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The advent of Automated Vehicles (AVs) holds promise as an efficient and safer
alternative to manual driving. In addition to reducing human-caused accidents, it is
also a matter of driving more efficiently with regard to the energy consumption, traffic
flow, and driver workload. However, these technologies are not yet mature enough for
massive deployment in commercial vehicles, as assigning a passive role to humans in
the driving task raises technical, social and legal issues. A technical limitation is that
AVs cannot handle all driving situations, while a social problem is that humans like
driving and have so far proven to be better drivers than machines. In this respect,
the current approach in both the automotive industry and research community is
not to replace the driver completely, but to let the driver and the automated vehicle
cooperate within the traded control scheme (i.e., only one is charge of the driving
task for a certain period). In this context, if the automation is responsible for the
driving task, the driver is assigned the role of supervisor. Humans, however, have
proven to be poor supervisors, as they tend to abuse automation, overtrust it, and
are therefore unprepared to properly take back control when automation demands it.
Furthermore, even attentive drivers are prone to lose situational awareness and may
even become drowsy after a period of inactivity. As a result, any level of automated
driving that partially or fully removes the human from the driver’s role presents a
complex challenge that is still being explored. Yet, accidents happen all the time,
and new solutions are needed to improve road safety.

In this context, the shared-control approach offers the potential to improve
driving safety and performance by keeping the driver involved in the control loop
while taking advantage of recent advances in automated driving technology, such as
perception systems, advanced control methods, and in-vehicle actuators. This control
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scheme allows the driver and the automation system to become a well-coordinated
team, continuously working together at the tactical and control levels of the driving
task. Therefore, more advanced and cooperative driver assistance systems are being
sought than those currently available in commercial vehicles. AVs would then be
the supervisors that the driver needs, rather than the other way around.

Given these premises, the aim of this Ph.D. Thesis is to address both theoretical
and practical aspects of shared-control in automated vehicles. First, a comprehensive
review of the current state-of-the-art is performed to give an overview of the concepts
and applications of shared-control that researchers have been working on over the
last two decades. A practical approach is then taken by developing a steering
shared-controller based on optimal control, which can assist the driver with different
levels of haptic authority (intensity of torque) while maintaining performance and
stability in all cases. This controller and its associated decision-system (Arbitration
Module) will be integrated into the general framework of automated driving and
validated in a driver-in-the-loop simulator platform. In a final stage, two real-world
scenarios are used to demonstrate the effectiveness of the controller. One is used to
support a distracted driver, and the other is used to implement a safety function that
enables overtaking maneuvers on roads with oncoming traffic. Both systems were
evaluated with real participants using objective and subjective assessment methods.
The conclusion of this dissertation is that shared-control is a promising approach for
future automated driving features that can improve road safety in the short term
while allowing people to continue to enjoy driving.
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RESUMEN

Los vehículos automatizados (AV, por sus siglas en inglés) han surgido como una
solución tecnológica para compensar las deficiencias de la conducción manual. La
motivación principal es reducir los accidentes causados por humanos y conducir de
manera más eficiente en términos de consumo de energía, flujo de tráfico y carga de
trabajo del conductor. Sin embargo, la tecnología aún no está lo suficientemente
madura para su implementación masiva en vehículos comerciales, ya que asignar un
papel pasivo a los humanos en la tarea de conducción plantea problemas técnicos,
sociales y legales. Una limitación técnica es que los AVs no son capaces de manejar
todas las situaciones de conducción, mientras que un problema social es que los hu-
manos disfrutan conduciendo y hasta ahora han demostrado ser mejores conductores
que las máquinas. En este sentido, el enfoque actual no es reemplazar al conductor
por completo, sino dejar que el conductor y el vehículo automatizado cooperen
dentro del esquema de control negociado (es decir, controlan el vehículo en diferentes
momentos). En este contexto, al conductor se le asigna el rol de supervisor, mientras
que el sistema de conducción automatizada se encarga de la tarea de conducción. Los
conductores, sin embargo, han demostrado ser malos supervisores, ya que tienden
a abusar de la automatización, confían demasiado en ella y, por lo tanto, no están
preparados para tomar el control adecuadamente. Más aún, incluso los conductores
atentos pierden rápidamente conciencia de la situación de conducción e incluso
pueden sentirse somnolientos después de un período de inactividad. Por lo tanto,
cualquier nivel de conducción automatizada que incapacite parcial o totalmente al
conductor es un gran desafío. Sin embargo, los accidentes siguen ocurriendo y se
necesitan nuevas soluciones para mejorar la seguridad vial.

En este contexto, el enfoque de control compartido, en el que el conductor
permanece involucrado en el control del vehículo y, junto con el sistema automatizado,
forma un equipo bien coordinado que colabora continuamente en los niveles táctico
y de control de la tarea de conducción, es una solución prometedora para mejorar el
desempeño de la conducción manual aprovechando los últimos avances en tecnología
de conducción automatizada en términos de sistemas de percepción, métodos de
control avanzados y actuadores de vehículos. Esta estrategia tiene como objetivo
promover el desarrollo de sistemas de asistencia al conductor más avanzados y
cooperativos en comparación con los disponibles en los vehículos comerciales. En
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este sentido, los vehículos automatizados serán los supervisores que necesitan los
conductores, y no al contrario.

Considerando lo anterior, la presente tesis trata en profundidad el tema del control
compartido en vehículos automatizados, tanto desde un punto de vista teórico como
práctico. En primer lugar, se presenta una descripción exhaustiva del de estado
del arte, para brindar una descripción general de los conceptos y aplicaciones del
control compartido en los que los investigadores han estado trabajando durante las
últimas dos décadas. Luego, se adopta un enfoque práctico mediante el desarrollo
de un controlador lateral basado en control compartido para ayudar al conductor.
Este controlador y su sistema de toma de decisiones asociado (Módulo de Arbitraje)
se integrarán en el marco general de conducción automatizada y se validarán en una
plataforma de simulación de vehículos automatizados con capacidad para interactuar
con el conductor. Finalmente, el controlador desarrollado se utiliza en dos escenarios
del mundo real, uno en un sistema para assistir a un conductor distraído y el
otro en la implementación de una función de seguridad para realizar maniobras
de adelantamiento en carriles de doble sentido. Ambos sistemas fueron evaluados
con participantes reales y se realizaron valoraciones objetivas y subjetivas. Como
conclusión, el control compartido es un enfoque prometedor para futuros sistemas
avanzados en vehículos automatizados, que pueden mejorar la seguridad vial a corto
plazo y permitir que las personas sigan disfrutando de la conducción.
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1Introduction

People have been driving cars for more than a century, gaining experience and
knowledge about how to deal with the complex road traffic situations they

encounter every day. However, humans still do not succeed in ensuring absolutely safe
driving. Indeed, drivers have a limited ability to recognize, understand, and manage
critical situations; they are also prone to misbehavior, drowsiness, and distraction.
According to the National Highway Traffic Safety Administration (NHTSA), traffic
accidents in the U.S. attributable to human error reach an alarming number of up
to 94% [1]. Same trend was found for heavy truck accidents in Europe [2].

To improve road safety, Automated Vehicles (AVs) have emerged as a technological
solution that can support, assist, or even replace humans in performing the driving
task. In addition to safety, AVs also aim to improve the efficiency of the transportation
system, increase driver comfort, reduce driver mental workload, permit Non-Driving
Related Tasks (NDRT) to be performed, and promote social integration for people
who are unable to drive a vehicle [3].

After an initial rush towards self-driving cars, the general approach of Automated
Driving (AD) has been to gradually increase the Level of Automation (LoA) until the
technology is ready for the deployment of reliable fully autonomous vehicles, while
at the same time creating the regulatory framework and establishing acceptance of
such systems in society. On the one hand, efforts over the past decade have resulted
in Advanced Driver Assistance Systems (ADAS) that provide efficient but simple
support to drivers (e.g., lane-departure systems and vehicle longitudinal control).
On the other hand, automated functions that replace the driver are becoming
more visible in prototypes and commercial vehicles. However, these have significant
shortcomings related to the fact that the driver must still be ready to take control
when needed. Humans, however, have been shown to be poor supervisors [4, 5].

The preceding points offer a panorama in which technological advances are great,
but Automated Driving Systems (ADS) are still limited in functionality or, if too
advanced, are fraught with safety concerns. This scenario raises the question: How
to take advantage of technological advances in automated driving while relying on safe
driving?. The answer is not trivial, but keeping the driver in the control loop seems
like a reasonable answer. One approach is to develop strategies for Human-Machine
Cooperation (HMC) so that the driver maintains situational awareness while taking
a supervisory role. Another approach is to design the ADS as a driving partner
that adapts to the driver’s needs, i.e., instead of a system that completely replaces
the driver, to have a complementary co-pilot that provides continuous and adaptive
support during the driving task. Therefore, AVs could be the intelligent supervisor
that humans need, rather than the other way around. This particular cooperative
approach is known in the literature as shared-control [6–10].
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Based on this premise, the objective of this Ph.D. Thesis is to investigate the
development of functions based on shared-control for automated driving from a
theoretical and application perspective. First, a comprehensive overview of the
State-of-the-Art (SoA) is provided to analyze different strategies for to share driving
tasks at the control level. Then, the integration of shared-control components into
the AD framework is presented, followed by the development of a steering controller
with a variable authority level. Finally, a comparative study between shared-control
and other Automated Driving Functions (ADFs) is conducted.

This PhD thesis was developed within the Automated Driving research group of
Tecnalia Research & Innovation in collaboration with the Department of Systems
and Automation of the University of the Basque Country (UPV/EHU). Additionally,
the work performed in this dissertation was partially supported by the following
European and National Projects.

• PRYSTINE [11] (H2020 under grant agreement No. 783190). Stands for Pro-
grammable Systems for Intelligence in Automobiles and focus on fail-operational
systems and advanced control functions for partial and conditional automation.

• HADRIAN [12] (H2020 under grant agreement No. 875597), stands for Holistic
Approach for Driver Role Integration and Automation Allocation for European
Mobility Needs, and explores a holistic approach between the vehicle, the infras-
tructure, and the driver for better vehicle-driver cooperation under the concept
of fluid interfaces that creates the conditions for safe, comfortable, adaptive,
and understandable communication and support that can be accepted by drivers
under different roles when using automated vehicles.

• AUTOEV@L (Government of the Basque Country under grant agreement KK-
2021/00123), stands for Technology Evolution for Multivehicular Automation
and Evaluation of Highly Automated Driving Functions.

• AUTOLIB (Government of the Basque Country under grant agreement KK-
2019), stands for Technology Preparation for Multivehicle Automation in the
Industrial Sector.

1.1 Background
1.1.1 Human-Machine Cooperation
The field of Human-Machine Cooperation plays a key role in the development
of automated driving technology. There are several modalities of human-robot
interaction that can be applied to the cooperation between the driver and the
automated vehicle. According to Yang et al. in their recent review of human-
machine cooperation in robotics [10], there are three main strategies of cooperation
based on the allocation of control authority. First: human-dominant and robot-
auxiliary, where manual control is assisted by automation with additional information
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thanks to its perceptual capabilities. Second, robot-dominant and human-auxiliary
control, in which the machine controls the task as the primary controller and the
human issues higher-level commands or intervenes in special circumstances. Finally,
the human-robot consensus, in which the different capabilities of the agents are
combined in the execution of the task, either by splitting them into subtasks or by
controlling them together. From these categories, five cooperation strategies are
derived:

• Guided control: The driver has ultimate authority over the task, and the
machine helps by influencing behavior through cues (e.g., visual, auditory, or
haptic). An example would be a vehicle in manual mode and the automation
positioning system provides visual cues for navigation, indicating the path to
follow. The system does not solve the task, but it supports its correct execution.

• Supervisory control: The machine is in control and the human helps with the
task. While in guided control the machine helps the human with indications,
in supervisory control the human supports the machine mainly with tactical
commands. An example is an automated vehicle where the driver has no direct
control but monitors the system and the environment. The driver can even
reprogram system functions, such as adjusting the speed of the vehicle, but does
not perform the maneuver himself.

• Traded control: In this cooperation scheme, either the human or the machine
has full control over the task (i.e., they work on the same task but at different
time intervals). An example is an automated vehicle that performs the driving
task itself, but only under controlled conditions. Therefore, at a given time, the
system may request the driver to take full control of the vehicle.

• Allocation control: In this mode, the main task is divided into subtasks. The
machine is in charge of one subset, while the human is responsible for the others.
Automated vehicles such as those that perform automatic longitudinal control
while the driver steers are examples of this.

• Shared-control: This mode of cooperation requires that the human and the
machine perform the same subtask at the same time (i.e., they control the subtask
together). An example of this, is a vehicle with a steering assistance system that
helps the driver to follow lane center.

Figure 1.1 shows the different cooperation strategies in a graphical representation.
It also shows the three hierarchical cognitive levels of cooperation [13], the strategic,
tactical, and operational levels. The first relates to planning, the second to maneuver
and decision-making, and the third to control actions. It is noticeable that most
interaction types have a strong strategic and tactical component, but shared-control
is the one with stronger cooperation at the control level (as shown in the blue box
at the bottom right of Figure 1.1).
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Category by control authority

Category by cooperation level

Fig. 1.1: Human-Machine Cooperation categories and strategies based the work of Yang et
al. [10], combined with the hierachical levels of the driving task [13]

1.1.2 Automated Driving
According to the SAE J3016 standard, published in 2014 [14], and last updated in
2021 [15], six Levels of Driving Automation (LoDA) are recognized. Starting with
no automation (or manual driving) at Level 0 (L0), each increase in LoDA removes
one aspect of the driver’s role in the Dynamic Driving Task (DDT): foot away (L1),
hands away (L2), eyes away (L3), mind away (L4), and driver away (L5). A detailed
description of these levels can be found below:

• L0 - No Driving Automation: Vehicle without automated assistance functions,
apart from indications to improve safety and driving behavior, such as the Lane-
Departure Warning (LDW), which warns the driver by means of visual, acoustic
or haptic cues when the vehicle is approaching the edge of the lane (see Figure
1.2a). There is a more advanced feature that provides torque correction (either
through steering or differential braking) to prevent lane departure, commonly
referred to as Lane Keeping Assist System (LKAS).

• L1 - Driver Assistance: Automation controls the longitudinal or lateral movement
of the vehicle, while the driver monitors the task performed by the automated
system and controls the other. In practice, commercial vehicles with L1 functions
use the Adaptive Cruise Control system (ACC) to maintain a safe distance from
the vehicle ahead, while the driver is responsible for activation/deactivation and
sends tactical commands (e.g., desired safe distance from the vehicle in front).

(a) Lane-Departure Warning/Assistance (b) Automated Lane Centering

Fig. 1.2: Lateral Advanced Driver Assistance Systems of Toyota Safety Sense System1
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• L2 - Partial Automation: Automation controls both longitudinal and lateral
movement of the vehicle, while the driver supervise the system. At this level,
the human is responsible for the Object and Event Detection and Response
(OEDR) task, meaning that automation can fail at any time and the driver
must be ready to intervene. The key feature is the Automated Lane Centering
(ALC) system, which continuously centers the vehicle in the lane. It is usually
confused with LKAS, but it is important to know that ALC provides continuous
assistance, while LKAS provides only partial assistance when leaving the lane
[16]. Also, ALC is usually only activated when ACC is also active. For this
reason, it is rare to find L1 vehicles with ALC. Additional function of L2 vehicles
includes Lane Change Assist (LCA), which performs the lateral maneuver of
changing lanes after the driver commands the tactical decision by activating
the turn signal. Commercial L2 vehicles are typically referred to as autopilots,
and multiple automakers sells these features already with their vehicles. Names
differ according to the company2, examples are: Tesla (Autopilot), Cadillac
(Super Cruise), Audi (Adaptive Drive Assist), BMW (Driving Assistance Pro),
Ford (Co-Pilot 360), Kia/Hyundai (Highway Drive Assist), Volve (Pilot Assist),
Mercedes (Driver Assistance Package Plus), Nissan (Pro-Pilot Assist), Toyota
(Toyota Safety Sense) and Honda (Honda Sensing Suite). Some of these require
the driver to steer the vehicle because they do not work perfectly in sharp turns.
Others, such as Tesla’s Autopilot (see Figure 1.3a) and Cadillac’s Super Cruise
(see Figure 1.3b), are a reference in the market with robust ALC systems. The
former requires the driver to monitor by placing his hands on the steering wheel,
while the latter requires the driver to keep his eyes on the road but allow hands
to be off the wheel.

(a) Tesla Autopilot3 (b) Cadillac Super Cruise - Hands Free4

Fig. 1.3: L2 autopilots in commercial vehicles

• L3 - Conditional Automation: Automation takes control of the entire driving task.
The driver no longer needs to monitor the system, but must be prepared to act as
a fallback mechanism (i.e., have sufficient situational awareness to regain control
when the system demands it). In this mode, the driver is allowed to perform

1Webpage: Toyota Safety Sense → https://www.toyota.com/safety-sense/
2Webpage: L2 Autopilots Review → https://www.autopilotreview.com/
3Webpage: Tesla Autopilot → https://www.tesla.com/autopilot
4Webpage: Cadillac Super Cruise → https://www.cadillac.com/super-cruise
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certain NDRTs. Commercial vehicles with L3 functions are generally limited to
traffic jams at a maximum speed of approximately 60 km/h. Few automakers have
taken the risk of selling an L3 functionality, as the legal responsibility in case of
accident is on the company’s side. Audi intitally offered an L3 functionality (Audi
AI traffic jam pilot), but step back because of the regulatory hurdles. However
Honda (Sensing Elite) and Mercedes (Drive Pilot) are bringing this system to
the market in 2022 for traffic jam assistance, where drivers are able to engages in
reading an article in the vehicle panel, watching a video, or playing a game. As a
distinguishing feature, L3 vehicles can perform automatic lane changes without
human intervention.

(a) Honda Sensing Elite5 (b) Mercedes Drive Pilot6

Fig. 1.4: L3 autopilots in commercial vehicles

• L4 - High Automation: Automation controls all driving tasks and, while not
capable of operating in all Operational Design Domains (ODDs), it is capable
of performing the fallback maneuver without driver intervention and bringing
the vehicle to a safe state. The maturity and quality of the technology for such
automation is very high, although some experts believe it is worth working toward
L4 vehicles and eliminating the problems created by having the driver act as a
fallback mechanism in L3 mode. Common applications of L4 vehicles tend to
focus on mobility services rather than private vehicles [17].

• L5 - Full Automation: Automation follows the same scheme as for L4 vehicles, but
works under all ODDs. This stage is the utopia of automated driving development.
These vehicles could even drive without steering wheel and pedals.

Figure 1.5 shows a summary of the LoDA, each of which is associated with one
of the forms of HMC described earlier. From this perspective, it is clear that the
approach to increasing the LoDA is to remove more and more responsibility from
the driver in relation to the DDT, but at the cost of creating new implementation
challenges. This is especially true for L2/L3 vehicles, where the driver is placed in a
supervisory/fallback role. With this kind of automation, the human mind begins to
wander and turn away from the monitoring task. This is known as the out-of-the-loop
problems [18], which also include increased cognitive workload during the takeover

5Video: Honda Sensing Elite → https://www.youtube.com/honda-demo
6Video: Mercedes Drive Pilot → https://www.youtube.com/mercedes-demo
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request due to loss of situational awareness [4] and induction of drowsiness when the
driver is not assigned a secondary task [5]. In addition, there are other issues such as
mode confusion [19] and behavioral adaptation [20] that need urgent reconsideration
to ensure AVs safe driving [21].
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Fig. 1.5: Levels of Driving Automation defined by the SAEJ3016 standard, and linked to
cooperative strategies and shared-control functionalities

To ensure a safe supervisory task, many efforts are being made to improve the
quality of cooperation between highly automated vehicles and drivers. To this end,
new bidirectional interaction strategies using Human-Machine Interfaces (HMIs)
are being explored. On the one hand, pertinent information is communicated to
the driver to maintain situational awareness and inform of the current state of
automation and the associated role of the driver. On the other hand, the driver
should be able to cooperate with the automation by sending commands at a tactical
level to ensure his regular participation in the DDT. Another strategy, which has
more to do with decision-making and control, is to adapt the behavior of the
automation to the driver’s state. In [22], Friedman presented seven principles for
the concept of shared autonomy applied in a real-world demonstration using the
Human-Centered Vehicle from the Massachusetts Institute of Technology’s (MIT),
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shown in Figure 1.6a. It includes a dedicated Driver Monitoring System (DMS) used
by the automation (which communicates with the driver by voice) to suggest control
transitions, also based on the risk assessment of the scenario. Another approach [23],
taken by the Spanish research institution CSIC (Consejo Superior de Investigaciones
Científicas) as part of the Prystine project, is to develop a traded control system
that dynamically changes the LoDA (and the role of the driver) depending on the
assessment of the complexity of the scenario and the driver’s state (see Figure 1.6b).
Autoliv, a Swedish-American company, has also proposed an intelligent steering
wheel system (zForce Steering, as shown in Figure 1.6c) that makes a dynamic
transition of authority between the driver and the automated vehicle based on
the position of the hands, as the system is able to activate the automated driving
function when the hands are not on the steering wheel. In this system, the steering
wheel is used not only as an interface for vehicle control, but also as a light-based
HMI that provides the driver with information about automation operating mode.

(a) MIT Human-Centered Vehicle7 (b) CSIC Traded-Control Vehicle8

(c) Autoliv zForce Steering9 (d) Toyota Guardian Active Safety System10

Fig. 1.6: Real vehicles with enhanced Human-Machine Cooperation strategies

In previous systems, the general approach was to improve cooperation between
driver and AV in the mode of traded control. However, there is another way, which
is to use recent technological advances for automated driving in terms of perception,
decision-making and control methods to improve manual driving with continuous
support from automation, that is, the cooperation mode of shared-control. In this
context, Toyota Research Institute (TRI) is working with the vision of using Artificial
Intelligence (AI) to improve safety, mobility and human capabilities in automated
driving. They have demonstrated a mature prototype called Guardian (see Figure

7Video: MIT Human-Centered Vehicle → https://www.youtube.com/mit-demo
8Video: CSIC Traded Control Vehicle → https://www.youtube.com/csic-demo
9Video: Autoliv zForce Steering → https://www.youtube.com/autoliv-demo

10Video: Toyota Guardian Vehicle → https://www.youtube.com/toyota-demo
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1.6d) that operates on the concept of amplifying human control rather than removing
it (i.e., shared-control [24]). This functionality is explained by Toyota as follows:
“...the driver is meant to be in control of the car at all times, except in those cases
where Toyota Guardian anticipates or identifies a pending incident and employs a
corrective response in coordination with driver input”11. Features include activating
automatic mode when the driver falls asleep or providing continuous support to the
driver through the envelop control approach12.

Given the current panorama of automated driving, further study of shared-control
systems is needed. It is important to keep in mind that shared-control is not a
new level of automation. It is a form of cooperation aimed at improving existing
Active Safety Systems and ADAS that help drivers in terms of safety, performance
and comfort. Thus, it is not limited to a specific LoDA, but extends across all.
This means that shared-control functions can be available to vehicles with different
LoDAs, resulting in functions with different levels of support, as shown at the
bottom of Figure 1.5. Common applications of shared-control are often used in
L1/L2 vehicles with continuous and adaptive haptic support in both the steering
wheel and pedals. While conventional automated lane centering systems can only
be enabled or disabled, shared-control functionality adds dynamic control intensity
assignment depending on, for example, driver state [25]. For L3 vehicles, a transition
of control with adaptive support over a longer period of time may offer advantages
in a system-initiated takeover request compared to the binary on-off strategy [26].
On the other hand, L4/5 vehicles could have advanced safety features if humans
voluntarily choose to drive. For example, TRI uses the same vehicle platform for the
Chauffeur mode to operate in Guardian mode (based on a shared-control system).
Due to the high level of automation, the system in this case could be given sufficient
authority to override the driver’s commands.

1.1.3 EU-Projects
Vehicle design and technology is one of the action areas of the “Vision Zero” move-
ment, which aims to reduce traffic fatalities and serious injuries through a systemic
approach to road safety. As part of the initiatives to achieve this goal, the European
Commission and National Research Agencies have funded several projects over the
past decade to achieve this goal. Many of them are concerned with improving
human-machine cooperation between drivers and automated vehicles. Some of these
projects are Deserve (future ADAS functions) [27, 28], Haveit (human-computer
interfaces for highly automated vehicles) [29], InteractiVe (user-centered active
safety systems) [30], AdaptiVe (dynamic change of the level of automation) [31],
ABV (human-machine interaction in automated vehicles, with focus on shared-
control) [32] and AutoMate (automation as a teammate of the driver) [33]. The
most recent projects dealing with cooperative integration of drivers and automated
11Webpage: Toyota Guardian Concept → https://www.tri.global/our-work/automated-driving
12Webpage: Envelop Control Approach → https://medium.com/toyotaresearch

10 Chapter 1 Introduction

https://www.tri.global/our-work/automated-driving
https://medium.com/toyotaresearch/leveraging-envelope-control-to-unlock-capabilities-for-future-vehicle-safety-systems-798bf7a74874


vehicles are Prystine [11] and Hadrian [11]. Part of this Ph.D. Thesis supported
the development on shared-control for these projects.

PRYSTINE aims to realize fail-operational urban surround perceptION (FUSION)
based on robust radar and LiDAR sensor fusion and control capabilities to enable
safe automated driving in urban and rural environments. It covers multiple aspects
of automated driving, such as sensors, perception, communication, and AI decision
making. As part of the output enablers aimed at presenting relevant demonstrators
for automated driving, one of them is specifically dedicated to human-centered
vehicles and includes three main demonstrators covering a wide range of driver-
automation collaboration (shared-control, traded control, and AI-based autonomous
control [11]). Relevant applications were developed with the integration of decision
systems, advanced control methods, driver monitoring systems, and visual human-
machine interfaces in a multi-component integration for shared-control systems.

HADRIAN, on the other hand, explores a holistic approach between the vehicle,
the infrastructure, and the driver for better vehicle-driver cooperation under the
concept of fluid interfaces, which creates the conditions for communication and
assistance to occur in a safe, comfortable, adaptive, and understandable manner
that can be accepted by the driver. This framework considers the development
of a “Guardian Angel” system for elderly drivers based on shared-control. This
strategy will be supported by complementary HMIs (acoustic signals, ambient light
indicators, tutoring system and others) that act as fluid interfaces. This means that
the entire HMI system depends heavily on the state of the driver. A robust driver
monitoring system is also part of the developments in this project, with the goal of
obtaining a fit-to-drive score that serves as input to the HMI decision system.

(a) PRYSTINE13 - Programmable Systems
for Intelligence in Automobiles based on Fail-
operational Urban Surround Perception

(b) HADRIAN14 - Hollistic Approach for
Driver Role Integration and Automation Al-
location for European Mobility Needs

Fig. 1.7: Two recent EU-funded projects working with driver-automation cooperation

Recent projects appear to be further expanding human-machine collaboration by
incorporating more interfaces, expanding experimental studies, and considering new
cooperation strategies, with shared control envisioned as a solution for safe, efficient,
and comfortable human-machine integration in automated vehicles.

13Webpage: Prystine Project → https://prystine.eu/
14Webpage: Hadrian Project → https://hadrianproject.eu/
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1.1.4 Motivations
Based on the preceding premises, this dissertation explores shared-control in auto-
mated vehicles from the following perspectives and motivations:

• It has the potential to improve road safety.

• There is no need for humans to take on a new role, as they are retained as the
primary driver, avoiding the familiar out-of-the-loop problems.

• It can take advantage of the latest advances in automated driving technologies
in the areas of perception, decision-making, control algorithms, and HMIs while
reducing requirements in these areas.

• Driving enthusiasts can continue to do what they enjoy but in a safer and less
demanding manner.

• It is a solution that can be implemented in the short term compared to the
uncertain schedule of highly automated vehicles.

1.2 Objectives
The main objective of this Ph.D. thesis is to explore, design, develop, validate, and
evaluate shared-control strategies for automated driving. Alongside, the following
sub-objectives are part of this work:

• To explore the state-of-the-art of shared-control in automated driving, examining
both the concepts and the control algorithms available in the literature.

• To integrate the shared-control components into a general framework of automated
driving, in both the software and hardware architecture of a driver-in-the-loop
vehicle simulator platform.

• To design, develop, and validate a lateral vehicle control system based on steering
shared-control with variable level of haptic authority.

• To design, develop, and validate an arbitration system that decides the level of
haptic authority given to the steering controller for a variety of driving scenarios
in which the driver and automation interact at tactical and control levels.

• To conduct experimental studies to evaluate ADAS based on shared-control in a
driver-in-the-loop simulator using objective and subjective evaluation methods.

• To provide with the current state of shared-control systems in automated driving
with recommendations, perspectives and future work for the coming years.

1.3 Structure
The organization of the manuscript of this Ph.D. Thesis is as follows:

• Chapter 2. State-of-the-Art: This chapter presents a systematic and com-
prehensive review of the works published over the past two decades on the topic
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of shared-control in automated driving. The review of the SoA includes an
analysis from two directions. First, a discussion from a theoretical perspective in
terms of definitions, metaphors, levels of cooperation, control frameworks, and
its relationship to the arbitration module. Second, vehicle applications based on
shared-control are examined, with emphasis on control techniques. This chapter
provides an overall view of the current state of this technology and future trends.

• Chapter 3. Shared-Control Framework for Automated Driving: This
chapter presents the components of shared-control within a known framework for
automated driving and provides a modular comparison between the challenges of
implementing shared-control and traditional approach to automated driving. The
requirements for the decision and control modules are presented and a rationale
for selecting the appropriate algorithm for each module is provided. In this sense,
an introduction to the theoretical foundations of Fuzzy Inference Systems (FIS)
and Model Predictive Control (MPC) is also given. It concludes with a description
of the driver-in-the-loop vehicle simulator platform used for the development and
validation of the algorithms, as well as the performance of experimental studies.

• Chapter 4. Steering Shared-Controller: This chapter presents the design,
development, and validation of a steering shared-controller based on Nonlinear
Model Predictive Control (NMPC). A stability criterion for different levels of
haptic authority is also considered as part of the controller design. The devel-
opment of the controller is presented in four iterations and validated together
with an arbitration system based on a Fuzzy Inference System (FIS) for specific
driving scenarios.

• Chapter 5. Experimental Studies: This chapter describes two experimets
conducted in the driver-in-the-loop simulator platform. The first study dealt
with assistance for a distracted driver, and the second with the evaluation of an
active safety system for overtaking maneuvers on a road with oncoming traffic. In
both scenarios, the shared-control approach was tested and compared with some
baselines, such as manual driving, commercial ADAS, and automated driving
functions. An objective and subjective evaluation is provided for each experiment.

• Chapter 6. Conclusions: This chapter concludes the dissertation and provides
insight into the knowledge gained from the literature review, the development
of the shared-control system, and the simulator studies conducted, as well as a
detailed outlook for future work in this area.

1.4 Contributions
The main contributions of this Ph.D. thesis are summarized below:

• Contribution 1: A systematic review of shared-control in automated driving
with a compilation of the most relevant contributions of the last decades.
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• Contribution 2: The integration of the shared-control components by hierachical
cooperation levels into the AD general framework and their implementation in
a DiL hardware/software AD simulator. The final framework allows the reuse
of the designed shared-scontroller at the operational level without any changes,
while the arbitration system is adapted to each individual scenario.

• Contribution 3: A novel NMPC steering shared-controller, with the ability to
increase and decrease the nominal haptic authority of the controller without the
need to retune any of the NMPC parameters, providing stability in all cases.

• Contribution 4: A flexible Multiple-Input Multiple-Output (MIMO) FIS-based
arbitration system that calculates the optimal level of haptic authority for the
steering shared-controller, depending on the driver’s need for assistance. It is able
to adapt to different scenarios where the conditions of the driver, automation
and environment play an important role in decision-making.

• Contribution 5: An ADAS based on lateral shared-control for distracted drivers,
capable of keeping the driver in lane during short distraction events. Includes
design, development, and experimental validation.

• Contribution 6: An ADAS based on shared-control to maintain safety and
driving performance during overtaking maneuvers on roads with oncoming traffic.
Includes design, development, and experimental validation.
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2State-of-the-Art

This chapter provides a systematic review of shared-control in automated vehicles
with the aim of summarizing the work done in the research community over

the past decades. There are two main directions for research in this area. The first
is to advance the theoretical understanding of shared-control [9, 34]. Second, there
are a growing number of system applications that are currently emerging [35–37].
Nevertheless, there has been no comprehensive analysis of this technology to assess
its current status or to lay the foundation for its future development. The author of a
recent review article, Huang [38], examined shared-control in the automotive domain,
but without evaluating the associated systems in detail. In addition, Petermeijer et
al. [39] evaluated several haptic guidance systems reported by 2014 to support a
variety of driving tasks, but only considered model-free control strategies. Wang et al.
[6] also presented a recent extensive review covering theoretical and practical aspects,
but did not include specific and detailed analysis of individual control algorithms. To
cover the whole area of shared-control in automated vehicles, this section provides a
comprehensive overview of this area with the following objectives:

• Summarize the contributions to the definition of shared-control in automated
driving and distinguish it from other cooperation strategies.

• Group applications of shared steering control using appropriate categories.

• Review steering shared-control algorithms, including their design, implementation,
evaluation, and results.

• Evaluate the status of the technology and suggest future work related to shared-
control in automated driving systems.

