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Abstract

The theory describing the interaction between light and matter at nanoscale is nearly as old
as quantum mechanics. Over the years, it has been shown that such theoretical models not
only enable materials scientists to deepen their physical understanding of the underlying mi-
croscopic mechanisms but also provide the possibility to develop novel materials and devise
advanced mechanisms to use within emerging technological applications. With the steady
increase in computational power, the combination of experiments with theoretical and com-
putational modeling is currently perceived as a promising approach to significantly reduce the
time and effort to optimize the functionality of a material for a given application. This usually
involves simulating materials at different scales, making use of the so-called ab initio electronic
structure methods to describe the behavior of materials at the atomic scale. In this thesis, we
particularly focus on the ab initio many-body perturbation theory (MBPT) providing powerful
tools to describe the electronic excitations of materials.

Within the MBPT, the GW approximation is a Green’s function-based framework which is
extensively employed to investigate the electronic structure of diverse materials in both finite
and extended phases at the same level of reasonable accuracy. However, the computational
complexity associated with the canonical implementation of the method often hinders its ap-
plication in large systems with more than a hundred atoms. In the present dissertation, after
introducing the underlying methodology, we discuss a new implementation of the one-shot GW
wherein the computation of the quasiparticle energies requires neither the explicit calculation of
the response function nor the inversion of dielectric matrices. In doing so, we ultimately benefit
from the sparsity associated with the use of a basis set of atomic orbital, and design iterative
algorithms dealing with matrix-vector products instead of memory-demanding matrix-matrix
operations. To validate our numerical implementation, we rigorously test the performance of
the iterative algorithm for a variety of small molecules and a few relatively large systems, such
as buckyball fullerenes with up to 320 atoms. By inspecting the memory usage of the proposed
algorithms, we demonstrate the capability of the iterative implementation to treat large systems
with limited computational resources.

In the present doctoral thesis, we also discuss the application of MBPT methods to molecu-
lar systems. In the realm of MBPT, the GW method is the predominant framework to describe
the spectra of single-particle-like electronic excitations (quasiparticles). To demonstrate this
point, we benchmark the ionization energies, as a fundamental key quantity for many optoelec-
tronic applications, of 42 open-shell molecules computed with the G0W0 method using different
unrestricted stating-point calculations. Although the final results point to an undesired depen-
dency on the choice of the initial mean-field solutions, the average performance of the G0W0

correction on top of standard hybrid functionals is found reasonably accurate as compared to
the results obtained from the high-level quantum chemistry methods. The significant role of
correlation effects captured by the GW self-energy is also stressed in the case of a few examples
for which the mean-field methods provide a qualitatively incorrect estimation of the molecular
orbital ordering.
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Extending our study to solid state, we investigate the electronic structure and optical prop-
erties of a few organic semiconductors by a combination of MBPT methods. For the diindenop-
erylene (DIP) molecular crystal, we show that the quasiparticle band structure as calculated
within the GW approximation results in a transport gap in excellent agreement with photo-
emission spectroscopy data, while the absorption spectra and optical gap predicted by solving
Bethe-Salpeter equation reconcile available experimental data. Here, we also explore the p-type
doping of the DIP crystal with two recently proposed electron-accepting molecular dopants,
and characterize the optical and electronic properties of the doped DIP crystals using the same
methodology. As compared to pristine DIP, we find that the band gap of both doped crystals
is narrowed considerably due to the formation of hybridized states at the valence band-edge
associated with a host-dopant charge-transfer complex. These hybridized electronic structure
of the doped DIP crystals results in a broad absorption spectrum associated with new optically
active excitations spanning over infrared and visible ranges. While the strong transitions in the
infrared range are attributed to the excitations with a noticeable charge-transfer character, we
show that the absorption spectra of both doped DIP crystals features an onset which is con-
siderably lower than that of the pristine DIP absorption. Therefore, the two proposed doped
crystals appear as technologically relevant materials for optoelectronic applications.
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Resumen en Castellano

La teoría que describe la interacción de la luz con la materia es casi tan vieja como la mecánica
cuántica. A lo largo de los años, dichos modelos teóricos no solo han demostrado su potencia
para desvelar y profundizar en la comprensión de los mecanismos microscópicos detrás de
dicha interacción, sino que han permitido a los científicos de materiales el diseño de nuevos
materiales para aplicaciones tecnológicas concretas. Con el incremento constante en la potencia
de cálculo de los ordenadores, la importancia de la modelización teórica en ciencia de materiales
ha ganado cada vez más peso. Hoy en día, la combinación del trabajo experimental con la
modelización computacional y teórica se considera día como la ruta prometedora y eficiente
para la optimización y descubrimiento de materiales con nuevas funcionalidades. Normalmente
es necesario simular los materiales a escalas diferentes, ajustando la complejidad del modelo y el
contenido físico del mismo a las necesidades de cada escala. En la escala atómica generalmente
se hace uso de los llamados métodos ab initio, que describen el comportamiento de los materiales
a partir de la descripción cuántica del movimiento de los electrones en su interior. En concreto,
en esta tesis pondremos el foco en los métodos ab initio basados en la teoría de perturbaciones
de muchos cuerpos (MBPT del inglés, Many-Body Perturbation Theory). MBPT es, a día de
hoy, una de las principales teorías utilizadas para describir las excitaciones electrónicas de los
materiales.

Dentro de MBPT existen diversos métodos que tienen como finalidad describir distintos
tipos de excitaciones y procesos. Por ejemplo, la aproximación GW , basada en el uso de las
funciones de Green, es la teoría de elección para describir con precisión la estructura electrónica
(las así llamadas cuasi-partículas) de los materiales tanto en fases extendidas (sólidos cristal-
inos) como para sistemas finitos. Sin embargo, a pesar de su popularidad, la complejidad y
coste computacional del método GW hace con frecuencia inviable su aplicación a sistemas que
contienen más de un centenar de átomos. En la presente disertación, después de una sucinta
introducción a la teoría y metodología detrás de la aproximación GW , discutiremos una nueva
implementación del método G0W0 que no requiere ni el cálculo explícito de la función respuesta
ni la inversión de la matriz dieléctrica del sistema. Para hacer esto posible, hemos explotado el
carácter “sparse” (este término en inglés se suele utilizar para designar a matrices que contienen
un número muy alto de entradas nulas) de las matrices que se obtienen al evaluar los operadores
en nuestra base de orbitales atómicos y diseñado un algoritmo iterativo que permite utilizar
únicamente productos matriz-vector, en vez de construir y operar con matrices completas. De
esta manera reducimos enormemente los requisitos de memoria necesarios, lo que nos ha per-
mitido aplicar nuestra implementación a sistemas que contienen varios cientos de átomos sin
ninguna pérdida de precisión. Para comprobar este último extremo, hicimos un testeo para
validar nuestro método en un conjunto de moléculas pequeñas, encontrando muy buena com-
paración tanto frente a cálculos realizados con una implementación propia no-iterativa, como
frente a resultados obtenidos con códigos de otros autores. Finalmente pudimos obtener resul-
tados precisos para fullerenos conteniendo más de trescientos átomos y para otros sistemas de
considerable tamaño. La gran reducción en el uso de memoria en nuestro algoritmo iterativo
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hace que sea posible estudiar sistemas de gran tamaño utilizando recursos computacionales
modestos.

En esta tesis doctoral discutimos en uso de MBPT para describir sistemas moleculares.
Dentro de MBPT, la aproximación GW es el método predominante para describir el espectro
de excitaciones cargadas de tipo “partícula” o cuasi-partículas en sistemas extendidos. Re-
cientemente, ha crecido el interés por evaluar como de precisa es la aproximación GW para
describir el mismo tipo de excitaciones en las que se añade o remueve un electrón en sistemas
moleculares. Los resultados de esos estudios generalmente han sido favorables con respecto al
balance entre precisión y coste computacional del GW también en el caso de sistemas molec-
ulares. Sin embargo, casi todos estos estudios se han restringido a moléculas de capa cerrada.
Por esta razón, en la presente tesis hemos estudiado el potencial de ionización de cuarenta
y dos pequeñas moléculas de capa abierta (radicales) utilizando el método G0W0. Nuestros
cálculos G0W0 utilizaban como punto de partida distintos cálculos de campo medio, fundamen-
talmente basados en la teoría del funcional de la densidad con diversos funcionales híbridos. En
promedio observamos que los resultados G0W0 son bastante precisos en comparación métodos
de química cuántica de alta precisión como el CCSD(T). El papel significativo de los efectos
de correlación capturados por la autoenergía GW también se ve reflejado en la corrección del
orden de los orbitales moleculares de frontera en varios casos en los que los funcionales híbridos
no son capaces de capturar ese orden correctamente.

Extendiendo nuestro estudio a sistemas de estado sólido, investigamos la estructura elec-
trónica y las propiedades ópticas de algunos semiconductores orgánicos moleculares usando una
combinación de métodos MBPT. Para el cristal molecular DIP, encontramos que la estructura
de bandas de cuasi-partículas que se obtiene con la aproximación GW predice un “gap” de
transporte en acuerdo excelente con los datos de fotoemisión, mientras que el espectro de ab-
sorción óptica simulado resolviendo la ecuación de Bethe-Salpeter también está en buen acuerdo
con las observaciones experimentales. A continuación, exploramos el dopaje del cristal de DIP
con dos moléculas aceptoras de electrones, el F4TCNQ y el F6TCNNQ. En comparación con
el DIP prístino, vemos que en ambos casos el “gap” se reduce considerablemente debido a la
formación de estados híbridos entre las moléculas de la matriz y las moléculas dopantes. Estos
estados aparecen en el borde de la banda de valencia y se deben a la formación de un com-
plejo de transferencia de carga entre el DIP y las moléculas dopantes. La presencia de estos
estados híbridos da lugar a un espectro de absorción óptica ensanchado, con un umbral para la
absorción mucho más pequeño que en el caso del DIP puro, y con nuevas transiciones ópticas
activas tanto en el infrarrojo como en el visible. A pesar de su fuerte actividad, las nuevas
transiciones que aparecen en el infrarrojo son atribuidas a excitaciones con una componente
de transferencia de carga importante. Todo ello hace de los dos sistemas estudiados, el DIP
dopado con F4TCNQ y el DIP dopado con F6TCNNQ, materiales con propiedades altamente
relevantes para aplicaciones en optoelectrónica.
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Chapter 1

Introduction

Materials science is an interdisciplinary field that explores the physical and chemical features
of matter to be applied in engineering and industrial manufacturing purposes. In this regard,
the development of the basic theoretical models and tools for predicting the intrinsic properties
of matter is one of the many contributions of materials science in the quest for devising more
efficient materials. In particular, the so-called electronic structure theory and the associated
computational methods have been developed for nearly one-hundred years, since the discov-
ery and initial formulation of quantum mechanics, and represent a major contribution to our
understanding of materials properties [1, 2].

Within the electronic structure methods, the theoretical spectroscopy plays a vital role in
describing the fundamental microscopic processes appearing as macroscopic observables in dif-
ferent spectroscopies. Over the years, it has been shown that theoretical studies on light-matter
interaction not only facilitate the interpretation of experimental spectra but also provide the
basis for many technologies such as lasers, light-emitting diodes, solar cells, and detectors.
Therefore, sustained efforts have been devoted to developing more sophisticated and compu-
tationally tractable models predicting the optical properties and the corresponding excitations
within an interacting system. Considering the excitations as a perturbation upon the ground
state, the many-body perturbation theory (MBPT) is often the method of choice for a theoretical
understanding of such properties. The present dissertation presents our own contribution along
this research path. Here, we aim to investigate the electronic structure and optical properties of
several molecular systems in both gas and condensed phases. In doing so, we deal with different
MBPT approaches, particularly the GW approximation and the Bethe-Salpeter formalism as
the state-of-the-art approaches to describe charged excitations and optical (neutral) excitations.
Over the years, it has been shown that the above-mentioned methods often yield a precise de-
scription of the electronic structure of condensed matter systems in excellent agreement with a
wide range of experiments such as photo-emission and optical absorption. Here, we assess the
quality of the MBPT approaches to describe the electronic structure and optical properties of
molecular systems, which are now the subject of interest for novel electronic and photovoltaic
devices. This represents the main motivation of this doctoral project. Additionally, we present
an iterative algorithm moderating the computational cost of G0W0 calculations. The present
dissertation contains three different research projects accomplished during the Ph.D. and is
organized as follows.

In an introductory chapter, we provide the reader with a brief introduction to the theo-
retical spectroscopy. Then, we outline the main features and approximations behind the most
popular mean-field methods whose approximate solutions in the ground-state come into use as
the starting point for more accurate calculations within MBPT. Next, we provide a detailed
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discussion centering on the Green’s functions as the central mathematical object in MBPT,
followed by the basics of the GW method along with widely used approximations that make
this method practical from a computational point of view. To properly describe the optical
responses of material, including the electron-hole interaction, the Bethe-Salpeter formalism is
also introduced along with a brief introduction to time-dependent density functional theory
within the linear response regime.

This dissertation comes along with an implementation of the GW approximation within a
specific tool, the PyNAO package, which is an open-source atomic orbital basis code covering the
most popular MBPT approaches. Our implementations, which are detailed in the Chapter 3 of
this doctoral thesis, concern algorithmic improvements that ultimately allow us to carry out the
GW approximation for relatively large systems with limited computational resources. Starting
from a straightforward implementation of the key quantities within the GW framework such as
response function and screened interaction, we validate our implementation by benchmarking
the ionization energy of a set of small molecules against those obtained from other codes.
Later, we propose a new scheme wherein the computation of the screened Coulomb interaction
within the G0W0 algorithm requires neither the explicit calculation of the memory-intensive
response function nor the inversion of large-scale dielectric matrices. Indeed, we design iterative
algorithms that avoid matrix-matrix operations but rather multiply vectors by matrix and work
with the resulting vectors. This implementation results in a decrease in the memory scaling
with system size, enabling us to apply the GW method to relatively large systems with limited
computational power. It is worth noting that we explicitly perform the contour deformation
technique for the required frequency integration to evaluate the G0W0 self-energy without any
extra approximation such as plasmon pole models. Applying the new algorithms developed in
this thesis, we first validate our numerical implementation and then demonstrate the capability
of the iterative algorithm to successfully compute the quasiparticle energies of some relatively
large systems such as buckyball C180, C260, C320 fullerenes and two graphene islands.

In Chapter 4, which is concerned with the application of the GW method to open-shell
molecules, we benchmark the ionization energies obtained from the one-shot GW on top of dif-
ferent unrestricted mean-field solutions against high-level correlated quantum chemistry meth-
ods. Despite the starting-point dependency of the results, we find that the G0W0 correction
to hybrid functionals provides reasonably accurate ionization energies differing only by a few
tenths of eV from the coupled-cluster values. Furthermore, we assess the capability of the GW
to reproduce the correct energy ordering of molecular spin-orbitals. To such an aim, we thor-
oughly discuss several open-shell molecules, for which approximate functionals fail to correctly
capture the single-electron spectrum while the GW correction can restore the correct molecular
orbital ordering, thanks to the contribution of its dynamic correlation.

Within Chapter 5 of this dissertation, we turn our attention to molecular crystals and
consider molecular doping to design new organic compounds with improved performance for
optoelectronics. In doing so, we first compute the GW quasiparticle band structure and solve
the Bethe-Salpeter equation for the diindenoperylene (DIP) molecular crystal, as an organic
semiconductor of particular interest for electronic and optoelectronic applications, and compare
the theoretical results with photo-emission and optical absorption spectroscopy. Then, we
investigate the p-type doping of the DIP crystal with two recently proposed electron-accepting
molecular dopants using the same methodology. As compared to pristine DIP, we discuss the
band gap narrowing of both doped crystals due to the formation of hybridized states at the
valence band-edge associated with a host-dopant charge-transfer complex. Moreover, we show
how the hybridized electronic structure of the doped DIP crystals results in a broad absorption
spectrum associated with new optically active excitations within the infrared and visible ranges.
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The strong transitions in the infrared range are attributed to charge-transfer excitation from
the DIP host molecules to the neighboring molecular dopants. More importantly, our results
indicate that the optical absorption spectra of the doped DIP crystals cover the visible window
with an onset that is considerably lower than that of the pristine DIP absorption, which can
be considered as an improvement for optoelectronic applications.

The dissertation is closed with a general conclusion in Chapter 6 that summarizes our main
results.

4



Chapter 2

Theoretical Background

2.1 The Many-Body Problem in Practice

Our goal in this thesis is set to describe the intrinsic features of actual materials through
theoretical methods, which are firmly rooted in quantum and statistical mechanics. In principle,
one can obtain all the required information to describe both ground and excited states of matter
by solving the Schrödinger equation with a many-body Hamiltonian

Ĥ = −
∑
I

ℏ2

2MI

∇2
I +

1

2

∑
I ̸=J

ZI ZJ e
2

|RI −RJ |

− ℏ2

2me

∑
i

∇2
i +

1

2

∑
i ̸=j

e2

|ri − rj|
−
∑
I,i

ZI e
2

|ri −RI |
,

(2.1)

where electrons and nuclei are denoted by lowercase and uppercase subscripts1, respectively.
The first two terms on the right-hand side of the equation above represent the nuclear kinetic
energy and nuclei Coulombic interactions. The last three terms embody the electronic contribu-
tions, including the kinetic energy of the electrons T̂e, the two-body electron-electron interaction
V̂e-e, and the electron-nucleus interaction V̂e-n, respectively. Using the Born-Oppenheimer (adi-
abatic) approximation [3], we omit the kinetic energy of nuclei2 and consider nuclei as fixed
objects in space. Therefore, a constant value added to the zero of energy can represent all
nucleus-nucleus interactions. Given this, the many-body Hamiltonian (2.1) can be split into
the nuclear and electronic parts in which the latter depends parametrically on the nuclei coor-
dinates and becomes

Ĥe = T̂e + V̂e-e + V̂e-n. (2.2)

The whole electronic structure problem is embedded within the electronic Hamiltonian above.
Notice that T̂e and V̂e-e are universal for all electronic structure problems, and only V̂e-n contains
information specific to a particular system [1].

Knowing the electronic Hamiltonian, one then can set up the fundamental equation govern-
ing quantum systems, namely the time-dependent Schrödinger equation

1For example, ZI and MI represent the mass and charge of nuclei with coordinates RI . Notice that in the
following, we will use atomic units, so that, ℏ = me = e = 4π

ϵ0
= 1.

2Kinetic energy of nuclei is inversely proportional to their mass. Given this, one can consider this term as a
negligible value with respect to other terms, where M ≥ 1836 me.
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iℏ
d

dt
Ψ(x1,x2, · · · ,xn; t) = Ĥe Ψ(x1,x2, · · · ,xn; t), (2.3)

which yields many-body wavefunction Ψ({xn, t}), containing all information which can be ex-
perimentally observed. Here, the index xn is assumed to include both the coordinate r and
spin σ3. Despite the apparent simplicity of the problem, the straightforward solution to the
many-body Schrödinger equation is extremely difficult and it appears practically impossible
in most cases. The underlying reason is the dimensionality of the many-body wavefunction
Ψ({xn, t}), which rapidly encounters an exponential wall [4]. This means as the number of
electrons within a system increases, the wavefunction size scales exponentially and becomes
impossible to compute or store. Therefore, the direct application of such a wavefunction-based
treatment is limited to small numbers of electrons4.

For real materials, the Schrödinger equation with Hamiltonian (2.2) has to be approximated.
Unfortunately, there is no universal, tractable, and feasible technique to deal with the many-
body problem. In fact, simplified approaches to solve the real many-body Schrödinger equation
have been demanded since the early years of quantum mechanics. Consequently, several ab
initio electronic structure methods have been developed over the years—based upon the funda-
mental quantum mechanic’s laws5—to approximately evaluate the solutions of the Schrödinger
equation for many-body systems. Among all, the most prominent and practical approaches to
describe the electronic structure of condensed matters are: mean-field methods [1], many-body
perturbation theory (MBPT) [1, 6], wave-function-based methods such as coupled cluster and
full configuration interaction [7], and quantum Monte-Carlo [8]. Each of the approaches above
treats the many-body problem differently and, therefore, achieves its own successes and limi-
tations in terms of application, computational efficiency, and accuracy6. The method of choice
in this thesis is MBPT, dealing with electron-electron interactions as a perturbation added to
the mean-field ground-state solution of the system. This parallels experimental situations in
which the system is probed by an external perturbation, e.g., a photon7.

In this chapter, we begin our discussion with a brief introduction to the application of the
theoretical spectroscopy in Section 2.2, which is the objective of this dissertation. In Section
2.3, we focus on two mean-field methods: the Hartree-Fock and the density functional theory
(DFT) whose approximate solutions in the ground-state come into use as the starting point for
more accurate calculations within MBPT. An in-principle exact time-dependent extension of
DFT to describe the electronic excitations is presented in Section 2.4. Next, we will provide the
reader with our detailed discussion centering on the Green’s functions as the central variable
in MBPT. Eventually, Section 2.6 provides the basics of a widely used practical solution to
the many-body problem: the GW approximation followed by the Bethe-Salpeter formalism.
The performance of the wave-function-based methods will be touched upon as references in the
further chapters.

3For any electronic system, Ψ({xn, t}) must be anti-symmetric in the coordinates of the electrons.
4There are only three simple problems of the free electron, the hydrogen atom, and the harmonic oscillator

for which the Schrödinger equation has been solved exactly. Note that in these cases, there is no two-body
Coulombic interaction in the Hamiltonian. As a practical approach, one might represent the many-body wave-
functions in a Hilbert space formed by linear combinations of numerous Slater determinants (2.6). This is the
configuration interaction method [5].

5This is why these methods are often referred to as the first-principles methods.
6Achieving chemical accuracy, where the energy difference is less than the ambient temperature (300 K ≈

0.026 eV), is the permanent desire in the ab initio methods.
7Notice that in perturbation theory we assume that the effect of the perturbation is weak and can be treated

to low order in a perturbation expansion.

6
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2.2 Theoretical Spectroscopy

Spectroscopic measurements provide a profound insight into the electronic structure of materi-
als. It is important to emphasize that any spectroscopic measurement perturbs the sample under
examination and elevates it to an excited state [9, 10]. In the following, we outline two types
of experiments connected intimately with the theoretical approaches that will be discussed in
this thesis.

Figure 2.1: (left) Direct and (right) inverse photo-electron spectroscopy. The valence state is
illustrated by the red shaded area while the continuum starting above the vacuum level Evac is
shown by gray. Red and blue circles represent electron and hole, respectively. Used acronyms
are defined in the text. Figure is adopted from Ref. [10].

Direct and inverse photo-emissions are the prototype spectroscopy techniques that are ex-
tensively used to probe the density of occupied and unoccupied states for diverse materials
[9, 10]. Schematic illustrations of both processes are depicted in Figure 2.1. In the direct
photoemission, the system under investigation absorbs a photon with an energy of hν. This
leads to the extraction of an electron with a kinetic energy of Ekin as it reaches the detector.
Removed electron remains in an excited state s above vacuum energy Evac

8 and leaves a hole
in the level was formerly occupied—somewhere in the valence state. Therefore, if the system
used to contain N electrons before the absorption of the incident photon, it now consists of
N − 1 electrons. Considering conservation laws, one can ascribe the change in energy of the
system to the binding energy of the s-th occupied state εs, namely

εs = EN − EN−1,s εs < EFermi

= (Ekin + Φ)− hν
(2.4)

8Evac = Φ+ EFermi, where Φ is the work function.
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2.2. THEORETICAL SPECTROSCOPY

where, εs is related to the three experimental observables: the kinetic energy of the photo-
electron, the work function Φ, and the incident photon energy. Considering εs as the required
energy to remove an electron from the bound state s of the neutral sample, one can relate εs
to the ionization energy (IE)—the required energy to remove one electron from the highest
occupied state. In doing so, we should note that the standard reference for measuring IE (or
binding energy) in a gas-phase experiment is the vacuum level, while the binding energies for
solids are usually referenced to the Fermi level EFermi [11], as shown by Equation (2.4).

By inverting the photoemission process, an extra electron with energy Ekin is injected into
the N -electron system in its ground state. The incident electron is de-excited to a bound state
below the vacuum level and emits an hν photon corresponding to this transition. The system
now contains N+1 electrons. Hence, one can reckon the required energy for adding an electron
to the system as [10]

εs = EN+1,s − EN εs ≥ EFermi

= hν − (Ekin + Φ).
(2.5)

Similarly, the electron affinity (EA) could be related to the electron addition energy εs9.
For solids, if the photo-emission experiment is angle-resolved, one can additionally measure

the variation of photo-current as a function of the photo-electron energy hν and the momentum
with respect to the crystallographic axes, mapping different k-points of the Brillouin zone. This
technique is known as the angle-resolved photoemission spectroscopy (ARPES) and can be
theoretically described by the quasiparticle band structure, for example.

Another type of experiment that will be mentioned in this thesis is the optical absorption
spectroscopy. Within this experiment, the system under investigation absorbs an impinging
photon with low energy of a few eV. Consequently, one electron might gain the required energy
to transit from the occupied to the unoccupied manifold10. Nevertheless, the excited electron
remains within the system, which contrasts markedly with the photo-emission spectroscopy
for which the excited electron is supposed to detach from the system. The remained excited
electron within the system in the optical absorption can form a bound pair with the hole left in
the valence region, known as the exciton. Considering the strength of the Coulomb attraction
between electrons and holes, determined by the localization length of the carriers and the nature
of screening, excitons are categorized into two classes: the weakly bound Wannier-Mott excitons
[12] and the tightly bound Frenkel excitons [13]. In both cases, the absorption spectrum is re-
normalized with respect to the quasiparticle spectrum as a fingerprint of the excitonic effects
[1].

An accurate description of the excited state properties can be also obtained from the the-
oretical methods as a complementary approach to the experiment. Like any other theoretical
framework, theoretical spectroscopy is governed by equations and variables whose numerical
solutions are closely linked to the experimental observables. Hence, theoretical spectroscopy is
widely employed to derive new directions for experiments, especially in the cases that are exper-
imentally difficult to measure [1]. In the following sections, we discuss how charged excitation
energies, linked to the photo-emission experiments, can be reproduced by the state-of-the-art
GW method. Additionally, we discuss two sophisticated methods to capture excitonic effects

9Electron affinity is positive when the extra electron locates in a bound state and negative if the additional
electron is unbound [10].

10Due to the negligibly small momentum carried by the incident photon, it assumes that the excited electron
retains its momentum and, therefore, the corresponding transition is vertical.
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relevant to optical absorption spectroscopy. Briefly, we show that one can compute the polariz-
ability of a given sample as a response to an external perturbation, such as a photon beam, to
gain an insight into the macroscopic dielectric function containing the required information to
reproduce the optical absorption spectrum. To do so, we need either the time-dependent DFT
or the two-particle Green’s function framework, which are separately outlined in Sections 2.4
and 2.5.

2.3 Mean-Field Methods

As already said in Section 2.1, the electronic structure in condensed matter is a complicated
many-body problem that requires statistical concepts to obtain the intrinsic features of actual
materials. To facilitate this problem, one may substitute the interacting many-body problem
for an independent-particle problem in a self-consistent field. Within this simplification, each
electron moves independently11 in an average effective potential that mimics some effects of
many-body interactions. Such a treatment is the essence of mean-field methods which are
widely used to approximate the electronic structure of interacting systems in the ground state.
Today, mean-field calculations are widely recognized as the starting point for practical many-
body calculations.

In general, mean-field methods provide easier formulations than the complicated many-
body problem. Here, we carry out two mean-field approaches which are constructed in two
ways; Hartree-Fock approximation, and the density functional theory. Within the former, one
restricts the functional form of the many-body wavefunction to a simple form given by a single
determinant, whereas the full many-body Hamiltonian (2.2) is kept unchanged. Subsection
2.3.1 is dedicated to this method. The Kohn-Sham approach to the density functional theory,
on the other hand, considers an auxiliary system of independent particles experiencing an ef-
fective potential. This method, which is elaborated in Subsection 2.3.2, can potentially result
in the exact ground-state electronic density and the total energy of the interacting system, al-
though practical implementations are based on approximations to describe the so-called density
functional.

2.3.1 Hartree-Fock Formalism

The Hartree-Fock method replaces the real many-body problem with an independent-particle
system, but makes no approximation to the full many-body Hamiltonian (2.2). Therefore, one
can directly treat the interacting many-body system with an approximation that reduces the
N -body wavefunction Ψ to an anti-symmetrized uncorrelated product function in the form of
a single Slater determinant ΨSD, which explicitly respects electron indistinguishability and the
Pauli exclusion principle [2]. The anti-symmetrized wavefunction for an N -electron system in
the form of a Slater determinant is

ΨSD =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(r1, σ1) ... ψ1(rN , σN)
ψ2(r1, σ1) ... ψ2(rN , σN)

... . . . ...
ψN(r1, σ1) ... ψN(rN , σN)

∣∣∣∣∣∣∣∣∣ , (2.6)

where ψi(rj, σj) represents the i-th single-particle spin-orbital, as a product of the space orbital
ψσi (rj) and spin function, occupied by the j-th electron. If the Hamiltonian is spin-independent

11Taking into account the Pauli exclusion principle.
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or spin-diagonal, i.e. σ ∈ {↑, ↓}, the expectation value of the electronic Hamiltonian (2.2) with
the wavefunction given in the form of (2.6) yields the total energy of a system as [1]

Etot =
〈
ΨSD|H|ΨSD〉 = −

∫ ∑
i,σi

ψσi∗i (r)
∇2

2
ψσii (r) dr+

∫
Vext(r)n(r) dr+ EH + Ex. (2.7)

Equation (2.7) gives the total energy of an electronic system in the presence of an external
potential Vext, where the electron density n is

n(r) =
∑
σ

N∑
i

ψσ∗i (r)ψσi (r). (2.8)

Within Equation (2.7), EH and Ex are the direct and exchange interaction energies among
electrons, which are known as the Hartree term and the corresponding Fock contribution to
the total energy, respectively,

EH =
1

2

∫
n(r)n(r′)

|r− r′| drdr′,

Ex = −1

2

∑
σ

N∑
i,j

ψσ∗j (r′)ψσi (r
′)ψσj (r)ψ

σ∗
i (r)

|r− r′| drdr′.

The Hartree-Fock approach minimizes the total energy for Hamiltonian (2.2) with respect
to all degrees of freedom in ΨSD (2.6). By invoking the variational method and modifying
energy functional by the method of Lagrange multipliers to impose the orthogonality of the
different single-particle spin-orbitals ψσ(r) [7], one then obtains an effective Schrödinger-like
single-particle equation to solve the problem. This procedure leads to the famous Hartree-Fock
equation [

−∇2

2
+ Vext(r) + VH(r)

]
ψσi (r) +

∫
Σσ

x(r, r
′)ψσi (r

′) dr′ = ϵσi ψ
σ
i (r). (2.9)

Here, VH(r) is the local Hartree potential which acts on each function equally

VH(r) =
N∑
j,σ

∫
ψσ∗j (r′)ψσj (r

′)

|r− r′| dr′ =

∫
n(r′)

|r− r′| dr
′. (2.10)

Hartree potential is commonly defined as the classic electrostatic potential [14]; indeed, VH

reflects the classic Coulomb repulsion of all the electrons including the electron itself on which
it acts. The latter gives rise to the self-interaction error, namely the spurious repulsion created
in a given electron by its own charge distribution. To cancel out this error, the second term on
the left-hand side of Equation (2.9) is the non-local exchange potential Σx which reads

Σσ
x(r, r

′) = −
N∑
j

ψσ∗j (r′) ψσj (r)

|r− r′| . (2.11)

One readily sees that Σx is summed over all orbitals with the same spin index including the
self-term. As a result, the exchange potential in the Hartree-Fock Equation (2.9) exactly cancels
out all the non-physical self-interaction contribution included within the VH.
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The closed set of integro-differential Equations (2.9)–(2.11) must be solved in a self-consistent
scheme [7]. The solutions are the single-particle states (spin-orbitals) ψσi (r) associated with the
Hartree-Fock eigen-energies ϵσi . Within the Hartree-Fock approach, ϵσi are physically meaning-
ful and can be approximately linked to the ionization energies (2.4) and electron affinities (2.5).
Based on Koopmans’ theorem, Hartree-Fock eigenvalue for an empty (filled) orbital equals
the difference in the total energy (2.7), if an electron is added to (removed from) the system
while the relaxation effects are neglected—the single-particle orbitals are assumed to remain
unchanged after the electron addition (removal). Under this assumption, the Hartree-Fock
method only changes the size of the determinant wavefunction (2.6) by a row and column while
all the other orbitals are kept frozen [2].

We should note that Koopman’s theorem only holds true for closed-shell systems under the
very strict assumption specified above, which usually is not a good approximation. In fact, the
estimated energy gap between ionization energy and electron affinity is greatly overestimated
in Hartree–Fock calculations. Besides the lack of relaxation of the orbitals, this overestimation
of the gap is largely related to the absence of electron correlation effect in the Hartree-Fock
Hamiltonian. Therefore, Hartree-Fock formalism retains the whole electron-electron interac-
tion V̂e-e and correctly describes the exchange effects while correlation effects are completely
neglected. For this reason, Hartree-Fock provides a reference for the quantitative definition of
correlation energy arising from the Coulomb interactions: correlation energy is the difference
between the exact ground-state energy and Hartree-Fock energy.

For closed-shell systems, Hartree-Fock method arranges the electrons of opposite spin within
the identical spatial orbitals. This restriction of using the same spatial orbitals is the so-called
restricted Hartree-Fock (RHF) approach. However, if the numbers of electrons in spin-up and
-down channels become different, this is not necessarily the best solution. For such open-shell
systems, if up- and down- spin-orbitals are restricted to have the same functional form, the
method is referred to as the restricted open-shell Hartree-Fock (ROHF), and if the orbitals are
obtained from Hartree-Fock equation without obtaining any constraint, namely spin-up and
-down orbitals may have different spatial shapes, the method is known as the broken-symmetry
unrestricted Hartree-Fock (UHF). Complete accounts and derivation of equations involved in
the schemes above can be found in the textbook by Szabo [7].

For open-shell systems, UHF calculation usually gives lower energies associated with a better
description of the unpaired electron density distribution. However, the UHF wavefunction is
no longer an eigenfunction of the total spin operator ⟨S2⟩. This can give rise to a severe spin
contamination, characterized as the difference between the calculated expectation value of the
⟨S2⟩ operator and the value of s(s+1), where s is the imposed value of the spin projection along
the quantization axis, i.e. the in-balance between spin-up and -down electrons. A benchmark
on the spin contamination of several open-shell molecules is given in Section 4.4.4.

From a practical point of view, Hartree-Fock calculations tend to provide large quantitative
errors in many cases (or even dramatically fail for metals [1]). Despite this, it is a useful
and physically meaningful starting point for correlated many-body methods. In the context of
perturbation theory, for example, the non-local exchange potential Σx (2.11) coincides with the
lowest order of the perturbation expansion in terms of the Coulomb interaction [14], and could
also be defined in terms of the Green’s functions. This is a point to which we will return in
Subsection 2.5.3.
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2.3.2 Density Functional Theory

Today, density functional theory (DFT) [15–17] is the most insightful guidance and powerful
method to investigate the electronic structure of materials in many areas of physics, chemistry,
and materials science. DFT sets down the groundwork for reducing the many-body problem to
three spatial coordinates (plus spin) by using functionals of the electron density [2]. The use of
electron density as the central variable was initially proposed by Thomas and Fermi12 and has
been known since the 1930s. There are at least two reasons for this choice; first, the electronic
density possesses a minimal degree of freedom, in contrast to the N -body wavefunction Ψ and,
therefore, it is a remarkably simpler and more manageable object. Second, the charge density
is a quantum mechanical observable.

In principle, DFT provides an exact approach to determine the ground-state density and the
total energy of an interacting N -particle system. As compared with the Hartree-Fock method,
discussed in the previous subsection, DFT provides a different type of mean-field; within the
Kohn-Sham (KS) approach to DFT [15], one introduces an effective local potential that in-
corporates the effects of exchange and correlation, and solves the corresponding one-particle
Schrödinger equation. Indeed, the formulation of KS introduces an ansatz that substitutes the
difficult many-body problem for an auxiliary independent-particle system for which all many-
body effects are embedded within an exchange-correlation functional of the density. However,
the exact form of the exchange-correlation as a function of the electron density is unknown and
must be approximated. Therefore, the accuracy of the KS solutions with respect to the original
interacting system is strictly limited by the quality of the approximated exchange-correlation
functional.

The basics of DFT are thoroughly presented elsewhere, e.g., [1, 2, 7]. In the following, we
aim to discuss some aspects of DFT that make it a reasonable choice to construct Green’s
functions, elaborated in Section 2.5.

Hohenberg and Kohn Theorem

The brilliant idea behind DFT is that the ground-state density basically determines all the
physical properties of a quantum-mechanical system of interacting electrons. To prove this,
Hohenberg and Kohn [16] provided a rigorous mathematical foundation (see Appendix A),
resulting in the two theorems as follows:

• Given any system of interacting particles feeling an external potential Vext
13, there is a one-

to-one mapping up to a constant value between Vext and the ground-state particle density,
i.e. Vext ⇔ n(r). As Vext determines the many-body Hamiltonian and consequently
the ground-state wavefunction, in principle all properties of the many-body system are
unequivocally determined by the ground-state density n(r).

• For any external potential, the energy of a given system can be defined as a universal
(system-independent) functional of the density. A variational principle on the density
confirms that this universal functional does have a global minimum which is the exact
ground-state energy of the system, and the density minimizing the functional is the exact
ground-state density n(r) of the system, i.e. E[n] ≤ E[ñ] where ñ is any trial ground-state
density.

12This is an approximate model for an infinite homogeneous electron gas in an external potential that applies
to systems with nearly uniform densities. However, this model misses essential physics such as shell structures
of atoms and binding of molecules [2].

13For example, Vext which is invoked by the Coulombic potential of nuclei.
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According to the second theorem, the total energy of an interacting many-body system is
a functional of the charge density. As showed before, the total energy itself is expressed as a
sum over terms involved in the Hamiltonian (2.2), namely T̂e and V̂e-e plus the effects involving
the external potential caused by V̂e-n and other sources. Since Vext has a one-to-one mapping
with the electron density, the remaining part of the many-body Hamiltonian (2.2) must be also
functionals of the density

E [n] =
〈
Ψ|Ĥe|Ψ

〉
=

〈
T̂e

〉
+
〈
V̂e-e

〉
+

∫
Vext(r) n(r) dr

= FHK [n] +

∫
Vext(r)n(r) dr.

