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Abstract
We propose a superconducting circuit architecture suitable for digital-analog
quantum computing (DAQC) based on an enhanced NISQ family of nearest-neighbor
interactions. DAQC makes a smart use of digital steps (single qubit rotations) and
analog blocks (parametrized multiqubit operations) to outperform digital quantum
computing algorithms. Our design comprises a chain of superconducting charge
qubits coupled by superconducting quantum interference devices (SQUIDs). Using
magnetic flux control, we can activate/deactivate exchange interactions, double
excitation/de-excitations, and others. As a paradigmatic example, we present an
efficient simulation of an � × h fermion lattice (with 2 < � ≤ h), using only
2(2� + 1)2 + 24 analog blocks. The proposed architecture design is feasible in current
experimental setups for quantum computing with superconducting circuits, opening
the door to useful quantum advantage with fewer resources.

1 Introduction
It is known that the calculation of the exact dynamics of a quantum many-body system
is in general a challenging task. When the system is complex enough, analytical and nu-
merical solutions are not possible. However, quantum simulation (QS) allows us to over-
come this difficulty by using controllable and manipulable quantum systems, known as
quantum simulators, to study another non-controllable one [1, 2]. QS can be classified
into three different groups: analog quantum simulations (AQS), digital quantum simula-
tions (DQS), and digital-analog quantum simulations (DAQS). Formally, DQS and Digital-
Quantum Computing (DQC) are equivalent, and we will claim the same for DAQS and
Digital-Analog Quantum Computing (DAQC).

In AQS, we may reproduce a given target Hamiltonian for some parameter regimes of
the simulated model and of the quantum simulator, which is not universal [3, 4]. In DQS,
we can perform a sequence of quantum gates in the quantum simulator, which is sim-
ilar to what happens in DQC. In this case, we can approximate any unitary evolution,
specifically, the unitary evolution of the target Hamiltonian model or the given quantum
algorithm [5]. Even if DQC is universal, it is less accurate than AQS and Analog Quantum
Computing, requiring quantum error correction to scale up and being impractical for cur-
rent platforms. On the other hand, the recently proposed DAQS aims at getting the best

© The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1140/epjqt/s40507-022-00129-y
https://crossmark.crossref.org/dialog/?doi=10.1140/epjqt/s40507-022-00129-y&domain=pdf
https://orcid.org/0000-0002-7174-7879
https://orcid.org/0000-0001-8899-3673
mailto:enr.solano@gmail.com
mailto:pancho.albarran@gmail.com


Yu et al. EPJ Quantum Technology             (2022) 9:9 Page 2 of 35

of analog and digital paradigms, with more versatility in the target models or algorithms,
higher accuracy, efficient administration of coherence time, and more suitable for current
noise intermediate scale quantum (NISQ) architectures [6]. In DAQS, we use a continu-
ous set of complex many-body interactions as a resource (analog blocks), offered naturally
by the architecture possibilities of the quantum platform used as quantum computer. We
complement it with accessible continuous sets of single-qubit operations (digital steps),
providing versatility of target Hamiltonian models or algorithms [7–10].

Several physical platforms have been used as quantum simulators, such as optical lat-
tices [11], trapped ions [12] and superconducting circuits [13–15]. The latter has particu-
lar features allowing for current scalability and design flexibility, and produced the recent
claim of quantum supremacy in quantum computing [16, 17]. At the same time, diverse
target models have been proposed and implemented, principally for DQS and AQS, such
as quantum chemistry systems [18–21], high-energy physics [22–25], and condensed mat-
ter physics [26–28]. In the long run to reach fault-tolerant quantum computers in the
future, proposals for DAQS appear promising for this and next generation of co-design
quantum computers [29–32]. To achieve that, it would be desirable to widely enhance
the DAQC algorithmic mappings as well as the variety of accessible quantum computer
geometries and topologies.

In this work, we propose a superconducting circuit design for DAQC. It is composed
of a chain of charge qubits coupled through grounded superconducting quantum inter-
ference devices (SQUIDs), where the nearest-neighbor qubits are off resonance (different
energy gap), similar ideas have been proposed using variable electrostatic fields [33, 34]. In
this proposal, the SQUIDs modify the resonant condition among nearest-neighbor qubits,
which allows us to produce different and independent interactions like an exchange or
double excitation/de-excitation term. Also, as the SQUIDs are physically distant, we could
manipulate them individually, activating/deactivating several interactions for obtaining
parametrized multiqubit gates, also proving a large family of analog multibody Hamilto-
nians, being suitable for efficient implementations of DAQC protocols. Finally, we test our
architecture performing the simulation of the Fermi-Hubbard model, where we need only
2(2� + 1)2 + 24 analog blocks for the simulation of a � × h (� ≤ h) Fermi-Hubbard lattice.

2 The model
2.1 Two-qubit model
First, let us consider the two-qubit system showed in Fig. 1. It consists of two charge qubits
coupled through a grounded symmetric SQUID. The Lagrangian of the circuit is given by

L =
2∑

j=1

[Cgj

2
(
�′

j – Vgj

)2 +
CJj

2
�′2

j + EJj cos (ϕj)
]

+
Cs

2
�s

′2 + Eeff
Js cos (ϕs) +

Cc

2
(
�′

1 – �′
s
)2 +

Cc

2
(
�′

s – �′
2
)2, (1)

where f ′ = (d/dt)f (t), represent the time derivate of a function f , Eeff
Js = 2EJs cos (ϕext) is

the effective Josephson energy of the SQUID, and ϕj = 2π�j/�0 is the superconducting
phase, with the superconducting flux quantum �0 = h/2e, and 2e is the electrical charge
of a Cooper pair. Moreover �1, �2, and �s are node fluxes defined in Fig. 1. The effective
inductance of the SQUID LJs (ϕext) = (�0/2π )2/Eeff

Js can be tuned by the external magnetic
flux ϕext(t), providing a tunable boundary condition [35, 36].
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Figure 1 Circuit diagram of two charged qubits
(green) coupled through a grounded SQUID (blue).
EJ1(2) , CJ1(2) , Cg1(2) , and Vg1(2) are the Josephson
energy, Josephson capacitance, gate capacitance,
and gate voltage of the qubit 1(2) respectively. EJs
and Cs are the Josephson energy and effective
capacitance of the SQUID. Moreover, Cc is the
coupling capacitance, and �1, �2, and �s are node
fluxes that define the degrees of freedom of the
circuit

By applying the Legendre transformation, we obtain the Hamiltonian (see Appendix A)

H =
2∑

j=1

Hj
qubit + HSQUID + Hcoupling, (2)

with

Hj
qubit =

1
2C̃Jj

(Qj – 2eñgj )
2 – EJj cosϕj,

HSQUID =
1

2C̃Js

(Qs – 2eñgs )
2 – Eeff

Js cos (ϕs),

Hcoupling = g12Q1Q2 + g1sQ1Qs + g2sQ2Qs, (3)

where Qj = ∂L/∂�′
j is the charge (conjugate momenta) of the jth node given by

Q1(2) = (C1(2) + Cc)�′
1(2) – Cg1(2) Vg1(2) – Cc�

′
s, Qs = (Cs + 2Cc)�′

s – Cc
(
�′

1 + �′
2
)
, (4)

and the effective Josephson capacitances are defined as

C̃J1(2) =
C3

�

C2(1)(2Cc + Cs) + Cc(Cc + Cs)
, C̃Js =

CcC3
�

(Cc + C1)(Cc + C2)
, (5)

with C3
� = Cc(C1 + C2)(Cs + Cc) + C2

c Cs + C1C2(2Cc + Cs), and Cj = Cgj + CJj (j = {1, 2}).
Moreover, the gate-charge numbers read

ñg1(2) = –
Cg1(2)

2e
Vg1(2) –

C̃J1(2) C
2
c Cg2(1)

2eC3
�

Vg2(1) ,

ñgs = –
C̃Js Cc

2eC3
�

(
Cg1 (C2 + Cc)Vg1 + Cg2 (C1 + Cc)Vg2

)
, (6)

and couplings strengths are given by

g12 =
C2

c
C3

�

, g1s(2s) =
Cc(C2(1) + Cc)

C3
�

. (7)

Qs = –Cc

(
Q1 + Cg1 Vg1

C1 + Cc
+

Q2 + Cg2 Vg2

C2 + Cc

)
. (8)
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Figure 2 Transitions En – E0 (n = 1, 2, 3) of the qubits and SQUID Hamiltonians given in Eq. (3). (a) Qubit 1:
EJ1 /EC1 = 0.303. (b) Qubit 2: EJ2 /EC2 = 0.058. (c) SQUID: EJs = 50 (GHz) and Cs = 12 [fF]

Figure 3 Ratio between the SQUID impedance Zs
and the qubit 1(2) impedance Z1(2) as a function of
the external magnetic flux ϕext

Here, we consider the regime of high plasma frequency for the SQUID, where the charge
energy is small compared to the Josephson energy, and the plasma frequency of the SQUID
is far exceeding the frequency of the qubits (see Fig. 2), then we can consider �′

s � �′
1(�′

2)
and �′′

s � �′′
1(�′′

2) [35]. In addition, we also consider the low impedance for the SQUID
(see Fig. 3), which allow us consider �s � �1(�2). Based on the above conditions, we
obtain the next relation for Qs (see Appendix A)

Now, using the Euler-Lagrange equations we obtain (see Appendix A)

(C1(2) + Cc)�′′
1(2) – Cc�

′′
s +

2π

�0
EJ1(2) sin (ϕ1(2)) = 0,

– Cc�
′′
1 – Cc�

′′
2 + 2Cs�

′′
s +

2πEeff
Js

�0
sin (ϕs) = 0, (9)

using the same above conditions we get the relation for ϕs as

ϕs =
–Cc

Eeff
Js

(
EJ1 sin (ϕ1)

C1 + Cc
+

EJ2 sin (ϕ2)
C2 + Cc

)
, (10)

where we approximate sin (ϕs) ≈ ϕs.
We note that, we can write the charge in the node j as Qj = 2enj. Promoting the classical

variables {nj,ϕj} to quantum operators {n̂j, ϕ̂j} with the commutation relation [eiϕ̂j , n̂j] =
eiϕ̂j [37], and applying Eqs. (8) and (10) to Eq. (2), we obtain the quantum mechanical
Hamiltonian describing our circuit as

Ĥ =
2∑

j=1

Ĥj
sub + γ12(ϕext) sin (ϕ̂1) sin (ϕ̂2), (11)
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where the effective coupling strength

γ12(ϕext) =
C2

c EJ1 EJ2

(C1 + Cc)(C2 + Cc)Eeff
Js

, (12)

and Ĥj
sub is the Hamiltonian of the jth subsystem, given by

Ĥj
sub = 4ECj (n̂j – n̄gj )

2 – EJj cos (ϕ̂j) + γj(ϕext) sin (ϕ̂j)2, (13)

with ECj = e2/2(Cj + Cc), n̄gj = –Cgj Vgj /2e, and

γj(ϕext) =
C2

c E2
Jj

2Eeff
Js (Cj + Cc)2

. (14)

In the following discussion, we consider n̄g1 = n̄g2 = 0.5, and � = 1. It is convenient
to write the circuit Hamiltonian in the charge basis, it means n̂i =

∑
nj

nj|nj〉〈nj| and

cos (ϕ̂j) = 1/2(
∑

nj
|nj〉〈nj + 1|+

∑
nj

|nj + 1〉〈nj|) [37]. Due to the anharmonicity of Ĥj
sub (see

Appendix A), we can perform the two-level approximation in order to obtain the effective
Hamiltonian

Ĥ =
ω1

2
σ z

1 +
ω2

2
σ z

2 +
γ12(ϕext)

4
σ

y
1 σ

y
2 , (15)

where ω1 = EJ1 , ω2 = EJ2 and σα
j is Pauli matrix element of the jth charge qubit and I is the

identity operator.
Now, we will consider the external flux ϕext to be composed by a DC signal and a small

AC signal as ϕext = ϕext(t) = ϕDC + ϕAC(t), where

ϕAC(t) = A1 cos (ν1t + ϕ̃1) + A2 cos (ν2t + ϕ̃2), (16)

with |A1|, |A2| � |ϕDC|, with which we can approximate

1
Eeff

Js

≈ 1
ĒJs

[
1 +

sin (ϕDC)
cos (ϕDC)

ϕAC(t)
]

, (17)

where ĒJs = 2EJs cos (ϕDC). Then, we can rewrite the Hamiltonian in Eq. (15) as

Ĥ =
ω1

2
σ z

1 +
ω2

2
σ z

2 +
[
g0 + g1ϕAC(t)

]
σ

y
1 σ

y
2 , (18)

where

g0 =
C2

c EJ1 EJ2

4(C1 + Cc)(C2 + Cc)ĒJs

, g1 =
C2

c EJ1 EJ2

4(C1 + Cc)(C2 + Cc)ĒJs

sin (ϕDC)
cos (ϕDC)

. (19)

Now, we write the Hamiltonian of Eq. (18) in the interaction picture with respect to
Ĥ0 =

∑2
i=j ωjσ

z
j /2 and perform the rotating wave approximation (RWA), obtaining

ĤI ≈ –
g1

2
σ –

1 σ –
2
(
A1eiϕ̃1 ei(ν1–μ12)t + A2eiϕ̃2 ei(ν2–μ12)t)

