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Abstract: In the year 2014, Almeida et al. introduced a new class of mappings, namely, contractions
of Geraghty type. Additionally, in the year 2021, Beg et al. introduced the concept of generalized
F-proximal contraction of the first kind and generalized F-proximal contraction of the second kind,
respectively. After developing these concepts, authors mainly studied the best proximity points for
these classes of mappings. In this short note, we prove that the problem of the existence of the best
proximity points for the said classes of proximal contractions is equivalent to the corresponding fixed
points problems.
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1. Introduction

In 2012, Wardowski [1] first introduced the notion of F-contraction mapping and
proved the fixed point results of such mappings in the context of metric spaces. After that,
Cosentino and Vetro [2] came up with the notion of F-contraction of Hardy–Rogers-type
as a generalization of F-contraction mapping and showed the existence of fixed points for
such a class of mappings. Cosentino and Vetro proved the following fixed point theorem
in [2].

Theorem 1. [2] Let (X, d) be a complete metric space and T : X → X be a self mapping such that
T is an F-contraction of Hardy-Rogers-type with coefficients a, b, c, e, τ, L. Then T has a fixed point.
Moreover, if a + e + L ≤ 1 then T has a unique fixed point.

If the mapping is non-self, then it may not have fixed point(s). Best proximity point
theory discusses the theory of best proximity point(s), when the mapping is non-self. In
case of self mapping, best proximity point(s) are nothing but the fixed points. In the year
2021, Beg et al. [3] introduced new classes of non-self mappings and developed the theory
of best proximity points for these new classes of mappings. For the definition of generalized
F-proximal contraction of the first kind and second kind, approximatively compactness,
p-property, readers can see [3] for details. In this paper, we mainly deal with the best
proximity point results ([3], Theorems 3.1 and 3.2) and ([4], Theorem 3) . After proving ([4],
Theorem 3), Almeida et al. stated the following fixed point theorem as a corollary.

Corollary 1. ([4], Corollary 3) Let (X, d) be a complete metric space and T : X → X be a
continuous contraction of Geraghty type. Then T has a unique fixed point.
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In this paper, Ξ denotes the class of functions H : (0, ∞)→ [0, 1) such that H(sn)→
1 =⇒ sn → 0 as n → ∞. This class of functions is used to define contraction of the
Geraghty type in [4]. For details, one can see [4]. In this current paper, we show that the
existence of best proximity point for these new classes of mappings can be achieved from
the corresponding fixed point results (we refer to [5,6] for different approaches to the same
problem). Throughout this article R+ denotes the set of all positive real numbers and R
denotes the set of all real numbers. Let f : R+ → R be a mapping satisfying the following
conditions:

(i) f is strictly increasing;
(ii) for every sequence {αn}n≥1 in R+ we have, lim

n→∞
αn = 0⇐⇒ lim

n→∞
f (αn) = −∞;

(iii) there exists s ∈ (0, 1) such that lim
α→0+

αs f (α) = 0.

Some examples for this class of functions can be found in the work of Wardowski and
Beg et al. In this paper we denote this class by Ω. For the definition of F-contraction and
F-contraction of Hardy-Rogers-type, readers can see the paper of Wardowski, Cosentino
and Vetro.

We need the following result from [7].

Lemma 1. ([7], proposition 3.3) Let (A, B) be a non-empty and closed pair of subsets of a metric
space (X, d) such that B is approximatively compact with respect to A. Then A0 is closed.

2. Main Results

Theorem 2. ([3], Theorem 3.1) is a straightforward consequence of Theorem 1.

Proof. Let x ∈ E0. As P(E0) ⊆ G0, we have P(x) ∈ G0. So, there exists y ∈ E0 such that
d(y, P(x)) = dist(E, G). We show that y ∈ E0 is unique. Suppose there exists y1, y2 ∈ E0
such that d(y1, P(x)) = dist(E, G) and d(y2, P(x)) = dist(E, G). So,

d(y1, y2) = d(Px, Px)

=⇒ d(y1, y2) = 0

=⇒ y1 = y2.

