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Abstract: The application of energy-efficiency strategies in buildings is a hot topic around the world;
in some countries, there are regulations with more or less degree of compliance, but in most countries
located in the tropical zone, there are no regulations, and it is not easy to transfer regulations of
countries outside of tropical zone. For countries located in tropical zones, the implementation of
strategies to reduce the heat flow from outside to inside buildings is a key point. As a case study,
the Dominican Republic (DR) was chosen, and during 2020, an analysis focusing on buildings of
the tertiary level was carried out with the goal of using scientific methodology focused on tropical
climates that allows for a significant reduction in energy consumption by implementing Energy
Efficiency Strategies (EESs) that are available, with minimal intrusion into the building and low
cost. The study includes, as parts of the proposed methodology, the characterization of building parks,
including the climatic zonification of the country, an in-depth study of the building typologies in
DR, and a massive survey around the country about the technical characteristics of air conditioning
units and their usage; the election and characterization of buildings, including simulation and validation
throughout the monitoring of eight different buildings; an analysis of the measures of energy efficiency
and implementation in the models, including the election of a demonstrative building, the election of
the most convenient EESs, modeling of EESs, implementing EESs in the building, monitoring, and
validation; and an analysis of the impact of the measures at the region or country level, throughout which
important conclusions can be obtained in order to reduce energy consumption in the country. The
results show that this methodology is a valid tool for countries situated in tropical areas in order to
reduce the energy consumption associated with air conditioning units with low cost, availability, and
no intrusive EESs.

Keywords: energy efficiency; tertiary level buildings; heat flow; energy efficiency strategies; energy
simulation; energy monitoring; energy efficiency in tropical zones

1. Introduction

For countries situated in tropical areas, the electricity consumed by the air conditioning
in order provide indoor thermal comfort for productive office work in offices of public and
commercial buildings represents 40–60% of their total energy consumption [1]. Different
studies [2,3] have shown that these air conditioners’ consumption of electricity is relatively
high, “ranging between 1900–5400 kWh per air conditioner unit per year, depending on the
COP and on the cooling capacity [4]”. The low energy efficiency qualification of these air
conditioners is an important factor that contributes to their high electricity consumption.

Determining the actual energy consumption and usage patterns of air conditioning
system is important in evaluating its energy efficiency. The running time of an air condi-
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tioning unit is essential information for the calculation of values such as SEER (Seasonal
Energy Efficiency Ratio) and AFP (Annual Factor Performance), which can help reduce the
cost of electrical energy [5,6].

Heat gains from incident solar radiation in buildings are the main cause of the energy
consumption attributable to the air conditioning units [7–9] and are even higher when its
operations are in an hourly phase with solar radiation. In that case, the air conditioning
unit works by trying to carry out the gained heat flow, which happens when the difference
between the indoor and the outdoor temperature is very high, as is the case in countries
located in tropical latitudes.

A good choice of air conditioning systems that combines good EESs to reduce ther-
mal loads in the construction and rehabilitation of buildings can provide users with the
necessary indoor air comfort with lower energy consumption [10].

According to statistical data, 44% of all the energy used is consumed in buildings
of domestic, tertiary, or industrial sectors, and buildings are responsible for 36% of CO2
emissions [11]. The majority of the existing buildings today in the DR were built at a time
when energy efficiency was not a major priority, and even today, this factor is still not
considered as important as it should be. This leads to a large consumption of energy to cool
buildings; in fact, tis factor consumes the most electricity in a building [12].

In Hong Kong, China, Jia [13] conducted a study that involved sixty-six (66) office
buildings. Jia analyzed the cooling energy consumption in these buildings from 2004 to
2013. Factors examined in these 66 buildings included window-to-wall ratio; the shading
coefficient; wall, ceiling, and widow-glass thicknesses; U-value; and the area covered by
the air conditioner. Factors that were taken into consideration included the type of air
conditioning systems, indoor and outdoor temperature, indoor lighting power, ventilation
rate, nominal coefficient of performance (COP) of refrigeration units, and power of the
cooling system fan. The result was that, with the change in water-cooled air conditioning
units, a higher COP was achieved; this, along with shading techniques in windows, could
reduce energy consumption in commercial buildings by about 36 W/m2 to 24 W/m2,
i.e., by 33% of total consumption.

Alireza et al. [14] carried out a study in an office building in Tehran; the building
was modeled and simulated using DesignBuilder in order to carry out the analysis of the
thermal energy performance of the building. It was determined that, due to its conventional
construction materials, energy losses were higher than normal. By optimizing the building’s
materials, the losses were reduced by approximately 82%. By optimizing the building, they
achieved savings of around 2 MWh of energy in one year.

In order to reduce the energy consumption of a building with respect to cooling,
various obligatory international standards have been implemented for the use of energy
in the construction of new residential and commercial buildings or the rehabilitation of
existing buildings [15]. These standards require a significant thermal improvement in the
building’s envelope, introducing strategies in windows, roofs, and exterior walls. Similarly,
it is necessary for building designers, architects, and engineers to use simulation tools to
study energy performance so that it can result in energy savings that comply with different
standards [16–18]. Therefore, the accuracy of simulation results is fundamental to achieving
an energy efficient building.

Different methods have been developed to analyze the energy performance of build-
ings using computer simulation [19,20]. The method used in these studies combines the
analysis of strategies for design with plans to introduce electrical and thermal measure-
ments into the building, and it also uses an energy simulation tool.

There are many Sustainability Certification Systems (SCS) [21] as Building Research
Establishment Environmental Assessment Methodology (BREEAM), German Sustainable
Building Council (DGNB), High Quality Environmental (HQE), Leadership in Energy and
Environmental Design (LEED), and others. All of them have similar hierarchical structures
that state similar protocols for the evaluation of the buildings’ sustainable performance.
These protocols lead technicians step-by-step to the final goal; that is, to obtain a more
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sustainable building. One of the items that these SCSs use to validate the final goal is
energy consumption.