(2.12)

Here, we introduced a universal functional of the density FHK [n], which consists of all "inter-
nal" electron energies, i.e. kinetic energy T̂e and electron-electron interaction V̂e-e of the real
interacting system as functionals of the density. Note that FHK [n] is the same for all electronic
systems. Therefore, all properties of the interacting system are governed only by Vext, for which
there is a one-to-one correspondence with the density (the second theorem). This essentially
means that each property of the system is a functional of the density.

The Hohenberg-Kohn theorems have been generalized to degenerate ground state [2], finite
temperature [18], the spin-polarized [19], and time-dependent potentials [20]. Despite this,
the theorem can not be directly applied to study excited states due to the lack of one-to-
one correspondence between the density and excited eigenstates of the Hamiltonian [21]. In
contrast, according to Kohn and Sham the Green’s functions G can be expressed as a unique
functional of the density since a one-to-one correspondence between G and the electron density
exists [17, 22]. However, the dependence of G on the density is unknown and, therefore, this
relation is not explicitly applied to compute single-particle excitations. We discuss this problem
in Section 2.5.

Kohn–Sham Auxiliary System

In 1965, Kohn and Sham proposed a practical approach [15] to deal with the difficult many-
body problem. Their approach introduces an auxiliary independent-particle system that owns
the same ground-state density as that of the interacting many-body system. Construction
of such an auxiliary system simplifies the many-body problem to the solution of a tractable
single-particle Schrödinger equation, delivering some features of the real interacting many-body
system at the solution.

The total energy of an electronic system within the KS framework reads

EKS [n] = Tind [n] + EH [n] + Exc [n] +

∫
Vext(r)n(r) dr. (2.13)

As compared with the exact representation of the total energy in Equation (2.12), one sees that
FHK [n] is replaced by three terms: the kinetic energy of the independent particles Tind [n], the
Hartree energy EH, and a density functional, the so-called exchange-correlation energy Exc [n],
which should compensate all differences between the energy of the actual interacting system and
its fictitious independent-particle counterpart. Given this, Exc [n] contains all the differences
between the exact interacting and independent kinetic energies plus the difference between the
exact electron-electron interactions and that of the Hartree term:
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Exc [n] =
〈
T̂e

〉
− Tind [n] +

〈
V̂e-e

〉
− EH [n] . (2.14)

Therefore, it is clear that all many-body effects within the KS system are grouped into Exc [n].
This is a big step forward; since we are now able to explicitly formulate the significant contri-
bution of the kinetic energy to the total energy. In particular, this allows recovering the correct
shell structure of atoms and molecules.

Given the total energy in the form of Equation (2.13), the KS Schrödinger-like equation for
a set of independent-particles feeling an effective local potential Veff(r) becomes(

−∇2

2
+ V σ

eff(r)

)
ψσi (r) = εσi ψ

σ
i (r), (2.15)

where eigenvalues εσi and eigenfunctions ψσi (r) are the KS solutions to the Hamiltonian including
independent-particle kinetic energy14 plus local potential Veff(r) which reads

V σ
eff(r) = Vext(r) +

δEH
δn(r, σ)

+
δExc

δn(r, σ)

≡ Vext(r) + VH([n] , r) + V σ
xc([n] , r)).

(2.16)

In the last equation, we introduced the exchange-correlation potential which is defined as
V σ

xc([n] , r) =
δExc
δn(r,σ)

.
Equations (2.15)–(2.16) must be solved self-consistently due to the dependency of the po-

tential on the density which is n(r) =
∑

i fi |ψi(r)|
2, where fi is the occupation numbers of the

states. At the solution, Veff is the KS potential VKS which does have a one-to-one mapping with
the density up to a constant value. So far, this mapping of the actual interacting electrons
into independent particles constitutes no approximation to the original many-body problem.
Therefore, the solutions to the KS equations would yield the exact ground-state density and
total energy of the original interacting system if the exact Vxc([n] , r) functional were known.
Unfortunately, the dependence of the Vxc([n] , r)) functional on the density is unknown and,
therefore, approximations become necessary in practice. The main success of the KS approach
stems in the fact that even simple approximations to the Vxc([n] , r)) functional are sufficient
to obtain rather accurate ground-state properties for many systems. In particular, the KS
framework allows one to approximate the kinetic energy of electrons T̂e rather accurately and
in a computationally favorable manner.

Exchange-Correlation Approximations

To turn the KS framework into a tractable scheme, it remains to define sensible and computa-
tionally efficient approximations to the exchange-correlation functional. Despite the lack of a
systematic manner to improve the density functionals, a number of simple yet sufficiently ac-
curate functionals have been proposed over the years [23]. In the following, we briefly mention
the most widely-used formulations of (semi-) local functionals and non-local (state-dependent)
functionals. In the case of the former, the exchange-correlation potential at each point depends

14In Equation (2.15), Tind [n] representing the most important contributions to the total energy is given in
terms of ψσ

i (r) instead of the density functional. This does not violate the idea behind the DFT, i.e. one-to-one
correspondence between the external potential and electronic density, since ψσ

i (r) will be determined by Veff
which does have a one-to-one mapping with the density at the solution.
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only on the density (and its gradients) at that point regardless of any dependence of the den-
sity at other points. In contrast, the latter involves a non-local operator that connects the
wavefunction at two points at the same time.

The local density approximation (LDA) and its spin-polarized extension (LSDA) simply as-
sume that at each point r, the exchange-correlation energy Exc gets a contribution proportional
to the energy density of a homogeneous electron gas (HEG) with the same density

ELSDA
xc

[
n↑, n↓] = ∫

n(r) ϵHEG
xc

(
n↑(r), n↓(r)

)
dr. (2.17)

In the equation above, the exchange-correlation energy can be linearly decoupled to the ex-
change and correlation terms, namely ϵHEG

xc = ϵHEG
x + ϵHEG

c . The exchange energy for a ho-
mogeneous electron gas is expressed as ϵHEG

x (n) = −3
4
( 3
π
n)

1
3 [2]. Using Quantum Monte Carlo

calculations [24], one can extract the other term, namely an exact ϵHEG
c and then interpolate the

results to obtain a practically analytic expression as a function of the density [25, 26]. Despite
such a relatively simple construction, results obtained from the approximated ELDA

xc [n] has
been shown in surprising agreement with experiments for systems whose electron density varies
slowly over space, e.g., for many metallic solids [2]. For systems with significant variation of the
electron density as in the case of atoms15, however, LDA dramatically fails [27] and provides
systematically overestimated ionization energies, over-binding, and underestimated equilibrium
lattice constants [28].

Using the idea behind LDA, one can construct more sophisticated and flexible approxi-
mations to the exchange-correlation energy, such as the generalized gradient approximations
(GGA) [29]. Within GGA, Exc is approximated by not only the value of density at each point
but also gradients of the density |∇nσ|. Among GGA-type functionals, the one proposed by
Perdew, Burke, and Ernzerhof (PBE) [29] is the most commonly used. Semi-local PBE is a non-
parameterized GGA functional that fulfills a maximum amount of known analytic properties.
As a result, PBE leads to a marked improvement over L(S)DA in many problems, particularly
in the estimation of the equilibrium properties, such as bonding, bulk moduli, phonon frequen-
cies, and magnetism16 [28]. Following this achievement, more advanced GGA-type functionals
have been also developed in which higher derivatives of the density are also incorporated within
the exchange-correlation functional, e.g., Meta-GGA approximation [30].

One of the obvious shortcomings of the (semi-) local functionals stems from the self-
interaction error within the Hartree term17. While the treatments of the exact exchange (2.11)
eliminates this spurious error in the Hartree-Fock approach, the self-interaction of an electron
with itself can be incompletely eliminated by (semi-) local approximations of the Exc. As a
consequence, one might find some serious deviations in the results, particularly when Coulomb
interactions are significant. To overcome such a difficulty, one can apply a hybrid scheme in
which a fraction of the non-local (orbital-dependent) exact exchange (2.11) is mixed with the
conventional KS Vxc(r). The price to pay is to move away from the hallmark of the KS ap-
proach, i.e. the locality, that imposes a higher computational cost due to the computation of
Fock-like operators.

Within the generalized KS formalism [31], the exchange-correlation potential is written in
a non-local form [32]

15For atoms, the density must set to zero outside the atom.
16For instance, PBE-sol functional which is specially designed to deal with solids, enhances the description of

geometries[28].
17As a treatment, self-interaction corrected (SIC) functionals are also proposed for which a non-local correction

to the exchange-correlation functional eliminates the error of local functionals. More details can be found e.g.
in Ref. [25].
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Vxc(r, r
′) = α Σx(r, r

′) + β ΣLR
x (r, r′) + V (semi)local

xc (r), (2.18)

where α and β are the multiplicative factors for the exact-exchange operator Σx(r, r
′) and the

long-range exchange operator ΣLR
x (r, r′), respectively. The latter has an expression similar to

the exact-exchange operator multiplied by an error function erf (ω |r− r′|), where the parameter
ω (in Bohr−1) tunes the rate at which the exact exchange turns on; the larger value of ω achieves
full exact exchange sooner [23, 32]. Different choices of α and β in Equation (2.18) provide
two types of hybrid functionals: full-range and range-separated hybrid functionals. As for the
former, β is equal to zero while the value of α varies from 0.2, 0.25, and 0.5 for B3LYP [32–
34], PBE0 [35], and BH&HLYP [33] functionals, respectively. It is clear that Equation (2.18)
returns the (semi-)local form of the exchange-correlation potential, such as LDA or PBE, if
α = β = 0.

The range-separated functionals are classified in the two categories: the short-ranged and
the long-ranged hybrids. Among short-ranged functionals, the HSE-family [36, 37] are more
popular. For example, the HSE06 [37], employing values of α = −β = 0.25 plus a choice of
ω = 0.11 Bohr−1 in the long range [32]. The negative value of β means that HSE06 tends
to decay the exact exchange in the long range slowly due to its small value of ω, so that, the
long-range exchange can precisely compensate the full-range exchange [32]. As a result, HSE06
often estimates the energy gap in much better agreement with the experiment than that of
standard KS calculations. As for the long-ranged hybrids, on the other hand, CAM18-B3LYP
(α = 0.19, β = 0.46, and ω = 0.33) has been shown successful in the prediction of energetic
quantities as well as investigations on charge transfer energies [38].

Over the years, it has been consistently reported that hybrid functionals provide the optimal
starting point for practical GW calculations, e.g., see Ref. [32, 39]. In Chapter 4, we employ
hybrid functionals to obtain mean-field solutions as the starting point for G0W0 calculations.
We will show how the exact exchange term within hybrid functionals leads to better results,
particularly ionization energy, as compared to the pure local functionals.

Physical Meaning of the Kohn-Sham Eigenvalues

Employing the exchange-correlation functional Exc [n], one can iteratively solve KS equations
(2.15)–(2.16) which result in the corresponding eigenvalues εi and orbitals ψi(r). Although
the approach is in-principle exact and provides a practical method to obtain the total energy
and ground-state density, KS orbitals and eigenvalues can not be rigorously used to determine
key quantities such as the fundamental bandgap. For a finite system, the bandgap is the
difference between the ionization energy (2.4) and the electron affinity (2.5)19. The misuse of
the KS eigenvalues for describing such quantities results in a significant underestimation of the
bandgap. Since KS eigenvalues are obtained for an N -particle system, they can not be utilized
to describe excitation energies of charged N ± 1-particle system20. This information is indeed
encoded in the poles of the Green’s functions, as will be discussed later in Section 2.5.

The meaning of KS eigenvalues have been proposed by the debated Janak’s theorem [40, 41].
Introducing the concept of fractional particle number, the KS eigenvalue εi is the slope of the KS
total energy variation with respect to the occupation factor fi of the corresponding eigenstate
as

18Coulomb-attenuating method
19In solids, the top (bottom) of the valence band (conduction band) is the lowest energy possible for removing

(adding) one electron.
20The only exception, which is sometimes called the DFT Koopmans’ theorem, is the eigenvalue of the highest

occupied state in a finite system, corresponding to the ionization energy if the exact Exc is utilized [1]
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εi =
∂Etot

∂fi
.

According to the equation above, the meaning of the eigenvalue εN corresponding to the first
ionization energy (IE) for an N -electron system is

EN − EN−1 =

∫ 1

0

∂Etot

∂fN
dfN =

∫ 1

0

εN dfN ,

which looks like Koopmans’ theorem, if εN does not depend on fN . However, the eigenvalue
εN tends to show a strong dependence on the occupation number. This is particularly the
case when one looks at eigenvalues other than the highest occupied state. This limits the
applicability of the KS eigenvalues to obtain the fundamental bandgap.

Alternatively, the bandgap Eg can be defined as the difference between the ground-state
energies of N -particle system and the charged N ± 1-particle system. Given that, one may use
the concept of total ground-state energy, which is exact in the DFT framework, within systems
with different amounts of electrons [1]

Eg = EN+1 − EN − (EN − EN−1)

= εN+1

∣∣
N+1

− εN
∣∣
N

= εN+1

∣∣
N+1

− εN
∣∣
N
+ εN+1

∣∣
N
− εN+1

∣∣
N

= EKS
g +∆,

where EKS
g = εN+1

∣∣
N

− εN
∣∣
N

gives the KS bandgap and the remaining terms, i.e. ∆ =

εN+1

∣∣
N+1

−εN+1

∣∣
N

, is known as the derivative discontinuity, originating from the fact that E(N)

changes slope across integer occupations [42]. For systems with small derivative discontinuity
∆, the KS band structure might be used for the description of band-gap and band structure
as the fundamental features of real materials. However, the value of ∆ for many systems is
in the range of several eV, challenging the quality of the KS solutions for understanding the
electronic structure of materials. This gives rise to the well-known bandgap problem within the
KS approach.

2.4 Time-Dependent Density Functional Theory

Time-dependent density-functional theory (TDDFT) is an extension of DFT for describing the
response of the system to time dependent perturbations. As a result, TDDFT can be utilized
to obtain information about neutral electronic excitations21. Having such excitations, one can
then interpret optical properties probed in experiments such as absorption spectrum, electron
energy-loss spectroscopy, and inelastic X-ray scattering [2, 9, 20]. Typically, a description of
the electronic excited states is more computationally demanding than that of the ground-state
calculations. Fortunately, TDDFT benefits from a favorable scaling which enables us to employ
this ab initio theory for predicting the spectroscopic features of materials. Like DFT, TDDFT
is an in-principle exact theory; however, the exact form of the exchange-correlation functional

21Within TDDFT, one gets an exact framework for computing the excitation energies and corresponding
effects of an N -particle system. This is why the application of TDDFT is restricted to only neutral excitations.
Nevertheless, TDDFT is supposed to reproduce the correct ionization energy, as in Janak’s theorem within
DFT.
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is unknown and must be approximated. Upon the quality of approximate functionals, extensive
TDDFT simulations have been found in general agreement with the experiment, particularly
for finite systems such as atoms, molecules, and clusters; for example see Refs. [43–46]. In the
following, we outline the fundamental theorems and equations along with a simplified review
of the commonly used approximations within the theory. For more in-depth analysis, we refer
the reader to the relevant textbooks and reviews, e.g., Refs. [1, 9, 20, 47–51].

Within TDDFT, the exceedingly complicated task of calculating the interacting N -body
wavefunction as the solution to time-dependent Schrödinger equation (2.3) is substituted for a
much simpler problem whose central variable is the time-dependent electronic density n(r, t)
expressed as

n(r, t) =

∫
|Ψ(r, r2, · · · , rN , t)|2 dr2 · · · drN . (2.19)

As a result, the exponential scaling of the real many-body problem reduces to a much more
favorable scaling of the time-dependent density n(r, t). To obtain the latter, one can similarly
set up a fictitious auxiliary non-interacting KS system, giving the exact density of the real
interacting system as the solution for the time-dependent independent-particle KS equations.
Knowing the charge density n(r, t), one can then describe the response of a given system to the
time-dependent potential, relying on the Runge-Gross theorem.

2.4.1 Runge-Gross Theorem

Within DFT, the Hohenberg-Kohn theorem 2.3.2 proves a one-to-one mapping (up to a constant
value) between Vext and the ground-state charge density, i.e. Vext(r) ⇔ n(r). Despite this,
this theorem can not be extended to study the excited states due to the lack of one-to-one
correspondence between the (time-dependent) density and excited eigenstates of the many-
body Hamiltonian (2.2) [21]. To study excitations as the response of a system to an external
perturbation, one indeed needs to deal with a total external potential22 including the static
external potential Vext(r) plus a time-dependent potential δv(r, t) imposed by the perturbation

Vext(r, t) = Vext(r) + δv(r, t). (2.20)

Having such a definition, the Runge-Gross theorem provides a one-to-one mapping between
Vext(r, t) and the time-dependent density n(r, t) where:

• The density corresponds to (a set of ) external potentials generated by Vext(r, t) + α(t),
where the last term is an arbitrary function of time, adding a phase factor into the
wavefunction Ψ(t) → Ψ̃(t) = e−iα(t)Ψ(t).

• The potential Vext(r, t) is in one-to-one mapping with n(r, t) and a fixed initial state
Ψ(t0). The latter provides a boundary condition for fixing the solution to the original
time-dependent Schrödinger equation.

Under conditions above, the Runge-Gross theorem can be symbolically written as

Vext(r, t)

∣∣∣∣
Ψ0

⇔ n(r, t)

∣∣∣∣
Ψ0

. (2.21)

22Within the fundamental paper [20], the only requirement is the potential must be expandable into a Taylor
series with respect to the time coordinate.
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Similarly to DFT, the Runge-Gross theorem implies that the expectation value of any operator
is a unique functional of the density23 [9]. Moreover, one can use the variational principle to
compute the exact time-dependent density. In Subsection 2.3.2, we showed how the minimum
of the energy functional δE[n]

δn(r)
determines the ground-state density n(r). Within TDDFT frame-

work, instead of focusing on the energy we seek the extrema of the so-called action function
A[n] whose stationary point, i.e. δA[n]

δn(r,t)
= 0, determines the exact time-dependent density. By

using the action function, one indeed gets the evolution of the whole system instead of only
focusing on its ground-state [9]. This explains why TDDFT can yield optical features while
DFT is inadequate for such purposes.

Applying the Runge–Gross theorem for non-interacting particles, a time-dependent KS
scheme (with some modification with respect to the scheme presented in 2.3.2) can be carried
out. Such a formalism yields the exact time-dependent density n(r, t) and the corresponding
unique effective potential. In doing so, one introduces a non-interacting N -particle auxiliary
system and solves the set of time-dependent KS equations as below

i
∂

∂t
ψi(r, t) =

[
−∇2

2
+ Veff(r, t)

]
ψi(r, t), i = 1, · · · , N (2.22)

where Veff
24 is an effective potential that all electrons feel, as in the mean-field theory, but

in a time-dependent framework. Therefore, Veff consists of the three time-dependent terms of
external Vext, Hartree VH, and exchange-correlation Vxc potentials as

Veff([n] , r, t) = Vext(r, t) + VH([n] , r, t) + Vxc([n] , r, t) (2.23a)

VH([n] , r, t) =

∫
n(r′, t)

|r− r′| dr
′ (2.23b)

Vxc([n] , r, t) =
δAxc[n]

δn(r, t)
(2.23c)

with a density given by the sum over all occupied KS eigenstates ψi(r, t)

n(r, t) =
N∑
i=1

|ψi(r, t)|2 . (2.24)

Similarly to DFT, the self-consistent solutions of Equations (2.22)-(2.24) would yield the exact
time-dependent density if the exact form of Vxc([n] , r, t) were accessible.

It should be noted here that the Runge-Gross theorem provides a much more limited do-
main of validity as compared to the Hohenberg-Kohn applicability [48]. The most well-know
limitation stems from the v–representability problem. As in the case of DFT, the Runge–Gross
theorem considers a unique potential corresponding to a density, however, it may or may not
exist. Hence, the true density evolution of a given system might not correspond to any external
potential. This lack of v–representability precludes the application of the KS scheme in those
cases. In the following, however, we always assume such a non-interacting and v–representable
charge density exists.

23Since time-dependent n(r, t) uniquely determines Vext (up to additive α(t)) and this potential, in turn,
determines the Ψ(t).

24One starts from Veff which results in the VKS at the solution. VKS is a functional of the density belonging
to the non-interacting system with initial state of ψ0 = ψ(t = 0)
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2.4.2 Linear Response within TDDFT

When the applied time-dependent perturbation to a system is much smaller than intrinsic
external static potential V̂e-n, the perturbed state of the system under investigation slightly
differs from its equilibrium and ground-state counterpart [48]. Under this condition, the
TDDFT can be simplified by considering the linear response regime [1, 2, 9, 48]. Given
the limit of δv(r, t) ≪ Vext(r) in Equation (2.20) while δv(r, t) is zero for all times earlier
than initial t025, linear-response TDDFT satisfies the one-to-one correspondence between the
time-dependent density and small time-dependent perturbation to the external potential, i.
e. δVext(r, t) ⇔ δn(r, t) [9, 48]. The validity of TDDFT particularly relies on such small
perturbations in the linear response regime [52]. This response to a small perturbation is in
fact rather similar to the experimental situation when the system is probed by a weak incident
electron or photon beam (see Section 2.2).

Applying the one-to-one mapping between the density and external potential, the potentials
of the KS scheme in Equation (2.23) read

δVKS [n] = δVext + δVH [n] + δVxc [n] , (2.25a)

δVH [n(1)] =

∫
δn(2) vc(1, 2) d2, (2.25b)

δVxc [n(1)] =

∫
fxc [n] (1, 2) δn(2) d2. (2.25c)

In the last equations, we used a numeric index to represent space and time, and possibly
spin variables, e.g., 1 ≡ {r1, t1, σ1}. Moreover, the two-body static Coulombic interaction in
Equation (2.25b) is assumed to be instantaneous vc(1, 2) = δ(t1 − t2)/|r1 − r2|. In Equa-
tion (2.25c), we also introduced a time-dependent exchange-correlation kernel fxc defined as
the functional derivative of the exchange-correlation potential with respect to the density
fxc [n] (1, 2) =

δVxc[n(1)]
δn(2)

. The kernel fxc [n] determines the quality of theoretical description in
the linear-response TDDFT. Despite this, it remains unknown and needs to be approximated
for practical purposes. The simplest and most extended approach is the so-called adiabatic
approximation using (semi-)local functional. It is also quite frequent to consider the so-called
Random-phase approximation (RPA) in which the fxc is entirely neglected. These approxima-
tions will be discussed in Subsection 2.4.4.

In practice, the linear-response TDDFT can be carried out in two steps: one begins with
the static Vext(r) and conducts the generic DFT calculations providing the KS eigen-energies,
eigenstates (orbitals), and the ground-state density n(r). In the next step, one solves the
time-dependent KS equations using methods such as the time-dependent propagation [53],
Sternheimer approach [54, 55], or the response function formalism [9]. Within the latter, the
causal density response function χ describes the response of a system by accounting for the
variation of the charge density with respect to an external perturbation. The (full) interacting
response function χ is a two-body correlation function that reads

χ(1, 2) = δn(1)
δVext(2)

∣∣∣
Vext=0

. (2.26)

One can analogously introduce χKS, which is a non-interacting response of the KS system to a
change of the total potential δVKS induced by the variation of density δn,

25This is the case in experiments such as optical absorption, energy-loss, and X-ray spectroscopy for which
an incident electron or photon beam switched on at an initial time of t0.
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χKS(1, 2) =
δn(1)

δVKS(2)
or δn(1) =

∫
χKS(1, 2) δVKS(2) d2. (2.27)

Non-interacting density response function χKS does have an explicitly analytic expression in
terms of the KS single-particle solutions [56, 57]. This expression in frequency space becomes
[39, 47, 49]

χKS(r1, r2, ω) =
∑
n,m,σ

(fn,σ − fm,σ)
ψn,σ(r1)ψ

∗m,σ(r1)ψ
m,σ(r2)ψ

∗n,σ(r2)

ω − (εm,σ0 − εn,σ0 ) + iη
(2.28)

where fn,σ represents Fermi occupation factor of n-th KS spin-resolved orbital ψn,σ(r) with
eigen-energy of εn,σ0 . An infinitesimal value of η is also introduced to avoid divergence and to
provide a well-defined Fourier transformation, as will be detailed in Section 2.5.

From Equation (2.28), one finds out that χKS for frequencies corresponding to the differences
between the KS eigenvalues, i.e. ωKS

s = εm0 −εn0 , possess poles (singularities). These poles reflect
the resonances (self-sustained modes) within the KS system. As compared to the experiment,
however, computed resonances within the KS system often provide a red-shifted spectrum. This
is due to the well-known underestimation of the bandgap problem 2.3.2. The discrepancy with
experiment can be also attributed to the approximated nature of VKS used in Equation (2.27)
[9].

To gain a better description of the excitations, it is necessary to deal with the interacting
response function χ (2.26) whose poles give the true excitation energies Ωs. By inserting (2.25)
into the expressions of χ (2.26) and χKS (2.27), after some algebra26, we arrive at a Dyson-like
equation

χ(ω) = χKS(ω) + χKS(ω) fHxc(ω) χ(ω)

= [1− χKS(ω) fHxc(ω)]
−1 χKS(ω),

(2.29)

which intimately connects the non-interacting KS response function to the interacting one
through a kernel of fHxc(r1, r2, ω) = vc(r1, r2) + fxc(r1, r2, ω). In other words, the inverse
operator [1− χKS fHxc] is the responsible for shifting the poles ωs of the non-interacting operand
χKS towards the true poles Ωs given by the interacting χ27. Upon having an approximation to
fxc, as the main ingredient in the fHxc kernel, it is straightforward to compute the true poles of
the interacting response function. In the next subsection, we touch upon a practical approach to
compute χ associated with the true excitation energies Ωs. In Section 2.5, moreover, we return
to this point and thoroughly discuss the Green’s function formalism, representing electron and
hole propagation in time, which results in the Bethe-Salpeter equation.

2.4.3 Casida Equations

In the previous section, we derived a Dyson-like equation that relates the interacting response
function to the non-interacting one via a kernel shifting the non-interacting resonances to the
true excitations Ω of the interacting system. Here, we discuss an alternative expression where

26δn/δVext = (δn/δVKS)(δVKS/δVext) ≡ χKS(δVKS/δVext), where the latter can be written as δVKS(r,t)
δVext(r′,t′)

=

δ(r − r′)δ(t− t′) +
∫ [

δ(t−t′′)
|r−r′′| + fxc(r, t.r

′′, t′′)
]
× χ(r′′, t′′, r′, t′) dr′′dt′′.

27It implies that those frequencies which lead to the singularity in the inversion kernel [1− χKS(ω) fHxc(ω)]
−1

are the true excitation energies.
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Equation (2.29) is recast into a pseudo-eigenvalue problem. The matrix representation of such
an eigenvalue problem, known as the Casida equation [49], becomes28

(
A B
B∗ A∗

)(
X
Y

)
= Ωs

(
1 0
0 −1

)(
X
Y

)
, (2.30)

where A and A∗ embody the resonant and anti-resonant matrices and the non-diagonal terms,
i.e. B and B∗ dedicate to the coupling contributions. Both resonant and coupling matrices
have an explicit expression in terms of the KS solutions [48]

Ass′ = ωKS
s δss′ + 2

∫
n∗KS
s (r)fHxc (r, r

′)nKS
s′ (r′) drdr′, (2.31a)

Bss′ = 2

∫
n∗KS
s (r)fHxc (r, r

′)nKS
−s′ (r

′) drdr′, (2.31b)

with nKS
s (r) = ψ∗KS

n (r)ψKS
m (r), s = {n ∈ occ,m ∈ unoccupied}. Neglecting the coupling part

(B = 0) is the so-called Tamm–Dancoff approximation as will be discussed later in Subsection
2.6.8.

Following the discussion in the last two subsections, the response of a given system to an
external potential can be obtained exactly within the TDDFT scheme. However, the complexity
remains in the unknown fxc kernel, which must be approximated. TDDFT equations can
be written in the Casida form (2.30) or Dyson–like Equation (2.29). The former leads to
the four-point response functions with a considerable disadvantage in the computational cost.
Despite this, the four-point formulation, which is similar to that of Bethe-Salpeter formalism in
Subsection 2.5.6 and Appendix B , gives a possibility to switch between the space of one-electron
transitions or electron-hole pairs. For systems whose spectrum involves only a limited number
of transitions, such a formulation is advantageous. Moreover, the four-point formulation allows
to setup the TDDFT equations within the linear response regime for both (semi-)local and
hybrid functionals. On the other hand, the response function two-point formulation (2.29),
with an obvious advantage in system size scaling, becomes less effective if electron and hole
pairs are far away in space and provide weak dipolar transition matrix elements. In other
words, for systems whose occupied and unoccupied states slightly overlap, this framework has
risen to the challenge of describing charge-transfer excitations [1]. Indeed, available semi-local
approximations to the fxc within the two-point formulation of TDDFT describe charge-transfer
excitations less accurately than the hybrid functionals.

2.4.4 Random Phase Approximation

The random phase approximation (RPA) was originally proposed by Pines and Bohn [58] to
describe the homogeneous electron gas using a (linearized) time-dependent Hartree approach.
In 1959, Ehrenreich and Cohen [59] showed that such a time-dependent Hartree approach is
identical to the diagrammatic bubble expansion of the dielectric function. Today, RPA is
extensively employed in MBPT and, therefore, this approximation circulates in many places
in this thesis. Besides its connection with TDDFT, RPA is widely utilized for the practical
calculation of polarizability and screening within the GW approximation (see Section 2.6).

28Similarly, one can express the Casida equation in a quadratic form of MFs = Ω2
sFs, where Ωs is the

excitation of state given by the eigenvector Fs.
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As said before, the central ingredient in linear-response TDDFT, namely fxc (2.25c) is
unknown and must be approximated. In the RPA, one conspicuously neglects this term. Nev-
ertheless, it does not mean that RPA is a drastic approximation; since RPA only omits the
variation of the exchange-correlation contributions29 in (2.29), while the Coulomb kernel vc
still remains within the equation. Thus, a self-consistent variation of the Hartree potential as
the response to an external potential is taken into account within RPA [1]. Moreover, some
exchange-correlation effects are already taken into account in the prior DFT calculations by
exploiting a good approximation to Vxc.

Neglecting fxc term in (2.29), the density response function χ within the RPA reads

χ(1, 2) = χ0(1, 2) +

∫
χ0(1, 3) vc(3, 4) χ(4, 2) d3d4, (2.32)

or symbolically
χ(ω) = [1− vcχ0(ω)]

−1 χ0(ω) (2.33)

where χ0 is the non-interacting response function (polarizability) which reproduces the non-
interacting electron-hole pairs30. Using expression in Equation (2.28) for χ0, we finally arrive
at an explicit expression for the RPA-χ in terms of KS solutions31. It is important to note that
the RPA response often yields a good approximation for the inverse dielectric function ϵ−1 and
optical absorption spectrum. We return to this point in Subsection 2.6.3.

As an available alternative to RPA, one can approximate fxc using a local and frequency-
independent (instantaneous) kernel, known as the adiabatic local-density approximation (ALDA),
which reads [9]

fALDA
xc (r1, r2) = δ(r1 − r2)

∂V LDA
xc [n(r1), r1]

∂n(r1)
(2.34)

where V LDA
xc is defined earlier in Equations (2.16) and (2.17). Over the years, extensive bench-

marks on the optical absorption spectrum of various materials have shown that ALDA often
delivers reliable estimates of transition energies for small molecules and clusters in reasonable
agreement with the experiment [60–62]. This success is ascribed to the ALDA’s kernel account-
ing for the electron-hole attraction, which has a notable contribution to the optical absorption
of such systems. For describing the absorption of solids, however, ALDA is not that successful
due to the lack of proper spatial non-locality in its kernel [9, 45, 63].

In the end, we would like to mention a difficulty that causes inconvenience within the
TDDFT framework, known as the symmetry-causality paradox. As said before, the exchange-
correlation kernel fxc(r, t, r

′, t′), which accounts for the dynamic responses of a system to an
external perturbation, has an exact representation in terms of retarded response functions
(2.26) [9]. This enforces the causality of fxc, meaning that the kernel must be zero for t′ > t:
fxc(t, t

′) = 0; since the changes in the density at a later time t′ could not impact on the
exchange-correlation potential at an earlier time t. On the contrary, from equations (2.23c)
and (2.25c) one can re-write fxc as the twice-differential action functional, implying that fxc is

29This might exclude some important exchange-correlation portions such as some multiplets, which should
be seen in the satellites [1].

30Equivalently, one can consider it as the propagation of non-interacting quasi-electron-quasi-hole pairs rep-
resented by two Green’s functions with opposite time ordering χ(1, 2) = G0(1, 2)G0(2, 1

+), as will be discussed
in the next sections.

31One can alternatively use Hartree-Fock solutions to construct χ0(ω). Accordingly, we selected the general
name of χ0 for the non-interacting response function or polarizability. In the next sections, we interchangeably
use χ0 and P0, to refer to the non-interacting response function or polarizability.
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2.5. GREEN’S FUNCTIONS

symmetric in t and t′ [48]. This contradiction can be solved by defining a new action functional
A [n] within the Keldysh formalism defined as a generating function for the density and causal
response function, as in statistical mechanics [64, 65].

2.5 Green’s Functions

In this section, we discuss correlation functions that quantify the statistical correlation (prob-
ability amplitude) between two or more variables in an interacting many-body system. While
the many-body wavefunction provides all information about the system, correlation functions
yield considerable insights into experimentally measurable properties of electrons [1]. In this
context, Green’s functions are the sophisticated tools that are specifically employed to describe
spectra of excitations within interacting many-body systems. One-body Green’s function, for
instance, quantifies the dynamic correlation between creation (annihilation) and annihilation
(creation) of a particle, electron or hole, at different points in space r, spin σ, and time t. In this
context, the propagators are the building blocks which are defined in terms of field operators32

G>(r1, σ1, t1; r2, σ2, t2) =− i
〈
Ψ0(t1)|ψ̂(r1, σ1) ψ̂†(r2, σ2)|Ψ0(t2)

〉
, (2.35)

where G> gives the probability amplitude for propagation an extra particle which is initially
created at point (r2, σ2) while system is in state |Ψ0(t2)⟩, and then it is annihilated by ψ̂
at (r1, σ1) and a later time of t1. Analogously, particle removal is defined as G<(1; 2) =

i
〈
ψ̂†(2)ψ̂(1)

〉
, which describes the propagation of a hole from 1 to 2. Within the expression

of G<, we summarized spatial coordinates, time, and spin indices in a numeric index, e.g,
1 ≡ [r1, t1, σ1], and we changed from Schrödinger representation to the Heisenberg picture.

Given the expression of propagators G< and G>, as outlined above, it is more convenient
to introduce a time-ordered definition of the equilibrium one-body Green’s function

GT (1; 2) = −i
〈
T̂
[
ψ̂(1)ψ̂†(2)

]〉
, (2.36)

where, Wick’s time ordering operator T̂ is used that arranges field operators in time ascending
order from right to left with a negative sign for each pair commutation,

T̂
[
ψ̂(1)ψ̂†(2)

]
=

{
ψ̂(1)ψ̂†(2) if t1 > t2

−ψ̂†(2)ψ̂(1) if t2 > t1.
(2.37)

Time-ordered propagation of the one-body Green’s functions in connection with Equation (2.36)
is illustrated in Figure 2.2, so that, we can find out the physically intuitive interpretation of
the Green’s functions to describe electron or hole propagation. As for t1 > t2, the one-body
Green’s function provides the probability amplitude of finding an extra electron in the system
at 1 while an electron was created in r2 at an earlier time of t2. If t2 > t1 is the case, then G

32Field operators ψ̂ and ψ̂† destroy or create a particle at a given point in space with a given spin: ψ̂(r, σ) =∑
i ciψi(r, σ) and ψ̂†(r, σ) =

∑
i c

†
iψ

∗
i (r, σ), where ci and c†i represent annihilation and creation operators

changing the number of particles within the system. These operators obey indistinguishable fermionic anti-
commutation relations to enforce the proper particle statistics:

{
ci, c

†
j

}
= δi,j , {ci, cj} =

{
c†i , c

†
j

}
= 0.

Field operators with a time argument denote Heisenberg operators, while the time-independent forms are in
the Schrödinger picture. These operators can be transformed between the two pictures by: ψ̂H(r, σ, t) =

A†
S(t)ψ̂S(r, σ)AS(t) and ψ̂†

H(r, σ, t) = A†
S(t)ψ̂

†
S(r, σ)AS(t). Within the text, we drop subscript S and H.
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2.5. GREEN’S FUNCTIONS

delivers the quantum probability amplitude of the hole existence at 2, whereas an electron was
previously annihilated at 1.

Figure 2.2: Propagation of an additional (left) electron, (right) hole at different points in space
and time.

From the discussion above, one gains an insight into the capability of the one-body Green’s
function to describe the propagation of a particle, which is subject of interest for description
of the charged excitation energies. Given that, it can be also shown that the two-body Green’s
functions are able to describe the motion of two particles, e.g., electron-hole pair propagation.
In general, the N -body Green’s function in a form similar to that of time-ordered (2.36) reads
[66]

GN(1, · · · , N ;N ′, · · · , 1′) = (−i)N
〈
T̂
[
ψ̂(1) · · · ψ̂(N) ψ̂†(N ′) · · · ψ̂†(1′)

]〉
. (2.38)

Through the equation above, one readily realizes the difficulty to work with the two-body
Green’s function containing four field operators. We elaborate this problem in Subsection
2.5.3, where the equation of motion constructed by Green’s functions leads to a hierarchy of
integro-differential equations, connecting the N -body Green’s function GN to the GN+1.

2.5.1 Lehmann Representation

All information relevant to the charged excitation energies—the energies required to add or
extract one particle to or from a system—are encoded within the one-body Green’s functions.
Within the Lehmann representation, one can directly illustrate the link between the theoretical
definition of the Green’s function (2.36) and the direct and inverse photo-emission experiments,
outlined in Section 2.2.