Define a mapping S : E0 → E0 by Sx = y having the property that d(Sx, Px) = dist(E, G).
Now, we show that S is an F-contraction of Hardy–Rogers-type. Let x1, x2 ∈ E0 with
S(x1) 6= S(x2). Now,

τ + F(d(S(x1), S(x2))) ≤

F
(

ad(x1, x2) + bd(S(x1), x1) + cd(S(x2), x2) + h(d(S(x2), x1) + d(S(x1), x2))
)

=⇒ τ + F(d(S(x1), S(x2))) ≤

F
(

ad(x1, x2) + bd(S(x1), x1) + cd(S(x2), x2) + hd(S(x2), x1) + hd(S(x1), x2)
)

.

This shows that the mapping S : E0 → E0 is an F-contraction of Hardy–Rogers-type.
Additionally, from Lemma 1, we can conclude that E0 is closed. So, there exists z ∈ E0
such that S(z) = z. Also, d(z, Pz) = d(Sz, Pz) = dist(E, G). This shows that z is a best
proximity point for the mapping P : E→ G. The uniqueness of the best proximity point for
the generalized F-proximal contraction of the first kind mapping P has been shown by Beg
et al. in [3], so it is omitted.

Theorem 3. ([3], Theorem 3.2) is a straightforward consequence of Theorem 1.

Proof. Let x ∈ E0. Since Px ∈ G0 so, there exists ux ∈ E0 such that d(ux, Px) = dist(E, G).
Let

A(Px) = {h ∈ E0 : d(h, Px) = dist(E, G)}.
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So, A(Px) 6= φ. We show that the set A(Px) is singleton for each x ∈ E0. Let wx, zx ∈ A(Px).
Then

d(wx, Px) = dist(E, G) and d(zx, Px) = dist(E, G).

So,
d(wx, zx) = d(Px, Px) = 0

=⇒ wx = zx.

Let us define a function F : P(E0) → P(E0) by F (Px) = Pux where ux ∈ A(Px). Now,
we show that the mapping F : P(E0)→ P(E0) is an F-contraction of Hardy–Rogers-type.
Let x1, x2 ∈ E0 with F (Px1) 6= F (Px2). Since Px1, Px2 ∈ P(E0) ⊆ G0, so, there exists
u1, u2 ∈ E0 such that d(u1, Px1) = dist(E, G) and d(u2, Px2) = dist(E, G). So,

τ + F(d(Pu1), Pu2))) ≤

F
(

ad(Px1, Px2) + bd(Pu1, Px1) + cd(Pu2, Px2) + h(d(Pu2, Px1) + d(Pu1, Px2))
)

=⇒ τ + F(d(FPx1, d(FPx2))) ≤

F
(

ad(Px1, Px2) + bd(FPx1, Px1) + cd(FPx2, Px2) + h(d(FPx2, Px1) + d(FPx1, Px2))
)

.

Let (xn)n≥1 be a sequence in E0 such that Pxn → u ∈ G as n → ∞ for some u ∈ G. For
each n ≥ 1, there exists vn ∈ E0 such that d(vn, Pxn) = dist(E, G). It can be easily seen
that d(vn, u) → dist(E, G) as n → ∞. Since E is approximatively compact, there exists a
subsequence (vnk ) such that vnk → v0 as k → ∞ for some v0 ∈ E. Since P : E → G is
continuous so, Pvnk → Pv0 as k→ ∞. Now, we show that this limit does not depend on the
subsequence of the sequence (vn). Let (vmk ) be another subsequence such that Pvmk → Pu0
as k→ ∞. Since d(vnk , Pxnk ) = dist(E, G) and d(vmk , Pxmk ) = dist(E, G), so we have

d(vnk , vmk ) = d(Pxnk , Pxmk ).