+
g1

2
σ –

1 σ +
2
(
A1eiϕ̃1 ei(ν1–12)t + A2eiϕ̃2 ei(ν2–12)t)
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Table 1 Interactions produced by different choosing of the phases ϕ̃1 and ϕ̃1 in Eq. (21)

Operator ϕ̃1 ϕ̃2

σ 1
y σ 2

y 2π 2π
–σ 1

y σ 2
y π π

σ 1
x σ 2

x 2π π

–σ 1
x σ 2

x π 2π
σ 1
y σ 2

x 1/2π 3/2π
–σ 1

y σ 2
x 3/2π 1/2π

σ 1
x σ 2

y 3/2π 3/2π
–σ 1

x σ 2
y 1/2π 1/2π

Figure 4 Effective circuit diagram of three charge qubits (green) couple through grounded SQUIDs (blue)
with Josephson energy EJs and effective capacitor Cs/2. Moreover Cc is the coupling capacitance, and �1, �2,
�3, �s1 and �s2 are node fluxes that define the degrees of freedom of the qubits and SQUIDs

+
g1

2
σ +

1 σ –
2
(
A1e–iϕ̃1 e–i(ν1–12)t + A2e–iϕ̃2 e–i(ν2–12)t)

–
g1

2
σ +

1 σ +
2
(
A1e–iϕ̃1 e–i(ν1–μ12)t + A2e–iϕ̃2 e–i(ν2–μ12)t). (20)

Here, we make use of 12 = ω1 – ω2, μ12 = ω1 + ω2 and we neglect the fast oscillat-
ing terms proportional to exp(±i(12 + ν1(2))t), exp(±i(μ12 + ν1(2))t), exp(±i12t), and
exp(±iμ12t). As the qubits are far from resonance and considering {g0, A1g1/2, A2g1/2} �
{12,μ12,ν1,ν2}, the RWA is justified (for more details see Appendix A). Considering
ν1 = 12 and ν2 = μ12, the Hamiltonian in Eq. (20) turns

ĤI =
g1

4
(
(A1 cos ϕ̃1 – A2 cos ϕ̃2)σ x

1 σ x
2 – (A1 sin ϕ̃1 + A2 sin ϕ̃2)σ x

1 σ
y
2

+ (A1 sin ϕ̃1 – A2 sin ϕ̃2)σ y
1 σ x

2 + (A1 cos ϕ̃1 + A2 cos ϕ̃2)σ y
1 σ

y
2
)
, (21)

where we neglect the fast oscillating terms proportional to exp(±i(12 – ν2)t) and
exp(±i(μ12 – ν1)t). We recall that, for a proper choice of the phases ϕ̃1 and ϕ̃2 in Eq. (21),
we can engineer different interactions as those in Table 1.

2.2 Three-qubit model
In the three-qubit model, we consider the circuit given by Fig. 4. It is composed of a chain
of three charge qubits coupled through grounded SQUIDs. As in the previous case, we
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consider far off-resonance nearest-neighbor qubits. Following the same procedure of the
two-qubits model, we get the next effective Hamiltonian (see Appendix B)

Ĥ =
3∑

�=1

ω�

2
σ z

� +
2∑

j=1

[
g(j)

0 + g(j)
1 ϕ

(j)
AC(t)

]
σ

y
j σ

y
j+1, (22)

where ω3 = ω1 = EJ1 , ω2 = EJ2 , and the time-dependent signal reads

ϕ
(j)
AC(t) = A(j)

1 cos
(
ν

(j)
1 t + ϕ̃

(j)
1

)
+ A(j)

2 cos
(
ν

(j)
2 t + ϕ̃

(j)
2

)
. (23)

Moreover the coupling strength g(j)
0 and g(j)

1 (j = {1, 2}) are given by

g(j)
0 =

C2
c EJ1 EJ2

4(C1 + Cc)(C2 + 2Cc)Ē(j)
Js

,

g(j)
1 =

C2
c EJ1 EJ2

4(C1 + Cc)(C2 + 2Cc)Ē(j)
Js

sin (ϕ(j)
DC)

cos (ϕ(j)
DC)

,

(24)

with Ē(j)
Js = 2EJs cos (ϕ(j)

DC). To visualize the dynamics of the system, we write the Hamilto-
nian in the interaction picture. After we consider the resonant conditions ν

(1)
1 = ν

(2)
1 = 12

and ν
(1)
2 = ν

(2)
2 = μ12 and neglect the fast oscillating terms, the Hamiltonian in the interac-

tion picture reads

ĤI = Ĥ1,2
I + Ĥ2,3

I , (25)

where

Ĥj,j+1
I =

g(j)
1
4

[(
A(j)

1 cos ϕ̃
(j)
1 – A(j)

2 cos ϕ̃
(j)
2

)
σ x

j σ x
j+1

+
(
(–1)jA(j)

1 sin ϕ̃
(j)
1 – A2 sin ϕ̃

(j)
2

)
σ x

j σ
y
j+1

+
(
(–1)j+1A(1)

1 sin ϕ̃
(j)
1 – A(j)

2 sin ϕ̃
(j)
2

)
σ

y
j σ x

j+1

+
(
A(j)

1 cos ϕ̃
(j)
1 + A(j)

2 cos ϕ̃
(j)
2

)
σ

y
j σ

y
j+1

]
, (26)

is the interaction Hamiltonian between jth and (j + 1)th qubit. By choosing proper phase
parameters, we can engineer different interaction operators between adjacent qubits, like
in the previous case.

It is possible to generalize this expression for a chain of � qubits coupled through
grounded SQUIDs (see Fig. 5), where we define the qubits in odd positions as qubit 1
with frequency ω1 and the qubits in even positions as qubit 2 with frequency ω2. In the
following discussion, we consider the amplitude of the two harmonic signals to be the
same, that is A(j)

1 = A(j)
2 = A and the coupling strength g(j)

0 = g0 and g(j)
1 = g1.

By considering the resonant conditions ν
(j)
1 = 12, ν

(j)
2 = μ12 and choosing proper phase

parameters ϕ̃
(j)
1 and ϕ̃

(j)
2 , we can engineer again a family of interactions between nearest-

neighbor qubits as is shown in Table 2. Note that the phase ϕ̃
j
1 required to achieve ±σ x

j σ
y
j+1

and ±σ
y
j σ x

j+1 are different for odd and even j.
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Figure 5 General circuit design of a chain of charge qubits (green part) coupling through grounded SQUIDs
(blue part) with Josephson energy EJs and effective capacitor Cs . {�1,�s1 , . . . ,�sN–1 ,�N} are node fluxes
that define the degrees of freedom of the circuit

Table 2 Interactions between jth qubit and (j + 1)th qubit produced by different choice of the
phases ϕ̃

(j)
1 and ϕ̃

(j)
1 , where we take odd j and even j both into account

Operator ϕ̃
(j)
1 ϕ̃

(j)
2

σ
y
j σ

y
j+1 2π 2π

–σ y
j σ

y
j+1 π π

σ x
j σ

x
j+1 2π π

–σ x
j σ

x
j+1 π 2π

σ
y
j σ

x
j+1 (1 + (–1)j/2)π 3/2π

–σ y
j σ

x
j+1 (1 + (–1)j+1/2)π 1/2π

σ x
j σ

y
j+1 (1 + (–1)j+1/2)π 3/2π

–σ x
j σ

y
j+1 (1 + (–1)j/2)π 1/2π

The controllability and flexibility of the interactions that our proposal offers, give us the
possibility to the implement of a large variety of Hamiltonians in an analog way, such as
Dzyaloshinskii-Moriya, XY , homogeneous and inhomogeneous spin chains. Such ana-
log Hamiltonians could be very useful for DAQS and DAQC, where we can use such
analog Hamiltonians like a resource (complex multibody gate) for simulating more com-
plex systems, like quantum chemistry physics, condensed matter phenomena in spin lat-
tices [38, 39], and shortcuts to adiabaticity in digitezed adiabatic quantum computing [40].

The approach we presented in this work is intimately linked to the nature of the Jordan-
Wigner mapping that requires the quantum simulation algorithm follows a linear sorting
of the lattice sites to reproduce the fermionic anti-commutation relation, being a qubit-
chain a natural simulator of the fermion models. Naturally, the search for an experimen-
tally feasible fermion to qubit mapping approaching a two-dimensional lattice beyond the
Jordan-Wigner transformation is an open question that deserves further investigation.
There is a recent work that proposed a novel mapping in this direction, but the exper-
imental realization is still an open question [41]. Also, the use of qubit lattices for the
Jordan-Wigner transformation has been proposed; nevertheless, the gates number scal-
ing is the same as that in the qubit-chain case [8].

The current proposal could be extended to a two-dimensional (2D) array of charged
qubits coupled through grounded SQUIDs generating a more complex family of Hamil-
tonians, opening the door to more efficient simulations. Nevertheless, for 2D structures,
we can have the non-trivial problem of cross-talk between the different SQUID and loops
in the circuit, requiring a deep feasibility study which is not the scope of this article. In
the next section, we show a particular example about the efficient DAQC of a complex
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system, the Fermi-Hubbard model. This example will illustrate the versatility of our de-
sign.

3 Digital-analog quantum computation
Hubbard model represents the interaction between the neighboring sites, which is defined
by hopping element and Coulombic interaction on the same site, called on-site interac-
tion [42]. In this section, we are interested in the simulation of the hopping terms of a �×h
fermion-lattice (with � ≤ h). The Hamiltonian of a �×h fermion-lattice (see Fig. 6(a)) reads

HHubb = A
∑

α={↑,↓}

∑

〈j,k〉

(
c†

j,αck,α + c†
k,αcj,α

)
+ B

∑

j

nj,↑nj,↓, (27)

where c†
j,α (cj,α) are the creation (annihilation) operators of the jth site, with the number

operator nj,↑(↓) = c†
j,↑(↓)cj,↑(↓), and spin-α, with α = {↑,↓}. To suppress the index α, we map

the � × h lattice to a equivalent 2� × h spin-less lattice by

c†
j,↑ → b†

2j–1, c†
j,↓ → b†

2j, (28)

where b†
k are the creation operation over the site k for the lattice given by Fig. 6(b). Using

these operators the Hamiltonian Eq. (27) can be rewrite as

HHubb = A
( h–1∑

k=0

[
�–1∑

j=1

(
b†

2k�+2j–1b2k�+2j+1 + b†
2k�+2j+1b2k�+2j–1

)

+
�–1∑

j=1

(
b†

2k�+2jb2k�+2(j+1) + b†
2k�+2(j+1)b2k�+2j

)
]

+
h–2∑

k=0

2�∑

j=1

[
b†

2k�+jb2(k+1)�+j + b†
2(k+1)�+jb2k�+j

]
)

+ B
( h�∑

j=1

b†
2j–1b2j–1b†

2jb2j

)
. (29)

Finally, we map the 2� × h fermion lattice to a spin – 1/2 chain using the Wigner-Jordan
transformation (see Fig. 6(c)), where we represent bj and b†

j as a combination of Pauli
matrices

bj =

[ j–1∏

l=1

(
–σ z

l
)
]
σj = (–1)j–1 1

2

[ j–1∏

l=1

σ z
l

]
(
σ x

j – iσ y
j
)
,

b†
j =

[ j–1∏

l=1

(
–σ z

l
)
]
σ

†
j = (–1)j–1 1

2

[ j–1∏

l=1

σ z
�

]
(
σ x

j + iσ y
j
)
.