Let’s introduce
{∣∣ΨN±1

s

〉}
as a complete basis of states for N ± 1-particle system, and

insert the corresponding closure relation
∑

s

∣∣ΨN±1
s

〉 〈
ΨN±1
s

∣∣ = 1 between two field operators in
equation (2.36). As a result, the one-body Green’s function with a time difference of τ = t− t′

becomes

iG(r1, r2, τ) = Θ(τ)
∑
s

〈
ΨN

0 |ψ̂(1)|ΨN+1
s

〉〈
ΨN+1
s |ψ̂†(2)|ΨN

0

〉
−Θ(−τ)

∑
s

〈
ΨN

0 |ψ̂†(2)|ΨN−1
s

〉〈
ΨN−1
s |ψ̂(1)|ΨN

0

〉
,

(2.39)
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where sums run over all electronic states s of the (N ± 1)-particle system. In the last equation,

we also introduced the Heaviside step function Θ(τ) =

{
1 if τ > 0
0 if τ < 0

. By applying the time-

dependent form of the field operators, ψ̂(1) = eiĤtψ̂σ(r)e
−iĤt, Equation (2.39) can be recast

into

iG(r1, r2, τ) = Θ(τ)
∑
s

〈
ΨN

0 |ψ̂(r1)|ΨN+1
s

〉〈
ΨN+1
s |ψ̂†(r2)|ΨN

0

〉
e−iε

N+1
s τ

−Θ(−τ)
∑
s

〈
ΨN

0 |ψ̂†(r2)|ΨN−1
s

〉〈
ΨN−1
s |ψ̂(r1)|ΨN

0

〉
e−iε

N−1
s τ ,

(2.40)

where excitation energies εs are

εN+1
s = EN+1,s − EN,0 and εN−1

s = EN,0 − EN−1,s (2.41)

which are essentially the same as those introduced in Equations (2.4) and (2.5).
From Equations (2.39) and (2.40), one indeed finds out that for τ > 0 only a linear com-

bination of N + 1-particle states will survive through the action of the field operators. This
results in the charged excitation energies of a system that had been in ΨN

0 and then in the
excited state ΨN+1

s . This is relevant to the electron addition energy or propagation of an extra
electron through the system, the subject of the inverse photo-emission experiment. For τ < 0,
on the other hand, the equations will be restricted to states with N − 1 particles, representing
an electron removal or a hole creation in connection with the direct photo-emission experiment.

To investigate excitations within a system or to gain direct access to spectroscopy results,
it is often useful to evaluate the Green’s functions in the frequency ω space instead of the time
space. As a result, all the convolutions in time space will become direct products in frequency
space. Applying Fourier transformation33 with respect to the time argument of the Green’s
functions (2.40) along with the integral representation of the Heaviside function Θ(τ)34, yields
the Lehmann representation of the Green’s functions [67]

G(r1, r2, ω) =
∑
s

ψN+1
s (r1) ψ

∗N+1
s (r2)

ω − εN+1
s + iη

+
∑
s

ψN−1
s (r1) ψ

∗N−1
s (r2)

ω − εN−1
s − iη

. (2.42)

As said before, the infinitesimal value of η appears in the transformation to use complex fre-
quencies z = ω±iη, providing well-behaved complex Fourier transforms. Following the equation
above, the physical meaning of Green’s function is evident: the one-body Green’s functions do
have poles corresponding to the exact values of the electron addition and removal energies of
the system.

33Time and frequency representations of any function Λ are related by Fourier transform

Λ(ω) =

∫ +∞

−∞
Λ(t)eiωtdt and Λ(t) =

1

2π

∫ +∞

−∞
Λ(ω)e−iωtdω,

which must result in the convergence on the limit of the integrand at ±∞. To guarantee the convergence,
the time domain is often split into two parts: Λ(ω) =

∫ 0

−∞ Λ(t)eiωt+ηtdt +
∫ +∞
0

Λ(t)eiωt−ηtdt, where η is an
infinitesimal positive number η → 0+, introduced to have well-defined complex Fourier transform. Indeed, e±ηt

is the required factor to avoid difficulties in converging.
34 Θ(ω) = 1

2π

∫ +∞
−∞ Θ(τ)eiωτ−η|τ | dτ = i

2π(ω+iη)
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Now, let us define the chemical potential µ, which is an energy somewhere between particle
removal and addition energies: εN−1

s ≤ µ ≤ εN+1
s

35. Using this definition, a general Lehmann
representation of the time-ordered Green’s functions can be written down as

GT (r1, r2, ω) = lim
η→0+

∑
s

fs(r1) f
∗
s (r2)

ω − εs + sgn(εs − µ) iη
, (2.43)

where the variables fs denote the Dyson amplitudes accounting for the overlap between the
ground state (at zero temperature) and excited s eigenstates of the Hamiltonian while the latter
differs from the former by one particle. For instance, the Dyson amplitude for εs > µ reads

fs(r) =
〈
ΨN

0 |ψ̂(r)|ΨN+1
s

〉
=

∑
i

ψi(r)
〈
ΨN

0 |ĉi|ΨN+1
s

〉
=

∑
i

ψi(r)δi,s = ψs(r). (2.44)

The Green’s functions (2.43) can also be constructed by the approximate mean-field solutions,
which correspond to effective non-interacting system and, therefore, fs and εs are obtained
from the single-particle orbitals and the corresponding eigen-energies. We will return to this
point in Section 2.6.

From Equation (2.43), the polar structure of the Green’s functions is clear; for frequencies
lower than the chemical potential µ, poles in the Green’s function (corresponding to electron
removal excitations) locate slightly above the real axis, whereas poles corresponding to electron
addition energies lie in the lower plane for ω > µ. Therefore, signum function in the denominator
adds (subtracts) the small imaginary value of iη (−iη) to (from) the electron addition (removal)
energies εs. Figure 2.3 illustrates the polar structure of the Green’s function (2.43) in the
complex plane C. This polar structure will be discussed further in Subsection 2.6.7, where we
present the frequency integration to evaluate the self-energy in the GW method.

Im (  )

Re (  )

-

Figure 2.3: Polar structure for the time-ordered Green’s function GT at zero temperature in the
complex plane C. For real frequencies less (greater) than µ, the poles of GT are shifted to the
upper (lower) half plane by +iη (−iη), determining energies for which particles can be removed
(added). The one-body GT is basically found in terms of retarded and advanced correlation
functions. The causal response function χ is an example of a retarded correlation function CR,
displaying all its poles in the lower plane.

We should note that in all equations above and in the following, we always utilize the
formalism based on the time-ordered Green’s functions at zero temperature T . For T ̸= 0 cases,

35Basically, µ is the change in the free energy when one electron is added or removed from the system. For a
metal, the chemical potential µ equals the required energy to add or remove a particle, i.e., the Fermi energy.
If the system under consideration is an insulator, µ positions somewhere inside the gap.
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we refer the reader to textbooks, e.g., Ref. [1, 47], providing extensive details and modified
expression for non-zero temperature of the Green’s functions within the so-called Matsubara
formalism [68].

2.5.2 Physical Quantities Connected to the Green’s Functions

In the previous section, we found that the time differences appearing within the Green’s func-
tions provide a framework to describe charged excitation energies. In the following, we discuss
a few other quantities than can be directly derived from the time-ordered one-body Green’s
functions36.

- Expectation value of any single-particle operator: Within the second-quantization
framework, single-particle operator γ̂ or two-particle operator Γ̂ in the form of the field operators
read

γ̂ =

∫
ψ̂†(r) γ(r) ψ̂(r) dr (2.45a)

Γ̂ =
1

2

∫
ψ̂†(r1)ψ̂

†(r2) Γ(r1, r2) ψ̂(r2)ψ̂(r1) dr1dr2. (2.45b)

Having definitions given in Equation (2.35) and (2.36), one can write the expectation value of
any single-particle operator (2.45a) in terms of the Green’s functions

⟨γ̂⟩ = −i
∫
γ(r) G<(r, t; r, t) dr

= −i
∫
γ(r) G(r, t; r, t+ η) dr,

(2.46)

where a positive infinitesimal value of η enforces the correct order of the field operators. Making
use of Equation (2.46), for instance, one can express the spin-resolved electron density nσ(r)37

by the time-ordered Green’s function (2.36)

nσ(r) = −iGσ(r, t; r, t+ η)

∣∣∣∣
η→0+

(2.47a)

= − i

2π

∫ +∞

−∞
lim
η→0+

Gσ(r; r;ω) eiωηdω. (2.47b)

This expression clearly shows that the electron density is the probability of finding an electron
at a given position (and with a given spin) in the ground state38.

- Density Matrix: For an N -particle system, the density matrix ρ(r, r′) gives the corre-
lation of the one-particle’s wavefunction at two different points, and reads

36From now on, we will no longer display the superscript T .
37This also can be found from the fermionic relation between the field operators which obey:

{
ψ̂i, ψ̂

†
i′

}
=

δ(i− i′).
38A direct connection between MBPT and DFT has been established by the Sham-Schlüter equation [22]

showing that the Green’s function of the KS system gives the same charge density as that of interacting system.
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ρ(r, r′) =

∫
Ψ∗(r, r2, r3, · · · , rN)Ψ(r′, r2, r3, · · · , rN) dr2dr3 · · · drN . (2.48)

This expression in terms of the Green’s function becomes

ρ(r, r′) = −iG(r, t; r′, t+ η)

∣∣∣∣
η→0+

. (2.49)

It is evident that the evaluation of ρ at r = r′ (the diagonal) returns the electron density n(r).
The density matrix can also be expressed in terms of natural orbitals ϕl [1]

ρ(r, r′) =
∑
l

nl ϕl(r)ϕl(r
′). (2.50)

Here, ϕl and nl embody the many-body generalization of the orbitals and the occupation num-
bers, given by mean-field methods. The density matrix is a practically useful object to identify
the nature of interactions within a system. For a non-interacting system at zero temperature,
ρ is an idempotent matrix: n is one for an occupied state and zero for a virtual state. For an
interacting system, however, nl are fractional and lie between 0 and 1. This can be ascribed to
the many-body interactions that mix the single-particle states. Therefore, the deviation of nl
from unity signals the multi-reference character of a given wavefunction—the fact that several
different Slater determinants are necessary to express it.

- Spectral Function: Using the Lehmann representation of Green’s functions (2.43), the
spectral function A is defined as below

A(r1, r2;ω) = sgn(µ− ω)
1

π
Im G(r1, r2;ω) (2.51a)

=
∑
s

fs(r1)f
∗
s (r2)δ(ω − εs). (2.51b)

From the equalities above, it is clear that the spectral function A(ω) provides a form of the
(local) density of excited states, extracting information embedded in the imaginary part of the
Green’s function39. Therefore, one might seek the link between the structure of A(r1, r2;ω) and
the true charged excitation energies in a many-body system. This connection is indeed given
by the sudden approximation [69], which relates the spectral function to the photo-emission
measurements. Although this is a drastic approximation and neglects some features of the
process [70], one might expect to observe two typical structures of a photo-emission spectrum
in the spectral function: relatively sharp peaks arising from the excitations and satellite (side-
band) structures stemming from the interaction among the excitations (collective excitations).
To further understand these structures, it is useful to consider non-interacting electrons. For a
non-interacting system at equilibrium, substituting the Dyson amplitudes in Equation (2.51b)
for the single-particle orbitals ψs(r) leads to

Aσ(r1, r2;ω) =
∑
s

ψσs (r1)ψ
∗σ
s (r2) δ(ω − εσ0,s), (2.52a)

Aσss(ω) = δ(ω − εσ0,s), (2.52b)

39To show this, one can use the equality of limη→0+
1

ω±iη = P( 1
ω )∓ iπδ(ω) that splits a frequency space into

a principal term P and the singular contribution.
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where Aσss(ω) are the diagonal elements of the spectral function matrix in the basis of the
eigenfunctions of the single-particle Hamiltonian. Since ψσs (r) are constructed by single Slater
determinants, the spectral function (2.52) contains infinitely sharp δ-functions. For an in-
teracting system, however, the spectral function in Equation (2.51) is involved in the Dyson
orbitals—which are no longer represented by single Slater determinants. As a result, the spec-
tral function can include contributions from many transition amplitudes embedded within the
exact many-body

∣∣ΨN
0

〉
and

∣∣ΨN±1
s

〉
states. For transitions close in energy, the corresponding

δ-functions can merge and form a broad peak, addressing the lifetime of the excitation due
to the scattering effects. These particle-like excitations will be discussed in Subsection 2.5.5,
where we present the quasiparticle concept.

Connection between spectral function and G can be also shown by Cauchy residue formula
[47, 71]

Gσ(r1, r2;ω) =

∫ µ

−∞

Aσ(r1, r2;ω
′)

ω − ω′ − iη
dω′ +

∫ ∞

µ

Aσ(r1, r2;ω
′)

ω − ω′ + iη
dω′. (2.53)

Depending on the numerical procedure, one then might deal with either the spectral function,
using values of ω within the real axis, or the Green’s functions within complex plane.

- The one-body Green’s function within the equation of motion: In principle,
one can make use of the Green’s functions to represent the many-body Schrödinger equation
(2.3), for which the electronic Hamiltonian (2.2) for a static external potential in terms of field
operators reads

Ĥ =

∫
ψ̂†(r1) ĥ(r1) ψ̂(r1) dr1 +

1

2

∫∫
ψ̂†(r1)ψ̂

†(r2) vc(r1, r2) ψ̂(r2)ψ̂(r1) dr1dr2. (2.54)

In the equation above, we used (2.45a) to construct the single-particle operator ĥ(r) = −1
2
∇2+

vext(r). We also applied the expression of (2.45b) to represent the instantaneous two-body
repulsive Coulomb interactions vc(r1, r2) = δ(t1 − t2)/|r1 − r2|. Inserting Hamiltonian (2.54)
into the equation of motion followed by the action of field operators and the derivative of the
Heaviside step function ∂Θ(τ)/∂t = δ(τ), we eventually arrive at[

i
∂

∂t1
− ĥ(r1)

]
G(1, 1′) + i

∫
vc(r1, r2) G

2(1, 2; 1′, 2+) d2 = δ(1, 1′). (2.55)

Here, G2 is used to represent the two-particle Green’s function containing four field operators,
in connection with Equation (2.38). Moreover, the compact notation of (1, 2; 1′, 2+) in terms
of time is equal to (t1, t1 + η; t1

′, t1 + 2η), enforcing the correct time differences. Through
Equation (2.55), we again revisit the complex structure of the many-body problem in which
the one-body G is linked to the more complex objects G2, and this will be continued by linking
G2 to G3, and so on. Therefore, it is clear that the explicit solution to Equation (2.55) for an
N -particle system leads to an intractable hierarchy of equations. In the next subsection, we
thoroughly discuss a many-body perturbation approach to gather all the contents embedded in
the higher-order Green’s functions in an auxiliary quantity, the self-energy.

For a moment, let us omit the root of the problem, i.e. the two-body repulsive Coulomb
interactions vc(r1, r2) in the Hamiltonian (2.54). In the absence of interactions, Equation (2.55)
reduces to [

i
∂

∂t1
− ĥ(1)

]
G0(1, 1

′) = δ(1, 1′), (2.56)
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where G0 is the one-particle Green’s function of independent electrons. Within the basis of
single-particle orbitals and at zero temperature, the G0 is diagonal and its operator represen-
tation becomes

[G0]
−1 = i

∂

∂t
− ĥ. (2.57)

This is the familiar form of the Green’s function as the inverse of a kernel, which is the standard
definition of the Green’s functions.

- Total Energy: As we have already realized, the many-body Hamiltonian (2.55) is
involved in a hierarchy of the Green’s functions, making it a practically insoluble problem.
Despite this, the energy of a many-body system can be still expressed in terms of the one-body
Green’s functions. Following this, it has been shown that the electron–electron interaction
energy

〈
V̂e-e

〉
can be obtained by the time derivative of the one-body Green’s function. This

leads to the Galitskii-Migdal formula for the total energy [1, 72]

E =
1

2

∫
lim
η→0+

[
∂

∂t
− ih(r)

]
G(r, t; r+ η, t+ η) dr. (2.58)

2.5.3 Self-Energy

From Equation (2.55), we found that the many-body Hamiltonian comprises complex objects,
representing the Coulomb interactions as a two-body correlation function40, which makes the
problem extremely difficult to solve, rapidly intractable for large systems. As in the TDDFT
method, perturbation theory is an approach to this complicated problem for which one can
treat the problem by starting from a simple independent-particle problem and then deal with
the root of the problem, i.e. the two-body interactions, as a perturbation in a clever way.

Considering an instantaneous Coulomb interaction vc(1, 2) = δ(t1 − t2)vc(r1 − r2), which
carries a δ-function in time, we insert the solution of the one-particle Green’s function of
independent electrons G0, expressed in Equations (2.56) and (2.57), inside the Equation (2.55).
This yields the general form of Heisenberg equation of motion for the one-body Green’s functions

G(1, 1′) = G0(1, 1
′)− i

∫∫
G0(1, 2)vc(2, 3) G

2(2, 3+; 1′, 3++) d2d3, (2.59)

Now, let us define a new correlation function L41

L(1, 2, 1′, 2′) = −G2(1, 2, 1′, 2′) +G(1, 1′)G(2, 2′). (2.60)

This function L is often called the 4-point polarizability and represents the fluctuations of the
two-body propagation G2 by subtraction the propagation of the two uncorrelated one-body G.
Inserting the last definition in Equation(2.59) results in

40This emphasizes that an electron within the many-body system does not propagate lonely, and it always
interacts with all other electrons.

41By definition, two quantities are correlated if ⟨A B⟩ ≠ ⟨A⟩ ⟨B⟩. Having said this, the fluctuation of a system
can be defined as the difference between correlated term and uncorrelated parts, i.e C = ⟨A B⟩ − ⟨A⟩ ⟨B⟩.
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G(1, 1′) = G0(1, 1
′)− i

∫∫
G0(1, 2)vc(2, 3)G(3, 3

+)G(2, 1′) d2d3

+ i

∫∫
G0(1, 2)vc(2, 3) L(2, 3

+; 1′, 3++) d2d3.

(2.61)

It can be promptly recognized that the middle term in right-hand side contains the Hartree
potential; since according to Equation (2.47) the G(3, 3+) is related to the electron density
n(3) = −iG(3, 3+) and, therefore

∫
vc(2, 3)G(3, 3

+)d3 is nothing but VH . So far, we could split
the interacting many-body problem into a term which is tractable and the rest of the problem
dealing with the two-body L.

Here, we apply the fundamental idea of the MBPT. Using the Schwinger derivative [73],
one can express the two-body Green’s functions as the functional derivative of the one-particle
Green’s functions with respect to a small external potential U as a fictitious perturbation, i.e.{

δGu(2, 1
′)

δU(3+, 3)

}
U=0

= L(2, 3, 1′, 3+). (2.62)

Note that the perturbing potential U is chosen just as a mathematical tool for eliminating the
undesired two-body Green’s function from the equation of motion and it will be set to zero
once the solution is obtained. Using this trick for a local perturbation U(3)δ(3+, 3), Equation
(2.61) can be reformulated as

G−1(1, 1′) = G−1
0 (1, 1′)− [U(1) + VH(1)] δ(1, 1

′)− i

∫∫
vc(1, 3)

δGu(1, 2)

δU(3+)
G−1(2, 1′) d2d3.

(2.63)

which relates the propagation of a particle in an interacting system to the three terms in
the right-hand side of the equation which are the contributions of: the independent-particle
propagation G−1

0 , a correction due to the electrostatic Hartree potential42, and lastly all other
many-body interactions beyond the Hartree term. The latter is the general definition of the
non-local exchange-correlation self-energy Σxc, which reads

Σxc(1, 1
′) = i

∫∫
vc(1, 3)

{
δG(1, 2)

δU(3+)

}
G−1(2, 1′) d2d3

= −i
∫∫

vc(1, 3) G(1, 2)

{
δG−1(2, 1′)

δU(3+)

}
d2d3.

(2.64)

To achieve the expression in the second-line, we used the definition of the inverse of an opera-
tor43.

Having the definition of the self-energy, one finds that Equation (2.63) leads to a closed
set of functional integro-differential equations for solving the many-body problem; since by
determining the interacting Green’s function G, one can obtain all derivatives with respect
to the external perturbation U , and capture all correlations within the system. However, the
multi-dimensional and non-linear character of the Equation (2.63) – existence of G at both

42This term can be included the external potential U(1) induced by the perturbation, for U ̸= 0
43Definition of the inverse is

∫
G(1, 3)G−1(3, 2) d3 =

∫
G−1(1, 3)G(3, 2) d3 = δ(1, 2), and derivative of the

inverse becomes δG(1,2)
δH(3) = −

∫
G(1, 4) δG

−1(4,5)
δH(3) G(5, 2) d4d5 [74].
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sides – preclude a straightforward solution. Moreover, it has been shown that Equation (2.63)
can lead to many solutions, and it is unclear how to choose the solution corresponding to the
physical properties [75]. Instead of finding the exact solution, therefore, it might be reasonable
to find out an approximate approach giving the difference between the interacting Green’s
function and the non-interacting ones. In the next Subsections, we discuss such an alternative
approach to deal with the Equation (2.63), so that, one can approximate the self-energy and
recast the Equation (2.63) in the brilliant form of Dyson equation 2.5.4, resulting in a physically
reasonable solution to the interactions within the system.

Lastly, let us replace the two-particle Green’s function by another products of one-body
Green’s functions by using the simplest approximation to the correlation function in (2.60),

L0(1, 2; 1
′, 2′) = G(1, 2′) G(2, 1′). (2.65)

Inserting this approximation in Equation (2.59) yields the Hartree-Fock approximation for
which the exact non-local exchange potential is expressed in terms of the Green’s functions

Σx(1, 2) = iG(1, 2+) vc(1, 2). (2.66)

This expression agrees with the conventional definition of the exact-exchange Fock operator,
Σx(r, r

′) = −vc(r, r′) ρ(r, r′) given in Equation (2.11), where the density matrix is replaced
by the one-body Green’s function through Equation (2.49). Thus, one finds that applying the
simplest approximation to the self-energy leads to the Hartree-Fock approximation accounting
for the exact exchange energy. At any higher level of approximation than (2.65), contributions
of the correlation to the self-energy will appear. In Figure 2.4 illustrates a few order of single-
scattering interactions in terms of Feynman diagram.

Figure 2.4: Feynman diagrams representing (top) a series of single-scattering interactions in
a many-body system. All zigzag lines represent the instantaneous Coulombic interactions and
arrows going forward (backward) denote electron (hole) propagation. (below) Dyson equation
for the self-energy Σ which embodies all many-body interactions and links the bare one-body
Green’s functions G0 into the dressed Green’s functions G.

In the next Section 2.6, we shall discuss the GW framework offering an efficient approxima-
tion to the exchange-correlation self-energy Σxc by substituting the bare Coulomb interactions
for the dynamically screened interactions. Additionally, we discuss a higher-level approximation
of L, which provides a tractable approach to the propagation of electron-hole pairs.
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2.5.4 Dyson Equation

Replacing the definition of self-energy (2.64), within the equation of motion for the one-body
Green’s function in Equation (2.55) yields[

i
∂

∂t1
− ĥ(r1)

]
G(1, 1′)−

∫
Σ(1, 2) G(2, 1′) d2 = δ(1, 1′). (2.67)

Note that the self-energy Σ includes the Hartree term. Multiplication of this equation with
G0 and inserting the corresponding definition of the non-interaction Green’s functions given in
Equation (2.56), followed by integration, leads to the well-known Dyson equation as below

G(1, 1′) = G0(1, 1
′) +

∫∫
G0(1, 2)Σ(2, 3)G(3, 1

′) d2d3, (2.68)

or, in a compact notation of

G = G0 +G0ΣG

= G0 +G0ΣG0 +G0ΣG0ΣG0 + · · · . (2.69)

The integral equations above establish a connection between bare G0 and dressed solution G
through the self-energy Σ as a kernel accounting for all effects of coupling caused by inter-
actions44. A schematic depiction of the Dyson equation in terms of the Feynman diagram is
given in Figure 2.4. Within the Dyson equation the non-interacting system, expressed by G0,
is linked to the interacting one whose poles are modified due to the interaction potential of the
self-energy. This modification can be straightforwardly realized from

G−1(1, 1′) = G−1
0 (1, 1′)− VH(1)δ(1, 1

′)− Σxc(1, 1
′), (2.70)

or, in a more general and compact notation of

G−1(ω) = G−1
0 (ω)− Σ(ω), (2.71)

which is in line with Equation (2.63), and depicts the expected shifts of poles by the self-energy
as a response to the effects of coupling in the interacting system.

In order to solve Equation (2.71), it is reasonable to start working in a basis whose matrices
are nearly block diagonal, and the coupling interactions within the self-energy are small. For
constructing Green’s functions, therefore, one often does not begin from a G0 corresponding to
the bare electrons and overloads the self-energy with all Coulomb interactions but rather starts
from particles feeling an effective potential like that of mean-field Hartree-Fock or KS. From a
practical point of view, however, this gives rise to the significance of finding an optimal starting
point. We will discuss the pros and cons of such a choice in Section 2.6.4, where mean-field
solutions are used to construct G0. In Chapter 4, moreover, we employ different mean-field
orbitals to initiate GW calculations and discuss their impact on the final results.

2.5.5 Quasiparticle

In connection with the last discussion, it is tempting to introduce particle-like objects mimicking
excitations of the interacting many-body system. This idea is one of the most powerful concepts
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Figure 2.5: (left) Quasiparticle object contains an electron surrounded by a positively charged
cloud. This polarization stems from the intrinsic repulsive electron-electron interactions within
an interacting system. (right) Response of an interacting many-body system to the perturbation
induced by an electron removal. This response leads to the creation of electron and hole plus
changes in the screening of whole system.

in many-body theory, proposed by Landau [76], closely linked to the paradigmatic Fermi liquid
theory.

Quasiparticles are weakly interacting and long-lived particle-like electronic excitations with
effectively intrinsic properties45 due to the correlations within an actual interacting system [1].
Physics underlying the quasiparticle concept can be considered as the following: an electron
within a many-body system tends to repel other neighboring electrons and, therefore, a posi-
tively charged cloud (a deficiency of electrons usually known as polarization cloud) is formed
around the central electron. Therefore, the central electron is now screened by an effectively
positive charged cloud, giving rise to the quasiparticle concept. Due to the positively charged
cloud, quasiparticles interact with each other through an effective weaker potential than the
bare Coulomb potential felt by independent electrons. Thus, quasiparticle energy and lifetime
do differ from those of a bare electron. A schematic illustration of the quasiparticle concept is
sketched in Figure 2.5.

To gain further insight into the association of quasiparticles with particle-like excitations,
let us review the non-interacting spectral function in Equation (2.52), where we used the single-
particle states ψ(r) to construct the excited states. Given that, we found that the diagonal ele-
ments of Ass yield a series of δ-function peaks corresponding to the excitation of non-interacting
particles with energies of ε0s. For an interacting system, on the other hand, the eigenstate are
not single Slater determinant in a well-defined basis of single-particle states. For this reason,
the spectral function must be constructed using the Dyson probability amplitudes f(r) as in
Equation (2.51). This means that the interaction causes many extra (non-vanishing) transition
amplitudes within the matrix elements of the spectral function, giving rise to many additional
δ-function peaks. Energetically close peaks can merge and result in a clearly identifiable peak
with a finite broadening which is the quasiparticle peak associated with a finite lifetime τ . Note
that the broadening (lifetime) of the quasiparticle within the spectral function is because of the
electron-electron scattering and distinguishes the quasiparticle concept from the non-interacting
particle. Considering all these features, the shape of quasiparticle peak for s-th excitation can
be considered as [10]

Ass(ω) ≈
1

π

∣∣∣∣ Zs
ω − (εs + iΓ)

∣∣∣∣ , (2.72)

where Z is the renormalization factor and represent the area underneath the peak. It is im-
44Note that this form of the Dyson equation can be applied to any Green’s function and derived quantities

such as the response functions, polarization, screened interaction, and etc.
45Compared to the non-interacting particles, the quasiparticles conserve charge, spin, and momentum and

have the same quantum numbers, while their mass and magnetic moment are re-normalized.
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portant to note that the quasiparticle poles occur in the complex plane, where the real part
is the excitation energy of the quasiparticle and the imaginary term is inversely proportional
to the lifetime Γ = 2

τ
. The latter shows that short lifetimes lead to large broadening of the

quasiparticle peaks. In contrast, long lifetimes induce a narrow peak, which can ultimately lead
to a δ-function in the limit τ → ∞, returning the property of a non-interacting system.

Charged excitations within a many-body system might give rise to additional peaks due to
other excitations induced within the system. Such structures are known as the satellites or
side-bands. Within an interacting system, the renormalization factor Z quantifies the weight
shifted from the quasiparticle peak to the satellites. Note that the total weight of A must
be conserved according to the sum rule

∫ +∞
−∞ A(r1, r2;ω) dω = δ(r1 − r2). Therefore, one can

scale importance of interactions by considering the ratio between the quasiparticle peak and
satellite intensity. For instance, when the satellite-over-quasiparticle ratio is high, this suggests
interaction effects are stronger [1]. Knowing the self-energy, as a complex object, we can obtain
values of Z and Γ in Equation (2.72).

To connect the self-energy with the quasiparticle concept, one can recast the Dyson equation
(2.69) into a set of single-particle eigenvalue problems like those of Hartree-Fock (2.9) or KS
approach (2.15), in which the bare effective interactions Veff in the mean-field’s Hamiltonian
are substituted for a dynamical field of the self-energy. To do this, we begin with Fourier
transformation of the equation of motion for the one-body Green’s functions in Equation (2.67),
which yields [67]

[
ω − ĥ(x1)

]
G(x1,x2;ω)−

∫
Σ(x1,x3;ω) G(x3,x2;ω) dx3 = δ(x1 − x2), (2.73)

where we renamed indices with x1 = [r1, σ1], and Σ(x1,x3;ω) is the Fourier transformation of
Σ(x1,x3; t1−t3). Putting the Lehmann representation (2.43) in the equation above, followed by
a multiplication of (ω−εs), where εs is the pole of G(x1,x2;ω) and it is assumed non-degenerate
and ω → εs, one gets[

εs − ĥ(x1)
]
fs(x1)f

∗
s (x2)−

∫
Σ(x1,x3; εs)fs(x3)f

∗
s (x2) dx3 = 0, (2.74)

which can be simplified further to

ĥ(x1) fs(x1) +

∫
Σ(x1,x3; εs)fs(x3) dx3 = εsfs(x1). (2.75)

The expression above is known as the quasi-particle equation. At the solution with the exact
self-energy, this equation would yield the probability amplitudes of the ionization fs associ-
ated with the corresponding quasiparticle energies εs as the single-particle excitation energies
of the system. Nevertheless, Equation (2.75) is increasingly difficult to solve as compared to
the conventional eigenvalue problems such as (2.9) or (2.15), since the self-energy is a dy-
namic (energy-dependent) and non-Hermitian quantity. In Subsection 2.6.5, we will return to
this point and discuss some approximations which can lead to the quasiparticle energy and
wavefunction.

2.5.6 Bethe-Salpeter Equation

As we discussed at the beginning of this section, information embedded in the one-body Green’s
function is not applicable for describing the neutral excitations, such as those experimentally
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accessible via optical absorption spectroscopy. For such a purpose, we need the two-body
correlation functions that contain information about the propagation of two electrons or two
holes, or electron-hole pairs (excitons)46. Similar to what we did in Section 2.5.4, one can express
the Dyson equation for the two-body Green’s functions, and decouple the non-interacting two-
body function from its interacting term. This procedure leads to the Bethe-Salpeter equation.

We begin with the 4-point polarizability in Equation (2.60) and the corresponding definition
in the Schwinger-Martin derivative in Equation (2.62). Variation of the one-particle Green’s
function with respect to a non-local external perturbative potential yields

L(1, 2; 1′, 2′) =
δG(1, 1′)

δU(2′, 2)
. (2.76)

Using the functional derivative relations (the chain rule and the inverse derivative), as used in
Subsection 2.5.3, L in (2.76) can be formulated as

L(1, 2; 1′, 2′) = −i
∫
G(1, 3)

δG−1(3, 4)

δU(2′, 2)
G(4, 1′) d3d4. (2.77)

SubstitutingG−1 in the last equation for the Dyson equation (2.70) in presence of the perturbing
potential U , one gets

L(1, 2; 1′, 2′) = −i
∫
G(1, 3)G(4, 1′)

[
G−1

0 (3, 4)− U(3, 4)− VH(3)δ(3, 4)− Σxc(3, 4)
]

δU(2′, 2)
d3d4,

(2.78)
where G−1

0 is independent of U and, thus, its functional derivative vanishes. Having L0 (2.65)
as the independent-particle four-point polarizability and using the chain rule, Equation (2.78)
can be recast into

L(1, 2; 1′, 2′) = L0(1, 2; 1
′, 2′) +

∫
L0(1, 4; 1

′, 3)
δ [VH(3)δ(3, 4) + Σxc(3, 4)]

δG(5, 6)

δG(5, 6)

δU(2′, 2)
d3456.

(2.79)
Finally, by defining the 4-point Hartree-exchange-correlation Bethe-Salpeter kernel as

Ξ(3, 6; 4, 5) =
δ [VH(3)δ(3, 4) + Σxc(3, 4)]

δG(5, 6)
, (2.80)

we arrive at a Dyson-like representation of the Bethe-Salpeter equation:

L(1, 2; 1′, 2′) = L0(1, 2; 1
′, 2′) + L0(1, 4; 1

′, 3) Ξ(3, 6; 4, 5) L(5, 2; 6, 2′). (2.81)

This expression is similar to the Casida equation (2.30) within the TDDFT framework. Here,
Ξ represents the propagation of two particles by taking into account an effective interaction

46To interpret optical absorption spectra, we need to consider neutral excitations, i.e. electron-hole pair
propagation. To do so, the required formulation should fulfill three terms: simultaneous creation of an electron-
hole pair, propagation of the pair through the system, and eventually the simultaneous annihilation of the pair
at a later time. Using equal time limits as t′ = t+ = t + η, the electron-hole propagator in Heisenberg picture
reads

G>
eh(1, 2; 1

′, 2′) = (−i)2
〈
ψ†(r1

′, t1 + η)ψ(r1, t1) ψ
†(r2

′, t2 + η)ψ(r2, t2)
〉
,

where G>
eh gives the probability amplitude of finding a pair of electron-hole at point (r′1, r1) with spin (σ′

1, σ1)
at time t1 while a pair is previously created at point (r′2, r2) with spin (σ′

2, σ2) at time t2. The same holds for
G<

eh.
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between them. Similarly to the role of fHxc in Equation (2.29), Ξ accounts for the variation due
to the excitation of all internal potentials within the systems, i.e. the Hartree potential and the
exchange-correlation self-energy (see Equation (2.80)). However, the complexity of the kernel Ξ
does not allow for a straightforward application. As a simple approximation, one might apply
RPA and restrict Ξ to the self-consistent variation of the Hartree potential, whereas variations
of δΣxc/δG are entirely omitted. Upon this simplification, although the long-range variation of
the Hartree potential is taken into account within the RPA, the resulting spectra often show
qualitative and quantitative discrepancies with respect to the experiment. In the Subsection
2.6.8, we return to this point and discuss a more appropriate approximation to Ξ, adopted from
the GW approach.

Once the Equation (2.81) is solved, the required information to explain the neutral exci-
tations Ωs is accessible, and one can interpret measurements such as optical absorption and
electron energy loss spectra. However, it is claimed that the Bethe-Salpeter solutions provide
much more information than needed for interpreting the optically excited states while the two-
point reducible polarizability χ(ω) (2.29) would be sufficient for such a purpose. Nevertheless,
there is no closed relation for this two-point quantity in the Green’s function framework. Thus,
one needs to deal with a complex equation consisting of four space, spin, and time arguments,
and then contract into the two-point polarizability47 [77].

Within the BSE framework, a new approach, the so-called T -matrix, has been recently
carried out in which L is expressed in the form of transverse polarizability accounting for spin
excitations as well as the electron-hole coupling. Since this topic is beyond our scope in this
work, we refer the readers to Ref. [1, 78].

2.6 The GW Approach

In the previous section, we realized how Green’s functions are sophisticated tools for interpreting
experimentally accessible properties of an actual interacting system. Moreover, we established
a hierarchy of equations, linking the n-body Green’s functions to the (n+1)-body one. Thanks
to the elegant form of the Dyson equation, we could recast this hierarchy and introduce a kernel,
the so-called self-energy operator. We showed that the self-energy connects the non-interacting
system to the interacting one by accounting for all the many-body interactions in the system.
Nevertheless, we have not yet introduced a practical approach to obtaining self-energy.

In 1965, Lars Hedin proposed a set of integro-differential equations – today known as the
GW method – that provides an in-principle exact approach for evaluating one-body Green’s
function and the exchange-correlation self-energy [69, 79]. Due to Hedin’s equations, one is able
to approximate the complex many-body problem by virtue of a set of physically meaningful
quantities, where the screened Coulomb interaction appears as the basic quantity. Since the
GW approach is the main theoretical tool in this thesis, we shall review the fundamental
equations and their derivations.

After an introduction to the notion of screening in 2.6.1, as the main concept within the
approach, we elaborate Hedin’s self-consistent equations in subsection 2.6.2. In subsection
2.6.3 and 2.6.4, we introduce state-of-the-art GW approximation and make a connection be-
tween this approximation and mean-field methods. There, we also discuss the performance
of the GW approximation to evaluate the essential physics of ground-state and charged ex-
cited states. Furthermore, we outline different schemes within the method in 2.6.6 and present
some practical techniques in subsection 2.6.7 to deal with the frequency dependence embedded

47 χ(1, 2) ≡ −iG(1,1′)
Uext(2)

=
[
G2(1, 2; 1′, 2′)−G(1, 1′)G(2, 2′)

]
= −iL(1, 2; 1′, 2′)
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in the GW method. Eventually, in subsection 2.6.8, we outline the Bethe-Salpeter equation
as a straightforward extension to the GW approximation for describing two-particle neutral
excitations.

2.6.1 Screened Interactions

The concept of screening is essential in solid-state physics. The importance of the screening
arises due to the composition of condensed matter systems from nearly immobile positive nu-
clei and highly mobile negative electrons. External electrostatic fields tend to be compensated
within condensed matter systems. This tendency leads to a more convenient theoretical descrip-
tion of any Coulombic interactions within condensed matter via an effective dynamic screened
interaction W (r, r′, ω) rather than the static bare Coulomb interaction vc(r, r′) = |r− r′|−1.

The screened interaction is an essential concept in the GW method; while this concept
is entirely neglected in the Hartree-Fock, the GW method accounts for some correlation in
the form of screening leading to an energy-renormalization and broadening of the excitations.
Indeed, the acronym GW stands for this approach since the self-energy is expressed in terms of
the one-body Green’s function G, embodies the propagation of particles within the dynamical
screening field W (ω).

Figure 2.6: An illustration of the screened interactions. Central electron at r interacts with the
test charge at r′ via the screened interaction W that accounts for both bare Coulomb potential
vc(r, r′) as well as vc(r′′, r′) induced by the positive charge cloud nind which screens the central
electron.

