. https:// doi. org/ 10. 1145/ 33680 89. 34096 84

Krüger J, Mahmood W, Berger T (2020) Promote-pl: a round-trip engineering process model for adopting
and evolving product lines. In: Lopez-Herrejon RE (ed) SPLC ’20: 24th ACM international systems
and software product line conference, Montreal, Quebec, Canada, October 19–23, 2020, vol A. ACM,
pp 2:1–2:12. https:// doi. org/ 10. 1145/ 33820 25. 34149 70

Lopez-Herrejon RE, Illescas S, Egyed A (2018) A systematic mapping study of information visualization
for software product line engineering. Journal of Software: Evolution and Process 30(2). https:// doi.
org/ 10. 1002/ smr. 1912

Lupton R, Allwood J (2017) Hybrid sankey diagrams: Visual analysis of multidimensional data for under-
standing resource use. Resources, Conservation and Recycling 124:141–151. https:// doi. org/ 10. 1016/j.
resco nrec. 2017. 05. 002

Mathieson K, Peacock E, Chin WW (2001) Extending the technology acceptance model: the influence of
perceived user resources. Data Base 32(3):86–112. https:// doi. org/ 10. 1145/ 506724. 506730

McKenna S, Mazur D, Agutter J, Meyer MD (2014) Design activity framework for visualization design.
IEEE Transactions on Visualization and Computer Graphics 20(12):2191–2200. https:// doi. org/ 10.
1109/ TVCG. 2014. 23463 31

Montalvillo L, Díaz O, Azanza M (2017) Visualizing product customization efforts for spotting SPL reuse
opportunities. In: Proceedings of the 21st international systems and software product line conference,
SPLC 2017, Volume B, Sevilla, Spain, September 25–29, 2017, pp 73–80. https:// doi. org/ 10. 1145/
31097 29. 31097 37

Nagamine M, Nakajima T, Kuno N (2016) A case study of applying software product line engineering to
the air conditioner domain. In: Mei H (ed) Proceedings of the 20th international systems and software
product line conference, SPLC 2016, Beijing, China, September 16–23, 2016. ACM, pp 220–226.
https:// doi. org/ 10. 1145/ 29344 66. 29344 89

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In: Roman
G, Griswold WG, Nuseibeh B (eds) 27th International conference on software engineering (ICSE
2005), 15–21 May 2005, St. Louis, Missouri, USA. ACM, pp 284–292. https:// doi. org/ 10. 1145/ 10624
55. 10625 14

Novais RL, Torres A, Mendes TS, Mendonça MG, Zazworka N (2013) Software evolution visualization: a
systematic mapping study. Information and Software Technology 55(11):1860–1883. https:// doi. org/
10. 1016/j. infsof. 2013. 05. 008

Ohlsson M, von Mayrhauser A, McGuire B, Wohlin C (1999) Code decay analysis of legacy software
through successive releases. In: 1999 IEEE aerospace conference. Proceedings (Cat. No.99TH8403),
vol 5, pp 69–81. https:// doi. org/ 10. 1109/ AERO. 1999. 790190

https://doi.org/10.1145/2934466.2934490
https://doi.org/10.1109/SPLINE.2007.25
https://doi.org/10.1109/SPLINE.2007.25
https://doi.org/10.1145/2491627.2491637
https://doi.org/10.1109/ICSM.1994.336789
https://doi.org/10.1145/2362536.2362566
https://doi.org/10.1145/2362536.2362566
https://doi.org/10.1145/2648511.2648540
https://doi.org/10.1145/1183236.1183262
https://doi.org/10.1145/3368089.3409684
https://doi.org/10.1145/3382025.3414970
https://doi.org/10.1002/smr.1912
https://doi.org/10.1002/smr.1912
https://doi.org/10.1016/j.resconrec.2017.05.002
https://doi.org/10.1016/j.resconrec.2017.05.002
https://doi.org/10.1145/506724.506730
https://doi.org/10.1109/TVCG.2014.2346331
https://doi.org/10.1109/TVCG.2014.2346331
https://doi.org/10.1145/3109729.3109737
https://doi.org/10.1145/3109729.3109737
https://doi.org/10.1145/2934466.2934489
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1016/j.infsof.2013.05.008
https://doi.org/10.1016/j.infsof.2013.05.008
https://doi.org/10.1109/AERO.1999.790190