As k→ ∞ we have d(v0, u0) = 0 and v0 = u0. This shows that limk→∞ Pvnk = limk→∞ Pvmk .
Similarly, it can be shown that if (xn) and (yn) be two sequences in E0 such that limn→∞ Pxn =
limn→∞ Pyn then limn→∞ Pvn = limn→∞ Pwn where d(vn, Pxn) = dist(E, G) and
d(wn, Pyn) = dist(E, G). Let us define another function F : P(E0) → P(E0) by the fol-
lowing. Let x ∈ P(E0). Then there exists a sequence (xn) in E0 such that Pxn → x as n→ ∞.
For each n ≥ 1 there exists vn ∈ E0 such that d(vn, Pxn) = dist(E, G). We define,

Fx = lim
k→∞

Pvnk = Pvx

where (vnk ) be a subsequence of (vn) with vnk → vx and Pvnk → Pvx as k→ ∞. Now, we
show that the mapping F : P(E0)→ P(E0) is an F-contraction of Hardy–Rogers-type. Let
q1, q2 ∈ P(E0) with Fq1 6= Fq2. Then there exists two sequences (xn) and (yn) in E0 such
that Pxn → q1 and Pyn → q2 as n→ ∞. Let (vn) and (wn) be two sequences in E0 such that

d(vn, Pxn) = dist(E, G) and d(wn, Pyn) = dist(E, G)

for all n ≥ 1. Then there exists two subsequences (vnk ) and (wmk ) such that Pvnk → Fq1
and Pwmk → Fq2 as k→ ∞. So,

τ + F(d(Pvnk , Pwmk )) ≤
F
(

ad(Pxnk , Pymk ) + bd(Pxnk , Pvnk ) + cd(Pymk , Pwmk ) + h(d(Pxnk , Pwmk ) + d(Pymk , Pvnk ))
)

Since F is increasing, so,

d(Pvnk , Pwmk ) ≤
ad(Pxnk , Pymk ) + bd(Pxnk , Pvnk ) + cd(Pymk , Pwmk ) + h(d(Pxnk , Pwmk ) + d(Pymk , Pvnk ))
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As k→ ∞ we have,

d(Fq1,Fq2) ≤
ad(q1, q2) + bd(q1,Fq1) + cd(q2,Fq2) + h(d(q1,Fq2) + d(q2,Fq1)).

Consequently, we have,

τ + F(d(Fq1,Fq2)) ≤

F
(

ad(q1, q2) + bd(q1,Fq1) + cd(q2,Fq2) + h(d(q1,Fq2) + d(q2,Fq1))
)

.

So, by Theorem 1, F has a fixed point in P(E0). First of all, let there exists x∗ ∈ P(E0)
be such that Fx∗ = x∗. Let x∗∗ ∈ E0 be such that d(x∗∗, x∗) = dist(E, G). This implies
d(x∗∗,Fx∗) = dist(E, G). So, d(x∗∗, Px∗∗) = dist(E, G). In this case x∗∗ ∈ E0 is the best
proximity point of P : E→ G. On the other case let, q ∈ P(E0)− P(E0) be such that Fq = q.
In this case, there exists (xn) in E0 such that Pxn → q as n→ ∞. Let (yn) be a sequence in
E0 be such that d(yn, Pxn) = dist(E, G). Then by definition

Fq = lim
k→∞

Pynk = Pv0

where (ynk ) be a subsequence of (yn) with ynk → v0 ∈ E and Pynk → Pv0 as k→ ∞. Now,
since d(ynk , Pxnk ) = dist(E, G), as k→ ∞ we have

d(v0, q) = dist(E, G)

=⇒ d(v0,Fq) = dist(E, G)

=⇒ d(v0, Pv0) = dist(E, G).

In this case v0 ∈ E is the best proximity point of the mapping P : E→ G. The uniqueness
of best proximity point is shown by Beg et al. in [3].

Theorem 4. ([3], Theorem 3.3) is a straightforward consequence of Theorem 1.

Proof. In ([3], Theorem 3.3), since the pair (E, G) satisfies the p-property and P(E0) ⊆ G0,
so, it can be seen that E0 is closed. The proof is similar to Theorem 2, so omitted.