There are also some directives such as the Energy Performance of Buildings in Europe
or the Standard ASHRAE 90.1-2007 in the USA that state criteria and procedures in order
to optimize the energy performance of buildings. This work has taken into account all
these systems, directives, and standards in order to present a new methodology for the
improvement in the energy building performance adapted to tropical climates.

Table 1 shows compares the items used in those SCSs and those used in this work in
order to reveal the differences in the presented methodology with existing SCSs.

Table 1. Comparison among items commonly used in different SCSs and items used in this studio.

SCS Items Used in This Studio?

LEED Minimum Energy Yield YES
LEED Optimized Energy Performance YES
LEED On-site Renewable Energy NO
LEED Green energy NO

BREEAM Energy demand for heating and cooling YES
BREEAM Primary energy consumption NO
BREEAM Total CO2 emissions YES

DGNB Non-renewable primary energy requirement YES
DGNB Total Energy Decrease Requirement YES
DGNB Renewable primary energy NO

HQE Reducing energy demand through
architectural design YES

HQE Reduction of primary energy consumption NO

HQE Reduction of polluting emissions into the
atmosphere YES

The methodology presented in this research aims to reduce the energy consumption in
buildings’ conditioning at the tertiary level in tropical zones. An in-depth characterization
of the climate zones of the building park and of the construction topology of the analyzed
country or region must be followed by the characterization of a number of significative
buildings located in different climatic zones. This part of the methodology includes simula-
tion, monitoring and validation. The next step is to analyze the available EESs in order to
choose those that well fit the purpose of the research, including modeling in the modeling
tool, its implementation in one of the studied buildings, and monitoring and validation
of the retrofitted building. The knowledge generated in this study will allow actions to
be determined to achieve the main goal, i.e., energy efficiency performance in buildings.
In this work, the simulation was carried out using DesignBuilder, an energy simulation
software from Energy Plus [22]. In the second phase, the building was monitored by
placing temperature and relative humidity sensors on the building envelope, both inside
and outside, together with a data logger to measure the consumption of the units dedicated
to the air conditioning. As the building was adjusted, the different strategies used to reduce
the energy consumption were evaluated [23].

In the final phase, different strategies were introduced in the envelope in order to carry
out analyses of the thermal and energy impact on the building under study. The results
showed an impact of the different strategies introduced on the envelope in reducing the
energy consumption, also showing that the economic costs could be reliably and correctly
predicted in the case of an accurate simulation of existing buildings.

2. Methodology

This work is part of a research project that has been conducted in the Dominican
Republic since 2017; one of its objectives is to highlight the Dominican Republic’s need
for its own regulations for the construction and/or rehabilitation of buildings in terms
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of the criteria of energy efficiency adapted to the tropical climate and thus to provide
governments with sufficient, high-quality information to progress in that direction.

The proposed methodology is shown in Figure 1, which shows a process flow diagram
for energy efficiency analysis in buildings located in countries belonging to the tropical
climatic zone.
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2.1. Characterization of the Building Park

The proposed methodology starts with a detailed contextualization of the three
key elements required in the improvement in energy efficiency in the building sector
in a specific country or geographical region, i.e., climatology, building typology, and
energy installations.

Detailed knowledge of the different climatic zones is essential to improve the energy
efficiency of buildings. Therefore, Peña et al. [24] conducted the first known climatic zoning
work for the Dominican Republic, and Felix et al. [25] contributed with a more detailed
study that allowed for a new restructuring and unification of the previous climatic zones
with criteria based on the most influential climatic variables in the energy management of
buildings, i.e., outdoor temperature and relative humidity.

It is also important to know the building typology in the different climatic zones. In
this context, is important to highlight the work carried out by Peña [26] when identifying
the different building typologies of the DR and associating them with climatic zones.

To finalize the process of contextualizing the building stock of the country or region
under study, an analysis of the installed energy systems must be carried out, including
the analysis of the use criteria adopted by users. This work can be carried out through
massive surveys.
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Once the described works have been carried out, it is possible to carry out the thermal
characterization of the building stock in accordance with the climatic zoning, the building
typology, and the characteristics and operation usage of the energy systems.

2.2. Election and Characterization of Buildings

Taking into account the sector chosen to implement energy saving measures and
analyzing the previous characterization of the building stock, the typical buildings of the
climatic zones are chosen, and their detailed and complete characterization is carried out.

Therefore, the following steps are carried out:

• Choice of the building type in each climatic zone;
• Building modeling;
• Building monitoring during at less six months, ensuring the tropical two seasons

are included;
• Adjustment of the modeling process;
• Model validation.

2.3. Analysis of the Measures of Energy Efficiency and Implementation in the Models

Once the typical buildings of each climatic zone have been characterized, the EESs
that could be implemented are analyzed, accounting for specific circumstances regarding
to the study’s goal, such as economic impact, availability, reliability, intrusion grade, and
others. In this way various levels of action can be established in the building.

It is not necessary to implement this phase in all the selected buildings; it must only
be carried out in one of the buildings and should be carried out in four phases:

• Choice of the measures to be implemented in accordance with the estimated economic
investment and other factors;

• Implementation of the measures in the model of the selected building and analysis of
the efficiency improvement;

• Implementation of the measures in the selected building and monitoring for one year;
• Validation of the implemented EESs in the model through the results of the monitoring

of the building.

2.4. Analysis of the Impact of the Measures at Region or Country Level

Finally, a detailed analysis of the impact of the measures at different economic levels
can help manage energy saving policies at the regional or country level.