Empirical Software Engineering (2022) 27: 75

1 3

Page 43 of 44 75

Pohl K, Böckle G, van der Linden F (2005) Software product line engineering - foundations, principles, and
techniques. Springer. https:// doi. org/ 10. 1007/3- 540- 28901-1

Reddivari S, Rad S, Bhowmik T, Cain N, Niu N (2014) Visual requirements analytics: a framework and
case study. Requirements Engineering 19(3):257–279. https:// doi. org/ 10. 1007/ s00766- 013- 0194-3

Reddivari S, Rad S, Bhowmik T, Cain N, Niu N (2014) Visual requirements analytics: a framework and
case study. Requirements Engineering 19(3):257–279. https:// doi. org/ 10. 1007/ s00766- 013- 0194-3

Schackmann H, Lichter H (2006) A cost-based approach to software product line management. In: Inter-
national workshop on software product management, IWSPM ’06, Minneapolis/St.Paul, Minnesota,
USA, September 12, 2006. IEEE Computer Society, pp 13–18. https:// doi. org/ 10. 1109/ IWSPM. 2006.1

Schmidt M (2008) The sankey diagram in energy and material flow management. Journal of Industrial Ecol-
ogy 12(2):173–185. https:// doi. org/ 10. 1111/j. 1530- 9290. 2008. 00015.x

Schulze S, Schulze M, Ryssel U, Seidl C (2016) Aligning coevolving artifacts between software product
lines and products. In: Proceedings of the tenth international workshop on variability modelling of
software-intensive systems, Salvador, Brazil, January 27–29, 2016, pp 9–16. https:// doi. org/ 10. 1145/
28666 14. 28666 16

Sein MK, Henfridsson O, Purao S, Rossi M, Lindgren R (2011) Action design research. MIS Quarterly
35(1):37–56. http:// misq. org/ action- design- resea rch. html

Sjøberg DIK, Anda B, Arisholm E, Dybå T, Jørgensen M, Karahasanovic A, Koren EF, Vokác M (2002)
Conducting realistic experiments in software engineering. In: 2002 International symposium on empir-
ical software engineering (ISESE 2002), 3-4 October 2002, Nara, Japan. IEEE Computer Society, pp
17–26. https:// doi. org/ 10. 1109/ ISESE. 2002. 11669 21

Subramanyam V, Paramshivan D, Kumar A, Mondal MAH (2015) Using sankey diagrams to map energy
flow from primary fuel to end use. Energy Conversion and Management 91:342–352. https:// doi. org/
10. 1016/j. encon man. 2014. 12. 024

Takebe Y, Fukaya N, Chikahisa M, Hanawa T, Shirai O (2009) Experiences with software product line engi-
neering in product development oriented organization. In: Muthig D, McGregor JD (eds) 13th Inter-
national conference on software product lines, SPLC 2009, San Francisco, California, USA, August
24–28, 2009, Proceedings, ACM, ACM International Conference Proceeding Series, vol 446, pp 275–
283. https:// dl. acm. org/ citat ion. cfm? id= 17532 73

Tenev VL, Duszynski S, Becker M (2017) Variant analysis: Set-based similarity visualization for cloned
software systems. In: Proceedings of the 21st international systems and software product line confer-
ence, SPLC 2017, Volume B, Sevilla, Spain, September 25–29, 2017. ACM, pp 22–27. https:// doi. org/
10. 1145/ 31097 29. 31097 53

Ursachi G, Horodnic IA, Zait A (2015) How reliable are measurement scales? External factors with indirect
influence on reliability estimators. Procedia Economics and Finance 20:679–686. https:// doi. org/ 10.
1016/ S2212- 5671(15) 00123-9

van van Rossum G (2018) Unified diff format. http:// www. artima. com/ weblo gs/ viewp ost. jsp? thread=
164293. Accessed 15 Jan 2018