(30)

Before to write the equivalent spin chain Hamiltonian, we define the operator

Uα,β
(j,k) = e–i π

4 (σα
j–1σα

j +σ
β
k σ

β
k+1) = Uα

j–1Uβ

k , (31)
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Figure 6 Mapping of the fermionic lattice into a spin chain. (a) h× � lattice where we have and spin-up or
spin-down fermion in each site. (b) h× 2� lattice where we in each odd site we have and spin-up fermion and
in each even site we have a spin-down fermion, it represents the first mapping. (c) Spin chain with 2�h sites
resulting after the Wigner-Jordan Mapping

where j �= k, and Uα
j = e–i π

4 σα
j σα

j+1 . After some algebraic manipulation, we obtain (for details
see Appendix C)

HHubb = Hhori + Hverti + Hcoul, (32)

where Hhori, Hverti and Hcoul are given by

Hhori =
A
2

([
Ux†

(1,2)H
(x,y)
1,2 Ux

(1,2)
]

+
[
Uy

(1,2)H
(y,x)
1,2 Uy†

(1,2)
]

+
[
Ux†

(1,3)H
(x,y)
1,3 Ux

(1,3)
]

+
[
Uy

(1,3)H
(y,x)
1,3 Uy†

(1,3)
]

+
[
Ux†

(2,4)H
(x,y)
2,4 Ux

(2,4)
]

+
[
Uy

(2,4)H
(y,x)
2,4 Uy†

(2,4)
]

+
[
Ux†

(2,5)H
(x,y)
2,5 Ux

(2,5)
]

+
[
Uy

(2,5)H
(y,x)
2,5 Uy†

(2,5)
])

,

Hverti =
A
2

2�∑

j=1

[(
Ũ (x,x)

j,1 Ũ (y,y)
j,2 . . . Ũ (x,x)

j,�–2Ũ (y,y)
j,�–1Ũx†

j
)

· �x,y
j

(
Ũx

j U (y,y)†

j,�–1 U (x,x)†

j,�–2 . . . U (y,y)†

j,2 U (x,x)†

j,1
)

+
(
U (y,y)

j,1 U (x,x)
j,2 . . . U (y,y)

j,�–2U (x,x)
j,�–1Uy

j
)

· �y,x
j

(
Ũy†

j Ũ (x,x)†

j,�–1 Ũ (y,y)†

j,�–2 . . . U (x,x)†

j,2 U (y,y)†

j,1
)]

,

Hcoul =
B
4

h�∑

j=1

(
σ z

2j–1 + I
)(

σ z
2j + I

)
,

(33)
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Figure 7 Diagram for the different horizontal hopping interactions. Different colors show the set of
interactions that can be performed at the same time in an analog way. Solid arrows are for forward hopping
and dashed arrows for backward hopping

which correspond to the Hamiltonian of the horizontal hopping, vertical hopping and
coulomb interaction respectively, with

Ua
(n,i) =

h–1∏

k=0

mn∏

j=1

Ua
2k�+4(j–1)+i, H (a,b)

n,i =
h–1∑

k=0

mn∑

j=1

σ a
2k�+4j–5+iσ

b
2k�+4(j–1)+i,

�
a,b
j =

h–2∑

k=0

σ a
2k�+j+�–1σ

b
2k�+j+�, Ũ (a,a)

j,i =
h–2∏

k=0

U (a,a)
2k�+j+i,2k�+j+2�–i, (34)

Ũa
j =

h–2∏

k=0

Ua
2k�+j+�.

and

m1 =
2� – 1 – (–1)�+1

4
, m2 =

2� – 3 + (–1)�+1

4
. (35)

We notice that each term of Hhori in Eq. (33) correspond to the set of horizontal hopping
interactions which do not share sites in the lattice, these eight interactions are represented
by arrows with different colors in Fig. 7 (blue, red, green and brown), and different tex-
tures (solid and dashed). Also, we highlight that each interactions given by Eq. (34) can
be performed in an analog way since the sub-gates involved are applied in different qubits
and can be done together without interfering with each other (see Appendix C), giving us
the analog resource for the digital-analog simulation. The number m1 is the number of the
hopping terms corresponding to the blue(red) solid/dash arrows, and m2 is the number
of the hopping terms corresponding to the green(brown) solid/dash arrows (see Fig. 7),
where m1 + m2 = � – 1.

Now, we approximate the time evolution of our system using the Trotter expansion [43]
as follows

e–iHHubbt ≈ [
e–iHhorit/ne–iHvertit/ne–iHcoult/n]n

=
[
Uhori(t/n)Uverti(t/n)Ucoul(t/n)

]n, (36)
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Figure 8 Diagram for the different vertical hopping interactions. Different colors show the set of interactions
that can be performed at the same time in an analog way. Solid arrows are for forward hopping and dashed
arrows for backward hopping

where Uword(t) = e–iHwordt . Using Eq. (33) we have

Uhori(t/n) ≈ Ux†

(1,2)e
–i At

2n H(x,y)
1,2 Ux

(1,2) · Uy
(1,2)e

–i At
2n H(y,x)

1,2 Uy†

(1,2)

· Ux†

(1,3)e
–i At

2n H(x,y)
1,3 Ux

(1,3) · Uy
(1,3)e

–i At
2n H(y,x)

1,3 Uy†

(1,3)

· Ux†

(2,4)e
–i At

2n H(x,y)
2,4 Ux

(2,4) · Uy
(2,4)e

–i At
2n H(y,x)

2,4 Uy†

(2,4)

· Ux†

(2,5)e
–i At

2n H(x,y)
2,5 Ux

(2,5) · Uy
(2,5)e

–i At
2n H(y,x)

2,5 Uy†

(2,5),

Uverti(t/n) ≈
2�∏

j=1

[(
Ũ (x,x)

j,1 Ũ (y,y)
j,2 . . . Ũ (x,x)

j,�–2Ũ (y,y)
j,�–1Ũx†

j
)

· e–i At
2n �

x,y
j

(
Ũx

j U (y,y)†

j,�–1 U (x,x)†

j,�–2 . . . U (y,y)†

j,2 U (x,x)†

j,1
)

· (U (y,y)
j,1 U (x,x)

j,2 . . . U (y,y)
j,�–2U (x,x)

j,�–1Uy
j
)

· e–i At
2n �

y,x
j

(
Ũy†

j Ũ (x,x)†

j,�–1 Ũ (y,y)†

j,�–2 . . . U (x,x)†

j,2 U (y,y)†

j,1
)]

,

Ucoul(t/n) ≈
h�∏

j=1

e–i Bt
4n (σ z

2j–1+I)(σ z
2j+I)

=
h�∏

j=1

e–i Bt
4n (σ z

2j–1σ z
2j)e–i Bt

4n (σ z
2j–1+σ z

2j).

(37)

First, for Uhori we simulate eight types of interactions (see Fig. 7 and Eq. (33)), each of
these interactions need three gates, as we mention above each of this gate can be simulated
in an analog way. Therefore, to simulate Uhori (the horizontal hopping) we need 24 gates,
as we can see in Eq. (34).

Second, for Uverti, i.e. all the vertical hopping terms, we need 2(2� + 1) types of interac-
tions, they are shown in Fig. 8 with different colors and different textures. We note that
all the interactions of the same type can be performed at the same time, due to they do
not share sites during its implementation, i.e. all the interactions with the same color and
same texture can be simulated in parallel. Now, to simulate each type of interaction we
need 2� + 1 analog gates (see Eqs. (33) and (34)). Then, to simulate all the vertical hopping
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terms, we need 2(2� + 1)2 analog gates. Therefore to simulate all the hopping terms in a
� × h fermion lattice with � ≤ h we need only 2(2� + 1)2 + 24 = 8�2 + 8� + 26 gates.

It is necessary to highlight that to our knowledge, the more efficient proposal for the
quantum simulation of the Hubbard model is a trapped ion one [44], which uses a multi-
body entangling gate, needing 8(2h� – � – h) + 20 gates for a �× h fermion lattice. It means
that for a square lattice (� = h), the trapped ion proposal needs 2(8�2 – 8� + 10) gates,
which for large � need almost two times more gates than our proposal. It means that even
if superconducting circuits cannot use multi-body entangling gates like trapped ions, it
still is useful by a suitable design as in this work.

On the other hand, Ucoul(t/n), correspond to the free energy of the original Hubbard
model (Eq. (27)) and we will not consider for the Hopping dynamics simulation. Never-
theless, it can be simulated using three gates, i.e. the analog interaction

∑
j σ

x
2j–1σ

x
2j plus

two rotations in the y-axis (the local terms σ
j
z can be mapped correspond to the free energy

of our simulator).
The simulation time can be easily derivate as follow. Each type of interaction involve

unitary gate of the form Ua = exp(– iA
2

t
n Ô) and of the form Ub = exp(–i π

4 Ô). From Eq. (37)
we obtain that the time for each kind of gates (a and b) is

τa =
At

Ag1n
, τb =

π

2Ag1
, (38)

respectively. From the simulation of Uhori we have 8 gates of the class a, and from Uverti

we have 2(2� + 1) gates of the class a. Then the time necessary to perform all these gates
is (4� + 10)τa. As we have a total of 2(2� + 1)2 + 24 gates, the number of type b gates is
8�2 + 4� + 16. Therefore, the total time for the simulation is

τsim = (4� + 10)τa +
(
8�2 + 4� + 16

)
τb = (4� + 10)

At
Ag1n

+
(
4�2 + 2� + 8

) π

Ag1
. (39)

We note that for the case � = 2, we need fewer gates, in particular, to simulate Uhori we
need half of the gates, it means 12, for this case, the simulation time also decreases and is
given by

τ ∗
sim = (4� + 6)τa +

(
8�2 + 4� + 8

)
τb = 14

At
Ag1n

+ 24
π

Ag1
. (40)

Finally, the character digital-analog of our simulation is given by the use of analog gates in
each digital step, it means gates that act over several qubits simultaneously. In the next sec-
tion, we present the numerical results of a quantum simulation of the hopping interaction
of a 2 × 3 fermion-lattice.

4 Numerical results: 2 × 3 fermion lattice
As we mention above, for the case of � = 2 we only need 12 gates to simulate Uhori, then
for 2 × h lattice, we need 62 gates per Trotter step

Figure 9 shows the types of hopping interactions to simulate for a 2 × 3 fermion-lattice.
In Fig. 9 (a), we can see the four interactions to describe the horizontal hopping, where
the solid arrows correspond to the forward hopping, and the dashed arrows correspond
to the backward hopping. For vertical hopping, it requires ten types of interactions, as is
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Figure 9 Diagram for the different hopping interactions in a 2× 3 fermion lattice, with the solid arrows to be
forward hopping and dashed arrows to be backward hopping (a) Horizontal hopping. (b) Vertical hopping

Figure 10 (a, b, c) Fidelity between the perfect evolution and DAQC for different numbers of Trotter steps
and different initial states|ψ0〉 (shown in each subfigure). (d) Mean fidelity for 1000 random initial states for
different Trotter steps. The physical parameters of the fermion model are shown Table 3

shown in Fig. 9 (b). The sequence of the gates for different hopping interactions is shown
in Appendix D and Appendix E.

For the simulation, we map the 2 × 3 fermion lattice into a 12 qubit chain described by
the Hamiltonian Eq. (26). The parameters that we consider for the simulation are summa-
rized in the Table 3, where t represent the simulated time (evolution time of the system to
be simulated). Figure 10 show the fidelity |〈ψsim(t)|ψ(t)〉|2 of our simulation for different
initial states and 10, 20 and 30 Trotter steps, where |ψ〉(t) is the state at time t of the real
model, and |ψsim(t)〉 is the state given by the simulation, which simulate the evolution at
a time t. If we think the fermion lattice as a 3 × 2 matrix, where each element can be ↑, ↓
or vacuum, the initials states are: Fig. 10(a), ↑ for the sites (1, 1), (2, 2) and (3, 1), and the
rest in vacuum; Fig. 10(b), ↑ for the sites (1, 1) and the rest in vacuum; Fig. 10(c), quantum
superposition between the state ↑↓ for all sites and vacuum for all sites. Finally Fig. 10(d),
shows the mean fidelity over 1000 random states.
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Table 3 Parameters for Fermion model of Eq. (15)

Fermion model

At 4

cQED model

ω1/2π 9 (GHz)
ω2/2π 1 (GHz)
g0/2π 0.05 (GHz)
Ag1/2π 0.08 (GHz)

Table 4 Times involved in the fermion lattice simulations for different number of Trotter steps. The
corresponding parameters of the fermion model are shown in Table 3

n τa[ns] τb[ns] τ ∗
sim[μs]

10 0.796 3.125 0.161
20 0.398 3.125 0.156
30 0.265 3.125 0.153

Table 4 summarize the time τa, τb and τ ∗
sim defining in Eqs. (34) and (36), for the different

number of Trotter steps. We can note that all the simulation times are below the 0.2 [μs],
which means that the simulation can be implemented with the current technology, where
the coherent times for superconducting qubits are in the order of 100 [μs] [45].

5 Conclusion
We have designed a superconducting circuit architecture suitable for DAQC, in the sense
of providing a wide family of analog Hamiltonians as source of analog blocks and more
flexibility for this pragmatic quantum computing paradigm. We test our design by the nu-
merical calculation of the quantum simulation of a 3 × 2 fermion lattice described by the
Hubbard model. We find that for a � × h lattice (� ≤ h), we need 2(2� + 1)2 + 24 analog
blocks, which depend only on one of the dimensions of the lattice and improves. To our
knowledge, this result would improve previous achievements for simulating the Hubbard
model by a factor 2 for large square lattice (� = h) [44]. Moreover, the total simulation time
for 30 Trotter steps is less than 0.2 μs with an ideal fidelity around 0.97 (only digital error),
which makes our proposal experimentally feasible. Finally, we consider this work provides
an important boost to the DAQC paradigm, paving the way for computing and simulating
complex systems in quantum platforms, while approaching us to useful quantum advan-
tage with fewer algorithmic and hardware resources.

Appendix A: Simplified two-qubit Hamiltonian
For completeness, we describe the derivation of the simplified Hamiltonian of the two-
qubit system, which consists of two charge qubits coupled through a grounded SQUID as
shown in Fig. 1 of the main text. The Lagrangian of the circuit reads

L =
2∑

j=1

[Cgj

2
(
�′

j – Vgj

)2 +
CJj

2
�′2

1 + EJj cos (ϕj)
]

+ Eeff
Js cos (ϕs) +

Cs

2
�′2

s

+
Cc

2
(
�′

1 – �′
s
)2 +

Cc

2
(
�′

s – �′
2
)2, (41)
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where ϕj = 2π�j/�0, with �0 = h/2e is the superconducting flux quantum and 2e is the
electrical charge of a Cooper pair. Moreover Eeff

Js = 2EJs cos (ϕext) is the effective Joseph-
son energy of the SQUID. Now, we calculate the conjugate momenta (node charge) Qj =
∂L/∂�′

j

Q1(2) = Cg1(2)

(
�′

1(2) – Vg1(2)

)
+ CJ1(2)�

′
1(2) + Cc

(
�′

1(2) – �′
s
)
,

Qs = Cs�
′
s – Cc

(
�′

1 – �′
s
)

– Cc
(
�′

2 – �′
s
)
.