It begins with an explanation of the methodology for the systematic review,
including the selection of articles and the categories in which the review is organized.
This is followed by a discussion of the theory, concepts, and definitions of shared-
control, with an emphasis on applications to automated driving. There are two
sections in the practical analysis, one for coupled and one for uncoupled shared-
control. Both are related to the description of algorithms for steering control. The
chapter concludes with a summary of the review, as well as a discussion and outlook
on concepts, control methods and algorithms, related variables in shared-control,
the current state of the technology and future works.

2.1 Methodology
The scientific literature for the systematic review was searched in a number of
databases, including Web of Science, Google Scholar, IEEE Xplore, and ScienceDirect.
A set of keywords was used to find papers related to shared-control in automated
driving, the main terms being: shared-control, shared steering control, shared vehicle
control, haptic guidance systems [39], haptic steering feedback [40], parallel autonomy
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[41], semi-autonomous vehicle control [42], intelligent copilot [43], cooperative steering
assistance system [44], torque steering assistance [34], and adaptive authority [45].
The first round of literature collection lasted from June 2017 to November 2018
and yielded 100 papers on this topic. A final round of additional data collection
was conducted from December 2018 to August 2019. The selection criteria for the
papers are as follows:

• Must be published in a scientific journal or conference proceedings.

• For theory-related papers, the search field is human-machine cooperation.

• For systems applications papers, search field is narrowed to automated driving.

• Valid application-oriented works are those which follows the definition of shared-
control given by Abbink [8], and have been tested in simulation or real vehicles.

• Works that do not use conventional vehicle control mechanisms (i.e., steering,
accelerator pedal, or brake) are excluded. For example, applications where the
vehicle is controlled with a joystick.

After a first reading of the literature, the following preliminary conclusions can be
drawn. First, experts in the field are working to propose the best definition for shared-
control and to distinguish it from other similar concepts (e.g., the establishment of the
Shared Control Committee [46] and a new topology for shared-control applications
in various domains, including the automotive industry [8]). Second, the number of
works addressing shared-control in automated driving has increased over the years
and continues to grow. Finally, an increasing number of works presenting assistance
systems based on shared-control use the steering wheel as the control interface, while
only a few works consider longitudinal actuators (gas pedal or brake) [41, 47–54]
(see [39] for more details on these systems).

Based on these premises, the state-of-the-art is divided into two overarching
subsections: Theory and Applications. The theoretical section includes topics related
to shared-control that can facilitate understanding of the concept in the context of
automated vehicles. These are described below:

• Definitions: Understand how shared-control is described and defined in the
literature and examine other terms that are often confused.

• Metaphors: Envision the concept of shared-control in real-life examples of
interaction and collaboration to improve the understanding of the term.

• Arbitration: The high-level decision system that tells the shared-controller how
much authority should assign to the driver and automation.

• Levels: Evaluates shared-control from the different driving task levels (opera-
tional, tactical, and strategical).

• Use-cases: Explores the application of shared-control in real scenarios related
to automated driving systems.

18 Chapter 2 State-of-the-Art



• Control frameworks: Describes shared-control from the point of view of two
different control schemes based on the steering actuation mechanism.

The subsection on applications, on the other hand, is divided according to the
actuation mechanism, the method of control, and the specific algorithms of steering
shared-control.

• Control mechanisms: Systems can be either mechanically coupled or uncoupled.
In the first case, the driver interacts with the automated system via haptic
feedback and has ultimate control as long as sufficient torque is applied. In the
second case (e.g., steer-by-wire), the controller can supplement the driver’s input
and provides a new control paradigm in which the automation has final authority.
Controllers for these two mechanisms differ in concept, design, and results.

• Control methods: Shared-control algorithms can be either model-free or model-
based. This subdivision emphasizes the cooperation achieved by the interaction
between the driver and the automation, rather than the controller itself (e.g., a
model-predictive controller could be assigned to the model-free category if the
cooperative/shared component is not modeled within the problem).

• Control algorithms: The steering controls and arbitration algorithms used to
share lateral control of the vehicle.

Figure 2.1 shows the methodological framework described above along with the
structure of the state-of-the-art, with shared-control considered from the outset as a
particular form of the wide-ranging domain of Human-Machine Cooperation.
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Fig. 2.1: Shared-control for automated driving state-of-the-art methodological framework
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2.2 Theory
This section provides an overview of the concept of shared-control, based on an
analysis of the major studies of the last twenty years dealing with human-machine
cooperation and automated driving [8, 9, 34, 39, 55–72]. The aim of this section is
to clarify the concept of shared-control, to find consensus in the research community,
and to avoid misuse of the term, especially in the automotive industry. As mentioned
earlier, six aspects related to the concept of shared-control are addressed: Definitions,
metaphors, arbitration concept, levels of driving tasks, use cases, and control
frameworks.

2.2.1 Definitions
In 1978, Thomas B. Sheridan and William L. Verplank defined shared-control for the
first time. They considered it to be a particular form of a higher-level control scheme
called supervisory control, consisting of a “system ... capable of autonomous decision
making and control over short periods of time and under constrained conditions, but
monitored remotely and at times operated or reprogrammed directly by a person".
In the context of this global control scheme, shared-control is defined simply as
“human and machine working on the same task at the same time". This interaction
can be achieved in two different ways. First, when the machine can augment human
capabilities (e.g., a robotic arm with haptic feedback that guides the human operator
is a complex task). Second, when the machine can partially relieve the operator of
the entire load of a task.

Later, Inagaki [57] considered shared-control as part of the partinioning scheme,
in which a global task is divided into subtasks performed by individual agents, as a
third type of shared-control. A clear example is the case of an automated vehicle
L1, where a driver steers the vehicle and the automated system control the pedals.
However, this view is not popular within the research community, but is more related
to cooperative control, which includes a wider range of interactions.

Furthermore, these works distinguish between shared and traded control, where
“human and machine work on the same task but at a different time". In this type of
interaction, the machine can either replace or back up the human. This distinction is
relevant to the automotive sector because most advanced automated vehicles operate
in traded rather than shared-control mode. The main disadvantage of traded control
is that drivers usually have too much confidence in automation and are not able to
take back manual control when needed.

In a 10-level scale (from manual control to full automation) Endsley [56] ranked
shared-control at the fourth level of automation. Here, shared-control was defined as
“Both the human and the computer generate possible decision options. The human
still retains full control over the selection of which option to implement, however,
carrying out the actions is shared between the human and the system". This definition
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gives the human the ultimate authority over automation. It also portrays it as
more than an active support system that helps the human perform an action, as
the system has enough intelligence to generate possible decision options, but not
enough authority to select the final action.

In addition to the works discussed above, the research of Abbink et al. [8]
presents the more detailed definition of shared-control: “human(s) and robot(s) are
interacting congruently in a perception-action cycle to perform a dynamic task that
either the human or the robot could execute individually under ideal circumstances".
Based on this definition, Table 2.1 lists the arguments as to why various automated
systems do not fall into the category of shared-control.

Tab. 2.1: Arguments to exclude common driving modes and system from the category of
shared-control

System Argument

Manual control There is no automated system involved

Full autonomous There is no driver involved

L3-4 vehicle Automation and human drives at different periods

Warning systems The perception-action cycle is not closed

Stability control Not achievable by driver alone

2.2.2 Metaphors
It has been said that good design is sometimes preceded by a vision and mental
model of the final product, rather than being based on selecting technologies and
following procedures [59]. In this sense, metaphors are excellent descriptive tools
that help to abstract from the technical problem and think at a high level, but
they also help to move from pure theory to practical examples. Therefore, the
use of metaphors is a promising approach to make shared-control a solid concept.
Accordingly, some authors have used them to compare driver-automation interaction
with real-world examples of agents cooperation to derive useful design concepts for
the development of cooperative driving systems. In this section, four metaphors are
described, as shown in Figure 2.2.

• Rider-Horse: Commonly referred to as the H-metaphor [59]. It was introduced
by Flemisch in 2003 as a result of research collaboration between the German
Aerospace Center (DLR) and the Langley Research Center (NASA) to investigate
the similarities between driving an automated car and riding a horse. In horseback
riding, the human controls the horse primarily through the reins. An interplay
occurs in which the horse and rider perceive each other’s actions through a haptic
channel (e.g., the seat on the horse, the reins, or the spurs). In a shared-control
situation, the rider may lead the horse on a tight rein to exert more direct control
or use a loose rein to give the horse a greater degree of autonomy. The human uses
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Fig. 2.2: Metaphors of shared-control for automated vehicles

the horse’s field of vision and sense of security, but is still in control. Similarly,
systems based on shared-control should provide support to the driver across the
continuous spectrum of authority.

• Flight lessons: The example of the interaction between a novice pilot and an
experienced pilot during flight lessons [62, 71, 73]. In this scenario, the control
mechanisms of the pilot and the student pilot are coupled. The experienced pilot
can assist the student pilot in two different modes. One, active, by applying
forces to the control system to help execute maneuvers. And the other, passive,
by holding the control system with different forces (variable stiffness [71]) to
communicate agreement or disagreement with the commanded action to the
student. Similarly, automation can assist a driver either actively or passively.

• Joint-carrying: It is another example of shared-control [69], with emphasis
collaboration on a task between two agents who share a load and are responsible
for its control and guidance. In this example, agents have different perceptual
abilities, as one walks forward and the other walks backward. Yet both are
needed to accomplish the task. The situation is similar in automated driving.
An automated vehicle may have a better field of view than a human, but the
driver still has better anticipatory situational awareness [74]. In both cases, the
information perceived by each agent is complementary to achieve the task.

• Parent-Child: It is another example of shared-control [64]. A parent teaching
a child to ride a bicycle is a good illustration. In this scenario, the parent is
always in direct contact with the bicycle, but the child has most authority while
maintaining balance. However, if the child starts to lurch, the parent intervenes
with more authority to protect the child. Transferred to automated driving,
the driver wants to feel that is in control of the vehicle. Therefore, automated
systems must avoid overwhelming the driver while performing well. However, if
the driver puts the vehicle under risk, the system must intervene accordingly to
avoid accidents. Nevertheless, the intervention should be as gentle as possible.
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From these four examples, the following principles can be derived for shared-
control systems in automated vehicles:

• There should be a bidirectional communication channel.

• Automation should follow the driver’s intention if not leading unsafety condition.

• Automated system should support the driver in proportion to the risk.

• The automated system can support the driver either actively or passively.

2.2.3 Arbitration
Shared-control and arbitration are closely related concepts, but they are not the
same thing. From a higher-level perspective, a shared-controller applies control
actions with the authority established by an arbitration system. Arbitration, simply
put, is the division of control between humans and automation systems during
their interaction [75]. In the context of cooperative vehicle control, it is a time-
sensitive, structured negotiation between human and machine that achieves a clear
and optimal goal for the overall system in a timely manner [58]. In traded control
systems, arbitration is about who receives control and when, whereas in shared-
control, it is about how much control authority is given to the driver and the
automation. This means an arbitration system is needed to synchronize the control
actions of the cooperative driving agents. [66].

This concept is represented by the Equation 2.1, as a combination of the driver
input (ud) and the automation command (ua) with a variable authority (λ ∈ [0, 1]).
In conventional steering systems, it is not possible to include the torques of the
driver and the motor in the formula. However, the formula can be part of the
driver’s mental model [45] or can be interpreted as the system providing some of the
torque (λ %) and the driver providing the rest ((1 − λ) %) [76]. Conversely, using a
steer-by-wire system allows the driver and automation to combine steering angle
commands in parallel.

u = λua + (1 − λ)ud, 0 ≤ λ ≤ 1 (2.1)

The arbitration strategy may depend on several driving-related variables, such
as the driver’s state [77, 78], the time to collision [79], the time-to-lane-crossing
[80], or the conflict between the driver and the automation [81, 82]. In these cases,
the arbitration system acts as a decision strategy that manages the controller’s
authority (how strongly or how gently should the controller resist the driver’s
steering movements). In addition, a more general rule for arbitration systems has
been proposed, according to which drivers should be strongly supported when they
are under or overloaded, but receive less support when they are driving correctly
[83, 84].
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2.2.4 Driving Task Levels
Following the contribution of Michon [13], it can be said that a driver and an
automated system can share the driving task at different levels of skill (or cognition):
strategic, tactical, and operational. Petermeijer [39] refers to the latter two as ma-
neuvering and control. Abbink [8] adds execution as a fourth level that complements
the operational task.

• Strategic: In this level the issue is how to get from point A to point B (i.e.,
global planning). According to the standard SAE J3016[14], this level is not
part of the dynamic driving task (DDT). For this reason, it is unusual to find an
example of shared-control with the strategic component in automated vehicles.
Some applications of longitudinal control, such as eco-driving, however, have a
high strategic component [39].

• Tactical: This level is specific to driving maneuvers (e.g., lane changes) where
the driving task contains a decision component intended to enable the strategic
decision. Though, shared-control strongly relates to the operational level, there
are some driving applications where separate tactical and operational shared-
control modules coexist. An example is the work of Sentouh [44], which establishes
a tactical decision law between the driver and the automated system to select
which controller needs more authority at the operational level. It was a tactical
shared-control because the decision depended on the torque difference between
the driver and the automated system and therefore both were constantly involved.

• Operational: This level refers to the vehicle control, specifically the commands
that the controller sends to the actuators to achieve the decision made at the
tactical level. In parallel, the execution level is responsible for the low-level
control actions required to achieve the operational set point. For example, in an
automated lane-centering system, the lateral error controller finds the optimal
steering angle to improve tracking performance (operational level). Then, this
command must be executed by the steering motor, which has an internal position
controller to execute the commanded steering angle (execution level). These two
levels are usually considered together. In general, most work on shared vehicle
control focuses on the operational execution level, i.e., the application of torque
to the steering wheel.

With this taxonomy in mind, several frameworks for shared and cooperative
control have been proposed. Flemisch [69] categorized shared-control as the sharp
end of human-machine cooperation, considering only the operational level of a task,
which is the usual approach in system applications based on haptic guidance. On
the other hand, Abbink [8] proposed a general framework for sharing the control of a
task at all skill levels that enables bidirectional learning and communication through
knowledge-rule-skill behavior. These efforts were summarized in a joint publication
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by Abbink and Flemisch that considered shared-control as part of human-machine
cooperation at all cognitive levels [9].

2.2.5 Use Cases
Considering that the driver is heavily involved in the driving task in shared-control,
most system applications of automated driving involve driver assistance and partially
automated vehicles. The most common applications are automated lane-centering,
obstacle avoidance, and transition of control.

• Lane-centering: Commonly referred to as lane-keeping control, is the most
well-known application of shared-control in automated vehicles. It is presented
in the form of lateral vehicle control [85], which aims to improve lane-keeping
performance with continuous and variable steering assistance. Specific applications
can be found in the literature. One example is disturbance rejection, to keep
the vehicle in the center of the lane after an unexpected lateral wind force [86].
Other examples include preventing the vehicle from leaving the lane [87], curve
negotiation [88], and assistance for distracted and drowsy drivers [89]. These
systems are closely linked to the operational level.

• Lateral-maneuver: In shared-control, it refers to the scenario in which the
driver initiates a maneuver that intentionally diverts the vehicle from the desired
trajectory. It can be performed in various forms, such as lane change [90],
overtaking maneuver [91], unexpected obstacle avoidance [44], and avoiding road
works [82]. In these scenarios, where the decision-making component is high, the
tactical level of shared-control makes decisions based on the conflicts that arise
when the driver and the automated system have different intentions [86], resulting
in smooth and safe control transitions from automated to manual driving and
vice versa. Other applications involve an active safety systems preventing the
driver from performing a dangerous maneuver, such as changing lanes when a
vehicle is in a blind spot [92, 93].

• Control resumption: Considers the scenario in which the driver resumes control
of the vehicle and the system must smoothly return its authority to the driver
[94, 95]. The difference with lateral maneuvers is that in this case the transition
is not necessarily initiated by the driver and the automation plays a more active
role during the transition. Such applications are relevant in automated L3-L4
vehicles, where the driver is not constantly involved, but can still intervene in
the driving task when the automation requires it.

Other applications for shared-control of automated vehicles include reverse park-
ing assistance [96] and roll stability of heavy vehicles [97].

2.2.6 Control Frameworks
There are two clearly defined frameworks for shared-control in the literature. The
difference between them lies in the control mechanism used to handle the vehicle.
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The first is coupled shared-control, commonly found as haptic shared-control [34].
The second is uncoupled shared-control,which is referred to in the literature as
indirect [98–100] or input mixing [34, 101]. In both cases, it is assumed that there is
a control interface (e.g., steering wheel, accelerator pedal, or brake pedal) with an
electronic actuator that allows the automation control system to steer, accelerate,
or brake the vehicle.

• Coupled shared-control: The operator interface and the automation system
are mechanically coupled. It is commonly associated with haptic control systems,
where human and machine interact through force feedback. In this case, the
control action performed by the operator directly affects the dynamics of the
vehicle. Furthermore, the final control authority rests with the human operator
(whenever the operator’s force exceeds that of the automation). Through the
actuator, the control actions of the automation assist the human and reduce
his workload and control activity. In steering assistance systems, driver and
automation interact through a motorized steering wheel that is mechanically
connected to the vehicle’s tires. In this case, the automation applies torque
through the motor, while the driver applies torque with his hands and through
neuromuscular adaptation to the perceived forces at the steering wheel [34].
Figure 2.3a shows the schematic diagram of coupled steering shared-control. It
shows the torque applied by the driver’s arms (Td) along with the torque applied
by the automated system (Ta) via the electric motor. These two together with
the self-aligning torque Tal give a feedback torque Tf on the steering wheel. In
manual mode, Ta = 0 and Tf = Tal, while in shared-control mode Ta ̸= 0 and
Td ̸= 0. In the case where Ta ≫ Td, the automation gets more authority than the
driver and can override his maneuver intention.

• Uncoupled shared-control: Suitable for drive-by-wire systems in which the
human control interface and the automated control system are mechanically
decoupled. This mechanism allows the integration of an intermediate controller
that post-processes the driver’s commands and executes them according to
the defined automation goals. Thus, the final control authority rests with the
automation, although under normal circumstances the system must act as a
virtually coupled system. Haptic feedback is always required to communicate the
automation intent to the driver (consistent with the axioms presented by Abbink
et al. [8] for the development of shared-control systems). In this case, there is a
virtual (non-mechanical) combination of human and machine control commands.
Applied to steering assistance, the driver indirectly controls the vehicle via a
decoupled steering system (e.g., steer-by-wire or Active Front Steering (AFS)) that
enables the virtual combination of driver and automation control actions before
they are executed. In this method, the automated system includes two controllers
(see Figure 2.3b). The first is responsible for controlling the vehicle by applying
the automation torque (Ta). The second controller provides haptic feedback (Tf )
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to the driver to inform him about the position of the wheels (self-aligning torque
effect) and the automation intent. In manual mode, the system behaves like a
conventional steer-by-wire system, the steering angle corresponds to the driver’s
intention (δ = δd) and Tf = Tal. In fully automatic mode, the driver’s intention
is ignored by the automated control system, while in shared-control mode, the
driver’s command influences the behavior of the automation with the degree of
authority assigned by the arbitration system (Ta = f(δd, λ)).
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Fig. 2.3: Frameworks for steering shared-control based on control mechanism

2.3 Applications
This section analyzes the numerous shared-control applications available in the
literature. First, the section opens with a summary of the applications of longitudinal
shared-control. Then, it continous with a complete analysis on lateral shared-control
systems. The analysis is organized according to the two control frameworks defined
above (coupled and uncoupled), taking into account that there are relevant differences
in design, implementation, evaluation, and results. In addition, the study of control
strategies is further divided into model-based and model-free algorithms.

2.3.1 Longitudinal Shared-Control
In comparison with steering control, longitudinal vehicle control systems (acceler-
ation and braking) are rare in shared-control applications. Nevertheless, relevant
works exist, particularly for coupled systems. Abbink and Mulder made a major con-
tribution in this field by using a haptic accelerator pedal to assist in a car following
task [47–51]. Other examples include eco-friendly driving [53] and traction control
on slippery surfaces [52]. In a separate study, Guo [54] integrated both a haptic
brake and an accelerator to simulate a merging situation. Another work presents an
uncoupled shared-controller that takes pedals and steering input into account when
handling left turns in vehicles [41, 102]. With regard to an industrial perspective,
Bosch introduced an active accelerator pedal which provides haptic feedback to
limit speed, warns of sharp turns, and improves fuel efficiency. In addition, more
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haptic devices (accelerator and brake) are becoming available to continue research
on applications related to haptic pedals in automated driving (see Figure 2.4b).

(a) Bosch active accelerator pedal1 (b) Sensodrive active SENSO-Pedals pro2

Fig. 2.4: Haptic longitudinal actuators available for longitudinal shared-control applications

Meanwhile, over 100 articles address steering control. Therefore, the next two
sections present a detailed analysis and evaluation of lateral control algorithms using
coupled and uncoupled shared-control.

2.3.2 Lateral Shared-Control → Coupled
As mentioned earlier, in coupled shared-control, the driver and the automated
system interact by applying continuous torque to the steering wheel [103]. The
driver perceives the automation action through the haptic channel and then decides
whether to override or accept it. Regarding the strength of the assistance, too
little torque from the steering motor has no effect on the driver’s behavior. Too
much torque, on the other hand, can be oppressive, unsafe, and uncomfortable.
Therefore, the strength of the torque is of great importance. However, this is not the
only important aspect in developing shared-control strategies. Instead, four aspects
should be considered [71]. The first is the design of the trajectory, and the rest is
the decomposition of steering control into three components (see Figure 2.5).

• Human-Compatible Reference (HCR),

• Level of Haptic Support (LoHS),

• Strength of Haptic Feedback (SoHF), and

• Level of Haptic Authority (LoHA).

• HCR: The reference trajectory based on human driving patterns that is followed
by the lateral shared-controller. It is especially pertinent when negotiating a
curve since humans usually cut the curve rather than follow the centerline [88,
104, 105]. Consequently, a trajectory without consideration of driver profiles will
result in conflicts regardless of the controller design. This criterion reflects the

1Webpage: Bosch Haptic Gas Pedal → https://www.bosch-press.nl/haptic-pedal
2Webpage: Sensodrive Haptic Pedals → https://www.sensodrive.de/feeback-pedal

28 Chapter 2 State-of-the-Art

https://www.bosch-press.nl/pressportal/nl/en/press-release-585.html
https://www.sensodrive.de/products/force-feedback-pedals-activ.php


𝝆
1111

𝐅𝐞𝐞𝐝𝐟𝐨𝐫𝐰𝐚𝐫𝐝
𝐓𝐨𝐫𝐪𝐮𝐞

𝐋𝐨𝐇𝐒

𝐒𝐨𝐇𝐅

44

𝐅𝐞𝐞𝐝𝐛𝐚𝐜𝐤
𝐓𝐨𝐫𝐪𝐮𝐞

𝐒𝐭𝐞𝐞𝐫𝐢𝐧𝐠
𝐒𝐭𝐢𝐟𝐟𝐧𝐞𝐬𝐬

𝐋𝐨𝐇𝐀

𝑻𝒇

𝜽𝒂 𝜽𝒅

𝐇𝐂𝐑

𝐇𝐮𝐦𝐚𝐧
𝐂𝐨𝐦𝐩𝐚𝐭𝐢𝐛𝐥𝐞
𝐑𝐞𝐟𝐞𝐫𝐞𝐧𝐜𝐞[𝒙, 𝜺]

⇒
C𝐫𝐢𝐭𝐢𝐜𝐚𝐥𝐢𝐭𝐲

𝐂𝐞𝐧𝐭𝐞𝐫

𝐇𝐂𝐑

𝐀𝐮𝐭𝐡𝐨𝐫𝐢𝐭𝐲

𝒆𝒚

𝒆𝝋

𝜅 > 0
𝜅 < 0

𝒆𝒚, 𝒆𝝋

𝑻𝑳𝒐𝑯𝑺

𝑻𝑺𝒐𝑯𝑭

Fig. 2.5: Representation of vanPassen [71] four design aspects considered in coupled shared-
control: HCR, LoHS, SoHF, and LoHA

axiom presented in [8], which indicates that automation under shared-control
must follow human-centered design principles.

• LoHS: It depends on variables related to the shape of the trajectory, such as
the curvature (ρ) [71] or the reference steering angle (δR) [106]. Rather than
minimizing errors, this torque is applied in open loop and represents the feed-
forward steering action. For example, as the vehicle approaches a turn, a force is
applied to the steering wheel even if the driver remains in the centerline.

• SoHF: It refers to the control torque that minimizes the tracking errors with
respect to the HCR. It is a feedback component instead of feed-forward steering
action (LoHS). Its design is one of the biggest challenges in the development
of driver-automation shared-control, as it has to reconcile several objectives:
tracking performance, driver comfort, road safety, and control efficiency.

• LoHA: It is the magnitude of stiffness around the desired steering wheel angle
calculated by automation (θa) [107]. In other words, it represents a variable
impedance of the steering control [34]. Other works [40, 90] present this parameter
under the name stiffness feedback. In [71], using the metaphor of flight instruction,
it is described as the resistance force that the instructor exerts by holding the
control interface to reject or approve the student pilot’s actions. A high value
of haptic authority makes it harder for the driver to move the steering wheel,
so the automation is given more authority. In contrast, a low value gives the
driver more freedom to control the lateral movement of the vehicle. Unlike
the other torque components (LoHS and SoHF), the LoHA is passive in that
it only takes effect when the driver deviates from the operational setpoint of
the automation (θd ̸= θa). One advantage of considering the LoHA separately
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from the active steering torques is that the system authority can be decreased or
increased without affecting the controller’s scheme. Moreover, the LoHA (λ) is
interpreted as a proportional gain applied to active torques (λ(TSoHF + TLoHS))
[71, 106]. Some works present it as a proportional gain to the lateral error in the
center of gravity (λey) [34, 40, 71, 90, 105, 107–110]. In [40], the LoHA multiplies
the difference between driver and automation commands (λ(θd − θa)). Other
works [44, 78, 89, 111, 112] considered the haptic authority at the tactical level
to switch between two different control strategies (λTa1 + (1 − λ)Ta2). In [113],
Balachandran evaluated LoHA in an obstacle avoidance scenario based on the
MPC prediction index-i (λ(θd(i) − θa(i))). The modification of the prediction
index, not the haptic authority gain, was responsible for increasing the haptic
authority feedback torque in this case.

After the consideration of these concepts, the following subsections describe in
detail the specific control algorithms used in the development of steering shared-
control systems. In this context, the algorithms are either model-free or model-based
controllers, as already mentioned in the methodology section.

2.3.2.1 Model-free
The distinctive feature of model-free controllers is the use of a feedback error signal.
They do not include a driver-automation model in the design. It was the first type
of haptic shared-control method used [114]. In this subsection, specific control
algorithms, system variables, and experimental results are described. Two types of
algorithms are found in the literature:

• Steering angle difference: In these controllers, the automation torque follows
this formula Ta = k∆δ, a proportional gain to the difference between the driver’s
steering inputs (δd) and the optimal automation command (∆δ = δd − δa)
calculated by a vehicle lateral controller (δa). Working with this method [85,
94, 95, 103, 114–119] requires the use of two different controllers. The first
is a lateral controller that guides the vehicle in automatic mode. Examples
include: heading calculation at a look-ahead distance with respect to a reference
trajectory [85, 103], a dual PD controller based on the lateral and angular errors
[117], a dual proportional controller [119], an artificial potential field [116], and
a human remote control command [118]. The second controller is a feedback
controller that receives ∆δ as input. Most works use P or PD techniques for the
feedback controller; one author uses a learning algorithm to adjust gains [117].
Gonzalez [119] has developed a variable proportional gain controller that accounts
for maneuver risk in terms of time-to-collision (TTC) and time-to-lane-crossing
(TLC).

• Tracking errors: Instead of two controllers, guidance and torque feedback are
combined in a single controller. In this case, the control torque depends on the
position of the vehicle with respect to the desired trajectory (e.g., lateral and
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angular errors [ey, eψ]) [34, 40, 65, 71, 88, 90, 104–110, 120–126]. A representative
example for this controller would be Ta = k1ey + k2eψ. In general, the error
calculation is performed with a look-ahead time and assuming a constant speed
and steering angle. The most common algorithms are P and PD controllers
based on tracking error. One work includes an integral component [126] for the
calculation of the support torque. In [106], the authors implement a combination of
all four design aspects of shared-control using constant stiffness and incorporating
a look-ahead component (LoHS) into the controller.

After analysing previous works in coupled shared-control under the model-free
modality, some results are reported in terms of use cases, benefits, and drawbacks.
Further information on haptic guidance system’s effects on automated driving is
available in Petermeijer’s analysis [39], which includes specific results from some of
the studies presented here.

• Use-cases: The lane-keeping task is the most common application, with an
average speed of 65 km/h, but some tests have been conducted at 100 km/h
[124]. There are several other applications of this technology, including obstacle
avoidance [90, 108, 109, 116, 119, 122, 127], curve negotiation [88, 104, 105, 107,
120], and control authority transition [94, 95]. Interestingly, one work tested
haptic shared-control for reverse parking assistance [96]. The usual test platform
is a driver-in-the-loop (DiL) simulator for automated driving, except for one
system that was tested on a real vehicle [94].

• Results: Overall, shared-control provides a positive improvement in the driving
task, e.g. a better tracking performance [103, 114–116], a lower visual demand
[103, 114, 115], a lower steering reversal rate [107] and lower driver torque
[85, 88, 122], better driving performance in low visibility conditions [76], safer
time-to-lane-crossing [125], smoother and more stable control transitions [82, 95,
128]. Also, fewer reported collisions during obstacle avoidance [108, 116]. One
work proved that driver passive fatigue is reduced [125]. In addition, work by
Scholtens [106] showed a reduction in driver-automation conflicts. Conversely,
some disadvantages are also reported. Drivers are likely to misinterpret haptic
feedback from automation [114], increase effort based on perceived feedback [103],
feel disturbed by torque on the steering [34, 85], and experience undesirable
steering conflicts [122].

Despite efforts to evaluate driver neuromuscular behavior in model-free control
techniques [34, 129] and also consider various driver characteristics in their design
[123], this method fails to incorporate a driver model in the calculation of optimal
control torque. This is a limitation for the desired harmonious cooperation between
the driver and the automation in shared-control. The model-based method described
below incorporates this innovation into the controller design.
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2.3.2.2 Model-based
A key aspect in model-based shared-control is the inclusion of the steering system
model to use the steering torque as the control signal. Steering angle is often used
because it provides robustness and compensation for nonlinearities [130, 131]. Yet,
Negai et. al. [132] found that angle-based steering angle controllers perceive both
driver torque and self-aligning torque (Tsat) as disturbances. Therefore, torque-based
controllers are more suitable for coupling the driver and the automated system model.
Accordingly, the steering model based on inertia and damping (J, b) enables the
relationship between the steering wheel angle (θ) and the total steering torque
(T = Td + Ta + Tsat), as shown in Equation 2.2.

Td + Ta + Tsat = Jθ̈ + bθ̇ (2.2)

Another important consideration is the inclusion of a driver model. When the
driver and the automated vehicle interact via the steering wheel, there is a bidirec-
tional communication channel. On the one hand, the automation communicates its
intentions to the driver through haptic feedback. On the other hand, the automation
understands the driver’s actions by reading the position of the steering wheel angle.
The automation, however, needs to have a detailed understanding of the driver in
order to cooperate more effectively with the driver. Therefore, many authors have
included in the controller desing an integrated driver-road-vehicle (DVR) model to
enable the system to predict the driver’s behavior in different situations [36, 44, 45,
77, 78, 86, 87, 89, 111, 112, 131, 133–148]. With such mutual understanding, the
controller can work to reduce conflict and consider the level of cooperation in the
control algorithm. For a detailed summary of such systems, see Table 2.2. Only
systems tested in DiL simulations or real vehicles were considered. This analysis
provides information on the current state of this technology and its advantages. In
the following, the main aspects listed in the table are analyzed in relation to the
development and evaluation of coupled model-based algorithms for shared-control.

• Driver model: Initial driver model used in shared-control was presented in
similar approaches by Sentouh, Saleh, and Mars [149, 150, 153, 156]. It takes into
account the driver’s cognitive, perceptual, and motor skills and assumes a dual
control action by the driver in the lane keeping task. The first, compensatory
(near angle θn), to maintain the centerline position. The second, anticipatory (far
angle θf ), to account for the curve ahead. The driver’s neuromuscular system is
also part of the model. Nguyen models the driver’s torque as proportional to these
variables (∝ [θn, θf ]) [137]. Others have considered a proportional model in terms
of tracking errors ([yL, ψL]) [134, 140]. Moreover, this model is also used for other
purposes, e.g., to simulate a driver agent in virtual tests [137]. Other authors use
a driver model based on motion primitives (movemes) [151, 152] and a variable
preview time model based on road curvature. A more complex solution is to
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Tab. 2.2: Evaluation of model-based coupled steering shared-control algorithms

AUTHOR VEHICLE MODEL DRIVER MODEL CONTROLLER USE CASES RESULTS

Saleh
2013 [135]

Dynamic bicycle
Fixed speed
Vehicle = [β, r]
Steering = [δ, dδ/dt]
Road = [ey, eΨ]
w = [ρ]

Sensorimotor
Saleh-Mars [149, 150]
Simplified to 3 states
Compensation θn

Anticipation θf

Driver delay

Preview - H2

Jt = min [ey, eΨ]
Js = min [Td − Ta]
Js = min [Td × Ta]
Stability: µ-analysis

DiL simulation
1 participant
vmax = 65 km/h
Lane keeping
Path following

w.r.t. manual driving
↓ 30% mean lateral error
↓ 25% STD lateral error
↓ 15% mean LDR
↓ 10% STD LDR
+ 18% conflict period

Soualmi
2014 [136]

Dynamic bicycle
Variable speed
Vehicle = [vy, r]
Steering = [δ, dδ/dt]
Road = [ey, eΨ]
w = [ρ]

Lane keeping
Torque ∝ [ey, eΨ]
Torque derivative Eq.