To gain a conceptual understanding of the screening, let’s consider a test charge at point
r′ in the neighboring of an electron located at r. The Coulombic potential of the latter repels
other electrons within the system and thereby forms an induced positive charge cloud nind(r, r

′′)
around itself. This positive charge cloud screens the central electron and, thus, weakens the
bare Coulomb interaction vc(r, r

′) with the external test charge. This simply means that the
screened electron can be considered as a quasiparticle, as discussed in Subsection 2.5.5. As the
result, the effective classical interaction between test charge and the quasiparticle is not only the
bare Coulombic interaction vc(r, r′) but also the test charge experiences an additional positive
potential, created by the distribution of the charge cloud. Therefore, the effective potential at
r′ induced by a quasiparticle at r becomes
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W (r, r′;ω) =

∫
ϵ−1(r, r′′;ω) vc(r

′′, r′) dr′′ (2.82a)

= vc(r, r
′) +

∫
nind(r, r

′′;ω) vc(r
′′, r′) dr′′, (2.82b)

where we introduced the inverse test-charge test-charge dielectric function ϵ−1, which screens
the bare potential vc by the Coulombic response of the induced charge nind(r

′′, r′). Alternatively,
we can split the contributions of the bare potential and the corresponding induced potential
vind, as given in the second line, and rewrite Equation (2.82b) in the symbolic form of

W = vc + vind. (2.83)

The recent equality shows that W includes static bare Coulomb potential plus the induced
potential vind, accounting for the dynamic polarization contributions. The latter is often called
the correlation part and referred to as Wc(ω).

In connection with the linear response theory, discussed in 2.4.2, the induced charge as the
response of a system to an external perturbation U reads [14]

nind(1) =

∫
χ(1, 2) U(2) d2, (2.84)

where χ represents the density-density response function (full or reducible polarizability) and
its poles give the excitation energies of the system. Within Hedin’s formalism, presented in the
next subsection, we show how inserting the Fourier transform of (2.84) into (2.82b) leads to a
Dyson-like equation for the screened interaction. Knowing such a relation between χ and W ,
Hedin could establish a closed set of equations, yielding a practical approach to obtaining the
self-energy.

2.6.2 Hedin’s Equations

Table 2.1: Definition of some quantities to derive the Hedin’s equations.

Def 1. Vcl(1) ≡ U(1)− i
∫
vc(1, 2) G (2, 2+) d2 Total classical potential

Def 2. Γ̃(1, 2; 3) ≡ − δG−1(1,2)
δVcl(3)

Irreducible vertex function

Def 3. ϵ−1(1, 2) ≡ δVcl(1)
δU(2)

Inverse of the dielectric function

Def 4. P (1, 2) ≡ −i δG(1,1
+)

δVcl(2)
= δn(1)

δVcl(2)
Irreducible polarizability

Def 5. χ(1, 2) ≡ −i δG(1,1
+)

δU(2)
= δn(1)

δU(2)
Full, or reducible polarizibility

Def 6. W (1, 2) ≡
∫
vc(1, 3) ϵ

−1(3, 2) d3 Screened Coulomb interaction

We begin with the definition of a classical bare potential Vcl, as given in Table 2.1, which
is the sum of the external potential U and the Hartree potential VH . The former is chosen as
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a fictitious external potential that will be set to zero at the end of the derivations. In order to
take the limit of U → 0, it is essential to obtain equations that are U -independent. To do so,
we define some auxiliary quantities which are reducible, meaning they are sensitive to U48, and
then try to find their U -independent form, so-called irreducible, referring to the differentiation
concerning Vcl.

Making use of the chain rule via Vcl in the expression of the self-energy (2.64) yields

Σxc(1, 2) = −i
∫
vc(1

+, 3)
δG−1(1, 4)

δVcl(5)

δVcl(5)

δU(3)
G(4, 2) d345. (2.85)

Replacing the two derivative terms in the middle of the right-hand side equation above with the
definitions of the irreducible vertex function and the dielectric function, respectively, followed
by introducing the screened interaction as given in Table 2.1, one gets

Σxc(1, 2) = i

∫
G(1, 4) W (3, 1+) Γ̃(4, 2; 3) d34. (2.86)

It is clear that the given expression of self-energy in Equation (2.85) and (2.86) explicitly
depends on the perturbative external potential U , which should be eliminated. Before this, let
us first find a general expression for the 3-point vertex function. Substituting G−1(1, 2) in the
definition of Γ̃ for the Dyson equation (2.70) results in

Γ̃(1, 2; 3) = − δ

δVcl(3)

{
G−1

0 (1, 2)− [VH(1, 2) + U(1)] δ(1, 2)− Σxc(1, 2)
}

= δ(1, 2)δ(1, 3) +

∫
δΣxc(1, 2)

δG(4, 5)

δG(4, 5)

δVcl(3)
d45

= δ(1, 2)δ(1, 3) +

∫
δΣxc(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ̃(6, 7; 3) d4567,

(2.87)

where we used the chain rules via G(4, 5) in the second line and the derivative of the inverse
in third line as δG(4,5)

δVcl(3)
=

∫
G(4, 6)G

−1(6,7)
δVcl(3)

G(7, 5) d67, followed by replacing Γ(6, 7; 3) = G−1(6,7)
δVcl(3)

.
Given all these, we are able to close the integro-differential equation for the three-point vertex
function through a four-point kernel of δΣxc

δG
. The latter includes all information embedded in

the two-body Green’s functions and will be discussed more in Subsection 2.6.3.
Now, we should eliminate the U -dependent term in Equation (2.85), i.e. δVcl(5)

δU(3)
, which is

defined as the inverse of dielectric function ϵ−1. To do this, we first find the relation between
ϵ−1 and the reducible (full) polarizability χ

ϵ−1 =
δ

δU(2)

[
U(1)− i

∫
vc(1, 3) G

(
3, 3+

)
d3

]
= δ(1, 2) +

∫
vc(1, 3) χ(3, 2) d3.

(2.88)

Using the chain rule in the definition of χ, as given in Table 2.1, the connection between
reducible polarizability χ and irreducible polarizability P appears

48Indeed, reducible means that the variation of Green’s functions is considered with respect to the bare
external potential U

41



2.6. THE GW APPROACH

χ(1, 2) = −i
∫
G(1, 1+)

δVcl(3)

δVcl(3)

δU(2)
d3

= P (1, 2) +

∫
P (1, 3) vc(3, 4) χ(4, 2) d34,

(2.89)

where the last term in the first line is ϵ−1, replaced by its definition given in Equation (2.88).
As a result, we found a Dyson-like equation linking the reducible (full) polarizability to the
irreducible one through the Coulomb potential vc kernel. In the matrix representation, the last
two equations can be symbolically written as

ϵ−1 = I+ vcχ ϵ = I− vcP χ = P + Pvcχ, (2.90)

where I is the identity matrix and we omitted the space and frequency variables for simplicity.
Finally, one only needs to replace the irreducible polarizability χ with P in the expression

of screened interaction to vanish the dependence on the external potential. This leads to

W (1, 2) =

∫
vc(1, 3)

δ

δU(2)

[
U(3)− iG

(
4, 4+

)
vc(4, 3)

]
d34

= vc(1, 2) +

∫
vc(1, 3)χ(4, 2)vc(4, 3) d34

= vc(1, 2) +

∫
vc(1, 3)P (3, 4)W (4, 2) d34.

(2.91)

The last two lines of the equation above provide two Dyson-like equations for the screened
interaction W , as the effective classical interaction between two charges in the system. In
shorthand notation, they become

W = vc + vcχvc W = vc + vcPW. (2.92)

Now we can safely return to the original system by taking the limit of U → 0. To sum up,
we gather Hedin’s five equations as below:

G(1, 2) = G0(1, 2) +

∫
G0(1, 3)Σ(3, 4)G(4, 2) d34 (2.93a)

P (1, 2) = −i
∫
G(1, 3)G(4, 1)Γ̃(3, 4; 2) d34 (2.93b)

W (1, 2) = vc(1, 2) +

∫
vc(1, 3)P (3, 4)W (4, 2) d34 (2.93c)

Σxc(1, 2) = i

∫
G(1, 4)W

(
1+, 3

)
Γ̃(4, 2; 3) d34 (2.93d)

Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3) +

∫
δΣxc(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ̃(6, 7; 3) d4567. (2.93e)

The closed-set of equations above provides an elegant approach to eliminating the explicit
dependence of initial quantities on the external potential U . Due to the interdependence of
each equation on others, one must solve these equations self-consistently: one begins with a
non-interacting Green’s function and reduces Equation (2.93)a to G = G0. Given Γ̃ = 1,
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Figure 2.7: Hedin’s pentagon representing the required iterative procedure to solve Equations
(2.93)a-e.

one then constructs the polarizability P , screened interaction W , and the exchange-correlation
self-energy Σxc. In the second iteration, one updates the one-body Green’s function with Σxc

through the Dyson equation (2.93)a as well as other four quantities via Equations (2.93)b-
(2.93)e. The cycle will be continued to achieve self-consistency, for example in the ground-state
total energy, which results in an in-principles exact solution for the exchange-correlation self-
energy. The self-consistent scheme of the approach is often referred to as the Hedin’s pentagon
whose edges represent the five Hedin’s equations, as shown in Figure 2.7.

2.6.3 Vertex Function

As we saw in the previous subsection, Hedin’s equations provide an in-principle exact approach
to obtaining the self-energy. However, the exact solution for Hedin’s pentagon is practically
intractable. This should be already realized from the given non-local expression of the vertex
function, Equation (2.93)e, containing a sixteen-dimensional integral. This non-locality in the
vertex function stems from the fact that an electron within the many-body system feels a
total potential, including the exchange-correlation contributions from other screened electrons.
To account for the latter, the vertex function contains a non-local functional derivative of
δΣxc/δG

49. Despite this, the induced exchange-correlation effects are not taken into account by
the screened interaction W (2.82). Therefore, the exact self-energy in Equation (2.93d) includes
the vertex Γ̃ to correct the effective potential from W → W Γ̃. The latter often is referred to
as the generalized test-charge test-electron screened interaction [1]. Feynman diagrammatic
representation of the vertex function is illustrated in Figure 2.8.

Let us neglect the induced exchange-correlation components in the vertex function by as-
suming it is diagonal in all coordinates and unity, namely Γ̃(1, 2; 3) = δ(1, 2)δ(1, 3). Adopting
this approximation, the irreducible polarizability becomes

P (1, 2) ≈ P0(1, 2) ≡ −i
∑
σ

Gσ(1, 2+) Gσ(2, 1+), (2.94)

49In a sense, this is similar to the expression of classical bare interaction as the variation of Hartree potential
with respect to density δVH

δn .
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Figure 2.8: Diagrammatic representation of (top) the irreducible vertex function (2.93)e,
(middle) the irreducible polarizability P (2.93)b, and (below) the Dyson equation for the full
reducible polarizability χ (2.95) approximated in the RPA.

which reduces the polarizability of the system to the propagation of non-interacting electron-
hole pairs (see the opposite time ordering of the Green’s functions). As the result, the full
response function (polarizability) returns the form of

χ
RPA
= P0 + P0 vc χ = P0 [1− vc P0]

−1 . (2.95)

One can readily find that the Equation (2.94) is equivalent to the time-dependent Hartree ap-
proximation, as discussed in Subsection 2.4.4 and, therefore, the expression of the full reducible
polarizability (2.95) is essentially identical to (2.32) within the RPA. In Figure 2.8, we sketched
a Feynman diagrammatic representation of such a RPA-approximated χ. Therefore, neglect-
ing the vertex function within Hedin’s equations results in the RPA-polarizability where the
inverse operator [1− vc P0]

−1 modifies the poles of the non-interacting polarizability to obtain
excitations approximated by the RPA-χ.

Restricting the vertex function to its zeroth-order (diagonal) component, namely Γ̃(1, 2; 3) =
δ(1, 2)δ(1, 3) within Hedin’s equations (2.93) is known as the GW approximation, as will be
thoroughly discussed in the next section. Briefly speaking, the GW approximation is equivalent
to removing the Γ edge in Hedin’s pentagon while the iterative scheme remains on the other
edges, i.e. G, P , W , and Σxc which are coupled to each other. Note that the salient feature
of the GW approximation is embedded in the dynamical feature of the screened potential
W (ω) which is determined by the dynamical properties of the polarizability P (ω) in Equation
(2.95). Neglecting the polarization effects within the GW approximation, the screened Coulomb
interaction reduces to the bare interaction vc (see Equations (2.83) and (2.91)). As a result,
evaluation of the Green’s function (2.93)a becomes

G(1, 2) = G0(1, 2) +

∫
G0(1, 3) [VH(3)δ(3, 4) + Σx(3, 4)]G(4, 2) d34, (2.96)

where Σx is the non-local Fock exchange operator Σx = iGvc. Therefore, we see that if one
excludes the screened interaction W from the GW approximation, the exchange-correlation
self-energy reduces to the only-exchange contribution, as in the Hartree-Fock Hamiltonian.
Hence, one readily arrives at this conclusion that the self-energy approximated within the GW
approximation consists of the exact non-local Fock exchange, and some correlation effects added
in the form of dynamically screened potential W (ω), i.e.
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ΣGW
xc = Σx + Σc(ω). (2.97)

2.6.4 The GW Approximation

In the previous subsection, we introduced the GW approximation which neglects the vertex
function in Hedin’s equations. Therefore, the exchange-correlation self-energy within the GW
approximation becomes

ΣGW
xc (1, 2) = iG(1, 2) W (1+, 2). (2.98)

The self-energy ΣGW
xc is the product of the one-body Green’s function G, describing the prop-

agation of a particle, and the first-order of the dynamically screened Coulomb interaction50

in time, space, and spin coordinates. Such time (frequency/energy) dependence in the self-
energy distinguishes the GW approximation from any static mean-field method. To show this
frequency dependency within ΣGW

xc , we apply the Fourier transformation to Equation (2.98)
which yields

Σσ
xc(r, r

′;ω) = lim
η→0+

i

2π

∫
Gσ(r, r′;ω + ω′) W (r, r′;ω′) eiηω

′
dω′. (2.99)

The infinitesimal η in the exponent originates from the infinitesimal time-shift of W in Equation
(2.98). In Equation (2.99), moreover, we added the spin index σ for the self-energy whose spin
dependence is directly determined by the Green’s function. Earlier in subsection 2.6.1, we
showed that the screened interaction is related to the Coulomb interaction vc, which is spin-
independent for a many-body Hamiltonian without spin interactions51 [1]. Therefore, W is
spin-independent and its computation through (2.93c) implies just a sum over spins for the
polarizability P . As a result, the self-energy Σxc solely inherits any possible spin component
of the Green’s function Gσ (2.43). Note that Gσ is spin-diagonal σ ∈ {↑, ↓} in a basis of a
spin-independent Hamiltonian, namely Gσσ′

= δσσ′Gσ.
To accomplish the construction of the GW self-energy, one needs to build the Green’s

function at the first step. As already said, it is more reasonable to start from a Green’s function
consisting of some mean-field interactions, instead of the actual bare Green’s function for an
independent particle. Therefore, Equation (2.93)a is usually constructed by G0 obtained from
a single-particle mean-field potential such as that of KS or Hartree-Fock. Replacing the Dyson
amplitudes fs and charged excitation energies εs in Equation (2.43) with mean-field solutions,
the Lehman representation of a non-interacting Green’s functions becomes

Gσ
0 (r, r

′, ω) = lim
η→0+

∑
s

ψσ0,s(r) ψ
∗σ
0,s(r

′)

ω − εσ0,s + iη sgn(εσ0,s − µ)
, (2.100)

where ψσ0,s and εσ0,s embody the s-th spin-resolved single-particle eigenfunction and eigenvalue.
Knowing non-interacting G0 in the form of (2.100), we can construct the non-interacting irre-
ducible polarizability P0 (2.94) as

P0(r, r
′, ω) = − i

2π

∑
σ

Gσ
0 (r, r

′, ω + ω′) Gσ
0 (r

′, r, ω′) dω′. (2.101)

50Remember that ΣGW
xc is of the first order in W while the higher-order appear in the vertex corrections W Γ̃.

51The spin-dependent interactions might stem from the relativistic effects like spin-orbit and spin-spin inter-
actions, or from an external perturbation, such as introducing magnetic dopants within a semiconductor.
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The irreducible P0 in the equation above has an explicit expression in terms of the mean-
field solutions as given in Equation (2.28). In the next step, W0(ω) can be evaluated via
the Dyson-like equation (2.91) where the polarizability P (ω) is RPA-approximated by P0(ω)
(2.101). Eventually, the initial approximation to the self-energy Σxc reads

Σσ
xc,0 = i Gσ

0 W0. (2.102)

Such a self-energy is indeed the first-order perturbative scheme of Σxc (2.98). One might stop at
this step and neglect the following self-consistent procedure. In the literature, this simplification
is referred to as the one-shot GW or G0W0, meaning the self-energy is obtained in a non-self-
consistent way. We shall discuss the pros and cons of this perturbative scheme in the next
Subsection 2.6.6 and will see its computing performance in the next chapter.

Having an initial approximation to the self-energy Σxc,0 (2.102), we might circulate the
Equations (2.93 a-d) to obtain the higher order of the GW self-energy (while the vertex function
is neglected). In doing so, one updates the Green’s function G via the Dyson equation (2.93a)
and the kernel Σxc,0 (2.102). Taking into account that the latter is constructed based upon G0

(2.100), which is in turn built via a mean-field potential, one must subtract the corresponding
mean-field exchange-correlation potential from the kernel. The Dyson (2.93a), then becomes

Gσ = Gσ
0 +Gσ

0

[
Σσ

xc − V σ
xc, MF

]
Gσ. (2.103)

Here, the mean-field exchange-correlation potential V σ
xc, MF is also assumed to be diagonal on

the spin-basis and, therefore, the Dyson equation runs separately over each spin component.
Note that Vxc, MF in the equation above reduces to the only-exchange Σx for an initial Hartree-
Fock calculation. Given this, Equation 2.103 takes a form of Gσ = Gσ

0 + Gσ
0Σ

σ
cG

σ, where the
kernel Σc accounts only for the correlation contributions of the self-energy (2.97).

It is also worth mentioning that the original Hedin’s equations were derived for a many-
body system of electrons with purely Coulombic interactions. For a many-body Hamiltonian
with explicitly spin-dependent interactions, one needs to carry out the generalized formalism
of Hedin’s equations, which is developed by Aryasetiawan et. al [80, 81]. Although the energy
scales associated with the spin-dependent interactions are often small, the interplay between
the charge and spin degrees of freedom can be vital to determine intrinsic properties such as
the optical response [82].

2.6.5 Quasiparticle Equation

As we already mentioned in Subsection 2.5.5, the charged excitation energies of a many-body
system (the poles of the interacting Green’s function G) can be obtained by solving the quasi-
particle equation (2.75). This is an efficient approach if one is particularly interested in the
energies, as in band structure calculations. Taking into account that G0 (2.100) is constructed
by solutions of a prior mean-field with the single-particle hamiltonian ĥMF(r)

52, we replace
the Dyson amplitudes fs in Equation (2.75) with the so-called quasiparticle wavefunctions ψs,
which leads to a set53 of effective single-particle eigenvalue problems [10]

52Note that the single-particle hamiltonian is given in the general form of ĥMF = −∇2

2 + Vext + VH + Vxc,
where Vxc represents the only-exchange Σx in the Hartree-Fock method, and V KS

xc in the KS approach to the
DFT.

53Since self-energy is energy-dependent Σxc(εs), one should deal with different equations for each quasiparticle
state εs.
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ĥMF(r)ψ
σ
s (r)−

∫
V σ

xc, MF(r, r
′)ψσs (r

′) dr′ +

∫
Σσ

xc(r, r
′, εσs )ψ

σ
s (r

′) dr′ = εσsψ
σ
s (r). (2.104)

For each quasiparticle, the equation above must be solved in the complex plane; since the self-
energy is a complex and non-hermitian operator by definition. At the solution, one obtains
s-th quasiparticle energy εs and the quasiparticle wavefunction ψs(r). One often approximates
the quasiparticle wavefunctions with the mean-field eigenstates ψs(r) ≈ ψ0,s(r). As a result,
the quasiparticle equations (2.104) after some algebra54 can be simplified as

εσs ≈ εσ0,s +
〈
ψσ0,s

∣∣Σσ
xc(ε

σ
s )− V σ

xc, MF

∣∣ψσ0,s〉 . (2.105)

Solving the set of non-linear equations above results in the quasiparticle spectra for which the
quasiparticle energies εs are corrected with respect to the mean-field eigenvalues ε0 via the
perturbing potential kernel, i.e. Σσ

xc(εs)− Vxc, MF.
Non-linearity in the quasiparticle equation (2.105) still requires detailed knowledge of the en-

ergy dependence of self-energy. In practice, one can evaluate the quasiparticle energies through
Equation (2.105) using an iterative procedure for which only the real part of the self-energy
Re Σxc(εs) is considered to simplify the matrix algebra and decrease the computational cost
[10, 83]. As a consequence, one misses the lifetime broadening feature of the quasiparticles.
Within this technique, moreover, the self-energy must be re-computed at each iteration55. In
Chapter 3, we utilize an implementation of this technique.

As an alternative, one can assume a relatively small difference between quasiparticle and
mean-field eigen-energies, and then apply the first-order perturbation theory and use the linear
Taylor expansion to first-order around ε0, which recasts Equation (2.105) into

εσs ≈ εσ0,s + Zs
〈
ψσ0,s

∣∣Σσ
xc(ε

σ
0,s)− V σ

xc

∣∣ψσ0,s〉 , (2.106)

while Z-factor represents the quasiparticle renormalization or quasiparticle weight56, see Sub-
section 2.5.5, and is expressed as

Zs =

[
1− ∂

∂ω
⟨ψ0,s |Σxc(ω)|ψ0,s⟩

]−1

ω=ε0,s

. (2.107)

Within this linearization technique, one only needs the diagonal matrix elements of the
self-energy at the mean-field eigen-energies. Nevertheless, one must note that the linearization
of the quasiparticle equation (2.106) is useful if and only if the difference between εs and ε0,s
is small, as emphasized before. As compared with the iterative procedure, the accuracy of the
linearization technique for states with large binding energies or deeper valence states decreases,
giving rise to errors as large as 0.5 eV [10].

As another alternative, one can graphically identify the s-th quasiparticle energy as the
intersection point(s) of Re Σc,s(ω) with the straight line ω − ε0,s + Vxc,s − Σx,s. Within this
graphical solution, the strength of the quasiparticle peak is inversely proportional to the slope
of Σc(ω). For systems with multiple solutions, such as those considered in Chapter 4, graphical

54Multiplying Equation (2.104) by the quasiparticle eigenvectors ψs(r) from the left-hand side and in-
tegrating over the spatial degrees of freedom r, we eventually arrive at a fixed point equation of εσs =
εσ0,s + ⟨ψσ

s |Σσ
xc(ε

σ
s )− V σ

xc|ψσ
s ⟩. Then we approximated ψs ≈ ψ0,s as in the first-order perturbation theory.

55Typically, one achieves the convergence in 5-15 iterations while the self-energy in each step must be evaluated
for a set of frequencies, depending on the implemented integration technique.

56Z < 1 and often fall at about 0.9 for molecules, and 0.7-0.8 for simple semiconductors and metals [10].
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solution(s) to the quasiparticle equation might depend on the choice of η in the evaluation
of the self-energy (2.99). Additionally, it has been shown that the graphical technique might
randomly give incorrect solutions [39, 84].

The most accurate technique to solve the quasiparticle equation (2.105) is based upon
the highest spectral weight in the spectral function. To do this, one computes the diagonal
matrix elements of the spectral function Ass(ω) in Equation (2.51) while the imaginary part
of the diagonal Green’s function in the equation enforces making use of a complex self-energy
[10, 39, 84]

Aσss(ω) = sgn(µ− ω)
1

π
Im Gσ

ss(ω)

= sgn(µ− ω)
1

π
Im

[
(ω − εσ0,s − (Σσ

xc,s(ω)− V σ
xc,s))

−1
]
.

(2.108)

As a result, the spectral function can accurately capture the quasiparticle energies as well as
satellite features [10, 14]. This technique is computationally far more costly than others given
here; since one needs to deal with the imaginary part of the self-energy. Even worse, it is crucial
to evaluate the Ass in a fine frequency grid in the vicinity of the expected quasiparticle energy,
imposing more computational cost.

An analysis of the different techniques above to solve the quasiparticle equation (2.105) is
elaborated in Chapters 3 and 4. There, we also show the importance of the spectral weight
method for obtaining the spin-multiplet structure of the excitation spectrum.

2.6.6 Practical Schemes within the GW Approximation

Despite all simplifications introduced so far, a realistic GW calculation can be a formidably
computational task. Therefore, various schemes and variants are proposed to trade off between
computational cost and accuracy. These approximations can be classified according to the level
of self-consistency as follows:

• Perturbative non-self-consistent one-shot GW (G0W0); In subsection 2.6.4, we
discussed how to construct the non-interacting Green’s function G0 using mean-field so-
lutions. Given this, we could establish the RPA-W0(ω) and eventually the first-order per-
turbative self-energy Σxc,0 (2.102). This workflow is referred to as the G0W0 scheme. Lack
of self-consistency within the scheme might result in the violation of the particle-number
conservation law57. The description of satellites within the G0W0 approach is also vague.
Another consequence of neglecting the further self-consistency in the self-energy appears
in an undesired dependency of the results on the initial mean-field calculation. Despite
the obvious shortcomings within the G0W0, this scheme remains deservedly popular in
the community due to its reasonably accurate estimations and the endurable computa-
tional complexity. In Chapter 3, we present our G0W0 implementation and evaluate the
computing performance of this scheme for relatively large systems.

• Eigenvalue self-consistent GW (evGW ) scheme; with two types of GnW0 and
GnWn; within the former, one fixes W at the RPA level, and then updates G self-
consistently [1, 85]. As a result, this scheme is number conserving and provides adequate

57Since G0 is not obtained self-consistently within a G0W0 calculation, the highest occupied state corresponds
to the initial µ at the mean-field level, which might not fulfill the particle number conservation law. Therefore,
one finds out that the lack of self-consistency in the chemical potential might lead to an incorrect particle number
and a slight loss of quasiparticle weight. Although such deviations are usually small and can be tolerated in
some applications, they can play a vital role in the estimation of the charge transport, for example.
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satellite spectrum [1, 86]. In the following chapters we shall frequently use this scheme as
a fairly accurate reference which suffers less from the starting-point dependence. Indeed,
evGnW0 has been extensively used to accurately describe charged excitation energies of
molecules [84, 85, 87–90]. In the GnWn scheme, on the other hand, poles of the one-body
Green’s functions as well as poles of the polarizability P and W will be iteratively up-
dated, while leaving the wave functions unchanged [84]. The workflow of both schemes
above is schematically shown in Figure 2.9.

• Quasiparticle self-consistent GW (QSGW ) scheme; This scheme [91, 92] relies
on the perturbative character of the GW approximation, so that, one iteratively seeks
a self-energy that provides the minimum perturbation to the system. In other words,
one looks for an optimized single-particle hamiltonian ĥQP with solutions ε0,s and ψ0,s

as close as possible to the actual quasiparticles, i.e. εs and ψs. In practice, one begins
with the G0W0 self-energy (2.102) started from an initial ĥmf. Using this potential to
introduce exchange-correlation effects, one then creates a new effective non-local but
static single-particle hamiltonian ĥQP. In the next step, one obtains new ε0,s and ψ0,s

corresponding to ĥQP — via an internal self-consistent loop on the density. The solutions
will be used as a new starting-point for the next G0W0 –like outer loop [93]. Therefore,
at n-th iteration a new self-energy Σ

(n)
xc,0 and a new effective single-particle hamiltonian

ĥ
(n)
QP will be computed in which the latter provides a starting-point for the Σ

(n+1)
xc,0 (see

Figure 2.9). Upon reaching self-consistency, quasiparticle energies and wavefunctions
often yield improved results for the bandgap and magnetic properties in close agreement
with experiment [1]. The significance of the QSGW scheme for computing the dipole
moments of molecules was also stressed in Ref [94]. Moreover, very good estimations of
the bandgap for a variety of materials have been reported using this scheme by Kotani et
al. [91].

• Fully self-consistent GW (SCGW ); Within this scheme one must solve the Dyson
equation (2.93a) instead of the fixed-point quasiparticle energy equation (2.105). In
other words, the Dyson equation has to be iterated for which n-th iteration step is:
G−1(n+1) = G−1

0 −Σ
[
G(n)

]
. Besides the Green’s functions, the remaining three quantities

are determined self-consistently. Therefore, it is clear that this scheme implies an esca-
lating computational cost [93, 95–97]. Despite all efforts, it has been reported that the
SCGW might not yield the best results [39]; because the self-consistency will introduce
some contributions from higher order in W , although a big portion would be missing any-
way by neglecting the vertex corrections [1]. For example, the performance of SCGW was
evaluated for ionization energy of azabenzenes [98]. As compared to the photo-emission
experiments, it was found that for certain starting points the one-shot or partially self-
consistent calculations might provide better results than SCGW calculations.

Table 2.2 outlines computed bandgap obtained from different GW schemes above for a set
of sp-bonded semiconductors. It was reported that one-shot GW for these studied systems
yields too small bandgap, while partial self-consistence in GnW0 scheme leads to more accurate
and still reasonably fast computation of the quasiparticle energies. Using SCGW scheme, it
was shown that accurate band-gaps can be obtained only by adding an attractive electron-hole
interaction via the vertex correction. Therefore, one can readily find out higher level of self-
consistency does not necessarily leads to better results. However, as the level of self-consistency
within GW calculations increases, the undesired starting-point dependence decreases, and par-
ticle number, momentum, and energy will be conserved [84].
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0
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Figure 2.9: Schematic of (a) scGW where vertex Γ in Hedin’s equations is neglected and
the remaining four quantities are determined self-consistently. This procedure is similar to the
evGnWn if one only updates G and W terms with the quasiparticle energies while wavefunctions
are kept unchanged. (b) evGnW0 scheme which only iterates G to self-consistency in Dyson’s
equation whereas P0 and W0 are not updated. (c) QSGW scheme that starts with the G0W0

self-energy. Given that, ĥQP is constructed to provide the starting-point for the further G0W0-
like iterations.

Today, most practical GW calculations for various materials have been performing the per-
turbative one-shot or partial eigenvalue-only self-consistency schemes. However, both schemes
retain some starting-point dependence which can imply some inconsistency with the exper-
iment. Over the years, it is suggested that both KS and Hartree-Fock solutions offer good
starting points for perturbative G0W0 calculations. Starting from KS solutions with semi-local
exchange-correlation functionals, one often finds that KS orbitals do closely overlap with the
actual quasiparticle wavefunctions [101], while the biggest discrepancy comes from the eigen-
energies. In this context, much better eigen-energies can be estimated via non-local hybrid
functional within the generalized KS framework (see Subsection 2.3.2). Within Chapter 4, we
benchmark the energetic spectrum obtained by the G0W0 starting from various mean-field solu-
tions. A comparison between the G0W0 quasiparticle energies and mean-field energies clarifies
the capability of this scheme and sheds light on the choice of optimal starting-point.

2.6.7 Frequency Integration

As we already discussed, the GW self-energy contains information about the system’s response
to the propagation of an extra electron or hole, represented by the Green’s functions (2.43),
which demands a non-locality in the time. Likewise, W (ω) embodies the dynamical screening
effects which are related to the frequency-dependent polarization P (ω) and dielectric function
ϵ(ω) via (2.92) and (2.90), respectively. All these dynamic information makes of the GW an
accurate approximation to obtain frequency observables such as spectra [14]. Nevertheless, the
required frequency convolution (2.99) within the GW demands considerable efforts in practical
calculations, even in the simplest scheme.

Here, we summarize two techniques which are used to deal with the frequency convolution
in the following chapters. For more details and discussion about other available techniques,
such as analytic continuation, we refer the reader to Refs.[1, 10, 11, 83, 91, 102–106].

– Plasmon–Pole Model (PPM); As a simple approximation to the frequency convolution
in ϵ−1, P , and eventually inW , one draws attention to the fact that the dielectric function ϵ−1(ω)
is often dominated by a single-plasmon branch falling at a plasma frequency ωP [104]. Having
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Table 2.2: Quasiparticle bandgap obtained from different schemes of the GW approximations
on top of DFT-PBE solutions. Sixth and seventh column represent SCGW results using W
approximated in RPA and a first-order vertex corrections. Last column lists the experimental
values. Numbers are adopted from Ref. [99, 100].

DFT
(PBE) G0W0 GnW0 GnWn

SCGW
(RPA)

SCGW
(Γ1-corr) Expt

Si 0.62 1.12 1.20 1.28 1.41 1.24 1.17
GaAs 0.49 1.30 1.42 1.52 1.85 1.62 1.52
SiC 1.35 2.27 2.43 2.64 2.88 2.53 2.40
CdS 1.14 2.06 2.26 2.55 2.87 2.39 2.42
AlP 1.57 2.44 2.59 2.77 2.90 2.57 2.45
GaN 1.62 2.80 3.00 3.32 3.82 3.27 3.20
ZnO 0.67 2.12 2.54 3.20 3.80 3.20 3.44
ZnS 2.07 3.29 3.54 3.86 4.15 3.60 3.91
C 4.12 5.50 5.68 5.99 6.18 5.79 5.48
BN 4.45 6.10 6.35 6.73 7.14 6.59 6.25
MgO 4.76 7.25 7.72 8.47 9.16 8.12 7.83
LiF 9.20 13.27 13.96 15.10 15.9 14.5 14.2
Ar 8.69 13.28 13.87 14.65 14.9 13.9 14.2
Ne 11.61 19.59 20.45 21.44 22.1 21.4 21.7
PbSe -0.17 0.10 0.15 0.19 – – 0.15
PbTe -0.05 0.20 0.24 0.26 – – 0.19
PbS -0.06 0.28 0.35 0.39 – – 0.29

said this, the shape of the ϵ function can be reproduced by a parameterized single-pole function.
The fitting parameters used in the single-pole function can be obtained from Hybertsen–Louie
[104] or Godby–Needs [103] models; In the Hybertsen–Louie PPM, one obtains ϵ−1(ω) by
applying an static limit of ω = 0 satisfying the f –sum rule [107], which links Im ϵ−1 to ωP and
the electronic charge density. Within this model, therefore, one needs to compute the ϵ function
only at ω = 0. In the Godby–Needs PPM, one alternatively computes matrix elements of ϵ−1

along the imaginary axis and uses an additional frequency iω̃′
p
58, which is determined either

experimentally or as the average electronic density per volume [10]. Although PPMs reduces the
required efforts in the calculation of ϵ−1(ω) in only one or two frequencies, the general accuracy
of corresponding calculations is not easy to judge. Furthermore, PPMs disregard the imaginary
part of the self-energy but at the plasmon pole(s). As a consequence, the quasiparticle lifetimes
can be inadequate [106].

– Contour Deformation Technique; The main aim in this technique is to avoid dealing
with the pole structure along the real axis, where the poles of both G and W occur. To do this,
one extends the integrands of the correlation contributions59 of the self-energy to the complex
plane along a deformed contour Γ. Given this, the real-frequency integral of the correlation
part of self-energy Σ0,c(ω) in Equation(2.102) becomes

Σσ
0,c(r, r

′, ω) =− 1

2π

∫ +∞

−∞
Gσ

0 (r, r
′, ω + iω′)W c

0 (r, r
′, iω′) dω′

+
i

2π

∮
Γ

Gσ
0 (r, r

′, ω + ω′)W c
0 (r, r

′, ω′) dω′,

(2.109)

58iω̃′
p is often referred to as the classical plasmon frequency [77]. ω̃′

p is usually chosen as close as possible to
ωP [10].

59Considering Σc(ω) = Σxc(ω) − Σx and Wc(ω) = W (ω) − vc, as given in Equations (2.97) and (2.83),
respectively, one can define the correlation contributions as the difference between the full self-energy Σxc and
the Hartree-Fock self-energy Σx (2.66), which leads to Σc = GW c.
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Figure 2.10: Color map representation of absolute bandgap errors obtained from several GW
schemes (see Table 2.2) with respect to the experiment. All data is taken from Refs. [99, 100].

where the imaginary-frequency integral
∫ +∞
−∞ is subtracted from the contour integral

∮
60. Within

the expression above, Σc will be evaluated only on frequency ω. Therefore, the poles of W c
0 (ω

′)
are static in the integration while the poles of G(ω + ω′) depend on where Σc(ω) is evaluated.
Considering the Lehman expression of the Green’s functions (see Subsection 2.5.1), the polar
structure of a non-interacting G0(ω) in (2.100) for occupied n and unoccupied m states reads

zn(ω) = ε0,n − ω + iη Im zn > 0

zm(ω) = ε0,m − ω − iη Im zm < 0,
(2.110)

By deforming the integration contour with two arcs in the first and third quadrants, as illus-
trated in Figure 2.11, one avoids all W poles, whereas only a few poles of the Green’s function
zn remain inside the contour Γ+ in the first quadrant. Having such a contour, one can replace∮

in Equation (2.109) with a summation [83, 109]

Σσ
c (r, r

′, ω) =− 1

2π

∫ +∞

−∞
Gσ

0 (r, r
′, ω + iω′)W c

0 (r, r
′, iω′) dω′

+
∑

zn(ω)∈Γ

fnψ
σ
n(r) W

c
0 (r, r

′, zωn) ψ
σ
n(r

′).
(2.111)

Here, the sum only runs over a set of occupied states, with energies of zn and eigenstates of
ψn, falling inside the contour. The integral part, on the other hand, becomes smooth and,
therefore, the integration can be carried out using a frequency sampling with a fairly low
number of points [110]. In Chapter 3, we will give further details on the implementation of the
contour deformation technique associated with a parameterized logarithmic mesh for frequency
sampling.

60For a contour like that of shown in Figure 2.11,
∮

includes four parts, as
∮
· · · =

∫
Re · · · +

∫
Im · · · +∫

Γ+ · · · +
∫
Γ− · · · . Taking an infinite large ω′, the last two terms are zero [10, 108], which results in

∫
Re · · · =

−
∫
Im · · ·+

∮
· · · .
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Figure 2.11: A deformed contour Γ for computing Σc(ω) in the complex plane. The path is
chosen to avoid the poles of W (ω′) shown by blue circles. For G0(ω+ω

′, only a few poles below
Fermi energy (EF) falling inside the contour. In this illustration only two poles of εHOMO − ω
and εHOMO-1 − ω lie within the Γ+.