3. Case Study

For this research, the Dominican Republic (DR) was selected as a case study. It
has a tropical climate and a significant energy demand, mainly for the operation of air
conditioning equipment [27,28].

3.1. Characterization of the Building Park

Referring to steps A.1 an A.1.1 in Figure 1, an analysis of the climatic zoning of the
DR has been carried out based on a study of Peña et al. [26], performing a unification of
similar climatic zones in terms of the behavior of the two climatic variables that most affect
the energy consumption of buildings: maximum and minimum outdoor temperature and
relative humidity [25]. The result of this study is shown in Figure 2, where the eight climate
zones are shown.
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Figure 2. Climatic classification of the provinces according to the significant influence of
climatic conditions.

For the analysis of the building typology, the works of Peña et al. [29] and Fe-
lix et al. [30] were used.

For step A.3, a massive survey was also carried out concerning the characteristics of
air conditioning systems and trends in their use. The survey was carried out in the period
from July 2019 to September 2019 through telephone calls.

Taking into account the study shown in Section 3.1, the provinces of San Juan, Mon-
señor Nouel (Bonao), San José de Ocoa, Santiago, Duarte (San Francisco de Macorís),
Pedernales, Punta Cana* (place of tourist importance), and La Romana were selected to
carry out the survey. A total of 7617 tertiary level buildings registered in the General Report
of the National Registry of Establishments, Volume I 2014–2015, of the aforementioned
provinces [31] were identified as buildings that meet with the goal of the study.

A total of 556 buildings were surveyed, with questions about the usual use of air
conditioning, as well as other questions regarding air conditioning units such as the
number of units, brand and model, and technical specifications.

As a result of the application of step A.3.1 in Figure 1, the obtained results show that
100% of this kind of buildings have at least one air conditioner, 65% of the users have the
habit of placing the set point temperature below 20 ◦C, and 66% of the air conditioners
have an efficiency (SEER) less than 6.10.

3.2. Election and Characterization of Buildings

In order to achieve step A.2 marked in Figure 1, a representative building in each of
the eight climatic zones must be selected. The election of the eight representative buildings,
one per climatic zone, is based on a previous study that matched the different construction
typologies with the climatic characteristics.

Figure 3 shows the eight selected buildings, all of which were modeled in Design-
Builder and monitored in order to validate the modeling work.
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The following general considerations were taken into account in order to properly
simulate the eight buildings:

• Building envelopes were constructed in a 3D display format with the thermal charac-
teristics of existing materials [32].

• The energy actions due to use (associated loads outside the air conditioning parameter)
were eliminated to ensure that the thermal and energy parameters of the equipment
itself were studied.

• For each of the models built, the office uses characteristics that were assigned by
editing only the operating hours of the premises and the metabolic loads according to
the average number of people on the premises.

• The corresponding incident weather data in each province, obtained from the NSRDB
data viewer [33], were loaded to calculate the simulation for each model.

• Simulation analyses focused the greatest effort on visualizing internal gains for each
model and the behavior of the climate control equipment.

In order to not be repetitive, more details about the modeling process are given in
the next Section; see Section 3.4, which analyzes the chosen building in which EESs are
implemented.

3.3. Analysis of the Measures of Energy Efficiency and Implementation in the Models

Because this project is addressed to public servants and politicians in order to help
them in the decision-making process of new rules focused on energy-efficiency performance
in the DR, the framework for the selection of EESs are low cost, high availability and
reliability at the DR level, and a low grade of intrusion in the building.

As a representative building among the eight preselected buildings, the one situated in
zone climatic C (see Figure 3) was selected due to the readiness of the property to implement
Energy Efficiency Strategies (EESs) and support them economically. The building is located
in the province of San José de Ocoa in the Dominican Republic. The building is concretely
situated at latitude 18.537240 and longitude 70.507698, with an orientation of 258◦ to the
South West [34], and it is occupied by an insurance company; therefore, it belongs to
tertiary-level buildings.

The building consists of a single floor, formed by a reception area and two office rooms.
Figure 4 shows a plan view of the building and the location of the temperature and relative
humidity sensors.
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To elaborate the strategies to be implemented, it was necessary to obtain data concern-
ing the area of the façade vs. the area of glass (consisting in the percentage of glass on each
side of the building), as shown in Table 2. This, together with the orientation, allowed for
the identification of the façades most exposed to solar radiation.

Table 2. Percentage of glass in the building’s façades.

% of Glass with Respect to the Wall of the Façade

View % of Glass Orientation

Front façade 28.35% 258◦—South West
Lateral façade 7.56% 177◦—South

Rear façade 7.56% 93◦—East

Due to the geographical situation of the Dominican Republic, i.e., 18.7357◦ N, 70.1627◦ W,
the façades oriented to the south have the impact of the sun during the entire day, while
those looking east have the sun in the morning and those to the west in the evening.

3.3.1. Thermal Characterization of the Building Type

According to step A.2.1 in Figure 1, a study of construction materials was carried out.
The construction materials of the tertiary-type buildings define their structural characteris-
tics [30]. These are a highly relevant factor, as they influence the thermal comfort of the
building and therefore affect both the quality of life of the occupants and the comfort at
work [35].
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As a consequence of the application of step A.4 represented in Figure 1, Table 3 shows
the physical and thermal properties of the materials and their influence on the transfer of
heat towards the indoors.

Table 3. Characteristics and properties of the construction materials in the F. Mancebo building.