(42)

By applying the Legendre transformation H(�k , Qk) =
∑

k Qk�
′
k –L, we obtain the Hamil-

tonian

H =
2∑

j=1

[
1

2C̃Jj

(Qj – 2eñgj )
2 – EJj cos (ϕj)

]
+

1
2C̃Js

(Qs – 2eñg2 )2 – Eeff
Js cos (ϕ2)

+ g12Q1Q2 + g1sQ1Qs + g2sQ2Qs, (43)

where the effective Josephson capacitances, the gate-charge numbers and the coupling
strength are defined as follows

C̃J1(2) =
C3

�

C2(1)(2Cc + Cs) + Cc(Cc + Cs)
, C̃Js =

C3
�

(Cc + C1)(Cc + C2)
,

ñg1(2) = –
Cg1(2)

2e
Vg1(2) –

C̃J1(2) C
2
c Cg2(1)

2eC3
�

Vg2(1) ,

ñgs =
C̃Js Cc

2eC3
�

(
Cg1 (C2 + Cc)Vg1 + Cg2 (C1 + Cc)Vg2

)
,

g12 =
C2

c
C3

�

, g1s(2s) =
Cc(C2(1) + Cc)

C3
�

,

(44)

with Cj = Cgj + CJj (j = {1, 2}), and C3
� = Cc(C1 + C2)(Cs + Cc) + C2

c Cs + C1C2(2Cc + Cs). In
the following discussion, we calculate the simplified Hamiltonian between the two CPBs
by applying the two approximations �′

s � �′
1(2) (�′′

s � �′′
1(2)), and �s � �1(2) i.e. we con-

sider the SQUID in phase regime with high plasma frequency, and meanwhile the low
impedance. With the first approximation �′

s � �′
1(2), we can neglect the terms propor-

tional to �′
s in Eq. (42) obtaining the relation between nodes charge as follows

Qs = –Cc

(
Q1 + Cg1 Vg1

C1 + Cc
+

Q2 + Cg2 Vg2

C2 + Cc

)
. (45)

Next, we derive the relation between the nodes flux, by calculating the Euler-Lagrange
(E-L) equations ∂L/∂�j – d(∂L/∂�′

j)/dt = 0, which govern the dynamics of our system

(C1(2) + Cc)�′′
1(2) – Cc�

′′
s +

2π

�0
EJ1(2) sin (ϕ1(2)) = 0,

– Cc�
′′
1 – Cc�

′′
2 + 2Cs�

′′
s +

2πEeff
Js

�0
sin (ϕs) = 0,

(46)
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and by applying the two approximations, we can neglect the terms proportional to �′′
s in

Eq. (46), and meanwhile approximate sinϕs = ϕs obtaining

ϕs = –
CcEJ1 sin (ϕ1)
Eeff

Js (C1 + Cc)
–

CcEJ2 sin (ϕ2)
Eeff

Js (C2 + Cc)
. (47)

Moreover, with the approximation �s � �1(2), we approximate cosϕs ≈ (1 – ϕ2
s /2), with

which we can keep the potential energy of the SQUID up to the second-order, and by
replacing Eq. (45), and Eq. (47) in the Hamiltonian in Eq. (43), we obtain

H =
2∑

j=1

(
1

2C̄Jj

(Qj – 2en̄gj )
2 – EJj cos (ϕj)

+ γj(ϕext) sin (ϕj)2
)

+ γ12(ϕext) sin (ϕ1) sin (ϕ2), (48)

where the effective Josephson capacitance and gate-charge number

C̄J1(2) = C̃J1(2) +
Cc2

Cs + Cc + CcC2(1)
Cc+C2(1)

= C1(2) + Cc,

n̄g1(2) = ñg1(2) +
Cg2(1) Vg2(1)

2e( 2C2(1)
Cc

+ C2(1)Cs
C2

c
+ Cs

Cc
+ 1)

= –
Cg1(2) Vg1(2)

2e
,

(49)

which shows that the replacement of the Qs in terms of Q1(2) in the Hamiltonian in Eq. (43)
corrects the effective Josephson capacitances and gate-charge numbers of the simplified
model. Moreover, we define

γj(ϕext) =
C2

c E2
Jj

2Eeff
Js (Cj + Cc)2

, γ12(ϕext) =
C2

c EJ1 EJ2

Eeff
Js (C1 + Cc)(C2 + Cc)

, (50)

which depend on the external flux ϕext. Now by promoting the classical variables to quan-
tum operators i.e. Qj → Q̂j = 2en̂j and ϕj → ϕ̂j with the commutation relation [eiϕ̂j , n̂j] =
eiϕ̂j , we obtain the following quantum Hamiltonian

Ĥ =
2∑

j=1

Ĥj
sub + γ12(ϕext) sin (ϕ̂1) sin (ϕ̂2), (51)

where

Ĥj
sub = 4ECj (n̂j – n̄gj )

2 – EJj cos (ϕ̂j) + γj(ϕext) sin (ϕ̂j)2, (52)

is the Hamiltonian of the jth subsystem with the charge energy ECj = e2/2C̄Ji . In the fol-
lowing discussion, we consider n̄g1 = n̄g2 = 0.5 and � = 1. Note that the free Hamilto-
nian of the subsystem Hj

sub in Eq. (52) includes both the bare CPB Hamiltonian and the
nonlinear term proportional to sin (ϕ̂j)2. To study how this extra term affects the anhar-
monicity of the subsystem, we plot the energy spectrum of the free Hamiltonian Ĥj

sub
as a function of offset charge n̄gj in Fig. 11 for different EJj /ECj and γj(ϕext)/ECj . It shows
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Figure 11 Eigenvalue Em(m = 0, 1, 2, 3) of Ĥj
sub in Eq. (52) as a function of offset charge n̄gj for different ratio

EJj /ECj . (a) EJj /ECj = 1, and γj(ϕext)/ECj = 1. (b) EJj /ECj = 1, and γj(ϕext)/ECj = 4. (c) EJj /ECj = 4, and γj(ϕext)/ECj = 1

that as long as we keep EJj /ECj in charge regime, the increase of γj(ϕext) will not de-
stroy the anharmonicity of the subsystem, and level of anharmonicity still depends on
ratio EJj /ECj . Thus, in the following discussion, we assume both CPBs working in charge
regime, and write the Hamiltonian in Eq. (48) in the number basis with n̂j =

∑
m m|mj〉〈mj|,

cos (ϕ̂j) = 1
2 (

∑
m |mj〉〈mj + 1|+ H.C) and sin (ϕ̂j) = – i

2 (
∑

m |mj〉〈mj + 1|– H.C), where |mj〉 is
the mth exited state of the jth subsystem. After we perform the two-level approximation,
the operator sin (ϕ̂j) and the nonlinear term γj(ϕext) sin (ϕ̂j)2 in the subsystem basis read

sin (ϕ̂j) =
1
2
σ

y
j , γj(ϕext) sin (ϕ̂j)2 =

γj(ϕext)
4

I, (53)

where σα
j is the Pauli matrix, Ij is the identity operator. Thus, we can neglect the term

proportional to sin (ϕ̂j)2, as it only provides a shift to the qubit frequency. Finally, we obtain
the simplified Hamiltonian as follows

Ĥ =
ω1

2
σ z

1 +
ω2

2
σ z

2 +
γ12(ϕext)

4
σ

y
1 σ

y
2 , (54)

Next, we consider the external flux ϕext to be composed of a DC signal and a small AC
signal as ϕext = ϕext(t) = ϕDC + ϕAC(t), where ϕAC(t) = A1 cos (ν1t + ϕ̃1) + A2 cos (ν2t + ϕ̃2)
and |A1|, |A2| � |ϕDC|, with which we can approximate

1
Eeff

Js

≈ 1
ĒJs

[
1 +

sin (ϕDC)
cos (ϕDC)

ϕAC(t)
]

. (55)

Here, ĒJs = 2EJs cosϕDC . By replacing Eq. (55) in the Hamiltonian Eq. (54), we obtain

Ĥ =
ω1

2
σ z

1 +
ω2

2
σ z

2 +
[
g0 + g1ϕAC(t)

]
σ

y
1 σ

y
2 , (56)

where the coupling strength

g0 =
C2

c EJ1 EJ2

4(C1 + Cc)(C2 + Cc)ĒJs

, g1 =
C2

c EJ1 EJ2

4(C1 + Cc)(C2 + Cc)ĒJs

sin (ϕDC)
cos (ϕDC)

. (57)

To visualize the dynamics of our system, we go to the interaction picture characterized
by the free Hamiltonian Ĥ0 = ω1

2 σ z
1 + ω2

2 σ z
2 and perform the rotating wave approximation
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Figure 12 Population inversions of the states |01〉 (red line) and |10〉 (orange line), numerically calculated
from Eq. (59), and the states |01〉 (green line) and |10〉 (blue line), numerically calculated from Eq. (56). These
calculations have been performed with parameters, ω1/2π = 9 (GHz), ω2/2π = 1 (GHz), g0/2π = 0.2 (GHz),
A1(2)g1/2π = 0.08 (GHz), ν1/2π = 8 (GHz), ν2/2π = 10 (GHz), and ϕ̃1 = 2π , and ϕ̃2 = π

(RWA) obtaining

ĤI ≈ –
g1

2
σ –

1 σ –
2
(
A1eiϕ̃1 ei(ν1–μ12)t + A2eiϕ̃2 ei(ν2–μ12)t)

+
g1

2
σ –

1 σ +
2
(
A1eiϕ̃1 ei(ν1–12)t + A2eiϕ̃2 ei(ν2–12)t)

+
g1

2
σ +

1 σ –
2
(
A1e–iϕ̃1 e–i(ν1–12)t + A2e–iϕ̃2 e–i(ν2–12)t)

–
g1

2
σ +

1 σ +
2
(
A1e–iϕ̃1 e–i(ν1–μ12)t + A2e–iϕ̃2 e–i(ν2–μ12)t), (58)

where 12 = ω1 – ω2, μ12 = ω1 + ω2, and we neglected the fast oscillating terms propor-
tional to exp(±i(12 + ν1(2))t), exp(±i(μ12 + ν1(2))t), exp(±i12t), and exp(±iμ12t), since
we consider the qubits are far from resonance and the coupling strength {g0, g1A1/2,
g1A2/2} � {12,μ12,ν1,ν2}. Next, we assume that ν1 = 12 and ν2 = μ12, with which
we can perform the second RWA neglecting the fast oscillating terms proportional to
exp(±i(12 – ν2)t) and exp(±i(μ12 – ν1)t) in Eq. (58) obtaining

ĤI ≈ g1

2
A1

(
eiϕ̃1σ –

1 σ +
2 + e–iϕ̃1σ +

1 σ –
2
)

–
g1

2
A2

(
eiϕ̃2σ –

1 σ –
2 + e–iϕ̃2σ +

1 σ +
2
)
. (59)

To prove the justification of the RWA we applied, we plot the population inversion be-
tween the states |01〉 and |10〉 in Fig. 12. It shows that the numerical results calculated
from the Hamiltonian in Eq. (59) (red line and orange line) coincide well with the results
calculated Eq. (56) (green line and blue line), which proves the validity of the approxima-
tion we applied. Finally, by replacing σ +

j = (σ x
j + iσ y

j )/2 and σ –
j = (σ x

j – iσ y
j )/2 in Eq. (59),

we obtain the interaction Hamiltonian in terms of Pauli matrices as follows

ĤI ≈ g1

4
(
(A1 cos ϕ̃1 – A2 cos ϕ̃2)σ x

1 σ x
2 – (A1 sin ϕ̃1 + A2 sin ϕ̃2)σ x

1 σ
y
2

+ (A1 sin ϕ̃1 – A2 sin ϕ̃2)σ y
1 σ x

2 + (A1 cos ϕ̃1 + A2 cos ϕ̃2)σ y
1 σ

y
2
)
, (60)

and the interactions we can engineer with different phase ϕ̃1 and ϕ̃2 are shown in the
Table 1 of the main text.
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Appendix B: Simplified three-qubit Hamiltonian
In this section, we derive the simplified Hamiltonian of the three-qubit system, where the
three charge qubits coupled with each other through the grounded SQUIDs as shown in
Fig. 4 of the main text. The Lagrangian of the circuit reads

L =
3∑

�=1

[
Cg�

2
(
�′

� – Vg�

)2 +
CJ�
2

�′2
� + EJ� cos (ϕ�)

]
+

2∑

j=1

[
Cs

2
�′

sj
2 + Eeff

Jsj
cos (ϕsj )

]

+
Cc

2
(
�′

1 – �′
s1

)2 +
Cc

2
(
�′

s1 – �′
2
)2 +

Cc

2
(
�′

2 – �′
s2

)2 +
Cc

2
(
�′

s2 – �′
3
)2, (61)

where Eeff
Jsj

= 2EJs cos (ϕ(j)
ext) is the effective Josephson energy of the jth SQUID and we as-

sume that the third CPB to be the same as the first one i.e. Cg3 = Cg1 , CJ3 = CJ1 , and
Vg3 = Vg1 . Now we calculate the conjugate momenta (node charge) Qj = ∂L/∂�′

j

Q1(3) = Cg1

(
�′

1(3) – Vg1

)
+ CJ1�

′
1(3) + Cc

(
�′

1(3) – �′
s1(2)

)
,

Q2 = Cg2

(
�′

2 – Vg2

)
+ CJ2�

′
2 – Cc

(
�′

s1 – �′
2
)

+ Cc
(
�′

2 – �′
s2

)
, (62)

Qs1(2) = Cs�
′
s1(2)

– Cc
(
�′

1(2) – �′
s1(2)

)
+ Cc

(
�′

s1(2)
– �′

2(3)
)
.