2.6.8 Solution to the Bethe-Salpeter Equation Using the GW
Approximation

As we already mentioned in Subsection 2.5.6, one can obtain all required information about the
propagation of two electrons or two holes, or electron-hole pairs (excitons) by solving the Bethe-
Salpeter equation (2.81). Within the Bethe-Salpeter equation, the non-interacting polarizability
is linked to the interacting four-point polarizability via a Hartree-exchange-correlation kernel Ξ
(2.80), which has to be determined approximately. Among different approximations, discussed
in Appendix B, the GW method is widely used as a good approximation for the four-point
interaction kernel Ξ. The Bethe-Salpeter approach to the computation of the two-particle
excitations is indeed an extension of the GW approximation, computing the one-particle excited
states [9]. Inserting the GW self-energy Σxc = iGW in Equation (2.80), Ξ becomes

ΞGW (3, 5; 4, 6) =− iδ(3, 4)δ(5, 6) vc(3, 5) + i
∂G(3, 4)W (3, 4)

∂G(5, 6)
,

≈− iδ(3, 4)δ(5, 6) vc(3, 5) + iδ(3, 5)δ(4, 6)W (3, 4),

(2.112)

where the variation of the screening upon the excitation, namely ∂W/∂G, is neglected in the
second line. As a consequence, the ΞGW in the right-hand side of the Equation (2.112) is similar
to the time-dependent Hartree–Fock approach while interactions are screened (see Appendix
B). Having ΞGW associated with a static approximation to the W term for simplification, the
Bethe-Salpeter equation (2.81) in frequency space reads

L(x1x2;x
′
1x

′
2;ω) = L0(x1x2;x

′
1x

′
2;ω) + L0(x1x4;x

′
1x3;ω) Ξ(x3x4;x5x6) L(x6x2;x5x

′
2;ω),
(2.113)
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with

L0(x1x2;x
′
1x

′
2;ω) =

1

2π

∫
G(x1x

′
2;ω + ω′)G(x2x

′
1;ω

′) dω′,

Ξ(x3x4;x5x6) = i δ(x5,x3) δ(x6,x4)Wstatic(x3x4)− iδ(x3,x4) δ(x5,x6)vc(x3x5).

(2.114)

From the spin structure of the kernel above, singlet or triplet contributions can be constructed.
In a triplet case, electron and hole do have a contribution with opposite spin σ3 ̸= σ4 and,
therefore, the term including the bare Coulomb has no contributions. On the contrary, the
bare Coulomb enters the equation and acts with a factor of two in singlet excitations where
σ3 = σ4 and σ5 = σ6. The difference between the two cases is known as the singlet-triplet
splitting.

Figure 2.12: (left) Transport gap εs as the difference between quasiparticle energies εc − εv,
(right) Optical transition energy Ωs taking into account the excitonic effects. The latter within
the TDA reduces to only vertical transitions from valence to conduction state. The direct term
within the kernel Ξ is responsible for the appearance of bound states.

To study optically excited states in this work, we compute the electron–hole excitations by
using an effective two-particle Hamiltonian H2p. The latter is a frequency independent and
non-Hermitian matrix, and it is discussed in Appendix B. Using the two-particle Hamiltonian,
we recast the Bathe-Salpeter equation (2.113) into an eigenvalue problem in the transition space
of hole v and electron c states, resulted in [1, 105, 111]

(εc − εv)A
vc
s +

∑
v′c′

⟨vc | Ξ | v′c′⟩ = ΩsA
vc
s . (2.115)

Here, Avcs and Ωs are the eigenfunction expansion coefficients and energies of s-th excitation
state, respectively. In connection with Equation (2.114), the interaction kernel Ξ contains
the repulsive bare Coulomb electron-hole exchange V plus the direct screened electron-hole
attraction W term which is assumed to be static. In Tamm–Dancoff approximation, accounting
only for the vertical transitions from occupied (valence) v to empty (conduction) c states, the
kernel Ξ61 reads [1]

Ξ = 2V cc
vv −W vc

vc . (2.116)

Given the expression above for the kernel, the energy corresponding to s-th optical transition
Ω including the excitonic effects differs from the quasiparticle gap εs by

61Here, we focus on the spin singlet situation, and put a factor 2 for spin sums. According to the selection
rules, a triplet contribution (σ1 ̸= σ2) cannot occur in an optical measurement with linearly polarized light [1].
Furthermore, in contracting L to χ, the Bethe-Salpeter equation is multiplied by a factor of i.
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εs = εc − εv
excitonic effect−−−−−−−−−→ Ωs = εc − εv + 2V cc

vv −W vc
vc , (2.117)

where

V cc
vv =

∫
ñ∗
vc(r)vc (r− r′) ñvc (r

′) drdr′ (2.118a)

W vc
vc =

∫
ñ∗
vv(r)W (r, r′) ñcc (r

′) drdr′. (2.118b)

In the two equalities above, we introduced the matrix elements of electron-hole orbitals as the
products of single-particle orbitals, i.e., ñij = ψ∗

i (r)ψj(r). Therefore, interactions within the
term V cc

vv (2.118a) embodies the repulsive Coulomb interactions between dipoles. This term is
often referred to as the electron–hole exchange and leads to an increase in the transition energy
in (2.117) with respect to the εs. On the other hand, the term W vc

vc (2.118b) represents the
attractive screened interaction between an electron-hole pair and impacts on Ξ with a negative
sign. Because W vc

vc is a direct interaction between electrons and holes (mono-poles), it usually
gives rise to a stronger effect than V cc

vv term.
Once equation (2.79) is solved, coefficients Avcs determine the weight of transitions known

as the oscillator strengths [105]. Exciton wavefunctions can be also obtained via Ψs(re, rh) =∑
vcA

vc
s ψc(re) ψ

∗
v(rh) [105].

Today, solving the Bethe-Salpeter equation to obtain the optical absorption spectra within
most of ab initio codes consists of steps as below:

• a ground-state calculation using mean-field methods;

• correction to the mean-field eigen-energies made by the GW approximations;

• solving the Bethe-Salpeter equation using the GW quasiparticle energies, mean-field or-
bitals, and static RPA-W to account for the electron-hole interaction.

The steps above associated with possible choices that one can make to practically conduct
GW/BSE calculations are schematically displayed in Figure 2.13. In the following, we fre-
quently call this flowchart when we discuss our implementation of the GW approximation in
Chapter 3, or when we employ the GW/BSE technique to study the optical absorption of a
few molecular crystals in Chapter 5.
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Figure 2.13: Flowchart representation of the GW approximation followed by the Bethe-Salpeter
approach. Some choices that should be made for a practical calculation are also mentioned.
Used acronyms are defined in the text.
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Chapter 3

An Iterative Treatment of the
GW Approximation

3.1 Introduction

Although the GW approximation was formally introduced by Hedin 60 years ago [79], it took
two decades for its first realistic applications to appear [85, 112, 113]. Furthermore, the com-
plexity of the theory and the variety of the required numerical techniques even in the simplest
schemes added two more decades until the GW calculations became available in multi-purpose
practical first-principles codes. Nowadays, the GW method is being widely applied for studying
a wide variety of materials including extended and finite systems1. Due to the high computa-
tional cost, however, most current GW studies focus on small and medium systems comprising
ten to hundred atoms2. Therefore, the community demands new numerical approaches to push
toward larger systems.

Considering the complexity within the quantities discussed in the last chapter, it is evident
that the computational power in terms of memory and number of CPUs is much more involved
withinGW calculations as compared to those of generic DFT calculations3, for example. In fact,
the computational complexity within a canonical implementation of the GW method scales with
the system size as best as O(N4), where N represents the number of atoms within the system
under study. Such a scaling is perceived as a drawback of the traditional implementations , and
precludes the application of the method in the study of many interesting large systems. In the
last decade, therefore, sustained efforts have been devoted to moderating the computational cost
of the method. For instance, it is proposed to replace one of the roots of the problem, namely
the summation over many unoccupied states in the irreducible polarizability function χ0(ω)
by the self-consistent solutions to a set of linear-response Sternheimer equations [116, 117].
Reducing the size of the involved matrices by substituting the traditional plane-wave basis for
localized bases is also developed, shown to be particularly successful for studying finite systems

1For finite systems, the GW approximation has some counterparts in the quantum chemistry community
such as MP2 and coupled-cluster techniques. Nevertheless, computational scaling of these techniques is, in
general, less favorable than the GW approach.

2We should also note that at present time, there are some advancements made in the materials science
code BerkeleyGW, for example, which has been used to perform calculations with over 10000 electrons [114].
Such large-scale GW calculations require massively parallel execution on state-of-the-art supercomputers. In
contrast, our main aim in this thesis is to propose algorithms with a lower scaling of the memory requirement,
instead of concentrating on optimization, parallelization, and other possible accelerating techniques.

3For calculations using a plane-wave basis set, for instance, DFT asymptotically takes a scaling on O(N3)
or O(N2) lnN . Other strategies are also available which scale as O(N), for example, see Ref. [115].
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[118–120].
Recently, a cubic scaling GW code based on the use of a basis set of atomic orbitals was

introduced [121], which relies on the localized nature of atomic orbitals and the locality of
electronic interactions. The main advantage of this approach is the inherent sparsity of the
involved matrices that allows for an efficient computation of χ0(ω) along the real frequency
axis associated with a computational saving. Moreover, sparsity within such a basis set can be
exploited in iterative algorithms to treat large problems, with many degrees of freedom4. To
cite a practical example, using the sparsity properties of the numerical atomic orbitals and the
associated basis sets of product functions along with an iterative scheme, the supervisors of
this thesis and coworkers could tackle the computation of the TDDFT kernel, the full response
function χ(ω) and the non-interacting polarizability χ0(ω) for a large cluster of a thousand
silver atoms [44]. Following this success, here we will analogously use the sparse atomic orbital
basis and propose new iterative algorithms to compute the GW approximation for fine systems.

Our main effort in this chapter concerns algorithmic improvements which ultimately allow
us to carry out the GW approximation for relatively large systems with limited computational
resources. In the following, we first discuss the basis set of atomic orbitals involved within
our implementation in Subsection 3.2. Then, we discuss a direct implementation of several
key quantities within the GW framework such as the Fock operator, response function and
screened interaction in Sections 3.3 and 3.4. In doing so, we continuously inspect the computing
performance and profile the memory usage. To validate our implementation, moreover, we
benchmark ionization energy (IE) of a set of small molecules in Subsection 3.4.2, and compare
our results with those obtained from another code. In general, the validation process not only
helps to eliminate numerical inconsistencies from our implementations but also provides an
insight into the performance of designed numerical settings.

In Section 3.5, we propose a new scheme wherein computing the quasiparticle energies
within the one-shot GW algorithm requires neither the explicit calculation of the full large-
scale response function nor the inversion of large dielectric matrices. Indeed, we design iterative
algorithms which avoid matrix-matrix operations but rather multiply vectors by matrix and
work with the resulting vectors. This implementation results in a decrease in memory scaling,
enabling us to apply the GW method to relatively large systems with limited computational
power. It is worth noting that we explicitly perform the contour deformation technique for the
required frequency integration to evaluate the G0W0 self-energy without any extra approxima-
tion such as the plasmon-pole model (see the flowchart representation of the GW approximation
in Figure 2.13). Applying algorithms developed in this thesis, we first validate our numerical
implementation and then demonstrate the capability of the iterative algorithm to successfully
compute the quasiparticle energies of some relatively large systems such as buckyball C180, C260,
C320 fullerenes and and two graphene islands.

3.2 Basis Set

To turn the theoretical description of different ab initio methods into the numerical recipes
which are suitable for implementation on a computer, one needs to represent the wavefunction
with a basis set. Basis sets are often composed of either localized atomic orbitals (AOs), or
plane waves (PWs). While AOs are naturally employed to model the wavefunctions of finite
systems, PWs are typically used to simulate the wavefunctions of extended systems5. In this

4Making use of iterative algorithms is also routine for the plane-wave basis sets.
5Bloch’s theorem proves that one can apply a discrete PW basis set to expand the electronic wavefunctions

at each k -point. However, such an expansion needs an infinite number of PWs. In practice, one truncates the
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thesis, we use both above-mentioned bases; AOs are employed to study the finite systems in
Chapters 3 and 4, while PWs are used in Chapter 5 to investigate a few extended systems.

AOs represented in terms of the numerical atomic orbitals (NAOs) [122] are used in our
implementation of the GW approximation. This is a natural choice considering the main
objective of our implementation, namely GW calculations for finite systems6. In the following
subsection, we provide the reader with a brief introduction to NAOs and discuss our NAO-
based numerical implementations in the further sections. We also draw a comparison between
results obtained from our implementation based on NAOs with those computed via another
representation of AO basis, namely the Gaussian-type orbitals (GTOs) [123]. The latter has
become widely used in the quantum chemistry community due to the ease of implementation
and obvious advantage in representing the Coulombic interactions. In Chapter 4, we benchmark
some physical quantities of molecules obtained from an implementation of the one-shot GW
approximation which employs GTO bases.

As already said, PWs are widely used to conduct accurate studies on periodic solids. More-
over, PWs provide practical advantages in the numerical implementation of dielectric and po-
larizability functions within the real-space which can be easily achieved by Fourier transforms
[105]. In principle, PWs are desirable to describe systems whose electron density varies slowly in
the valence manifold [10]. Nevertheless, it is known that the wavefunctions of electrons tend to
oscillate rapidly in the neighbor of nuclei. Representing such oscillations requires many PWs,
which enforces an increase in the basis set size. To moderate the computational cost, thus,
PW codes often employ the pseudo-potentials, approximating the effect of core electrons. In
Chapter 5, we discuss the electronic structure and optical features of a few molecular crystals
using PW basis codes.

3.2.1 Numerical Atomic Orbitals

Using a linear combination of atomic orbital (LCAO), one can satisfactorily expand electronic
wavefunctions ψσi (r) into a finite set of basis function7

ψσi (r) = Xσi
a Φa(⃗r−Ra), (3.1)

where Xσ
a embody the expansion coefficients and Φa(r⃗) represents a set of AOs which are

centered at nuclei position Ra. The characteristic shape of Φa(r⃗) is given by

Φa(⃗r) = fa(r) Yla,ma(r̂), (3.2)

where f(r) and Yl,m(r̂) represent the radial part and spherical harmonic function, depending
on distance and the direction of r⃗, respectively. Within the Equation (3.2), subscripts of l and
m denote the orbital angular momentum and magnetic quantum numbers, respectively. We
should note that radial functions depend on l, but they are independent of m.

In our implementation, we employ NAOs to represent the radial parts f(r). This follows the
successful implementation of LCAO-NAOs in the Siesta code [115], allowing fast simulations

basis to include only PWs whose kinetic energies are smaller than a cut-off energy.
6It is known that AOs provide better behavior to achieve convergence for finite systems with much less

computational cost than PWs. Using PWs to compute the electronic structure of a finite system, one needs
to construct a supercell with a sufficient vacuum gap to avoid interaction among periodic images. As a direct
consequence, such a calculation imposes a higher computational cost than that computed by using an AO basis.
Remind that wavefunctions of finite systems decay exponentially far away from the nuclei.

7For simplifying expressions including summation of vectors and matrices, we use Einstein’s notation which
implies that summation runs over dummy (repeated) indices.
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with an improvable accuracy that depends on the available computational power. NAOs in
the Siesta code are obtained as numerical solution of a Kohn-Sham Hamiltonian, containing
approximations such as those of exchange-correlation and pseudo-potentials, for the isolated
pseudo-atom. NAOs are strictly localized in space, which means they will vanish beyond a
certain (cut-off) radius (or by imposing a boundary condition). This locality of NAOs reduces
the number of matrix elements to be manipulated and stored. For instance, the Hamiltonian
and overlap matrices constructed from localized NAOs are sparse, and provide a better compu-
tational scaling [122]. Besides the locality, the accuracy and computational efficiency of NAO
bases directly depend on the size, range, and (angular-momentum-dependent) radial shape of
the AOs, when accuracy can be maximized by optimizing the AO’s shape [122]. For instance,
one may start with a minimal basis set (single ζ which means only one function f(r) per l is
used) for quick calculations of low quality or establish multiple-ζ bases including polarization
and diffuse orbitals for highly converged calculations.

3.2.2 Dominant Product basis set

In many physical quantities which are mentioned in the previous chapter, one needs to work
with the product of wavefunctions ψ, e.g., see Fock operator (2.11), and response function
(2.28). A numerical expression of such quantities can be constructed by an auxiliary product
basis set. Within the NAO context, a product basis reads [124]

fa(r) f b(r) = V ab
ν Fν(r), (3.3)

where F(r) is the product basis function and V ab
ν represents the basis coefficients, the so-called

product vertex. In practice, we have observed that the size of such a product basis can be as
small as only four times larger than the size of the original NAO’s basis. Considering the locality
of original NAOs, one can expect a sparsity in V ab

ν tensor, meaning that the product vertex
coefficient contains a small number of non-zero elements8. Nevertheless, the actual performance
of a product basis set depends on the methods used to construct the basis functions F(r).

Within our implementation, the product basis functions are linear combinations of NAOs’
products, namely fa(r) f b(r), whereby the space of products is restricted to those that are
mutually orthogonal [44]. To maintain the locality of NAOs and their product, the orthogonal-
ization procedure is done for each individual atom-pair within the system. Furthermore, the
linear combinations are restricted to those pairs with a norm larger than a certain threshold9.
Such a constraint allows extracting a much smaller set of dominant directions, justifying the
name of dominant product basis [124]. The orthogonalization for products of pair orbitals on
the same atom (intra-atomic) is done in such a way that the dominant functions are centered
on the atom, whereas products of orbitals on different atoms (inter-atomic) are evaluated at
the midpoint ( for detailed numerical implementation see Refs. [44, 124]). Such a product basis
is known to provide the most sparse form of V ab

ν for which V ab
ν ̸= 0 only if a, b, and ν all belong

to the same atom pair [121]. As a result, the sparsity in matrix operations can be efficiently
used for many practical purposes, such as the application of the non-interacting polarizability
χ0 on vectors [44].

It was reported that the dominant product basis, constructed from inter-atomic functions,
might overlap strongly with other atom pairs [44]. However, bases in terms of subsets of the
intra-atomic dominant product-functions do not show such a strong overlap. Therefore, an

8The interest in sparsity arises because its exploitation can lead to enormous computational savings.
9e.g the threshold was set to the notably small value of 10−6 for all calculations in this work.
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Figure 3.1: Sparsity pattern of atom-centered auxiliary basis Ṽ ab
ν̃ C ν̃

ν computed for benzene
molecule (C6H6). Ṽ ab

ν̃ is shown in two-dimensional shape of ν̃-by-(a × b) for the sake of visu-
alization. Considering a = b = 114 and ν̃ = 2355 only 1.5% of elements are non-zero. Lower
panel shows the sparsity of C ν̃

ν which is determined to be 36%. Marker size in the plots are
enhanced to visualize.

expansion of the inter-atomic dominant functions F(r) in terms of the intra-atomic functions
is introduced [44], which leads to an atom-centered auxiliary basis

fa(r) f b(r) = Ṽ ab
ν̃ C ν̃

ν Fν(r). (3.4)

In the equation above, Fν(r) are atom-centered dominant functions and Ṽ ab
ν̃ represent the

factorized product vertex coefficients which is a larger (ν̃ > ν) but more sparse tensor than
its counterpart V ab

ν in Equation (3.3). Further, the matrix C ν̃
ν undertakes the conversion of

the inter-atomic space into the intra-atomic space. Within our implementation, we mainly
employ basis sets given in the form of (3.4). In particular, our iterative algorithms, described
in Subsection 3.4 and 3.5, are designed to benefit from an optimal number of non-zero elements
in Ṽ ab

ν̃ followed by the fast matrix–vector multiplications with the (sparse) matrix C ν̃
ν .

Figure 3.1 shows the sparsity pattern of the product basis (3.4) for benzene molecule (C6H6).
For this molecule, the original NAOs are included double-ζ polarized basis set for valence
electrons, resulting in a basis set of 114 orbitals where the first 21 orbitals are occupied. As
a result, Ṽ ab

ν̃ is a three-dimensional array of shape ν̃ = 2355 and a = b = 114, where only
1.5% of the elements within this dense table are non-zero (sparsity of 98.5%) and need to be
stored or acted upon. The conversion matrix C ν̃

ν (ν=570) also exhibits a considerable sparsity
of 36%. Note that the sparsity of both matrices Ṽ ab

ν̃ and C ν̃
ν is expected to increase as the

size of system grows. For instance, sparsity of C ν̃
ν in the case of C20 and C60 is determined to

be 67% and 89%, respectively. From a practical point of view, therefore, much performance
improvement can be achieved by using the representations and operations that specifically
handle the matrix sparsity, instead of storing and working with their dense formats, which are
often computationally expensive. SciPy library [125]—the standard Python library for scientific
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computations—provides some implementations to store and work with sparse matrices10. Using
the compressed sparse row (CSR) module imported from the SciPy, for example, the three-
dimensional array of the vertex matrix Ṽ ab

ν̃ can be represented as a one-dimensional array of
sparse matrices with a decent computational saving. In the following sections, we always seek
clever implementations to efficiently exploit the sparsity of the initial ingredients and use them
in further operations. In fact, we never work with the dense format of product basis matrices,
which rapidly bounds the memory and hinders large-scale algebra.

We should also note that the present dominant products are shown to work well with pseudo-
potential starting points, whereas certain limitations exist on using the current implementation
along with all-electron calculations [44]. As said before, the implemented basis of the dominant
product relies on the decomposition of the inter-atom orbital products. To accomplish this,
one needs to carefully choose the expansion center which is in general different for each pair of
NAOs. Despite this, the current implementation uses a single center per atom pair, which is
satisfactory for pseudo-potential starting points. Adding multiple expansion centers to improve
the precision, however, escalates the computational efforts and machinery, and unfortunately
leads to a stronger overlap among basis functions (since the basis functions get closer to each
other). Notice that strong overlaps enforce less sparsity within the product basis and can
negatively impact the computing performance.

3.3 Implementation of the Fock Operator

In the following, we evaluate the performance of the AOs proposed in the previous section to
compute the Fock exchange operator Σx. Inserting the LCAO ansatz (3.1) into the definition
of the Fock operator (2.11) yields

Σab
x = −

N∑
i=1

X i
a′ X

i
b′

∫∫
fa(r)fa′(r)f b′(r′)f b(r′)

|r − r′| drdr′, (3.5)

where summation runs over all N occupied states. Computing the matrix elements of Σab
x

in the form given above is associated with the presence of four-center integrals. Making use
of four-center integrals is prohibitive for large systems and one rapidly encounters an out-of-
memory error. To avoid this from happening, we use the NAO’s dominant product basis (3.4),
introduced in the previous section. As a result, Equation (3.5) can be recast into

Σab
x =

{
−

N∑
i=1

X i
a′X

i
b′

}
Ṽ aa′

µ̃ C µ̃
µ v

µν
c C ν̃

ν Ṽ
b′b
ν̃ , (3.6)

where the curly brackets in the right-hand side of the equation is nothing else than the charge
density matrix ρa

′b′ . Within the equation above, vµνc is a square matrix of the product-basis
size and represents matrix elements of the Coulomb interaction. Moreover, expansion of vc in
terms of dominant basis functions F(r) becomes

vµνc =

∫∫
Fµ(r) Fν(r′)

|r − r′| drdr′. (3.7)

It is clear that using the dense format of vertices Ṽ aa′
µ and Ṽ b′b

ν to compute the matrix
elements of Σab

x (3.6) is numerically prohibitive even for medium-size systems. In the case
10In particular, SciPy provides useful functions creating sparse matrices using multiple data structures, as

well as, functions to convert a dense matrix to a sparse matrix.
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of buckminster fullerene (C60), for instance, the memory required to store the vertex of size
27300×840×840 is more than half TB in the single-precision floating-point format11. Therefore,
it is crucial to employ reasonably fast algorithms which use the compressed representation of
the vertex coefficients and conduct the numerical operations in sparse algebra. In the following,
we present one of the available algorithms in our implementation to compute Σab

x exploiting the
sparsity of the dominant product vertices.

Σab
x = 0

for ν̃ in Ṽ b′b
ν̃ do

αµ = vµνc C
[ ν̃ ]
ν

α̃µ̃ = C µ̃
µ α

µ

βa
′b = ρa

′b′ Ṽ b′b
[ ν̃ ]

γaa
′
= Ṽ aa′

µ̃ α̃µ̃

Σab
x + = γaa

′
βa

′b

end for

Figure 3.2: An O(N2) algorithm to compute matrix elements of Σx. This algorithm is designed
to conduct the required operations in a cumulative scheme within a loop over the product basis
index [ν̃] of the vertex coefficient Ṽ b′b

ν̃ . In the first two steps within the loop, two matrix-vector
products are computed which yield vectors α and α̃. In the next two steps, one computes the
square matrices β and γ involving in the multiplication of sparse matrices of Ṽ b′b and Ṽ aa′

µ̃ ,
respectively. In the last step, the product of the dense matrices β and γ is computed and
accumulated to return the target Σx.

Figure 3.2 shows an O(N2) algorithm designed to benefit from the sparsity of the dominant
product vertices. This algorithm contains a loop iterating Ṽ b′b

ν̃ over index ν̃. This allows us to
perform a fast matrix-vector multiplication between the dense vµνc matrix and the conversion
vector Cν , yielding a vector αµ. Then, we perform another multiplication between the sparse C µ̃

µ

and αµ, which returns the vector α̃µ̃. Considering the sparsity of C µ̃
µ , the operation in this step

is handled within the SciPy library [125] when the expansion coefficients are wrapped in CSR
format. In the next step within the loop, we continue with multiplication between the iterable
Ṽ b′b, as a sparse matrix stored in CSR format, with the square dense-matrix of charge density
ρa

′b′ , giving a square matrix of βa′b. Next, it is required to compute the matrix-vector product
of Ṽ aa′

µ̃ α̃µ̃ while the sparsity of the former factor significantly reduces the computational cost.
The result in this step is stored in a square matrix labeled as γaa′ . Lastly, we do an inner
product of two square matrices of γaa′ and βa′b and accumulate the result in each iteration.

In Table 3.1, we benchmarked the performance of the proposed algorithm 3.2 and gath-
ered the total runtime and memory usage to compute Σab

x for a series of (buckyballs) carbon
fullerenes. As expected, the memory usage shows an O(N2) scale with respect to the number
of atoms, which is evident in Figure 3.3. Regarding the total runtime, given in the last column
of Table 3.1, we found that computing matrices β and γ takes a moderate runtime, while the

11Within single-precision floating-point format (32 bits), working with a matrix Mn×m×l requires (n ×m ×
l × 32)/230 GiB of RAM.
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inner product of these dense matrices in the last step is the most time-consuming part of the
algorithm 3.2. In the case of the fullerene C180, for example, the runtime spent in the five steps
of the algorithm is 10, 7, 8, 7, and 68 percent of the total execution time, respectively.

Table 3.1: Memory usage and total execution time of the algorithm 3.2 to compute Σab
x for a

set of six fullerenes. The third column lists the number of orbitals. Fourth column outlines the
quantity of ν̃ (ν) in the dominant product basis (DPB) of Ṽ ab

ν̃ cν̃ν . Memory consumption was
profiled by a standard python module [126]. Calculations are done using a node of 18 cores of
Intel® Xeon Gold 6140 with Open-MP parallelization and 384 GB of random access memory
(RAM).

No. Molecule # Orbital # DPB Memory (MiB) Runtime (hour)
1 C20 280 9240 (1600) 106 0.02
2 C60 840 27300 (4800) 250 0.22
3 C180 2520 83610 (14400) 1324 5.05
4 C260 3640 125644 (20800) 2406 16.26
5 C320 4480 154420 (25600) 3589 26.72
6 C540 7560 260503 (43200) 9218 145.5
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Figure 3.3: Memory usage (green dashed curve) and total runtime (red curve) of the cumulative
algorithm 3.2 for computing Σab

x of a set of carbon fullerenes from C20 to C540. Calculations
are carried out using a 18-core node of Intel® Xeon Gold 6140. An increase in the runtime of
C540 with respect to the smaller systems might be related to the cache. When the amount of
the memory usage is large, data does not fit to cache, and therefore, the runtime increases.

3.4 The GW Correction

Recalling from the GW workflow (second step shown in Figure 2.13), we elaborate our imple-
mentation of the one-shot GW in this section. We begin our discussion with a direct numerical
algorithm to compute the matrix element of the polarizability χ0(ω) in Subsections 3.4.1. Then,
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we provide the reader with an approach to computing the self-energy correction via a reformu-
lation of Equation (2.111). To validate this setting, we eventually benchmark the IE of several
small molecules in Subsection 3.4.2 and compare our results with those obtained from another
implementation of the G0W0 in the Molgw code [118].

We should remind that the implementation discussed in this section is only a proof of
concept; since the computational scaling of the direct algorithms is endurable to treat with
small- and medium-size systems, depending on the available computational power. To deal
with large systems, we propose an iterative approach which is detailed in Section 3.5.

3.4.1 Explicit Computation of the Polarizability Matrix

As discussed in Section 3.1, computing the polarizability matrix is one of the bottlenecks on
any GW calculations. The chief reason is embedded in the expression for χ0 (2.28), whose
sum must run over entire occupied and unoccupied states. Therefore, as the number of atoms
in a given system increases both the number of occupied and unoccupied as well as the re-
quired product basis components grow. In the following, we use a direct scheme in which the
polarizability matrix is obtained simply by the sum over a set of states. We will show that
such an implementation results in an O(N4) operation while the memory requirements for stor-
ing the involved matrices limit the application of the direct implementation to only small- or
medium-size problems, depending on the available computational power.

Inserting LCAO (3.1) and dominant product basis (3.3) into the expression of non-interacting
polarizability χ0 (2.28) results in

χ0(r, r
′;ω) =

∑
µ,ν

Fµ(r) χ0
µν(ω) F

ν(r′), (3.8)

where F(r) and F(r′) are functions of the product basis set, representing single-particle eigen-
states in terms of NAOs. Within the expression above, the matrix elements of χ0

µν(ω) read

χ0
µν(ω) =

∑
n,m

(fn − fm)
Υnm
µ Υmn

ν

ω − (εm0 − εn0 ) + iη
. (3.9)

In order not to overload the notation, we dropped spin indices σ. For a spin-diagonal Hamil-
tonian, the spin can be simply added by another summation that runs over each spin channel.
In the last equation, moreover, we introduced the product vertex between eigenstates m and n

Υnm
µ = Xn

a V
ab
µ Xm

b . (3.10)

The product vertex Υnm
µ enters into other expressions in this chapter. Therefore, it is important

to treat it in an optimal manner. Besides Appendix D, the operation involving Υnm
µ for the

particular example of the response matrix (3.9) is discussed in the following.
In Equation (3.9), the sum must run over all occupied n and virtual m states, to represent

the space of electron-hole pairs. However, one can readily realize that the total size of involved
product vertices Υ is prohibitive for large systems. As a simple solution, one might account
it for each electron-hole pair individually. Such a remedy imposes an elevated runtime, and
therefore, reduces the numerical efficiency. The sum-over-states treatment of Equation (3.9),
however, allows us to establish an algorithm that deals with adjustable sets in the electron-
hole space {mn}. In other words, computing the vertex products can be done for chunks of
electron-hole pairs with an adjustable range. Such an implementation not only boosts the speed
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χ0
µν(ω) = 0

for each spin do

for chunk of {mn} do

α
a{n}
µ = V ab

µ X
{n}
b

Υ
{mn}
µ = X

{m}
a α

a{n}
µ̃

 Υ
{mn}
µ

for all ω do

β
{mn}
ν = Υ

{mn}
ν

fn−fm
ω−(εm−εn)

χ0
µν(ω) + =

∑
{mn} Υ

{mn}
µ β

{mn}
ν

end for

end for

end for

Figure 3.4: Algorithm to compute the sum-over-states expression of the polarizability χ0

(3.9). The computation of Υmn
µ (3.10) is shown in a simple way for clarity. More sophisticated

algorithms for this purpose are discussed in Appendix D. The last step in the algorithm above,
namely the accumulation of the product of two dense matrices Υmn

µ βmnν imposes the highest
computational complexity.
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of matrix operations compared to that of treating each electron-hole pair individually but also
makes the memory consumption of the algorithms tunable to a certain extend.

Figure 3.4 sketches an O(N4) direct algorithm to deal with the sum-over-states expression
(3.9). The algorithm begins with a loop over spin channels and continues with a double loop: the
inner loop deals with the frequency dependency of the equation while the outer loop computes
product vertices Υnm

µ between each n-occupied and m-virtual states. To compute Υnm
µ , one can

use either dominant product vertex V ab
µ , as expressed in (3.10), or the corresponding expansion

in terms of atom-centered basis functions (3.4), namely Ṽ ab
µ̃ cµ̃µ. The former is shown in the

Figure 3.4 for the sake of brevity.
With the inner loop, we go through the frequency variable ω. For a given set of frequencies,

Υmn
µ is updated with the denominator of Equation (3.9). Applying occupation factors f in the

nominator of (3.9), moreover, we enforce the electron-hole space, so that, fn − fm = 0 when n
and m are both occupied or unoccupied states, otherwise, fn − fm ̸= 0. Simple algebra in this
step is straightforward and results in a matrix, labeled as βmnν . The remaining part of algorithm
3.4 is another matrix-matrix multiplication between Υnm

µ and βmnν factors. This product will be
accumulated during each cycle and delivers the final result, i.e., the matrix elements of χ0(ω).
By exploiting the sparsity of the vertices and operation dealing with a chunk of electron-hole
pairs, one can improve the computational efficiency in the algorithm 3.4. As a result, although
the computational complexity asymptotically takes O(N4), the corresponding memory storage
scales as best as O(N2×Nω). We will return to this issue by proposing an iterative alternative
in Section 3.5, where we avoid the full storage of the χ0 matrix.

Upon having the χ0 matrix, one might be interested in computing the matrix elements of
the screened interaction W . In connection with Equation (2.92), the matrix representation of
the RPA-Wc becomes

W µν
c (ω) =

[
δµν′ − vµµ

′

c χ0
µ′ν′(ω)

]−1

vν
′µ′′

c χ0
µ′′ν′′(ω) v

ν′′ν
c , (3.11)

where vc represents the Coulomb interaction as defined in Equation (3.7). Equation (3.11) is
the typical linear system of the equations of x = A−1b ( or equivalently Ax = b) that should be
repeatedly solved for a given frequency range.

From the expression of W in the form given by Equation (3.11), one can readily find that
the explicit computation of the W µν

c (ω) is memory-demanding. The underlying reason is that
both kernel A and the term b have the same dimension of the basis size, and therefore, inverting
the kernel Aµν for large systems will be prohibiting. We will return to this point in Section
3.5, where we introduce an approach that enables us to employ the state-of-the-art iterative
methods for finding approximate solutions to the linear algebra systems when the kernel A
features a much smaller dimension than the original basis size.

3.4.2 Self-Energy Integration and Quasiparticle Equation

Recalling from Section 2.6.7, we discussed a few approaches to deal with the frequency inte-
gration of the self-energy. Applying the contour deformation technique, we derived Equation
(2.111) that provides an expression for computing the correlation contributions of the self-
energy in the complex plane iω′ along a deformed contour Γ, shown in Figure 2.11. Inserting
this expression into the quasiparticle equation (2.105), the G0W0 correction for n-th state reads
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εn = ε0n

− 1

2π

∫∫
ψ∗
n(r) ψn (r

′)

∫ +∞

−∞

∑
m

ψm(r) ψ
∗
m (r′)

εn − ε0m + iω′ Wc (r, r
′; iω′) dω′ drdr′

+

∫∫
ψ∗
n(r) ψn (r

′)
∑

zl(εn)∈Γ

fl ψl(r) Wc (r, r
′; zl (εn)) ψ

∗
l (r

′) drdr′.

(3.12)

The right-hand-side of Equation (3.12) includes three terms: the mean-field eigenvalue for n-th
state ε0n, the correlation contribution of the G0W0 self-energy along imaginary-frequency axis
ω′, and lastly, the residual contributions of the occupied states (Green’s function poles) locating
inside the contour Γ.

Dealing with Equation (3.12) can be extremely difficult due to the large-scale mathematical
operations, requiring integration with respect to the spatial and frequency variables. To nu-
merically deal with Equation (3.12), it is useful to introduce I(ω) as the frequency-dependent
electron-hole matrix elements of the screened interaction Wc, which reads

Iσnm(ω) =
∑
σ

∫∫
ψ∗nσ(r)ψmσ(r) Wc(r, r

′, ω) ψnσ(r′)ψ∗mσ(r′) drdr′. (3.13)

To exploit the spatially localized NAOs, we insert the dominant product ansatz (3.3) into (3.13),
which leads to the following tensorial form of I(ω) for each spin σ channel

Inm(ω) = Υnm
µ W µν

c (ω) Υmn
ν , (3.14)

where Υnm and Υmn are the product vertices between molecular orbitals m and n and defined
in (3.10). Replacing the matrix representation of W µν

c (ω) (3.11) into the Equation (3.14), we
eventually arrive at the full matrix representation of Inm

Inm(ω) = Υnm
µ

[
δµν′ − vµµ

′

c χ0
µ′ν′(ω)

]−1

vν
′µ′′

c χ0
µ′′ν′′(ω) v

ν′′ν
c Υmn

ν . (3.15)

Having the expression above, we can now recast Equation (3.12) into

εn = ε0n

− 1

2π

∫ +∞

−∞

∑
m

Inm (iω′)

εn − ε0m + iω′ dω
′

+
∑

zl(εn)∈Γ

fl Inl (zl (εn)) ,

(3.16)

where the spatial integration was already taken care of, and thus, the required integration
is limited to the only frequency variable. Despite this significant simplification, the target
quasiparticle εn is given on both sides of the equation above. As we briefly mentioned in
Subsection 2.6.5, one can solve such a non-linear equation via several approaches. Here, we use
the iterative procedure and solve Equation (3.16) via an eigenvalue self-consistent loop. In doing
so, one initially computes/stores the matrix elements of Inm(ω) (3.15) and uses it to evaluate
the integral part (the second line of the equation above) during all iterations. Nevertheless,
this is not the case for computing the residual part Inl (the third line). Since Inl depends on
the estimation of a set of poles falling inside the contour during each iteration: zl (εn) ∈ Γ (see
Figure 2.11). Therefore, one has to recompute Inl = ⟨nl | Wc (zl (εn)) | ln⟩ in each iteration
for a few updated εn.
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Before going further, it is essential to specify the numerical frequency discretization used
within our implementation. To evaluate the frequency dependency of quantities mentioned in
this section, we use a logarithmic grid along the imaginary-frequency domain. Briefly speaking,
we employ Talman’s parametrization method [110] to discretize the frequency dependence. This
grid along the imaginary-frequency axis iω′ is selected to be dense at the origin, where χ’s poles
provisionally occur. A review of such a time-frequency sampling approach is given in Ref. [83].
Within this approach, a moderate number of grid points ranging from 32 to 64 is typically
sufficient to discretize the frequency axis for obtaining accurate results.