Material Thickness (m) Thermal Conductivity (W/m·K) Density (kg/m3) Specific Heat (J/kg·k)

Concrete Block 0.15 1.18 1230 1000

Mortar 0.02 1.3 1900 1000

Concrete ceiling 0.04 1.65 2300 1000

Single glass 0.03 1.05 2530 800

Aluminum (frames) 0.01 207 2700 880

Table 4 shows the emissivity values of the different materials of the building types in
the DR [36].

Table 4. Emissivity values ε of the various building materials in the DR.

Material Emissivity ε

Concrete blocks 0.9
Concrete ceiling 0.88

Mortar 0.93
White paint 0.93
Simple glass 0.9

Aluminum (frames) 0.03

It can be seen that the majority of the values of the different materials are close to the
unit, which means that those materials favor heat transfer and hence increase the energy
consumption in the air conditioning units. This is because the smaller the value of the
emissivity, the better the insulation by the reflection, which is not the case for the materials
used in the DR.

3.3.2. Current Situation with Respect to Air Conditioning of the Building Type

In order to define the current situation of the building type selected with respect to
the air conditioning behavior, sensors with data loggers were placed in different parts of
the building. They had the following specifications [37]:

• Brand: WiFi-TH+.
• Temperature from −20 to +60 ◦C and the humidity measuring range from 0 to 100%.
• Accuracy of +/−0.3 ◦C.
• The data could be verified wirelessly using EasyLog Cloud.
• Register memory of up to 500,000 values.
• The data could be extracted by USB port.

The sensors were placed both inside and outside the building, providing readings of
the air temperature and relative humidity from both indoor and exterior ambience.

In addition, an electrical energy meter was placed at the electrical intake of the air
conditioner in order to quantify the system’s electricity consumption and thus determine
the work interval of the selected building.

The electric energy meter had the following specifications [38]:

• Brand: ELOG sensor DENT.
• Configuration for data storage by PC.
• Storage, depending on the selected values, up to 300,000 values.
• Configuration for recording data by time preference (from 1 to 10 seconds or 5, 10,

30 minutes.).
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• Recording of energy data (active, apparent and reactive), power, power factor, current,
and voltage, among others.

• Data download by USB port.

Another factor to take into account is that the sensors and the energy meter were
installed for a period of 7.5 months, 225 days. Furthermore, the data were taken at intervals
of 30 min, for all the parameters measured, so as to have a enough information. As a
sample, Scheme 1 shows the collected data of the monitored months.
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As shown by the data in Scheme 3, these comfort temperatures are not reached, with
the highest temperature being 28 ◦C, which is far from 23.8 ◦C, showing that conventional
air conditioning systems need to do more work for thermal loads, which in turn implies a
greater consumption of electrical energy, exceeding 12.62 kWh/day on average.

As shown in Scheme 3, the relative humidity almost always remains beyond the rec-
ommended level, so it can be stated that the indoor comfort is acceptable for this parameter.

Scheme 4 shows the electric energy consumption in air conditioning units (kWh), and
Scheme 5 shows the behavior of outdoor temperature. In Scheme 4, it can be seen that for
all the typical days of each of the months under study, the amount of electric energy used
in the building conditioning is in the same phase as the solar radiation phase. It is also
remarkable that during June, July, and August afternoons, the energy consumption remains
constant, as well as the outside temperature, which due to the sun’s elevation during those
months in the DR.

It is also worth noting that at midday, i.e., rest time, the air conditioning set point is
changed to an higher point and then turned back again when the rest time is finished, but
this habit leads to a peak in which the A/C unit has to deal with the accumulated heat
during rest time, which means that the electric energy consumption is greater during the
afternoon period.
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3.3.3. Consumption of Electric Energy of the Selected Building Type

Table 5 shows the energy consumption during the last three years in F. Mancebo
building, with an average consumption of 4365 kWh.

Table 5. Annual consumption of electrical energy in the type of building selected.

Year Electricity Consumption (kWh/Year)

2019 4616
2020 4303
2021 4176

In order to determine the percentage dedicated to air conditioning in the selected
building, Scheme 6 shows the periods (in months) during which the measurements of the
first phase of the study were registered.
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It can be seen that the average monthly consumption of the building is 373 kWh/month.
The period from February to June inclusive was not included in the calculation of this
consumption due to the ceasing of working activity due to COVID-19, which meant that
the consumption considerably decreased until activity was renewed in July 2020.

This building’s electricity consumption reached its highest values in the months of
July and August, with a peak of 454 kWh in the latter month, as shown in Scheme 5. This
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is because it is the hottest period of the year (summer) in San José de Ocoa, as well as in
the other provinces of the DR, which means the installed air conditioning must increase its
workload. The building’s average daily consumption in this case was 12.42 kWh/day.

3.4. Building Model

In order to complete step B.1 of Figure 1, a view of the simulated building can be seen
in Figure 5.
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3.4.1. Calculation of the Heat Transfer

External factors such as solar radiation, exterior temperature, wind speed, and direc-
tion, among others, all influence the total heat gain that must be countered inside buildings.
Such properties of the materials as the thermal conductivity and their emissivity, as well as
the area and thickness of the materials themselves, also contribute to the increase in heat
flow towards the indoors [36].

Due to the different layers of materials in a building (typical construction materials in
the DR) and the fact that the heat flow must pass through all of them to reach the indoors,
they all had to be taken into account when calculating the thermal resistances.

Figure 6 shows the layout of a typical façade of a building in the DR.
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The results of the heat transfer calculations for the F. Mancebo building are shown in
Schemes 7–9. The data used for the calculation were obtained from the monitoring of the
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building using the temperature sensors placed inside and outside the building over the
three-month period, with measurement intervals of 30 min.
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Scheme 9. Heat flow by conduction plus convection through the rear façade of the building.

