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Increase of deposits of amyloid β peptides in the extracellular matrix is landmark
during Alzheimer’s Disease (AD) due to the imbalance in the production vs. clearance.
This accumulation of amyloid β deposits triggers microglial activation. Microglia plays
a dual role in AD, a protective role by clearing the deposits of amyloid β peptides
increasing the phagocytic response (CD163, IGF-1 or BDNF ) and a cytotoxic role,
releasing free radicals (ROS or NO) and proinflammatory cytokines (TNF-α, IL-1β)
in response to reactive gliosis activated by the amyloid β aggregates. Microglia
activation correlated with an increase KV1.3 channels expression, protein levels and
current density. Several studies highlight the importance of KV1.3 in the activation of
inflammatory response and inhibition of neural progenitor cell proliferation and neuronal
differentiation. However, little is known about the pathways of this activation in neural
stem cells differentiation and proliferation and the role in amyloid β accumulation. In
recent studies using in vitro cells derived from mice models, it has been demonstrated
that KV1.3 blockers inhibit microglia-mediated neurotoxicity in culture reducing the
expression and production of the pro-inflammatory cytokines IL-1β and TNF-α through
the NF-kB and p38MAPK pathway. Overall, we conclude that KV1.3 blockers change
the course of AD development, reducing microglial cytotoxic activation and increasing
neural stem cell differentiation. However, further investigations are needed to establish
the specific pathway and to validate the use of this blocker as therapeutic treatment in
Alzheimer patients.

Keywords: Alzheimer’s disease, microglia, KV1.3, inflammation, neurodegenaration, neural stem cell (NSC),
therapeutic targets

INTRODUCTION

Alzheimer’s Disease (AD) is one of the main progressive neurodegenerative disorders and the
most common cause of dementia affecting principally the elderly (Bateman et al., 2012). The
histopathology is characterized by brain atrophy, deposits of amyloid β (Aβ) peptides in the
extracellular matrix, neurofibrillary tangles (mainly tau protein), loss of neurons and synapses and
dystrophic neurites (Hansen et al., 2018).
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The increased number of Aβ amyloid plaques in the
extracellular matrix, due to the imbalance in the production vs.
clearance, is believed to be the principal pathogenic mechanism
(Selkoe and Hardy, 2016). Familial AD is characterized by
excessive production of Aβ, caused by a mutation in amyloid
precursor protein (APP) or in the APP processing enzyme.
However, Familial AD is extremely rare, while the majority of the
AD cases are “sporadic” and occur late in life. Late AD is thought
to be a result of genetic and environmental factors, and mainly
aging that reduce the brain’s ability to clear Aβ (Mawuenyega
et al., 2010; Wildsmith et al., 2013).

Microglial activation was initially thought to be incidental and
triggered by the accumulation of amyloid deposits. Interestingly,
it has been established recently that many genes found in or near
AD risk loci are genes mainly expressed in microglia (Hemonnot
et al., 2019). Among these genes, Apoliprotein E (APOE), SP1l,
TREM2, or CD33 code for proteins that are expressed principally
or exclusively in microglia (Verheijen and Sleegers, 2018).

Microglia, the major inflammatory cells of the brain, play a
dual role in AD. On the one hand, they play a protective role
by clearing the deposits of Aβ peptides increasing the phagocytic
activity (Miners et al., 2011) and on the other hand, they play
a cytotoxic role by releasing cytotoxic substances and pro-
inflammatory cytokines in response to reactive gliosis activated
by the Aβ aggregates (Glass et al., 2010).