Figure 3.5: Flowchart for a traditionalG0W0 starting form the HF method. One starts with the
self-consistent solution to Equation (2.9)–(2.11), yielding eigen-energies ε0 and orbitals ψ0(r)
along with the expectation values of the Fock-exchange operator. Then, an O(N4) operation,
as the most costly part of this workflow, returns χ0(ω) matrix (3.9). Given that, computing the
matrix elements of Inm(ω) scales cubically. Note that Inm(ω) depends solely on the frequencies
of the integration grid. Thus, one can pre-compute it before entering the quasiparticle cycle.
Eventually, the non-linear quasiparticle equation is computed through an iterative procedure.
In each iteration, one has to re-compute the residual contributions (written in navy blue) for
a few poles falling inside the contour Γ. The computational complexity at each step is shown
with the color opacity. The spin has been omitted for simplicity.

To evaluate the implementation proposed in this section, we compute the quasiparticle
spectrum for a series of neutral molecules in the G2/97 test set in the gas phase [127, 128].
The starting-point mean-field is the Hartree-Fock (HF) delivering εn0 and ψn0 (r). Then, matrix
elements of χ0

µν(ω) are calculated for a frequency sampling of 32 points via the scheme sketched
in Figure 3.4. Next, the linear algebra behind Inm(ω) (3.14) is computed which includes the
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matrix-matrix multiplications and the matrix inversion of dielectric function [I− vcχ0]
−1. Using

Inm(ω), we correct the mean-field eigenvalues εn0 via an iterative solution to Equation (3.16),
where Inl is updated in each cycle. A flowchart for whole process is exhibited in Figure 3.5.

Table 3.2 lists only IE (equivalent to the minus HOMO energy) of the studied molecules.
For comparison, we also supplied the table with results computed at the same level of theory
using the Molgw code, employing the Gaussian basis of cc-pVQζ. As a result, we find out
that our implementation results in IEs differing from those obtained from the Molgw by a
mean absolute error (MAE) of 10 meV, where the maximum difference of 25 meV is obtained
for acetone molecule. We should also note that both codes are provided with the same eigen-
energies at the mean-field level.

Table 3.2: IEs of several closed-shell molecules in the G2/97 test set. The third and fourth
columns outline the molecule formula and the corresponding chemical-abstracts-service registry
number (CAS No.). The last two columns list the G0W0@HF-IEs obtained from the Molgw
code [118] using a Gaussian cc-pVQζ basis set, and our implementation employing NAOs.

IE (eV)
No. Molecule Formula Cas No. Molgw This work
1 Isopropanol (CH3)2CHOH 67630 11.307 11.314
2 Dimethylamine (CH3)2NH 124403 9.683 9.672
3 Dimethyl-sulfoxide (CH3)2SO 67685 9.604 9.590
4 Propyl-chloride CH3CH2CH2Cl 540545 11.395 11.347
5 Propane C3H8 74986 12.695 12.689
6 Trimethylamine (CH3)3N 75503 9.237 9.233
7 Pyrrole C4H5N 109977 8.592 8.584
8 Pyridine C5H5N 110861 10.008 10.007
9 Spiropentane C5H8 157404 10.576 10.557
10 Benzene C6H6 71432 9.618 9.624
11 Trans-ethylamine CH3CH2NH2 75047 10.204 10.198
12 Methoxyethane C2H5OCH3 540670 10.742 10.757
13 Acetone CH3COCH3 67641 10.553 10.578
14 Bicyclobutane C4H6 157335 9.765 9.753
15 Butadiene CH2CHCHCH2 106990 9.408 9.405
16 Cyclobutane C4H8 287230 11.761 11.758
17 Cyclobutene C4H6 822355 9.948 9.945
18 Isobutane C4H10 75285 12.363 12.355
19 Isobutene C4H8 115117 9.816 9.817
20 Methylenecyclopropane C4H6 6142730 10.214 10.215
21 Trans-butane C4H10 106978 12.288 12.275
22 2-butyne C4H6 503173 10.120 10.128

For the studied molecules above, Table 3.3 lists the allocated memory and total runtime in
the computation of Inm(ω) and χ0

µν(ω) matrices. The selected molecules are composed of 10–14
atoms, and the largest dominant product basis has a size of ∼14000 (for Isobutane molecule).
This benchmark clearly shows that a larger portion of the runtime and memory usage in the
computation of Inm(ω) goes to calculating χ0(ω) matrix. This trend signals the difficulty that
arises while computing the whole matrix elements of polarizability for large systems. In the
case of C60 fullerene, for instance, one initially needs to deal with product vertices of size
27300× 840× 840 to compute/store square matrices of χ0

µν(ω) for each frequency, followed by
the inversions of kernel

[
Iµν − vµνc χ0

µν(ω)
]

to compute Inm. Such an operation will demand
high computational resources, and it would be prohibitive for many machines. Therefore, an
out-of-memory error is expected even for medium-size systems. In the following section, we
propose an appropriate iterative implementation, as opposed to the direct one, which avoids
the explicit computation of χ0. Our implementation relies on the Krylov subspace technique to
solve large-scale linear systems.
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Table 3.3: Timing and the memory usage of the direct algorithms to compute χ0(ω) and I(ω)
matrices. The third column lists the number of orbitals. Forth column outlines quantity of ν̃
(ν) in the product basis of Ṽ ab

ν̃ C ν̃
ν . Note that given runtime and memory usage for computing

I(ω) includes those spent to compute χ0(ω) as well. Calculations are done using 12-core node
of Intel® Xeon E5-2680 v3.

χ0(ω) I(ω)
No. Molecule # Orbital # DPB Memory (MiB) Time (sec) Memory (MiB) Time (sec)
1 Isopropanol 460 11247 (3081) 9567 536 15498 742
2 Dimethylamine 375 8511 (2498) 5732 451 8489 671
3 Dimethyl-sulfoxide 404 8429 (2717) 6996 496 10913 733
4 Propyl-chloride 434 10074 (2885) 8265 540 12480 795
5 Propane 405 9768 (2673) 6833 467 9805 690
6 Trimethylamine 490 12452 (3263) 11188 590 16893 833
7 Pyrrole 425 9598 (2894) 8085 501 12111 705
8 Pyridine 480 11046 (3281) 11033 582 17873 828
9 Spiropentane 515 13035 (3447) 12787 616 20347 862
10 Benzene 510 12201 (3456) 12704 622 19687 881
11 Trans-ethylamine 375 8673 (2498) 5728 438 7503 654
12 Methoxyethane 460 11247 (3081) 9641 589 14690 830
13 Acetone 400 8773 (2703) 6823 447 10029 745
14 Bicyclobutane 400 9479 (2682) 6728 456 9419 719
15 Butadiene 400 8479 (2682) 6807 452 10346 635
16 Cyclobutane 460 11864 (3060) 9465 547 15068 737
17 Cyclobutene 400 9287 (2682) 6800 490 9448 783
18 Isobutane 520 13912 (3438) 12917 613 20148 849
19 Isobutene 460 10955 (3060) 9482 529 14464 743
20 Methylenecyclopropane 400 8791 (2682) 6809 504 10069 690
21 Trans-butane 520 13430 (3438) 12413 619 18371 931
22 2-butyne 400 7947 (2682) 6826 494 10717 773

3.5 Iterative Scheme and Algorithmic Improvements

3.5.1 Iteration Solver Methods

In general, the linear equation of Ax = b can be solved by either the direct solvers or by iterative
methods. Within the former, one needs to directly obtain the inverse of matrix A, which can be
accomplished for sufficiently small systems where memory requirements do not preclude it. On
the other hand, iterative methods are generally used to find approximate solutions to large real-
world problems. In this context, Krylov sub-spaces technique [129–131] is extensively employed
to solve the large linear algebra, appearing in many applications of scientific computing.

Given an invertable matrix A ∈ Cm×m and a non-zero vector b ∈ Cm×1, the n-th Krylov
subspace is defined as the subspace spanning over n vectors obtained by applying the linear
transformation An−1 times to the vector b, i.e.,

κn(A, b) =
〈
b, Ab,A2b, · · · , An−1b

〉
= ⟨1, 2, 3, · · · , n⟩ . ∈ Cm (3.17)

Since the n-th Krylov basis is constructed just by the application of A on the n− 1–th vector,
this can be a fast matrix-vector operation, particularly when A is a sparse matrix. Note that
we never compute A2, A3, · · · , which not only imposes matrix-matrix multiplications whose
computational complexity is higher than that of the matrix-vector products but also can destroy
the sparsity of matrix A. More importantly, the matrix A can be represented with only a linear
operator or a function (or subroutine). The only requirement is that one must be able to
compute the product of Ab for any vector b. As another important feature, spaces in Equation
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(3.17) are nested, meaning κ1 is a subset of κ2 which is in turn subset of κ3 and so on. Therefore,
it turns out that κn ⊆ Cm. Interestingly, it has been shown that the solution of a linear equation
Ax = b exists among spanned subsets of κn [129–131]. The idea is to seek among these spaces
and find a sufficiently close approximation to the exact solution within a Krylov subspace of
the minimum possible dimension, namely n≪ m.

The basis of Krylov sub-spaces ⟨1, 2, 3, · · · , n⟩ are not necessarily orthogonal to each other,
meaning they might be close to linearly dependent. If one could find an orthogonal represen-
tation of the Krylov sub-spaces, it provides obvious advantages in the required operations. To
accomplish this, the QR decomposition technique12 is the method of choice. Using this tech-
nique, one is able to decompose any invertible (complex) matrix into a product of orthogonal
square matrices Q whose columns are orthogonal unit vectors Q∗ = Q−1, and R which is an
upper-trapezoidal matrix. Among the QR decomposition methods, the Gram–Schmidt method
is the widely used approach in conjunction with the Krylov method. Briefly speaking, the
Gram-Schmidt process is a sequence of operations which transforms a set of linearly indepen-
dent vectors into a set of orthonormal vectors ⟨q1, q2, q3, · · · , qi⟩ of the norm 1, spanning the
same space as the original set.

Now, we turn our attention to the problem that we are going to deal with, i.e., solving the
linear equation of Amn xn = bm. Spanning xn over the orthogonal vectors of the Gram–Schmidt
ansatz (xn =

∑
i qi R

i
n) [130], the linear equation reads

Amn qi R
i
n = bm,

Rj
m Amn qi R

i
n = Rj

m bm

Aji qi = bj,

where in the second line, we multiplied both sides of the equation by Rj
m and in the third

line, we used the relation of Aji = ⟨Rj
mA

mn|Ri
n⟩. As a result, we see that the linear equation

Amnxn = bm can be represented by Ajiqi = bj where the latter features orthogonality, speeding
up the operations. Now, it remains to find the solution with a minimum number of qi.

Starting with an initial guess q0 = 0, the corresponding residual (the initial error given by
the initial guess) is ||r0|| = b−Aq0 = b. The underlying idea is then to generate a finite number
of approximate solutions qi leading to ri below a given threshold [129]. Hence, it is crucial
to find an update rule to determine qi at each iteration, associated with an ri converging to
the zero vector. To do so, diverse Krylov solvers such as generalized minimal residual method
(GMRES), conjugate gradient (CG), bi-conjugate gradient stabilized (BiCGSTAB), and quasi
minimal residual (QMR) have been developed. At the present time, there is no superior Krylov
solver, and each method is a winner in a specific problem class. In Appendix E, we benchmarked
the above-mentioned solvers and make a comparison between their performance in terms of
speed and robustness for several molecular systems.

3.5.2 Iterative Computation of the Screened Interaction

In Section 3.4, we realized that computing the whole matrix elements of the response func-
tion χ0

µν(ω) and W (ω) is costly, and prohibitive for large-scale problems. Here, we present
an approach to compute the full matrix elements of Inm(ω) (3.11) without an explicit com-
putation/storage of matrix χ0

µν(ω). Indeed, we propose an iterative algorithm employing the

12Sometimes it is called a polar decomposition.
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Krylov sub-spaces method that avoids matrix-matrix operations, but rather multiply vectors
by matrices and works with the resulting vectors.

For computing Inm(ω) in an iteratively numerical scheme, we need to split the required
operation of Equation (3.14) and (3.15) into two parts. By introducing an auxiliary matrix A,
we first compute the product of matrices W µν

c (ω) (3.11) and Υmn
ν (3.10),

Anm
µ (ω) = W µν

c (ω) Υmn
ν

= [δµν′ − vµµ
′

c χ0
µ′ν′(ω) ]

−1︸ ︷︷ ︸
A−1

vν
′µ′′

c χ0
µ′′ν′′(ω) v

ν′′ν
c Υmn

ν︸ ︷︷ ︸
b

. (3.18)

The equation above is a typical linear equation of Ax = b (or equivalently x = A−1b) consists

of two terms:

• b term representing the product of four matrices of vc, χ0(ω), vc, and Υ. The three
first factors are dense square matrices of the basis size. The last factor Υmn

ν is a three-
dimensional product vertex which is a sparse object in our implementation.

• the inverse of dielectric function that we refer to as the kernel A = [ I− vc χ
0(ω) ].

One can readily find that the matrix elements of χ0 are involved in both kernel A and
the right-hand side term b. In Subsection 3.4.1, we found that the O(N4) operation, which
is needed to compute the full matrix elements of χ0(ω), is memory demanding and fails for
large problems. To avoid this from happening, we conduct the required multiplications in the
b term in an iterative scheme for which operations are limited to only vector products. To do
so, an O(N3) algorithm has been developed in our implementation that delivers the matrix-
vector product of χ0 |l⟩. Having such an algorithm, which is detailed in the following, we only
compute a matrix-vector product χ0 |l⟩ in each iteration (on the fly) and preclude an explicit
computation/storage of χ0 and the subsequent multiplication with dense vc matrix in the b
term. Furthermore, we can use this algorithm to represent the kernel A and employ the Krylov
sub-spaces method to solve the linear algebra Ax = b.

Within the χ0 |l⟩ algorithm outlined above, we decompose the required operation for com-
puting the matrix-vector product into the sequence shown in the top panel of Figure 3.6. Such a
decomposition enables us to minimize the arithmetical operations by exploiting the sparsity of
Ṽ cd
ν̃ C ν̃

ν in the auxiliary atom-centered basis (3.4). In the lower panel of Figure 3.6, we sketched
the corresponding algorithm; one begins with a matrix-vector product of C ν̃

ν lν , followed by
another multiplication with Ṽ cd

ν̃ . This operation returns a square matrix of orbital size, which
is labeled as αcd in Figure 3.6. Since both Ṽ and conversion matrix C are sparse matrices,
their multiplication with vector |l⟩ takes a small portion of the runtime and scales linearly13.
In the next step, αcd is multiplied by the occupied-state eigenvectors Xn

d and unoccupied-state
eigenvectors Xm

c , respectively, for each spin channel. Considering the dense format of the ex-
pansion coefficient matrices X, the two multiplications asymptotically scale as O(N3)—as the
most critical part of the proposed algorithm. The accomplished step results in a matrix γ
of size n × m, where m and n are the numbers of virtual and occupied states, respectively.

13Within current implementation, both Cµ̃
ν and Ṽ cd

µ̃ are stored in CSR format. For the latter, the product
index µ̃ is given in row index while orbital indices c and d are merged in column index. Accordingly, matrix-
vector products of Ṽ cd

ν̃ C ν̃
ν lν are done in two steps using sparse tools imported from SciPy library. We should

also note that one can manage this step using dominant vertex coefficients V cd
ν (3.3) which is basically faster

than the use of its counterpart Ṽ cd
ν̃ C ν̃

ν . For large systems, however, the sparsity of the latter is more distinct,
and thus, can be a better choice.
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αcd = Ṽ cd
ν̃ C ν̃

ν l
ν

for each spin do

βcn = αcd Xn
d

γmn = Xm
c βcn

for all {mn} and a given ω do

γ̃mn = fn−fm
ω−(εm−εn) +iη

γmn

end for

β̃bn = Xm
b γ̃mn

α̃ab = β̃bn Xn
a

end for

Ṽ ab
µ̃ C µ̃

µ α̃
ab

Figure 3.6: (top) Sequence of the required operations and (below) the corresponding O(N3)
algorithm to compute matrix-vector product of χ0 |l⟩.
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One then needs to update γmn with the denominator components of Equation (3.9), i.e., the
mean-field eigen-energies εσ,0m , εσ,0n , and a given frequency ω. This minor operation is conducted
by an inner loop that runs over all m and n states. The remaining operations require another
two multiplications with unoccupied and occupied-state eigenvectors, respectively, expected as
O(N3) complexity at most. By doing so, the loop over the spin index ends, and the results are
stored in a square matrix of orbital size, labeled α̃ab. Lastly, the product of C µ̃

µ and α̃ab as an
O(N2) operation is computed and a trace over µ̃ index of Ṽ ab

µ̃ returns the target result, namely
χ0
µν l

ν14.
Having algorithm 3.6, now we are able to construct our iteratively numerical implementation

to compute Anm
µ (ω) (3.18). Before starting we need two inputs:

• Kernel A = [ I− vc χ0(ω) ]; for using the Krylov sub-spaces method, we first determine
the kernel A as a function exploiting algorithm shown in Figure 3.6, such that we can
compute the products of A times an arbitrary vector without explicitly computing the
whole matrix A. As said before, this is the salient feature of the Krylov sub-spaces
method for solving a linear equation of Ax = b where A can be represented by a function
or subroutine (see Subsection 3.5.1).

• The product vertex between molecular orbitals Υnm
ν . Within our implementation this

product is pre-computed and used within the further operations. To do so, we developed
several algorithms carrying out expression in (3.10). More detailed is given in Appendix
D. Note that the required electron-hole space within Υnm

ν in the computation of Anm
µ (ω)

(or equally Inmµ (ω)) is often limited to several n-states around Fermi level.

Knowing the product basis Υmn
ν , one can then construct the multiplication embedded in the

b term, using nested loops as follows: in the outermost loop, the whole operation iterates over
a given frequency ω range. The remaining operation can be conducted by a double loop, which
runs over holes (occupied) states n and all virtual electron (unoccupied) states m. Within the
most inner loop, we multiply the dense square Coulomb kernel vν′′νc and the ν-column-vector
of Υ, returning vector αν′′ . Next, we compute the response to the perturbation given by αν′′
for all n and m states. To do this, we call algorithm 3.6 with an O(N3) cost for each iteration.
Following this, another multiplication with the dense table of vc that returns the vector γν′ (
the b term). Given this, we are done with the b term and it only remains to solve the linear
algebra Anm

µ = A−1 γmnν′ .
Choosing one of the Krylov solvers, outlined in Subsection 3.5.1, one iteratively solves this

linear equation with a reasonably small stopping threshold. Considering the fact that the
Krylov methods solve the linear equations in a much smaller size than the original problem, the
iterative solution typically scales O(N2)×niter, where niter is the number of iterations to achieve
convergence and generally niter ≪ N [132]. Although the Krylov solvers generally need neither
a pre-conditioner nor an initial guess of x0, we have found that niter significantly reduces if the
converged solution of a former iteration is used as an initial guess in the further iteration15.

Knowing the matrix A(ω), we need only a vector multiplication, summing over µ, for each
element of I(ω), namely

Inm(ω) =
∑
µ

Υnm
µ Anm

µ (ω). (3.19)

14Since the vector lν is an array of complex numbers, we do multiplications for real and imaginary units,
separately.

15Therefore, it is clear that the first iteration is often the most time-consuming step since the initial guess x0
is a vector of zeros.
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A = Function ( I− vc χ0 )

Υnm
ν = Xn

a V
ab
µ Xm

b

for all ω do

for all n do

for all m do

αν′′ = vν
′′ν
c Υ

[nm]
ν

βµ′′ = χ0
µ′′ν′′ [ω] αν′′

γν′ = vν
′µ′′
c βµ′′

A
[nm]
µ [ω] = Krylov Solver (A, γν′ [ω])

end for

end for

Inm[ω] = Υmn
µ Anm

µ [ω]

end for

Figure 3.7: Algorithm to compute the frequency-dependent electron-hole matrix elements of
the screened interaction Inm (3.15). One can add another loop to run over the spin index. In
the iterative procedure, A is a linear operator, representing [I− vc χ0 ]. Υnm

ν is the product
vertex between molecular orbitals which is pre-computed before entering the loops. Given these
inputs, the linear algebra in Equation (3.18) is solved iteratively for each value of the frequency
ω, and the n and m states. The Krylov solver can be selected among different built-in functions
in SciPy such as GMRES or BiCGSTAB. The two inner loops return Anm

µ matrix which is finally
multiplied by the product vertex Υmn

µ to yield the target result Inm for each frequency.
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Following the above-mentioned iterative scheme, we are now able to skip the most complex
step of the flowchart given in Figure 3.5, i.e., the explicit computation/storage of χ0(ω) matrix.
Accordingly, the workflow for a G0W0@HF calculation within the iterative implementation
takes the following form:

1. Computing the matrix elements of the Fock (3.6) using the auxiliary product basis (3.4);

2. Self-consistent solutions to the mean-field HF equations, yielding orbitals and eigen-
energies ε0.

3. Computing the product vertex between eigenstates (3.10) in a compressed format to be
employed in algorithms sketched in Figures 3.6 and 3.7.

4. Calculating the auxiliary matrix Anm
µ (ω) (3.18), followed by computing/storing the full

matrix elements of Inm(ω) (3.19) for a given imaginary frequency range (see the algorithm
shown in Figure 3.7). This stage is designed to use the Krylov sub-spaces method to solve
the linear algebra where χ0(ω)vc products are obtained from an optimized vector-matrix
operation, as shown in Figure 3.6.

5. Solving the quasiparticle equation (3.16) iteratively; in each iteration, one uses ε0 (step
2) and the stored Inm(ω) matrix (step 4) to compute the correlation contribution of the
G0W0 self-energy along the imaginary axis. Then, the residual contributions Inl (only
for a few occupied states inside the contour) are added to accomplish the frequency
integration.

To validate the workflow above and test the influence of all computational settings within
the iterative implementation, we benchmark the IE of the same test-set studied in Subsection
3.4.2. Having the same input variables in terms of basis set and frequency sampling16, we can
make a comparison between the quasiparticle energies obtained from the iterative scheme and
those of the direct implementation in the last section (see Table the flowchart shown in Figure
3.5). The last column of Table 3.4 outlines the absolute difference between IEs obtained from
iterative and direct implementations. The MAE between the two implementations is 73 meV
for the quasiparticle HOMO energies. Such a minor deviation, which is reasonably acceptable
due to the given stopping threshold within the Krylov solver, validates our iterative numerical
settings.

In Table 3.4, we also listed the memory usage of the algorithm 3.7 in computing/storing
Inm(ω) matrix. A comparison between these values and those of Inm(ω) within the direct
algorithm in Table 3.3 indicates a desirable computational saving in terms of memory usage.
For the studied molecules, we indeed find that memory consumption to compute Inm(ω) is
decreased by a factor of ∼50 when the iterative algorithm is applied instead of the direct
implementation. Figure 3.8 reveals these memory trends when we also plotted the memory
usage involved in the explicit computation of χ0(ω) (corresponds to the memory-demanding
algorithm shown in Figure 3.4). This considerable saving has been achieved thanks to the
careful optimization of the memory consumption within the iterative algorithm and points to a
step forward for predicting the charged excitations energies of the large molecules. We should
remind that although the run-time trend shows that the iterative algorithm is 4–7 times slower
than the direct approach, the iterative algorithm is typically expected to be employed for large-
scale problems where the direct approach is intractable. In the following section, we examine
the performance of the proposed implementation on a set of relatively large clusters.

16A critical input variable within the iterative implementation is the stopping threshold for the Krylov solver.
For all these calculations we used the default value of 1e–03.
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Figure 3.8: Comparison between memory usage in the direct and the iterative implementations
of the G0W0 correction for a test-set of small molecules. Within the direct approach, one needs
to pre-compute and store matrix elements of the χ0(ω) before entering the quasiparticle equation
(see the workflow for the direct approach in Figure 3.5). In the iterative implementation,
however, one computes all the required ingredients during an iterative computation of the
Inm(ω). The latter is subscripted by iter to be distinguishable.
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Table 3.4: Timing and the memory usage of the algorithm 3.7 for computing Inm(ω). The fifth
column lists total execution time including the mean-field and the quasiparticle cycle steps. The
last column shows absolute difference between IE computed by direct algorithm, listed in Table
3.2, and IE computed by the iterative implementation. Calculations are similarly conducted
on a 12-core node of Intel® Xeon E5-2680 with 256 GB of RAM.

Inm(ω)
No. Molecule Memory (MiB) Time (sec)

Total
execution time (sec) Diff (eV)

1 Isopropanol 274 3324 16307 0.082
2 Dimethylamine 179 3409 9069 0.029
3 Dimethyl-sulfoxide 203 3196 12954 0.016
4 Propyl-chloride 233 2860 14492 0.053
5 Propane 249 3319 11959 0.094
6 Trimethylamine 293 3706 23075 0.071
7 Pyrrole 234 3657 18448 0.049
8 Pyridine 289 5094 26304 0.036
9 Spiropentane 325 4581 21996 0.076
10 Benzene 323 3962 22938 0.061
11 Trans-ethylamine 174 3155 7533 0.008
12 Methoxyethane 259 4357 12083 0.041
13 Acetone 200 2906 13022 0.018
14 Bicyclobutane 269 2578 18185 0.029
15 Butadiene 206 3143 10331 0.094
16 Cyclobutane 272 3773 13062 0.016
17 Cyclobutene 253 3936 10185 0.053
18 Isobutane 371 4400 29606 0.076
19 Isobutene 351 3139 17121 0.082
20 Methylenecyclopropane 257 3442 12071 0.063
21 Trans-butane 327 4376 20461 0.032
22 2-butyne 222 4179 4216 0.049

3.6 Testing the Performance of the Iterative Imple-
mentation on larger Systems

In this section we inspect the performance of our implementation in dealing with some relatively
large systems. We selected seven finite systems, including five carbon buckyball clusters and
two graphene islands, which are composed of 20–320 atoms. Ball-and-stick model of the studied
molecules is shown in Appendix F. For these finite systems, we carry out all-electron G0W0@HF
calculations and report the quasiparticle HOMO energy (IE). Although we compare the result
with available experimental or theoretical references, our special focus is on the memory trend
of the iterative algorithms.

For buckyball fullerenes (C20–C320), the optimized structures are adopted from the fullerene
database [133] and the GW correction is done for 6 states on both sides of the HOMO-LUMO
gap with a frequency sampling of 32 points. For graphene islands, we utilized DFT optimized
geometries obtained by the Siesta package [115] by using PBE functional associated with a van
der Waals correction. For these islands, quasiparticle energies are corrected for 12 states above
and below the gap. This is because of the open-shell nature of the two studied triangular and
hexagonal graphene islands with 6 and 4 unpaired spin states at the valence edge, respectively.

Note that GW calculations within our implementation are conducted on a single 18-core
node of Skylake Intel® Xeon Gold 6140 with Open-MP parallelization while reference ∆SCF-
B3LYP or Molgw-based G0W0@HF are computed by using 8–12 similar nodes to fulfill the
memory requirements.

Table 3.5 lists the memory usage of the main iterative algorithm 3.7 for the selected systems,
along with the runtime spent in this algorithm and in the iteration of the quasiparticle equation.
We also supplied the table with the G0W0@HF–predicted IE of the studied systems that can

79



3.6. TESTING THE PERFORMANCE OF THE ITERATIVE IMPLEMENTATION ...

Table 3.5: Performance of the implemented iterative approach to the G0W0 starting from HF
solutions. Runtime and memory consumption of the algorithm 3.7 are given in the fourth and
fifth columns. Total execution time including the runtime spent to re-compute re-compute the
residual contributions Inl(εn) during the quasiparticle cycle are outlined in the next column.
The last two columns list the IEs which are obtained from our implementation (left hand-side)
and other code/method (right hand-side). Numbers with † are computed by the Molgw code
at the same level of theory and those with § are obtained by ∆SCF approach using DFT-B3LYP
functional (cc-pVDζ). An experimental value is given for C60 [134], superscripted by ∗.

Inm(ω)
No. Molecule # Orbital Memory (MiB) Time (hour)

Total execution time
(hour) IE

1 C20 280 197 0.9 1.1 5.94 6.31§
6.02†

2 C60 840 739 19.8 23.2 7.48 7.69∗

7.72†

3 C180 2520 6657 376.9 440.7 7.25 6.83§
4 C260 3640 14925 592.3 655.6 6.42
5 C320 4480 19891 780.4 845.2 6.37

6 Hexagonal
Graphene island 996 2090 68.5 74.0 5.62 5.43†

5.33§

7 Triangular
Graphene island 1212 3245 102.7 107.5 5.84 5.68†

5.49§

be used in the future studies. In the absence of the corresponding experiments for most of the
studied systems, we have computed the IE obtained from the ∆SCF-B3LYP method and/or the
Molgw at the G0W0@HF level (if applicable) for comparison. For fullerenes, a simple classic
electrostatic model is proposed which predicts the IEs decrease by roughly 1/

√
N , where N is the

number of carbon atoms [135]. Overall, it is clear that IEs obtained from our implementation
fairly agree to the estimation of other methods.

Besides Table 3.5, Figure 3.9 exhibits a quadratic increase of the memory requirement with
respect to the number N of atoms in the studied molecular systems. Indeed, the polynomial
regression model fits the overall memory consumption with a small coefficient for the quadratic
factor17. Such an excellent scaling has been achieved by the performance of the algorithm (3.6)
which precludes the storage of whole matrix elements of χ0vc but rather deals with vector-
matrix products of χ0l. Moreover, thanks to the implemented Krylov methods we avoided
the inversion/storage of whole kernel A (dielectric matrix), resulting in a considerable memory
saving.

As it is already mentioned, our main attention in this chapter was paid to the algorithmic
enhancement. In the following we briefly outline an ongoing project of which we used the im-
plemented iterative method. From the GW perspective, surfaces and interfaces are particularly
interesting due to the intrinsic long-range effects within the screened Coulomb interaction. As
an impressive example in this regard, it has been shown that an extra charge (electron or hole)
outside a surface system can induce an image within the surface, providing an extra potential,
the so-called image potential. As a consequence of this additional potential, a renormalization
of the energy of the charge state occurs. For a unit positive (negative) charge approaching a
metallic surface, the image potential amounts to ±1/4z in atomic units, where z represent the
distance with respect to position of the image plane [136, 137]. A clear influence of the image
potential is discussed in the case of organic molecules when the energy of molecular states close
(or on) a metallic surface can differ by a few eV from the energetic position of molecular states
in the gas phase [10].

17The actual quadratic formula (in MiB) is 0.15N2 + 15.8N − 356.
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Figure 3.9: Memory scaling and runtime of the implemented iterative algorithm as a function
of the number of atoms in the studied systems. Dashed curve exhibits interpolated data to the
second order of polynomial regression model.

In this project, we have been requested to compute the electronic excited states for two
graphene islands physisorbed on the Au (111) surface. Considering the system size in the solid
state, including a large supercell with numerous atoms, we found that the application of the
GW method is highly demanding and beyond the tractability of our computational resources.
As shown by Neaton et al. [136], however, one can (approximately) obtain the quasiparticle
energy states of an adsorbate using two steps as follows: starting from the quasiparticle energy
levels of the adsorbate in the gas-phase, and then applying a correction in the energy levels upon
adsorption using a simple electrostatic model of the image potential shifting the energy states
due to the screening of quasiparticle excitations by the substrate. Following this, we employed
the iterative algorithms discussed in this chapter and compute the quasiparticle spectra for
two different islands including 86 and 112 atoms, as shown in Figure APP-4. As compared to
the experimental value of 2.3 eV, the GW -predicted HOMO-LUMO gap of both islands in the
gas-phase is found too large (3.68 eV is estimated for the hexagonal island and 4.05 eV for the
triangular one). We then implemented an image-charge model18, to gain an insight into the
influence of the image potential on the energy of the graphene islands’ states. Given this, we
found a strong renormalization of the HOMO-LUMO gap in both graphene islands when it is
physisorbed on a Au surface (as compared to its molecular gas-phase gap). We indeed found
the shift of the HOMO and LUMO energies in both islands, in a vertical distance of 2–3Å from
the Au surface, suggests values in a better agreement with the experimentally measured gap.

18Change in the quasiparticle gap ∆Eg upon adsorption is estimated using a classical image-charge model
which reads [137]: ∆Eg = ± 1

2

∫
n(r)n(r′)Vim(r, r′)drdr′, where n(r) = |ψ(r)|2 is the electronic charge density

and image potential Vim is given by Vim(r, r′) = −1/
√
(x− x′)2 + (y − y′)2 + (z + z′)2. Note that ± in the

expression for points to the fact that occupied (unoccupied) states move up (down) in energy, and thus, the size
of HOMO-LUMO gaps reduces consequently.
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3.7 Conclusion and Outlooks

We presented an iterative implementation of the one-shot GW approximation that ultimately
enables us to use the method for estimating the quasiparticle spectrum of relatively large
molecular systems in the gas phase. This implementation employs a highly localized basis of
numerical atomic orbitals to describe single-electron wavefunctions where an auxiliary dominant
(and atom-centered) basis is used to expand the orbital products. Exploiting the sparsity
within these bases, we could introduce enhanced algorithms that are able to deal with some
key quantities such as Fock operator, response function, and screened interaction with limited
computational power. In doing so, we developed several algorithms providing compressed and
suitable formats of the product bases to be used in further operations. Upon having such bases,
we designed algorithms that iteratively solve the linear equation of the frequency-dependent
electron-hole matrix elements of the screened interaction I(ω) using the Krylov sub-spaces while
the product of the polarizability matrix and the Coulomb kernel is computed in a memory-
saving operation. As an obvious advantage achieved by employing these algorithms, we avoid
an explicit computing/storing of the dynamical polarizability and the inversion of the dielectric
kernel.

Applying the iterative algorithms, we validated our numerical settings by comparing the
ionization energy of several small molecules against results obtained from other codes. We then
demonstrated the capability of our iterative implementation to deal with some relatively large
systems such as buckyball fullerenes. Inspecting the memory trend in computing the I(ω),
we showed a quadratic scaling that is extremely desirable for further applications of the GW
method.

Considering the performance of the proposed implementation, we propose that further re-
search should be undertaken in the following areas:

• Developing the code to deal with the extended systems; in this context, although the
all-electron GW calculations can provide an insight into the core electron excitation, we
assume the combination of the iterative methods with the pseudo-potential approximation
steps forward the application of the GW method for large systems. Notice that the
employed basis has shown its optimal performance with the pseudo-potential starting
points.

• Although the current implementation is able to read the Siesta’s outputs to conduct a
GW calculation, it is highly useful to add the hybrid exchange-correlation kernels. To do
so, an optimized algorithm for computing the exact exchange is proposed in the current
work.

• Iterative approach to the matrix elements of Inmµ (ω), can be similarly utilized for iterative
solution to the Bethe-Salpeter equation. Likewise, one can use Inmµ (ω) within the polar-
ization continuum model to study the electronic excitations in more complex systems.

• Last not least, the accelerating techniques can considerably enhance the capability of
the current implementation which is optimized in terms of memory scaling. Although
employing OpenMP and optimized MKL library in the basic linear algebra subroutine
(BLAS) is available, the operations involved in the large-scale multiplications can be
optimized by using graphical processing units (GPU), for example. Part of the code has
been already parallelized using the CUDA and CUBLAS libraries.
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Chapter 4

The GW Approximation for
Open-Shell Molecules

4.1 Introduction

As we discussed in the previous chapters, the GW approximation is well-known as a power-
ful and promising method in the materials science community because of its high quality and
endurable computational cost. As compared to any static mean-field methods, the dynamical
content of the GW approximation gives a sophisticated expression of frequency-resolved ob-
servables such as electron removal (addition) energies, which is often in agreement with the
direct (inverse) photo-emission spectroscopy. As a result, this approximation is currently the
predominant framework to describe the quasiparticle spectra of charged excitation energies,
playing a key role in determining the functionality and efficiency of molecular electronics and
organic photovoltaic devices [90, 119, 138].

The GW approximation has shown to be quantitatively accurate in the estimation of band-
edges, band-gaps, and band structures as the fundamental features for understanding the elec-
tronic structure of solids [1, 69, 95, 113, 139]. Likewise, this method has been widely used as an
accurate approximation to finite systems, e.g. isolated molecules [83, 96–98, 119, 120, 140, 141].
Recent benchmarks confirm that GW calculations, mainly done at the G0W0 level, often provide
accurate estimations of IE for closed-shell molecules [83, 96, 97, 120, 140, 141]. All these studies
generally agree that the GW results for IE lie within a few tenths of an eV from the experimen-
tal or theoretical references. Despite this, such an extensive benchmark for open-shell molecules
is not available to our best knowledge. Indeed, we could find only two studies employing the
GW approximation to study a limited number of open-shell molecules [84, 90]. As pointed out
by these authors, the application of the GW approximation might not be straightforward for
open-shell systems due to the errors that can occur at the starting-point calculations, such as
wrong convergence to a local minima, spin contamination, and subsequent sources of error and
uncertainty may appear later at the GW level like the appearance of multiple solutions in the
quasiparticle equation [84, 90, 139, 142].

Considering the wide range of open-shell electronic systems in nature, such as many atoms,
molecules, and also defective solids, open-shell system are of key importance in many areas
including biology, chemistry, and condensed matter physics. In fact, open-shell molecules play
a significant role in understanding many chemical processes and reactions. Besides, open-
shell molecules are models for magnetic systems in which the spin degrees of freedom become
important. In such systems, the number of unpaired electrons determines the magnitude of the
magnetic moment and introduces spin-dependent correlations that must be correctly taken into
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account [1]. Despite this, the electronic structure description of open-shell molecules is a tough
challenge for density-based exchange-correlation functionals, which might break the orbital and
spin degeneracy [90, 143–145]. In this sense, we show how mean-field calculations using the
most popular hybrid functionals dramatically fail in the estimation of spin-orbital energies,
leading to qualitatively wrong single-electron spectra while the well-set correlation energy of
the GW self-energy for each spin-orbital provides results comparable to those obtained from
wavefunction-based methods in quantum chemistry.

