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ABSTRACT: Lithium-ion batteries (LIBs) are the most widely used energy storage system because of their high energy density and
power, robustness, and reversibility, but they typically include an electrolyte solution composed of flammable organic solvents,
leading to safety risks and reliability concerns for high-energy-density batteries. A step forward in Li-ion technology is the
development of solid-state batteries suitable in terms of energy density and safety for the next generation of smart, safe, and high-
performance batteries. Solid-state batteries can be developed on the basis of a solid polymer electrolyte (SPE) that may rely on
natural polymers in order to replace synthetic ones, thereby taking into account environmental concerns. This work provides a
perspective on current state-of-the-art sustainable SPEs for lithium-ion batteries. The recent developments are presented with a focus
on natural polymers and their relevant properties in the context of battery applications. In addition, the ionic conductivity values and
battery performance of natural polymer-based SPEs are reported, and it is shown that sustainable SPEs can become essential
components of a next generation of high-performance solid-state batteries synergistically focused on performance, sustainability, and
circular economy considerations.

1. INTRODUCTION

The current spreading of the implementation of the concepts
of digitalization of the society and the Internet of Things
requires the development of small portable electronic devices
powered by efficient electrical energy storage systems.1 One of
the most widely used energy storage systems that have been
integrated into these devices is lithium-ion batteries (LIBs)
because of their high specific capacity and long life cycles when
compared with other battery systems.2 Other properties of
LIBs are their low cost, size, and self-discharge and their
prolonged service life when compared with other battery
types.3 Further, besides being used for portable electronic
devices, they are also being used to power electric vehicles
(EV) and hybrid electric vehicles (HEVs).4,5

The basic constituents of LIBs are the anode (negative
electrode), cathode (positive electrode), and a separator/
electrolyte. The separator is composed of a porous membrane
soaked in electrolyte solution (lithium salts dispersed in
organic solvent), and its function is to allow the flow of Li ions

between the electrodes and consequently to avoid short
circuits.6 The relevance of the electrolyte solution is to confer
the necessary high ionic conductivity between the electrodes,
but it is highly reactive, flammable, toxic, and can leak out of
the battery.7 Another disadvantage of the electrolyte solution is
the formation of a passivating layer, denominated as solid-
electrolyte interphase (SEI) during the first charge, resulting
from the reactions with the anode electrode.8 Thus, in order to
solve these issues, challenging efforts are being carried out to
replace conventional separator/electrolytes with solid electro-
lytes, the main types being organic (polymer) and inorganic

Received: March 29, 2022
Accepted: April 14, 2022
Published: April 20, 2022

Reviewhttp://pubs.acs.org/journal/acsodf

© 2022 The Authors. Published by
American Chemical Society

14457
https://doi.org/10.1021/acsomega.2c01926

ACS Omega 2022, 7, 14457−14464

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 D

E
L

 P
A

IS
 V

A
SC

O
 o

n 
Ju

ne
 2

, 2
02

2 
at

 0
9:

50
:3

2 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joa%CC%83o+C.+Barbosa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Renato+Gonc%CC%A7alves"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Carlos+M.+Costa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Senentxu+Lanceros-Me%CC%81ndez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.2c01926&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01926?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01926?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01926?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01926?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01926?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01926?fig=tgr1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c01926?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/acsodf/7/17?ref=pdf
https://pubs.acs.org/toc/acsodf/7/17?ref=pdf
https://pubs.acs.org/toc/acsodf/7/17?ref=pdf
https://pubs.acs.org/toc/acsodf/7/17?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.2c01926?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


electrolytes, in order to obtain solid-state batteries, as
represented in Figure 1a.
The main characteristics of solid electrolytes for battery

devices (Figure 1b) are a wide electrochemical stability
window, high ionic conductivity and lithium-ion transference
number, excellent electrode compatibility, and high cyclability.
The two main types of solid electrolytes are organic and
inorganic. Organic solid electrolytes are those based on
polymer composites, whereas inorganic ones are those based
on different ceramic materials such as lithium superionic
conductors (LISICON), sodium superionic conductors
(NASICON), perovskite-type, and garnet. Table 1 shows the
many properties of both solid electrolyte types, together with
the conventional ones based on liquid electrolyte.