MICROGLIAL ACTIVATION IN
ALZHEIMER’S DISEASE

Neuroinflammation is driven mostly by glial cells such as
microglia and astrocytes (Forloni and Balducci, 2018). Microglia,
which represent around 10–15% of human brain cells, are
immune cells that first respond to nervous system changes (Kwon
and Koh, 2020; Liu et al., 2021). Microglia are categorized
mainly in two opposite phenotypes depending on their specific
markers that define cell type and state; the pro-inflammatory M1
(classical activation) and M2 (alternative activation) phenotypes
(Mills et al., 2000; Bi et al., 2021). Depending on the
activated phenotype, microglia can produce either cytotoxic or
neuroprotective effects. The classical activation is related to
pro-inflammatory cytokine production, such as tumor necrosis
factor-α (TNF-α), interleukin-1β (IL-1β) and reactive oxygen
species (ROS) or nitric oxide (NO) production. Meanwhile, the
alternative activation promotes anti-inflammatory response with
increased IL-4, IL-10, CD36 and phagocytic response expressing
CD163, insulin-like growth factor 1 (IGF-1) and brain derived
neurotrophic factor (BDNF) (Le et al., 2016; Chen et al., 2021;
Figure 1). The microglial polarization has not been supported by
single-cell RNA-seq, while this transcriptomic analysis have been
used to distinguish between diseased associated microglia (DAM)
or activated response microglia (ARM) (Keren-Shaul et al., 2017;
Sala Frigerio et al., 2019). Transcriptome data show that during
neurodegenerative diseases both phenotypes, the neurotoxic and
the neuroprotective, are expressed (Sarlus and Heneka, 2017;
Figure 1).

During AD, microglial activation is associated with Aβ

deposits in human and mice brains (Kamphuis et al., 2012;

Olmos-Alonso et al., 2016). Indeed, activated microglia in AD
mouse models express increased inflammatory markers CD36,
CD14, CD11c, major histocompatibility complex-II (MHC-II),
and inducible nitric oxide synthase (iNOS), as well as M1
phenotype markers.

The inflammatory response is typically composed of three
main stages. First, toll-like receptor (TLR)-mediated NF-κB
formation. This leads to an increase of mainly members of the
nod-like receptor (NLR) that assemble the inflammasome that
third, activates caspase-1, which cleaves the precursor protein and
release IL-1β (Yin et al., 2016).

While anti-inflammatory cytokines may have a deleterious
role in AD (Guillot-Sestier et al., 2015), TLR activation and IL-
1β secretion may also have protective effects (Shaftel et al., 2007;
Richard et al., 2008).

Cytokines
Post-mortem immunohistochemical studies of brain tissues show
that among all cytokines that are highly expressed during AD,
IL-1β, IL-6, and TNF-α are the most abundant (Bernhardi et al.,
2015). Increased levels of these cytokines may play different
roles in the context of Aβ deposition. Remarkably, IL-1β, a
key cytokine of innate immune response, enhance Aβ and tau
pathology (Lee et al., 2013), while increased levels of TNF-α may
facilitate the Aβ clearance (Montgomery et al., 2011; Sarlus and
Heneka, 2017).

Particularly, IL-1β activates astrocytes that may contribute
to plaque formation due to the release of astrocyte-derived
proteins, such as IL-6, APOE and some complement proteins.
Furthermore, IL-1β induces neurite growth promoting the
cytokine S100β. S100β induces the increase of Aβ precursor
protein, so it has been linked with the initial deposition of
Aβ (Griffin and Mrak, 2002). The abnormal accumulation of
Aβ plaques also triggers the excessive release of other anti-
inflammatory cytokines, such as IL-4, IL-10, IL-13 that accelerates
tissue remodeling, repair and angiogenesis and inhibits the
production of other pro-inflammatory cytokines (Stamouli and
Politis, 2016; Kaur et al., 2019).

During neuroinflammation in AD there is also an activation
of TLR-2. This activation triggers the nuclear translocation of NF-
κB and provokes Aβ-induced inflammation and chronicity of AD
(Zhao et al., 2013).