Example 1. We apply our result (Theorem 3) to ([3], Example 3.4) to validate our claim. We will
construct our function F : P(E0) → P(E0). In this case P(E0) = [0, 1

2 )× {1} and P(E0) =

[0, 1
2 ]× {1}. The mapping F : P(E0)→ P(E0) be defined by

F (x, 1) =

{
( x

2(x+2) , 1) if x ∈ [0, 1
2 );

( 1
10 , 1) if x = 1

2

(1)

and, (0, 1) is the fixed point of the mapping F : P(E0)→ P(E0). Since (0, 1) ∈ P(E0) so, by our
result x∗ = (0, 0) is the best proximity point.

Theorem 5. ([4], Theorem 3) is a straightforward consequence of Corollary 1.

Proof. Let x ∈ A0. As T(A0) ⊆ B0, so, T(x) ∈ B0. So, there exists y ∈ A0 such that
d(y, T(x)) = dist(A, B). Now, we show that y ∈ A0 is unique. Suppose there exists
y1, y2 ∈ A0 such that d(y1, T(x)) = dist(A, B) and d(y2, T(x)) = dist(A, B). So,

d(y1, y2) = d(Tx, Tx)

=⇒ d(y1, y2) = 0

=⇒ y1 = y2.
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Define a mapping S : A0 → A0 by Sx = y having the property that d(Sx, Tx) = dist(A, B).
It can be seen that A0 is a closed subset of X. We show that S : A0 → A0 is a contraction of
Geraghty type. Let x1, x2 ∈ A0. Since d(S(x1), T(x1)) = dist(A, B) and d(S(x2), T(x2)) =
dist(A, B), so, we have d(S(x1), S(x2)) = d(T(x1), T(x2)). Since T : A→ B is a contraction
of Geraghty type, so, there exists α ∈ Ξ such that

d(T(x1), T(x2)) ≤ α(d(x1, x2)) max {d(x1, x2), M(x1, x2)− dist(A, B)}
=⇒ d(S(x1), S(x2)) ≤ α(d(x1, x2)) max {d(x1, x2), M(x1, x2)− dist(A, B)}.

It can be easily seen that S : A0 → A0 is continuous. So, from Corollary 1, there exists
z ∈ A0 such that S(z) = z. Moreover, d(z, T(z)) = d(Sz, Tz) = dist(A, B). So, z is a
best proximity point for the mapping T. Uniqueness is shown by Almeida et al. in ([4],
Theorem 3).

Example 2. We apply Theorem 5 to ([4], Example 3) to validate our claim. In this example,
X = R2 with usual metric, A = {0} × [0, ∞), B = {1} × [0, ∞). The mapping T : A → B be
defined by

T(0, x) = (1,
x

1 + x
), (0, x) ∈ A.

In this case A0 = A, and B0 = B. We construct our function S : A0 → A0 according to Theorem 5.
Let (0, x) ∈ A0. Let (0, y) ∈ A0 be such that

d
(
(0, y), T(0, x)

)
= 1

=⇒ d
(
(0, y), (1, x

1+x )
)
= 1

=⇒
√

1 + ( x
1+x − y)2 = 1

=⇒ y = x
1+x .

So, the mapping S : A0 → A0 be defined by S(0, x) = (0, x
1+x ). According to Theorem 5, (0, 0) is

the unique best proximity point of the mapping T.

3. Conclusions

In [3], Beg et al. introduced the notion of generalized F-proximal contraction of the
first kind of mapping, generalized F-proximal contraction of the second kind of mapping
and presented a best proximity point result ([3], Theorems 3.1 and 3.2). In this paper, we
show that the best proximity point results for generalized F-proximal contraction of the
first kind as well as the second kind mappings can be achieved from ([2], Theorem 3.1).
Additionally, the same kind of result is proved for a contraction of Geraghty type. Several
examples are also discussed to validate our findings.
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