The polymer (organic) electrolytes are still characterized by
low ionic conductivity, whereas inorganic ones show poor
mechanical stability and difficult integration into large-scale
battery production.7

Solid polymer electrolytes (SPE) are thus among the most
studied ones on the basis of their large potential and versatility,
being mainly composed of a polymeric matrix with one or
more fillers that can be ceramic, lithium salts, or ionic liquids.9

Fillers are typically added to improve specific SPE properties,
the main issue being to increase the ionic conductivity.
Further, thermal and mechanical properties are being
improved by the inclusion of fillers within the polymer matrix
to maintain the necessary flexibility and thermal stability
during battery operation.10 It should be noted that the
inclusion of these fillers typically also reduces the degree of
crystallinity of the polymer, allowing further improvement of

the ion transport and ionic conductivity.10 The overall goal is
to replace the currently used electrolyte solution in most
battery types because of its drawbacks.
The most commonly used polymer matrixes for SPEs are

poly(ethylene oxide) (PEO);11 poly(vinylidene fluoride)
(PVDF);12 and its copolymers,13 poly(ethylene glycol)
(PEG),14 poly(acrylonitrile) (PAN),15 and poly(ethylene
carbonate) (PEC).16

The filler incorporated into the polymer matrix can have
either active or passive roles with respect to battery
electrochemical performance. The most used passive fillers
are ceramic [barium titanate (BaTiO3),

17 aluminum oxide
(Al2O3),

18 silicon dioxide (SiO2),
19 and titanium dioxide

(TiO2)
20] or carbonaceous (graphite21), with the function of

improving properties such as mechanical or thermal stability.
The most common active fillers are ionic liquids [1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide,
(EMIM)(TFSI);22 1-butyl-3-methylimidazolium chloride,
(BMIM)(Cl)23] and various lithium salts [lithium tetrafluor-
oborate (LiBF4),

24 lithium hexafluorophosphate (LiPF6),
25

lithium hexafluoroarsenate (LiAsF6),
26 lithium perchlorate

(LiClO4),
27 and lithium bis(trifluoromethanesulfonyl)imide

(LiTFSI)28], among others, with the function of increasing
SPE ionic conductivity, both in terms of intrinsic value and
thermal characteristics. With respect to the materials selection
for SPE development, it is also important to note that the ionic
conductivity of SPEs is strongly affected by ion−dipole
interactions between ion and polymer matrix, as they support
lithium salt dissociation, increasing lithium ion transfer number
and mobility.29 The main requirements and characteristics of
SPEs are indicated in Figure 1b.
In order to address circular economy considerations and the

growing concern on environmental issues, there is an
increasing focus on the replacement of the most used materials
by environmentally friendlier ones, even when in some cases
they are not so functionally effective. In the following, the
recent advances in SPEs based on sustainable materials
(natural and biopolymers; degradable and chemically recycla-
ble polymers with sustainable fillers) are presented, represent-
ing one of the most interesting and necessary challenges in the
battery field.

2. LITHIUM-ION BATTERIES: PERFORMANCE AND
SUSTAINABILITY

As stated before, a transition to more sustainable materials in
LIBs is required in order to reduce the environmental impact

Figure 1. (a) Schematic representation of a solid-state battery and (b) main characteristics and requirements of solid electrolytes.