LMI - LQ
T-S fuzzy modelling
Jt = min [ey, eΨ]
Jc = min [ay, δ̈]
Js = min [Td, Td − Ta]
Stability: Lyapunov

DiL simulation
1 participant
vmax = 54 km/h
Lane keeping
Path following1

Obstacle avoidance
Transfer control2

w.r.t. manual driving
↓ 90% driver effort1

↓ 10% tracking errors1

↓ 65% driver effort2

w.r.t. no driver model
↓ 80% driver effort2

↑ x4 driver goal2

Ercan
2017 [140]

Dynamic bicycle
Fixed speed
Vehicle = [vx, vy, r]
Steering = [δ, dδ/dt]
Road = [ey, eΨ, s]
w = [yLref , ρ]

Lane keeping
Torque ∝ [ey , eΨ]
Tal compensation
Variable stiffness
Variable damping

MPC
Ct = lim [ey]
Cc = lim [β, ∆Ta]
Cs = lim [Ta]
Jc = min [∆Ta]
Js = min [Ta]

Real vehicle
1 participant
vmax = 36 km/h
Lane keeping
Road departure

Achievements
+ Avoid road departure
+ β constraints achieved
+ Return to lane center

Flad
2017 [142]

Dynamic bicycle
Fixed speed
Vehicle = [β, r]
Steering = [δ, dδ/dt]
Road = [ey, ψ]

Movemes [151, 152]
Movement primitives
MPC switch control
Inverse steering model

Differential game
Stackelberg
Jt = min [ey, eΨ]
Jc = min [Ta]

DiL simulation
10 participants
vmax = 130 km/h
Lane keeping
Path following

w.r.t. manual driving
↓ RMS lateral error
w.r.t. no driver model
↓ Curve conflicts
↑ Driver acceptance

Sentouh
2018 [89]

Dynamic bicycle
Fixed speed
Vehicle = [β, r]
Steering = [δ, dδ/dt]
Road = [ey, eΨ]
w = [fw, ρ]

Sensorimotor
Sentouh [153]
Simplified to 2 states
Compensation θn

Anticipation θf

Real driver data

LMI - H∞

Jt = min [θn, θf ]
Jc = min [ay, r, δ̈]
Js = min [Td − λTa]
Stability: Lyapunov

DiL simulation
6 participants
vmax = 54 km/h
Lane keeping
Disturbance rejection1

Path following w/ST2

Departure prevention3

w.r.t. manual driving
↓ 50% driver effort1

↓ 35% STD lateral error2

↓ 30% RMS lateral error2

↑ Driver acceptance2

+ Avoid lane departure3

Nguyen
2018 [77]

Dynamic bicycle

Variable speed
Vehicle = [β, r]
Steering = [δ, dδ/dt]
Road = [ey, eΨ]
w = [ρ]

Sensorimotor
Torque ∝ [θn, θf ]
Assistance law [154]
Variable activity param.

LMI - H∞

T-S fuzzy modelling
Jt = min [θn, θf ]
Jc = min [ay, r, δ̈]
Stability: Lyapunov

DiL simulation
1 participant
vmax = 72 km/h
Lane keeping
Disturbance rejection1

Road departure2

w.r.t. manual driving
↓ 50% driver effort1

+ Reduce # sensors (-2)
+ Avoid lane departure2

+ Support distracted
driver2

Yang
2019 [155]

Dynamic bicycle
Fixed speed
Vehicle = [β, r]
Steering = [δ, dδ/dt]
Road = [yLp, eΨ]
w = [Tal, ρ]

Preview scheduler
Variable preview-time
Function of ρ
Real driver data

LPV - H∞

Jt = min [yLp, eΨ]
Varying-param: tp(ρ)
Pole placement
Stability: Lyapunov

DiL simulation
8 participants
vmax = 72 km/h
Lane keeping
Path following

w.r.t. manual & LTI
↓ Lateral error
↓ Driver effort
↑ Cooperative period
↑ TLC
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AUTHOR VEHICLE MODEL DRIVER MODEL CONTROLLER USE CASES RESULTS

Benloucif
2019 [147]

Dynamic bicycle
Fixed speed
Vehicle = [β, r]
Steering = [δ, dδ/dt]
Road = [ey, eΨ]
w = [ρ]

Sensorimotor
Sentouh [153]
Simplified to 2 states
Compensation θn

Anticipation θf

Real driver data

LMI - H∞

T-S fuzzy modelling
Jt = min [θn, θf ]
Jc = min [ay, δ̈]
Js = Optimized trajec-
tory based on driver
state and torque effort

DiL simulation
8 participants
vmax = 90 km/h
Obstacle avoidance
Transfer control

w.r.t. no driver model
↓ Driver effort
↓ Torque conflicts
↑ Cooperative period
↑ Driver acceptance

Ji
2019 [36]

Dynamic bicycle
Fixed speed
Vehicle = [β, r]
Steering = [δ, dδ/dt]
Road = [ey, eΨ]

Lane keeping
LQ problem
Jt = min [ey, eΨ]
Jc = min [Td]
Driver uncertainty
Real driver data

Differential game
LQ problem
Stackelberg
Jt = min [ey, eΨ]
Jc = min [Ta]

DiL simulation
4 participants
vmax = ?
Obstacle avoidance
Double lane change

w.r.t. manual driving
↓ Lateral error
↑ TLC
w.r.t. no driver model
↓ Torque conflicts
+ High cooperative ratio

Table notes: reduction (↓), increase (↑), additional benefit (+), proportional to (∝), standard deviation (STD), root mean square (RMS),
driver in the loop (DiL), secondary task (ST), lane departure risk (LDR), model predictive control (MPC), linear parameter-varying(LPV), linear
time-invariant (LTI), time-to-lane crossing (TLC), Takagi-Sugeno (T-S), Linear Quadratic (LQ)

model the driver as a linear quadratic problem with a path tracking optimization
[36]. The main challenge in these models is to find the right parameters, which
are usually determined in tests with real drivers [89].

• Vehicle model: It is common to incorporate the dynamics of the vehicle into
the controller using the bicycle model [157], where the states correspond to the
yaw rate (r) and sideslip angle (β). In addition, the single-track model includes
equations for the lateral (ey) and angular (eψ) errors. Furthermore, the second-
order model, which includes the steering angle (δ) and angular velocity (δ̇) [156,
158] allows the torque equation to be included in the model. There are works
that add a perturbation vector (w) that accounts for variables such as road
curvature (ρ), wind force (fw), and road inclination angle [131]. In terms of
longitudinal dynamics, it is common to linearize the driver-road-vehicle model
around the vehicle speed (vx), assuming that this value is constant. Another
approach [133, 137] is to model the problem using the Takagi-Sugeno (T-S)
identification technique [159], which allows other time-varying parameters such
as driver activity to be considered in addition to speed [45].

• Control algorithm: Optimal control is the preferred option for model-based
shared-control. An important work motivating the use of such a technique is
presented by Sentouh et al. [86], where the authors developed a linear quadratic
regulator (LQR) that optimizes steering input in cooperation with driver actions.
Similar approaches followed this path with different algorithms such as H2 Optimal
Control [44], H2 Preview Control [131, 135] and MPC [140, 158]. Also, LMI
optimization becomes a popular technique [89], in combination with T-S fuzzy
modeling to deal with the time-varying parameters [77, 136, 147]. To ensure
the stability of the driver-automation interaction, the Lyapunov approach was
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used. Another similar but different technique is steering control based on game
theory. In this approach, the driver and automation are modeled using MPC
or LQ methods along with a Stackelberg strategy to solve the optimal control
problem [36, 142, 160]. Regardless of the control algorithm, the following objective
minimization functions are standard for these methods:

→ Tracking: Lateral and angular errors ([ey, eΨ) or their equivalents ([θn, θf ]).

→ Comfort: Sideslip angle, lateral acceleration (ay), yaw rate and steering rate.

→ Sharing: Torque conflicts between the driver and the automated system (Td,a).

• Arbitration: Various works [86, 87], have included the torque-based arbitration
formula in their model (T = λTd + (1 − λ)Ta), where λ is associated with a
Gaussian function depending on the lateral error. Moreover, Nguyen [45, 77,
137, 138] incorporated the arbitration law into the driver’s mental model, taking
into account that the driver should be assisted in case of underload and overload
[154]. Other works [44, 78, 89, 111, 112] have included a conditional law that
depends on a threshold for the driver’s torque, combined with information about
the risk of the current maneuver and the driver’s state (in terms of drowsiness
and inattention).

• Results: Overall, the integration of a driver-road-vehicle model along with the
optimal control framework has resulted in safer and more convenient shared-
control systems. The inclusion of the driver model has been shown to reduce
driver torque effort, torque conflicts with automation, and the need for high visual
attention. It has also led to improved tracking performance and harmonious
control transitions. It also gives the driver a degree of freedom when steering,
providing a subjective feeling of being in control while avoiding lane departure in
the event of faulty steering. In addition, driver modeling is beneficial for reducing
torque conflicts, especially when cornering. Further advantages arise when the
driver’s state (e.g., distraction or drowsiness) is taken into account, so that safety
is enhanced when the driver’s performance declines. Driver acceptance of such
systems has been shown to be positive in several experiments [78, 142], but it is
also clear that further research with more participants and scenarios is needed
in this area. Most systems were evaluated in DiL simulators with an average
speed of 70 km/h. Only one system [140] was tested on a real vehicle, but at
a low speed (36 km/h). A first conclusion is that this technology is still in the
simulation phase and is approaching the first implementations on real platforms,
but still under controlled conditions.

• Other works: There are additional model-based shared-control works, where
the driver model is not included and therefore cooperation is not considered
in the model [76, 82, 101, 122, 128, 161, 162]. Some examples are: a robust
lane departure control [101] and a gain-tuning control method for assisting the
driver in lane change based on cooperative states and a preview model [128].
Iwano [122] calculated the optimal torque based on a dynamic bicycle model that
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includes the steering system. Some authors also propose the use of optimal cotrol
framework. Mars [76] applied a H2 optimization technique varying the level
of haptic authority, and Guo [82, 163] designed a constrained model predictive
control (MPC) to avoid off-road events with a variation of haptic authority
depending on the driver’s effort and intention to change lanes.

2.3.3 Lateral Shared-Control → Uncoupled
With a decoupled steering system, there can be a variable ratio between the steering
wheel angle (δd) and the final steering command (δa). It opens new possibilities
for shared-control that go beyond traditional haptic guidance systems. Here, the
controller continuously receives the driver’s input (θd) and then sends the last
command to the wheel actuation mechanism. At that point, the vehicle’s control is
transferred to the automated system. Nevertheless, under ideal circumstances (i.e.,
when driving safety is not a concern) the controller should be designed to match the
drivers’ intentions. With regard this type of shared-control system, the literature
search revealed about 30 related papers [37, 41–43, 88, 91, 98–100, 102, 113, 158,
164–181]. Similar to the previous section, the controller description is divided into
model-free and model-based categories. Yet, the results analysis is done for the
overall category of uncoupled steering shared-control, with some relevant works
detailed in Table 2.3.

2.3.3.1 Model-free
This control scheme finds the final steering command using the arbitrage formula
(u = λua + (1 − λ)ud) where u = δ. Basically, the control command combines the
driver input δd with the optimal automation signal δa, where λ is the authority
gain. To properly design the λ, it is important to consider the driving context (e.g.,
environment, driver, and vehicle state). When λ = 1, the vehicle is in fully automatic
mode, and when λ = 0, the system is in manual mode. Intermediate values represent
the shared-control mode. Providing feedback torque by the automated system to
the driver is another important aspect.

Fujioka [164] applied this technique for the first time in the literature, with
fixed values for λ and haptic feedback proportional to the self-aligning torque. In
addition, another work [165] used an authority law based on switching time (2
and 4 s) to provide a smooth transition between driver and automation during
control transitions. In [166, 182], the authors implemented an artificial potential
field method to compensate for driver actions for a lane keeping use case. They also
present a successful validation of a robust controller to prevent lane departure[168].

Anderson et al. [42] introduced an MPC that was used as a path planner. It
also served as a risk assessment because the threat depended on the sideslip angle
of the calculated trajectory and was linearized with a piecewise linear function.
The feedback torque was proportional to the difference between the driver and
automation commands. This controller was implemented in a simulator for a dual
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lane change scenario to test different values of the threat thresholds for intervention
and full autonomy. Later, as reported in [43, 170], experimental tests of obstacle
avoidance were conducted in a teleoperated vehicle, resulting in a reduction in
collisions and an increase in speed compared to manual driving.

Li [98–100] led a different approach that examined the effect of driver adaptation
on shared-control. As part of the automation control command, the authors used
an MPC, and the same optimization scheme was used to simulate the controller’s
internal model. In this work, λ static values were assigned for evaluation. As an
alternative to this method, the system authority was determined by the driver’s
intent, which is calculated using a least squares estimator.

A fuzzy logic method was developed by M. Li et al. [175] to calculate λ based
on the driver’s intention and context. A linear time-varying MPC was developed
for automation control. Validations were performed for both static and dynamic
obstacle avoidance.

2.3.3.2 Model-based
Erlien [171, 172], Song [91], and Schwarting [41] have proposed a new control scheme
in which the driver’s steering command is considered in the cost function of an
MPC optimization framework. Different optimization functions are used in fully
autonomous MPCs in order to minimize objectives such as tracking performance
(Jt) and comfort (Jc). In addition, a novel criterion is introduced to minimize the
difference between driver and automation commands ( Js = min [δa − δd]).

Erlien [172] used wheel lateral force as a system input along with a dual safety
envelope that depends on sideslip and yaw rate constraints. To select the optimal
trajectory for the obstacle avoidance maneuver, a nonconvex optimization prob-
lem was solved by analyzing each possible trajectory individually with a convex
optimization solver. Balachandran [113] continued this work and evaluated this
controller with a predictive haptic torque based on future horizon error. Testing was
conducted in a steer-by-wire test vehicle. This particular strategy is known as the
control envelop approach3, and is currently being investigated by Toyota Research
Institute (TRI).

Song’s work [91] considered a constrained MPC that optimizes the driver’s
steering angle and angular rate. In addition, vehicle dimensions were included in
the system constraints to allow for a double lane change without leaving the safe
corridor. Continuing this work, Liu [183] included a variable authority function
based on fuzzy logic that considers the distance to leave the lane and an indicator
of possible driver error. All tests were performed with numerical simulations.

A similar approach was used by Schwarting [41] by integrating the longitudinal
acceleration command into the MPC problem. The uncertainty of the vehicle states
was taken into account, and constraints on the road boundary and yaw rate were

3Webpage: Envelop Control Approach → https://medium.com/toyotaresearch
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Tab. 2.3: Evaluation of uncoupled steering shared-control algorithms

STUDY CONTROLLER SCENARIO RESULTS

M. Alirezaei
2012 [168]

Robust control
Road departure avoidance controller with
robustness ensured by H∞ considering un-
certainties. An increase in look-ahead time
is used to balance stability and system in-
tervention.

Obstacle avoidance
DiL simulator
4 participants
At 80 km/h
Road departure

Manual
53% of departures
Assisted
0.5% of departures

S. Anderson
2014 [170]

Constrained MPC
Minimization of sideslip angle (β) and con-
straints on the free driving zone. The au-
thority gain (λ) is a piecewise linear func-
tion depending on the threat calculated as
the minimum β over the prediction hori-
zon.

Obstacle avoidance
Teleoperated vehicle
20 participants
At 10 km/h

w.r.t. manual
↓ 78% collisions
↓ 34% driver effort
↑ 26% mean speed

S. Erlien
2014 [172]

Balachandran
2016 [113]

Nonlinear MPC
Optimization of an objective function de-
signed to match the driver’s command.
The second objective includes two safety
envelopes: one for the environmental con-
straints and the other limiting the yaw rate
(r) and the sideslip angle (β).

Obstacle avoidance
Experimental vehicle
11 participants
At 28 km/h
Single lane change

w.r.t. no feedback
↑ 70% TTCmin

↓ 33% ay−max

↓ 40% δmax

W. Wang
2017 - [173]

Sigmoid function
A human-centered controller that allows
the steering system ratio to be varied based
on driver path-following characteristics.
The variable gain depends on the lateral
error, heading angle, longitudinal speed,
and steering wheel angle.

Obstacle avoidance
DiL simulator
20 participants
At 70 km/h
Double lane change

w.r.t. manual
↑ 7% tracking
↓ 50% driver effort
↓ 35% mental work-
load

M. Li
2019 [181]

Differential game - DMPC
Non-cooperative Nash solution derived via
distributed MPC (DMPC), considering an
elliptic driving safety field. The driver
state is considered in the dynamic author-
ity allocation strategy.

Obstacle avoidance
DiL simulation
6 participants
At 72 km/h
Straight/curvy road

w.r.t. fixed
↓ Driver effort
↑ Performance
lim [r, ax]

designed. The test included different driver profiles (passive and aggressive) and
maneuvers with sharp turns. The results showed that the system follows driver
inputs under safe conditions. A scenario for merging traffic after a left turn at an
intersection was also presented, resulting in safe driving behavior without colliding
with other vehicles. The tests were conducted in a simplified DiL simulator.
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The technique of game theory also played an important role in shared-control
for decoupled steering. Similar to Flad in coupled shared-control, Na [169, 176]
and Ji [178, 184] presented a non-cooperative approach for a theoretical study
of the interaction between the driver and an AFS. In this work, LQR and MPC
techniques were used for modeling and control. The motivation for this approach is
to avoid the drawbacks in terms of time and cost that occur in the experimental
validation of steering assistance systems. Recent works have shown that game theory
is increasingly being used to evaluate uncoupled shared-control [37, 180, 181]. One
of these papers [181] was also tested in a DiL simulator, as indicated in Table 2.3.

Moreover, Wang et al. [179] presented an output feedback robust controller
for trajectory tracking that includes the cooperative objective function (Js). The
results showed improved tracking performance and reduced physical workload. In
addition, the controller remained robust to perturbations and variations in driver
model parameters.

• Results: The main advantage of the decoupled steering system is that it requires
less effort from the driver compared to coupled systems. This ability to reduce
driver-automation conflicts makes lateral maneuvers (e.g., lane changes or obstacle
avoidance) an attractive study case for the development of decoupled shared-
control systems. However, the fact that the vehicle can move further than
commanded by the driver creates an opaque effect that requires a learning
and adaptation process [88]. Moreover, Table 2.3 shows that few works have
considered experimental tests, even in DiL simulators. Of the tests that have been
conducted in real vehicles, one [166] had a low cooperative component, and the
second involved an experimental vehicle [172]. This observation suggests that the
current state of this technology is one step behind that of coupled shared-control.
Therefore, these systems need further evaluation, which seems to be the next
clear step, building on the steady increase in related work in recent years.

2.4 Discussion and Perspective
The design, development and evaluation of shared steering control systems for
automated vehicles is still a challenge. On the one hand, the concept of shared-
control is not uniform in the research community and can be confused with other
types of driver-automation interaction. On the other hand, the need to reconcile
multiple goals at the control level poses a non-trivial problem in the development of
steering controls. With this in mind, an extensive literature review, presented in
this chapter, enabled a better understanding of the current state of this technology,
both from a technical and a practical point of view. The most important aspects
are discussed below:

• Concept: Although the term shared-control appears frequently in the scientific
literature, it has not been precisely defined. Efforts in recent years, however,
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have led to a more detailed definition given by Abbink et al. [8]. In addition, a
representation of shared-control in the context of Human-Machine Cooperation
related to the levels of task support, has been presented by Flemisch et al. [9].
This definition can be applied to steering shared-control in automated vehicles as
follows: “The driver and the steering assistance system interact congruently in a
perception-action cycle to execute a dynamic driving task that either the driver
or the system could execute individually under idealcircumstances".

• Control frameworks: Two well-defined frameworks are recognized in the
literature. First, coupled shared-control, where the driver and the automation
interact exclusively via haptic feedback thanks to the mechanical coupling of
the steering wheel and the automatic control. Second, uncoupled shared-control,
where, thanks to the decoupling of the steering mechanism, the driver’s inputs
can be read, processed, and modified by the automation according to the goals of
the control system. As can be seen from Figure 2.6b, there is a growing body
of work on both systems, with the coupled strategy naturally receiving more
attention since most commercial vehicles use a coupled steering system. The
main disadvantage of a coupled steering system is the creation of torque conflicts
between the driver and the automated system when they have different intentions,
while an uncoupled system can cause the driver to feel a lack of control when the
automated system does not closely follow the driver’s intentions.

• Control methods: A first distinction was made between model-free and model-
based shared-controllers. From this point of view, model-based optimal controllers
such as MPC, LQR, and LMI have shown relevant advantages in incorporating
driver models into problem formulation. This has reduced driver effort, improved
performance, and minimized torque conflicts, which are one of the main causes
of system rejection. As can be seen in Figure 2.6c, these benefits have led to
increasing research interest in this control modality. In addition, much attention
has been paid to game theory-based controllers for both coupled and uncoupled
shared-control. A Lyapunov-based methodology was the preferred strategy to
demonstrate system stability.

• Arbitration: The usual basis for the adaptive authority calculated by the ar-
bitration system is vehicle tracking performance (e.g., lateral error). However,
comfort parameters such as lateral acceleration and steering rate are also consid-
ered. However, recent work shows that it is important to include variables not
directly related to control objectives in the calculation of system authority, such
as driver state, e.g., fatigue and inattention. Also, some indicators of driving
risk (e.g., TTLC, TTC) are relevant to modify the degree of intervention of
the automated system, especially in tactical maneuvers, as well as the torque
conflict between driver and automation. In addition, the driver’s intentions and
behavioral characteristics seem to be a next step that should be considered in
the arbitration decision making process.

40 Chapter 2 State-of-the-Art



5 10 15 20
0

10

20

30

Year

(a) Applications vs Theory

5 10 15 20
0

10

20

Year

(b) Coupled vs Uncoupled

5 10 15 20
0

5

10

15

Year

(c) Model-free vs Model-based

Fig. 2.6: Statistics on works addressing shared-control in automated vehicles: (a) numbers
of system applications and theoretical works on shared-control in the automotive field, (b)
numbers of works using coupled (black) and uncoupled (blue) steering systems, and (c)
numbers of works on coupled shared steering control using model-free (black) and mode-
based (blue) control methods

• Use-cases: Lane keeping and lateral maneuvers such as lane changes and obstacle
avoidance are among the most common tasks in shared-control driving. Also
of interest is the transition from manual to automated driving (or vice versa)
when the driver regains control or when the automated system has a different
intention than the driver. Partially automated vehicles could implement these
applications, but highly automated vehicles could also be equipped with shared-
control applications, especially for takeover requests.

• Research community: Institutions working in shared-control exist all over the
world (Europe [44, 185], the USA [172, 186], China [99] and other regions). TU
Delft [39, 48, 109] focus on coupled and model-free shared-control techniques.
This institution participates in theoretical contributions with Flemisch et al.
[9, 59, 69] regarding the conceptualization of shared-control. There is another
relevant research group at IRCCyN in France [44, 87, 137]. This group specializes
in coupled model-based control techniques that incorporate a driver model into
a shared-control framework. In terms of industry partners, companies such as
Renault, Nissan, and Toyota have been found to support academic research in
shared-control.

• Projects: Moreover, automated driving applications based on shared-control
has been considered within the frameworks of various european projects, such as
Deserve [28, 66], HAVEit [187] the ABV Project [32], Prystine [188] and Hadrian
[12, 189]. National funding programs were also involved in the development of
such systems.

• State of technology: Many steering shared-control systems have been validated
in virtual testing, a moderate number in DiL simulators and few with real vehicles.
This situation reflects a technology under development for which appropriate tests
have been performed, but only under controlled conditions. One can also conclude
that shared-control for uncoupled systems is one step behind coupled shared-
control in terms of its stage of development. In both cases, however, the research
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community is showing increasing interest in this technology. In addition, driver
acceptance studies show positive feedback and motivate further developments.
The legal aspect will also be crucial for the transition to the commercial phase.
The main challenge here is the variable assignment of authority in the dynamic
driving task. Currently, the closest type of commercial ADAS to a shared-control-
based system is a ALC. However, such a system lacks the continuous cooperative
component that characterize shared-control. Therefore, an adaptive authority
ALC based on driver state and maneuver risk is how shared-control is envisioned
in a near future in the automotive domain.

• Current trends: The past two years have shown that interest in shared-control
continues, with more than 40 relevant contributions in the literature [26, 190–
232]. Several trends can be observed. For example, the evaluation of human
factors in shared-control (e.g., trust) [196], the consideration of improved driver
modeling for both lane keeping and lane changing [214, 227, 228, 230], and the
comparison of the two main control frameworks (coupled vs. uncoupled [191]).
In addition, there is an interest in studying shared-control ADAS, especially
active safety systems [224, 226] and assistance systems that support drivers with
limited capabilities (e.g., due to distraction or high workload) [198, 206, 218].
New scenarios are also explored, especially for evaluating shared-control strategies
for system-initiated takeover requests [26, 192, 207, 225]. Complementary HMIs
are being investigated to support the shared-control strategy with additional
visual information [232]. Parameterization of torque values accepted by drivers is
also the subject of research [220].

• Future works: Testing is expected to be conducted with real vehicles and
experimental research platforms. Minimizing steering wheel conflicts during
driving maneuvers is a priority to achieve good driver acceptance. In terms of
application-oriented contributions, work on shared-control algorithms that take
into account the driver’s state is a clear future research direction. In addition,
characterizing different driver behaviors and adjusting controller gains based
on these factors is key to achieving acceptance of these systems among drivers
with different driving styles. Finally, integration of shared-controllers with other
modules such as driver monitoring systems, visual interfaces, adaptive HMIs, and
collision detection systems is necessary for the creation of a complete collaborative
framework [233, 234]. The inclusion of pedals with haptic feedback in combination
with steering shared-controllers is a desired feature in future steps. Apart from
these contributions, it is of great importance to evaluate the aftereffects of shared-
control in automated driving, because it has been reported that people may lose
their driving skills if they are constantly assisted by such systems [63]. Therefore,
further studies on this aspect are needed. In this sense, shared-control has been
promoted as a strategy that assists drivers when needed rather than all the time,

42 Chapter 2 State-of-the-Art



and future development of decision and control algorithms should take this into
consideration.

2.5 Conclusions
In summary, this chapter provided an overview of shared-control as applied to
automated driving, with particular emphasis on theoretical understanding of the
concept and analysis of system applications of steering control. The results show
an increasing interest and relevant technological advances in this area, motivating
further developments and likely leading to experimental tests in real vehicles in the
near future.
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3Shared-Control Framework
for Automated Driving

This chapter presents a modular architecture used to develop shared-control
strategies for automated vehicles. Special attention is given to the integration

of the arbitration system and the steering shared-controller into a general framework
for the development of Automated Driving (AD) functionalities [235]. Since this
framework was originally developed for vehicles in which the human is the supervisor
or passenger, the interaction between the driver and the automation system is not
considered in its structure. In this context, the objectives of this chapter are:

• The integration of shared-control components into a general framework for au-
tomated driving applications, taking into account the hierarchical levels of the
driving task (i.e., strategic, tactical, operational and execution).

• To perform a modular comparison of implementation requirements and challenges
between traditional Automated Vehicles (AVs) and the shared-control approach.

• To describe the custom shared-control framework used in this dissertation, consid-
ering the hierarchical levels of the driving task, including the rationale for selecting
the arbitration and steering control algorithms, along with their theoretical basis.

• To describe the software/hardware architecture for the DiL simulator platform
used to develop shared-control applications in automated driving.

3.1 Automated Driving Framework
According to the general framework for automated driving presented in [235], the
control architecture is divided into six main modules: Acquisition, Perception,
Communication, Decision, Control and Actuation. In addition, other modules not
directly related to automation control, such as HMI, supervision and database, are
also considered. This framework has been used for several developments of automated
driving applications in recent years, including optimal trajectory planning [236]
and validation of model-based tracking controllers [17]. In this framework, however,
the driver is considered a passenger and is excluded from the control loop. When
the driver is included in the shared-control mode, additional considerations and
sub-modules must be included in the framework, particularly related to human state
assessment, inclusion of the arbitration system to harmonize driver and automation
decisions, and adjustment of the automation controller’s authority. In addition,
driver interaction via the vehicle’s human-machine interfaces must be considered.
The integration of these submodules into the original architecture is shown in Figure
3.1 and represents the shared-control framework used in the Ph.D. Thesis. With
this in mind, each module of the original architecture is described in the following
subsections, along with a comparison between traditional automated driving (i.e.,
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L2 to L5 capable vehicles) and shared-control for AVs, using a similar approach
presented by Friedman [237] in relation to the concept of shared autonomy.

3.1.1 Acquisition
The focus of this level is on the sensors. On one side, the propioceptive sensors
that relate to the state of the vehicle. On the other side are the exteroceptive
sensors, which relate to sensing information from the vehicle’s environment and
may include sensors to monitor the driver (some propioceptive sensors may also
be used for this task). The acquisition module has two main functions: collect
data from sensors and process this data accordingly (e.g. filters and reference
frame). General information about the state of the vehicle includes inertial variables
coming from inertial measurement devices (IMU) and data provided by the low-level
CAN (Controller Area Network) module, including information about the state of
vehicle’s actuation mechanisms and Electronic Control Units (ECUs). In terms
of the environment, sensors such as radars, cameras, sonars, and LiDARs (Light
Detection and Ranging) receive information from the road and road users in the
vicinity. Both conventional automated driving and shared-control require accurate
knowledge of the vehicle’s state, but the main difference is in the detection of the
environment. As for the driver sensing, both modes require knowledge of the driver’s
state, obtained through a variety of sensors including visual, IR, and thermographic
cameras, sensors for physiological measurements (e.g., heart rate, temperature), and
sensors in the control interfaces.

• Automated driving: To ensure proper operation, a large number of sensors
are required to accurately map the road environment and detect road users. In
[238], the authors provide an overview of perception sensors in AD, including
the number of sensors in relevant demonstrators (e.g., Tesla, Waymo, Mobileye,
and others). The average number of sensors in demonstrators between 2016 and
2019 (for environment detection only) is about 15, with architectures of up to
21 perception sensors. Regarding driver recognition, highly automated vehicles
that do not consider the driver (i.e., L4-5) do not require extensive knowledge of
the driver’s state (here, the main challenge is environmental sensing). However,
for AVs where the driver has a supervisory/fallback role, sensors are needed to
detect involvement in the driving task, e.g., touch sensors on the steering wheel to
detect the position of the hands, or cameras to verify that the eyes are focused on
the road. However, to develop more advanced systems that help drivers maintain
sufficient situational awareness to safely resume control, a deeper knowledge of
the driver is needed, which would require more complex sensor technology1.

• Shared-control: Environmental sensing is still important, but including the
driver in the control loop reduces the required accuracy of the sensing system and
thus the number of sensors needed. In this sense, sensors used for commercial

1Video: HADRIAN Driver Monitoring System → https://hadrianproject.eu/dms

3.1 Automated Driving Framework 45

https://hadrianproject.eu/wp-content/uploads/2021/09/Video-D2.3-Results-and-Demonstrators-of-WP2-Studies_f.mp4


Automated Lane Centering (ALC) and Adaptive Cruise Control (ACC) systems
could be used as a basis for shared-control ADAS. In terms of human sensing,
rather than just assessing the driver’s condition, it is important to also consider
the driver’s control activity. This is measured by sensors integrated into the
control mechanism, such as encoders, torque and force sensors, and others that
would not be needed if the driver is out-of-the-loop.

Acquisition: Shared-control would require sensor technology similar to that used
for environmental sensing in AVs, but with a much smaller number of sensors.
Monitoring the driver requires a combination of sensors that assess the driver’s
state and those that assess performance at the control level. Yet, does not require
extensive sensor structures to assess the driver’s ability to safely resume control.

3.1.2 Perception
This layer focuses on algorithms that use data from the acquisition and communica-
tion modules to generate meaningful information about the environment, the vehicle,
and other road users. This information includes localization of the ego-vehicle vehicle
using techniques such as Simulataneous Localization and Mapping (SLAM). The
perception module is also responsible for object detection and classification as well
as road structuring. Artificial Intelligence (AI) is used for environment recognition
and sensor fusion techniques are implemented for combining multisensor arrays to
reduce measurement uncertainty. In addition, several aspects are of interest when
monitoring the driver, such as the driver’s state (e.g., drowsy, distracted, or stressed),
the driver’s activity, including performance of Non-Driving Related Tasks (NDRTs),
and health condition, for example, heart-rate.