Some protein kinases such as mitogen-activated protein
kinase (MAPK), cell division cycle 2 kinase (CDC2) and Janus
kinase-signal transducer and activator of transcription (JAK-
STAT) pathways have been also identified in AD progression
(Rather et al., 2021). Activated MAPK and NF-κB increase
the production of pro-inflammatory cytokines promoting
APP processing, blood-brain barrier (BBB) disintegration and
aggravates tau protein phosphorylation. Moreover, the formation
of neurofibrillary tangles due to p38-MAPK activation leads to
neuronal degeneration and finally neuronal death (Jeong et al.,
2014; Rather et al., 2021).

Chemokines
Chemokines, a large family of small (8–14 kDa) basic proteins,
are also important inflammatory mediators overexpressed during
inflammatory events in the CNS. During AD, several chemokines
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FIGURE 1 | Schematic illustration of microglial activation due to Aβ accumulation. Activated microglia polarized into M1 or M2 phenotype. Activation of M1
phenotype induces pro-inflammatory cytokine, chemokine and complement protein release provoking citotoxicity and consequently astrocyte A1 activation,
neuroinflammation and neuronal cell death. M2 phenotype activation induces anti-inflammatory response and consequently A2 activation and neuroprotection.
KV1.3 inhibition has been related to M2 phenotype polarization.

have been associated with microglia activation due to Aβ

depositions. For example, CCR2 (C-C motif chemokine receptor
type 2) is a chemokine expressed on microglia that accumulates
mononuclear phagocytes in inflammatory sites. Studies show
that lack of CCR2 decreases microglial accumulation and
results in an increased Aβ deposition, indicating that CCR2
may play a protective role in AD promoting Aβ clearance
(El Khoury et al., 2007).

Moreover the lack of CCR2 stimulates the expression of TGF-β
and CX3CR1 (CX3C chemokine receptor 1) in microglia (Guedes
et al., 2018). Interestingly, several murine AD mice models
revealed that genetic elimination of CX3CR1, a chemokine
receptor predominantly found in microglia, resulted in a decrease
of amyloid plaques due to the increase of phagocytic capacity in
the activated microglia (Guedes et al., 2018).

Complement Proteins
The complement system, composed of about 30 proteins, plays
an important role in host defense and in the inflammatory
regulation (Crehan et al., 2012). The accumulation of Aβ

plaques and increased neurofibrillary tangles activate the classical
complement pathway in microglia within the collagen-like
domain of C1q (Shen et al., 2001). Nevertheless, complement’s
role needs to be further studied (Rasmussen et al., 2018), as C3,
a central component in the activation of the complement system,
provokes different responses to microglial phagocytosis.

The complement-dependent mechanism can also mediate
synapse loss by swallowing this synapse. During AD, this
synapse loss involves a pathway in which the complement
clears pathogens and apoptotic cells after binding of
complement protein C1q. Thus, blocking microglial activation
or the activation of complement mechanism may have
beneficial effects in AD reducing synapse and neuronal loss
(Hansen et al., 2018).

Free Radicals
Some authors described that the abnormal accumulation of Aβ

and the deposition of neurofibrillary tangles extend oxidative
damage, impair Ca2+ homeostasis and produce mitochondrial
dysfunction during AD (Bello-Medina et al., 2021). Nevertheless,
other studies claim that during AD the increased ROS production
and altered Ca2+ homeostasis precede Aβ accumulation and is
due to mitochondrial dysfunction (Yoo et al., 2020). Anyway,
increased microglial ROS production contributes to oxidative
stress resulting in neuronal dysfunction and neurotoxicity.
Moreover, microglia respond to damage-associated molecular
patterns (DAMPs) released from damaged cells, activating
NADPH oxidase (NOX). In fact, the activation of the phagocyte
NOX2 in microglia seems to play an important role in
neuroinflammation and in neuronal death (Qin et al., 2013; Jiang
et al., 2015).

Microglia produce pattern recognition receptors (PRR) also
in response to DAMPs stimuli, such as Complement receptor
3 (CR3) or TLR. These PRR mediate activation of pro-
inflammatory signaling traducers NLRP3 inflammasome, NF-κB
and MAPKs (Simpson and Oliver, 2020).