Table 1. Many Characteristics of the Different Electrolyte
Types

electrolyte solution
solid organic
electrolyte

solid inorganic
electrolyte

high ionic conductivity low ionic
conductivity

high stability in contact
with lithium metal

wide electrochemical
stability window

excellent
mechanical
properties

wide electrochemical
window

formation of SEI layer in
contact with electrodes

high interface
resistance

high ionic conductivity at
>100 °C

highly reactive nonvolatility poor contact with
electrodes

flammable low toxicity low mechanical
properties
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caused by a digital society. Despite several advances in this
field, the use of these SPE materials leads to lower performing
and less efficient devices, with limited battery capacity and less
durability than conventional ones.30 Thus, at the present
technological stage it is important to find a suitable balance
between performance and sustainability, as some applications
do not need high performance to work properly. Such is the
case for implantable biomedical devices, smart cards, radio-
frequency identification (RFID) tags, disposable devices, or
small sensors in remote locations, where batteries do not
require high capacity to power devices but they may need

other characteristics such as, for example, being easily degraded
or recycled after their end of life.31 So, by applying LIBs with
just the needed performance for specific applications opens the
field for a new generation of more sustainable batteries10

(Figure 2a).
This means that research is headed toward properly

addressing both targets of performance and sustainability. In
particular, SPEs are one of the most studied battery
components with this purpose, and the improvement in
sustainability can be achieved both with respect to materials
selection and processing methods (Figure 2b). At the materials

Figure 2. (a) Attributes of performance vs sustainability at the technological development stage and (b) relevant issues to take into consideration
with respect to materials and processes for sustainable SPEs.
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level, the most common approaches are the use of natural
polymers, as polymers have a significant presence in battery
architecture.32 Natural polymers are usually easy to produce
and process and are also degradable, which makes them an
excellent choice for short-life-cycle batteries.33 The selection of
materials for other battery components, such as the anode and
cathode, can also be carried out on the basis of biobased
materials, which eliminates the need for synthetic processing
(Figure 2b). Regarding processes, there are also some
interesting options. Low-temperature processes reduce the
overall energetic cost of battery production, reducing their
environmental footprint. Water-based, or even solvent-free
processes also decrease the toxicity of battery production.34,35

These topics are strongly related with the use of natural
polymers, because frequently these polymers can be processed
with water and at low temperatures. Finally, an approach that
has been gaining interest in recent years is additive
manufacturing, which allows the production of custom and
complex structures with defined shapes, in a layer-by-layer
approach, reducing the amount of wasted materials.36

2.1. Recent Advances and Current Needs in Solid
Polymer Electrolytes. The tendency in SPE development is
to increase the structure’s complexity. The first SPEs consisted
of just one polymer and one filler; however, nowadays SPEs are
developed with complex blends of several polymers and
multiple fillers, each with distinct functions in the SPE. As an
example, one filler can be selected to improve the ionic
conductivity value, whereas another may create ion pathways,
improve contact with the electrodes, and stabilize thermal and
mechanical properties.37 The most successful approach seems
to rely on the use of two complementary fillers: one active
filler, with the function of increasing the overall ionic
conductivity, and a passive filler, which improves other
properties of the SPE such as mechanical or thermal stability.10

The most used active fillers in recent literature are different
kinds of lithium salts, such as LiTFSI38−41 and LiClO4.

42

These salts are responsible for a direct increase in the number
of charge carriers and, consequently, of the ionic conductivity.
Ionic liquids have also been intensively and increasingly
studied because of their capacity to reduce the crystallinity of

the polymer matrix, which indirectly increases the con-
duction.43

Recently, an interesting SPE was developed on the basis of
poly(ethylene oxide) (PEO) as the polymer matrix and LiTFSI
a n d 1 - b u t y l - 1 - m e t h y l p y r r o l i d i n i u m b i s -
(trifluoromethanesulfonyl)imide (Pyr14TFSI) as the fillers. It
was reported that controlling the surface characteristics of the
SPE allows improvement of the interface with lithium metal
and consequently the Li electrodeposition/electrodissolu-
tion.44 In addition, LiTFSI salt was used for the production
of different SPEs composed of poly(ethyleneglycol)diacrylate
(PEGDA) and a succinonitrile plasticizer, reaching a high ionic
conductivity of ∼0.43 mS/cm at room temperature,39 and UV
photocurable polyurethane acrylate (PUA) with 30 wt %
LiTFSI content reached a maximum ionic conductivity of
0.0032 mS/cm at room temperature.40 Further, ether-based
electrolytes in situ polymerized by a ring-opening reaction in
the presence of aluminum fluoride (AlF3) show promising
characteristics to overcome the limited oxidative stability and
poor interfacial charge transport of current SPEs.41