By applying the Legendre transformation H(�k , Qk) =
∑

k Qk�
′
k –L, we obtain the Hamil-

tonian

H =
3∑

�=1

[
(Q� – 2eñg�

)2

2C̃J�
– EJ� cos (ϕ�)

]
+

2∑

j=1

[ (Qs1 – 2eñgs1
)2

2C̃Js1

– Eeff
Jsj

cos (ϕsj )
]

+ g12Q1Q2 + g13Q1Q3 + g1s1 Q1Qs1 + g1s2 Q1Qs2 + g23Q2Q3

+ g2s1 Q2Qs1 + g2s2 Q2Qs2 + g3s1 Q3Qs1 + g3s2 Q3Qs2 + gs1s2 Qs1 Qs2 , (63)

where the effective Josephson capacitances

C̃J1(3) = C5
� /

(
C3

c (4C1 + 2C2 + 4Cs + Cc) + 4C2C1Cc(Cs + Cc)

+ CsCc(C2 + 2C1)(Cs + 3Cc) + C2
s
(
2C2

c + C1C2
))

,

C̃J2 =
C5

�

[C2
c + C1Cs + Cc(2C1 + Cs)]2 ,

C̃Js1(s2) =
C5

�

(Cc + C1)[(C1 + Cc)C2Cs + C2
c (3C1 + C2 + 2Cs + Cc) + 2CcC1(C2 + Cs)]

,

(64)

the coupling strength

g1s1(3s2) =
Cc[C1C2(2Cc + Cs) + C2

c (3C1 + C2 + Cc + 2Cs) + CcCs(2C1 + C2)]
C5

�

,

g1s2(3s1) =
C3

c (C1 + Cc)
C5

�

, g13 =
C4

c
C5

�

,

g2s1(2s2) =
Cc(Cc + C1)[C2

c + C1Cs + Cc(2C1 + Cs)]
C5

�

, (65)
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g12(23) =
C2

c [C2
c + C1Cs + Cc(2C1 + Cs)]

C5
�

,

gs1s2 =
C2

c (Cc + C1)2

C5
�

,

and the gate-charge numbers

ñg1(3) = –
C̃J1 [C2

c + C1Cs + Cc(2C1 + Cs)][2C2
c + C2Cs + 2Cc(C2 + Cs)]

2eC5
�

Cg1 Vg1

–
C̃J1 C2

c [C2
c + C1Cs + Cc(2C1 + Cs)]

2eC5
�

Cg2 Vg2 , (66a)

ñg2 = –
2C̃J2 C2

c [C2
c + C1Cs + Cc(2C1 + Cs)]

2eC5
�

Cg1 Vg1

–
C̃J2 [C2

c + C1Cs + Cc(2C1 + Cs)]2

2eC5
�

Cg2 Vg2 , (66b)

ñgs1(s2) = –
C̃Js Cc(2Cc + C2)[C1(Cs + 2Cc) + Cc(Cs + Cc)]

2eC5
�

Cg1 Vg1

–
C̃Js Cc(Cc + C1)[CcC1 + (C1 + Cc)(Cc + Cs)]

2eC5
�

Cg2 Vg2 , (66c)

with C5
� = [C2

c + C1Cs + Cc(2C1 + Cs)][C1C2Cs + C2
c (2C1 + C2 + 2Cs) + Cc(2C2C1 + C2Cs +

2CsC1)], and Cj = CJj + Cgj (j = {1, 2}). Next, we calculate the effective Hamiltonian of this
three-qubit model, by applying the approximations �′

s1(2)
� �′

1(2,3) (�′′
s1(2)

� �′′
1(2,3)), and

�s1(2) � �1(2,3), where we assume the both SQUIDs in phase regime with high plasma
frequency and low impedance. With the first approximation, we can neglect the terms
proportional to �′

s1(2)
in Eq. (62) obtaining the relation between nodes charge as follows

Qs1(2) = –Cc

(
Q1(3) + Cg1 Vg1

C1 + Cc
+

Q2 + Cg2 V g2

C2 + 2Cc

)
. (67)

Moreover, to obtain the relation between nodes flux, we calculate the E-L equations, and
by applying the two approximations, we can neglect the terms proportional to �′′

s1(2)
and

approximate sin (ϕs1(2) ) = ϕs1(2) obtaining

ϕs1(2) = –
CcEJ1 sin (ϕ1(3))
Eeff

Js1(s2)
(C1 + Cc)

–
CcEJ2 sin (ϕ2)

Eeff
Js1(s2)

(C2 + 2Cc)
, (68)

Meanwhile, with the condition �s1(2) � �1(2,3), we can approximate cosϕs1(2) ≈ (1 –
ϕ2

s1(2)
/2), where we can keep the potential energy of the SQUID up to the second-order

and by replacing Eq. (67) and Eq. (68) in the Hamiltonian in Eq. (63), we obtain

H =
1

2C̄J1

(Q1 – n̄g1 )2 – EJ1 cos (ϕ1) + γ1
(
ϕ

(1)
ext

)
sin (ϕ1)2 +

1
2C̄J2

(Q2 – n̄g2 )2

– EJ2 cos (ϕ2) + γ2
(
ϕ

(1)
ext,ϕ

(2)
ext

)
sin (ϕ2)2 +

1
2C̄J3

(Q3 – n̄g3 )2 – EJ3 cos (ϕ3)

+ γ3
(
ϕ

(2)
ext

)
sin (ϕ3)2 + γ12

(
ϕ

(1)
ext

)
sin (ϕ1) sin (ϕ2) + γ23

(
ϕ

(2)
ext

)
sin (ϕ2) sin (ϕ3), (69)
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where

C̄J1(3) = C1 + Cc, C̄J2 = C2 + 2Cc, n̄g1(3) = –
Cg1 Vg1

2e
, n̄g2 = –

Cg2 Vg2

2e
,

γ1
(
ϕ

(1)
ext

)
=

C2
c E2

J1

2(C1 + Cc)2Eeff
Js1

, γ3
(
ϕ

(2)
ext

)
=

C2
c E2

J1

2(C1 + Cc)2Eeff
Js2

,

γ2
(
ϕ

(1)
ext,ϕ

(2)
ext

)
=

C2
c E2

J2
(cos (ϕ(1)

ext) + cos (ϕ(2)
ext))

4(C2 + 2Cc)2EJs cos (ϕ(1)
ext) cos (ϕ(2)

ext)
,

γ12
(
ϕ

(1)
ext

)
=

C2
c EJ1 EJ2

(C1 + Cc)(C2 + 2Cc)Eeff
Js1

, γ23
(
ϕ

(2)
ext

)
=

C2
c EJ1 EJ2

(C1 + Cc)(C2 + 2Cc)Eeff
Js2

.

(70)

By promoting the classical variables to quantum operators, i.e. Qj → Q̂j = 2en̂j and ϕj → ϕ̂j

with the commutation relation [eiϕ̂j , n̂j] = eiϕ̂j in Eq. (69), we obtain the quantum Hamilto-
nian

Ĥ =
3∑

j=1

Ĥj
sub + γ12

(
ϕ

(1)
ext

)
sin (ϕ̂1) sin (ϕ̂2) + γ23

(
ϕ

(2)
ext

)
sin (ϕ̂2) sin (ϕ̂3), (71)

where the Hamiltonian of the subsystem reads

Ĥ1(3)
sub = 4EC1 (n̂1(3) – n̄g1 )2 – EJ1 cos (ϕ̂1(3)) + γ1(3)

(
ϕ

(1)((2))
ext

)
sin (ϕ̂1(3))2,

Ĥ2
sub = 4EC2 (n̂2 – n̄g2 )2 – EJ2 cos (ϕ̂2) + γ2

(
ϕ

(1)
ext,ϕ

(2)
ext

)
sin (ϕ̂2)2,

(72)

and the charge energy ECj = e2/(2C̄Jj ). In the following discussion, we consider n̄g1 = n̄g2 =
0.5 and � = 1. As mentioned in Appendix A, the term proportional to (sin ϕ̂j)2 in the sub-
system Hamiltonian in Eq. (72) does not destroy the anharmonicity of the system. Thus,
in charge regime, we can safely perform the two-level approximation and write the Hamil-
tonian in Eq. (71) in the subsystem basis, where the operator sin (ϕ̂j) = σ

y
j /2, and the non-

linear term proportional to sin (ϕ̂j)2 can be regarded as a shift to the qubit frequency ob-
taining

Ĥ =
ω1

2
σ z

1 +
ω2

2
σ z

2 +
ω1

2
σ z

3 +
γ12(ϕ(1)

ext)
4

σ
y
1 σ

y
2 +

γ23(ϕ(2)
ext)

4
σ

y
2 σ

y
3 , (73)

where ω1 = EJ1 , ω2 = EJ2 , and the coupling strength γ12(ϕ(1)
ext)/4, γ23(ϕ(2)

ext)/4 depend on
the external flux through the first, and the second SQUID, respectively. Here we con-
sider the external flux ϕ

(j)
ext (j = {1, 2}) to be composed of a DC signal and a small AC

signal as ϕ
(j)
ext = ϕ

(j)
DC + ϕ

(j)
AC(t), where ϕ

(j)
AC(t) = A(j)

1 cos (ν(j)
1 t + ϕ̃

(j)
1 ) + A(j)

2 cos (ν(j)
2 t + ϕ̃

(j)
2 ), and

|A1|, |A2| � |ϕ(j)
DC |. Thus, we can approximate

1
Eeff

Jsj

≈ 1
Ē(j)

Js

[
1 +

sin (ϕ(j)
DC)

cos (ϕ(j)
DC)

ϕ
(j)
AC(t)

]
, (74)

where Ē(j)
Js = 2EJs cos (ϕ(j)

DC). By replacing Eq. (74) in the Hamiltonian in Eq. (73), we obtain

Ĥ =
ω1

2
σ z

1 +
ω2

2
σ z

2 +
ω1

2
σ z

3 +
[
g(1)

0 + g(1)
1 ϕ

(1)
AC(t)

]
σ

y
1 σ

y
2 +

[
g(2)

0 + g(2)
1 ϕ

(2)
AC(t)

]
σ

y
2 σ

y
3 , (75)
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Figure 13 Population of the states |000〉 (blue line), |011〉 (orange line), and |101〉 (purple line), numerically
calculated from Eq. (73), and the population of the states |000〉 (green line), |011〉 (red line), and |101〉 (pink
line), numerically calculated from Eq. (77), with physical parameters ω1/2π = 9 (GHz), ω2/2π = 1 (GHz),
g1(2)0 /2π = 0.2 (GHz), A(1)1(2)g

(1)
1 /2π = A(2)1(2)g

(2)
1 /2π = 0.1 (GHz), ν1/2π = 8 (GHz), ν2/2π = 10 (GHz), and the phase

ϕ̃(1)
1 = ϕ̃(2)

1 = 2π , ϕ̃(1)
2 = ϕ̃(2)

2 = π

where the coupling strength

g(j)
0 =

C2
c EJ1 EJ2

4(C1 + Cc)(C2 + 2Cc)Ē(j)
Js

,

g(j)
1 =

C2
c EJ1 EJ2

4(C1 + Cc)(C2 + 2Cc)Ē(j)
Js

sin (ϕ(j)
DC)

cos (ϕ(j)
DC)

.