Schemes 7 and 8 show that the front wall, oriented 258◦ to the southwest, and the
righthand wall, oriented 177◦ to the south, increase the heat flow until approximately
12 noon. This is due to the orientation of the building in the DR with respect to the sun. In
the same manner, the rear wall, oriented 93◦ to the east, has an increased heat flow during
the morning hours.

The largest and most constant heat gain occurs through the front façade, in both walls
and openings, reaching 0.58 kW of heat flow towards the indoors.
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The results of the heat transfer by radiation in the building are shown in Schemes 10–12
concerning the heat flow by radiation through the different façades within the range of
hours of activity from 8:00 to 17:00.
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Schemes 7–9 for conduction plus convection and Schemes 10–12 for radiation show
that the most critical points for heat transfer in all three methods are those of the wall on
the right hand side, with the peaks reaching 0.86 kW for conduction plus convection and
1.85 kW for radiation, without taking into account the fact that this is the façade that is
exposed to the sun for the longest time. It can also be seen that the front façade reaches
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0.58 kW for conduction plus convection and 0.89 kW for radiation during the last few
working hours of the day.

The graphics show the differences between the heat flows, through both the walls and
the openings. It can be seen that the latter have the greatest impact, not only due to the
materials and their properties, but also due to the incident radiation coming through them
to the indoor of the building, reaching the various surfaces inside, and this suggests an
increase in the temperature and more workload for the air conditioning.

As for the orientation, Schemes 8 and 11 show that at around 14:00, in the side window
closest to the front façade, the sun shines directly on it, while, in the results of the front
façade, shown in Schemes 7 and 10, from 15:00 onwards, the sun directly impacts a greater
area of the window of the façade, giving rise to heat gains in the building.

The said heat transfer as a whole, together with the internal loads produced in the
building, creates an increased sense of discomfort, which does not allow the labor activities
to be performed optimally. Furthermore, it also means a greater workload for the air
conditioning units installed, which also means a greater energy cost from their use.

3.4.2. Energy Percentage Dedicated to Air conditioning

To obtain the percentage of energy dedicated to air conditioning in the building
under study, the average daily value of consumption (12.42 kWh/day) was taken and
compared with the values registered by the data logger during the monitoring period
of 225 days. The average total consumption of electric energy by the air conditioning
units was 3.81 kWh/day; the equivalent of 30.2% of the total average daily consumption,
i.e., almost a third of the cost of electric energy was dedicated to the air conditioning.

It should be stressed that the monitoring period did not include the months when the
building’s total consumption is usually highest, due to the COVID-19 pandemic situation.

3.4.3. Comparison: Building-Type Simulation vs. Monitoring Data

According to step B.2 of Figure 1 and in order to validate the effectiveness of the
strategies before implementing them, the simulation software DesignBuilder was used.
However, before that, it was necessary to simulate the building’s current situation to ensure
that the margin of error would be the minimum, and to obtain an adjusted building. In
various different studies [23,39–41], the utility of using DesignBuilder (DB) to simulate the
annual energy consumption of an office building has been demonstrated, providing results
that coincide with the monthly billing registers of electricity consumption; the largest error
was 1.6%, which means that the software is reliable.

For this study, the first step was to construct the F. Mancebo building in DesignBuilder
in accordance with the real measurements taken in situ, taking into account the structures
both above and to the left of the part of the building under study (adiabatically), as well as
the wall to the right. The model is shown in Figure 5.

To ensure that the solar gains, heat flow, and other variables are similar to the real ones,
the construction materials of the building were selected from the DB library, giving the
walls, windows, and doors their respective values, such as the number of layers, thickness,
thermal conductivity, internal energy, specific heat, density, emissivity, and others.

After the model of the building was created in the DB simulation software, certain
parameters were adjusted to equalize the simulated and monitored consumption. The
following actions were taken to do so.

The archives of the EPW climate data of the DB program were modified using the
monitoring from the selected province. The specific days in which real time measurements
were taken were then modified in the climate archive. These data were temperature; relative
humidity; wind speed and direction; direct, diffuse, and reflected radiation; and dew point
temperature, among others. These data were selected to equalize the climatic conditions
of the model with those of the province of San José de Ocoa. The following geographical
values were also adjusted: latitude, longitude, height above sea level, and data such as
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wind speed and direction taken from the NSRDB Data Viewer Database [33], as well as the
orientation of the building.

Finally, the days and hours that the air conditioning was working were also adjusted.
After all these steps were carried out, the heat flow through different surfaces of

the selected building was simulated, together with the energy consumption of the air
conditioning, comparing them and obtaining the results shown in Schemes 13–15:
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It is clear that the data obtained from the simulation are fairly close to the calculations
from the data obtained in the first stage of monitoring.

It also can be seen that the model correctly predicts the behavior of the building in all
cases giving robustness to the model.

It can be seen that the front window and the side window closest to the front wall
are the openings with the greatest impact from the sun, as shown in the previous analysis.
These results should be taken into account when choosing the EESs.

As for the comparison of the electricity consumption of the air conditioning, Scheme 16
shows the simulated vs. calculated (monitored) energy consumption of the existing air
conditioning units (A/C).
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As a consequence of step B.3 in Figure 1, the simulated vs. monitoring values shown
in Scheme 16 demonstrate that the behavior of the building regarding energy consumption
is also well-predicted by the model, in terms of both the value and trends.

In the time period of 12:00 to 14:00, the air conditioning is switched off, as there is no
one working between these hours, thus explaining the dip in the graph at this time.

Eight similar studies were carried out for eight representative buildings, and the results
were similar to those presented so far. Hence, the validation of the models is satisfactory.

3.4.4. Energy Efficiency Strategies (EESs)

Regarding step C.1 of Figure 1, there are various strategies for improving energy
efficiency that include both those that affect the building envelope and those that affect the
installed energy system. Table 6 shows some of the strategies that could be considered and
that affect the building envelope, and Table 6 shows the alternatives for the replacement of
air conditioning systems.