• Automated driving: Efforts are moving toward high-precision localization,
combining stellite-based positioning with digital mapping and ego-vehicle sensors.
Another goal is to improve the accuracy of object recognition for distinguishing
road users (pedestrians, cyclists, and other vehicles), providing spatial, dynamic,
and semantic information about external objects, and recognizing traffic signs
(traffic lights, speed limits, pedestrian zones, and others). However, performing
the task of perception with outstanding accuracy is complex, expensive, and
time-consuming, not only because of the large number of sensors needed, but also
due to the computational power required and the amount of training data. In
terms of driver perception, the biggest challenge is to assess the driver’s ability
to safely take-over control. This would require assessing the level of situational
awareness, emotions, and other variables that are not easily determined.

• Shared-control: Involving the driver gives the system an experienced pair
of eyes and someone who can take back control if needed. In this sense, the
need for precise localization and environmental recognition is less and could
be compared to the perceptual capabilities of vehicles currently using ALC
and ACC, which rely on detecting lane markings and recognizing other road
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users in the vehicle’s field of view without the need for detailed information.
Nevertheless, the demands on the driver’s sensing capabilities increase. In this
sense, AI algorithms are working to obtain driver-related variables of interest
[239], such as eyes gaze, position of the hands, head direction, physiological signals
(e.g., breathing patterns), steering and pedaling activity, gestures, and others.
Combining these variables can provide more meaningful driver-related information,
such as distraction, workload, sleepiness, fatigue, in-cabin activity, health status,
emotions, and others. Although, shared-control is less demanding in terms of
specific driver information (compared to AVs), there are still some challenges
ahead (e.g., adaptive recognition systems for drivers of different backgrounds,
ages, driving profiles, etc.).

Perception: Shared-control would require the usual AI and sensor fusion algo-
rithms used in AVs to perceive the environment and assess the driver’s state, but
with lower information accuracy requirements, reducing the computational power
required, the amount of data to be trained, and the complexity of the algorithms.

3.1.3 Communication
The communication module provides information from other vehicles (Vehicle-to-
Vehicle, V2V) or from a digital infrastructure (Vehicle-to-Infrastructure, V2I) to
improve the scope and accuracy of the environment description. In addition, this
module includes any type of communication between the vehicle and an external
entity (V2X). This includes the Global Navigation Satellite System (GNSS), which
enables the localization of the vehicle. But it also includes, for example, communica-
tion with the 5G mobile network. It is important not to confuse this layer with the
communication layer of the sensors or the communication of the vehicle with the
driver, which is handled in the HMI module.

• Automated driving: The challenge is to provide the automation system with
additional information, particularly from other road users outside the vehicle’s
field of view and information about vehicles in the vicinity that are not accurately
perceived by the ego-vehicle’s sensors. However, improving perception for highly
automated vehicles requires expensive vehicle and infrastructure adaptation, a
large amount of data, and detailed information.

• Shared-control: Although this is highly desirable for proper implementation in
AVs, it is an optional feature in shared-control. Even under these circumstances,
it would require less information from other vehicles and also from infrastructure.
Instead of a detailed description of objects and events, a simple description
is already useful for the driver automation team. For example, if a smart
infrastructure informs about an upcoming construction site, AVs needthe position
of the zone, the time to arrive at this zone and other related information, but for
the driver in shared-control mode the notification message is sufficient.
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Communication: Shared-control does not rely on communication with other
vehicles and infrastructure, although this would enhance functionality if available.
In addition, the information required would be simpler in scope and detail.

3.1.4 Decision
This layer receives information from the perception and communication modules
and decides on the trajectory (including path and speed planners) that the vehicle
automation should follow. In this phase, safe trajectories are generated to react
and interact with unexpected situations that typically affect the predefined driving
style, such as: obstacles, road works, pedestrians, etc. This phase consists of three
sub-modules. First, the global planner, which performs the initial planning process
at the strategic level (how to get from A to B). It is responsible for creating an
accurate global path by considering information from a map file and then finding
the best path, usually by means of graph-search-based algorithms. Second, the local
planner, which improves the smoothness of the trajectory and the comfort of the
vehicle by using different types of curves, such as Bezier [240] and adding the speed
profile of the longitudinal movement of the vehicle. Third and finally, the behavior
planner, which selects the most appropriate maneuver depending on the dynamic
road conditions (e.g. lane change, obstacle avoidance, overtaking, etc.).

• Automated driving: Real-time generation of safe and comfortable trajectories
together with decision logic for vehicle maneuvers (e.g., when to overtake) is the
main focus of the decision module. The approach is rather conservative in this
sense, since safety must be ensured first and foremost.

• Shared-control: While trajectory precision and parameter fine-tuning is not a
hard requirement, the development of personalized, human-centered trajectories
is a must to avoid conflicts with drivers [71]. Moreover, the main challenge in
shared-control is to design the right arbitration system to harmonize the driver
and automation inputs (especially if they are different) in an understandable
and optimal way based on the driving context (automation, environment, and
driver state). In addition, a model of the driver’s intentions must be considered
to compare the driver’s desired maneuver with that of the automation.

Decision: Real-time planning with optimal trajectories is a second priority
compared to harmonizing driver and automation intentions through arbitration
logic. In this context, personalized human-oriented trajectory references and driver
intention models are of great importance.

3.1.5 Control
This module receives information from the decision level, in particular the optimal
path and speed profile to follow. Then, the control algorithms compare the current
vehicle states with those of the desired trajectory and makes appropriate lateral and
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longitudinal corrections by sending control commands to the actuation mechanisms
(i.e., steering, accelerator, and brake).

• Automated driving: The controller’s goal is to perfectly follow the calculated
trajectory in the decision module. In addition, controllers are focused on goals
such as tracking, stability, efficiency, and comfort, but drivers are considered a
disturbance to the system. In this sense, most lateral controllers for automated
driving are based on steering wheel angle and use position and speed controllers.

• Shared-control: The emphasis is on cooperation between the driver and the
automation, so the main goal of the controller (in addition to the conventional
goals of path tracking) is to avoid conflicts with the driver as much as possible. A
unique feature of shared-controllers is that they use torque (for steering) and force
(for pedaling) as control signals instead of position. In addition, the controller has
adaptive haptic authority (whereas AVs controllers have fixed authority). This
means that the arbitration system is able to determine the degree to which the
controller assists the driver by providing gentler or stronger support, depending
on the driving context.

Control: Instead of position-based controllers designed for accurate path tracking,
the shared-controllers use torque/force as control signal and focuse on operational-
level collaboration between the driver and automation. Its design incorporates
adaptive haptic authority and aims to improme manual performance and safety,
while reducing conflict with the driver and enabling seamless control transitions.

3.1.6 Actuation
The actuation module corresponds to the vehicle actuators such as the accelerator
and brake pedals, and steering wheel. It also takes into account the low-level control
of these vehicle control interfaces.

• Automated driving: The actuation mechanism has no significant effect on the
operation of the control module, except for the setting of the low-level controller.
Furthermore, the actuation module for AVs is almost irrelevant to the driver.

• Shared-control: The steering actuation system either the conventional coupled
steering or the more modern steer-by-wire, affects the operation of the control
module because the shared-control scheme changes depending on the actuation
mechanism used (coupled or uncoupled shared-control, as explained in Section
2.2.6). In addition, each actuation system poses different challenges to the imple-
mentation and driver acceptance of shared-control. Appropriate instrumentation
of the actuators is also required, as these sensors provide relevant information
about the driver’s control activity (e.g., the driver’s torque effort when assisted
by automation).
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Actuation: The control mechanism is seamless in AVs, but in shared-control
it determines the control scheme because it depends on whether the system is
mechanically coupled or decoupled. It also affects how the driver perceives the
assistance system, namely as a sense of control interaction.

3.1.7 HMI
Vehicle-oriented HMIs help the driver understand the intent, state, and actions of
the automation and increase situational awareness and confidence in the automated
vehicle. In this sense, the system can convey information to the driver through
three main channels. First, a visual screen, through text or images, showing, for
example, a representation of the environment with nearby vehicles. Second, via
haptic interfaces, through vibration in the pilot seat, on the steering wheel, or on
any other surface in contact with the driver. Third, using audio warnings, either
through audible alerts or a tutorial voice. The design of such strategies should follow
the principles of comfort and ease of use and avoid an excess of information so as
not to overwhelm the driver.

• Automated driving: The interaction between the driver and the automation
consists in the driver being sufficiently informed about the situation in case there
is a request to intervene. In this sense, the continuous information consists in
showing the operation of the system, and the alarms refer to the events of the
control transition. In addition, AVs will benefit from external HMIs [241] that
replace the interaction of the driver with other road users (e.g., pedestrian), and
provide automation-related information to the outside of the vehicle.

• Shared-control: Because the driver is highly involved, the HMI strategy relies
more on informing the driver of system status and issuing alerts that require quick
responses. The fact that the human is at the wheel enhances the possibility of
improved interaction via the control interfaces such as steering wheel and pedals
through haptic feedback. With respect to eHMIs, they are not needed because
the driver can interact directly with other road users, similar to manual driving.

HMI: Visualizing information to increase situational awareness and confidence
is not the primary goal of HMIs in shared-control. Instead, it is worth exploring
strategies that take advantage of the haptic channel of the control interface while
leaving other interaction modalities available for information about system state.
Furthermore, shared-control does not require eHMIs.

3.1.8 Supervision
The supervision module is responsible for detecting system failures and executing
fallback and control transition strategies in the event that the automated system is
limited or unable to operate. In comparison with the original framework [235], this
module is intentionally integrated into the decision layer.
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Fig. 3.1: Shared-control framework based on the automated driving architecture of Gonzalez
et al. [235], including the neccesary components for steering shared-control applications

• Automated driving: The system should be fail-operational (i.e., able to main-
tain operation or perform a safe fallback maneuver after a system failure [242]).
However, this requires complex perception technology, and in the event that the
system cannot maintain normal operation, the strategy for returning the human
to the control loop is also challenging, as the driver must regain good driving
skills after a period of inactivity.

• Shared-control: In this case, the driver is the best fallback mechanism because
s/he is already involved in the tactical-operational control of the vehicle. In this
sense, the fallback strategy focuses on informing the driver in a simple way that
the system is no longer providing support. It is important also to take the driver
state into account to provide the appropiate feedback and sense of urgency. Also,
as control transitions are managed in the arbitration system, it has been included
as a submodule of the supervision layer, along with the fallback system.

Supervision: While in AVs the implementation of the fallback strategy is complex
because the role of the human changes, in shared-control it mainly consists of
informing the driver that the support system is no longer available, but the role is
always that of the primary driver.

The previous modules are shown in Figure 3.1, including the new integrated
components for shared-control applications, in particular those used in the steering
control developments presented in the next chapters of this dissertation. In the next
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section, the new components of the shared-control framework are explained in detail,
in particular the arbitration and shared-controller subsystems.

3.2 Shared-Control Framework
In addition to the aforementioned general AD architecture, this section presents the
detailed framework for driver-automation interaction under shared-control in terms
of cooperation levels (i.e., tactical, operational and execution). The representation
of this framework along with its components is shown in Figure 3.2.
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Fig. 3.2: Shared-control framework by driving task levels (tactical, operational, execution).
It is an expanstion of the colored submodules of Figure 3.1

The operational level is responsible for the control task, the tactical level refers to
the maneuvers and decisions, and the strategic level refers to the planning strategy
to move from a starting point to a goal. An additional level, is sometimes considered,
and is referred to as the execution level [8]. It relates to the operation of the
low-level controller (in this case, the internal torque controller of the steering wheel
system). In the context of shared-control of automated driving, some works use
the three cognitive levels [9, 243], focusing on the tactical and operational phases,
since the strategic part is a problem that has already been solved in intelligent
vehicles and does not provide an enriched scenario for high cooperation between
driver and vehicle. The next sections explain the specific algorithms used to develop
the operational and tactical levels of the shared-control framework of Figure 3.2,
focusing on applications for coupled steering systems. The execution level, on the
other hand, is a torque controller that is integrated into the steering wheel device
presented in Section 3.3.2 and supplies the system with the necessary current.

3.2.1 Operational Level → Shared-Controller
The operational level includes the ALC system, which is responsible for steering the
vehicle and tracking the reference trajectory. However, it takes into account not only
the tracking objectives, but also the application of the Level of Haptic Authority
(LoHA, as described in Section 2.3.2) and the stability criteria. In order to select an
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appropriate control method, the next sections evaluate the controller requirements
in the context of shared-control, then analyze the control methods available in the
literature, and finally explain the selection of the most appropriate algorithm to
accomplish the task along with its theoretical basis.

3.2.1.1 Requirements
The driver interacts with the controller through the steering wheel as part of the
coupled shared-control scheme (driver and vehicle are mechanically coupled through
the steering system). In this sense, the controller must meet a number of requirements
that are not considered in conventional autopilots (which are designed for lateral
vehicle control but do not consider interaction with the driver at the operational
level). The most important requirements are listed below:

• The control signal must be the steering wheel torque. This is in contrast to
autopilots, which typically control with steering wheel angle [244] or even angular
velocity [245]. However, the driver controls the steering wheel by applying torque
with the arm-hand mechanism, and steering angle control has been shown to
limit the driver’s ability to work harmoniously with the automation (since he
must deal with the low lever position controller) [246]. Therefore, to couple the
control signals of both agents, a torque-based lateral controller is developed. In
this dissertation, the control signal is associated with the variable T .

• The authority of the controller (i.e., its stiffness) must be variable, because
in shared-control the assistance required by the driver is not always the same,
so it can be adapted to the driving context (i.e., driver, automation, and envi-
ronmental conditions). This differs from traditional autopilots, which assign a
single authority value to the controller that is either enabled or disabled. With
autopilots, the change occurs at the decision level and in the trajectory planner,
but the controller remains with the same authority, whereas with the shared-
control approach, automation support can adjust its intensity based on various
driving-related conditions. This means that the automation can assist the driver
with different intensities, covering the whole spectrum from "no support" to
"maximum support". In the literature, this intensity is referred to as Level of
Haptic Authority (LoHA) [25, 247]. In this Ph.D. Thesis, it is associated with λ.

• The control method must be able to perform optimization of multiple objectives
because the complex interaction between the driver and the automation creates a
set of objectives such as tracking performance, driver comfort, driving effort, safety,
and driver-automation conflict, that cannot always be achieved simultaneously.
Therefore, a controller that can efficiently balance these goals is desired.

3.2.1.2 Rationale
Regarding the control method, classical controllers such as PID [248] and non-model
based controllers such as fuzzy logic [249] are commonly used for autopilots. However,
for shared-control applications, optimal control algorithms are more advantageous
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because they allow minimization of multiple objective functions and have the added
benefit of managing the vehicle’s dynamic states and control signals through system
constraints. Another advantage is that optimal control works with a system model,
and in this case, it is possible not only to model the vehicle system, but also to
integrate a driver-vehicle model in the problem formulation, which allows better
prediction of the driver-automation interaction [250, 251]. Moreover, the state-of-
the-art in shared-control methods shows that more and more optimal controllers for
shared-control applications have been developed in recent years [252, 253].

Moreover, previous works have used various optimal control methods for shared-
control applications, such as Linear Matrix Inequalities (LMI) with Linear Quadratic
Regulator (LQR) [254], and Game-Theory [142]. Nevertheless, the preferred control
algorithm for this work is the MPC approach, due to the following advantages offered
by this algorithm:

• Powerful approach to optimal control of multivariable systems with constraints
on inputs and states.

• Enables easy integration of predicted information considered in the optimization
problem, and therefore takes appropriate control actions.

• Allows to include constraints resulting from traffic or road geometry.

• Calculates a new solution at each time step.

• Acts as both a controller and a trajectory planner, as it is able to predict its
states over a finite future horizon.

• Manages both hard constraints and a nonlinear systems moving away from its
linearized operating point.

• Solvers are available in the microsecond range, making this technique suitable for
a control loop of 1 to 10 ms, which is common in AD applications.

3.2.1.3 Model Predictive Control
Model Predictive Control (MPC) is a model-based optimization method that iterates
over a finite prediction horizon to minimize an objective function. It is widely
used in control processes [255] and has become a common planning and control
strategy for automated driving applications [256, 257]. A general description is
given by approaching the three main component: model, objective function, and
constraints.

• Prediction model: The mathematical formulation of the system behavior using
first order differential equations. The model contains the states of the system
and the control inputs. To ensure precise control, the model must be as accurate
as possible, especially in open-loop applications. In automated driving control,
however, the closed-loop approach is preferred, allowing greater flexibility in
identifying parameters.
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• Objective function: It determines the behavior of the controller by minimizing
a subset of the states and inputs of the system contained in the model, using a
quadratic minimization approach. The minimization considers a weight matrix to
balance the different objectives of the controller according to the desired behavior.

• Constraints: In addition to minimizing states and inputs, their values are also
limited. For inputs, this is a simple task, since it is sufficient to saturate the
output of the controller. However, the advantage of this feature is that the entire
optimization framework aims to minimize the objective while maintaining the
system’s state constraints. This is particularly useful for incorporating safety and
comfort considerations into the problem.

The mathematical representation of the controller scheme in its discrete form is
shown in Equations 3.1a-3.1f:

min
U

Np−1∑
i=0

||zi − zri ||
2

Wz
+
Nc−1∑
i=0

||ui − uri ||
2

Wu
+
Nc−1∑
i=0

||∆ui − ∆uri ||
2

W∆u
(3.1a)

s.t. s0 = s̄o (3.1b)

si+1 = f(si, ui, li), i = 0, 1, ..., Np (3.1c)

z̃min,i ≤ z̃i ≤ z̃max,i, i = 0, 1, ..., Np − 1 (3.1d)

ũmin,i ≤ ũi ≤ ũmax,i, i = 0, 1, ..., Nc − 1 (3.1e)

∆ũmin,i ≤ ∆ũi ≤ ∆ũmax,i, i = 0, 1, ..., Nc − 1 (3.1f)

where s ∈ RNs is the state vector of the system with Ns elements, and initial state
vector s̄0 ∈ RNs . It represents all measurable states, for example, the velocity, the
position, or the yaw rate of the vehicle. The combination of the functions fi : R → R,
with i = 1, ..., Ns represents the model of the system and depends on the system
states (s), the system control inputs (u), and the external inputs not considered
in the model (l). For vehicle automation applications, for example, the function
could be a kinematic or dynamic vehicle model. The vector z ⊆ s is the vector of
optimization states, a subset of the system state vector, and it represents the states
to be optimized over the predictive horizon with length Np, for example, vehicle
position or velocity. The inputs (u) and the associated rate of change (∆u) are
also optimized in the minimization function, over a finite control horizon of length
Nc. The weight matrices Wz,Wu,W∆u balance the minimization of the objective
functions (associated to the reference values zri , uri ,∆uri ). This could, for example,
help to increase the efficiency of the controller by minimizing the control signal
as much as possible. The vector z̃ ⊆ s, has Nz̃ states and contains those that are
constrained, for instance, limiting the lateral vehicle position to avoid leaving the
lane, is a common application in automated driving. The vectors ũ and ∆ũ, with
Nũ and N∆ũ elements, respectively, add constraints to the control signals and their
derivatives. The implementation of this optimal control framework for shared-control
applications is presented in Chapter 4.
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3.2.2 Tactical Level → Arbitration
The tactical level in AD refers to driving maneuvers. However, in shared-control,
it is also responsible for calculating the haptic authority of the operational level
controller. This is done through the decision system called Arbitration, which
decides, depending on the different driving variables, whether the controller should
be given high authority (the automation has the main control) or low authority
(the driver applies most of the required torque). In this sense, this module is also
responsible for control transitions. It can deactivate the controller and put the
system in manual mode, or activate it and make the transition to automated mode.

3.2.2.1 Requirements
Calculating the optimal level of haptic authority is one of the most challenging
aspects of shared-control, as it depends on multiple and complex conditions related
to the environment, the vehicle, and the driver’s state. In this sense, the decision
algorithm must satisfy the following requirements:

• MIMO (Multiple Inputs Multiple Outputs) system to obtain the different driving
conditions that affect the calculation of the authority, and to be able to comple-
ment the authority with other parameters of interest in the decision output.

• Intuitive incorporation of system variables into system behavior so that inputs
and outputs are correlated in a straightforward manner.

• Flexibility in inputs and outputs values so that fine-tuning is not required.

• It must be a model-free technique, since the mathematical description of the
calculation of authority is a difficult task.

3.2.2.2 Rationale
Concerning arbitration, previous works have implemented various algebraic functions
that depend on one or two variables. In [258], linear, piecewise linear, and nonlinear
functions are used to assign control authority based on a threat assessor. Other work
has integrated driver state and torque conflict into gaussian [86] and exponential
[84] functions to calculate authority. However, as systems become more complex,
more inputs are required. Moreover, conventional functions require normalization
and fine-tuning of parameters to fit the formula to the desired behavior. As previous
works have shown [28, 259], decision-making methods based on Fuzzy Inference
Systems (FIS) bring advantages to the arbitration task for these reasons:

• It does not require precise values for the inputs, but allows a simple description
of each variable in terms of a range of values.

• Human knowledge can be easily integrated into logic by IF-THEN rules.

• Changing system behavior does not require re-setting the entire system.

• It is a flexible method in terms of the number of inputs and outputs.
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• The continuity added to the system’s inputs is reflected in the continuity of the
output, resulting in a smooth decision surface.

• Low computational cost as it does not require complex numerical calculations.

• When using Mandami-type fuzzy systems, no model of the system is required.

3.2.2.3 Fuzzy Inference System
Fuzzy logic is an AI-based algorithm that provides a solution to complex, hard-to-
model decision and control systems by incorporating human knowledge into the
design of the logic. To do this, the system’s inputs and outputs through a set of
membership functions and linguistic IF-THEN rules [260]. The components of a
Mandimi-type fuzzy system are described below:

• Linguistic variables: In fuzzy systems, it is necessary to give an understandable
description of the inputs and outputs. For example, if the state of the driver is
an input with two states, they can be labeled as attentive and distracted.

• Fuzzyfication: The process of assigning a degree of membership function (Mk)
for the numeric value of the input (xk). Since this method does not use exact
values for the set of inputs and outputs (y), it requires a description by ranges
defined by membership functions (e.g., triangle, trapezoid or gaussian).

• Inference engine: Responsible for applying inference rules to the fuzzy input to
produce the fuzzy output. It is the application of Boolean logic (e.g., AND, OR)
and certain functions such as implication and aggregation to the inputs to obtain
a fuzzy value for the output (between 0 and 1). This output is then passed to
the defuzzification stage.

• IF-THEN rules: The design of the logic is done by simple IF-THEN rules
(Ri) based on the previously defined linguistic variables as shown in Equations
3.2a-3.2b. For example, IF Driver = Distracted THEN Controller = Active.

Rule Ri : IF x1 is M i
1, x2 is M i

2, ..., xm is M i
m (3.2a)

THEN y is H i, i = 1, 2, ..., n (3.2b)

• Defuzzyfication: It does the opposite from fuzzyfication. In converts a fuzzy
value in a classical value defined in the output membership function (Hk).

The implementation of this technique is used in the validation of the steering
shared-controller in Chapter 4 and in the experimental studies in Chapter 5.

3.3 Automated Driving Simulator
The shared-control system is implemented in Tecnalia’s AD simulator shown in
Figure 3.3. It is a static platform with immersive visual experience using three front
screens (26 inches each). It consists of a cockpit, the driving actuators, the displays,
the driving monitoring system and the control system PC. The cockpit includes both
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the structure of the simulator mounts and the driver’s seat. The modular structure
of the mounts allows the position of the pedals and steering wheel to be changed to
mimic a normal driving position. The position of the seat can be adjusted as in a
normal vehicle. The position of the screens is at a similar height to the windshield
and rear windows to enhance the driving experience. See the following sections for
details on the software/hardware architecture of the simulator.

Fig. 3.3: Driver-in-the-loop AD simulator platform of Tecnalia

3.3.1 Software
The main components are the vehicle dynamics simulator, a Tecnalia proprietary
software tool for validating vehicle systems, and the development environment in
which the framework for automated driving is coded.

3.3.1.1 Vehicle Dynamics Simulator
The vehicle simulator is the software tool Dynacar, an integrated solution for the
development of electric and hybrid vehicles that provides a physical model of the
vehicle based on a multi-body formulation with relative coordinates and semi-
recursive equations of motion based on a velocity transformation. The suspensions
are considered as macro-joints and their behavior is modeled using lookup tables.
As shown in Figure 3.4a, the local Cartesian coordinates of the chassis frame are
located at the center of the front track width (C), cardan angles, which determine the
orientation of the wheels with respect to the chassis frame, are located at the steering
knuckles (K), and the kinematic expressions for the macro-joints take into account
the position, velocity, and acceleration values of the wheels (W). The model allows
users to develop or integrate their own control algorithms in the Matlab/Simulink
environment. A detailed explanation of the model has been developed in previous
publications [261]. In addition, the Dynacar software includes a visualization and
road editor tool for driving simulations, as shown in Figure 3.4b.
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(a) Vehicle multibody frame (b) Dynacar visual simulator

Fig. 3.4: Dynacar simulator visualization

3.3.1.2 Development Enviroment
Automated driving algorithms are developed on Windows OS using Matlab-Simulink,
a visual programming environment that operates at a higher level of abstraction
than the Matlab interpreted language. The development of optimized code using
S-function (C++ code integrated in Simulink) allows the integration of the Dynacar
simulator software. For the development of the arbitration module, the integrated
Matlab library for fuzzy logic systems was used. For the MPC controller, the
ACADO toolkit [262], a software environment and algorithm collection for automatic
control and dynamic optimization, was used as a problem solver for optimal control.
It provides a general framework for using a variety of algorithms for direct optimal
control, including model predictive The ACADO toolkit is implemented as stand-
alone C++ code and has a user-friendly MATLAB interface. Steering control was
achieved using the SimpleMotionV22 software library. For communication with the
pedals, the general joystick library SLD 3 was used. The system for monitoring the
driver, on the other hand, ran on a separate computer under Linux OS with ROS.
The software architecture with the simulator components is shown in Figure 3.5.

3.3.2 Hardware
The hardware of the simulator consisted of the steering system, the accelerator and
brake pedals, the controller PC, the driver monitoring system and the visual HMI.
Various of the components are shown in Figure 3.6.

• Steering-wheel: It is part of Augury H Kit 4 and consists of a model 130ST
servo motor (see Figure 3.6a) with a maximum rated torque of 15 Nm, with
configurable damping and inertia via software (a key feature for the control
algorithm). It is equipped with an incremental encoder and a current sensor used
to calculate the applied torque. For safety reasons, there is an emergency button
on the right side of the steering wheel.

2Webpage: Steering wheel library → https://granitedevices.com/swlibrary
3Webpage: Pedals library → https://www.libsdl.org/release/
4Webpage: Steering wheel hardware → https://augurysimulations.com
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Fig. 3.5: AD simulator hardware/software architecture

(a) Steering-wheel (b) Accelerator-brake (c) DMS vision-camera (d) Visual HMI monitor

Fig. 3.6: AD simulator hardware components

• Pedals: Brake and accelerator pedals are Sim Pedals Pro - Heusinkveldare5.
They can be configured with different pressure and damping coefficients that
simulate the feel of some pedals in vehicles (see Figure 3.6b).

• Control PC : The control PC is a high-performance computer (Ryzen 2700x
processor) with NVIDIA RTX 2080 GPU, with 32GB RAM memory and runs
Windows 10 OS.

• Driver monitoring camera: The driver monitoring system uses an image
processing-based camera (see Figure 3.6c) and is designed to measure the degree
of driver distraction based on head position detection [263]. This system runs
on Linux OS, with the software running in the Python and ROS environments.
Data is transmitted to the main system over the UDP network. Images and video
are captured using a Basler acA1920-40uc camera, which provides 41 frames per
second at a resolution of 2.3 MP. The lens with a focal length of 12 mm was
mounted on board behind the steering wheel.

• Visual-HMI: The visualization interface runs in a Windows application, and
the hardware used for the display is an enhanced 11.6” touch monitor (GeChic

5Webpage: Pedals hardware → https://heusinkveld.com/shop/sim-pedals/

60 Chapter 3 Shared-Control Framework for Automated Driving

https://heusinkveld.com/shop/sim-pedals/


1102i6), as shown in Figure 3.6d. It is used for HMI visualization as well as for
the execution of secondary tasks by the driver and is connected to the main
computer via a mini-HDMI cable.

This AD simulator platform is the testbench of algorithms developed in Chapter
4 and experimental studies conducted in Chapter 5.

6Webpage: Visual-HMI hardware → https://www.gechic.com/en/
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4Steering Shared-Controller

Shared control in Automated Driving (AD) is intended to ensure that the driver
and the intelligent vehicle drive as a well-coordinated team that achieves good

performance, safety, and comfort on the road. To achieve this goal, progress is
needed in the design and development of control and decision systems in this area.
This is especially true for lateral control of the vehicle. The driver is more involved
in the driving process through steering than through pedaling, and furthermore,
lateral maneuvers remain a challenge for both the driver and the automation system,
which is critical to maintaining driving safety.

In this context, this chapter presents the complete analysis for the development
of a steering shared-controller for automated driving applications. In terms of the
methodology for integrating variable authority into the control framework, two
approaches are proposed (i.e., dual-level and unified). In addition, the controller
development process is presented in four iterations. Each of these iterations includes a
description of the system model, the optimization problem, consideration of adaptive
authority, and finally validation of the system to test stability and performance.
Some validations include the integration of an arbitration system to test the adaptive
authority of the controller in real driving scenarios. The chapter concludes with
a summary of the iterations and their results. In addition, the proposed shared-
controller provides the following innovations and contributions:

• A torque-based lateral vehicle controller based on Non-Linear Model Predictive
Control (NMPC) for shared-control applications in AD.

• A novel method for integrating the Level of Haptic Authority (LoHA) into the
NMPC optimal control framework.

• A new stability criterion that ensure that system operation remains stable and
maintains similar performance to the nominal controller, independently of the
LoHA, and without the need to retune the weight matrices of the optimal control
problem. Compared to similar works [81, 92, 264, 265] it is not only able to
decrease nominal authority but also to increase it without losing stability.

• A multivariable arbitration system based on Fuzzy Inference System (FIS) for
computing the appropriate LoHA for AD applications.

4.1 Dual-level Authority
As mentioned in the requirements for the shared-controller of the operational level
(Section 3.2.1.1), it must be able to support the driver with a variable LoHA (different
intensity of the control torque on the steering wheel). In this sense, the first approach
of the NMPC-based shared-controller considers two levels of haptic authority.
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First, the vehicle system has a natural haptic authority (λsat) as a product of
the self-aligning torque that pushes the steering wheel toward the zero angle. The
strength of this torque depends on some variables of the vehicle dynamics (e.g.,
longitudinal speed, sideslip angle, and others). This means that in manual mode,
the total torque (Ttotal) is only the self-aligning torque. To simplify the design, Tsat
is modeled with an elementary linear approximation shown in Equation 4.1, where
θ is the steering wheel angle.

Ttotal = −λsatθ (4.1)

After the inclusion of a lateral vehicle control (in this case, the NMPC), a new
haptic authority is added that is associated with the nominal authority of the
controller (λmpc). In this case, the intensity depends on the controller’s parameters
(e.g., optimization weights and constraints). With the addition of the controller, the
vehicle is now in automated mode. The total torque is represented in Equation 4.2,
where θd is the desired steering wheel angle calculated by the controller.

Ttotal = −λsatθ + λmpc(θd − θ) (4.2)

The previous equation shows the natural (λsat) and nominal control authority
(λmpc). In this context, shared-control applications require the integration of an
adaptive Level of Haptic Authority (LoHA, λ). In some scenarios, the LoHA could
be increased to correct the driver’s steering movements (e.g., to avoid unsafe lane
changes). In other cases, it would be necessary to decrease it to allow a transition
to manual driving. On this basis, the dual-authority approach is based on the use of
two variables that affect the nominal authority of the controller: one that increases
it (λ+) and one that decreases it (λ−). The first is represented as an additional
haptic authority at the operational level (see Section 3.2.1), whose purpose is to
increase the stiffness of the controller around the desired steering angle. This means
that as λ+ ≥ 0 increases, it becomes more difficult for the driver to overcome the
automation torque. In this sense, the new control authority is λ = λmpc + λ+ as
shown in Equation 4.3.

Ttotal = −λsatθ + (λmpc + λ+)(θd − θ) (4.3)

The second instance of authority (0 ≤ λ− ≤ 1) refers to the tactical level of the
driving task (see Section 3.2.2), whose main purpose is to perform control transitions
between the driver and the automation. When λ− = 1 the automated steering
system is active, and when λ− = 0 the vehicle is in manual mode, at other values
the system is switching from one operating mode to another. In this sense, the
transition authority (λ−) can put the vehicle in manual mode regardless of the
operational level authority (λ+). Moreover, λ− never exceeds the nominal control
authority (λmpc) but can only decrease it, while λ+ can never decrease the nominal
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authority but can only increase it. Equation 4.4 and Figure 4.1 provides the final
representation of authorities.

Ttotal = −λsatθ + λ−(λmpc + λ+)(θd − θ) (4.4)

This approach is implemented in two design iterations of the controller. Iteration 1
tests the system at low-speed (10 m/s) and uses a kinematic vehicle model. Iteration
2 operates at high-speed (20 m/s) and improves the vehicle equations using a dynamic
vehicle model. Each iteration is presented by explaining the vehicle model, the
optimization problem, the integration of the LoHA into the MPC framework, and
finally the validation of the controller on the Driver-in-the-Loop (DiL) simulator.