(76)

To visualize the dynamics of the system, we go to the interaction picture characterized by
the free Hamiltonian Ĥ0 = ω1σ

z
1 /2 +ω2σ

z
2 /2 +ω1σ

z
3 /2. Moreover, we consider the resonant

conditions ν
(j)
1 = 12 = ω1 – ω2 and ν

(j)
2 = μ12 = ω1 + ω2 and perform the RWA obtaining

ĤI ≈ g(1)
1 A(1)

1
2

(
σ –

1 σ +
2 eiϕ̃(1)

1 + σ +
1 σ –

2 e–iϕ̃(1)
1

)
–

g(1)
1 A(1)

2
2

(
σ –

1 σ –
2 eiϕ̃(1)

2 + σ +
1 σ +

2 A2e–iϕ̃(1)
2

)

+
g(2)

1 A(2)
1

2
(
σ –

2 σ +
3 e–iϕ̃(2)

1 + σ +
2 σ –

3 eiϕ̃(2)
1

)
–

g(2)
1 A(2)

2
2

(
σ –

2 σ –
3 eiϕ̃(2)

2 + σ +
2 σ +

3 e–iϕ̃(2)
2

)
, (77)

where we neglected the fast oscillating terms proportional to exp(±i(12 + ν
(j)
1(2))t),

exp(±i(μ12 + ν
(j)
1(2))t), exp(±i12t), exp(±iμ12t), exp(±i(12 – ν

(j)
2 )t), and exp(±i(μ12 –

ν
(j)
1 )t), as we consider the qubits are far from resonance, and the coupling strength

{g(j)
0 , g(j)

1 A(j)
1(2)/2} � {12,μ12,ν(j)

1(2)} (j = {1, 2}). To prove the justification of the RWA we
applied, in Fig. 13 we plot the population of the states |000〉 (blue line), |011〉 (orange line),
and |101〉 (purple line), numerically calculated from Eq. (73), and the population of the
states |000〉 (green line), |011〉 (red line), and |101〉 (pink line), numerically calculated from
Eq. (77). Despite the slight fluctuations, the results calculated from Eq. (73) still coincide
with the ones calculated from the Hamiltonian in Eq. (77), which proves the validity of the
RWA we applied. Finally, to visualize the types of interaction we can engineer, we write
the Hamiltonian in Eq. (77) in terms of Pauli matrices as follows

ĤI ≈ Ĥ1,2
I + Ĥ2,3

I , (78)
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where

Ĥj,j+1
I =

g(j)
1
4

[(
A(j)

1 cos ϕ̃
(j)
1 – A(j)

2 cos ϕ̃
(j)
2

)
σ x

j σ x
j+1 +

(
(–1)jA(j)

1 sin ϕ̃
(j)
1 – A2 sin ϕ̃

(j)
2

)
σ x

j σ
y
j+1

+
(
(–1)j+1A(1)

1 sin ϕ̃
(j)
1 – A(j)

2 sin ϕ̃
(j)
2

)
σ

y
j σ x

j+1

+
(
A(j)

1 cos ϕ̃
(j)
1 + A(j)

2 cos ϕ̃
(j)
2

)
σ

y
j σ

y
j+1

]
. (79)

Notice that the phase ϕ̃
(j)
1 required to achieve ±σ x

j σ
y
j+1 and ±σ

y
j σ x

j+1 is different for odd and
even j, and the interactions we can engineer are shown in Table 2.

Appendix C: Mapping fermion Hubbard model to spin model
For completeness, we derive the Hamiltonian of an h × � fermion-lattice (see Fig. 6(a)) in
terms of spin operators by applying the Wigner-Jordan transformation. The Hamiltonian
can be expressed as

HHubb = A
∑

α={↑,↓}

∑

〈j,k〉

(
c†

j,αck,α + c†
k,αcj,α

)
+ B

∑

j

nj,↑nj,↓, (80)

where A is the kinetic energy, B is the on-site repulsion, c†
j,α (cj,α) are the creation (annihi-

lation) operators that act over the jth site, nj,↑(↓) = c†
j,↑(↓)cj,↑(↓) is the number operator, and

α =↑,↓ is the spin component. To suppress the index α, we map this lattice to an equivalent
2�× h lattice as shown in Fig. 6(b), with c†

j,↑ = b†
2j–1, c†

j,↓ = b†
2j, where b†

k(bk) are the creation
(annihilation) operation over the site k for the lattice. Now the Hubbard Hamiltonian can
be written in terms of

HHubb = A
h–1∑

k=0

�–1∑

j=1

[(
b†

2k�+2j–1b2k�+2j+1 + b†
2k�+2j+1b2k�+2j–1

)

+
(
b†

2k�+2jb2k�+2(j+1) + b†
2k�+2(j+1)b2k�+2j

)]

+ A
h–2∑

k=0

2�∑

j=1

[
b†

2k�+jb2(k+1)�+j + b†
2(k+1)�+jb2k�+j

]
+ B

k�∑

j=1

(
b†

2j–1b2j–1b†
2jb2j

)
, (81)

where the three terms correspond to the horizontal hopping Hamiltonian, the vertical
hopping Hamiltonian, and the Coulomb interaction, respectively. By applying the Wigner-
Jordan transformation, we map the operator b†

j (bj) to the combination of Pauli matrices
as follows

b†
j =

[ j–1∏

l=1

(
–σ z

l
)
]
σ

†
j =

(–1)j–1

2

[ j–1∏

l=1

σ z
�

]
(
σ x

j + iσ y
j
)
,

bj =

[ j–1∏

l=1

(
–σ z

l
)
]
σj =

(–1)j–1

2

[ j–1∏

l=1

σ z
l

]
(
σ x

j – iσ y
j
)
,

(82)

where σ k
j is the k-Pauli-matrix associated with the spin – 1/2 of the jth position of the

chain as shown in Fig. 6(c). Using the Eq. (82) and with k > j, we obtain

b†
j bk + b†

kbj =
(–1)k–j+1

2
(
σ x

j Zk–1
j+1 σ x

k + σ
y
j Zk–1

j+1 σ
y
k
)
, (83)
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Figure 14 Interactions of the site k. Blue and red dashed arrows refer to the interactions in the rows for up
and down spin respectively. Yellow solid arrows refer to the interactions in the columns

where Zk
j = ⊗k

�=jσ
z
� . And we can see from Fig. 14 that k – j is an even number for all j and

k involved in the interaction, therefore

b†
j bk + b†

kbj = –
1
2
(
σ x

j Zk–1
j+1 σ x

k + σ
y
j Zk–1

j+1 σ
y
k
)
. (84)

Now, we simulate this multi-body interaction using only two-body gates. Before every-
thing, we note that

Uy
j σ

x
j Uy†

j = –σ z
j σ

y
j+1, Ux

j σ
y
j Ux†

j = σ z
j σ x

j+1, (85a)

Uy,y
(j,k)σ

x
j σ x

k Uy,y†
(j,k) = σ

y
j–1σ

z
j σ z

k σ
y
k+1, Ux,x

(j,k)σ
y
j σ

y
k Ux,x†

(j,k) = σ x
j–1σ

z
j σ z

k σ x
k+1, (85b)

with Uα
j = exp(–i π

4 σα
j σα

j+1) and Uα,β
(j,k) = Uα

j–1Uβ

k (j �= k), which allow us construct all multi-
body operators of the form given by Eq. (84). In the following discussion, we derive the
Hamiltonian corresponding to the horizontal hopping Hhori, vertical hopping Hverti, and
Coulomb interaction Hcoul in terms of Pauli matrices, respectively.

C.1 Horizontal hopping
We first calculate the horizontal hopping Hamiltonian, which involves eight types of in-
teractions. And all these interactions can be divided into two directions (see Fig. 7), i.e. the
forward hopping (solid arrows) b†

j bj+2 and the backward hopping (dashed arrows) b†
j+2bj,

where we can write both of them in terms of Pauli matrices with Eq. (84) and Eq. (85a),

b†
j bj+2 = –

1
2
σ x

j σ z
j+1σ

x
j+2 =

1
2

Ux†

j+1σ
x
j σ

y
j+1Ux

j+1,

b†
j+2bj = –

1
2
σ

y
j σ z

j+1σ
y
j+2 =

1
2

Uy
j+1σ

y
j σ x

j+1Uy†

j+1.
(86)

Now we calculate the Hamiltonian corresponding to the blue solid arrows (see Fig. 7),
which contains the hopping terms

Hs
Blue = b†

1b3 + b†
5b7 + b†

9b11 + b†
13b15 . . . + b†

pbp+2, (87)
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where p = 2� – 4 – (–1)�+1. By replacing Eq. (86) in Eq. (87), we obtain

Hs
Blue = b†

1b3 + b†
5b7 + b†

9b11 + b†
13b15 . . . + b†

pbp+2 =
1
2
[
Ux†

(1,2)H
(x,y)
1,2 Ux

(1,2)
]
, (88)

where

Ua
(n,i) =

h–1∏

k=0

mn∏

j=1

Ua
2k�+4(j–1)+i, H (a,b)

n,i =
h–1∑

k=0

mn∑

j=1

σ a
2k�+4j–5+iσ

b
2k�+4(j–1)+i, (89)

with m1 = [2� – 1 – (–1)�+1]/4, and m2 = [2� – 3 + (–1)�+1]/4, which corresponds to the
number of the hopping terms of the blue(red) solid/dashed arrows, and green(brown)
solid/dashed arrows respectively (see Fig. 7), where m1 + m2 = �– 1. As for the blue dashed
arrows, we have

Hd
Blue = b†

3b1 + b†
7b5 + b†

11b9 + b†
15b13 . . . + b†

p+2bp =
1
2
[
Uy

(1,2)H
(y,x)
1,2 Uy†

(1,2)
]
. (90)

Thus for the horizontal hopping corresponding to the blue arrows, we have

HBlue = Hs
Blue + Hd

Blue =
1
2
[
Ux†

(1,2)H
(x,y)
1,2 Ux

(1,2) + Uy
(1,2)H

(y,x)
1,2 Uy†

(1,2)
]
. (91)

Following the previous procedure, we obtain the Hamiltonian corresponding to the red
arrows, green arrows, and brown arrows (see Fig. 7) as follows

HRed =
1
2
[
Ux†

(1,3)H
(x,y)
1,3 Ux

(1,3) + Uy
(1,3)H

(y,x)
1,3 Uy†

(1,3)
]
,

HGreen =
1
2
[
Ux†

(2,4)H
(x,y)
2,4 Ux

(2,4) + Uy
(2,4)H

(y,x)
2,4 Uy†

(2,4)
]
,

HBrown =
1
2
[
Ux†

(2,5)H
(x,y)
2,5 Ux

(2,5) + Uy
(2,5)H

(y,x)
2,5 Uy†

(2,5)
]
,

(92)

where the first term and the second term correspond to the forward hopping and the back-
ward hopping, respectively. Finally, the Hamiltonian of the horizontal hopping in terms of
Pauli matrices read

Hhori = HBlue + HRed + HGreen + HBrown

=
A
2

[
Ux†

(1,2)H
(x,y)
1,2 Ux

(1,2) + Uy
(1,2)H

(y,x)
1,2 Uy†

(1,2) + Ux†

(1,3)H
(x,y)
1,3 Ux

(1,3)

+ Uy
(1,3)H

(y,x)
1,3 Uy†

(1,3) + Ux†

(2,4)H
(x,y)
2,4 Ux

(2,4) + Uy
(2,4)H

(y,x)
2,4 Uy†

(2,4)

+ Ux†

(2,5)H
(x,y)
2,5 Ux

(2,5) + Uy
(2,5)H

(y,x)
2,5 Uy†

(2,5)
]
. (93)

C.2 Vertical hopping
In this subsection, we calculate the vertical Hamiltonian in terms of Pauli matrices. For
the vertical hopping, each term in the Hamiltonian in Eq. (81) reads

b†
j b2�+j + b†

2�+jbj = –
1
2
(
σ x

j Z
2�+j–1
j+1 σ x

2�+j + σ
y
j Z

2�+j–1
j+1 σ

y
2�+j

)
, (94)
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where the first term corresponding to downward hopping (dashed arrows), and the second
term corresponding to upward hopping (solid arrows) as shown in Fig. 8. To construct the
term σ x

j Z2�+j–1
j+1 σ x

2�+j in Eq. (94), we insert Eq. (85b) on both sides of σ x
j+�–1σ

y
j+� as follows

σ x
j Z2�+j–1

j+1 σ x
2�+j =

(
U (x,x)

j+1,j+2�–1U (y,y)
j,j+2�–2 . . . U (y,y)

j+�–1,j+�+1Ux
j+�

) · σ x
j+�–1σ

y
j+�

· (Ux†

j+�U (y,y)†

j+�–1,j+�+1 . . . U (y,y)†

j,j+2�–2U (x,x)†

j+1,j+2�–1
)
. (95)

And for σ
y
j Z2�+j–1

j+1 σ
y
2�+j, it can be written in terms of

σ
y
j Z2�+j–1

j+1 σ
y
2�+j = –

(
U (y,y)

j+1,j+2�–1U (x,x)
j,j+2�–2 . . . U (x,x)

j+�–1,j+�+1Uy
j+�

)

· σ y
j+�–1σ

x
j+� · (Uy†

j+�U (x,x)†

j+�–1,j+�+1 . . . U (x,x)†

j,j+2�–2U (y,y)†

j+1,j+2�–1
)
. (96)

By replacing Eq. (95) and Eq. (96) in Eq. (94), we obtain the vertical hopping Hamiltonian
between jth and (j + 2�)th fermion as follows

b†
j b2�+j + b†

2�+jbj =
1
2
(
U (x,x)

j+1,j+2�–1U (y,y)
j,j+2�–2 . . . U (y,y)

j+�–1,j+�+1Ux†

j+�

) · σ x
j+�–1σ

y
j+�

· (Ux
j+�U (y,y)†

j+�–1,j+�+1 . . . U (y,y)†

j,j+2�–2U (x,x)†

j+1,j+2�–1
)

+
1
2
(
U (y,y)

j+1,j+2�–1U (x,x)
j,j+2�–2 . . . U (x,x)

j+�–1,j+�+1Uy
j+�

) · σ y
j+�–1σ

x
j+�

· (Uy†

j+�U (x,x)†

j+�–1,j+�+1 . . . U (x,x)†

j,j+2�–2U (y,y)†

j+1,j+2�–1
)
, (97)

with which we can write the hopping terms in each column together, obtaining the vertical
hopping hamiltonian as follows