In order to easily identify each measure in this article, each EES has been identified
with a capital letter.

The degree of intrusion measures is on a scale of 1 to 5, where 1 represents the least
intrusion and 5 the greatest.

The implementation time, measured in months, indicates the estimated time of affecta-
tion of the building when an EES is being implemented.

The unit cost is expressed in US dollars per m2 affected.
The indicator index of availability in DR has also been included, which is on a scale

of 1 to 10, where 1 represents the minimum accessibility to a certain product in the DR
and 10 represents the maximum. This index measures the availability of the product in the
construction market in the DR.
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Table 6. Energy Efficiency Strategies in buildings concerning the envelope.

EES Description Intrusion
Degree (1–5)

Implementation
Time (Months)

Unitary Cost
($/m2)

Index of
Availability in

DR (1–10)

A Change to windows with double
glazed glass 4/16/4 4 1 300 1

B Vinyl film application in windows 1 0.1 26 10
C Black shade painted film in windows 1 0.1 16 10
D Nano ceramic paint 1 0.1 24 6

E Application of white acrylic paint as a
base 2 0.15 8.7 10

F Canvas awnings for windows 2 0.1 150 10
G Aluminum awnings for windows 2 0.1 111 10

H Energy retrofitting of opaque vertical
enclosures 5 3 1080 7

I Landscaped roof 4 1.5 3039 6

Similarly, Table 7 shows relevant data on different types of air conditioning installations.

Table 7. EES affecting the air conditioning system.

EES Power (kW) SEER Unitary Cost (USD/ud)

J

3.51 “4.60 ≤ SEER < 5.10” 396.55
3.51 “5.10 ≤ SEER < 5.60” 413.79
3.51 “5.60 ≤ SEER < 6.10” 465.52
3.51 “6.10 ≤ SEER < 8.50” 655.17
3.51 “SEER > 8.50” 775.86

In this work, following the criteria stated in Section 3.3, the selected EESs are collected
in Table 8.

Table 8. Chosen EES.

EES Zones of the Building Where Will be Implemented Total Cost (USD)

B Right and front facades 81.35
F Right facade 127.12

The selected strategies represent a total cost of USD 208.47, which represents a rea-
sonable investment for the monthly cost of the energy consumption of the building’s air
conditioning system, which is around USD 57.87 per month.

For the selection of the awning, the Analytic Hierarchy Process (AHP-TOPSIS) was
used to compare the types of material and thus determine the best alternative. To do so,
several manufacturers in the DR were contacted. The results are summarized in Table 9,
showing the criteria used in the selection.
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Table 9. Criteria for selecting alternatives to implement in the building of the case under study.

Table Summarizing the Alternatives

Provider 1 Provider 2 Provider 3 Provider 4

Type of Awning Aluminum Canvas Canvas Aluminum Canvas Canvas

Cost of Product (USD) 99.15 133.33 186.32 185.3 224.62 246.15

Emissivity of the material 0.04 0.77 0.77 0.04 0.77 0.77

Thermal Conductivity
(W/mK) 207 0.034 0.034 2207 0.034 0.034

Impermeability and Dust
Repellence 1–10 1–10 1–10 1–10 1–10 1–10

Ease of maintenance 1–10 1–10 1–10 1–10 1–10 1–10

To remain consistent with the criteria for the selection of the energy efficiency strategies,
higher priority was given to the cost once the physical properties fit those required in the
selected location, San José de Ocoa.

As a consequence of the development of the selection method, the canvas awning
manufactured by provider 1 was elected and installed, as its thermal properties favor the
desired heat flow reduction, and the price is reasonable.

The selection of microperforated vinyl was made based on the data consulted in two
companies, as shown in Table 10.

Table 10. Selection criteria for alternatives to be implemented in the front window of the case
under study.

Summary Table for the Choice of Front Window Protection

Provider 5 Provider 6

Vinyl Type Microperforated Full Vinyl Microperforated Full Vinyl

Product cost (USD m2) 26 24 29 26

Emissivity of the material 0.94 0.94 0.94 0.94

Thermal Conductivity
(W/mK) 0.25 0.12 0.29 0.16

Materia PVC polymeric PVC polymeric PVC monomeric PVC monomeric

Thickness (mm) 0.0016 0.0016 0.0014 0.0014

Size of holes to allow vision
(mm) 1.60 0 1.65 0

Useful Life (years) 6 7 3 5

The choice was made based on the durability of the material and the option of main-
taining the view from the indoor of the building to its exterior. The microperforated vinyl
of the company provider 5 complies with the conditions of 6 years of useful life, with a
thermal conductivity of 0.25 W/mK and an emissivity of 0.94.

Modeling of the building was carried out with design Software SketchUp in order to
show the selected energy efficiency strategies, the microperforated blind and the canvas
awning. The result is shown in Figures 7 and 8.
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The logo of the enterprise for the blind was taken into account, thus maintaining the
design of the front façade and reducing the intrusion level.

4. Results
4.1. Effectiveness of EEs in the Different Climatic Zones

In order to perform steps C.2 and C.3 shown in Figure 1, an analysis of the effectiveness
of the selected EESs in each of the eight selected buildings was carried out. Table 11 shows
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data regarding the energy consumption before and after the implementation of the EESs
within forecast energy consumption reduction for each climatic zone.

Table 11. Monthly electric energy consumption (kWh) before and after the implementation of the
EESs in each one of the climatic zones.