Nominal (𝜆𝑚𝑝𝑐) Added (𝜆+)

Transition (𝜆−)

𝜆+ = 0 𝜆+ > 0

Natural (𝜆𝑠𝑎𝑡)

Manual
𝜆− = 0

Automated
𝜆− = 1

Fig. 4.1: Representations of the authorities at the steering wheel, with the dual-authority
approach (λ− at the tactical level, and λ+ at the operational level)

4.1.1 Iteration 1
The first iteration of the shared-controller consists of a low-speed (10 m/s) system
using the dual-authority approach.

4.1.1.1 Model
The vehicle model is represented as a discrete differential equation system that
depends on the vehicle states (si ∈ RNs), the control inputs (ui ∈ RNu), and the
exogenous variables (li ∈ RNl), as shown in Equation 4.5. For simplicity, the
representation of the automated vehicle system (f) is explained in terms of three
submodels: vehicle model, lane keeping model, and steering system model. Their
combination results in the integrated road-vehicle model. Table 4.1 contains the
description of all related variables.

si+1 = f(si, ui, li), i = 1, ..., N (4.5)

The vehicle representation takes into account the bicycle kinematic bicycle model
[266], as shown in Equations 4.6a-4.6f. In addition, Figure 4.2 contains a visual
representation of the model.
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Tab. 4.1: Kinematic bicycle model variable description

Var. Description Var. Description

X X coordinate in the global frame κ̄ Road curvature

Y Y coordinate in the global frame β Side-slip angle

Ψ Heading angle L Vehicle length

vx Longitudinal velocity lr Distance CG to rear axle

vy Lateral velocity δ Steering angle

v CG velocity θ Steering wheel angle

ax Longitudinal acceleration w Angular velocity

ay Lateral acceleration k Steering stiffness

ey Lateral error b Steering damping

eψ Angular error J Steering inertial

Ẋ = v cos(Ψ + β) (4.6a)

Ẏ = v sin(Ψ + β) (4.6b)

Ψ̇ = (v/lr) sin(β) (4.6c)

v̇x = ax (4.6d)

v̇y = ay (4.6e)

β = tan−1((lr/L) tan(δ)) (4.6f)

𝑿

𝒀

𝒍𝒓

𝒍𝒇

𝒆𝝍 = 𝝍𝒓 - 𝝍𝝍𝒓

𝜹

𝛙

𝐓𝐫𝐚𝐣𝐞𝐜𝐭𝐨𝐫𝐲

𝝍

Fig. 4.2: Vehicle kinematic bicycle model

The lane-keeping model [157] is described using the lateral and angular errors,
as in Equations 4.7a-4.7b. The road curvature (κ̄), obtained from the reference
trajectory computed offline with spline curves, is an exogenous input to the system.
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ėy = vx sin(eΨ) + vy cos(eΨ) (4.7a)

˙eΨ = Ψ̇ − κ̄

1 − κ̄ey
(vx cos(eΨ) − vy sin(eΨ)) (4.7b)

The steering model makes it possible to add torque as the control signal instead
of steering angle. It considers the second-order inertia, damping, and stiffness model
of Equations 4.8a-4.8b. Furthermore, θ = nsδ, where ns is the constant steering
ratio. In addition, a linear approximation of the self-aligning torque Tsat = kθ is
included in the model, along with the steering control signal (Tmpc).

θ̇ = w (4.8a)

ẇ = −1
J

(
bw + kθ − Tmpc

)
(4.8b)

Based on the three submodels described above, the state vector is s = [X, Y , Ψ,
vx, vy, ey, eΨ, θ, w], the input vector is [u ∆u] = [Tmpc ∆Tmpc], and the exogenous
vector is l = [ax, ay, κ̄].

4.1.1.2 Optimization
The design of the optimization problem consists in the selection of the controller’s
objectives to be minimized. There are three types of minimization functions: states,
inputs, and rate of change of inputs, as shown in Equations 4.9a-4.9b.

min
U

Np−1∑
i=0

||zi − zri ||
2

Wz
+
Nc−1∑
i=0

||ui − uri ||
2

Wu
+
Nc−1∑
i=0

||∆ui − ∆uri ||
2

W∆u
(4.9a)

min
U

Jz + Ju + J∆u (4.9b)

The state optimization vector is z ⊆ s. In this case, z = [ey, eΨ], and represents
the trajectory tracking objective. In addition, the input torque and its derivative are
minimized to improve the efficiency of the controller and the interaction with the
driver (Ju+J∆u). All objective functions are minimized to 0. The weighting matrices
of the optimization correspond to the tracking performance Wz = diag(wey , weΨ),
the control torque Wu = wTmpc , and the torque rate of changeW∆u = w∆Tmpc .

On the other hand, the state constraints vector z̃ = [ey, θ, w] imposes physical
limits on the lateral vehicle position and steering wheel behavior. The input
constraints limit the amplitude and the rate of change of the steering torque.

|Tmpci | ≤ Tmax (4.10a)

|∆Tmpci | ≤ ∆Tmax (4.10b)

4.1.1.3 Authority → Operational
The challenge for the MPC-based shared-controller is to incorporate the dual-
level authority ([λ+, λ− ]) into the problem formulation to enable a controller with
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variable authority that can be modified by a decision system at the tactical level
(i.e., arbitration). Therefore, let us first consider the additional haptic authority
at the operational level (λ+). Previous works have considered a classical controller
proportional to the lateral error [108]. In the case of the MPC controller, this means
that wey is increased. The problem with this approach is that changing the weights
of the optimization problem may lead to an unpredictable behavior of the controller,
in addition to changing its performance. The proposed solution is to include an
additional term in the MPC torque (as in Equation 4.3). Thus, the control torque
(Tλ) would satisfy Equations 4.11a-4.11b:

Tλ = Tmpc + Tλ+ (4.11a)

Tλ = Tmpc + λ+(θd − θ) (4.11b)

In this approach, the MPC computes the prediction of its states and returns a
vector of predictions for the optimal steering wheel angles θd(t+1) = [θ2(t), ..., θN (t),
θN+1(t)]. From this vector, the current desired angle is taken as the first prediction
of the N available values (θd = θ2), which according to the MPC sampling time
configuration corresponds to the predicted angle value 50 ms ahead. In this strategy,
the MPC torque and the additional haptic authority torque (Tλ+) are related by
optimizing the MPC goals. Apart from this calculation, a challenge in incorporating
the operational authority is that the controller stiffness actually increases, but not
without the risk of losing the stability achieved by tuning the weights of the MPC
minimization function. Therefore, a stability consideration is presented that uses
the sum of the torques and the steering system equation, where the driver’s torque
(Td) is considered zero for the stability analysis since it is tested when the driver
takes his hands off the steering wheel.

Tmpc + T+ + Tsat + Td = J θ̈ + bθ̇ (4.12a)

Tmpc + λ+θd = J θ̈ + bθ̇ + (λsat + λ+)θ (4.12b)

The new value of the equivalent stiffness around the center position is ke =
λsat + λ+. In this sense, it is useful to consider the well-known formula for the
damping ratio of the system in (4.8b) to obtain the parameter ξ = b/2

√
Jk, which

gives information about the stability behavior [267]. Considering this, the strategy
to maintain stability after incorporating the additional authority is to keep the same
value of ξ. This is possible if a new equivalent damping (be = bλ+) is calculated and
added to the steering system.
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ξ = be

2
√
Jke

= b

2
√
Jk

(4.13a)

ξ =
bλ+

2
√
J(λsat + λ+)

= b

2
√
Jλsat

(4.13b)

bλ+ = b

√
λsat + λ+
λsat

(4.13c)

In summary, the final additional authority torque has the form of Equation 4.14,
which is a θ-dependent PD controller. The derivative term is integrated into the
system by either configuring the steering wheel dynamic damping coefficient or by
using a complementary torque signal with the appropriate filtering method. The
major advantage is that the haptic authority of the controller is changed, stability is
maintained and no change to the MPC weighting matrices was necessary.

Tλ+ = λ+(θd − θ) + (bλ+ − b)w (4.14)

4.1.1.4 Authority → Tactical
Secondly, let us consider the transition authority (λ−) at the tactical level. The
basic form to link the operational and tactical levels is by means of multiplication
as in Equation 4.4. However, it is more advantageous to use the weights of the
MPC to make the authority transitions, since it is able to perform the transition to
manual mode while keeping the constraints of the MPC active. In previous work
[82], this authority was included in the optimization function of the MPC states, as
in Equation 4.15a.

Jmpc = Jzλ− + Ju + J∆u (4.15a)

However, this function could include more states than just track errors, which
could lead to unknown system behavior. In this context, the use of control input
weighting (wTmpc) allows control transitions under a controlled behavior since it
changes only one variable. A sufficiently high value of wTmpc minimizes control torques
to zero, which corresponds to manual mode. Therefore, the input optimization
function should depend on λ− , as shown in Equation 4.16a. After some experimental
tests and considering wTmpc(λ−) = 10g(λ− ), with g : R → R and 0 ≤ λ− ≤ 1, it turns
out that the system is in manual mode when g(0) = 3, and in automated mode
(nominal controller active) when g(1) = −0.5. The mathematical representation can
be found in Equations 4.16a-4.16d.

Jmpc = Jz + Ju(λ−) + J∆u (4.16a)

Ju(λ−) =
N∑
i=1

wTmpc(λ−)|Tmpci |2 (4.16b)

wTmpc(λ−) = 10g(λ− ) (4.16c)

g(λ−) = −3.5λ− + 3 (4.16d)
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4.1.1.5 Validation → Shared-Controller
The validation is performed by a driver using the driving simulator platform described
in Section 3.3. The first test evaluates the stability of the steering torque controller
with different λ+ values. The vehicle has automatic longitudinal control at 35
km/h, and the driver interacts with the automation only at the steering wheel. The
shared-controller is configured with the parameters given in Table 4.2.

Tab. 4.2: MPC parameters values for iteration 1 controller

Var. Value Var. Value Var. Value

L 3.05 m N 30 w∆Tmpc 0.003

lr 1.65 m tmpc 0.05 s [θmin, θmax] ±7.85 rad

k = λsat 3 Nm/rad tc 0.01 s [wmin, wmax] ±5.5 rad/s

b 0.75 Nm.s/rad wey 5000 [eymin , eymax ] [-2 , 6] m

J 0.075 kg.m2 weΨ 30 Tmax 10 Nm

ns 8.45 wTmpc 0.3 ∆Tmax 10 Nm/s

To test the stability of the controller, the driver performed an overtaking maneuver
with automatic steering activated (λ− = 1) and considering different values of λ+.
Initially, the driver starts with his hands on the steering wheel until the distance to
the vehicle in front is 20 m. At this point, a vibration acts on the steering wheel
to indicate the driver to start the overtaking maneuver. The controller remains
activated to measure the effort. Once the driver has overtaken the other vehicle by
10 m, another vibration indicates that s/he should release the steering wheel and let
the controller return to the lane independently.

In the first test, the driver completed five overtakes with λ+ = [0, 5, 10, 15, 20] and
with a constant damping coefficient (b = 0.75), which corresponds to the standard
damping of the steering system. Figure 4.3 (left side) shows the results of the tests.
The increasing of the stiffness for the controller requires more effort from the driver
to perform the maneuver. However, at higher authorities, the system loses stability
when the driver releases the steering wheel. It is important to note that the nominal
controller (λ+ = 0) is stable and oscillations start when λ+ > 0.

The second set of tests considers Equation 4.13c to preserve the stability of the
controller. The damping coefficient of the steering system is varied by configuring
the steering motor parameters. This allows the damping ratio (ξ) of the original
stable configuration to be maintained as the stiffness increases. Figure4.3 (right
side) shows that driver effort increases and vehicle stability is maintained for various
values of λ+.

In addition, Figure 4.4 shows the torque behavior of the controller when the
variable damping formula is applied. It can be seen that the additional authority
helps to almost double the stiffness of the controller when comparing the nominal
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Fig. 4.3: Operational authority (λ+) tests with constant and variable damping

(λ+ = 0) to the higher authority (λ+ = 20), where the driver’s force was increased
from just over 5 Nm to almost 10 Nm.

Fig. 4.4: Torques of the operational authority (λ−) tests with variable damping

4.1.1.6 Validation → Arbitration
The validation of the tactical level considers the transition authority. For this
purpose, the controller is tested in the use case of an overtaking maneuver (see
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Figure 4.5), which involves different authority transitions. First, the automated
system assists the driver in maintaining the lane. In the second phase, the driver
performs a lane change and there is a gradual transition from automated-to-manual
(see Figure 4.5a). Once the vehicle is in the left lane, the driver has full control.
Then, when it returns to the right lane, authority is gently increased from manual-
to-automated (see Figure 4.5b). Finally, the driver automation system returns to
the initial state.

A

M

T

(a) Lane change maneuver

M

T

A

(b) Lane return maneuver

Fig. 4.5: Control transitions during overtaking maneuver

The decision algorithm for performing the transitions is a fuzzy logic-based
arbitration system (see Section 3.2.2) and is shown in Figures 4.6a and 4.6b. The
arbitration module proposed in this section consists of three inputs (ey, ėy, Td)
representing the driver’s intention and one output (λ−), which is a continuous value
from 0 (manual mode) to 1 ( automated mode). The design rules are shown in Table
4.3. The description of the system can be found below.

• i1 - Vehicle position: Represented as the lateral error of the vehicle with respect
to the center of the right lane (ey). The labels of the membership functions
([Right - Border - Left]) represent the different positions of the vehicle on a
two-lane road.

• i2 - Driver intention: Represented as the derivative of the lateral error of the
vehicle (ėy). The labels of the membership functions ([Away - Stay - Return])
represent the driver’s intention to leave the lane, stay in the same direction, or
return to the lane. This intention is combined with the lateral error and the
direction of driver effort to obtain an estimate of the lane change intention.

• i3 - Driver effort: Represented as the driver’s torque measured by the steering
wheel torque sensor. The labels of the membership functions ([CW - Zero - CCW])
represent the steering direction (clockwise and counterclockwise) and the force
exerted by the driver.

• o1 - Transition authority: Represented as a dimensionless value indicating the
driving mode. The labels of the membership functions ([Manual - Transition -
Automated]) are the three possible states for the driver-automation interaction.

The tests for evaluating authority transitions include four modalities for switching
from manual to automated and from automated to manual using the variable
parameter λ− calculated by the arbitration system, and considering the nominal
controller (λ+ = 0). These modalities are described in Table 4.4.
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(a) Inputs/Output description

- - -

(b) Decision output surface

Fig. 4.6: Representation of the arbitration system for transitions during overtaking

Tab. 4.3: Fuzzy logic IF-THEN rules for Iteration 1 shared-controller validation

i1 − ey → Right Border Left

i2 − ėy → Return Stay Away Return Stay Away Return Stay Away

CCW T T T T M M M M M

Zero A A A T T M M M M

CW A A A A T M M M M

i3 − Td ↑ o1 − λ− ↑

Tab. 4.4: Mode of transitions for validation of the tactical authority

Transition mode Description

No transition The system is always in automated moded, with controller
enabled during the entire overtaking

On/Off Controller disabled if Td > 4 [Nm] when leaving the lane and
enabled if ėy < 0 and ey < 2, when returning to the lane

On/Off∗ The transitions are the same as in on/off mode, with a first
order filter with τ = 2 s

Fuzzy logic The transition considers the three-input fuzzy system pre-
sented in Figure 4.6

The driver performs three tests in each mode. Figure 4.7 shows the results of the
tests comparing the authority transition strategies. The test procedure is the same
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Fig. 4.7: Transition authority tests with four strategies

overtaking maneuver as described earlier. The vibration in the steering wheel tells
the driver when to change lanes to overtake, but in this case the driver does not
take his hands off the steering wheel and steers the vehicle back to the lane.

The first mode (no transition) requires more torque input from the driver, but
shows the best results in terms of comfort when analyzing lateral acceleration and
steering angular velocity. In contrast, the on/off mode requires less driver effort,
but the sudden deactivation of the controller shows the largest peaks in steering
wheel speed and lateral acceleration. Adding a 2-second filter does not reduce the
peaks during the first transition, but improves comfort when the driver returns to
the lane.

The fuzzy arbitration system shows the best compromise between driver effort
and comfort. The torque felt at the steering wheel is lower than in automated mode,
although slightly higher than in the on/off strategy, which is a good indicator as it
helps avoid unintended transitions. In addition, the comfort parameters for both
types of transitions (activation and deactivation) are close to the automated mode.

The results also show that changing wTmpc for the authority transitions does
not affect the computation time (tsolver) needed to find the optimal MPC solution.
However, in automated mode, this time increases because the solver cannot minimize
the tracking objective function when the driver is in the left lane. Nevertheless,
tsolver < 1 ms is suitable for a control loop of 10 ms.
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4.1.2 Iteration 2
The second iteration of the shared-controller consists of a high-speed (70 km/h)
controller using dual-authority mode.

4.1.2.1 Model
Similar to the section 4.1.1.1, the vehicle model consists of three submodels: vehicle,
lane-keeping, and steering system. The only difference between the two models
is in the vehicle equations, which now use a dynamic bicycle model ( rather than
a kinematic one) that allows the driver to reach higher speeds by accounting for
the slip angle and forces acting on the tires. In addition, these equations allow
for a nonlinear representation of the self-aligning torque. Figure 4.8 shows the
representation of the model Equations 4.17a-4.17f in the global coordinate frame.

𝑿

𝒀

𝒍𝒓

𝒍𝒇

𝒆𝝍 = 𝝍𝒓 - 𝝍𝝍𝒓

ሶ𝝍

𝜹
𝑭𝒚𝒇

𝜶𝒇

𝝍

𝜶𝒓

Fig. 4.8: Vehicle dynamic model

Table 4.5 describes the additional variables included in the vehicle dynamic model
of the vehicle.

Tab. 4.5: Dynamic bicycle model variable description

Var. Description Var. Description

m Vehicle mass Fyr Rear axle lateral force

Iz Yaw inertia Cαf
Front axle cornering stiffness

lf Distacen CG to front axle Cαr Rear axle cornering stiffness

ψ Yaw rate αf Front axle slip angle

Fyf Front axle lateral force αr Rear axle slip angle
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Ẋ = vxcos(Ψ) − vysin(Ψ) (4.17a)

Ẏ = vxsin(Ψ) + vycos(Ψ) (4.17b)

Ψ̇ = ψ (4.17c)

v̇x = (max − Fyfsin(δ) +mvyψ)/m (4.17d)

v̇y = (Fyr + Fyfcos(δ) −mvxψ)/m (4.17e)

ψ̇ = (lfFyfcos(δ) − lrFyr)/Iz (4.17f)

the lateral forces Fyf and Fyr acting in the front and rear tires respectively, are
included as algebraic states of the model, as defined in Equations 4.18a-4.18b:

Fyf = Cαf
αf (4.18a)

Fyr = Cαrαr (4.18b)

where Cαf and Cαr are the front and rear cornering stiffness constants calculated
by the estimation method presented in [268]. The formulas for the sideslip angles
are presented in Equations 4.19a-4.19b:

αf = δ − (vy + lfψ)/vx (4.19a)

αr = (vy − lrψ)/vx (4.19b)

These considerations allow the self-algning torque to be expressed in terms of
the lateral force on the front axle, as in Equation 4.20a, where ksat is a gain to
tune the feel when using the steering wheel in the simulator platform. Furthermore,
compared to the linear Equation 4.20b, as in the first iteration, the stiffness gain of the
self-aligning torque is calculated in real time as λsat = Tsat/θ, where 2 ≤ λsat ≤ 5.

Tsat = ksatFyf (4.20a)

Tsat = λsatθ (4.20b)

The final state vector of the road-vehicle model is s = [X, Y , Ψ, vx, vy, ψ ey,
eΨ, θ, w], the input vector is [u ∆u] = [Tmpc ∆Tmpc], and the exogenous vector is
l = [ax, κ, λsat].

4.1.2.2 Optimization
The design of the optimization problem follows the same structure as the first iteration
of the controller, according to Equations 4.9a-4.9b. The difference is based on the
optimized state vector z ∈ s, which is now composed of two sub-objective vectors
such that z = ztracking ∪ zcomfort, where ztracking = [ey, eψ] and zcomfort = [vy, ψ, w].
The state optimization weights correspond to the diagonal matrix and its eigenvalues
Wz = diag(wey , weΨ , wvy , wψ, ww). The input optimization and system constraints
remain the same as in iteration 1 (Wu = wTmpc , W∆u = w∆Tmpc , and z̃ = [ey, θ, w]).
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4.1.2.3 Authority → Operational
The added authority (λ+) is included in the problem formulation in the same way
as in the first iteration (Section 4.1.1.3), following the added torque formula and
the corresponding damping to preserve stability, as in Equations 4.21a-4.21b. This
variables are included in the MPC problem thorugh the exogenous vector l = [ax, κ,
λsat, λ+, θd].

Tλ+ = λ+(θd − θ) + (bλ+ − b)w (4.21a)

bλ+ = b

√
λsat + λ+
λsat

(4.21b)

4.1.2.4 Authority → Tactical
The transition authority (λ−) is also the same as in iteration 1. After some experi-
mental tests and considering wTmpc(λ−) = 10h(λ− ), with h : R → R and 0 ≤ λ− ≤ 1,
it turns out that the system is in manual mode when h(0) = 7, and in automated
mode (nominal controller active) when h(1) = 3, resulting in Equation 4.22.

h(λ−) = −4λ− + 7 (4.22)

4.1.2.5 Validation → Shared-Controller
One driver performs the validation in the DiL simulator. The test evaluates the
tracking performance of the controller for different values of λ+. The vehicle
has automatic longitudinal control at 70 km/h, and the driver interacts with the
automation only at the steering wheel. The shared-controller is configured with the
parameters given in Table 4.6.

Tab. 4.6: MPC parameters values for iteration 2 controller

Var. Value Var. Value Var. Value

L 3.05 m Cαf
88000 N/rad wTmpc 100

[lf , lr] [1.40, 1.65] m Cαr 110000 N/rad w∆Tmpc 100

λsat 5 Nm/rad wey 5e4 [θmin, θmax] ±7.85 rad

ksat 1/750 weΨ 70e4 [wmin, wmax] ±5.5 rad/s

b 0.75 Nm.s/rad wvy 10 [eymin , eymax ] [-2 , 6] m

J 0.075 kg.m2 wψ 10 Tmax 10 Nm

ns 8.77 ww 1000 ∆Tmax 3 Nm/s

The tracking performance results of the shared-controller in automated mode are
shown in Figure 4.9. The controller shows stability on roads with different curvature
ratios. The lateral error is less than 0.2 m for all values of λ+. The angular error
remains small, below 3° indicating a positive index of tracking performance for a
torque control signal below 2 Nm. It is also shown that the solution of the MPC
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controller is calculated in less than 2 ms, which is a good indicator of the control
loop of 10 ms. These results confirm that the performance of the shared-controller
in automated mode does not depend on the choice of authority (λ+) and that this
method is effective to change the stiffness of the controller without affecting the
performance and without redesigning the MPC parameters.

Fig. 4.9: Tracking performance with different values of λ+

4.1.2.6 Validation → Arbitration
Tactical-level validation tests the performance of the transition authority (λ−). For
this purpose, the controller is tested in the use case of an overtaking maneuver,
similar to the validation of iteration 1, except that the maneuver now considers a
vehicle coming through the blind spot. First, when the driver initiates the overtaking
maneuver and there is no risk of collision, the transition from manual to-automated
is performed, the driver assumes manual control during the overtaking maneuver,
and the system is reactivated when the driver returns to the original lane (see Figure
4.10a). In the second scenario, the driver wants to change lanes to overtake the
vehicle ahead, but there is a vehicle in the left lane with which a collision could
occur. In this case, the automated system intervenes appropriately and avoids the
maneuver to ensure safety (see Figure 4.10b).

A fuzzy logic algorithm with four inputs ([ey, ėy, Td, TTC]) and two outputs
([λ+, λ− ]) is used for validation. The membership functions of the inputs and
outputs of the system are shown in Figures 4.11a-4.11b, and are described below.
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(a) Safe overtaking maneuver
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(b) Unsafe overtaking maneuver

Fig. 4.10: Control transitions during overtaking maneuver

(a) Inputs → vehicle, driver, and enviroment states

-

(b) Outputs → operational and tactical authorities

Fig. 4.11: Membership functions of the fuzzy-logic-based arbitration system

• i1 - Vehicle position: Represented as the lateral error of the vehicle with respect
to the center of the right lane (ey). The labels of the membership functions
([Right - Border - Left]) represent the different positions of the vehicle on a
two-lane road.

• i2 - Driver intention: Represented as the derivative of the lateral error of the
vehicle (ėy). The labels of the membership functions ([Away - Stay - Return])
represent the driver’s intention to leave the lane, stay in the same direction, or
return to the lane. This intention is combined with the lateral error and the
direction of driver effort to obtain an estimate of the lane change intention.

• i3 - Driver effort: Represented as the driver’s torque measured by the steering
wheel torque sensor. The labels of the membership functions ([Zero - CCW])
indicate if there is a conflict between driver and automation during the maneuver.
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• i4 - Maneuver risk: Computed as the time-to-collision with the vehicle in the
left lane (TTC = d

vxl−vx
), with vxl being the longitudinal speed of the second

vehicle. The labels of the membership functions ([Risky - Safe]), represents the
possibility of collision.

• o1 - Transition authority: Represented as a dimensionless value indicating
the driving mode (λ−). The labels of the membership functions ([Manual (M)
- Transition (T) - Automated (A)]) are the three possible states for the driver-
automation interaction.

• o2 - Added authority: Represented as a normalized value indicating stiffness
of the controller (λ+ = λ̄+o1), with λ̄+ = 30. The labels of the membership
functions ([Nominal (No) - Assistance (As) - Override (Ov)]) denote the strength
of the steering controller.

The decision system depends on whether the overtaking maneuver is safe or risky.
If the maneuver is safe, then the arbitration behaves according to the IF-THEN
rules of Table 4.7. The values of the authorities are shown in Figure 4.7.

Tab. 4.7: Fuzzy logic IF-THEN rules for Iteration 2 shared-controller validation (Safe)

TTC = Safe

i1 − ey → Right Border Left

i2 − ėy → Return Stay Away Return Stay Away Return Stay Away

CCW T T T T M M M M M

Zero A A A T T M M M M

i3 − Td ↑ o1 − λ− ↑

CCW
Zero

Nominal Authority

i3 − Td ↑ o2 − λ+ ↑

(a) No driver-automation conflict (b) With driver-automation conflict

Fig. 4.12: Decision surfaces when the overtaking is safe

It shows that the controller retains its nominal authority on a safe lane change
without the need to add a new authority (λ+ = 0, nominal). Instead, the transition
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authority kicks in, either to keep steering assistance active or to transition to manual
mode. If there is no conflict with automation (Figure 4.12a), the system reaches
maximum authority (λ−) when driving in the right lane. When there is a conflict
(Figure 4.12b), the maximum transition authority is decreased to reduce the torque
conflict. In both cases, the transition occurs after a deviation of 1 m from the center
of the lane and it can be observed that it is a smooth surface that represents a
harmonious transition from automated to manual driving and vice versa.

On the other hand, if overtaking is unsafe because a vehicle enters the blind spot,
the arbitration system behaves according to the IF-THEN rules of Table 4.8. The
values of the authorities are shown in Figure 4.13.

Tab. 4.8: Fuzzy logic IF-THEN rules for Iteration 2 shared-controller validation (Risky)

TTC = Risky

i1 − ey → Right Border Left

i2 − ėy → Return Stay Away Return Stay Away Return Stay Away

CCW
Zero

Automated

i3 − Td ↑ o1 − λ− ↑

CCW No No No No As Ov Ov Ov Ov

Zero As As As As As Ov Ov Ov Ov

i3 − Td ↑ o2 − λ+ ↑

(a) No driver-automation conflict (b) With driver-automation conflict

Fig. 4.13: Decision surfaces when the overtaking is risky

In this case, the transition authority is always at its maximum value (λ− = 1,
automated), while the additional haptic authority is increased to correct the lane
change maneuver with greater force. As long as the driver is within 1 m of the lane
center, the authority is not significantly increased, even when a vehicle approaches
in the left lane. However, when the intention to change lanes is detected, the
stiffness of the controller increases proportionally to the distance from the lane
center. Comparing Figures 4.13a and 4.13b, lateral error affects the choice of
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authority, and also when the driver is in conflict with the automation (i.e., when the
driver does not accept being guided to the center by the automation). In this sense,
authority is higher when there is conflict than when there is not. This suggests
that safety is a more important variable in design considerations than comfort. The
results of the arbitration system validation are shown in Figure 4.14.

1 2 3 4

Fig. 4.14: Validation of the arbitration system during an overtaking maneuver

The analysis is divided into four stages, the first two of which evaluate the
performance of λ+, while the rest evaluate the behavior of λ− . In the first stage,
between 0 and 10 s, the vehicle is in automated mode (λ− = 1) and follows the center
of the lane. The test is performed on a curvy road and therefore Tλ = Tmpc+Tλ+ ≈ 2
Nm, but the driver’s torque is close to zero. At this moment, a vehicle approaches in
the left lane and the stiffness of the controller is preemptively increased (λ+ ≈ 0.3)
to avoid a lane change. It is noted that the driver’s torque does not increase together
with the authority, since the driver follows the controller’s commands. In the second
phase, between 15 and 30 s, the driver intends to overtake, but the TTC is low and
the additional authority increases the risk. The driver comes into conflict with the
controller to test the maximum correction torque. It can be seen that the additional
torque (Tλ+) helps the controller to increase from the nominal 5 Nm to 9 Nm. At
second 25, the driver releases the steering wheel to test the stability of the system,
and he succeeds, as shown by the evolution of the lateral error. It is worth noting
that the steering wheel angle is always very similar to the desired steering wheel
angle, except when the driver drives off and the controller’s intention is different. In
this case, the difference increases the additional torque correction.
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To analyze the transition authority, stages 3 and 4 were studied. In the third,
between 30 and 42 s, the driver intends to change lanes, which the system has
recognized as safe, and the transition to manual driving occurs. The driver performs
the overtake in manual mode, and during this period it is determined that θ = θd,
confirming the design consideration that if λ− → 0 then θd → θ. As soon as the
driver returns to the right lane, the steering assistance is automatically activated. In
the last phase, the driver swerves to the right edge of the lane and the assistance of
the nominal controller is activated (Tmpc ≈ 5 Nm), which proves that the arbitration
system distinguishes between the direction of the lane change to know whether a
transition or a correction must be made. Overall, the solution time for the optimal
control problem of MPC is less than 1.5 ms, which is satisfactory for a control loop
of 10 ms.

4.2 Unified Authority
The previous section has shown that dual-level authority approaches provide a good
framework to increase the stiffness of the steering assistance system without changing
the parameters of the original controller. In addition, transition authority has been
shown to be effective in transitioning from automated to manual control and vice
versa. However, this approach also has some disadvantages. First, adding torque
outside of the MPC problem formulation is a problem for maintaining the designed
constraints, since the total control torque does not come from the MPC, but only a
part of it (Tλ = Tmpc + Tλ+). In this sense, it is necessary to include the authority
in the MPC formulation and have only one torque from the control. Second, the
use of two authorities requires the development of two sub-decision systems, which
makes the development of the arbitration system even more complex. Third, the
value of θd must be computed as an additional input to the system, and finally, also
related to this, the possible effect of the discontinuity of the θd − θ term, which may
affect the driver’s feel on the steering wheel.

For these reasons, the unified authority approach proposes to have only one
authority, called the haptic authority (λ), which serves both to increase the stiffness
of the controller (as λ+ before) and to enable driving mode transitions (as the λ−).
The final algebraic representation of the authority can be found in the Equations
4.23a-4.23c and also in the Figure 4.15.

Ttotal = Tmpc + Tsat + Td (4.23a)

Ttotal = λTmpc + Tsat (4.23b)

Ttotal = λλmpc(θd − θ) − λsatθ (4.23c)

(4.23d)

It is clear that when λ = 0 the system is in manual mode and feels only the
self-aligning torque. And when λ = 1, the MPC controller is active with its nominal
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Nominal (𝜆𝑚𝑝𝑐) Added (λ 𝜆𝑚𝑝𝑐)

Level of Haptic Authority (λ)

Natural (𝜆𝑠𝑎𝑡)

Manual
λ = 0

Assistance
λ = 1

Override
λ > 1

Fig. 4.15: Representations of the haptic authority (λ) at the steering wheel, with the unified
approach

authority. For all values of λ > 1, the haptic authority of the system increases
beyond the nominal value, so that the controller not only assists the driver in the
steering task, but can also override him. The controller development is now moving
into a third and fourth iteration using this approach for haptic authority, all designed
for high speeds.

4.2.1 Iteration 3
The third iteration continues to use the high-speed dynamic vehicle model, but
incorporates the unified authority approach into the controller design.

4.2.1.1 Model
The system model is similar to the dynamic bicycle model used for iteration 2, shown
in Figure 4.8 and Equations 4.17a-4.20b. The only difference is the inclusion of
haptic authority in the equation for torque input, as in Equation 4.24. This allows
the controller output Tmpc to already account for the authority effect.

˙Tmpc = λ∆Tmpc (4.24)

The final state vector of the road-vehicle model is s = [X, Y , Ψ, vx, vy, ψ ey,
eΨ, θ, w], the input vector is [u ∆u] = [Tmpc ∆Tmpc], and the exogenous vector is
l = [ax, κ, λH ].