There are many options when it comes to passive fillers,
including ceramics,45 carbon-based materials,46 or metal−
organic frameworks,47 each one with distinct effects in the SPE
properties. Zeolites are appearing as a promising option
because of their ability to stabilize the SPE structure,
improving the cyclability of the battery.10

The improvement of the SPE ionic conductivity is not the
only concern in current research. Significant work is devoted to
the improvement of the interfacial compatibility with the
electrodes to enhance the SPE functional performance.48

Other important features such as flame retardance ability,49

lithium dendrite inhibition,50 shutdown function,51 and self-
healing22 are being tested and implemented for the next
generation of advanced SPEs, as represented in Figure 3. Flame
retardancy increases the safety of the battery by reducing the
risk of fires, usually by limiting the amount of oxygen available
for combustion.49 Lithium dendrites are a common problem in
conventional batteries, in which lithium structures grow at the
anode interface with the separator, puncturing it and causing
short circuits. Some components can be added to the SPE to

Figure 3. Key attributes under development for SPEs: (a) flame retardancy, (b) lithium dendrite inhibition, (c) shutdown function, and (d) self-
healing.
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prevent their occurrence by improving the solid electrolyte
interface (SEI) formation.52 Shutdown function is a feature
that creates an insulator layer in the SPE when a given
temperature is achieved, preventing battery operation when
overheating.53 Self-healing batteries allow the repairing of small
damages in the battery structure after a stimulus is applied
(temperature, pressure, or pH variation) without the need of
external intervention.54 Thus, these features are critical to
improve battery safety and durability.
2.2. Sustainable Materials for Solid Polymer Electro-

lytes. As stated before, polymers have critical importance on
the architecture and functional response of SPEs. Many efforts
are being carried out on the development of SPEs based on
natural, chemically recyclable, and biodegradable polymers, as
well as more sustainable fillers, which have the potential to
reduce the environmental impacts associated with the
widespread use of LIBs. As polymers are the main materials
used in SPEs, most research is focused on this specific issue.
Table 2 presents some representative sustainable SPEs
produced in recent years.
The cross-linking of sodium (Na) alginate in a PEO matrix

filled with LiTFSI allowed the production of a SPE with
significant flame retardant capacity and improved mechanical
stability, showing also a stable electrochemical window up to
4.6 V.55 Similar results were obtained for a more complex
composite of poly(ethylene oxide) monomethacrylate,
PEGMA, and cellulose filled with LiTFSI and 1-butyl-1-
methylpyrrolidinium bis(trifluoromethanesulfonyl)imide
(PYR14TFSI) ionic liquid that achieved good cycling stability
at room temperature with an average transference number (t+)
of ∼0.43 and being electrochemically stable up to 5 V.56

Combining different lithium salts in a PMMA matrix grafted
with natural rubber makes it possible to reduce the crystallinity
of the SPE, thereby increasing the lithium transference number
and consequently the ionic conductivity.59 The use of cellulose
has been a target of several studies over the years.37 More
recently, bacterial cellulose has been used, combined with
conventional LiPF6 electrolyte and freeze-dried, to obtain SPEs
with high ionic conductivity, leading to low specific capacity.57

Tamarind seeds show a good potential for application in
batteries because of their high conductivity at room temper-
ature.58 Pectin has also been studied, allowing suitable ionic
conductivity values.60 The use of gum tragacanth allows the
fabrication of water-based SPEs with low environmental
impact. When filled with lithium nitrate, a solid electrolyte
with high ionic conductivity, thermal stability, and stable
electrochemical window up to 3.4 V is obtained.30

Fillers can also provide a significant contribution to
improving SPE sustainability. In this context, chitosan−silica
hybrid nanoparticles have been added to a PEO matrix to
reduce the crystallinity and improve Li ion migration, showing
a wide electrochemical window of 5.4 V.61