MICROGLIAL ION CHANNELS AND
ALZHEIMER’S DISEASE

In healthy brains, microglia regulate the correct development
and function of synapses and synaptic plasticity. Microglia-
synapse disruption may contribute to synapse loss,
dysfunction and, consequently, disease (Hong et al.,
2016). There are many studies concerning the effect of
changes in cytokines, chemokines or ROS production in
microglial activation. However, little is known about the
effects of changes in the intracellular ionic homeostasis
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and microglial activation (Izquierdo et al., 2019). Ion
channels are involved in many microglial functions, such
as cytokine production, migration, production or proliferation,
among others.

Microglia membrane express different ion channels, such
as Ca2+-, K+-, Na+-, H+- and Cl−-channels, in order to
face all physiological functions. For instance, Ca2+-channels
are important for intracellular Ca2+ homeostasis in microglia.
Store-operated Ca2+-channels, voltage-gated Ca2+-channels and
transient receptor potential channels control Ca2+ signaling for
microglial activation (Luo et al., 2021). Inward rectifier channels
and voltage-gated K+-channels as well as Cl−-channels (volume
regulated Cl−-channels and chloride intracellular channels),
are not only necessary for cell hyperpolarization, but for
cell activation and proliferation. This is because they supply
the driving force that allow an increase intracellular Ca2+

concentration via Ca2+-channels (Nguyen et al., 2017).
Voltage-gated and acid-sensing Na+-channels are also

relevant in these non-excitable cells to regulate cell migration,
phagocytosis, and secretion of cytokines (Pappalardo et al.,
2016). Finally, voltage-gated H+-channels are also important to
regulate cells’ pH.

Glial cells express the voltage-gated K+-channels KV1.3 and
KV1.5. These channels activity changes in microglial activation
by modifying their relative expression. In fact, one characteristic
of activated inflammatory cells is an increased expression and
function of the KV1.3 channels (Pérez-Verdaguer et al., 2016). In
quiescent cells KV1.5 regulates the proliferation rate (Pannasch
et al., 2006; Gubiè et al., 2021) while KV1.3 is dominant in
activated microglial cells (Gubiè et al., 2021). Besides, KV1.5
seems to be essential for NO production (Pannasch et al., 2006),
but causes cell cycle arrest. On the other hand, KV1.3 participates
in microglial proliferation and migration, as well as in the
cytokine release (Charolidi et al., 2015; Stebbing et al., 2015).
LPS-mediated microglial activation induces cytokine release, but
decreases proliferation (Pannasch et al., 2006). In response to Aβ

accumulation KV1.3, KV1.5 and calcium-activated K+-channels
(KCa3.1, KCa2.3, or BK channels) increase voltage-dependent
Ca2+ entry provoking a disruption in Ca2+ homeostasis and
consequently neurodegeneration (Dolga et al., 2012; Kumar et al.,
2016; Huang et al., 2021). Among all these channels, the most
studied is KV1.3.

KV1.3 in Microglia During Alzheimer’s
Disease
Within all type of microglial channels, KV1.3 has a fundamental
role in the activation of these cells, since it contributes to
maintaining the negative membrane potential. This channel is a
Shaker-type voltage-gated K+-channel with six transmembrane
domains (Wulff and Zhorov, 2008) and it is widely distributed
throughout the whole body, being highly expressed in both
nervous and immune systems. First described in T cells
(DeCoursey et al., 1984), it has been related with autoimmune
diseases mostly as it plays an important role in immune cell
activation by modulating Ca2+ signaling (Wulff et al., 2007; Feske
et al., 2015).

Microglia activation provokes an overexpression of KV1.3
mRNA and protein levels, which lead to increased current
densities (Nguyen et al., 2017). KV1.3 is required for microglial
pro-inflammatory activation and neurotoxicity (Figure 2A) and
is highly expressed by microglia in human AD brains and AD
mice models (Rangaraju et al., 2015).