4.2.1.2 Optimization
The same optimization design approach as in iteration 2 is maintained with z =
ztracking ∪ zcomfort, except that the tracking function now uses the coordinates
of the vehicle position (since better performance was observed). In this sense,
ztracking = [X −Xr, Y − Yr,Ψ − Ψr] and zcomfort = [ψ,w]. The state optimization
weights correspond to the diagonal matrix and its eigenvalues Wz = diag(wX , wY wΨ,
wψ, ww). The input optimization to reduce driver effort remains the same as in the
previous iteration (Wu = wTmpc , W∆u = w∆Tmpc . In addition, safety considerations
are taken into account by applying a yaw rate constraint (ψ) to prevent the vehicle
from drifting unsafely and by limiting the maximum allowable lateral deviation
(defined as about half the lane width to prevent the vehicle from drifting off the
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lane). The vector of state constraints is z̃ = [ey, ψ, θ, w], and the vector of input
constraints is ũ = [Tmpc,∆Tmpc].

4.2.1.3 Authority
This iteration improves the design of the controller by including haptic authority
as a factor in the equation deriving torque (see Equation 4.24), so that the full
contribution of torque (including the effect of authority) is included in the control
signal. However, similar to the dual-level authority approach, increasing the haptic
authority causes the system to become susceptible to instability, so an appropriate
stability criterion must be developed.

λTmpc + Tsat + Td = J θ̈ + bθ̇ (4.25a)

λλmpc(θd − θ) − λsatθ = J θ̈ + bθ̇ (4.25b)

λλmpcθd = J θ̈ + bθ̇ + (λλmpc + λsat)θ (4.25c)

When λ = 1, the nominal MPC controller is active and it is known to be a stable
controller since the MPC weight matrices are chosen to be so. Therefore, similar to
the dual-level authority approach, the stability criterion is based on the damping
ratio (ξ = b

2
√
Jk

) of the second-order steering system using the rotational inertia
(J), damping (b), and stiffness (k). The strategy for the stability criterion is to keep
the damping ratio of the nominal controller (ξ1) and make it equal to the one with
haptic authority greater than 1 (ξλ). In this sense, the Equations 4.26a-4.26f show
how to find the equivalent damping that allows to keep the stability:

ξλ = bλ

2
√
J(λλmpc + λsat)

(4.26a)

ξ1 = b

2
√
J(λmpc + λsat)

(4.26b)

ξλ = ξ1 (4.26c)
bλ

2
√
J(λλmpc + λsat)

= b

2
√
J(λmpc + λsat)

(4.26d)

bλ = b

√
λλmpc + λsat
λmpc + λsat

(4.26e)

bλ = b

√
λ+ r

1 + r
; r = λsat

λmpc
(4.26f)

and assuming r ≈ 0, that λmpc ≫ λsat under the logic that the controller is more
noticeable in steering than the self-aligning torque, which is more subtle. With this
consideration, the final equivalent damping is represented in Equation 4.27:

bλ = b
√
λ (4.27)
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This variable damping can be easily introduced into the system via a linear term
or by adjusting the motor damping via software configuration. This guarantees
stable and comfortable system behavior over the entire range of variable authority
range without having to fine-tune the MPC again.

4.2.1.4 Validation → Shared-Controller
Validation of the shared-controller is performed by a driver using the driving simulator
platform. The first test evaluates the stability of the steering torque controller with
different λ values. The vehicle has automatic longitudinal control at 90 km/h, and
the driver interacts with the automation using only the steering wheel. The second
test evaluates the tracking performance with different values of λ at two longitudinal
speeds (70 km/h and 120 km/h). The shared-controller is configured with the
parameters given in Table 4.9.

Tab. 4.9: MPC parameters values for iteration 3 shared-controller

Var. Value Var. Value Var. Value

b 0.65 Nm.s/rad wx = wy 40 w∆Tmpc 0.02

J 0.1 kg.m2 wΨ 80 [θmin, θmax] ±2 rad

ns 8.77 wψ 1000 [ψmin, ψmax] ±0.2 rad

Cαf
94000 N/rad ww 0.03 Tmax 15 Nm

Cαr 118000 N/rad wTmpc 0.02 ∆Tmax 1.9 Nm/s

Figure 4.16 shows the results of the stability test of the controller with and
without the designed stability criteria. To perform the test, the driver moves about
2 m away from the center of the road with steering assistance activated and different
values for λ. After a few seconds, the driver releases the steering wheel to test the
stability performance when the controller tries to return to the center of the road.

The results show that increasing the haptic authority increases the stiffness of
the controller, as shown in the control torque graph. It is also shown that increasing
the authority makes the system unstable. It is important to note that the nominal
controller was stable from the beginning (looking at the constant damping graph of
both the lateral error and the control moment). It was also proved that the stability
criterion of Equation 4.27 keeps the system stable for different values of the haptic
authorities.

In addition, the inclusion of a system state constraint for the controller is also
being tested. A yaw rate constraint was introduced in the design to avoid unsafe
dirfting of the vehicle. Figure 4.17 shows the value of ψ for the same variable
damping test in Figure 4.16. The results show the performance of the controller
without the constraint (left side) and with the |ψmax| < 0.2 rad/s constraint (right
side). The outcome is that for different values of λ the designed controller is able to
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Fig. 4.16: Stability test of iteration 3 controller at 90 km/h

satisfy the constraint very accurately, and both plots show the effect of introducing
the constraint into the MPC problem.

Fig. 4.17: Yaw rate constraint for iteration 3 controller at 90 km/h

The second validation of the controller is to test the tracking performance with
the controller alone (without interaction with the driver). This is done at 70 and 120
km/h to evaluate the ability of the controller to maintain performance under different
longitudinal speed conditions. Both are tested for different values of λ. Figure
4.18 shows the results of the tests. From the results, it can be seen that neither
longitudinal speed nor haptic authority changes the performance of the controller.
This shows its robustness under different conditions. The only difference is that at
120 km/h the angular error is even smaller than at 70 km/h and the control torque
is larger. This is to be expected since the self-aligning torque increases with speed
and the controller must overcome this torque to maintain tracking performance.
Overall, the controller shows good tracking performance with a lateral error below
5 cm and an angular error below 2°. The computation time to solve the optimal
control problem is positive as it is kept below 1 ms.
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Fig. 4.18: Yaw rate constraint for iteration 3 controller at 90 km/h

4.2.2 Iteration 4
The final iteration of the controller consists of the same dynamic vehicle model as
in the previous iteration. In addition, two changes are made to the haptic design.
First, the authority is no longer dimensionless, but refers to the maximum torque
output by the controller. Second, a new stability formula is introduced to optimize
the λ/bλ ratio and find the most efficient damping formula (the smaller the damping,
the better).

4.2.2.1 Model
The system model is similar to the dynamic bicycle model used for iteration 3, shown
in Figure 4.8 and Equations 4.17a-4.20b. The haptic authority is included in the
model through the equations of the steering system.

˙Tmpc = λ∆Tmpc (4.28a)

ẇ = −1
J

(
bλw + Tsat − Tmpc

)
(4.28b)

The final state vector of the road-vehicle model is s = [X, Y , Ψ, vx, vy, ψ ey,
eΨ, θ, w], the input vector is [u ∆u] = [Tmpc ∆Tmpc], and the exogenous vector is
l = [ax, κ, λH ].
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4.2.2.2 Optimization
The formulation of the optimal control problem is the same as in Iteration 3, with the
only difference that the formula for the system’s input constraint is now associated
with haptic authority. In the next section, a new conceptualization of authority (λ̂)
is introduced, which adds a representative value related to the maximum torque
on the steering wheel. In this sense, the new constraint is represented in Equation
4.29.

|Tmpc| ≤ λ̂ (4.29)

4.2.2.3 Authority
In the third iteration, the assumption that r = λsat

λmpc
≈ 0, led to the damping formula

bλ = b
√
λ. In this case, it was assumed that λmpc ≫ λsat. However, this was a

conservative assumption since r = 0 leads to a larger damping value according to
the formula. In this sense, the damping formula does work to maintain controller
stability, but it is also true that adding damping to the system is not in vain, as it
makes the steering wheel feel harder. So it is important to find not only the value
that maintains stability, but also the one that is optimal. With this in mind, a
further approximation is made by assuming that λ = λsat. It is assumed that the
controller should be at least equal to the magnitude of the self-aligning torque felt
by the driver at the steering wheel. Taking this consideration into account, r = 1
leads to the new damping formula of Equation 4.30:

bλ = b

√
λ+ 1

2 (4.30)

Figure 4.19a shows the relationship between the haptic authority and the equiva-
lent damping of the stability criteria. Compared to iteration 3, it can be seen that
the damping is reduced by 25% on average, showing that the new formula optimizes
the system parameters.

However, although the stability problem is solved, the choice of the value of λ is
an ambiguous process. In this sense, a system identification process was performed
by forcing the vehicle to move 2 m away from the center of the road and reporting the
maximum torque measured by the torque sensor. In this sense, a linear relationship
was established between λ and the reported maximum torque. For this relationship,
a new instance is defined, λ = q(λ̂) with q : R → R and λ̂ ≥ 0. To guarantee that
the maximum torque is indeed λ̂, the system constraint of the previous Equation
4.30 was added. The linear relation is given in Equation 4.31 and shown in Figure
4.19b. Now the choice of haptic authority makes more sense, since one can choose
the one that assigns the maximum required torque (which is reached at a maximum
deviation of 2 m from the center of the road).

λ = 2.2 max(3, λ̂) − 5.5 (4.31)
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(a) Damping Iteration 3 vs Iteration 4 (b) Linear relationship λ̂ = q(λ)

Fig. 4.19: Relationship between haptic authorities and steering control system damping

To switch to manual mode, it is also necessary that λ̂ < 3. In this case, the haptic
authority is always λ = 1 to maintain the damping formula, and does not reduce the
natural damping of the steering system. The actual transition then occurs thanks
to the constraint explained in Equation 4.29, i.e., nominal control with variation of
the constraint on the control torque, which may include Tmax = 0 for the transition
to manual driving.

4.2.2.4 Validation → Shared-Controller
Since this controller is an extension of iteration 3, whose main change is the opti-
mization of the damping formula, the evaluation of the tracking performance is done
for a typical behavior of the controller at 80 km/h, the speed for the experimental
studies conducted in Chapter 5. The validation is performed by a driver using the
DiL simulator platform. The vehicle has automatic longitudinal control and the
driver interacts with the automation only through the steering wheel. The first
test evaluates the stability of the steering torque controller with different λ values,
along with the system state constraints. The second test evaluates the tracking
performance at different values of λ. The shared-controller is configured with the
parameters given in Table 4.10.

Tab. 4.10: MPC parameters values for Iteration 4 controller

Var. Value Var. Value Var. Value

b 0.65 Nm.s/rad wx = wy = wΨ 50 [θmin, θmax] ±π rad

J 0.1 kg.m2 wψ 100 [wmin, wmax] ±4 rad/s

ns 8.77 ww 0.1 [ψmin, ψmax] ±0.4 rad

Cαf
94000 N/rad wTmpc 0.01 Tmax λ̂

Cαr 118000 N/rad w∆Tmpc 0.1 ∆Tmax 0.2 Nm/s

To test this design, several experiments were conducted with a driver who had
his vehicle about 2 m from the center of the roadway using five different values of λ̂.
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The driver was then asked to take his hands off the steering wheel to observe the
performance and stability of the controller. Figure shows that driver effort equals
haptic authority and maintains the system constraint |Tmax| ≤ λ̂, but also that
increasing authority leads to oscillations in the system response. In contrast, Figure
shows the effect of the optimized variable damping formula in maintaining stability
and control performance with low tracking error. Moreover, the yaw rate constraint
is also maintained for different gains.

Fig. 4.20: Stability results for for Iteration 4 controller at 80 km/h

Figure 4.21 shows the tracking performance of the controller with respect to
lateral and angular errors when driving in automated mode at 80 km/h on a road
with a maximum curvature of 0.0024 1/m. Controller performance is evaluated for
different levels of haptic authority. For all values of λ̂, the lateral error is kept below
about 10 cm, while the angular error is below 2°. A more detailed analysis of the
performance can be found in Table 4.11. It is interesting to note that increasing the
haptic authority leads to improved lateral error reduction, with the controller with
the highest authority (λ̂ = 15) showing a maximum value of 1.5 cm. Angular error,
on the other hand, shows performance that does not depend on authority.

This controller is the final version developed as part of this Ph.D. Thesis and
will be validated in real-world scenarios and along with an arbitration system in
the simulator studies presented in Chapter 5. The representation of the controller
scheme is shown in Figure 4.22.

4.3 Conclusion
This chapter presented the design and development of a steering shared-controller
based on torque and considering variable haptic authority with stability criteria.
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Fig. 4.21: Performance results for for Iteration 4 controller at 80 km/h

Tab. 4.11: Final shared-controller tracking performance

λ̂ mean(ey) rms(ey) max(|ey|) mean(eΨ) rms(eΨ) max(|eΨ|)

3 0.049 m 0.061 m 0.112 m 0.404 º 0.594 º 1.493 º

6 0.015 m 0.018 m 0.033 m 0.403 º 0.597 º 1.492 º

9 0.010 m 0.012 m 0.022 m 0.403 º 0.598 º 1.492 º

12 0.009 m 0.010 m 0.018 m 0.403 º 0.598 º 1.492 º

15 0.008 m 0.008 m 0.015 m 0.403 º 0.598 º 1.493 º

The controller was developed in four iterations, moving from a dual-level authority
approach to a unified approach. Each of the iterations of the controller was presented
in terms of the system model, optimization problem, inclusion of variable authority,
and validation. The following is a summary of the conclusions.

• Iteration 1 consisted of a low-speed (35 km/h) controller and consideration of two
haptic authorities. The first to increase the stiffness of the controller (λ+), and
the second to perform control transitions (λ−) from automated to manual and
vice versa. The stability criterion proved successful and the arbitration system
for an overtaking maneuver was validated.

• Iteration 2 improved the controller by incorporating a dynamic vehicle model
that allowed the controller to be tested at 70 km/h. A more complex arbitration
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Fig. 4.22: NMPC-based shared-controller architecture

system validated the use of the dual-level authority approach for a steering
correction maneuver.

• Iteration 3, the unified authority approach was introduced, which allowed the
haptic authority (λ) to be included as part of the MPC problem so that only one
control signal was needed, thus allowing for system constraints on different values
of the authorities. The new stability criterion was found to eliminate oscillations
and the tracking performance of the controller was satisfactory (with a lateral
error of less than 5 cm for speeds of 70 km/h and 120 km/h).

• Iteration 4, the design was improved by introducing a more intuitive authority λ̂
with respect to the maximum torque of the controller. An optimized damping
formula was introduced, and both the stability and tracking performance of the
controller were found to be of high quality (with performance in lateral error
below 1.5 cm for the higher authority). System constraints on torque and yaw
rate were maintained as intended, demonstrating the versatility of the MPC
controller.

• The end result is a torque-based shared steering controller with a novel method
of increasing controller stiffness (haptic authority) without having to retune the
parameters of the nominal MPC controller, while maintaining stability, tracking
performance, and system constraints.

• The controller is useful for various scenarios where the interaction between the
driver and automation requires adaptive authority that depends on the constantly
changing conditions of the driver, automation, and environmental conditions.
Validation in real-world use cases is presented in Chapter 5.
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5Experimental Studies

Shared control is a promising approach to drive the development of automated
driving systems that improve road safety. However, to become a successful

solution, it is important to know how drivers accept such systems. In this sense,
the contribution of this chapter is to conduct two experimental studies to evaluate
ADAS based on the shared-control and arbitration system developed in Chapter 4.
The validation is performed by real drivers in the Driver-in-the-Loop (DiL) simulator
platform described in Chapter 3. The two scenarios under investigation were chosen
to support the driver on demand rather than continuously, as this strategy has been
shown to be best suited for shared-control systems to avoid aftereffects when the
driver is continuously assisted [63]. In this sense, the main contributions of this
chapter are the following:

• Development and evaluation with real drivers of an ADAS based on shared-control
that provides assistance during short distraction events. The evaluation
includes both objective and subjective assesment and is compared against manual
driving performance and two commercial ADAS.

• Development and evaluation with real drivers of an ADAS based on shared-
control that provides assistance during overtaking maneuvers in roads
with oncoming traffic. The evaluation includes both objective and subjective
assesment and is compared against a vehicle with L2 capabilities.

The next sections describe the studies in terms of the specific use cases (proposed
in the framework of the PRYSTINE project [188]), the methodology used for the
experiments, the design of each experimental condition, the performance of each
system, and then the quantitative and qualitative analysis of the results. Each
experiment concludes with a brief description of the main findings.

5.1 Support to Distracted Driver
5.1.1 Use Case
To settle the driving conditions in the scope of the test, the following use case (UC)
has been defined, highlighting a scenario where the driver–automation system would
be benefited from their cooperation as a “team”.

5.1.1.1 User Story
"A mother is driving in a highway/extra-urban road with her baby at the back, in
the right passenger seat. From time to time, the baby starts crying and catching
her attention. The position of the baby is completely out of her scope, so she has to
turn in order to take care of the child. She is driving an L1 automated vehicle with
the adaptive cruise control function activated. This implies that she is only taking
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care of the lateral control of the vehicle (however, she is not allowed to release both
hands from the steering wheel). This driving scenario presents several safety issues
regarding vehicle control loss. Nevertheless, steering automated driving functions can
prevent potential dangers, in cooperation with driver interventions"

5.1.1.2 Motivations
Driver distraction is known to be one of the leading causes of traffic crashes and has
serious consequences, not only for the driver, but also for passengers, other vehicles,
and Vulnerable Road Users (VRUs). According to NHTSA1, distracted drivers cause
an average of about 3000 deaths, 280000 injuries, and nearly 1 million crashes each
year. Because of these alarming numbers, this institution has set some goals for the
Distraction Plan Program to reduce accidents caused by distracted drivers. The plan
includes actions from different angles: 1) collect more data to better understand the
problem, 2) new vehicle technologies, either by developing vehicle interfaces with less
driver workload or by developing active safety systems to prevent the consequences
of driver distraction, and 3) make drivers aware of the risk and consequences of their
distracted driving. In this sense, new vehicle technologies seem to be a promising
solution to reduce the consequences of distractions, especially the development of
active safety systems. Although the development of less distracting interfaces can
help solve the problem, there are many sources of distraction, not just in-vehicle
interfaces (e.g., as in the proposed use case, when a mother is distracted because
the baby is crying and needs attention).

Safety systems exist today to prevent accidents due to driver distraction, but
they provide either little or excessive assistance. On the one hand, there are already
Driver Monitoring Systems (DMS) in commercial vehicles that can detect driver
distraction (using detection cameras or by detecting abnormal steering patterns),
but they do not assist the driver at the control level. These systems provide visual
or audible warnings to the driver to prompt s/he to regain attention. On the other
hand, there are two approaches for ADAS to assist distracted drivers. The first
is the Lane Keeping Assist System (LKAS), which ensures that the automated
system applies torque to the steering wheel when the driver leaves the lane due to
inattention. The problem with this system is its reactive nature, as it protects as
soon as the unsafe event occurs and does not take into account the driver’s condition
for the intervention. The second approach is Automated Lane-Centering (ALC),
which corresponds to an autopilot assistance that always steers the vehicle to the
center of the lane. While this system allows the driver to be distracted without
greater risk, it also leads to lower driver engagement in the driving task and thus
overreliance on the system, which can lead to other problems (e.g., not continuing
to drive safely when the system fails).

In this sense, a shared-control strategy is suitable approach for an active safety
system that supports the driver in case of distractions. It is based on the principle

1Webpage: NHTSA Distracted Driving Statistics → https://www.nhtsa.gov/distracted-driving
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that the driver should be assisted only when necessary (e.g., when distracted)[83]. In
this sense, the shared-control system will act earlier than the LKA (since it takes into
account the driver’s state) and be active for less time than the ALC (since it assists
the driver only when necessary), resulting in improved safety while maintaining the
right level of driver engagement.

5.1.1.3 Current Research
Previous works on shared-control have examined driver assistance in various scenarios
such as lane keeping, obstacle avoidance, and resumption of control, according to the
state-of-the-art described in Chapter 2. In these scenarios, the adaptive authority of
shared-controller depends on several variables (e.g., time- to- lane-crossing [269], the
lateral error [270], driver effort [271], driver intention [82], and others).

However, there is limited work examining the effects of shared-control support,
with authority varying by driver state. One work evaluated the benefits of shared-
control for fatigued drivers [272] improving the tracking performance and safety.
However, driver fatigue is not as common as driver distraction, which almost always
occurs when people are driving. A recent work by Wang [273] presented an adaptive
authority controller based on driver distraction level measured by forearm surface
electromyography. In this study, distraction was induced by asking drivers to
calculate the cumulative sum of numbers given every three seconds while performing
a lane change maneuver. While doing so, drivers kept their eyes on the road at
all times. Sentouh and Benloucif [274, 275] present a more realistic scenario with
two studies of a system that assists distracted drivers (measured with a visual
camera). The secondary task involved reading a text with one hand and writing
on a tablet while driving. In [274], the shared-control strategy was compared
to manual driving (by 7 participants), with improvements in tracking errors and
subjective measurements. A more comprehensive study was presented in [275]
with 15 participants, also compared to a ALC system (fixed authority). In both
experiments, the results indicated that shared-control is a promising strategy for
helping distracted drivers. In these works, the duration of the secondary task
(reading and writing) was high, about 10 s. However, in everyday life, drivers are
usually distracted for shorter periods of time, e.g., changing the radio, looking
at the instrument cluster, or briefly glancing at the back seat. In this sense, the
investigation of support for shorter distraction events is of interest for this Ph.D.
Thesis, where the driver is asked to perform a distraction task of 2-5 seconds.

5.1.2 Method
5.1.2.1 Participants
A total of 5 participants (1 female and 4 males), took part in the pilot expert studies
(all were related to automated driving research activities), aged between 21 and 49
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years with mean = 35.6 years and Standard Deviation (SD = 13.0), all of them with
at least 3 years holding a driving license (mean = 11.8, SD = 10.9).

5.1.2.2 Apparatus
The DiL simulator shown in Figure 5.1a is the experimental platform for the study.
The custom configuration for the scenario of the distracted driver consists of 1)
a steering wheel to control the lateral motion of the vehicle, 2) a vision-based
camera (Basler ACE acA1920—40uc camera with a Sony IMX249 CMOS sensor) to
estimate the driver distraction level, and 3) a touch-screen that serves to execute
the secondary task.

(a) Simulator set-up (b) Steering wheel and driver monitoring camera

Fig. 5.1: DiL simulator for expert study of distracted driver

5.1.2.3 Experimental Conditions
Four test conditions consisting of driver assistance systems to help drivers with
distractions are evaluated. Three of them are baseline conditions, including manual
driving (i.e., no assistance) and two commercially available ADAS such as Lane-
Keeping Assistance (LKA) and Automated Lane-Centering (ALC) [16]. The other
is the shared-control-based system developed in Chapter 4. The description of the
experimental conditions is as follows:

• Manual (MAN): No automated steering support to the driver. Only the CC
longitudinal control function is active.

• Lane Keeping Assistance (LKA): The automated system applies a momentary
torque to the steering wheel when the vehicle is leaving the lane. However, if the
vehicle is within the lane, there is no automation assistance.

• Automated Lane-Centering (ALC): Automation provides lateral vehicle
control that always keeps the vehicle in the center of the lane. Under this
condition, the driver must still keep at least one hand on the steering wheel. This
mode considers a fixed authority (λ = 3 Nm).

• Shared-control (SC): The proposed system depends on the state of the driver.
When the driver is concentrated, the system is in manual mode, but when
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distracted, the ALC is activated during the distraction event. This mode considers
a variable authority depending on a fuzzy logic-based arbitration system.

5.1.2.4 Procedure
Figure 5.2 shows the experiment design for this use case. Before the official test,
each driver sat in the driving simulator. After calibrating the driver monitoring
camera, they drove one lap to familiarize themselves with the simulator and the four
experimental conditions. Each driver received a thorough explanation of the driving
modes during the familiarization session. For the official test, participants drove an
automated vehicle with longitudinal control set at 85 km/h in each session. The
duration of each session was 6 minutes in a highway scenario (with 420 m minimum
curve radius).

Fig. 5.2: Within-experiment design description of use-case 1 (C: concentrated phase, D:
distracted phase)

Periodic distraction events (every 20 s) occurred during the trip. An audible
warning signal alerted the driver to start the distraction task. The distraction
consisted of pressing a button on the touchscreen (changing from gray to red) and
paying attention for 2 s (until the change from red to gray). Then the driver pressed
the button a second time (changing from gray to green) and returned to the normal
driving task. During this activity, the driver deviated from looking at the road,
turned the head to the right, and interacted with a touch monitor with the right
hand, while the other hand always remained on the steering wheel. Figure 5.3 shows
the distraction sequence. This applies to all driving modes tested in the following
order: 1) MA, 2) LKA, 3) ALC, and 4) SC. To add more realism to the scenario,
the simulator environment additionally includes other vehicles (one driving ahead
and one passing in the same direction but in the left lane, repeatedly).

5.1.3 System Design
The setup of the system for each experimental condition consisted of configuring
the arbitration and shared-controller modules explained in Chapter 4. Under all
conditions, the automated system controls the vehicle speed within the cruise control
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Fig. 5.3: Experiment procedure with the sequence of distraction event

mode set to 85 km/h. The driver does not interact with the pedals, only with the
steering wheel.

5.1.3.1 Baseline #1 - Manual
There is no steering assist for the Manual state because lateral vehicle control is
disabled (λ = 0).

5.1.3.2 Baseline #2 - LKA
For the LKA system, lateral vehicle control is disabled (λ = 0), but NMPC lateral
error constraint is active (Tmpc ≤ 3 Nm and ey ≤ 1.5 m). When the vehicle is close
to the edge of the road, the system applies an instantaneous torque of up to 3 Nm.

5.1.3.3 Baseline #3 - ALC
For the ALC system, the lateral vehicle controller is always active with fixed authority
(λ = 3 Nm), with no lateral error constraints. The controller torque is strong enough
to steer the vehicle to the center of the lane, but low enough to allow the driver to
steer the vehicle.

5.1.3.4 Shared-Control System
Unlike ALC, the shared-control mode applies variable authority computed by the
arbitration module based on the fuzzy logic system described in Figures 5.4 and
5.5. It represents the behavior of the lateral shared-control system by defining
membership functions with representative values (since defining the value in fuzzy
logic systems is similar to how humans assign values to categories). The fuzzy system
consists of two inputs and one output, as described below:
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• i1 - Vehicle position: Represented as the lateral error of the vehicle with
respect to the center of the right lane (ey). It has 4 membership functions labels
([Center - Left - Border - Out]) representing the different positions of the vehicle
on the right lane. The 1.5 m (Border-Out) is the distance where the vehicle is
at the edge of the lane, and 0.3 m (Center-Left) gives the driver the freedom to
deviate from the center without receiving automation assistance.

• i2 - Driver state: Represented as the level of driver distraction. The membership
functions ([Concentrated - Eyes out - Distracted]) represent the driver with eyes
on the road, eyes off the road, and definitely engaged in another task. The values
reflect the behavior of the raw distraction signal.

• o1 - Level of Authority: Represented as maximum steering torque of the
correction (λ) in Nm. Figure 5.5a shows that the labels of the membership
functions ([Manual - Assistance - Correction - Override]) represent the full range
of automation steering assistance. The values reflect how the driver feels the
assistance: a) no torque corresponds to Manual, b) with 2 Nm the driver hardly
feels the steering assistance (Assistance), c) between 6 and 10 Nm corresponds
to strong assistance (Correction) and d) 15 Nm is the maximum torque of the
steering motor.

(a) Vehicle position - Lateral error (b) Driver state - Distraction level

Fig. 5.4: Inputs description of the arbitration system based on fuzzy logic

Tab. 5.1: Fuzzy logic rules for the distraction support system

i1 − ey → Center Left Border Out

Concentrated Manual Manual Assistance Correction

Eyes-out Assistance Assistance Correction Override

Distracted Assistance Correction Correction Override

↑ i2 − dms ↑ i1 − λ
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(a) Level of authority (b) Decision surface

Fig. 5.5: Output description of the arbitration system based on fuzzy logic

Table 5.1 shows the IF-THEN rules of the arbitration system. Its structure
consists of the application of two main principles. First, the principle of minimal
intervention follows the idea that drivers need help only under certain circumstances
[63]. On the contrary, automation could lead to unnecessary conflicts, making drivers
feel that they are constantly being contradicted and reducing the acceptance of the
system by drivers. Moreover, not intervening when drivers are capable of driving
themselves aims to increase the sense of responsibility and avoid overreliance on
automation. In this sense, automation support is very low during concentration,
but increases (with gentle gradients) in proportion to the risk (either from deviation
from center or from distraction), as shown in Figure 5.5b. The second principle
is safety before comfort, which gives higher priority to safety than to parameters
that increase comfort while driving. In this sense, the system intervenes not only
when the driver is no longer able to drive and performs an unsafe action, but also
when the probability of risk increases, which gives the system a preventive safety.
Under this principle, automation can override the driver’s intent, but at the cost of
inconvenience (e.g., abrupt accelerations or strong steering corrections).

5.1.4 System Performance
Figure 5.6 shows the performance of the developed systems (the three initial condi-
tions and the shared-control system). The results are from the data of one of the
participants and represent the overall behavior of the system under these conditions.
The performance metrics are the lateral error, driver torque, and the automation
control torque, along with the description of the distraction event and the authority
signal in each of the conditions.

5.1.4.1 Baseline #1 - Manual
The vehicle leaves the lane beyond the limits during the distraction events, especially
in the zones with higher curvature. As for the driver’s torque, some peaks result from
the effort the driver makes to bring the vehicle back to center after the deviation.
There is no automation support, and therefore the authority λ is always zero.

100 Chapter 5 Experimental Studies



Fig. 5.6: Performance of baseline conditions and shared-control systems in terms of lateral
error, driver torque and automation torque command

5.1.4.2 Baseline #2 - LKA
The vehicle constantly deviates from the center of the lane during distraction
maneuvers, but the LKA system effectively prevents the driver from leaving the
lane (the lateral error is less than 2 m) after applying a bump torque of up to 3 Nm
when the lane limit is reached. Driver effort is less than in manual mode thanks to
LKA assistance. The automation torque also shows that the LKA has a non-zero
assistance component in cornering areas, thanks to the predictive behavior of the
NMPC controller, which acts as a power steering system in these circumstances.
There is no continuous automation (only assistance to keep the lateral limit), and
therefore the authority λ is always zero.

5.1.4.3 Baseline #3 - ALC
The vehicle does not deviate significantly from the center of the lane (even in areas
with strong curvature), thanks to the automation assistance, which is always active
with an authority λ = 3 Nm. The driver’s torque is reduced compared to Manual
and LKA, and the automation torque is stronger in areas with strong curvature.

5.1.4.4 Shared-Control System
Similar to ALC, the SC system keeps the vehicle in the center of the lane, except that
authority is lower under concentration (λ ≈ 0.6 Nm) and higher under distraction
(λ ≈ 5 Nm). At first glance, SC seems to result in lower driver effort, but since there
is no significant difference, the analysis is performed quantitatively. Automation
torque of Tmax = λ is shown in Figure 5.6, where it is saturated and smaller than in
ALC. These initial results suggest that SC and ALC are the safer systems, but SC
achieves this with less driver and automation effort.
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5.1.5 Quantitative Results
The quantitative evaluation of the systems takes into account various Key Perfor-
mance Indicators (KPIs) that were developed in the framework of the PRYSTINE
project [188] (after conducting special workshops with experts in the field) and taking
into account previous works in shared-control [276]. The evaluation considers three
categories of KPIs, as shown in Table 5.2. First, tracking performance, to measure
the ability of the systems to follow the expected trajectory. Second, safety-related
indicators to find the system that is safest (the one with a lower probability of unsafe
events). Finally, driver and automation torques serve as indicators of the conflict
between the driver and the automated system.

Tab. 5.2: KPIs description for the overtaking scenario

KPI Tracking

1.1 Lateral error RMS (LE-RMS) Mean of participants RMS of the lateral error

1.2 Lateral error MAX (LE-MAX) Mean of participant’s maximum value of the lateral error

1.3 Angular error RMS (AE-RMS) Mean of participant’s RMS of the angular error

1.4 Angular error MAX (AE-MAX) Mean of participants maximum value of the angular error

Safety

2.1 # Time-to-lane-crossing RMS (TLC-RMS) Mean of participants RMS of the TLC

2.2 # Time-to-lane-crossing MIN (TLC-MIN) Mean of participant’s minimum value of the TLC

2.3 # Time-to-lane-crossing period (PTLC) Mean of participants period of time when TLC < 3.8 s

Effort

3.1 Driver torque RMS (DT-RMS) Mean of participants RMS of the driver torque

3.2 Driver torque MAX(DT-MAX) Mean of participant’s maximum value of the driver torque

3.3 Automation torque RMS (AT-RMS) Mean of participants RMS of the NMPC torque command

3.4 Automation torque MAX (AT-MAX) Mean of participants maximum value of the NMPC torque

Figures 9-14 show the results for each experimental condition considering the two
states of the driver (concentrated and distracted). Figures 9, 10, 13, and 14 show the
Root-Mean-Square (RMS) and the maximum values of the tracking errors (lateral
and angular). The individual values for each driver (* symbol) help to evaluate
the dispersion of the data. Figures 11 and 12 show the safety indicators. Figure 11
shows RMS and the minimum value of Time-to-Lane-Crossing (TLC). Figure 12
shows the percentage of time that TLC is below a safe threshold. In addition, each
figure includes the performance indicators of the automated system driving alone
(i.e., without driver intervention), which is referred to as “Automation- only”. This
serves to validate the controller and compare the entire spectrum from manual to
purely automated operation.
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5.1.5.1 Tracking
To evaluate the tracking performance under all conditions, the analytical procedure
uses two main variables, the lateral error (ey) and the angular error (epsi). Figures 5.7
and 5.8 show the results of RMS and the maximum value for these two variables.