Hverti = A
2�∑

j=1

h–2∑

k=0

b†
2k�+jb2�+2k�+j + b†

2�+2k�+jb2k�+j

=
A
2

2�∑

j=1

[(
Ũ (x,x)

j,1 Ũ (y,y)
j,2 . . . Ũ (y,y)

j,�–1Ũx†

j
) · �x,y

j · (Ũx
j U (y,y)†

j,�–1 . . . U (y,y)†

j,2 U (x,x)†

j,1
)

+
(
U (y,y)

j,1 U (x,x)
j,2 . . . U (x,x)

j,�–1Uy
j
) · �y,x

j · (Ũy†

j Ũ (x,x)†

j,�–1 . . . U (x,x)†

j,2 U (y,y)†

j,1
)]

, (98)

where we define

�
a,b
j =

h–2∑

k=0

σ a
2k�+j+�–1σ

b
2k�+j+�,

Ũ (a,a)
j,i =

h–2∏

k=0

U (a,a)
2k�+j+i,2k�+j+2�–i, (99)

Ũa
j =

h–2∏

k=0

Ua
2k�+j+�.
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C.3 Coulomb interaction
For the Coulomb interaction, each term in the last sum in the Hamiltonian in Eq. (81)
reads

b†
j bj = σ

†
j σj =

1
2
(
σ z

j + I
)
, (100)

where Ij is the identity operator and the Hamiltonian of the coulomb interaction reads

Hcoul = B
k�∑

j=1

b†
2j–1b2j–1b†

2jb2j =
B
4

k�∑

j=1

(
σ z

2j–1 + I
)(

σ z
2j + I

)
. (101)

Finally, we write the Hamiltonian of the Hubbard model in terms of spin-1/2 operators

HHubb = Hhori + Hverti + Hcoul

=
A
2

[
Ux†

(1,2)H
(x,y)
1,2 Ux

(1,2) + Uy
(1,2)H

(y,x)
1,2 Uy†

(1,2) + Ux†

(1,3)H
(x,y)
1,3 Ux

(1,3) + Uy
(1,3)H

(y,x)
1,3 Uy†

(1,3)

+ Ux†

(2,4)H
(x,y)
2,4 Ux

(2,4) + Uy
(2,4)H

(y,x)
2,4 Uy†

(2,4) + Ux†

(2,5)H
(x,y)
2,5 Ux

(2,5) + Uy
(2,5)H

(y,x)
2,5 Uy†

(2,5)
]

+
A
2

2�∑

j=1

[(
Ũ (x,x)

j,1 Ũ (y,y)
j,2 . . . Ũ (x,x)

j,�–2Ũ (y,y)
j,�–1Ũx†

j
)

· �x,y
j · (Ũx

j U (y,y)†

j,�–1 U (x,x)†

j,�–2 . . . U (y,y)†

j,2 U (x,x)†

j,1
)

+
(
U (y,y)

j,1 U (x,x)
j,2 . . . U (y,y)

j,�–2U (x,x)
j,�–1Uy

j
) · �y,x

j · (Ũy†

j Ũ (x,x)†

j,�–1 Ũ (y,y)†

j,�–2 . . . U (x,x)†

j,2 U (y,y)†

j,1
)]

+
B
4

h�∑

j=1

(
σ z

2j–1 + I
)(

σ z
2j + I

)
. (102)

Appendix D: Digital decomposition of the hopping Hamiltonian for a 2 × 3
fermion Hubbard model

In this section, we decompose the exact evolution of the horizontal hopping and vertical
hopping of a 2 × 3 Fermion Hubbard model respectively into a sequence of discrete gates
by applying Trotter expansion.

D.4 Horizontal hopping
For a 2 × 3 fermion lattice, we first consider the horizontal hopping Hamiltonian H∗

hori as
shown in Fig. 9(a)

H∗
hori = H∗

up + H∗
down, (103)

whereH∗
up = A(b†

1b3 +b†
3b1 +b†

5b7 +b†
7b5 +b†

9b11 +b†
11b9) andH∗

down = A(b†
2b4 +b†

4b2 +b†
6b8 +

b†
8b6 + b†

10b12 + b†
12b10), corresponding to the horizontal hopping for the spin-up fermion

(blue solid/dashed arrows) and spin-down fermion (red solid/dashed arrows), respectively
(see Fig. 9(a)). By applying the JW transformation, we map the fermonic creation and an-
nihilation operators onto spin operators, and finally obtain the horizontal Hamiltonian as
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follows

H∗
hori =

A
2

Uy
2Uy

6Uy
10

(
σ

y
1 σ x

2 + σ
y
5 σ x

6 + σ
y
9 σ x

10
)
Uy†

2 Uy†

6 Uy†

10

+
A
2

Ux†

2 Ux†

6 Ux†

10
(
σ x

1 σ
y
2 + σ x

5 σ
y
6 + σ x

9 σ
y
10

)
Ux

2 Ux
6 Ux

10

+
A
2

Uy
3Uy

7Uy
11

(
σ

y
2 σ x

3 + σ
y
6 σ x

7 + σ
y
10σ

x
11

)
Uy†

3 Uy†

7 Uy†

11

+
A
2

Ux†

3 Ux†

7 Ux†

11
(
σ x

2 σ
y
3 + σ x

6 σ
y
7 + σ x

10σ
y
11

)
Ux

3 Ux
7 Ux

11, (104)

where the four terms correspond to the blue solid arrows, blue dashed arrows, red solid
arrows, and red dashed arrows, respectively in Fig. 9(a). Now we approximate the time
evolution of horizontal hopping Hamiltonian by applying the first-order Trotter expansion
e–iHt � (

∏N
α=1 e–iHα t/n)n obtaining

U∗
hori(t/n) ≈

[
Uy

2Uy
6Uy

10 exp

(
–iAt

2n
(
σ

y
1 σ x

2 + σ
y
5 σ x

6 + σ
y
9 σ x

10
))

Uy†

2 Uy†

6 Uy†

10

· Ux†

2 Ux†

6 Ux†

10 exp

(
–iAt

2n
(
σ x

1 σ
y
2 + σ x

5 σ
y
6 + σ x

9 σ
y
10

))
Ux

2 Ux
6 Ux

10

· Uy
3Uy

7Uy
11 exp

(
–iAt

2n
(
σ

y
2 σ x

3 + σ
y
6 σ x

7 + σ
y
10σ

x
11

))
Uy†

3 Uy†

7 Uy†

11

· Ux†

3 Ux†

7 Ux†

11 exp

(
–iAt

2n
(
σ x

2 σ
y
3 + σ x

6 σ
y
7 + σ x

10σ
y
11

))
Ux

3 Ux
7 Ux

11

]n

, (105)

where U∗
word(t) = e–iH∗

wordt .

D.5 Vertical hopping
The Hamiloinian of the vertical hopping can be written in terms of

H∗
verti =

8∑

�=1

h�, (106)

where

h� = b†
�b�+4 + b†

�+4b�

=
A
2

(
Ux,x

(�+1,�+3)U
y
�+2σ

y
�+1σ

x
�+2Uy†

�+2Ux,x†

(�+1,�+3)

+ Uy,y
(�+1,�+3)U

x†

�+2σ
x
�+1σ

y
�+2Ux

�+2Uy,y†

(�+1,�+3)
)
, (107)

represents the hopping between the �th qubit and (� + 4)th qubit.
To avoid the sub-gates required in the same interaction sharing the qubits, we define

the eight terms in Eq. (106) into five groups {h1, h6}, {h2, h7}, {h3, h8}, {h4}, and {h5}, where
each group includes both upward (solid arrows) and downward (dashed arrows) hopping
as shown in Fig. 15. Furthermore, all the interactions with the same color and same texture
(solid/dashed) can be simulated at the same time i.e. to simulate the vertical hopping of
a 2 × 3 fermion lattice, it requires ten types of interactions, and each interaction needs
ten gates (see Eq. (107)). Finally, the corresponding Trotter expansion for each group are
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Figure 15 Diagram for the different vertical hopping
interactions in a 2× 3 fermion lattice. Solid/dashed arrows
with the same color correspond to the interactions can be
implemented at the same time in an analog way

shown as follows

exp
(
–i(h1 + h6)t

)

≈
[

Ux,x
(2,4)U

x,x
(7,9)U

y
3Uy

8 exp

(
–

iAt
2n

(
σ

y
2 σ x

3 + σ
y
7 σ x

8
))

Uy†

8 Uy†

3 Ux,x†

(7,9)U
x,x†

(2,4)

· Uy,y
(2,4)U

y,y
(7,9)U

x†

3 Ux†

8 exp

(
–

iAt
2n

(
σ x

2 σ
y
3 + σ x

7 σ
y
8
))

Ux
8 Ux

3 Uy,y†

(7,9)U
y,y†

(2,4)

]n

, (108a)

exp
(
–i(h2 + h7)t

)

≈
[

Ux,x
(3,5)U

x,x
(8,10)U

y
4Uy

9 exp

(
–

iAt
2n

(
σ

y
3 σ x

4 + σ
y
8 σ x

9
))

Uy†

9 Uy†

4 Ux,x†

(8,10)U
x,x†

(3,5)

· Uy,y
(3,5)U

y,y
(8,10)U

x†

4 Ux†

9 exp

(
–

iAt
2n

(
σ x

3 σ
y
4 + σ x

8 σ
y
9
))

Ux
9 Ux

4 Uy,y†

(8,10)U
y,y†

(3,5)

]n

, (108b)

exp
(
–i(h3 + h8)t

)

≈
[

Ux,x
(4,6)U

x,x
(9,11)U

y
5Uy

10 exp

(
–

iAt
2n

(
σ

y
4 σ x

5 + σ
y
9 σ x

10
))

Uy†

10Uy†

5 Ux,x†

(9,11)

· Ux,x†

(4,6) · Uy,y
(4,6)U

y,y
(9,11)U

x†

5 Ux†

10

× exp

(
–

iAt
2n

(
σ x

4 σ
y
5 + σ x

9 σ
y
10

))
Ux

10Ux
5 Uy,y†

(9,11)U
y,y†

(4,6)

]n

, (108c)

exp(–ih4t) ≈
[

Ux,x
(5,7)U

y
6 exp

(
–

iAσ
y
5 σ x

6 t
2n

)
Uy†

6 Ux,x†

(5,7)

· Uy,y
(5,7)U

x†

6 exp

(
–

iAσ x
5 σ

y
6 t

2n

)
Ux

6 Uy,y†

(5,7)

]n

, (108d)

exp(–ih5t) ≈
[

Ux,x
(6,8)U

y
7 exp

(
–

iAσ
y
6 σ x

7 t
2n

)
Uy†

7 Ux,x†

(6,8)

· Uy,y
(6,8)U

x†

7 exp

(
–

iAσ x
6 σ

y
7 t

2n

)
Ux

7 Uy,y†

(6,8)

]n

, (108e)

with which we obtain the Trotter expansion for the whole vertical hopping

U∗
verti(t/n) ≈

[
exp

(
–i(h1 + h6)

t
n

)
· exp

(
–i(h2 + h7)

t
n

)
· exp

(
–i(h3 + h8)

t
n

)

· exp

(
–ih4

t
n

)
· exp

(
–ih5

t
n

)]n

. (109)
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Now, we approximate the time evolution of the hopping Hamiltonian H∗
hop = H∗

hori +H∗
verti

for a 2 × 3 Fermion lattice as follows

U∗
hop(t/n) ≈ [

e–iH∗
horit/ne–iH∗

vertit/n]n =
[
U∗

hori(t/n)U∗
verti(t/n)

]n, (110)

where U∗
hori(t/n), and U∗

verti(t/n) is defined in Eq. (105), and Eq. (109) respectively.