In this chapter, we begin with a brief discussion about the main concerns in dealing with
open-shell molecules at both mean-field and the GW levels. Then, we introduce our high-level
reference and a few other correlated methods which are frequently used in quantum chemistry
for assigning the IE of finite systems. In Section 4.4, we provide a benchmark on the IE of
42 open-shell molecules, extracted from the G2/97 test set [127, 128], and make a compari-
son between IEs obtained from G0W0 calculations and our quantum chemistry reference. In
doing so, we use different mean-field solutions to gain an insight into the undesired starting
point dependence within the G0W0 scheme. This section also outlines spin contamination and
multiple quasiparticle solutions in the case of several examples. At the end of this section,
we quantitatively compare the IE of the neutral molecules in our test-set with the EA of the
corresponding cations to gain an insight into the quality of the G0W0 self-energy. In Section
4.5, the capability of the one-shot GW approach to arrange molecular orbitals is evaluated.
Particularly, we discuss the effect of quasiparticle correction leading to an energy swapping
among frontier orbitals of three small-sized molecules. Section 4.6 concludes the chapter.

4.2 G0W0 Calculations Started from Spin-Polarized
Mean-Field solutions

Within Chapter 2, we extensively presented the GW formalism. We also derived Hedin’s equa-
tions (2.93), where the spin degrees of freedom were omitted by assuming a diamagnetic ground
state. Here, we need to give a short synopsis pertinent to the GW calculation started from a
spin-unrestricted mean-field. Note that in the following, we always consider spin-independent
interactions, meaning that the Hamiltonian is excluded from effects such as spin-orbit coupling,
relativistic effects, and so on. Thus, the Hamiltonian discussed in the following is diagonal in
the spin-space basis.

Recalling from the definition of the self-energy (2.99), we found that the spin-dependence
of the GW self-energy Σσ

xc(ω) entirely stems from that of the non-interacting Green’s function
Gσ

0 . Constructing the latter by a single-particle spin-unrestricted Hamiltonian Ĥσ
mf as

[Gσ
0 ]−1 (ω) = ω − Ĥσ

mf , (4.1)

it is then clear that the spin structure of Gσ
0 , in turn, is directly inherited from Ĥσ

mf. Therefore,
one readily concludes that the spin structure of the self-energy is determined by that of the
Hamiltonian of the starting mean-field, which in the cases considered here is spin-diagonal,
namely σ ∈ {↑, ↓}.

For closed-shell systems, many single-particle Hamiltonians feature rather accurate approx-
imations to Σxc, so that, the calculation of the electron self-energy can be accurately approx-
imated using the non-interacting Green’s function (4.1) in the GW self-energy (2.99). For
open-shell systems, however, the existence of multiple degenerate ground states might give rise
to difficulties in spin-unrestricted mean-field methods and the subsequent GW calculations. In
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the literature [84, 90], two factors are stressed as the main concerns for dealing with open-shell
systems:

• Choosing an optimal starting-point single-particle Hamiltonian to determine the precise
position of the Green’s functions’ poles.

• Applying an appropriate approach to the evaluation of the self-energy on a dense fre-
quency grid.

- Starting point: To determine the GW self-energy, it is more convenient to construct
the Green’s function G using the solutions of a prior mean-field calculation instead of G cor-
responding to bare electrons. However, this choice implies an undesired starting-point depen-
dency, particularly in G0W0 calculations where the eigenstates are kept the same as that of the
prior mean-field solution. Over the years, it has been widely accepted that both HF and KS
methods, as briefly introduced in Section 2.3, can provide a reasonable starting point for a GW
calculation. We should remind that HF Hamiltonian (2.9) is a natural choice for GW calcula-
tions; since the exchange part of the GW self-energy coincides with the Fock operator. Among
different types of functionals used within the KS method, it is widely suggested that hybrid
functionals tend to be the most accurate for molecules [23]. As we have already mentioned
in Section 2.3.2, hybrid functionals make use of the non-local Fock exchange operator similar
to the HF method, frequently in combination with an effective screened Coulomb interaction,
plus a density functional to describe correlation effects as shown in Equation (2.18). To gain
an insight into the starting point dependence of the G0W0 results for open-shell molecules, we
employ unrestricted HF (UHF) and unrestricted KS (UKS) methods. Within UKS, we employ
full-range B3LYP and PBE0 functionals and range-separated CAM-B3LYP and HSE06 func-
tionals comprising different amount of HF exchange at short- and long-range as discussed in
Section 2.3.2.

For the IE of closed-shell molecules, it has been shown that the hybrid functionals with a
high fraction (30%-60%) of the exact exchange often yield the best results [120, 140, 141, 146].
Despite this, it is emphasized that the choice of an optimal starting point is system dependent
[14].For the closed-shell systems, the self-consistent loop in restricted calculations almost always
converges to a global minimum. For open-shell systems, however, the self-consistent cycle (in
unrestricted calculations) might not converge or lead to local minima associated with a (large)
spin contamination. In fact, one severe limitation of the mean-field approaches is their inability
to represent certain total spin solutions accurately due to the restriction, by construction,
of the many-electron wavefunction to a single Slater determinant. This gives rise to spin
contamination and inaccurate estimations of the splitting between different total spin solutions.
Particularly, it was reported that achieving convergence in unrestricted calculations and the
amount of spin contamination might be related to the amount of exact exchange within the
functional and size of the basis set [84]. We will discuss this in an example of ethynyl radical
(CCH) in Section 4.4.4.

- Self-energy evaluation: As shown in Section 2.6.6, the level of self-consistency within the
GW approximation can lead to significant changes in the final results. For closed-shell systems,
it has been shown that evGW0 calculations (where the self-energy is obtained from iteration
only on G) can decrease the dependence in the mean-field starting point, leading to a better
agreement with the experiment [85]. The same is not guaranteed for open-shell systems due to
the more complicated structure of G1. To obtain a precise structure of the self-energy, therefore,

1In open-shell systems, partially filled orbitals can couple the spin angular momenta, leading to multiple
eigenstates for the N − 1-particle system. Such multiple eigenstates can significantly contribute to the matrix
element of G and give rise to multiple poles [90].
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it was suggested to carefully select a starting point whose solutions give good approximations
to the interacting Green’s function and the exact screened interaction W . In a recent study
on open-shell systems [90], for instance, the authors recommend employing standard density-
functional calculations to determine the poles of W0, while G0 is built by static mean-field
calculations using the static Coulomb-hole plus screened-exchange approximation (COHSEX).

Another key parameter in dealing with an open-shell system is the quality of the frequency
grid used to evaluate the self-energy. To precisely account for the frequency dependence of the
self-energy, it is vital to employ a fine frequency sampling in the vicinity of the quasiparticle
energy. For all GW calculations reported in this chapter, we used a frequency grid of ∆ω =
0.0005 Ha. Knowing the matrix elements of the self-energy on such a fine frequency grid, we
use the graphical method, as implemented in the Molgw code [118], to solve the fixed-point
quasiparticle equation (2.105). As discussed in Section 2.5.5, one can identify the intersection
points of Re Σc(ω) with the straight line ω − ε0 + Vxc − Σx as the quasiparticle solutions with
a strength inversely connected to the slope of Σc(ω) (e.g. see Figure 4.5). Additionally, we
compute the diagonal matrix elements of the spectral function Ajj(ω) (2.52) and continuously
inspect the consistency between the spectral weight with the quasiparticle solution(s) obtained
from the graphical method.

For the HOMO, the graphical method often leads to a unique solution, meaning that the
intersection occurs at a pole-less region of the self-energy [140, 147]. As a result, the slight
slope of the self-energy gives rise to a large quasiparticle weight, associated with a single pro-
nounced peak in the diagonal elements of the projected spectral function Ajj(ω). However, for
some cases, e.g. when the initial mean-field energy takes place in the vicinity of a self-energy
pole position, the quasiparticle equation (2.105) might provide more than one solution [140].
Ionization of lower lying states can also result in multiple solutions due to the coupling be-
tween the created hole state and excitations of comparable energies, producing several final
states [148]. For open-shell systems, in particular, the occurrence of multiple solutions must be
carefully considered. As an example, Lischner et al. [90] have shown that precise knowledge
of the self-energy on a fine frequency grid can capture the multiplet splittings, in agreement
with the photo-ionization spectroscopy. These authors also point toward the importance of
partial self-consistent calculations to accurately obtain the position of the self-energy pole(s).
Although our study is limited to the standard G0W0 approach, we give an example of this
multiplet splitting in Section 4.5.2.

4.3 Reference Ionization Energies

It is well-known that comparison of theoretical IEs with experimental values can be problematic
[140, 141, 149]. The underlying reason is that the experimental measurements include intrinsic
effects such as the zero-point motion as well as external influences such as defects, disorder,
and ambient parameters, while such effects are entirely excluded from our current calculations.
Thus, it is more reasonable to benchmark the GW results against other high-quality theoretical
approaches. To do so, we use the ∆-framework2, in which the IE is obtained from the energy
difference between two separate calculations for the neutral and cationic species. Within ∆-
framework, we employ several unrestricted correlated methods such as coupled-cluster including
single and double excitations with perturbative inclusion of triple excitations CCSD(T), second-
order Møller-Plesset perturbation theory (MP2), configuration interaction limited to single and
double excitations (CISD), and eventually DFT using the B3LYP functional. Exchange-only

2It is referred to as ∆SCF in the context of mean-field schemes
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methods such as UHF and ROHF are also utilized. For all the above-mentioned calculations,
we use the PySCF package [150].

Among all, we opt for the ∆CCSD(T) results as our reference; since CCSD(T) has proven
to be an accurate method for small to medium-sized closed-shell molecules and it remains the
Gold standard method in quantum chemistry [93, 120, 141]. Further, the CCSD(T) approach
is currently employed in many occasions as the reference method for open-shell atoms and
molecules [151, 152]. More importantly, the G0W0 method is in essence a single reference
approach, that is, a perturbative correction of the single configuration HF or KS models.
Therefore, it seems reasonable to test its performance against highly accurate single reference
methods, such as CCSD(T).

In the case of small finite systems, ∆-methods lead to IEs often similar to the GW quasi-
particle excitation energies [14, 93, 153]. Nonetheless, a straightforward application of the
∆-methods is limited to the lowest IE. Since calculations of deeper levels require a well-defined
and efficient scheme to constrain the hole, left in the system after the excitation, in a particular
state. This might be difficult in some cases [11, 153]. Moreover, ∆-methods present conceptual
problems to deal with infinite periodic system [14], limiting their range of applicability. In con-
trast, the physics behind the GW approximation in terms of dynamical screened interactions
in both finite and extended phases provides a general framework.

It is worth mentioning the differences in the computational cost between the G0W0 method
and other approaches above: as we discussed in Chapter 3, the computational complexity within
the G0W0 approach typically scales as O(N3)-O(N4) while the computational demands in
wavefunction-based methods are typically much higher in terms of processor time and memory
requirements and present a worse scaling with basis size, e.g., O(N7) for CCSD(T) [154],
prohibiting calculations for molecules containing more than a few tens of atoms [155].

4.4 A Benchmark Set of the Ionization Energies of
Open-Shell Molecules

In this section, we evaluate the vertical IE of 42 open-shell molecules, belonging to the well-
established G2/97 neutral test set [127, 128, 156, 157]. For convenient comparison across
different electronic structure methods, we use the MP2(full)/6-31G(d) optimized geometries
[157]. The spin configurations for neutral open-shell molecules are set to the standard values
reported in previous literature [127, 128].

All calculations discussed in the following are done using Dunning’s correlation-consistent
basis sets cc−pVζZ [158], expanded in terms of Gaussian functions. These basis sets are
hierarchies of increasing size and angular momentum that provide a systematic way to obtain
more accurate results, although they impose an increasing computational cost. Therefore, we
initially conducted convergence tests with respect to the basis size, where we found the cc-pVQZ
basis set is reasonably sufficient to obtain convergence in the results (see Figure 4.1a and b).
It is worth noting that the cc-pVQZ basis is still incomplete; so that an overestimation of the
IEs in the range 0.1–0.2 eV could be anticipated [140, 141].

As said before, the ∆CCSD(T) method was chosen as the reference in the following bench-
mark. To gain a brief insight into the quality of the reference ∆CCSD(T), we compare the
equality between IEs computed by the reference and that of experiment as reported in the
NIST3 database [159–161]. Figure 4.1c exhibits such a comparison when the experimental val-
ues for 15 molecules are represent by the diagonal line. As a result, we find that our reference

3NIST stands for the National Institute of Standards and Technology.
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Figure 4.1: Convergence of the IEs computed by (a) ∆CCSD(T) and (b) G0W0@B3LYP as
a function of the basis size with respect to the results obtained using a cc-pVQZ basis set.
(c) Comparison between ∆CCSD(T)-IE and available experiments measuring vertical IE. The
black solid diagonal exhibits the vertical IE as reported in the NIST database.

∆CCSD(T)-IEs agree with the available experimental vertical excitation energies with a mean
absolute error (MAE) of 0.11 eV, which can be expected due to the basis-set size at theoretical
side and other effects related to finite temperature and extrinsic effects within the experimental
measurements. In presenting the experimental IEs, it is vital to distinguish between vertical
ionization processes, in which the ion is in the same geometry as the neutral counterpart, and
the adiabatic ionization whereby the ion is in its relaxed geometry [162]. Notice that only
vertical IEs are relevant for comparison with the GW quasiparticle energies4.

After highlighting the remarkable precision of the reference for a variety of chemical com-
pounds, we now benchmark IEs calculated by either ∆-methods or the G0W0 approximation
starting from different unrestricted mean-field solutions. For brevity, a color map representa-
tion of the deviations with respect to the ∆CCSD(T) reference is presented in Figure 4.2 and
statistical deviations are outlined in Table 4.1. Molecule-resolved numerical results are supplied
in a Python dictionary which is available at [163].

Figure 4.2: Color map representation of absolute errors obtained from the various unrestricted
methods with respect to ∆CCSD(T). The color bar at the right-hand side determines the size
of the error. Calculations are done using a cc-pVQZ basis.

In the case of ∆-methods, while UHF and ROHF variants show the highest MAEs of ∼ 0.7

4The vertical IE is greater than its adiabatic counterpart.
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Table 4.1: Statistical deviations of IEs (eV) derived from ∆-methods and G0W0 on top of dif-
ferent unrestricted mean-field solutions with respect to ∆CCSD(T)/cc-pVQZ. MSE, MAE, and
MAD stand for the mean signed error, mean absolute error, and maximal absolute deviation,
respectively.

∆-methodsDeviation CISD CCSD MP2 B3LYP UHF ROHF
MSE -0.04 0.00 -0.05 0.11 -0.58 -0.63
MAE 0.16 0.07 0.13 0.19 0.72 0.71
MAD 0.72 0.43 0.72 0.60 1.79 1.94

G0W0@
UHF CAM–B3LYP PBE0 B3LYP

MSE 0.55 0.12 -0.09 -0.18
MAE 0.55 0.14 0.12 0.20
MAD 1.46 0.37 0.39 0.52

eV (due to the lack of explicit electron correlation), unrestricted MP2, CISD, and DFT-B3LYP5

on average provide results agree to the reference with MAEs at about 0.1 eV. On the other side,
G0W0@UHF (G0W0 started from UHF) presents an MAE of 0.55 eV, which is reduced to 0.12,
0.14, and 0.20 eV for @PBE0, @CAM-B3LYP, and @B3LYP, respectively. These deviations are
comparable to those found for closed-shell molecules [83, 93, 97, 140, 141].

As stated in Section 4.2, the static COHSEX approximation has been also proposed as
a good starting point to construct the non-interacting Green’s function in GW calculations
[90]. Following this suggestion, we set another benchmark for IEs of our test-set molecules
using COHSEX solutions to construct G0, while mean-field hybrid solutions are utilized to
approximate the dynamical screened interactionW0. Table 4.2 outlines the statistical deviations
of computed IEs with respect to the ∆CCSD(T) reference. For the present test-set systems,
one readily finds that there is no tangible improvement on average with respect to the results
obtained using hybrid functionals for constructing both G0 and W0, as listed in Table 4.1.

Table 4.2: Statistical deviations of IEs (eV) obtained from the G0W0 approximation in which
G0 is built by the mean-field COHSEX and W0 was constructed from different hybrid solutions
with respect to ∆CCSD(T)/cc-pVQZ.

G0W0@Deviation COHSEX+B3LYP COHSEX+CAM–B3LYP COHSEX+PBE0
MSE -0.20 -0.12 -0.12
MAE 0.31 0.34 0.32
MAD 1.00 0.94 0.77

4.4.1 Starting-Point Dependence on the Results

Not surprisingly, G0W0 results listed in Table 4.1 feature an undesired dependence on the
starting point as an accuracy-limiting factor. It can be useful to analyze the underlying trend;
we find that G0W0@UHF and @CAM-B3LYP tend to overestimate the IEs with a mean signed
error (MSE) of 0.55 and 0.12 eV while the IEs computed by G0W0@B3LYP and @PBE0 deliver
a negative MSE of -0.18 and -0.09 eV, pointing to averagely underestimated results. Moreover,
IEs calculated by G0W0@UHF features a maximal absolute deviation (MAD) of 1.46 eV while

5Note that, although DFT-B3LYP functional in the ∆-scheme leads to reasonable IEs, the errors of B3LYP-
KS eigenvalues can be rather large, in the range of several eVs.
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Figure 4.3: Error distribution of the IEs computed by G0W0 on top of different starting points
with respect to ∆CCSD(T) reference.

G0W0 calculations starting from hybrid functionals for the majority of the molecules show a
much smaller deviation.

In Figure 4.3, we show histogram representations of the error distribution for G0W0-IEs
started from different mean-field calculations with respect to the reference ∆CCSD(T). These
histograms clearly show the trend mentioned in the last paragraph: overestimation of IEs
obtained from G0W0@UHF and @CAM-B3LYP and underestimation at @B3LYP and @PBE0
levels. Despite this, there exists a few exceptions; particularly quasiparticle IEs computed for
Li and Na atoms at @B3LYP and @PBE0 levels are overestimated by about 0.3 eV. This can
be tentatively ascribed to the self-screening error within the GW approximation, leading to
an overestimation of the correlation energy in these one-electron atoms [164]. The well-known
self-interaction error within the mean-field calculations is another obvious source of error for
these atoms, although one would expect that such an error leads to an underestimation of the
IE. In the following subsection, we discuss the low quality of the mean-field solutions at B3LYP
and PBE0 levels for such single-electron valence atoms which consequently results in spurious
multiple quasiparticle solutions.

4.4.2 Quasiparticle Solution(s) and Spectral Weight

As discussed in Section 4.2, the solution to the quasiparticle equation might not be unique.
However, we confirm that for the majority of our test-set systems the graphical method on
a fine frequency grid provides a single solution for the quasiparticle HOMO level associated
with a pronounced spectral weight. In Figure 4.4 we plot the spectral weight (2.52) for the
HOMO orbital of our test-set molecules. In G0W0@UHF and @CAM-B3LYP calculations, we
always find a pronounced peak in the spectral function with an average weight of 0.92. Over a
range of 5 eV around quasiparticle energy, there is only a remarkably sharp peak in the spectral
function with a large weight. Moreover, the difference between the position of the peak in the
spectral function and the intersection within the graphical method is found negligible; this is
because of the simple polar structure of the self-energy over this region. Within G0W0@PBE0
and @B3LYP results, on the other hand, we find a few systems for which the computed spectral
weight is smaller than the average mentioned above. In such systems, we usually find more
than one solution. However, the spectral weights are rather different, favoring in general one
solution against all others. The worst cases are cyano radical (CN), Na, and Li, whose major
peaks show a quasiparticle weight of about 0.8, and some weight is shifted to other solution(s)6.

6For these systems, we first checked the dependence of the solution(s) on the choice of η in the denominator
of the Green’s function (2.42), with different values of η = 0.0005, 0.0007, and 0.001 Ha. However, the computed
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Figure 4.4: Quasiparticle weights for the HOMO of the studied molecules, computed by the
G0W0 calculations on top of different mean-field solutions. Weights are obtained from two
methods for solving the quasiparticle equation: the linearization (Z-factor) and the spectral
function.

Figure 4.5 exhibits the self-energy and the spectral function for the HOMO of CN molecule.
At G0W0@B3LYP (@PBE0) level, the quasiparticle equation for the HOMO delivers two solu-
tions; a higher-energy solution at -13.93 (-14.13) eV associated with a spectral weight of 0.76
(0.79) while the second solution shows a much smaller weight of a few hundredth and occurs
at lower energies of -15.25 (-16.28) eV. Besides the significant difference between the spec-
tral weights, favoring the solution at higher energy, our reference ∆CCSD(T) and computed
HOMO energy through the equation-of-motion formalism (-14.11, see Table 4.5) are more con-
sistent with the solution with higher spectral weight. We should also note that the relevance of
solutions originating from intersections with quite vertical (very steep slope) lines close to self-
energy poles is not completely clear, and such solutions have been identified by some authors
as spurious7 [140]. Therefore, it implies that we can safely ascribe the solution with significant
spectral weight to the quasiparticle energy of CN-HOMO.

Similar plots are given for the HOMO of the Na and Li atoms in Figure 4.6. While G0W0

correction on top of hybrid B3LYP and PBE0 starting points estimates a significant spectral
peak for the HOMO of the Li and Na at -5.6 and -5.3 with spectral weight of 0.83 and 0.86,
respectively, there is another solution at 2–3 eV lower in energy with a much less weight of 0.07–
0.1. This solution could be qualified as spurious for a similar reason to that of the CN molecule,
although the origin might be also related to the self-interaction error at the mean-field level
and the self-screening error8 at the GW approximation. As a consequence of the former, one

spectral weight for all three cases features a negligible change.
7"spurious in a sense" is the actual wording used in the cited paper.
8Self-screening or self-correlation problem within the GW approximation can be clearly realized in a Hubbard

dimer consists of a single electron in its ground state. For this system, the exact spectral function, which is non-
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Figure 4.5: (top) Graphical solution and (bottom) the spectral function computed for the
HOMO of the CN molecule at the G0W0@B3LYP and @PBE0 levels. The intensity of the Ajj
was normalized such that the highest intensity in the given energy window equals to one.

can readily realize the mean-field eigen-energy ε0 at both B3LYP and PBE0 level, indicated by
cyan dashed line in the figure, is located quite far from the estimated quasiparticle peak. For
such effective one-electron systems, it has been shown that the G0W0@HF produces IEs of the
quality comparable to QSGW [27, 165], where the latter does not suffer from the starting-point
dependence. Note that even the HF mean-field solution for these two atoms shows a good
estimation to the IE, while corresponding B3LYP and PBE0 levels feature deviations of ∼2 eV.

4.4.3 Electronic Multiplet Structure of Oxygen Molecule

Following the discussion in Section 4.2, detailed knowledge of the self-energy, particularly its
poles, might result in the identification of the multiplet structure. As an example, here we
study the triplet oxygen molecule with 3Σg ground-state for which extensive experimental mea-
surements are reported [166]. For this system, we find that the removal of one electron from
the π∗

2p (HOMO) orbital features a single pronounced quasiparticle peak with a spectral weight
of ∼ 0.9 eV. This is in line with the only possible ionic state for this process, namely 2Πg, and
therefore, no multiplet structure is expected [90]. In contrast, ionization of an up-spin electron
from the σ2p (HOMO–2) orbital results in two solutions to the quasiparticle equation. In Table
4.3, we collected the IEs of the σ2p orbital associated with their spectral weight computed via
the G0W0 starting from B3LYP and PBE0 functionals.

As compared with the cases discussed in the last subsection, we find that the two solutions
attributed to the ionization of the up-spin σ2p orbital are not that markedly different in terms
of the spectral weight. Particularly, G0W0@B3LYP results show a first peak at -18.84 eV with a
spectral weight of 0.64 while the second peak falls at -20.56 eV with 24% of the spectral weight.
Interestingly, these two solutions are similarly observed in a previous study [90] where these
two solutions are attributed to the two possible ionic states, namely doublet (2Σg) and quartet

interacting, features two peaks separated by the bonding–antibonding gap. Despite this, the GW calculation
for this system results in not only overestimated gap but also gives rise to spurious satellites in the spectral
function. The latter points to the main failure of the GW : altering a non-interacting problem into an interacting
problem. This indeed means that the electron, entering the calculation of the W , screens itself [14, 164].
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Figure 4.6: Spectral function and the graphical solution(s) to the HOMO of (top) Na and
(bottom) Li atoms obtained from G0W0@B3LYP, @PBE0, and @UHF calculations. Vertical
cyan line represents the corresponding mean-field solution.

(4Σg). Moreover, the splitting between multiplet structures above is experimentally determined
to be 2.3 eV [166] which agrees with values of 2.03 and 2.56 eV estimated by G0W0@B3LYP
and @PBE0, respectively.

Table 4.3: IEs computed for O2 − σ2p orbital. Note that first and second rows list different
quasiparticle solutions for spin-up channel and the third row presents the single solution for
the spin-down channel. Experimental values are adopted from Ref. [166].

G0W0@B3LYP G0W0@PBE0
Orbital

εQP Spectral weight εQP Spectral weight Expt Final State

σ2p(↑) 18.53 0.64 18.84 0.77 18.4 4Σg

σ2p(↑) 20.56 0.24 21.40 0.09 20.7 2Σg

σ2p(↓) 17.73 0.88 17.73 0.89 18.4 4Σg

4.4.4 Spin Contamination within Starting-Point Calculations

When carrying unrestricted calculations, it is necessary to check the degree of the spin con-
tamination as an indication of the artificial mixing between different electronic spin-states. As
discussed in Subsection 2.3.1, the spin contamination can be judged by the difference between
the expectation value of the total spin operator

〈
Ŝ2

〉
and the ideal s(s + 1) value, where s is

the spin quantum number.
Figure 4.8 compares the value of the spin contamination computed for the studied molecules

at different unrestricted mean-field levels. Clearly, UHF method presents considerable differ-
ences between

〈
Ŝ2

〉
and s(s + 1) values. The highest contamination values are computed for

CCH, CN, and C2H3 molecules, respectively. This is in tune with a previous report in Ref.
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Figure 4.7: Graphical solution to the quasiparticle equation at G0W0@B3LYP level for the
removal of a (left) spin-up, (right) spin-down electron from the σ2p orbital. Spectral function
for each case is given in the lower panels for which the highest peak is normalized to one.

[167]. Nevertheless, we could not find a clear connection between the high-rate spin contam-
ination of these three species at the UHF level and the error-rate in the calculation of the
lowest-IEs within G0W0@UHF. On the other hand, hybrid functionals provide much smaller
contamination values, negligible for the majority of the molecules, reaching a highest value of
0.03 for CCH molecule at PBE0 level9.

According to Ref. [84], the spin contamination in an unrestricted calculation is just an
indicator for the convergence error in the self-consistent field; so that large spin contamination
might point toward wrong convergence to some local minima instead of the global minimum.
Therefore, it is always mandatory to inspect the quality of the mean-field results with large
spin contamination, particularly the self-consistent convergence behavior. Here, we gave special
attention to the particularly problematic case of CCH and conduct a systematic convergence
test at the mean-field level. In doing so, we monitor the total energy and HOMO eigen-energy
trends over the basis size from cc-pVDZ to cc-pV5Z with and without the resolution-of-identity
(RI) approximation to the product of the GTO basis functions. Figure 4.9 reveals the results
computed by using the standard PBE0 functional (with a value of α = 0.25 in Equation (2.18)).
First, we confirm that the selected basis set (cc-pVQZ) is sufficient to achieve a convergence of
0.05 eV in the total energy. Furthermore, calculations with different bases smoothly converge
(in less than 18 iterations) and result in the same 2Σ ground-state [161, 169] with similar energy
levels in the valence region10, and identical values for spin contamination (0.03). We also cross-
checked the convergence trend using the PySCF code, returning identical results as those of
Molgw.

Comparing spin contamination in mean-field results shown in Figure 4.8, one might think
that there is a connection between the amount of the exact exchange in the functional and spin

9We should note that more sophisticated methods have been recently proposed to evaluate
〈
Ŝ2

〉
in open-

shell DFT calculations [168], which have not yet implemented in the code we utilize here. For unrestricted KS
methods, therefore, we similarly used the conventional UHF expression given in [84].

10We found doubly degenerate states at valence edge at both spin channels, while bonding LUMO is predicted
in the spin minority manifold.
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Figure 4.8: Spin contamination in unrestricted methods calculated as the difference between
the calculated total spin operator ⟨S2⟩ and s(s+ 1).

Figure 4.9: Variation of (left) the total energy, (middle) HOMO energy, and (left) spin con-
tamination at DFT level using tuned-PBE0 functional with respect to the basis set size and
different values of the exact exchange fraction α for CCH radical.
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contamination. To gain an insight into this, we inspect the convergence trend over the amount
of the exact exchange in a tuned PBE0 functional. Figure 4.9 reveals the results obtained from
PBE0 functional, where the fraction of the exact exchange α in Equation (2.18) varies from
0 to 1. For all values of α, we see the same convergence behavior as that of the standard
PBE0; achieving smooth convergence in the total energy, minor variation of the frontier orbital
energies, and spin contamination which remains constant by increasing the basis size. As a
rule of thumb, increasing the exact exchange lowers the total energy; since exchange energy
acts against the Hartree term. HOMO energies vary smoothly with respect to the basis size
(0.25 eV for α=0 and 0.03 for α=1), however increasing the amount of the exact exchange
severely impact on the HOMO energy, as could be expected. Interestingly, we find that the
computed spin contamination (

〈
Ŝ2

〉
− s(s + 1)) grows as the fraction of the exact exchange

in the functional increases; while semi-local PBE (PBE0 functional with α=0) shows a spin
contamination of 0.02, PBE0 functional with highest fraction leads to large contamination of
0.14.

4.4.5 Electron Affinity of the Singly Positively Charged Sys-
tems

The equality between the IE of a neutral system and the EA of its cation (EA+) has been
proposed as a stringent test to evaluate the quality of an exchange-correlation approximation
within the electronic structure approaches [165]. Due to the localization or delocalization error
within the mean-field methods, leading to over- or underestimated HOMO and LUMO levels,
the commonly used approximations to Exc dramatically fail in such a test. In contrast, the
GW method is known for its capability to describe the energies of the charged excitation and
provide quantitatively accurate IE and EA. Here, we examine the quality of the G0W0 self-
energy and compare the IE of the neutral molecules, studied in Section 4.4, with the EA+ of
the corresponding cations11.

Table 4.4: Statistical deviations of EA+ obtained from the one-shot GW approximation for
cations with respect to ∆CCSD(T) results using cc-pVQZ basis.

G0W0@(mean field)
Deviation UHF CAM–B3LYP PBE0 B3LYP

MSE -0.23 0.06 0.15 0.23
MAE 0.40 0.17 0.21 0.27
MAD 1.26 0.62 0.62 0.68

Figure 4.10 presents a summary of the deviations between IEs and EA+s for four starting
points. The statistical deviations and color map representation of the absolute errors with
respect to the ∆-CCSD(T) reference are collected in Table 4.4 and Figure 4.2, respectively. As a
clear improvement, one sees that the MAE of the EA+s computed at the G0W0@UHF is reduced
with respect to the corresponding IE-deviation (MAE=0.55) in Table 4.1. Moreover, EA+s show
a negative MSE of -0.23 eV, addressing averagely underestimated results, which contrasts with
the systematic overestimation of the IEs for the UHF starting point (MSE=0.55). This is
in line with the well-known tendency of the HF approach to over- (under-)estimate occupied
(unoccupied) levels due to the lack of the electron correlation.

11To determine the spin multiplicity of cations, we did an extensive benchmark on the total energy of possible
configurations at the CCSD(T) level and opted for the most energetically stable configurations. Related data
are available at [163]
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Figure 4.10: Difference between the IE and EA+ of the studied open-shell molecules, obtained
from the G0W0 on top of four mean-field solutions.

Similarly to the G0W0@UHF case, we observe a sign reversal of the MSE of the EA+s
calculated by B3LYP and PBE0 starting points as compared to the MSE of the IEs (see Tables
4.1 and 4.4). However, for these two hybrid functionals the MAE increases with respect to that
found for the IEs of the neutral molecules. This is consistent with a larger error in the energy
position of the LUMO in the initial DFT calculations, as compared to that of the HOMO, and
points to the importance of an improved description of exchange in correcting the energies of
the occupied states. The range-separated G0W0@CAM-B3LYP, on the other hand, provides a
similar MAE for EA+s (0.17 eV) and IEs (0.14 eV) in which the MSE is positive in both cases.
Accordingly, it seems that CAM-B3LYP functional as a starting point for G0W0 provides a more
balanced description in terms of localization and delocalization errors than the other hybrid
functionals considered here [165, 170, 171]. For detailed results see the data list at [163].

To gain an insight into the role of exact exchange, we benchmarked the IEs and EA+s
of our test-set molecules using the tuned PBE0 functional, where α varies from 0.35 to 0.75.
The corresponding data are gathered at [163]. As compared with the results obtained by G0W0

starting from standard PBE0 (α = 0.25), we find all statistical deviations have slightly improved
when the content of exchange is in the range 0.35–0.4. For example, α=0.35 results in an MSE
of 0.02 and 0.09 eV for the IEs of neutral molecules and the EA+s of the cations, respectively.
For α > 0.5, on the contrary, all deviations increase and provide a positive (negative) MSE
for the IE (EA+). This indeed reflects the general rule of thumb that a larger content of
exact exchange usually leads to an overestimation (underestimation) energies of the occupied
(unoccupied) states.
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4.5 One-Electron Spectrum of Open-Shell Molecules

The interpretation of photo-electron spectroscopy is frequently performed in terms of effective
independent electron theories where the concept of molecular orbitals appears naturally. Thus,
the energies and symmetries of frontier orbitals become central to understanding the interaction
of molecules with light. In this section, we focus on the accuracy of G0W0 correction on top of
different mean-field starting points to estimate the relative energy positions of frontier molecular
orbitals with different characters. Among all the studied molecules in our test-set, we found that
for a few molecules the energy ordering of the frontier molecular orbitals at the mean-field level
differs from that suggested after the G0W0 correction12. As Figure 4.11 displays, the energy
ordering of the HOMO orbital and HOMO–1 of CN and the amino radical (NH2) is obtained
differently at the mean-field and theGW level. Likewise, the relative energy position of HOMO–
1 and HOMO–2 orbitals in the case of oxygen molecules is swapped. For these three molecules,
therefore, we realize that mean-fields and G0W0 provide different qualitative pictures. In the
following sections, we concentrate on these three specific molecules, and thoroughly discuss the
underlying reasons leading to the swapping in the energy sequence of molecular orbitals.

Figure 4.11: Qualitative molecular orbital diagrams of (a) CN, (b) NH2, and (c) triplet O2,
obtained from (left) mean-field and (right) G0W0 calculations. Molecular orbitals are illustrated
for the first spin component with an isovalue about 0.05. For clarity, only orbitals which are
swapped by the G0W0 calculations are depicted in color.

As a reference for evaluating the spatial and energetic properties of molecular orbitals,
we compare mean-field and G0W0 results with Dyson orbitals and the corresponding energies
obtained from the coupled-cluster formalism. As shown in Equation (2.44), the Dyson orbital
gives the overlap between ΨN

0 and the wavefunctions of the different states of the system
containing N − 1 electrons ΨN−1

s , which provides the probability distribution of electrons with
a given binding energy during the ionization of a molecular species [39]. To correctly account
for electron correlation effects on the Dyson orbitals, we employ coupled-cluster theory with
single and double excitations for the ground state, while the ionized (N − 1 electron) state
is obtained with the ionized version of the equation-of-motion formalism (EOM-IP-CCSD)
[172], as implemented in the Q-Chem electronic structure package13 [173]. Such a reference is
expected to fairly account for the many-body effects in the estimation of excitation energy and
the spatial distribution [174].

12In order to disregard effects due to the employed basis set (cc-pVQZ), we have repeated the calculations
using larger bases, namely cc-pV5Z, cc-pV6Z, and their augmented versions including diffuse functions. These
larger basis sets lead to the same estimation as that given by cc-pVQZ basis.

13Calculations of the Dyson orbitals were performed by our collaborator Prof. David Casanova at DIPC, San
Sebastían (Spain).
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4.5.1 Swapping Between First and Second IEs

CN radical is a paramagnetic system exhibiting an unpaired electron in the σ2p with the fully
occupied (degenerate) π2p orbitals at lower energy. The reference Dyson orbital energies show a
separation of 0.88 eV between the σ2p (HOMO) and π2p (HOMO–1), which agrees with previous
results [43, 175–178]. Despite this, we find that both HF and KS with different exchange-
correlation functionals present an incorrect energy ordering of molecular orbitals. Table 4.5
lists the energy eigenvalues of these orbitals calculated by different methods while the Dyson
orbital energies and the corresponding sequence of the orbitals is also supplied.

Table 4.5: Majority-spin orbital energies (eV) of the doublet CN molecule using a cc-pVQZ
basis set. Last row determines whether the ordering of calculated orbital energies agrees with
the reference (EOM-IP-CCSD) or not.

orbital
method UHF G0W0@

UHF B3LYP G0W0@
B3LYP PBE0 G0W0@

PBE0
CAM-
B3LYP

G0W0@
CAM-
B3LYP

EOM-
IP-

CCSD

HOMO–1 -15.56
(σ2p)

-14.85
-14.85
(π2p)

-11.25
(σ2p)

-14.44
-14.44
(π2p)

-11.50
(σ2p)

-14.55
-14.55
(π2p)

-13.07
(σ2p)

-14.78
-14.78
(π2p)

-14.99
-14.99
(π2p)

HOMO
-14.39
-14.39
(π2p)

-14.69
(σ2p)

-10.96
-10.96
(π2p)

-13.93
(σ2p)

-11.22
-11.22
(π2p)

-14.13
(σ2p)

-12.71
-12.71
(π2p)

-14.54
(σ2p)

-14.11
(σ2p)

Agrees to Ref. × ✓ × ✓ × ✓ × ✓

While UHF’s estimation for the σ2p eigenvalue is ∼1.5 eV larger than the corresponding
reference, the energy of the degenerate π2p level is surprisingly underestimated by about 0.6 eV.
Such high errors lead to an inverted energy ordering of orbitals with a large σ2p–π2p separation
of 1.2 eV. DFT using three different hybrid functionals, on the other hand, systematically
underestimates the energies of both orbital types. This underestimation is significantly higher
for the degenerate π2p orbitals than for σ2p, resulting in the wrong ordering, but with a smaller
gap (∼0.3 eV) than that of UHF. We should also note that the character (spatial distribution)
of the orbitals obtained by the employed mean-field methods are found in good agreement with
the Dyson orbitals.