RMS 0.30 0.25 0.14 0.18

MAX 0.91 0.60 0.41 0.54

0.87 0.51 0.15 0.13

3.52 1.66 0.47 0.45

0.06

0.11

Fig. 5.7: Lateral error comparison

RMS 0.71 0.64 0.63 0.64

MAX 2.49 1.92 1.80 1.94

1.28 1.04 0.64 0.66

5.15 3.94 2.15 2.23

0.59

1.49

Fig. 5.8: Angular error comparison

• KPI 1.1 - LE-RMS: Analysis of Figure 5.7 shows that under all conditions
the average deviation from center remains below 30 cm. The three driving aids
improve the ability to follow the center of the road compared to MAN. The
improvements in following the center of the road by ALC and SC are very similar
and much better than LK (including lower dispersion between participants).
However, SC has lower authority (λ ≈ 0.6 Nm) compared to ALC (λ = 3 Nm),
suggesting that the same tracking performance is achieved with less automation
intervention. However, when the driver is distracted, the differences become larger.
Manual and LK exceed the mean deviation of 50 cm, while ALC performs very
similarly regardless of the driver’s condition. On the other hand, SC improves
performance when distracted, which can be attributed to the increased authority
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in this condition. Comparing SC with automation-only, the vehicle moves 10 cm
more from the center of the lane on average, but with the advantage that the
driver cooperates with the automation.

• KPI 1.2 - LE-MAX: As the maximum values show, all drivers stay within the
lane most of the time even in manual mode when they are focused. However,
when distracted, all drivers in manual mode deviated from the lane at least once,
which is enough to cause an accident. The LKA feedback helps to completely
avoid these unsafe events thanks to the correction torque when reaching the limit
(the maximum error is less than 2 m). Nevertheless, the ALC and SC systems
show the best performance when it comes to keeping the vehicle within 50 cm
from the center.

• KPI 1.3 - AE-RMS: In terms of angular error, the RMS value at concentration
is similar for all driving modes (below 1 degree), but during distraction events it
follows the same pattern as lateral error. When the driver has continuous steering
assistance (ALC and SC), the overall angular error does not change as much as
in manual and LKA modes.

• KPI 1.4 - AE-MAX: The highest values occur in manual and LKA modes
during distraction maneuvers, while ALC and SC do not show large changes
compared to normal driving.

5.1.5.2 Safety
To evaluate the safety performance, the analysis procedure uses the Time-to-Lane-
Crossing (TLC) variable, which indicates how close (in time) the vehicle is to leaving
the lane boundary. The estimation assumes that the steering angular velocity
remains unchanged. The analysis takes into account the average of the RMS values
of TLC during the driving session and also the minimum values (see Figure 5.9).
The higher the TLC value is, the safer the vehicle is (if TLC = 0, the vehicle has
crossed the lane). The results include a global safety indicator that calculates the
time that the TLC is below a threshold, as shown in Figure 5.10. The threshold was
chosen based on the performance of pure automation, which results in a minimum
TLC of 3.8 s. Therefore, it is of interest to calculate the time period when the TLC
is below this value (considering only the moments when the TLC is not infinite).

PTLC = time(TLC < 3.8 s)
time(TLC ̸= inf) (5.1)

• KPI 2.1 - TLC-RMS: In Figure 5.9 all driving modes show high and safe TLC
when the driver is focused, with performance proportional to the level of support
(more support, better safety indication). This tendency is maintained when the
distraction events occur, with SC showing the safest performance and the lowest
dispersion between participants.
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RMS 7.92 8.08 8.31 8.72

MIN 2.34 2.59 2.48 2.26

6.38 6.51 7.92 8.20

0.28 1.16 2.27 1.92

9.22

3.84

Fig. 5.9: Time-to-lane-crossing comparison for safety performance evaluation

Time % 11.47 8.88 8.67 7.05 40.04 35.13 14.80 12.63 0.00

Fig. 5.10: Time-to-lane-crossing period (%) comparison

• KPI 2.2 - TLC-MIN: The average of minimum TLC was very similar across
conditions (all above 2 s). During distracted driving, 4 out of 5 drivers in manual
mode crossed the lane at least once (TLC ≈ 0), while the LKA system was able
to prevent any lane crossing (with a minimum TLC of 0.76 s). The average
minimum values of ALC and SC are above 1.5 s, which is a safety threshold below
which it can be considered an unsafe event [277]. The minimum values for ALC
and SC are not significantly different when comparing the two driver states.

• KPI 2.3 - PTLC : The period of TLC as a global indicator shows the same
progressive pattern in both concentrated and distracted events (see Figure 5.10).
SC is the safest in both conditions (with a small difference from ALC and a
significant difference from Manual and LKA) and again shows not only the best
values but also the least dispersion. Moreover, this indicator helps to show
the advantages of LKA, as PTLC is significantly lower compared to Manual
(although it should be similar). This effect seems to be reinforced by the fact
that when entering a curve (or rather, approaching a curve change), the NMPC
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controller predicts that the vehicle will approach the lane boundaries at a later
time, providing the driver with anticipatory haptic torque.

In terms of safety indicators, SC moves further away from the disadvantages of
manual driving and closer to the lower TLC of pure automation, both for normal
driving and for distraction events. This underlines the advantages of the “team”
approach.

5.1.5.3 Effort
Figures 5.11 and 5.12 show the results of driver effort (DE) and automation effort
(AE), so it is possible to determine how much torque conflict exists between them. It
is assumed that systems with less conflict are more likely to be accepted by drivers.

RMS 0.47 0.23 0.6 0.35

MIN 1.34 0.70 1.58 1.00

0.63 0.36 0.61 0.50

2.37 1.48 1.63 1.52

0.00

0.00

Fig. 5.11: Driver torque effort applied to the steering wheel

RMS 0.00 0.30 0.83 0.54

MIN 0.00 1.17 2.31 2.07

0.00 0.48 0.84 0.70

0.00 2.63 2.36 2.61

0.54

1.35

Fig. 5.12: Automation torque effort applied to the steering wheel

• KPI 3.1 - DE-RMS: In Automation-only mode, there is no torque for the
driver. When concentrated, expectations were for manual mode to be the
least taxing, however, LKA shows the least conflict of the four modes (nearly
half of manual mode, as shown in Figure ¦reffig:chap-v:effortdriver), confirming
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previous results indicating LKA’s behavior as a steering aid in curvy zones. As
expected, ALC shows the most conflict considering that automation is always
active. This situation shows how the system provides unnecessary torque. During
the distraction maneuvers, torque increases in all driving modes except ALC,
where there is no change. Again, LKA shows the least conflict even when the
driver is distracted. SC shows the second best performance in terms of effort.

• KPI 3.2 - DE-MAX: While focused, the higher efforts are observed in manual
mode (the driver is struggling to take the turn) and in ALC (the driver is
struggling with the system). At SC the conflict does not exceed 1 Nm, which
is still an acceptable (comfort-related) value. In distracted maneuvers, the high
effort of almost 4 Nm in manual mode is due to the driver’s steering corrections
to bring the vehicle back on track. In LKA mode, the highest effort is due to
the roadside corrections to avoid leaving the lane. Interestingly, the maximum
torques are similar between SC and ALC, although the authority of SC is higher.

• KPI 3.3 - AE-RMS: In manual mode, there is no support for automation
(Tmpc = 0). Figure 5.12 shows that the results for the concentrated segments
follow the logic. Smaller average torque commands for LKA, which is active
only during short periods, and larger torque for ALC, which is always active.
When distracted, torque increases for all modes except ALC, which has fixed
authority. Interestingly, SC is more efficient than ALC, even though it has a
higher authority.

• KPI 3.4 - AE-MAX: The maximum torque applied by the automation with
ALC is the highest, showing the disadvantage of conflicts between the driver and
the system when approaching a fixed authority. During distraction maneuvers,
SC exhibits larger torque peaks due to the higher authority, but overall the effort
is less than ALC, showing that SC is the more efficient control after LKA.

In summary, if the driver is attentive, he can maintain a very small deviation from
the lane in all modes. In these cases, the SC mode provides very little assistance,
and the driver feels very close to manual driving, being able to drive freely within a
narrow band around the center. Only when a larger deviation occasionally occurs
does SC provide feedback on centering. On the other hand, LKA gives feedback even
for small tracking errors when the steering is heading for a possible lane crossing
(i.e., when the TLC is small). ALC always gives feedback, even for small lane errors.
Thus, the ALC and SC modes seem to give the best results in terms of lane keeping.
In terms of safety indicators, SC shows the highest performance, closely followed
by the ALC mode. In terms of effort, the lowest effort for the driver is observed in
LKA mode, followed by SC, while ALC presents the highest torque conflict for the
driver. Overall, the SC mode seems to offer the best compromise among the tested
modes. It is the furthest from manual control and the closest to pure automation,
supporting the idea that the “team” approach can offer the best of both worlds
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(manual and automated). In addition, it seems worthwhile to combine the benefits
of SC with the predictive torque of LKA mode.

5.1.6 Qualitative Results
The subjective evaluation helps to understand the driver’s perception of the system.
After completing all tests, participants were asked to rate each driving mode in this
particular scenario by answering the questions in Table 5.3. Punctuation varied
from 1 (no/bad) to 10 (yes/good). The questionnaire targets four categories of
questions: 1) monitoring, to measure the driver’s perception of his or her need to
engage with the driving task (Q1-Q2), 2) safety, to assess the driver’s feeling of
being protected (Q4), 3) comfort, to understand the driver’s feeling of whether the
system is harmonious or too intrusive in its interaction (Q3-Q5), and 4) overall
perception of the systems (Q6). Figure 5.13 shows participants’ scores in response
to the custom questionnaire. Individual scores (+) are connected with a line to
understand the overall perception of each driver.

Tab. 5.3: Driver acceptance customized questionnaire

# Category Question

Q1 Monitoring Did you have the feeling that you were free to perform the secondary task?

Q2 Monitoring Did you feel the system required your continuous monitoring of the situation?

Q3 Comfort Did you have the feeling that the system was too intrusive?

Q4 Safety Did you feel that your security was ensured by the system?

Q5 Comfort Did you feel that your interaction with the system was harmonious?

Q6 Overall Provide an overall evaluation of the system.

0

2

4

6

8

10

MANUAL LKA ALC SC

Did you have the feeling that you were 
free to perform the secondary task?

Q1

0
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MANUAL LKA ALC SC

Did you have the feeling that the 
system was too intrusive?

0
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MANUAL LKA ALC SC

Did you feel the system required your 
continuous monitoring of the 

situation?

0

2

4
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MANUAL LKA ALC SC

Did you feel that your interaction with 
the system was harmonious?

0
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MANUAL LKA ALC SC

Provide an overall evaluation of the 
system

Q6Q5

Q3Q2

0

2

4
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8
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MANUAL LKA ALC SC

Did you feel that your security was 
ensured by the system?

Q4

Fig. 5.13: Subjective evaluation of assistance systems for the distracted driver use case

5.1.6.1 Monitoring
As it is shown in left upper part of Figure 5.13, questions 1 and 2 correlate very
well with each other. The results show that when driving with SC and ALC, drivers
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feel they have a lot of freedom to perform a secondary task, while when monitoring
the system, they do not have much responsibility. Although the ratings of these
two modes are similar, only one driver felt that SC required less monitoring of the
automated system. However, the goal of SC is to keep driver involvement lower
than in manual driving, but not as low as in driving with an autopilot (to avoid
the out-of-the-loop problem). To achieve this goal, it is proposed for the future to
warn the driver if the Secondary Task (ST) takes longer than expected or if the
frequency of ST is high, so that the driver knows that he has the main responsibility
for driving the vehicle.

5.1.6.2 Safety
Question 4 assesses the drivers’ perception of safety in relation to the systems.
The manual mode is absolutely not perceived as safe. LKA mode is perceived as
reasonably safe, and ALC and SC are perceived almost identically as very safe.

5.1.6.3 Comfort
Questions 3 and 5 also correlate well, indicating that the interaction between Manual
and SC is very harmonious and SC is not perceived as an intrusive system. On the
other hand, ALC is perceived as the most intrusive of all modes tested (although the
results show a high dispersion), consistent with the highest level of conflict discussed
above, while LKA is perceived as less intrusive but also less harmonious, most likely
reflecting the freedom to wander within small trajectory deviations characteristic of
human drivers (low intrusiveness), in combination with momentary corrections or
“bumps” that disrupt the harmony of the interaction.

5.1.6.4 Overall
Finally, after considering the three evaluation categories, participants were asked
to provide an overall rating for each mode, forcing them to reconsider their system
rating under each criterion. A clear trend emerged in the responses in favor of SC.
Again, the response of one participant is noteworthy, who gave a perfect score to
manual mode. He obviously prefers the independence of the driver in this mode,
but acknowledges that it cannot provide additional protection in the event of a
distraction. Not surprisingly, this answer came from the driver who never crossed
the lane during the tests.

It is also clear from the driver perception information that a combination of SC
with LKA is worth testing. LKA’s predictive torque could not only help improve
the dynamic parameters of the already favored SC mode, but also make it feel more
harmonious. If needed (depending on automation capabilities), it could allow a
reduction in authority during normal driving (attentive driver), forcing the driver to
continue to observe the environment and avoid secondary tasks without compromising
additional safety.
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5.1.7 Conclusion
The first experimental study of this chapter explored human-automation cooperation
(as a team) when one of the members has limited resources, in particular, when
the human driver is inattentive. The NMPC-based shared-controller developed in
Chapter 4 was used to conduct experiments on a driving simulator with real users.
The scenario considered an appropriate methodology for sharing the driving task,
which is important for effective vehicle control. In doing so, the arbitration module
presented two design considerations (i.e., minimal intervention and safety over
comfort). The summary of the results and lessons learned are presented below.

• SC proved to be the best solution to support the driver during short distractions.
Objective results showed that good tracking performance and safety were achieved,
similar to ALC, but at the cost of lower driver-automation conflict.

• The combination of the SC and the LKA mode seems promising for future work,
as the LKA mode could further support the driver by reducing more conflicts
with the automation.

• Compared to similar work that also investigated shared-control for the distracted
driver scenario [274, 275], the quantitative results show overall consistency. In
the tests with real drivers, both works show an improvement in lateral error RMS
during distracted driving when SC is used. Regarding driver effort, the cited
work shows the highest effort at SC during the execution of the secondary task,
while the results of this dissertation show a lower effort at SC compared to ALC
and Manual. In addition, qualitative analysis shows that SC performs better in
terms of safety and comfort, which is consistent with the subjective results of
previous work.

• The study needs to be improved by increasing the number of participants, selecting
people who are not experts in automated driving development, and adding a
more complex simulated test track.

• An interesting KPI to measure in future experiments is the quality of the takeover
request, which assesses the driver’s ability to regain manual control of the vehicle
under shared-control after an automation failure.

5.2 Support in Overtaking
The second use case relates to an overtaking maneuver in a 2-ways road when driving
an automated vehicle with L2 capabilities. The focus of the use case is on the cooper-
ation between the driver and the automation. The idea is that the team performance
(shared-control mode) will surpass the individual performance. The safety indicators
of the maneuver will compose the quantitative analysis, together with an evaluation
of the time in each operation mode. For the subjective evaluation, two standardized
questionnaires measure the participant’s perception of the automated system.
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5.2.1 Use case
As part of setting up the driving conditions in the scope of the test, the following use
case was created with the Prystine project consortium, showing a situation where
the driver and automated system can work together as a “team”.

5.2.1.1 User Story
"On an extra-urban road, Silvano is driving in AD mode (L2) to come back home,
when the vehicle approaches a big and slow tractor ahead. The automation cannot
overtake due to the limited perception (it cannot “see” and check if other vehicles
are coming in the opposite direction and thus if the left-lateral lane is free for the
maneuver). In such a situation, the automated vehicle can only slowly follow the
truck in front, waiting until it changes its route. However, Silvano is in a hurry
due to an appointment for dinner and thus, he is getting nervous. In this sense,
the system based on shared-control, ask Silvano for support in case he wants to
overtake"

Fig. 5.14: Driving scenario of use case 2: overtaking a slow truck in a two-ways road

5.2.1.2 Motivations
The first use case focuses on automation assistance due to driver limitations (e.g.,
distraction). The second use case focuses on driver assistance due to automation
impediments (e.g., low sensor visibility). Therefore, the overtaking maneuver in the
oncoming lane is a suitable scenario for evaluating the shared-control interaction
initiated by the driver. In this scenario, the collaboration between driver and
automation is active only for a limited period of time. This is the ideal situation to
benefit from shared-control while avoiding the disadvantages of strong continuous
support [63]. The scenario is also relevant to safety, because when accidents occur
during overtaking, the likelihood of serious injuries and fatalities is high (especially
in head-on collisions). Improper overtaking is also an important cause of accidents
on interurban roads with lanes in both directions (which represent about 90% of the
Spanish road network [278]).

5.2.1.3 Current Research
Various systems supporting this maneuver can be found in the literature. The
See-Through-System [279] presents a solution based on augmented perception, where
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the driver can see the view of the vehicle in front (equipped with a vision camera
and screens in the rear). Samsung has implemented this solution in real trucks in
Argentina2. There are also systems based on driver automation at the tactical level
(decision), such as the one presented by Walch [280], used in the same overtaking
scenario. In this work, the collaboration is done through a Human-Machine-Interface
(HMI) to approve or reject the overtaking operation, but the automation performs
all the control actions 3. As for shared-control based solutions that involve the
driver at the operational level, few works address this scenario. Ercan [281] and
Muslim [93] present collision avoidance systems for dangerous lane changes, but
consider a vehicle coming from the same direction. Nishimura [282] evaluates the
situation of overtaking, but with a focus on the control transitions from automated
to manual and vice versa. In another paper, Dillman [283] presents a comparison of
overtaking modes, including a semi-automated one based on shared-control, where
the automation performs an overtake as soon as the driver has hands on the steering
wheel and confirms the intention to overtake.

However, the literature does not present a system based on shared-control that
handles control transitions and avoids dangerous overtaking maneuvers in roads with
oncoming traffic. The following sections describe the developed driver assistance
system with these features.

5.2.2 Method
5.2.2.1 Participants
A total of 13 participants (6 females and 7 males), took part in the experimental
studies, aged between 23 and 64 years (mean = 35.6, SD = 13.0), all of them with
at least 2 years holding a driving license, and with an overall driving experience
around 5 years or higher.

5.2.2.2 Apparatus
The DiL simulator presented in Section 3 is the experimental platform for this study.
The custom configuration for the overtaking scenario consists of: 1) steering wheel
and pedals to control the vehicle motion, 2) a Bluetooth button to activate the
automated functionalities (integrated in the steering wheel of Figure 5.15a), 3) a
visual HMI (developed by RE:Lab4, as part of the Prystine project collaboration [210])
that serves as an instrument cluster to display the automation status information,
but also to inform the driver about overtaking events. The DMS is not part of
this study, as only the environmental risks are of interest. Figure 5.15 shows the
aforementioned configuration.

2Video: Samsung Safety Truck → https://www.youtube.com/watch?samsungsafety
3Video: Cooperative Overtaking System → https://www.youtube.com/watch?cooperativeovertaking
4Webpage: RE:Lab → https://www.re-lab.it/
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(a) Simulator set-up (b) Visual HMI - automation off

(c) Visual HMI - automation on (d) Visual HMI - automation ask for support

Fig. 5.15: DiL simulator for experiment and visualization of the RE:Lab HMI states [210]

5.2.2.3 Experimental Conditions
The participants start driving in manual mode and activate the system after reaching
a speed of 50 km/h. Automated functions include Adaptive Cruise Control (ACC)
and ALC (longitudinal and lateral control of the vehicle). The system is activated
by pressing a button on the steering wheel, and the driver receives confirmation on
the visual HMI (the active lane is highlighted in green, as in Figure 5.15c). The
automated controller sets the speed to 90 km/h until a slow truck appears in front,
and the vehicle slows down to follow it using the ACC function. At this point, the
driver is in a situation where an overtaking maneuver is desired (Figure 5.16 shows
this sequence). In this context, the participants tested the following two overtaking
assistance systems:

A

(a) Driving in automated mode at 90 km/h

A A

𝟕𝟎

(b) Approaching the slow truck at 70 km/h

Fig. 5.16: Description of the initial conditions of the driving experiment

• L2 automated vehicle as the baseline condition. Participants drive the vehicle
with ALC and ACC enabled. The automated vehicle is responsible for lateral
and longitudinal control, but the driver must keep his hands on the steering
wheel and monitor the system. To manually overtake a slow truck, the driver
must deactivate the L2 driving mode by applying torque to the steering wheel
(Figure 5.17c), perform the maneuver in manual mode, and manually reactivate
the L2 functions after completing the overtake (Figure 5.17d). If the overtaking
is dangerous, the system does not make any correction (Figure 5.17b). Figure
5.17 illustrates all the functionalities.
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(d) Lane return

Fig. 5.17: L2 driving mode
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(d) Lane return

Fig. 5.18: Shared-control mode

• Shared-control functions are added to the L2 baseline. For the lane change
indicator, the visual HMI asks the driver for assistance (Figure 5.18a). In addition,
the automated functions are deactivated only when there is a sufficient field of
view to watch for upcoming vehicles (and not only when the driver exceeds the
torque threshold, as in Figure 5.18c). In the event of an unsafe lane change, the
ALC controller increases authority relative to collision risk to avoid accidents
(Figure 5.18b). During the overtaking phase, the shared-control mode includes a
lane departure system to avoid a lateral collision with the truck or the departure
from the left lane. Finally, the automated functions are automatically activated
when the driver approaches the right lane and completes the overtaking maneuver
(Figure 5.18d). Figure 5.18 shows all the functionalities.

5.2.2.4 Procedure
Before the test, participants completed a questionnaire related to demographic data
and driving profiles. Also, they familiarized with the simulator, taking a driving
session in manual mode. The study was a within-subject experiment. For each
experimental condition (L2 and SC), there was a practice session before the official
test. The design of the experiment consisted of two groups that differed in the order
in which they tested the two systems (as shown in Figure 5.19).
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Fig. 5.19: Within-experiment design description

In the official test, participants drove on a straight road. The scenario involved
one overtaking maneuver after another. To avoid learning patterns, the vehicles in
the other lane appear at different distances (very close, close, far, and very far as in
Figure 5.20), so that each maneuver is different from the others. The speed of the
truck is 70 km/h, while the speed of the vehicle is 90 km/h (the maximum speed on
the road). In addition, the system does not limit the vehicle speed above 90 km/h,
so the driver can exceed the limit if necessary for safety reasons. The driver was
instructed that the goal was to maximize the distance traveled (i.e., overtake as fast
as possible, but without accidents) for the duration of the test.

. . . . . .

Fig. 5.20: Vehicles appearing in the left lane at different distances

Table 5.4 shows the order of appearance of the coming vehicles. If after the first
overtaking intention the driver or the system aborts the maneuver, another vehicle
will appear on the next attempt. The experimental design does not guarantee more
than three overtaking intentions per truck, since the vehicle that appears “very far”
always allows the maneuver to be completed. The test duration was 9 minutes per
experimental condition, which allowed participants to overtake more than 10 trucks.
After completing the official test for each experimental condition, participants filled
out three questionnaires (customized, usability, and user-acceptance). At the end of
the entire test, they also provided feedback to the instructors with general comments
about the two systems.

5.2.3 System Design
The setup of the system for each experimental condition consisted of the configuration
of the arbitration and shared-controller modules explained in Chapter 4.
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Tab. 5.4: Sequence of vehicles appearing in the left lane when overtaking the truck

5.2.3.1 Baseline # 1 - L2
For the baseline condition (i.e., automated vehicle L2), the ALC controller is the
torque-based NMPC developed in Chapter 4 (configured with λ = 3 Nm), while the
ACC function uses a variable speed reference fuzzy logic controller. No arbitration
module is used, because the ALC controller always works with a fixed authority.

5.2.3.2 Shared-Control Sytem
The controller used for this experimental condition is the torque-based NMPC shared-
controller. Unlike the baseline (fixed authority), the shared-control mode applies
a variable authority calculated by the arbitration module. Due to the aggressive
nature of the maneuver, the NMPC design also includes a yaw rate constraint (ψ)
to prevent excessive vehicle drift that could lead to instability and accidents. The ψ
constraint follows the reference value of a related work based on shared-control for
obstacle avoidance [172].

−0.5 rad
s < ψ < 0.5 rad

s (5.2)

The arbitration module works with the fuzzy logic system described in Figure
5.21. It represents the behavior of the lateral shared-control system. It consists of
three inputs and one output, as described below:

• i1 - Vehicle position: Represented as the lateral error of the vehicle with respect
to the center of the right lane (ey). The labels of the membership functions
([Right - Border - Left]) represent the different positions of the vehicle on a
two-lane road.

• i2 - Driver intention: Represented as the derivative of the lateral error of the
vehicle (ėy). The labels of the membership functions ([Away - Stay - Return])
represent the driver’s intention to leave the lane, stay in the same direction, or
return to the lane. This intention is combined with the lateral error to obtain an
estimate of the lane change intention.

• i3 - Maneuver risk: Represented as the distance to collision (dtc) between the
vehicle and the following vehicle in the left lane. The labels of the membership
functions ([Far - Close]) represent the relative distance between the two vehicles,
indicating low and high collision risk, respectively.

• o1 - Level of Authority: Represented as the maximum steering torque of
the correction (λ) in Nm. The labels of the membership functions ([Manual -
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Assistance - Override]) represent the full range of automation steering assistance
from none, to gentle corrections, to maximum assistance that can even exceed
the force exerted by the driver.

Fig. 5.21: Inputs/Output description of the arbitration system based on fuzzy logic

Tab. 5.5: Fuzzy logic IF-THEN rules of the arbitration system

i1 − ey → Right Border Left

i2 − ėy → Return Stay Away Return Stay Away Return Stay Away

Close Assist Assist Assist Assist Assist Override Override Override Override

Far Assist Assist Assist Assist Assist Manual Manual Manual Manual

↑ i3 − dtc ↑ o1 − λ

Fig. 5.22: Decision surface of the arbitration system for the level of authority (λ)

Table 5.5 contains the IF-THEN rules of the arbitration system. The high-level
logic is as follows: 1) as long as the vehicle is in the right lane, the system operates
as an L2 system with ALC enabled (Assist), 2) when the driver intends to change
lanes (i.e., vehicle at the edge of the lane moving away from the right lane), the
system performs the control transition (Manual) if there is no risk in the maneuver
(far vehicle), 3) if there is a risk in the maneuver (close vehicle), the authority of the
ALC controller increases (Override), 4) the left lane is designed for manual driving
unless there is a risk, and 5) if the driver intends to return to the right lane (vehicle
at the edge of the lane approaching), the system returns to L2 mode (Assist).

Figure 5.22 shows the decision surfaces resulting from the above IF-THEN rules.
The surfaces show no discontinuity and the behavior is coherent with the designed
rules. The maximum authority is set to λ = 8 Nm and is reached when the distance
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to the collision is at least 100 m (which corresponds to a TTC ≈ 1.8 s, considering
the speeds of the two vehicles traveling in opposite directions). In addition, the
default haptic authority of the system (driving in the right lane) corresponds to
λ = 3 Nm. Moreover, the manual mode is active when the vehicle is at least 1 m
away from the center of the right lane and when overtaking is safe.

5.2.4 System Performance
Figures 5.23 and 5.24 show the performance of the developed systems (L2 driving
mode and shared-control). The results are from the data of one of the participants
and represent the overall behavior of the system under these conditions.

✓   ✓  ✓

(a) Successful (✓) and failed (x) overtakings,
with the corresponding assistance mode

(b) MPC torque with the constraint established
by the valye of λ

(c) Vehicle speed

Fig. 5.23: Performance - L2

✓   ✓  ✓

(a) Successful (✓) and failed (x) overtakings,
with the corresponding assistance mode

(b) MPC torque with the constraint established
by the valye of λ

(c) Vehicle speed

Fig. 5.24: Performance - SC

5.2.4.1 Baseline #1 - L2
Figure 5.23 shows the behavior of the system after three successful overtakes. It
shows that the system operates mainly in two states (assistance and manual), without
maneuver correction support. It is also clear that the transition process from manual
to automated and vice versa is very short (activated by exceeding a torque threshold).
The maximum assistance torque is 3 Nm, and the vehicle speed reaches up to 120
km/h when overtaking the truck.

5.2.4.2 Shared-Control System
Figure 5.24a shows the additional features of the shared-control mode. The system
now shortens the time in manual mode, and there is support for correcting maneuvers
with additional steering torque for critical situations. In addition, the transition
process from assistance to manual mode and vice versa is longer because it depends
not only on torque but also on vehicle position, driver intent, and field of view.
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Figure 5.24b illustrates that the torque constraint (Tmpc < λ) applies and that the
correction torque can reach up to 8 Nm. The vehicle speed in Figure 5.24c shows no
difference compared to the baseline.

5.2.5 Quantitative Results
Similar to the first use case, the definition of the KPIs comes from the context of
the PRYSTINE project. In addition, many of the quantitative indicators come from
the state-of-the-art developed in the HADRIAN project for safety assessment of
automated driving functions [277, 284].

This scenario has a strong safety component, since the main objective is to avoid
accidents and unsafe events during the overtaking maneuver. In this sense, the first
category of quantitative KPIs focuses on the safety evaluation of the system. Since
the developed systems can operate in different modes during driving (assistance,
manual, transition), the second category of KPIs evaluates the proportion of time
the system operates in the different driving modes. Table 5.6 shows a summary of
the KPIs considered for this use case.

Tab. 5.6: KPIs description for the overtaking scenario

KPI Safety

1.1 # Crashes (NC) Events of collision w.r.t left side vehicle

1.2 # Near misses (NNM) Events when 0 < TTCmin < 0.5 s w.r.t left side vehicle

1.3 # Unsafe events (NUE) Number of times when 0.5 ≤ TTCmin < 1.5 s w.r.t left side vehicle

1.4 Proportion of TTC (PTTC) % Time when TTC is lower than a threshold

1.5 # Left road departures (LRD) Events when the vehicle wheel touches the left lane border (ey > 5 m)

1.6 # Center Road departures (CRD) Events when the vehicle surpasses the center line before corrections (ey > 2 m)

1.7 # Right road departures (RRD) Events when the vehicle wheel touches the right lane border (ey < −1 m)

1.8 # Lane return peaks (LRP) Lateral error peaks when returning to right lane (peak(ey) > 0.4 m)

Mode of operation

2.1 % Time in automated (PTA) % Time when the vehicle is in automated mode (λ ≥ 3.1 Nm)

2.2 % Time in manual (PTM) % Time in manual mode (λ = 0 Nm)

2.3 % Time transitioning to automated (PTMA) % Time transitioning transitioning to automated (0 < λ < 3.1 Nm and λ̇ ≥ 0)

2.4 % Time transitioning to manual (PTMM) % Time transitioning to manual (0 < λ < 3.1 Nm and λ̇ < 0)

2.5 Time of transition to automated (TTA) Quartile analysis of transition time to manual

2.6 Time of transition to manual (TTM) Quartile analysis of transition time to manual

5.2.5.1 Safety
To evaluate the safety indicators of the two systems, the analysis procedure uses
two main variables, time-to-collision (TTC) between the vehicle in the right lane
and the vehicle in the left lane, and secondly, vehicle position measured as lateral
error with respect to the center of the right lane (ey).

Figure 5.25 shows the TTC values for the 13 participants in each of the tested
experimental conditions. This information is useful in determining the values of
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KPIs 1.1 through 1.3. The calculation of TTC takes into account that the speed
of the vehicle remains unchanged and is not infinite when part of the vehicle being
driven is in the left lane (ey > 1.5 m). In addition, the analysis distinguishes between
events that occur behind the truck (a corrective maneuver) and those in which
overtaking is completed and the vehicle quickly returns to the right lane to avoid
collisions (truck ahead)

• KPI 1.1 - NC: Two accidents were reported after the experiment, one in L2
driving mode and one in shared-control mode. Both occurred after overtaking
the truck (truck ahead) and returning to the lane (i.e., due to a misjudgment
of the time available to overtake). One lesson from these results is that the
shared-control system needs to be more cautious when deactivating assistance
(i.e., deactivating at a greater distance).

• KPI 1.2 - NNM: Although there is no definitive threshold for considering
near misses, the overall value is between 0.5 s and 1 s [285]. Since the scenario
already considers a critical situation with the appearance of unexpected vehicles,
the threshold of 0.5 s was preferred to capture a better difference between the
systems. There were 7 events of this type for the L2 mode and only 1 for SC.
The most valuable result is that no near miss behind the truck was reported for
SC (compared to 6 for L2), which means that the correction of the shared-control
aid not only reduces but eliminates the near misses.