Climatic Zone Province Implemented
EESs

Average Monthly
Energy Consumption

before
Implementation of

EESs (KWh)

Average Monthly
Energy Consumption
after Implementation

of EESs (KWh)

Percentage of the
Energy

Consumption
Reduction

A San Juan H, E 1433 948 41%

B Monseñor Nouel
(Bonao) F, H, E 93.12 58 47%

C San José de Ocoa F, H, E 84.72 34 50%

D Santiago E, H 2326 2072 12%

E San Francisco de
Macorís F, H, E 103 84 20%

F Pedernales B, H, E 2264 2104 7%

G La Altagracia
(Punta Cana) C, H, E 2552 2068 13%

H La Romana F, H, E 1237 1174 5%

It can be seen that the implemented EESs are more effective in climatic zones A, B, and
C, while in D, E, and G the effectiveness is more reduced, and in climatic zones F and H,
the effectiveness drops down considerably.

The different impacts of the selected EESs also depend on the topology of the building
and on the proportion between opaque and transparent surfaces in south-oriented facades
so this result must be considered prudently.

In order to avoid these uncertainties, the selected F. Mancebo building was simulated
in the eight different climatic zones twice, before and after the implementation of the EESs.
Table 12 shows the results of these simulations.

Table 12. Results of the simulation of the F. Mancebo building in the eight different climatic zones.

Climatic Zone Location in the
Country Province

Daily Electricity
Consumption (kWh)

before
Implementation

Daily Electricity
Consumption (kWh)
after Implementation

Reduction (%)

A Southwest San Juan 6.58 3.52 37%

B North Monseñor
Nouel (Bonao) 2.92 1.23 48%

C Southwest San José de
Ocoa 5.56 2.78 40%

D North Santiago 4.56 2.47 36%

E North San Francisco
de Macorís 5.65 3.43 30%

F Southwest Pedernales 7.22 5.05 22%

G East La Altagracia
(Punta Cana) 3.44 1.41 49%

H Southwest La Romana 6.58 3.55 36%

It can see that the influence of the climatic zone on the effectiveness of the selected
EESs is significant, going from the highest one in climatic zone H, 49%, to the lowest, 22%,
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in climatic zone F. Climatic zones A, F, and H are closer to the equator, so during the whole
year, the thermal gain due to solar radiation for these zones is higher.

The result of the application of steps C.4 and C.5 depicted in Figure 1 can be seen in
Schemes 17 and 18, where the daily electricity consumption can be seen in detail, and it is
consequently remarkable that the lower the significative temperature of a climatic zone is
the fastest when the set temperature is reached; see B line evolution.
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4.2. Simulation of Energy Efficiency Strategies

As stated in the previous point, two different strategies were modeled, installed, and
monitored. For the front window, a microperforated vinyl blind was chosen, and for
the lateral window, an awning was installed to stop the direct impact of sunlight into
the window.

In order to analyze the effect of each single strategy, they were each simulated sepa-
rately with the software DesignBuilder, and the results are shown in Scheme 19, where the
impact of strategy B is shown, and in Scheme 20, where the impact of strategy F is shown.
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Scheme 19 shows that during daytime, and especially in the hours of the sun’s impact
into the front window (15:00–17:00), there is an significant reduction in the heat flow. It can
be observed that at the peak, around 16:30, the heat flow reduction changes from 0.49 kW
to 0.28 kW (42.86%).

On the other hand, for the simulation of the awning in the lateral window, Scheme 20
shows that when strategy B is applied, a reduction in heat flow takes place during all
daylight hours showing an average reduction of 77.61% in the heat flow with a peak of
81.11% (0.1 kW) at 15:00.

4.3. Building Monitoring after the Implementation of Energy Efficiency Strategies

Once the strategies were implemented, the building was once again monitored over a
period of a year, but due to the pandemic situation, the building was out of service for four
months, from March to June inclusive, so the monitoring data of those months were taken
out of the analysis.

This analysis takes into consideration variables related to indoor comfort conditions
such as inside temperature (see Scheme 21) and relative humidity (see Scheme 22), as well
as the energy consumption due to the installation of the air conditioning, comparing the
situations before and after (see Scheme 23). An additional graphic, Scheme 23, shows the
accuracy between the simulated and monitored energy consumption.
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Scheme 23. Simulated and monitored consumption of electric energy by the A/C before and after
the energy efficiency strategies.

Scheme 21 shows the evolution of inside temperature during a typical day before and
after the implementation of energy efficiency strategies. It can be seen that, throughout the
morning (between 09:30 and 12:00), the inside temperature remains steady at around 2 ◦C
below the one registered previously. For the rest of the diurnal day (12:30 to 17:00), which is
when the sunlight impacts the modified façades, the temperatures are kept mostly below the
previous temperatures, with the difference reaching 1 ◦C below prior to the registrations.

Scheme 22 shows that the relative humidity values inside the modified building are
slightly below the previous ones from 10:00 to 13:30 and slightly above the previous ones
from 14:00 to 17:30.
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Scheme 23 shows the consumption of electricity associated with the air conditioning
unit before and after the implementation of energy efficiency strategies. A significant
decrease can be seen in the energy consumption, with notable differences at 14:30, when a
difference of 0.472 kWh was registered. Taking into account the registered measurements
from before and after, the total energy consumption of the building decreased between
approximately 16% and 24%.

The forecasted reduction in electrical consumption based on the correct control of the
air conditioning equipment based on three scenarios in is presented Table 13.

Table 13. Hourly energy consumption for the three considered scenarios.