Overexpression of KV1.3 channels in a microglial cell line
increases the expression and secretion of different interleukins
(Sarkar et al., 2020). Mice exposed to experimental stroke
(Chen et al., 2016) as well as treatment with lipopolysaccharide
(LPS) or a combination of LPS and IFN-γ in the microglia of
mouse models (Nguyen et al., 2017; Di Lucente et al., 2018)
exhibit increased KV1.3 current in affected areas. LPS-mediated
microglial activation induces cytokine release, but decreases
proliferation (Pannasch et al., 2006). In addition, stimulus such
LPS or ATP activates the NF-κB pathway via different membrane
receptors [purinergic receptor (P2 × 4 and P2 × 7) and TLR4]
leading to an overexpression of KV1.3 and pro-inflammatory
factors provoking neuroinflammation (Figure 2A). Concerning
this, Di Lucente et al. (2018) demonstrated that blockade KV1.3
blockade after LPS treatment induces M2 microglia polarization
reducing pro-inflammatory markers.

ATP and the increased K+ efflux augment Ca2+ entry,
which raises the inflammatory state of the cell through the
activation of NF-κB pathway via p38MAPK phosphorylation. At
the same time, NF-κB interacts with their binding sites in the
KV1.3 promotor. All these changes cause NLRP3 inflammasome
activation conducting IL-1β secretion (Figure 2A). Besides,
inhibition of NF-κB or up-regulation of KV1.3 provoked by
αSynAgg stimulation indicates that both p38MAPK and NF-
κB pathways intervene in the transcriptional regulation of the
channel (Sarkar et al., 2020).

EFFECT OF MICROGLIA ON NEURAL
STEM CELL DIFFERENTIATION IN
ALZHEIMER’S DISEASE

There is a controversy about human neurogenesis. Some authors
conclude that hippocampal neurogenesis is extremely rare in the
adult brain, as they did not detect new neurons in the dental gyrus
(Sorrells et al., 2018). However, other authors observed immature
neurons, neuroblast and neural progenitor cells in aged human
hippocampus (Boldrini et al., 2018; Tobin et al., 2019).

In the adult mammalian brain, neural stem cells (NSCs)
are localized in two major neurological niches, the subgranular
zone of the hippocampus (SGZ) and the subventricular zone
of the lateral ventricle (SVZ). These cells retain the ability
to proliferate and differentiate into neurons and glial cells
(Moreno-Cugnon et al., 2019).

Some studies report that microglia in the hippocampus
are more active than in other brain regions, playing an
important role in refining neuronal circuits (Rao et al., 2022).
Furthermore, microglia release several cytokines that promote
microglial migration, neuroblast generation and neurogenesis
and is considered a crucial component for determine NSC fate
(Shigemoto-Mogami et al., 2014; Geribaldi-Doldán et al., 2021).
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FIGURE 2 | Microglia activation to M1 and the KV1.3 blockade effect on this activation. (A) Different stimuli activate microglia to pro-inflammatory state (M1). The
activation of the NF-κB pathway induced an increase of KV1.3 protein in the membrane, among others effects. (B) KV1.3 inhibitor provokes a smaller Ca2+ entry
reducing secretion of pro-inflammatory factors due to the decrease in the activation of NF-κB pathway. P2 × 7 and P2 × 4, purinergic receptors; TLR4, toll like
receptor 4; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; PAMPs, exposure to pathogen-associated molecular patterns; DAMPs, endogenous
damage-associated molecular patterns; ROS, reactive oxygen species; Fyn, non-receptor tyrosine-protein kinase; IL, interleukin; TNF, tumor necrosis factor; iNOS,
nitric oxide synthase, NO, nitric oxide.