• KPI 1.3 - NUE: These are the events with a high probability of collision
(excluding accidents and near-misses). The safety threshold for this KPI is 1.5 s,
which is half of the minimum TTC that naturally occurs when the left vehicle
appears at a very close distance (125 m), and this is also a value used as a safety
threshold in the literature [277]. The results show that SC has a better safety
indicator than L2 by reducing the number of events during corrective maneuvers
by 85 % (5 versus 38). In addition, the support of SC after overtaking the truck,
which guides the vehicle back to the right lane, affects the safety indicator and
reduces the unsafe events by more than 90 % compared to the return to the lane
in manual mode (1 vs. 13).

Figure 5.26 shows the proportion of TTC (PTTC) as a percentage of time (KPI
1.4). This is a global safety indicator for the systems. The percentage takes into
account only the time in which both vehicles would cross if they follow their current
course (i.e., the total time for the calculation is not the time of the driving session but
the time in which TTC ̸= inf). In this sense, the following Equation 5.3 applies.

PTTC = time(TTC < Threshold)
time(TTC ̸= inf) (5.3)

• KPI 1.4 - PTTC: Overall, SC shows safer performance compared to L2 based on
quartile analysis (median, maximum, and minimum values). The most remarkable
result is how SC ensures a TTC < 1.6 s for all participants, except for the two
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Fig. 5.25: TTC and thresholds of safety events
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outliers representing the two previously reported unsafe events (1 accident and
1 near miss that occurred after overtaking the truck). This means that the SC
mode maintains the safety of the vehicle in terms of the protective function of
the system correction when a sudden vehicle appears, according to the design of
the shared-controller and the arbitration system. For the L2 system, on the other
hand, the percentage is above the threshold of 0.7 seconds for most participants.

Fig. 5.26: TTC and thresholds of safety events

In addition to safety indicators related to TTC, other unsafe events can be
determined based on vehicle position by analyzing lateral error (ey). Figure 5.27
shows three types of road departures: 1) left (RDL), when the vehicle crosses the
left lane boundary (when changing lanes to overtake), 2) center (RDC), when most
of the vehicle is in the left lane before a correction is made (i.e., events that generate
TTC ̸== inf), and 3) right (RDR), when the vehicle crosses the right lane boundary
(after a correction or after an overtake and return to the right lane).

• KPI 1.5 - LRD: The analysis of overtaking events in Figure 5.27 shows that the
number of successful overtaking maneuvers is almost the same for both conditions,
but the events involving lane departure in the left lane are half for SC compared
to L2 (8 versus 16). Also, looking at the boxplot analysis, all of the data for SC
except for the outliers are below the lane departure threshold, while some of the
Q4 from L2 exceeds the threshold. The longer and smoother transition in SC
could lead to a better adaptation to the left lane before overtaking the truck.

• KPI 1.6 - CRD: Regarding the vehicle position before correction to avoid a
crash, the results show that the median position of SC is below the departure
threshold, while L2 is above. In terms of numbers, more than 50 % of SC
corrections are not counted as deviations, while 65 % of L2 events are center
departures.

• KPI 1.7 -RRD: When returning to the right lane, either by correction or driver
intent after passing the truck, there are possible road departures in the right
lane. The lane return graph in Figure 5.27 shows that when the driver returns to
the lane after overtaking the truck on L2, there are 6 departure events, but no
departure event for SC. This is a result that can be attributed to the advantage
provided by the automatic transition to automated driving on SC rather than
manual activation. On the other hand, when corrected, the results show a similar
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Fig. 5.27: Vehicle position during overtakes, corrections, and lane returns
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number of lane deviations between L2 and SC (8 vs. 9), suggesting that the
corrections of SC do not increase the risk of departure.

• KPI 1.8 - LRP: Consistent with the previous analysis, it is important to count
the number of peaks related to the center of the lane when returning to the lane
to understand the quality of the return maneuver (how well the driver returns to
the lane). Valid peak counts are 0.4 m or greater. The return after an overtaking
maneuver shows a 30% reduction in LRP in favor of SC. On the other hand,
returning after a correction shows larger peaks for SC, but almost half the events
compared to L2 (37 vs. 69). This result also shows the advantages of automatic
transition compared with manual activation.

Tab. 5.7: Summary of safety KPIs

KPI Name L2 SC

- # Km driven 154 161

- # Attempts to overtake 257 264

- # Successful overtakes 140 144

- # Corrected overtakes 117 120

1.1 NC 1 1

1.2 NNM 7 1

1.3 NUE 51 6

1.5 LRD 16 (11%) 8 (6%)

1.6 CRD 76 (65%) 58 (48%)

1.7o RRDo 6 (4%) 0 (0%)

1.7∗ RRD∗ 8 (7%) 9 (8%)

1.8o LRPo 38 (27%) 27 (19%)

1.8∗ LRP∗ 69 (59%) 37 (31%)

5.2.5.2 Mode of Operation
This KPIs analysis considers three modes of operation: 1) manual mode (λ = 0
Nm), 2) automated mode (λ ≥ 3.1 Nm), which includes overriding actions, and 3)
transition mode ( 0 ≤ λ ≤ 3.1), when going from manual to automated mode or vice
versa. Figure 5.28 shows the percentage of time for each of the operating modes,
along with the boxplot analysis of the transition duration.

• KPI 2.1 - PTA : Time in automated mode reflects that both systems were
active for most of the driving session, with SC operating for 10% more time in
this state. This is due to assistance with corrective maneuvers not present in
L2, as well as faster activation during lane returns (due to automatic transition
instead of manual activation via button press).
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Fig. 5.28: Analysis of modes of automated vehicle operation

• KPI 2.2 - PTM: Figure 5.28 shows that L2 mode takes twice as long to operate
in manual mode compared to SC mode. This time saving is important for safety
because the preferred state is to drive automated and use manual mode only
when necessary (overtaking the truck).

• KPI 2.3 - PTTA: The percentage of time needed to transition to automated is
almost 5 times longer on SC than on L2. Longer transitions are smoother and
reduce the number of peaks when returning to the lane.

• KPI 2.4 - PTTM: The percentage of time switching to the manual is almost
4 times longer on SC than on L2. Longer transitions are smoother and avoid
sudden lane departures.

• KPI 2.5 - TTA: There is no significant difference between TTA and TTM, as
the same values apply to L2 and SC (0.3 vs. 0.6 s). However, there are more
outliers in TTA, suggesting that the activation of the system is slower than its
deactivation, which is consistent with the design expectations.

• KPI 2.6 - TTM: Boxplot analysis shows that all transitions in L2 mode take 0.3
s, while there is a variation in transitions in SC that depends on several factors.
The median as a global indicator shows a transition duration of 0.6 s, which is
twice as long compared to L2.

5.2.6 Qualitative Results
For the subjective evaluation of the developed systems, participants received a brief
description and had to answer both a pre-test (to characterize their demographic
data and background relevant to the study) and various post-test questionnaires.
This section focuses on the results of the subjective evaluation of the three post-test
questionnaires that drivers answered after testing each of the systems (L2 and SC).
A summary of the questionnaires can be found in Table 5.8.
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Tab. 5.8: Summary of questionnaires used for the subjective evaluation of UC2

Name Description

CSA 36 questions grouped by categories (Desirable, Harmonious, Involvement,
Safe, Understable), with a 5-point-rating likert scale

SUS 10 questions to accurately asses the usability of the system [286], with a
5-point-rating likert scale

UA 9 questions related to satisfaction, usefulness, and overall evaluation of
the system [287], with 5-point-rating scale between antonyms words.

5.2.6.1 Custom System Assesment - CSA
This questionnaire aims to obtain a score from 1 (strongly disagree) to 5 (strongly
agree) on 36 questions (see Table 5.9). For a technical evaluation of the system,
responses are grouped into five categories to describe the following: Desirability
(DES), Harmony in Operation (HAR), Driver Involvement (INV), Safety (SAF),
and Understandability (UND ). Figure 5.29 compiles the responses given by drivers
after testing both the L2 (baseline) and SC systems. The results show the averaged
responses for each category after taking into account that some questions were asked
in a positive sense and some in a negative sense, defined as the positive scale factor
(PS) of Table 5.9. Below is an analysis of the qualitative results per category:

Tab. 5.9: Custom System Assesment questions per category

Name Cat Assesment questionnaire PSF

CSA-01 DES I think that I would like to use this system frequently 1

CSA-02 DES I would use this system if it was in my car. 1

CSA-03 DES I would buy the system. 1

CSA-04 DES The cost of the system would be the most important
thing I would consider before purchasing one

-1

CSA-05 DES The benefits of the system would be the most important
thing I would consider before purchasing one

1

CSA-06 DES I would recommend the system to others 1

CSA-07 DES I would use the system during my everyday trips 1

CSA-08 DES Using the system on motorways was fun. 1

CSA-09 DES I would make more trips if I had the function in my
car.

1
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CSA-10 DES I would select destinations further away if I had the
function in my car

1

CSA-11 HAR I found the various functions in this system were well
integrated

1

CSA-12 HAR I thought there was too much inconsistency in this
system

-1

CSA-13 HAR Sometimes the system behaved unexpectedly. -1

CSA-14 HAR Driving with this system was demanding. -1

CSA-15 HAR Driving with the system was stressful. -1

CSA-16 HAR The system acted appropriately in all situations. 1

CSA-17 HAR Driving with the system active was comfortable. 1

CSA-18 HAR Driving with the function on long journeys would make
me tired.

-1

CSA-19 HAR The system worked as it should work. 1

CSA-20 INV I would want to monitor the system’s performance. 1

CSA-21 INV I would use the time the system was active to do other
activities.

-1

CSA-22 INV I trust the system to drive on motorways. 1

CSA-23 INV During driving with the system active, I monitored the
surrounding environment more than in manual driving.

1

CSA-24 INV During driving with the system active, I was more
aware of hazards in the surrounding environment than
in manual driving.

1

CSA-25 SAF I felt very confident using the system 1

CSA-26 SAF I felt safe when driving with the system active. 1

CSA-27 SAF During the takeover I always felt safe. 1

CSA-28 UND I found the system unnecessarily complex -1

CSA-29 UND I thought the system was easy to use 1

CSA-30 UND I think that I would need the support of a technical
person to be able to use this system

-1

CSA-31 UND I would imagine that most people would learn to use
this system very quickly

1
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CSA-32 UND I found the system very cumbersome to use -1

CSA-33 UND I needed to learn a lot of things before I could get going
with this system

-1

CSA-34 UND Driving with this system on motorways was difficult. -1

CSA-35 UND It was obvious to me why takeover suggestions oc-
curred.

1

CSA-36 UND I would have liked more information about why a
takeover suggestion was triggered.

-1

• Desirable: Overall, the SC system is about 15 % more desirable than the L2
system. Although drivers would not make more trips or drive farther because of
the SC system, they would like to use it more often in their cars.

• Harmonious: Drivers perceived both systems as harmonious, with appropriately
integrated functions, low stress levels, comfortable, and with low chances of
inducing sleep. The SC system gave the feeling of behaving unexpectedly, probably
because of the sudden corrections to avoid accidents. In addition, although both
systems were not very demanding, L2 demanded more from the driver than the
SC mode.

• Involvement: Both systems required active driver involvement, but without
high scores, suggesting that drivers are part of the driving task, but not with the
same intensity as when driving manually. They show confidence in both systems
and comment that other activities were unlikely while driving with L2 and SC.

• Safe: The SC mode proved to be almost 10% safer than L2 in the driver’s
perception. Overall, drivers felt safe with both systems.

• Understandable: Both systems were very understandable to drivers, low in
complexity, and it was felt that they would quickly learn to use them. The
takeover suggestions adequately informed drivers (more in SC because of the
HMI information), but they would like more information.

• Overall: Both systems were perceived positively by drivers, with SC mode being
more accepted by participants by 5%. Drivers rated the SC mode as safer than
the L2 mode, while being equally easy to understand, maintaining harmony
with the driver, and reducing driver involvement, resulting in greater appeal.
When looking at the individual questions, one stands out where the difference is
greatest: drivers find that the SC system sometimes behaves unexpectedly, and
much more so than the L2 system. As expected in advance and later confirmed
in the oral debriefings, this is related to the fact that the SC intervenes in risky
situations and corrects the driver, even if the driver was aware of it. However, the
participant estimated that this was compensated by the improvement in safety,
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with significant differences in the other two items indicating that they felt safer
and more confident.

Fig. 5.29: Custom System Assesment results per category

5.2.6.2 System Usability - SUS
The Sauro-Lewis (SUS) scale [286] consists of 10 questions ( shown in Table 5.10)
related to the usability of the system. It is a quick and efficient tool to assess the
extent to which drivers are willing to use the automated systems presented in this
section.

Tab. 5.10: Questions of SUS scale for usability assesment

Name Assesment questionnaire

SUS-01 I think that I would like to use this system frequently

SUS-02 I found the system unnecessarily complex

SUS-03 I thought the system was easy to use

SUS-04 I think that I would need the support of a technical person to be able to use this system

SUS-05 I found the various functions in this system were well integrated

SUS-06 I thought there was too much inconsistency in this system

SUS-07 I would imagine that most people would learn to use this system very quickly

SUS-08 I found the system very cumbersome to use

SUS-09 I felt very confident using the system

SUS-10 I needed to learn a lot of things before I could get going with this system

Figure 5.30 shows the averaged results of the 13 participants for each of the
questions. Higher scores are better for the odd-numbered questions, and lower scores
are better for the even-numbered questions. A first look shows that SC has a better
usability score than L2 for 8 of the 10 questions. At SUS-08 and SUS-10, the L2
system is perceived as less cumbersome to use and less learning intensive, which
is to be expected since the SC mode integrates more features. Nevertheless, the
ratings for SC are positive.
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Fig. 5.30: SUS average scores

Beyond the preceding analysis, the SUS scale has a process for assigning a score
to each system evaluated to give it a range from A+ to F [286]. Table 5.11 shows
the SUS scores for the 13 participants. The SUS score is calculated as SUS = 2.5(20
+ SUM (even) - SUM (odd)). These scores are then averaged, resulting in L2SUS =
76.3 and SCSUS = 80. The normative mean is 68 (percentile rank above 50 %), so
both systems are well above average. The L2 system has a score of B on the curved
Sauro-Lewis rating scale. The confidence interval ranges from 85.1 (A) to 67.0 (C),
so it is fairly certain that it will not end up with a D or F. SC, on the other hand,
has a grade of A- on the Sauro-Lewis curved grading scale. The confidence interval
ranges from 86.3 (A+) to 73.7 (B-). Thus, it is highly unlikely that an increase in
the number of participants will degrade to a C, D, or F.

The confidence interval around the difference between the means of the 2 systems
(3.7) does not rule out 0, and the p-value (p=0.33) is not below the 95% confidence
level (p < 0.05), so the results cannot say that there is a significant difference
between the 2 systems. A look at the confidence intervals of the 2 systems shows
that they have common ranges. With these means (80 and 76.3), increasing the
number of samples to 51 would result in a p-value of 0.0488, which means that
a higher number of samples could result in a significant difference between the 2
systems. In this case, both confidence intervals would have no common range, and
the confidence interval of the difference would exclude 0.

5.2.6.3 User Acceptance - UA
To assess user acceptance of the system, the evaluation method uses the questionnaire
proposed in [287], which is based on a 5-point scale with 9 fields labeled with
antonymous words, as shown in Table 5.12.

The improvement in user perception (from B to A- in SUS) is also evident when
looking at the items of the acceptance scale in Figure 5.31a. In all items, the SC
system is rated equal to or better than the L2 system, being perceived as more
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Tab. 5.11: Score for the SUS analysis of the participants

Participant SUS01 SUS02 SUS03 SUS04 SUS05 SUS06 SUS07 SUS08 SUS09 SUS10 SUS

1 3 1 5 1 5 1 4 1 5 1 92,5

2 1 1 5 2 4 2 4 3 1 1 65,0

3 5 2 5 2 4 2 4 2 4 2 80,0

4 4 2 5 1 4 2 4 2 4 1 82,5

5 1 3 3 1 4 2 5 3 2 1 62,5

6 2 4 2 2 4 1 3 3 3 1 57,5

7 3 2 4 2 4 2 3 2 3 1 70,0

8 2 1 4 2 2 2 3 2 1 2 57,5

9 3 1 5 1 5 1 5 2 4 1 90,0

10 5 1 5 1 5 1 5 1 5 1 100,0

11 3 1 5 1 5 1 5 1 4 1 92,5

12 2 1 5 1 3 3 5 2 4 1 77,5

13 2 1 2 2 3 1 2 2 4 1 65,0

Tab. 5.12: Questions for the user acceptance test

1 2 3 4 5

Useful (UF) Useless (UL)

Pleasant (PL) Unpleasant (UP)

Bad (BD) Good (GD)

Nice (NC) Annoying (AN)

Effective (EF) Superfluous (SP)

Irritating (IR) Likeable (LK)

Assisting (AS) Worthless (WL)

Undesirable (UD) Desirable (DS)

Raising alertness (RA) Sleep-inducing (SI)

assisting, less distracting, more attentive, and more desirable. Interestingly, SC is
also perceived as less annoying even when unexpected and strong interventions occur.
As mentioned earlier, the improvement in safety offsets this, but the automatic
transitions also offer advantages over manual activation of L2 mode. In addition,
a look at Figure 5.31b shows that the comparison between the pre and post-test
questionnaires indicates that the SC system exceeds users’ expectations, apart from
the fact that they found it more useful.

In addition, for a more summary evaluation of the results, odd fields are grouped
as usefulness indicators, and even fields represent the user satisfaction after testing
the system. The scores range from -2 to 2, with 2 being the better result. The 2D
graph shows the overall results of user acceptance, as shown in Figure 5.32a. The
SC system has better acceptance in both usefulness and satisfaction, with an overall
score of 1.12 (compared to 0.73 for the L2 system). In addition, the comparison
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(a) Comparison between L2 and SC systems (b) Expectation vs Reality of SC system

Fig. 5.31: Average scores for the user acceptance questionnaire

between the pre and post-test questionnaires shows that the SC system exceeds the
users’ expectations in both satisfaction and usefulness.

(a) Comparison between L2 and SC systems (b) Expectation vs Reality of SC system

Fig. 5.32: Average scores for the user acceptance questionnaire

5.2.7 Conclusion
This use case explores collaboration between humans and automation (as a team)
when one (or two) of the members has limited resources (e.g., when the human and
automation have limited visibility for the overtaking maneuver). The approach uses
an NMPC technique as the torque controller and a fuzzy logic decision system for
the arbitration module. Experiments were conducted to evaluate the advantages of
SC compared to a commercial L2 autopilot function. After analyzing the results,
the following conclusions were drawn:

• SC proved to be the best solution for assisting the driver during the overtaking
compared to the L2 vehicle. Although none of them resulted in lane departure
accidents, SC significantly reduced the number of near misses and unsafe events.

• The SC longer and smoother control transitions are one of the factors that help
the system better protect the driver, because it does not deactivate immediately
on the driver’s command, but only when it is safe to do so.

• The SUS questionnaire shows that the SC system is rated A-, while the L2 system
is rated B-. However, for the results to be meaningful enough, the number of
participants needs to be increased to 50 or more drivers.
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• Future experiments could compare the SC mode with other overtaking aids, such
as Automatic Lane-Change Assistance for L3 vehicles or steering assistance during
the overtaking maneuver for L2 functions.

• Further experiments should find the optimal level of authority for drivers to feel
the balance between safety and steering conflict. The user acceptance test shows
that the assistance function of the system is well perceived, but the scores for
ease of use and comfort were not the best.
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6Conclusions

This chapter summarizes the main findings of this Ph.D. Thesis, based on the
systematic state-of-the-art in shared-control of automated vehicles presented in
Chapter 2, the shared-control Framework ellaborated in Chapter 3, the experience
gained in designing, developing, and testing a steering-based shared-controller
described in Chapter 4, and the results of two experimental studies evaluating ADAS
based on shared-control in a DiL simulator presented in Chapter 5. The chapter
concludes with recommendations and future work in this area.

6.1 Concluding Remarks
Automated vehicles are a promising solution to reduce traffic fatalities and serious
accidents on the road. However, after an initial rush to self-driving cars (i.e., L4/5
vehicles) that no longer require humans to be behind the wheel, it became clear that
technology, society, and governments were not ready for such implementation on the
daily roads in the short term. In this context, highly automated vehicles where the
driver can still intervene (i.e., L2/L3 vehicles) have been the subject of research for a
decade. However, new challenges are emerging. For L2 vehicles, the problem is that
the driver overtrust automation and stops monitoring the environment and being
ready to take control at any time (accidents involving autopilots have been reported).
For L3 vehicles, the problem is that the driver loses situational awareness and can
become drowsy, which can lead to an inability to respond to a vehicle takeover
request with good performance. On the other hand, driver assistance systems for L1
vehicles are already part of private vehicles, but the support is simple compared to
the available technology that can be used to develop more advanced systems.

In this context, experts in the field have worked towards two main strategies. One
is to improve the HMI interaction between the driver and the vehicle to ensure a safe
takeover maneuver when the system prompts the driver. This includes continuous
monitoring of driver status, including secondary tasks performed in the vehicle.
However, there is still the problem that vehicles cannot guarantee a time to take
over in all scenarios. In this sense, this technology can be used in the short term
for controlled scenarios such as traffic congestions or highways. However, accidents
also occur in more complex scenarios. Therefore, another opportunity is to better
support manual driving and enhance collaboration between drivers and automation
at the control level. To this end, shared-control is an attractive approach to improve
driver performance and road safety through the use of new sensor technologies and
advanced control techniques, while avoiding the out-of-the-loop problems that occur
with higher levels of automation. In this context, shared-control refers to the idea
that the driver and automation are a well-coordinated team working continuously
on the driving task at both the tactical and control levels.
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Based on these premises, this Ph.D. thesis ellaborated on the issue of shared-
control for automated vehicles, both theoretically and practically. The theoretical
approach first consisted of a systematic review to evaluate the state-of-the-art and
common methods for shared-control strategies. In practice, the development of a
novel control system for shared-control was presented along with various arbitration
systems used for specific use cases. Finally, two experimental studies were conducted
to evaluate ADAS based on shared-control in the scenarios of a distracted driver
and in an overtaking maneuver. In the following sections, conclusions on the main
results are presented.

6.1.1 Lessos from the State-of-the-Art
In Chapter 2, the literature on shared-control of automated vehicles was thoroughly
reviewed, with more than 150 papers on the subject. The review covered both the
theory and current applications developed specifically for steering assistance systems.
The key findings are summarized below.

• The concept of shared-control has been at the center of debate for decades.
In recent years, collaboration among various experts in the field has led to a
more precise definition and differentiation from other types of cooperation. In
automated vehicle systems in particular, it has become well understood in practice,
as continuous haptic feedback in steering or pedals.

• The numbers of works in the research community is increasing every year
as more and more researchers conduct research in this area, especially with
applications for steering assistance systems.

• Automotive manufacturers are still focusing on increasing the level of au-
tomation, but relevant vehicle demonstrators and prototypes from automakers
are improving the collaboration between drivers and automation at the wheel.
Although many of them operate under the traded control scheme, at least one
automaker (Toyota) is applying the shared-control concept to its research vehicles.

• Many experimental studies have been conducted testing shared-control ADAS
with DiL simulators. The objective and subjective results are overall positive and
encourage to improve the quality of the studies. Nevertheless, only a few real
vehicle implementations are available, which shows that the technology is still
under development and a big step needs to be taken towards implementation in
relevant demonstrators.

• Several projects are funded by public and private institutions to study human-
machine cooperation in automated driving. However, most strategies are based
on the design of the human-machine interface (HMI) to allow the driver to play
a safe monitoring/fallback role in highly automated vehicles. Although many
of these projects offer shared-control-based solutions, more projects that focus
exclusively on shared-control systems are needed to advance these developments
and see multiple relevant vehicle demonstrators.
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• Applications based on shared-control for automated driving mainly focus on using
the steering wheel as the control mechanism to cooperate with. Haptic pedals,
on the other hand, have been studied to a lesser extent.

• In terms of control algorithms, torque-based controllers using optimal control
frameworks are the trending option for the development of ADAS with shared-
control functions, as they outperform position-based controllers in terms of
cooperation with the driver. Furthermore, optimal control is an appropriate
technique to balance the different control objectives that this cooperation strategy
requires (performance, safety, comfort, conflict).

• The challenge in developing the controller is to find a balance between safety and
comfort. Here, torque conflict is the desired target to be minimized so that drivers
do not feel inconvenienced by the system, but instead feel comfortably supported.
This conflict is easier to resolve with steer-by-wire (uncoupled shared-control)
systems, but at the cost of introducing a new paradigm of vehicle control where
the driver might observe the vehicle doing something not commanded at the
steering wheel.

• A desirable feature is to have a driver model included in the road-vehicle system.
This has proven helpful in reducing conflicts and allowing seamless collaboration.
However, modeling the driver is not an intuitive task and presents additional
challenges. Another recommendation for resolving driver-automation conflicts
is to use a human-centered design for the reference trajectory followed by the
controller (i.e., not just having the controller follow the center of the lane).

• As for the decision algorithms related to the arbitration system, there are some
relevant variables that need to be considered. On the one hand, the common
approach is that the driver must be assisted only when necessary, either because
s/he is overloaded or underloaded by the driving activity. This logic must be part
of the arbitration system. On the other hand, the inclusion of certain variables
is of interest. The TTC seems to be a promising option to consider both the
driver’s performance and safety, instead of considering only the driving errors.
Driver state is also an important consideration in decisions for shared-control
algorithms, especially the level of distraction. In addition, for more complex
maneuvers, a module for risk assessment of the whole environment is needed, and
finally, the degree of conflict or cooperation should be considered. In summary,
the arbitration system must consider the driving state from three perspectives:
driver, vehicle, and environment.

• To properly evaluate systems based on experimental studies, it is important to
consider the axiom of evaluation for shared-control presented by Abbink [8]. The
recommendation is that the design of the experiment must include baselines
at both extremes of automation, the manual mode on the one hand, and current
solutions for highly automated vehicles (especially L2 and L3 or any traded
control scheme) on the other. The metric of takeover performance is one that has
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been studied only to a limited extent, but is an important variable for comparing
the performance of shared-control systems with that of traded-control systems.

6.1.2 Lessons from the Integration of the Framework
Chapter 3 presented the shared-control framework used in this dissertation. It
consisted first of integrating the components of shared-control (mainly arbitration
and haptic authority control) into a general framework for the development of
automated driving. A modular analysis was conducted comparing the challenges of
implementing shared-control versus highly automated vehicles. A summary of the
key findings can be found below:

• In terms of implementation requirements, in commercial vehicles shared-
control would require less effort and complexity for the sensor/perception system,
but it would direct efforts toward HMI collaboration strategies and steering
control strategies that are both effective in terms of safety and performance and
easily accepted by drivers.

• A clear distinction between the tactical and operational modules of shared-control
is beneficial to the design of such a system. In this way, this architecture allows
for the design of an scalable controller (i.e., designed as a black box) and the
arbitration system adapted to fit any scenario.

6.1.3 Lessons from the Development of the Controller
Chapter 4 describes in detail the design, development, and validation of the steering
shared-controller used in this Ph.D. Thesis. The development was carried out in a
process that consisted of four iterations. The main results are listed below.

• The final developments resulted in a robust controller is able to support the
driver with different levels of haptic authority (any torque greater than 0 and
less than 15 N.m), without losing stability and performance, at different speeds
(tested up to 120 km/h).

• The novelty of this controller is the included stability criterion (which found an
optimal steering damping value) where not a single parameter of the nominal
NMPC needs to be reset.

• The controller is also able to meet the constraints, such as the yaw rate and
the maximum torque. However, it is necessary to evaluate the torque derivative
constraint on a larger scale.

• The choice of fuzzy logic as the algorithm for the development of the arbitration
system has proven to be advantageous, as it provides easy-to-program rules and
adapts different driving variables to real-world scenarios in an intuitive way. It
has also proven to be a versatile decision-making tool, as it has been possible
to develop a system with 4 inputs and 2 outputs.

6.1 Concluding Remarks 137



• In terms of hardware, steering wheels that can input and output data at a
frequency of 1 ms are desirable not only for control but also for hand feel. Steering
motors with the ability to electronically change damping are also desirable, since
the stability criterion proposed in this dissertation relies on additional steering
damping. In addition, robust torque sensors are an important sensor that should
be considered in algorithms for steering shared-control.

• The ACADO toolkit proved to be a reliable option for solving the NMPC
controller optimal problem, finding solutions under 2 ms.

6.1.4 Lessons from the Conducted Studies
Chapter 5 presented the objective and subjective evaluation of two ADAS based
on shared-control. The first assisted the driver during distracted driving maneuvers
and was compared to three baseline models (manual driving, LKAS, and ALC).
The second supported the driver during an overtaking maneuver on a road with
oncoming traffic and was compared with a conventional L2 autopilot. The main
results of the studies conducted are presented below.

• The shared-control system to assist distracted drivers was shown to improve
tracking performance and safety among distracted drivers. It also showed a
reduction in driver-automation conflicts compared to ALC. In addition, the results
suggest that a combination of the adaptability of the shared-control system and
the supportive behavior of the LKAS when turning is a good combination for
future developments. Overall, drivers rated the shared-control system positively.
To improve this pilot study, it is necessary to increase the number of participants
(5 in this case) and add new metrics to the experiment. For example, include the
situation where the system fails when distracted and the driver must take full
control of the driving task.

• The shared-control system for overtaking a slow truck was found to promote
safety after evaluating various metrics compared to the L2 autopilot. In addition,
the longer control transitions proved beneficial to safety and driver acceptance.
Overall, drivers rated the new features added by shared-control higher when
analyzing three subjective evaluation methods. In addition, the results of the
SUS scale recommended increasing the number of participants from 13 to 51 to
obtain a result with sufficient significance in terms of outcome probability.

6.2 Research Perspective and Future Works
This dissertation has comprehensively and deeply addressed the area of shared-
control in automated vehicles from both theoretical and practical perspectives. In
this sense, researchers can use this document as a reference for future developments
to extend the studies, improve the robustness of the controller, and promote new
scenarios in which shared-control is a solution to achieve safer roads. In this context,
the proposed future perspective in this area are:
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• Systematic review for evaluation of shared-control: The state-of-the-
art presented in this paper addresses shared-control mainly in terms of control
algorithms. However, it is not only important to know how to develop the
system, but also how to validate and properly evaluate it. In this sense, a
comprehensive overview of the methods used to evaluate shared-control systems
in automated driving, including the ideal basis of comparison for each scenario,
and the publication of the relevant metrics in terms of performance, safety and
comfort would be of great benefit.

• Advance the shared-controller: The NMPC-based shared-controller developed
in this work could be improved by adding a driver model to the proposed road-
vehicle model. On the other hand, the inclusion of power steering behavior to
cover the full range of assistance is a desired feature for future developments.
Also, it would be useful to integrate the longitudinal control in the optimization
NMPC framework, even considering other modalities such as torque vectoring
[288] that involves lateral and longitudinal corrections.

• Torque values parametrization: Controller design requires prior knowledge of
how the driver perceives steering torque. With this in mind, further experimenta-
tion is needed to determine the values of the torques that fall into the categories
of no assist, smooth assist, medium assist, correction, and override. With this in
mind, the HADRIAN project is working to determine the optimal torque values
for an evasive maneuver.

• Haptic icons: The interaction between the driver and the vehicle control inter-
faces during shared-control enables an enriched communication channel via the
steering wheel. The so-called haptic icons are a promising communication strategy
that overlays the steering of the vehicle to convey driving-related information to
the driver.

• Driver-by-wire: The implementation of shared-control in vehicles using steer-
by-wire technology is a promising solution that is currently being investigated.
It has the advantage of reducing the conflict between driver and automation.
However, the driver’s reaction to the new control paradigm, where the automation
can perform an action that is contrary to the commands given by the driver via
the steering wheel, still needs to be studied in detail.

• Multimodal HMIs: Shared-control will benefit from other HMI strategies that
improve cooperation between drivers and automation at the tactical and control
levels. The combination of multiple HMIs in an active safety system scenario
based on shared-control is being investigated as part of the HADRIAN project.

• New scenarios: Shared-control can improve manual driving in scenarios that
involve following the lane, performing a lateral maneuver, or even helping the
driver regain manual control of the vehicle. However, there are other interesting
scenarios where shared-control can be useful in difficult conditions. For example,
in poor visibility conditions due to rain or in slippery snow. Physically impaired
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drivers can also benefit from this mode and have a safer and more comfortable
driving experience.

• Experimental studies: Overall, studies conducted in DiL simulators include
fewer than 20 participants. Therefore, studies with a larger number of participants
are needed to validate such systems. In addition, assessment of driver takeover
performance during expected and unexpected control transitions is an important
metric that is critical to promoting shared-control systems as a safer option over
traded control.

• Moving to real platforms: Most of the implementations have been done
in numerical simulations and DiL simulators. Few works have demonstrated
shared-control in experimental vehicles. To make further progress in this area,
it is important to work towards implementing shared-control algorithms in real
vehicles to demonstrate the benefits of such a system in real platforms and to
evaluate the acceptance of drivers when testing such systems in real scenarios.

• Legal framework: It is well known that an appropriate legal framework for
highly automated vehicles is difficult, as some issues, such as responsibility in case
of accidents, need to be addressed. For vehicles with shared-control functions,
this problem is easier to solve because the driver is responsible for the driving
task. However, the fact that in some cases the system can overrule the driver or
induces the driver to perform certain maneuvers is an aspect that needs to be
considered in future legal frameworks for these types of systems
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