Appendix E: Circuit QED implementation
In this section, we present a cQED encoding of a 2 × 3 Fermi-Hubbard model with a 12-
qubit system

Ĥ =
12∑

j=1

ωj

2
σ z

j +
[
g(j)

0 + g(j)
1 ϕ

(j)
AC

]
σ

y
j σ

y
j+1, (111)

where ωj = ω1 for odd j, ωj = ω2 for even j and ϕ
(j)
AC = A(j)

1 cos (ν(j)
1 t + ϕ̃

(j)
1 )+A(j)

2 cos (ν(j)
2 t + ϕ̃

(j)
2 )

is the time-dependent AC signal through the jth SQUID. Moreover, the effectivce coupling
strength g(j)

0 , and g(j)
1 are defined in Eq. (76). Now we write the Hamiltonian in Eq. (111) in

interaction picture concerning Ĥ0 =
∑12

j=1 ωjσ
z
j /2 and perform the RWA obtaining

ĤI =
11∑

j=1

Ĥj,j+1
I , (112)

with the interaction Hamiltonian between the jth and (j + 1)th qubit

Ĥj,j+1
I =

A(j)
1 g(j)

1
2

(
ei(–1)j(12–ν

(j)
1 )tei(–1)j+1ϕ̃

(j)
1 σ –

j σ +
j+1 + ei(–1)j+1(12–ν

(j)
1 )tei(–1)jϕ̃

(j)
1 σ +

j σ –
j+1

)

–
A(j)

2 g(j)
1

2
(
e–i(μ12–ν

(j)
2 )teiϕ̃(j)

2 σ –
j σ –

j+1 + ei(μ12–ν
(j)
2 )te–iϕ̃(j)

2 σ +
j σ +

j+1
)
. (113)

Here, we neglected the fast oscillating terms proportional to exp(±i(12 + ν
(j)
1(2))t),

exp(±i(μ12 + ν
(j)
1(2))t), exp(±i12t), exp(±iμ12t), as we assume that the adjacent qubits

are far from resonance and the coupling strength {g(j)
0 , g(j)

1 A(j)
1(2)/2} � {12,μ12,ν(j)

1(2)}. In
Fig. 16, we show that we can activate coupling terms {σ +

j σ –
j+1,σ –

j σ +
j+1} and {σ +

j σ +
j+1,σ –

i σ –
j+1}

Figure 16 Population evolution of the jth and (j + 1)th qubit calculated from Eq. (113). The physical
parameters of the circuit we consider are shown in Table 3 of the main text. (a) Population inversion of the
states |0〉j|1〉j+1 (blue line) and |1〉j|0〉j+1 (orange line), where ν

(j)
1 = ν12 and ν

(j)
2 = 0. (b) Population inversion of

the states |1〉j|1〉j+1 (orange line) and |0〉j|0〉j+1 (blue line), where ν
(j)
2 =μ12 and ν

(j)
1 = 0
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Table 5 Phase parameters required to simulate the time evolution of horizontal hopping
Hamiltonian, see Eq. (105)

Horizontal Hopping

Operator ϕ̃
(j)
1 ϕ̃

(j)
2

Ux
3U

x
7U

x
11 ϕ̃(3),(7),(11)

1 = 2π ϕ̃(3),(7),(11)
2 = π

exp(– iA
2 (σ x

2σ
y
3 + σ x

6σ
y
7 + σ x

10σ
y
11)

t
n ) ϕ̃(2),(6),(10)

1 = 1/2π ϕ̃(2),(6),(10)
2 = 3/2π

Ux†
3 Ux†

7 Ux†
11 ϕ̃(3),(7),(11)

1 = π ϕ̃(3),(7),(11)
2 = 2π

Uy†

3 Uy†

7 Uy†

11 ϕ̃(3),(7),(11)
1 = π ϕ̃(3),(7),(11)

2 = π

exp( –iA2 (σ y
2σ

x
3 + σ

y
6σ

x
7 + σ

y
10σ

x
11)

t
n ) ϕ̃(2),(6),(10)

1 = 3/2π ϕ̃(2),(6),(10)
2 = 3/2π

Uy
3U

y
7U

y
11 ϕ̃(3),(7),(11)

1 = 2π ϕ̃(3),(7),(11)
2 = 2π

Ux
2U

x
6U

x
10 ϕ̃(2),(6),(10)

1 = 2π ϕ̃(2),(6),(10)
2 = π

exp(– iA
2 (σ x

1σ
y
2 + σ x

5σ
y
6 + σ x

9σ
y
10)

t
n ) ϕ̃(1),(5),(9)

1 = 3/2π ϕ̃(1),(5),(9)
2 = 3/2π

Ux†
2 Ux†

6 Ux†
10 ϕ̃(2),(6),(10)

1 = π ϕ̃(2),(6),(10)
2 = 2π

Uy†

2 Uy†

6 Uy†

10 ϕ̃(2),(6),(10)
1 = π ϕ̃(2),(6),(10)

2 = π

exp(– iA
2 (σ y

1σ
x
2 + σ

y
5σ

x
6 + σ

y
9σ

x
10)

t
n ) ϕ̃(1),(5),(9)

1 = 1/2π ϕ̃(1),(5),(9)
2 = 3/2π

Uy
2U

y
6U

y
10 ϕ̃(2),(6),(10)

1 = 2π ϕ̃(2),(6),(10)
2 = 2π

Table 6 Phase parameters required to simulate the time evolution of the vertical hopping h5, see
Eq. (108e)

Vertical Hopping

Operator ϕ̃1 ϕ̃2

Uy,y†

(6,8) ϕ̃5,8
1 = π ϕ̃5,8

2 = π

Ux
7 ϕ̃7

1 = 2π ϕ̃7
2 = π

exp(– iA
2 σ x

6σ
y
7

t
n ) ϕ̃6

1 = 1/2π ϕ̃6
2 = 3/2π

Ux†
7 ϕ̃7

1 = π ϕ̃7
2 = 2π

Uy,y
(6,8) ϕ̃5,8

1 = 2π ϕ̃5,8
2 = 2π

Ux,x†

(6,8) ϕ̃5,8
1 = π ϕ̃5,8

2 = 2π

Uy†

7 ϕ̃7
1 = π ϕ̃7

2 = π

exp(– iA
2 σ

y
6σ

x
7

t
n ) ϕ̃6

1 = 3/2π ϕ̃6
2 = 3/2π

Uy
7 ϕ̃7

1 = 2π ϕ̃7
2 = 2π

Ux,x
(6,8) ϕ̃5,8

1 = 2π ϕ̃5,8
2 = π

Table 7 Phase parameters to simulate the time evolution of the vertical hopping h4, see Eq. (108d)

Vertical Hopping

Operator ϕ̃
(j)
1 ϕ̃

(j)
2

Uy,y†

(5,7) ϕ̃(4),(7)
1 = π ϕ̃(4),(7)

2 = π

Ux
6 ϕ̃(6)

1 = 2π ϕ̃(6)
2 = π

exp(– iA
2 σ x

5σ
y
6

t
n ) ϕ̃(5)

1 = 3/2π ϕ̃(5)
2 = 3/2π

Ux†
6 ϕ̃(6)

1 = π ϕ̃(6)
2 = 2π

Uy,y
(5,7) ϕ̃(4),(7)

1 = 2π ϕ̃(4),(7)
2 = 2π

Ux,x†

(5,7) ϕ̃(4),(7)
1 = π ϕ̃(4),(7)

2 = 2π

Uy†

6 ϕ̃(6)
1 = π ϕ̃(6)

2 = π

exp(– iA
2 σ

y
5σ

x
6

t
n ) ϕ̃(5)

1 = 1/2π ϕ̃(5)
2 = 3/2π

Uy
6 ϕ̃(6)

1 = 2π ϕ̃(6)
2 = 2π

Ux,x
(5,7) ϕ̃(4),(7)

1 = 2π ϕ̃(4),(7)
2 = π

in Eq. (113), respectively, and the physical parameters we consider are shown in Table 3
of the main text.

Moreover, by considering the resonant conditions ν
(j)
1 = 12, and ν

(j)
2 = μ12, and we can

neglect the fast oscillating terms proportional to exp(±i(12 – ν
(j)
2 )t) and exp(±i(μ12 –
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Table 8 Phase parameters required to simulate the time evolution of the vertical hopping h3 and h8,
see Eq. (108c)

Vertical Hopping

Operator ϕ̃
(j)
1 ϕ̃

(j)
2

Uy,y†

(9,11)U
y,y†

(4,6) ϕ̃(3),(6),(8),(11)
1 = π ϕ̃(3),(6),(8),(11)

2 = π

Ux
10U

x
5 ϕ̃(5),(10)

1 = 2π ϕ̃(5),(10)
2 = π

exp(– iA
2 (σ x

4σ
y
5 + σ x

9σ
y
10)

t
n ) ϕ̃(4)

1 = 1/2πϕ̃(9)
1 = 3/2π ϕ̃(4)

2 = 3/2πϕ̃(9)
2 = 3/2π

Ux†
5 Ux†

10 ϕ̃(5),(10)
1 = π ϕ̃(5),(10)

2 = 2π
Uy,y
(4,6)U

y,y
(9,11) ϕ̃(3),(6),(8),(11)

1 = 2π ϕ̃(3),(6),(8),(11)
2 = 2π

Ux,x†

(9,11)U
x,x†

(4,6) ϕ̃(3),(6),(8),(11)
1 = π ϕ̃(3),(6),(8),(11)

2 = 2π

Uy†

10U
y†

5 ϕ̃(5),(10)
1 = π ϕ̃(5),(10)

2 = π

exp(– iA
2 (σ y

4σ
x
5 + σ

y
9σ

x
10)

t
n ) ϕ̃(4)

1 = 3/2πϕ̃(9)
1 = 1/2π ϕ̃(4)

2 = 3/2πϕ̃(9)
2 = 3/2π

Uy
5U

y
10 ϕ̃(5),(10)

1 = 2π ϕ̃(5),(10)
2 = 2π

Ux,x
(4,6)U

x,x
(9,11) ϕ̃(3),(6),(8),(11)

1 = 2π ϕ̃(3),(6),(8),(11)
2 = π

Table 9 Phase parameters required to simulate the time evolution of the vertical hopping h2 and h7,
see Eq. (108b)

Vertical Hopping

Operator ϕ̃
(j)
1 ϕ̃

(j)
2

Uy,y†

(8,10)U
y,y†

(3,5) ϕ̃(2),(5),(7),(10)
1 = π ϕ̃(2),(5),(7),(10)

2 = π

Ux
9U

x
4 ϕ̃(4),(9)

1 = 2π ϕ̃(4),(9)
2 = π

exp(– iA
2 (σ x

3σ
y
4 + σ x

8σ
y
9 )

t
n ) ϕ̃(3)

1 = 3/2πϕ̃(8)
1 = 1/2π ϕ̃(3)

2 = 3/2πϕ̃(8)
2 = 3/2π

Ux†
4 Ux†

9 ϕ̃(4),(9)
1 = π ϕ̃(4),(9)

2 = 2π
Uy,y
(3,5)U

y,y
(8,10) ϕ̃(2),(5),(7),(10)

1 = 2π ϕ̃(2),(5),(7),(10)
2 = 2π

Ux,x†

(8,10)U
x,x†

(3,5) ϕ̃(2),(5),(7),(10)
1 = π ϕ̃(2),(5),(7),(10)

2 = 2π

Uy†

9 Uy†

4 ϕ̃(4),(9)
1 = π ϕ̃(4),(9)

2 = π

exp(– iA
2 (σ y

3σ
x
4 + σ

y
8σ

x
9 )

t
n ) ϕ̃(3)

1 = 1/2πϕ̃(8)
1 = 3/2π ϕ̃(3)

2 = 3/2πϕ̃(8)
2 = 3/2π

Uy
4U

y
9 ϕ̃(4),(9)

1 = 2π ϕ̃(4),(9)
2 = 2π

Ux,x
(3,5)U

x,x
(8,10) ϕ̃(2),(5),(7),(10)

1 = 2π ϕ̃(2),(5),(7),(10)
2 = π

Table 10 Phase parameters required to simulate the time evolution of the vertical hopping h1 and
h6, see Eq. (108a)

Vertical Hopping

Operator ϕ̃
(j)
1 ϕ̃

(j)
2

Uy,y†

(7,9)U
y,y†

(2,4) ϕ̃(1),(4),(6),(9)
1 = π ϕ̃(1),(4),(6),(9)

2 = π

Ux
8U

x
3 ϕ̃(3),(8)

1 = 2π ϕ̃(3),(8)
2 = π

exp(– iA
2 (σ x

2σ
y
3 + σ x

7σ
y
8 )

t
n ) ϕ̃(2)

1 = 1/2πϕ̃(7)
1 = 3/2π ϕ̃(2)

2 = 3/2πϕ̃(7)
2 = 3/2π

Ux†
3 Ux†

8 ϕ̃(3),(8)
1 = π ϕ̃(3)

2 = 2π
Uy,y
(2,4)U

y,y
(7,9) ϕ̃(1),(4),(6),(9)

1 = 2π ϕ̃(1),(4),(6),(9)
2 = 2π

Ux,x†

(7,9)U
x,x†

(2,4) ϕ̃(1),(4),(6),(9)
1 = π ϕ̃(1),(4),(6),(9)

2 = 2π

Uy†

8 Uy†

3 ϕ̃(3),(8)
1 = π ϕ̃(3),(8)

2 = π

exp(– iA
2 (σ y

2σ
x
3 + σ

y
7σ

x
8 )

t
n ) ϕ̃(2)

1 = 3/2πϕ̃(7)
1 = 1/2π ϕ̃(2)

2 = 3/2πϕ̃(7)
2 = 3/2π

Uy
3U

y
8 ϕ̃(3),(8)

1 = 2π ϕ̃(3),(8)
2 = 2π

Ux,x
(2,4)U

x,x
(7,9) ϕ̃(1),(4),(6),(9)

1 = 2π ϕ̃(1),(4),(6),(9)
2 = π

ν
(j)
1 )t) in Eq. (113) obtaining the interaction Hamiltonian given by Eq. (77). And for a proper

choice of the phase ϕ
(j)
1(2), the operators we can engineer are summarized in Table 2, with

which we can simulate the time evolution of the hopping Hamiltonian (see Eq. (110)) in an



Yu et al. EPJ Quantum Technology             (2022) 9:9 Page 34 of 35

analog way. The sequence of the gates and the corresponding signal parameters as shown
in Tables 5–10.
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