The hippocampus is one of the most affected brain regions
in AD with altered dentate granule cells. There have been
several studies using NSC/induced pluripotent stem cells (iPSCs)
derived from Alzheimer patients with the objective of promoting
neurogenesis and ameliorating the progression of the disease
(Wu et al., 2021). In one of these studies, for example, they
demonstrate that the release of pro-inflammatory cytokines,
such as TNF-α, IL-1β, and IGF-1 by microglia enhance the
dopaminergic differentiation of neural stem cells and promote
neurogenesis (Boyd et al., 2021; Schmidt et al., 2021).

As mentioned, impaired CX3CR1 has been described
in AD (Guedes et al., 2018). In the hippocampus, this
impairment has been linked to adult hippocampal neurogenesis
disruption, with spatial and fear-memory and motor
learning loss due mainly to the increase of IL-1β by
microglial activation (Parkitny and Maletic-Savatic, 2021).
Remarkably, the importance of IL-1β in adult hippocampal
neurogenesis was recognized over a decade ago when it
was associated with anti-proliferative and anti-neurogenic
effects (Crampton et al., 2012). Moreover, PRR seem to be
implicated in the modulation of adult neurogenesis as they are
expressed also in neural progenitor cells (NPCs), providing
communication pathways from apoptotic or injured cells
(Parkitny and Maletic-Savatic, 2021).

Role of KV1.3 in Neural Stem Cell
Differentiation
Recent studies support the hypothesis that cell proliferation and
division depend on K+-channels activity (Gallo et al., 1996; Jäger
and Grissmer, 2004). KV1.3 channels control action potential
firing of hippocampal and OB neurons, representing around

60–80% of all K+-channels in these areas (Martínez-Mármol
et al., 2016). This channel has also been found in NPC. Moreover,
Liebau et al., 2006 demonstrated that blockade of KV1.3 by
Psora-4 [5-(4-Phenylbutoxy) psoralen] increases the number of
NPC in vitro. In 2010, Wang et al. (2010) also exposed the
importance of KV1.3 in the activation of inflammatory response
and inhibition of NPC proliferation and neuronal differentiation.
However, little is known about the pathways of this activation in
NSC differentiation and proliferation.

KV1.3 AS A POTENTIAL THERAPEUTIC
TARGET IN ALZHEIMER’S DISEASE

To date, there is no treatment to cure or prevent AD.
Current treatments are only useful in slowing down the
progression of the disease and in managing some behavioral
and cognitive symptoms of AD patients. Because of the complex
pathophysiology, sometimes the treatment needs to be a
combination of therapies. Currently, only six treatments are
approved in the US. These include three cholinesterase inhibitors
(donepezil, galantamine, and rivastigmine), one N-methyl-
D-aspartate receptor antagonist (memantine) (Cummings
et al., 2019), a fixed-dose combination with donepezil and
memantine and finally, the recently approved aducanumab,
a human monoclonal antibody that targets, and reduces Aβ

accumulations in the brain.
As mentioned, during AD there is a release of cytotoxic

substances and pro-inflammatory cytokines by the M1 activation
provoking neuronal damage and aggravating AD pathology
(Heneka et al., 2015). In this M1 activated state, KV1.3 channels
are upregulated. Little is known about the mechanism in
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which these channels are activated and the consequences in
AD. Recent studies have analyzed the effect of KV1.3 blockers
on microglial profiles in AD models and confirm that pro-
inflammatory and neurotoxic microglia functions are reduced
with different KV1.3 inhibitors (Figure 2B). KV1.3 blockade
decreases cerebral amyloid load, enhances hippocampal neuronal
plasticity, and improves behavioral deficits by a reduction
of microglia activation and inflammatory cytokines levels in
transgenic AD mouse models (Chen et al., 2018; Maezawa et al.,
2018; Ma et al., 2020). Accordingly, KV1.3 blockers inhibit
microglia-mediated neurotoxicity in culture (Fordyce et al., 2005)
and protect mice from microglia-mediated radiation-induced
brain injury in vivo (Peng et al., 2014).