Time Scenario 1 kWh Scenario 2 kWh Scenario 3 kWh

7:00–7:30 0.00 0.16 0.17
7:30–8:00 0.00 0.15 0.15
8:00–8:30 0.26 0.19 0.19
8:30–9:00 0.22 0.18 0.18
9:00–9:30 0.20 0.17 0.17
9:30–10:00 0.25 0.23 0.24

10:00–10:30 0.31 0.31 0.31
10:30–11:00 0.37 0.37 0.37
11:00–11:30 0.41 0.41 0.41
11:30–12:00 0.43 0.42 0.42
12:00–12:30 0.43 0.42 0.42
12:30–13:00 0.00 0.35 0.00
13:00–13:30 0.00 0.33 0.00
13:30–14:00 0.00 0.32 0.00
14:00–14:30 0.36 0.32 0.33
14:30–15:00 0.32 0.29 0.29
15:00–15:30 0.28 0.25 0.25
15:30–16:00 0.27 0.24 0.24
16:00–16:30 0.26 0.24 0.24
16:30–17:00 0.26 0.24 0.24
17:00–30:30 0.26 0.24 0.24

Total kWh for a Working day 4.89 5.83 4.86

Usually, under scenario 1, air conditioning units are switched on as soon as the first
worker arrives to the building, 08:00 h, and remain on until lunch time, 12:00 h, when they
are turned off (all workers have lunch at the same time), and they are turned back on again
at 14:00 h; then, once again all A/C units are turned on, they remain on until the end of the
working day, i.e., 17:00 h.

In order to analyze the importance of the workers’ habits regarding the use of A/C
units on the energy efficiency of the building, another two scenarios were implemented
and compared with scenario 1. In scenario 2, A/C units are switched on from 07:00 to 17:00,
and in scenario 3, units are switched on from 07:00 to 12:00 and from 14:00 to 17:00.

These results show that a good EES switches on the A/C units one hour before the
start of the working day, when the indoor temperature is not yet very high, but the units
should be turned off during the lunch time.

4.4. Model Validation through Monitored Data

Monitored data were used also to validate the model once again. Scheme 24 shows
the accuracy between modeled and monitored energy consumption. The model predicts
properly the behavior of the building and the tendencies throughout a working typical day.
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4.5. Economic Considerations about Strategies’ Implementation

There are many different EESs that can be used in order to reduce energy consumption.
Jia [13] proposed changing air conditioning units for others with better COP in an office
building in Hong Kong. Alireza et al. [14] changed the facades of an office building situated
in Teheran with improved construction materials. Fathalian et al. [23] suggested the energy
retrofitting of opaque vertical enclosures in an office building in Semana (Iran). Finally,
Xiaonuan et al. [42] changed both lighting and air conditioning systems in an office building
sited Singapore.

In order to compare the different measurements used by different studies in different
buildings and different countries, the saved percentage of energy and its unit cost (USD/%)
are sown in Table 14.
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Table 14. Comparison among different EESs used by different researchers using saved energy (%)
and its unit cost ($/%).

Research EES Saved Energy
(%)

Unit Cost
(USD/%)

Hong Kong [13] Change AC units 19% 1947
Teheran [14] Changing facades 53% 4528

Semnan-Irán [23] Energy retrofitting of opaque
vertical enclosures 18% 14,810

Singapore [42] Change of lighting and AC units 40% 812

Case Study Painting facade
Shading windows 37% 166

It is shown the largest reduction in energy consumption corresponds to the building
situated in Teheran, but at the same time, it is the most expensive in terms of cost per %
saved. On the other hand, the research carried out in this study has the lowest cost per %
saved, and at the same time, it presents a relative good percentage of energy savings.

Taking into account the reduction values, it can be estimated that an investment return
period for the amount of USD 208.47 with respect to the reduction was achieved with the
application of the vinyl film on the front window and the canvas awning on the right-side
window. The results are shown in Scheme 26, where it is evident that the investment return
period is amortized at 1.75 years.
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5. Conclusions

A methodology to help in making decisions related to the energy efficiency of buildings
in tropical areas has been developed and proved in a case study in the Dominican Republic.

A new climatic zoning has also been proposed for the DR within the country’s tertiary
building sector.

Eight buildings have been modeled, monitored, and validated, one in each climatic
zone. The results show a close accuracy of the models in terms of the buildings’ behavior,
giving robustness to the methodology.

A criterion for the election of EESs was applied, and selected EESs were implemented
in a representative building of the tropical climate of the Dominican Republic, with the
simulation and then implementation of the EESs accuracy between the model and the
buildings’ behavior after EESs implementation were demonstrated.

A reduction in the energy consumption of a building was reached through the imple-
mentation of low-cost, available, and non-intrusive EESs, which demonstrates that with
the implementation of economic EESs, the electrical bill of the tertiary sector’s buildings
can be reduced in tropical climates.
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It can be inferred from obtained data that the specific energy consumption (kWh/m2)
of the whole building in this case study was reduced from 47.08 kWh/m2 to 29.46 kWh/m2.

It is also remarkable that the yearly cost of electricity per square meter before the imple-
mentation of EESs was 2788.91 USD/(year·m2), compared to only 1709.01 USD/(year·m2)
after the implementation.

This methodology could be a complementary tool in order to assess the effectiveness
of certain measurements before their implementation when a specific code is used for the
evaluation of the building.

This study is focused on reducing the energy consumption of air conditioning equip-
ment by the improvement in the building envelope according to the climate in which it is
found; therefore, this study can be a complementary tool to evaluate the energy indicator
when a labeling system needs to be implemented.

This study also shows that public servants and politicians living in tropical areas have
a scientific methodology to improve energy efficiency in buildings.

As this research has shown this method to be effective in reducing energy consumption,
further studies should lead to more ambitious objectives. For example, in-depth assessment
should be conducted of possible EESs to be massively implemented in new buildings in
the office buildings sector, considering the context of the country. Furthermore, this kind
of study could be applied to residential sector, which has different constraints from the
present one.
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