One of the major drawbacks of the current studies in
sustainable materials for SPEs is the lack of consistent battery
results. Despite several suitable results regarding ionic
conductivity, the natural polymer-based SPEs typically fail to
deliver good performance when it comes to battery cycling
stability and capacity. This issue must be addressed in order to
make this technology effective for practical applications. Also,
the operation of the assembled batteries must be adjusted to
the utilization temperature of common devices, as most
research shows results regarding high temperature batteries,
namely above 60 °C, are not applicable in real life situations.
Additive manufacturing (AM) techniques, which can

represent an important step in the scope of improving
sustainability and performance of the batteries, the latter by
enhancing three-dimensional ionic routes of the SPEs, are not
yet throroughly investigated.
Finally, sustainable SPEs are essential in the scope of the

increasing demand of batteries related to the implementation
of the electric vehicle in order to reduce their carbon footprints
and to increase materials recycling.62

3. CONCLUSIONS AND FUTURE TRENDS

Solid polymer electrolytes, SPEs, are among the most critical
components for the development of functional solid-state
batteries. These batteries are key for future applications in the
scope of the expected growth in the implementation of electric
vehicles and the massification of portable electronic devices.
The increase in the demand of materials for these applications
leads to significant environmental issues that must be
addressed. In particular, an important step toward increasing
safety and sustainability of next generation batteries is the
elimination of liquid electrolytes from the battery structure.
Another important step is the implementation of more
sustainable materials and processes, allowing for more
adequate recycling strategies and improving the battery life
cycle in the context of a circular economy.
In the particular case of SPEs, significant efforts are being

made on increasing sustainability through the replacement of
synthetic polymers by natural polymers, which also allows for
the use of less hazardous solvents and processing techniques.
However, the literature in the field is not yet enough developed
and lacks suitable results regarding battery performance at

Table 2. SPEs for LIBs Developed in Recent Years On the Basis of Natural Polymers and Corresponding Fillersa

polymer matrix fillers preparation method
ionic conductivity

(S·cm−1)
transference
number

battery performance
(mAh·g−1) ref

Na alginate, PEO LiTFSI solution casting ∼10−4 (40 °C) 152.5 (C/5, 60 °C) 55
cellulose triacetate,
PEGMA

PYR14TFSI, LiTFSI solution casting 5.24 × 10−3 (25 °C) ∼0.43 125 (C/20, 25 °C) 56

gum tragacanth LiN solution casting 8.28 × 10−3 (25 °C) 0.989 30
bacterial cellulose LiPF6 freeze-drying

treatment
2.71 × 10−2 (25 °C) 0.48 18 (C/5) 57

tamarind seed LiCF3SO3 solution casting 8.37 × 10−4 (30 °C) 0.94−0.97 58
PMMA, natural rubber LiBF, LiI solution casting 1.89 × 10−6 (25 °C) 0.65−0.96 59
pectin LiCl solution casting 1.96× 10−3 (30 °C) 60
PEO chitosan−silica nanoparticles

LiTFSI
solution casting 1.91 × 10−4 (30 °C) 147 (C/10, 60 °C) 61

aPEO, poly(ethylene oxide); PEGMA, poly(ethylene glycol) methacrylate.
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room temperature, despite the good electrochemical results at
the ionic conductivity level. A better understanding on the
conduction and diffusion mechanisms, the development of
functionalization strategies, and the compatibilization between
both polymer and fillers is needed in order to overcome this
issue and allow natural polymers to be widely applied in the
SPE field. Other important approaches are the improvement of
thermal and mechanical properties of natural polymers and the
enhancement of the interfacial compatibility between the SPE
and the electrodes, for example, through the application of
additive manufacturing technologies.
The integration of these properties with advanced features

that are being developed in the SPE field, such as shutdown
function or flame retardancy, will allow natural polymers to
become key materials for the next generation of sustainable/
high performance solid-state batteries.
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