Wnuk K, Regnell B, Karlsson L (2009) What happened to our features? Visualization and understanding
of scope change dynamics in a large-scale industrial setting. In: RE 2009, 17th IEEE international
requirements engineering conference, Atlanta, Georgia, USA, August 31–September 4, 2009. IEEE
Computer Society, pp 89–98. https:// doi. org/ 10. 1109/ RE. 2009. 32

Zhang B, Becker M, Patzke T, Sierszecki K, Savolainen JE (2013) Variability evolution and erosion in
industrial product lines: a case study. In: Kishi T, Jarzabek S, Gnesi S (eds) 17th International software
product line conference, SPLC 2013, Tokyo, Japan - August 26–30, 2013. ACM, pp 168–177. https://
doi. org/ 10. 1145/ 24916 27. 24916 45

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/s00766-013-0194-3
https://doi.org/10.1007/s00766-013-0194-3
https://doi.org/10.1109/IWSPM.2006.1
https://doi.org/10.1111/j.1530-9290.2008.00015.x
https://doi.org/10.1145/2866614.2866616
https://doi.org/10.1145/2866614.2866616
http://misq.org/action-design-research.html
https://doi.org/10.1109/ISESE.2002.1166921
https://doi.org/10.1016/j.enconman.2014.12.024
https://doi.org/10.1016/j.enconman.2014.12.024
https://dl.acm.org/citation.cfm?id=1753273
https://doi.org/10.1145/3109729.3109753
https://doi.org/10.1145/3109729.3109753
https://doi.org/10.1016/S2212-5671(15)00123-9
https://doi.org/10.1016/S2212-5671(15)00123-9
http://www.artima.com/weblogs/viewpost.jsp?thread=164293
http://www.artima.com/weblogs/viewpost.jsp?thread=164293
https://doi.org/10.1109/RE.2009.32
https://doi.org/10.1145/2491627.2491645
https://doi.org/10.1145/2491627.2491645

 Empirical Software Engineering (2022) 27: 75

1 3

75 Page 44 of 44

Authors and Affiliations

Oscar Díaz1 · Leticia Montalvillo1 · Raul Medeiros1 · Maider Azanza1 ·
Thomas Fogdal2

 Oscar Díaz
 oscar.diaz@ehu.eus

 Leticia Montalvillo
 lmontalvillo@ikerlan.es

 Raul Medeiros
 raul.medeiros@ehu.eus

 Thomas Fogdal
 tfogdal@danfoss.com

1 University of the Basque Country (UPV/EHU), San Sebastián, Spain
2 Danfoss, Gråsten, Denmark

http://orcid.org/0000-0002-4537-1572

	Visualizing the customization endeavor in product-based-evolving software product lines: a case of action design research
	Abstract
	1 Introduction
	2 The Phenomenon: Product Customization
	3 A Brief on Action Design Research
	4 Problem Formulation
	4.1 Practice-Inspired Research
	4.2 Theory-Ingrained Artifact

	5 Building, Intervention, and Evaluation: Cycle 1
	5.1 Building & Intervention
	5.2 Evaluation

	6 Building, Intervention, and Evaluation: Cycle 2
	6.1 Building & Intervention
	6.1.1 The Model
	6.1.2 The Data
	6.1.3 The Visualization

	6.2 Evaluation

	7 Building, Intervention, and Evaluation: Cycle 3
	7.1 Building & Intervention
	7.1.1 Extending The Visualization
	7.1.2 The Workflows

	7.2 Evaluation
	7.2.1 Participants
	7.2.2 Measurement Tool
	7.2.3 Procedure
	7.2.4 Results
	7.2.5 Threats to Validity

	8 Formalization of Learning
	8.1 Generalization of the Problem Instance
	8.2 Generalization of the Solution Instance
	8.3 Derivation of Design Principles

	9 Conclusions
	Acknowledgements
	References