Classification of KV1.3 channel blockers depends on their
selectivity and blockade potency. The most effective inhibitors
are the natural peptides such as the sea anemone Stichodactyla
helianthus toxin ShK and scorpion toxins HsTx, OSK1 and
Vm24. These molecules present high affinity for different
channels. An analog of Shk, the ShK-223, diminished the activity
of the pro-inflammatory microglia and elevated Aβ clearance in
AD models (Rangaraju et al., 2018; Ramesha et al., 2021). HsTX1
[R14A] mutant, is a potent, selective and highly stable peptide
inhibitor. It has been shown that this inhibitor reduces the release
of TNF-α and IL-6 by LPS-mediated BV-2 microglia activation
improving neuroinflammation (Nicolazzo et al., 2022).

Beside these peptides, there are different synthetic
organic small-molecules inhibitors such as, PAP−1 [5-
(4-phenoxybutoxy) psoralen], Psora−4, dihydroquinoline,
benzamides, clofazimine, furoquinoline, acridinone,
furochromene−7−thione, diphenoxylate, and several analogs
are used. All these inhibitors differ in the potency to block KV1.3
channel and the selectivity for the target (Gubiè et al., 2021).

In rodents, PAP-1 and ShK-223 reduce the expression and
production of several cytokines (IL-1β, IL-4, IL-5, IL-10, IL-12,
IFNγ and TNF-α) (Nguyen et al., 2017; Zayas-Arrabal et al.,
2021) and decreased Aβ plaque burden in the 5xFAD mice
brain. Furthermore, these molecules increased Aβ phagocytosis
by microglia and not blood derived monocytes due to the KV1.3
channel blockade (Maezawa et al., 2018; Ramesha et al., 2021).
The pharmacological blockade of the channel in AD mice model
promotes synaptogenesis and polarizes microglial phenotype
toward M2 (Ramesha et al., 2021).

However, the use of pharmacological KV1.3 blockers may
have several adverse effects. ShK and HsTX1 blockers, for
instance, have difficulties to penetrating the intestinal mucosa
so they can’t be taken orally and they neither can cross the

BBB. Therefore, there is a need for cell penetrating peptides
to assist the passage of the drug across the cell membrane
(Wang et al., 2020). Other problem relates to the selective
of KV1.3 blockade. It is important to mention that KV1.3 is
also expressed in mitochondria. This channel controls cell-
proliferation and has an important role in cellular respiration
(Styles et al., 2021). Thus, the use of some small-molecule
KV1.3 blockers as therapy could also block mitochondrial
channels, inducing apoptosis in cancer cells (Teisseyre et al.,
2019). According to recent studies, the most potent and
selective small-molecule KV1.3 inhibitor available is PAP-1
(Peruzzo et al., 2020).

However, PAP-1, PSORA-4 and some derivatives produce
apoptosis in cancer cell lines. These blockers inhibit KV1.3
channels both at the plasma and mitochondrial membranes,
causing an increased ROS production and, finally, apoptosis. The
activation of the apoptotic pathway by these inhibitors is mainly
due to cancer cells’ massive ROS release (Checchetto et al., 2019).
Therefore, the therapeutic use of these inhibitors in AD may
induce microglial apoptosis by further increasing the cell’s basal
level of ROS. Additional studies need to be performed in order to
determine the cytotoxicity of this KV1.3 channel blocker in AD.

In summary, KV1.3 plays important roles in regulating
membrane potential, preventing depolarization and controlling
Ca2+ signaling events reducing microglia activation. However,
further investigation is needed to achieve a deeper understanding
of the role of KV1.3 in the microglial immune response and
to identify specific pathways for enhancement of Aβ plaque
formation or NPC differentiation. Moreover, the potential
pharmacological use of drugs targeting KV1.3 channels requires
further characterization.
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