As illustrated in Figure 4.12a, the G0W0 correction (shaded area) on top of all given mean-
field calculations (blank area) not only leads to the correct ordering of molecular orbitals in
agreement with the reference but also the estimated quasiparticle orbital energies are much
closer to those of reference. Particularly, energy separation between σ2p–π2p obtained by G0W0

starting from mean-field approximations with high contents of exact exchange (UHF and CAM-
B3LYP) are very small (∼0.2 eV); since both methods tend to overestimate σ2p and underesti-
mate π2p energies. In contrast, G0W0 calculations starting from either PBE0 or B3LYP provide
improved results, with an energy separation around 0.5 eV.

Next, we turn our attention to the NH2 radical; the singly occupied HOMO of NH2 corre-
sponds to the N-2p orbital perpendicular to the molecular plane belonging to the B1 irreducible
representation of the C2v molecular symmetry (1b1 orbital). The lower orbital is obtained as
the bonding interaction between the N-2pz orbital (aligned with the twofold rotational axis)
and the in-phase combination of the 1s orbitals on the two hydrogen atoms, which belongs to
the totally symmetric representation (3a1 orbital). As depicted in Figure 4.12b, UHF predicts
the inverted order for the 1b1 and 3a1 orbital energies. Like in the case of CN, quasiparticle
correction leads to the correct energy ordering of the two topmost orbitals of NH2, in agreement
with the reference Dyson orbital energies. Hybrid functionals, on the other hand, correctly pre-
dict the character of HOMO and HOMO–1 orbitals. However, the estimated eigen-energies are
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Figure 4.12: Majority-spin orbital energies calculated by using different mean-field approaches
and G0W0 on top of them for the HOMO and HOMO−1 orbitals of doublet (a) CN and (b)
NH2 molecules. Solid lines correspond to EOM–IP–CCSD energies as reference. The shaded
area shows the correct ordering of molecular orbitals according to the reference. Notice that
different hybrid functionals are arranged from left to right in descending order of exact-exchange
content. Iso-surfaces of the computed Dyson orbitals are represented next to the corresponding
EOM–IP–CCSD solid lines. Small pink, brown, and green circles represent hydrogen, carbon,
and nitrogen atoms, respectively.

significantly underestimated (see Table 4.6). Here, the G0W0 correction greatly improves the
accuracy of orbital energies with an MAE of 0.22 and 0.18 eV for the HOMO and HOMO–1,
respectively.

Table 4.6: Majority-spin orbital energies (eV) of NH2 molecule using a cc-pVQZ basis set. Last
row determines whether the sequence of computed orbital energies is in agreement with the
reference (EOM-IP-CCSD) or not.

orbital
method UHF G0W0

@UHF B3LYP G0W0

@B3LYP PBE0 G0W0

@PBE0
CAM-
B3LYP

G0W0

@CAM-
B3LYP

EOM-
IP-

CCSD

HOMO–1 -13.99
1b1

-13.41
3a1

-9.08
3a1

-12.48
3a1

-9.35
3a1

-12.64
3a1

-10.89
3a1

-12.96
3a1

-12.69
3a1

HOMO -13.75
3a1

-13.18
1b1

-8.76
1b1

-12.11
1b1

-9.17
1b1

-12.27
1b1

-10.61
1b1

-12.56
1b1

-12.47
1b1

Agrees to Ref. × ✓ ✓ ✓ ✓ ✓ ✓ ✓

4.5.2 Swapping of IEs in the Spin-Triplet Oxygen Molecule

In the triplet O2 molecule (with 3Σg symmetry as shown in Figure 4.13), because of a relatively
large gap between 2s and 2p states of the oxygen atom, no hybridization occurs between s
and p atomic orbitals. Therefore, the σ2p orbital is energetically situated below the two-fold
degenerate π2p and π∗

2p orbitals [179–182]. The same ordering is obtained by the reference, where
Dyson orbital energies are determined to be -12.55, -17.73, and -19.46 eV for π∗

2p (HOMO), π2p
(HOMO−1), and σ2p (HOMO−2), respectively. Nevertheless, neither UHF nor DFT using
hybrid functionals can capture the correct energy ordering of the HOMO−1 and HOMO−2
orbitals. UHF overshoots π-type orbital energies leading to a large separation between σ2p and
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π2p (2.1 eV) and wrong ordering that even G0W0@UHF is unable to correct. Similarly, hybrid
functionals used within DFT considerably underestimate σ2p energy and provide a vanishingly
small energy separation between σ2p and π2p orbitals, with an incorrect sequence.

Figure 4.13: (left) 3Σg symmetry of triplet O2. (right) Majority-spin orbital energies ob-
tained from different approximations for twofold degenerate HOMO (π∗

2p), twofold degenerate
HOMO−1 (π2p), and HOMO−2 (σ2p) orbitals of the triplet O2 molecule. Solid lines show the
reference orbital energy computed by EOM–IP–CCSD. The shaded area indicates the correct
ordering of MOs.

From Figure 4.13, we can see the quasiparticle energies obtained from G0W0 on top of hybrid
functionals interchange the energy order of σ2p and π2p orbitals (shaded area), providing the
same sequence as that given by the reference. From a quantitative point of view, G0W0@CAM-
B3LYP gives the quasiparticle σ2p energy very close to the reference, while estimated IEs of
π2p and π∗

2p are overestimated by 1 and 0.36 eV, respectively. Conversely, G0W0@PBE0 yields
the closest energies of both π–type orbitals to the reference values, whereas the energy of the
σ2p orbital is underestimated by 0.62 eV. Eventually, G0W0@B3LYP and @HSE06 accurately
estimate the HOMO energy while IEs of π2p and σ2p orbitals are underestimated by around 0.5
and 0.9 eV, respectively. For actual numbers see Table 4.7.

Table 4.7: Arrangement of the majority-spin molecular orbitals of triplet O2 based upon the
quasiparticle energies (eigenvalues) obtained from G0W0 (mean-field) calculations. Last row
determines whether the sequence of computed orbital energies is in agreement with the reference
ordering or not. Measured vertical IE is 12.30 eV [159–161].

Orbital
Method UHF G0W0

@UHF B3LYP G0W0
@B3LYP HSE06 G0W0

@HSE06 PBE0 G0W0
@PBE0

CAM-
B3LYP

G0W0
@CAM-
B3LYP

EOM-
IP-

CCSD

HOMO–2
-22.61
-22.61
π2p

-20.21
-20.21
π2p

-15.23
-15.23
π2p

-18.53
σ2p

-15.25
-15.25
π2p

-18.52
σ2p

-15.67
-15.67
π2p

-18.84
σ2p

-17.28
-17.28
π2p

-19.34
σ2p

-19.46
σ2p

HOMO–1 -20.49
σ2p

-20.10
σ2p

-15.04
σ2p

-17.23
-17.23
π2p

-14.96
σ2p

-17.13
-17.13
π2p

-15.38
σ2p

-17.66
-17.66
π2p

-16.93
σ2p

-18.73
-18.73
π2p

-17.73
-17.73
π2p

HOMO π∗
2p

-15.58
-15.58

-13.98
-13.98

-8.96
-8.96

-12.45
-12.45

-8.87
-8.87

-12.48
-12.48

-9.29
-9.29

-12.59
-12.59

-10.90
-10.90

-12.91
-12.91

-12.55
-12.55

Agrees to Ref. × × × ✓ × ✓ × ✓ × ✓
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It is clear that diverse molecular orbital types respond differently to the GW correction.
It has been recently shown that the GW self-energy often provides poor estimation of σp
orbital energies [183]. The self-screening problem within the GW approximation can also affect
differently the energy level of orbitals with different bonding types [96, 184]. Therefore, to
quantify the origin of such errors in the computed orbital energies of the oxygen molecule, we
analyze the behaviour of the two GW self-energy components, namely the exchange Σx and
correlation Σc terms (2.97) obtained by different mean-field solutions.

Figure 4.14a-c show the diagonal expectation values of the exchange contribution Σx to
the self-energy for the three topmost majority-spin occupied orbitals, i.e. π∗

2p, π2p, and σ2p
in the triplet O2 molecule. For each of the mean-field methods, we evaluate the expectation
values of Σx as ⟨ψm|Σx [ρ

m] |ψm⟩ (dotted lines), where ψm and ρm are the corresponding mean-
field’s orbital and one-particle density matrix, respectively. Additionally, we present exchange
energies obtained from the CCSD density matrix ρCCSD in combination with the mean-field
orbitals

〈
ψm|Σx

[
ρCCSD

]
|ψm

〉
(dashed lines). Comparison between these two values for each

orbital features how significant are the changes stemming from the density matrix. However,
we should remind that the density matrix obtained from CCSD calculations, including contri-
butions from single and double excitations, contains high quality information about the effect
of correlations in the system. Hence, the differences between ⟨Σx

[
ρCCSD

]
⟩ and ⟨Σx [ρ

m]⟩ reveal
the effect of electron correlations beyond mean-field’s one-electron density matrix. As for ref-
erence, we supply the figure with the expectation value of the exact-exchange with ρCCSD and
the corresponding Dyson orbitals ψd in the bra-ket,

〈
ψd|Σx

[
ρCCSD

]
|ψd

〉
(solid lines).

An overall view of Figure 4.14a-c indicates all exchange energies are overestimated with
respect to the reference. One finds that ⟨Σx⟩ for σ2p, π2p, and π∗

2p orbitals within the DFT
solutions are overestimated with a mean error of 0.54, 1.22, and 0.66 eV while the UHF solution
leads to an error of 0.53, 1.86, and 1.2 eV, respectively. Such large deviations, particularly for
π-type orbitals, directly reflect the origin of the incorrect spectra at the UHF level, shown in
4.13. Actual numbers are outlined in Table 4.8.

It is also interesting to compare ⟨Σx⟩ which are computed by mean-field orbitals using ρm
and ρCCSD density matrices. As already mentioned, this helps to gain insight into the role of
the density matrix in the observed deviations with respect to the reference. Results show that
applying the CCSD density matrix notably improves the computed exchange energies in the
case of the σ2p orbital. This indeed indicates that UHF orbital in this case provides a fairly good
approximation to the exact Dyson orbital. On the contrary, using the CCSD density matrix
does not result in a considerable enhancement in the estimation of exchange energies of π-type
orbitals, for example see the bonding π2p state computed by the UHF orbital. Such substantial
deviations with respect to the reference address to the poor quality of the mean-field solutions
to the π-type orbitals.

In panel d of Figure 4.14, we show the diagonal expectation values of the dynamic cor-
relation part of the G0W0 self-energy ⟨ψm|Σc(ε)|ψm⟩. The reference values are obtained by
subtracting the Dyson orbital energies in the last column of Table 4.7 from the expectation
value of the Fock operator

〈
ψd|F

[
ρCCSD

]
|ψd

〉
for each orbital14. At first glance, it is clear that

the correlation energies attributed to π2p-type orbitals are higher than σ2p. This can be ascribed
to the larger extension and polarizability of the π2p orbitals. Notice that the G0W0 provides
rather higher correlation energy for π2p (HOMO–1) as compared to the π∗

2p (HOMO). Adding
these positive correlation energies pulls up π-type orbital energies in the spectra, leading to
more accurate energies associated with the correct molecular orbital picture for hybrid orbitals,

14⟨F ⟩ =
〈
ψd|ĥ0 + VH[ρ

CCSD] + Σx[ρ
CCSD]|ψd

〉
.
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Figure 4.14: Expectation values of the G0W0 self-energy components; (a-c) Σx and (d) Σc

starting from different mean-field calculations for the three topmost occupied orbitals of the
triplet O2 molecule. Dotted lines are energies obtained using the corresponding mean-field
orbitals and density matrix. Dashed lines are obtained when the mean-field density matrix is
substituted for ρCCSD. Solid lines represent the reference values computed using ρCCSD and the
corresponding Dyson orbitals. All calculations are done using a cc-pVQZ basis set.

Table 4.8: Expectation values (eV) of the G0W0 self-energy components for the three majority-
spin topmost-occupied molecular orbitals of the O2 molecule similar to those plotted in Figure
4.14. Σx is computed using density-matrices of both ρm and ρCCSD.

Mean-field Orbital ⟨ψm|Σx [ρm] |ψm⟩
〈
ψm|Σx

[
ρCCSD]

|ψm
〉

⟨ψm|Σc(ε)|ψm⟩
σ2p -28.48 -28.04 0.41
π2p -30.50 -30.01 2.69UHF
π∗
2p -30.81 -30.21 1.73
σ2p -28.52 -28.11 0.67
π2p -29.85 -29.62 3.10CAM-B3LYP
π∗
2p -30.28 -30.01 1.84
σ2p -28.49 -28.10 0.73
π2p -29.87 -29.62 3.55PBE0
π∗
2p -30.24 -29.98 1.89
σ2p -28.49 -28.11 0.80

B3LYP π2p -29.87 -29.63 3.71
π∗
2p -30.28 -30.00 1.95
σ2p -28.48 -28.10 0.77
π2p -29.87 -29.62 3.76HSE06
π∗
2p -30.25 -29.98 1.93
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as shown in 4.13. In comparison with reference values, however, one sees that the correlation
energy of the π2p orbital is underestimated in direct relation to the fraction of exact exchange.
Therefore, among the studied hybrid functionals those with a higher fraction of long-range
exchange incorrectly provide smaller separation between σ2p and π2p, as shown in Figure 4.13.
This also explains the dramatic failure of the G0W0@UHF, where estimated correlation energy
for UHF-π2p orbital is drastically insufficient to provide the correct spectra.

Table 4.9: Reference values (eV) for the self-energy components of the triplet O2 molecule. The
reference exchange energies are computed using ρCCSD and the corresponding ψd in the bra-ket.
The reference values of Σc is obtained from subtracting the Fock energy ⟨F ⟩ from the Dyson
orbital energy εd.

Orbital ⟨Σx⟩ ⟨F ⟩ εd Σc = εd − ⟨F ⟩
σ2p -27.95 -20.02 -19.46 0.56
π2p -28.64 -21.76 -17.73 4.03
π∗
2p -29.61 -14.74 -12.55 2.19

4.6 Conclusion

We performed the one-shot GW approximation within the spin-diagonal formalism for open-
shell molecules. We benchmarked the G0W0-IEs of 42 neutral molecules, proposed in the G2/97
test set, against the ∆CCSD(T) results. As a result, we found that the statistical deviations
of the G0W0-IEs are comparable to those found for closed-shell molecules; so that, we could
confirm that the average performance ofG0W0 in dealing with open-shell molecules is reasonably
accurate. In particular, we found that G0W0 calculations on top of hybrid functionals, as the
optimal starting points, yield an MAE of 0.1—0.2 eV which is close to the MAEs obtained from
the correlated CISD and MP2 methods.

Additionally, we examined the quality of the G0W0 self-energy, constructed by different
mean-field solutions, by comparing the IE of neutral molecules with the EA of the correspond-
ing cation. We realized that the deviations between IEs and EA+s follows a systematic behavior
as a function of the content of exact exchange in the starting-point calculation. Among hybrid
functionals studied here, the range-separated CAM-B3LYP functional showed the smallest dis-
crepancy of 0.03 eV between the MAE of IE and MAE of EA+. For G0W0 calculations started
from the UHF, we found that the MAE is reduced from 0.55 eV to 0.4 eV when EA+ of the
cations are computed instead of the IEs of the neutral molecules.

We also discussed the capability of the GW approximation to provide the correct energy
sequence of the molecular orbitals. This capability is thoroughly discussed in the case of three
molecules, for which mean-field calculations fail to capture the correct ordering of the molecular
orbitals due to the systematic failures of approximate exchange-correlation functionals. Inter-
estingly, we found that G0W0 is able to recover the correct energy order of the frontier molecular
orbitals, thanks to its self-energy contents in terms of exchange and dynamical screening.

In the case of oxygen molecule, we inspected the role of the GW self-energy components in
the three topmost occupied orbitals. As a result, we quantified the overestimation of exchange
energies in these orbitals, particularly π orbitals, which is mitigated by the contribution of
dynamic correlation term, leading to the correct and fairly accurate energy order. Comparing
the expectation values of the self-energy components with the correlated CCSD reference, we
realized that errors in the exchange energy (usually overestimated in UHF and the studied
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hybrid functionals) and correlation energy (usually underestimated) show significant variation
for molecular orbitals with different symmetry, e.g., σ and π orbitals in the case of the O2

molecule.
Overall, we showed that G0W0 on top of the optimal starting point provides a systematic and

reasonably accurate method to compute the electron addition or removal energies for studied
small open-shell molecules. From the understanding offered in this work, one can explain the
errors that occurred at the mean-field level and their impact on the estimation of the IEs within
the G0W0. Results demonstrate that the average performance of G0W0 is sensible, while its
computational efficiency is favorable concerning the traditional correlated methods in quantum
chemistry.
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Chapter 5

Molecular Doping in the Organic
Semiconductor Diindenoperylene

5.1 Introduction

Organic semiconductors (OSCs) are widely used in optoelectronic devices [185–202]. Low-cost,
solution-processed synthesis, and favorable mechanical properties of OSCs offer an improved
performance compared with inorganic semiconductors [185–187]. Due to the localization of
charges in tightly bound states, however, the electrical conductivity of the pristine OSCs is
lower than their inorganic counterparts [185–188, 193]. This deficiency in OSCs can potentially
be remedied by controllable and effective molecular doping [186, 188, 190–193, 200]. A molecular
p-type doping, for instance, can result in a super linear increase in the conductivity and carrier
mobility of OSC hosts [185, 189, 193, 200, 203]. This is mainly ascribed to the formation
of new hybrid states at the band-edge of the doped OSCs, facilitating charge hopping from
host to dopant [185–187, 193]. Moreover, the symmetry breaking caused by the presence of a
molecular dopant within the OSC lattice can alter the electronic structure of the host, offering
the possibility to tune its optical properties [185–187, 189–193, 195, 196, 198–201]. This provides
a powerful tool for designing new doped OSCs with desired functionals.

Recently, strong organic acceptors like TCNQ (fluorinated tetracyanoquinodimethane) deriva-
tives have been investigated as dopants able to oxidize host OSCs such as pentacene [193, 204],
P3HT derivatives [192, 195, 200, 201], Spiro-TAD [205], or metal phthalocyanines [186, 190,
206, 207]. The design of these doped OSCs is usually motivated by the canonical condition on
the IE of the host and the EA of the dopant molecule IEhost ≤ EAdopant. In other words, the
LUMO of the dopant must be deep enough to withdraw an electron from the HOMO of the
host OSC molecules [88, 193, 208]. Such a favorable energy alignment of the frontier molecular
orbitals is expected to result in a partial or integer negative charging of the dopant molecules
[185, 193, 208, 209].

Although the energy level alignment outlined above is important, it is difficult to turn such
a simplistic picture into a general predictive recipe [185]. For instance, there are experimen-
tally confirmed doped OSCs with efficient charge transfer for which the energy levels of the
constituent molecules do not fulfill this condition [189, 210, 211]. The main factor that chal-
lenges the applicability of the simple level-alignment criterion is the profound impact that the
solid-state environment has on the charged excitation energies [88, 185, 193, 212, 213]. In a
recent study, it was shown that the EA of a molecular dopant within different host solids varies
up to 1 eV due to the inter-molecular electronic interactions and the long-range electrostatic
effects [88, 212]. The energetics of OSC films can also vary considerably with respect to the
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preparation conditions, packing density, and more importantly the molecular orientation of
samples grown on different substrates [193, 214, 215]. In such cases where the energy levels
of the isolated molecules cannot be used to accurately determine the efficiency of a particular
doping, computational modeling describing the full host-dopant complex is needed. Here, we
carry out such a study on the example of two p-type dopants within the diindenoperylene (DIP)
host crystal.

DIP has attracted attention because of its high stability against environmental influences,
highly ordered film forming on diverse substrates, and favourable exciton diffusion length
[197, 216, 217]. These features recommend DIP as a promising candidate in the context of
optoelectronics [194–197, 216–218]. The IE of DIP films with different molecular orientations is
determined to be 5.4–5.8 eV [214]. Previously, DIP has been successfully doped by F6TCNNQ
(2, 2′- perfluoro- naphthalene-2,6-diylidene dimalononitrile, also called F6-TNAP, EA = 5.37–
5.60 eV) [198, 205], forming a supra-molecular complex associated with ground-state charge
transfer [195, 196]. Here, we utilize ab initio methods to study the doping of crystalline DIP
with F6TCNNQ and discuss how the formation of hybridized states at the band-edge results
in the emergence of new optically excited states at energies below the pristine DIP adsorp-
tion onset, which agrees with the available experiment [195, 196]. Additionally, we consider a
different electron-accepting molecular dopant, F4TCNQ ( 2,3,5,6 -tetrafluoro-tetracyanoquino-
dimethane, EA = 5.08–5.24 eV) [210, 212]. For the latter, doping is not expected from a
simple energetic argument. We show that despite the energy mismatch, inter-molecular inter-
actions governing the doped crystal result in an effective p-type doping, associated with partial
ionization of F4TCNQ.

DFT and its time-dependent extension (TDDFT) have been extensively utilized for descrip-
tion of the electronic excitations in OSCs [186, 190–192, 194–199, 216]. Although this approach
is promising to describe the optical spectra of isolated molecules, with standard local and semi-
local functionals, TDDFT quantitatively fails to reproduce bound excitons in organic crystals
[9, 45, 89, 213, 219, 220]. Here, we alternatively use the MBPT, which is proven to be successful
in dealing with both isolated and extended systems on the same level of accuracy [213, 220].
Within MBPT, we use the GW approximation [69, 79] to quantitatively characterize charged
excitations. We complement our GW calculations with the solution of the BSE, accounting for
neutral excitations. As discussed in Chapter 2, BSE includes the essential long-range electron-
hole interactions to properly account for the bound excitons in solids, and thus, often yields
absorption spectra in good agreement with experiment [87, 89, 212, 213, 220].

In this chapter, after a brief review of the computational details as well as the model
geometry of the doped crystals in Section 5.2, we present and thoroughly discuss our results
in Sections 5.3–5.6. We begin by presenting the quasiparticle and absorption spectra of the
isolated DIP, F4TCNQ and F6TCNNQ molecules. Then, we extend our analysis to the solid-
state and compare our results for the pristine DIP crystal with available experiments. Finally,
we characterize the hybridized states within the quasiparticle band structure of F4TCNQ-
and F6TCNNQ-doped DIP crystals and discuss the consequences of doping in their optical
absorption spectra. Section 5.7 concludes the chapter.

5.2 Geometry Model and Computational Details

For the crystals, DFT calculations are performed using the Quantum Espresso package
[221] with the Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation [29] for the
exchange-correlation functional. We utilized norm-conserving pseudo-potentials with 2s and 2p
as valence, including scalar relativistic and core corrections [222]. Van der Waals interactions are
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taken into account via the Grimme-D3 atom-pairwise interaction potentials [223]. Convergence
of the ground-state total energy with respect to the Brillouin zone sampling and cutoff energy
for the plane-wave basis set is detailed in Appendix G.1.

The quasiparticle energies and the optical properties of the pristine and doped DIP crystals
are computed using the BerkeleyGW software suite [105]. The dielectric function ε(ω) and
self-energy Σ(ω) are calculated using a Monkhorst-Pack k -point mesh of 2 × 2 × 2. For the
Γ-point, a small wave vector displacement along z -axis was applied, avoiding the divergence of
the Coulomb potential. The frequency dependence of ε(ω) was treated within the generalized
Hybertsen–Louie PPM, discussed in Section 2.6.7. For the pristine DIP crystal, the number
of unoccupied bands and the screened Coulomb cutoff energy, used in the G0W0 calculations,
are simultaneously increased until the bandgap changes by less than 0.01 eV. For the doped
system, a less systematic study was performed to ensure convergence. The quasiparticle band
structure was determined by interpolation onto a k -path suggested by Ref. [224].

For the optical absorption and excitonic properties, the BSE was computed within TDA. For
pristine (doped) DIP crystal, the BSE (2.115) was expanded into 14 (12) valence and 14 (12)
conduction bands. Because electron-hole interactions are highly sensitive to the joint density of
states [1, 105], the electron-hole interaction in BSE kernel Ξ was interpolated from the initial
grid (2× 2× 2) to a finer (8× 8× 8) sampling of the Brillouin zone.

Gas-phase calculations are carried out by the all-electron Molgw code [118] using Dun-
ning’s correlation-consistent basis sets cc-pVQζ. The resolution-of-the-identity approximation
was applied. Due to the relatively cheaper cost of the gas-phase calculations, we computed the
G0W0 spectra for different mean-field solutions, to check the starting point dependence. For
all three molecules, the eigenvalue-only self-consistent GW (evGW ) scheme was also computed
(see Section 2.6.6). Optical absorption lines were computed using the evGW quasiparticle
energies.

– Geometry of pristine and doped DIP crystals: DIP can crystallize with diverse mo-
tifs [214, 218]. In this study, we consider the triclinic α-phase DIP adopted from the Cambridge
crystallographic data centre (space group P1, CCDC no. 642476) which has a herringbone-type
structure composed of the slipped parallel stacks of two twisted (S1) and two bent (S2) isomers
[225], as shown in Figure 5.1. This is the low-temperature structure with a favorable motif
for overlapping of π-orbitals, suggesting efficient charge carrier transfer [226, 227]. The results
presented here for pristine DIP are obtained for the experimental geometry [225]. However,
the analysis presented in Appendix G.2 indicates that the effects in the electronic structure
associated with the structural relaxation of the molecular coordinates are rather small.

The doped crystals studied here contain a single F4TCNQ or F6TCNNQ substituent within
the unit cell of crystalline DIP. Figure 5.2 illustrates the individual molecules along with the
model geometry of the doped crystal. To design the doped crystals, one of the twisted S1

DIP molecules has been replaced by the molecular dopant. We chose the substitution of an S1

isomer because this was found to be energetically more favorable. The atomic coordinates of
the dopant are optimized while keeping the lattice parameters fixed (to the experimental value
used for the pristine DIP), converging the total energy and forces to less than 10−4 eV and
0.001 eV/Å, respectively.

For gas-phase simulations, we extracted the molecular geometries from the doped crystals
without further relaxation. For DIP molecule, we computed the quasiparticle IE and EA of
both isomers in the gas phase to evaluate the energy levels’ dependence on the geometry of the
DIP molecules. Results, listed in Table 5.1, indicate that the differences of the orbital energies
for different isomers are insignificant, and therefore, further analyses in gas-phase calculations

109

https://www.ccdc.cam.ac.uk/structures/Search?Ccdcid=642476&DatabaseToSearch=Published


5.2. QUASIPARTICLE AND OPTICAL SPECTRA OF THE STUDIED MOLECULES ...

Figure 5.1: Molecular packing of DIP crystal, including two twisted (S1) and two bent (S2)
isomers within the unit cell. Lower panel shows the top view of two isomers and indicates some
characteristic lengths in Å.

were restricted to the S2 geometry. This choice corresponds to the most abundant geometry in
our doped crystals, as discussed above.

5.3 Quasiparticle and Optical Spectra of the Studied
molecules in the Gas-phase

5.3.1 Energy Level Alignment

In this subsection, we first consider the accuracy of the GW approximation for describing the
energetics of the isolated molecules. As shown in Chapter 4, the relative energies of molecular
frontier orbitals with σ and π character are rather sensitive to the type of functional used in the
starting mean-field calculation, particularly to the amount of the exact exchange. Therefore,
we first benchmark the spectra of the selected molecules as obtained from the G0W0 on top
of various DFT functionals, including both (semi-) local and hybrid functionals as well as the
evGW approach. Note that the evGW has been extensively used to accurately describe charged
excitation energies of molecules [84, 85, 87–89]. Therefore, we consider results obtained from
the evGW calculations as the reference to evaluate the quality of the G0W0 predictions. For
evGW calculations, the self-energy was initially constructed using the hybrid PBE0 solutions.
Later, the GW calculation was iterated, replacing the DFT eigen-energies by the quasiparticle
energies from the previous iteration and keeping the eigenfunctions fixed, following the workflow
shown in Figure 2.9, until the HOMO–LUMO gap is converged with an accuracy better than
0.01 eV.

Figure 5.3 (a-c) shows the quasiparticle density of states (DOS) computed for the three
studied molecules. The different DFT starting-points clearly introduce quantitative changes
in the energy of states composing the quasiparticle spectrum. For DIP molecule, the starting-
point modifies the gap Eg, so that, the predicted Eg at G0W0@PBE is smaller than that of
evGW by 0.6 eV when both HOMO and LUMO levels are shifted in opposite directions by
∼0.3 eV (see Table 5.1). The HOMO−1 and LUMO+1 orbital energies of DIP molecule show a
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Figure 5.2: Ball-and-stick models of (a) F4TCNQ, and (b) F6TCNNQ molecular dopants.
(c) Model geometry for molecular doping including the dopant molecule (either F4TCNQ or
F6TCNNQ) surrounded by neighboring DIP molecules as the host. Green, blue, brown, and
white balls represent F, N, C and H atoms, respectively.

higher variation, in which the quasiparticle energies at G0W0@PBE level differ from those of the
evGW by around 0.6 and -0.4 eV, respectively. We will return to this point as the consequence
of the starting-point dependence observed in Section 5.5.

For the two acceptors on the other hand, while the quasiparticle HOMO level shows a
maximum variation of 0.6 eV with respect to the DFT starting-point, the LUMO level is almost
unchanged. Notice that the energy position of the dopant’s LUMO is relevant for an effective
p-type molecular doping. Comparing the frontier orbital levels of both acceptor molecules, we
also find that the HOMO of F4TCNQ is somewhat lower than that of F6TCNNQ, resulting in
a wider gap for the former. Furthermore, the LUMO of F6TCNNQ is located slightly deeper
(200-250 meV) than F4TCNQ, making the former a stronger acceptor than the latter. This
agrees with recent photo-emission experiments showing that the LUMO of F6TCNNQ is 350
meV deeper than its F4TCNQ counterpart [205].

Figure 5.4 compares the LUMO position of the two acceptor molecules with the HOMO
of DIP, within evGW and G0W0 started from different mean-field solutions. These results
indicate a level alignment which is not favorable for p-type molecular doping. The sizable energy
mismatch of ∼2 eV between the DIP HOMO and the F4TCNQ/F6TCNNQ LUMO suggests a
small hybridization among frontier orbitals of the acceptor-donor complex and the lack of charge
transfer from DIP to the dopants. However, this is in contrast to the experimental evidence
showing that DIP can be efficiently doped by molecular F6TCNNQ [195, 196]. Although there is
no such direct experimental evidence for F4TCNQ, other OSCs with energy levels similar to DIP
were experimentally doped by F4TCNQ [211, 212]. Additionally, photo-emission spectroscopy
for thin-films of F4TCNQ (IE = 8.33, EA = 5.08-5.24 eV) [198, 210, 212], F6TCNNQ (IE=7.5-
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Figure 5.3: Quasiparticle DOS of three isolated molecules (a) DIP, (b) F4TCNQ and (c)
F6TCNNQ in a restricted energy window. Quasiparticle energies (occupied: red bars, un-
occupied: green bars) are obtained from the evGW and G0W0 starting from different DFT
functionals (e.g., @PBE stands for the G0W0 calculation started from PBE solution). Spectra
are broadened around quasiparticle energies by a Gaussian factor of 0.1 eV. Vertical axes are
given in an arbitrary unit.

Table 5.1: Frontier orbital energies of the DIP molecule (two different isomers) and the two
acceptor molecules used here as dopants, calculated at evGW and G0W0 on top of different
starting-points using a Gaussian cc-pVQζ basis set and the Molgw code [118]. The values in
parentheses correspond to the extrapolation to the complete basis set limit [228]. All values
are given in eV.

Molecule
G0W0@ evGWLDA PBE B3LYP PBE0 CAM-B3LYP

IE EA IE EA IE EA IE EA IE EA IE EA
DIP–S1 6.54 2.23 6.53 2.14 6.68 1.99 6.71 1.93 6.93 1.77 6.85 1.87

DIP–S2
6.54

(6.60)
2.22

(2.20)
6.52

(6.55)
2.13

(2.11)
6.68

(6.72)
1.98

(1.91)
6.71

(6.79)
1.92

(1.90)
6.93

(6.96)
1.77

(1.68) 6.86 1.86

F4TCNQ 9.21
(9.19)

4.64
(4.50)

9.08
(9.07)

4.51
(4.37)

9.44
(9.40)

4.52
(4.38)

9.49
(9.52)

4.48
(4.42)

9.79
(9.72)

4.44
(4.28) 9.65 4.48

F6TCNNQ 8.59
(8.56)

4.85
(4.74)

8.43
(8.43)

4.71
(4.61)

8.80
(8.77)

4.74
(4.63)

8.85
(8.88)

4.71
(4.68)

9.15
(9.07)

4.68
(4.55) 8.99 4.72
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7.8, EA=5.3-5.6) [195, 196, 198], and DIP (IE=5.4-5.8, EA=3.1-3.5) [214] suggest different
energetics than those computed for the isolated molecules. To gain a more realistic picture of
the dopability, therefore, it is crucial to focus on the molecular solids formed by the studied
molecules, taking into account the effects introduced by the crystalline environment.

Figure 5.4: Energy level alignment between the HOMO of the DIP molecule and the LUMO of
the molecular F4TCNQ and F6TCNNQ acceptors.

Figure 5.3 also delivers another message: the relative positions of the DIP HOMO and the
acceptors’ LUMO are less affected by the starting-point calculations. Figure 5.4 indeed indicates
that G0W0@PBE, for example, provides a difference between the energy levels comparable to
that obtained by G0W0 on top of hybrid PBE0 and B3LYP functionals. This holds true for
simulations of dimers consisting of one DIP and one dopant molecule, as shown in Appendix
G.4, where we show that the character of the frontier orbitals as well as the quasiparticle spectra
for G0W0@PBE calculations are quite similar to those of @PBE0 and @B3LYP calculations.
Thus, we select the semi-local PBE functional as the mean-field starting point for the following
solid-state calculations, since PBE is significantly more favorable than hybrid functionals in
terms of the computational cost.

5.3.2 Optical Absorption Spectra

Here, we turn our attention to the optical absorption spectra of the three studied molecules
in the gas phase. Computed spectra at the BSE–evGW level (blue lines) are illustrated in
Figure 5.5 along with the experimental absorbance in solution (black solid line) for comparison
[198, 219]. For all three studied molecules, the computed lowest bright excitation energy agrees
to 0.1 eV with the corresponding experimental onset. Moreover, the onsets of all spectra are
markedly red-shifted with respect to the quasiparticle Eg, indicating strong exciton binding
energies ϵb of 2.9, 2.5, and 2.4 eV for DIP, F4TCNQ, and F6TCNNQ, respectively.

In the energy range below 3 eV, the theoretical photo-absorption spectra of DIP features a
set of neutral excitations reaching a well-defined maximum at 2.28 eV (544 nm). This peak is
mostly due to a π − π∗ transition between HOMO and LUMO and agrees with other studies
[218, 229]. In this region, the experimental spectrum [219] displays three peaks, with the largest
peak at 2.3 eV (525 nm) in good agreement with our theory; although the two higher energy
peaks, which are associated with a vibronic progression [218, 219, 229], are not accounted for
in our calculations. At higher energies and below Eg, moreover, two major bright resonances at
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Figure 5.5: Optical absorption lines computed at the BSE-evGW level for the isolated (a) DIP,
(b) F4TCNQ, and (c) F6TCNNQ molecules in comparison with experiment (black solid line).
Computed spectra are averaged over the three Cartesian components. The quasiparticle gaps
Eg are extracted from the corresponding evGW calculations and indicated by black dotted
lines. Vertical axes are given in an arbitrary unit.

4.10 and 4.65 eV are computed, which are also in a good qualitative agreement with the given
experiment.

The first absorption lines of the F4TCNQ take place in the energy ranging from 2.5 to 4
eV (310–490 nm) with a maximum at 3.04 eV, governed by the transitions from HOMO and
HOMO−1 to LUMO. As compared with the solution absorbance [198] in Figure 5.5b, we find
the computed maximum is perfectly consistent with the experimental value of 2.98 eV (392
nm). Likewise, F6TCNNQ molecule in the visible region reveals absorption starting from 1.88
to 2.9 eV (430–660 nm), reaching its peak at 2.62 eV. The latter is blue-shifted with respect to
the given experimental maximum determined to be 2.44 eV [198]. However, an optical gap of
2.58 eV (480 nm) has been also reported by other researchers [205, 210], which agrees well with
our computed value.
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5.4 Optical and Electronic Properties of the Pris-
tine DIP Crystal

In the following, we first discuss the electronic band structure and DOS of pristine DIP crystal
obtained at the DFT-PBE and the G0W0@PBE levels. We show the GW -predicted transport
gap and DOS are remarkably consistent with the photo-emission data. Then, we present the
optical absorption spectrum, taking into account the excitonic effects, and compare our results
with the experiment.

The GW -predicted band structure of the DIP crystal is shown in Figure 5.6a. While DFT-
PBE (blue dotted curves) predicts an indirect gap of 1.30 eV, the G0W0 quasiparticle energies
(red solid curves) estimate an indirect gap (X→ Γ) of 2.33 eV and direct gap at the Γ-point
(X-point) of 2.38 (2.44) eV. Such an energy gap agrees well with the recent photo-emission
data, reporting an energy gap of 2.25-2.49 for DIP films composed of a different molecular
orientation grown in different temperature [214, 230]. Notably, the value of Eg of bulk DIP is
roughly halved with respect to the that of isolated molecule (G0W0@PBE: 4.39 eV) due to the
change of the dielectric screening upon crystallization, decreasing the excitation energies in the
solid.

Both conduction and valence bands consist of four sub-bands, arising from the existence
of four DIP molecules in the unit cell. Inter-molecular interactions among DIPs break the
degeneracy of the bands, and introduce a weak dispersion of about 0.35 eV for both valence
and conduction bands. Such a weak dispersion among the frontier bands indicates the low
electron mobility and heavy effective mass of electrons, which are typically undesirable features
of OSCs [185, 187, 202]. Similarly, four weakly dispersive sub-bands form the second valence
band, separated from the first by an energy gap of ∼0.2 eV. Such a small gap between the
first and second valence bands can enhance the optical absorption that might stem from the
subsequent inter-band transitions [231]. On the other hand, the second conduction band is
located between 3.8 and 4.9 eV with an energy separation of at least 1.2 eV with respect to the
first conduction band. Projected density of states (PDOS) confirms that the bands over the
energy range shown in Figure 5.6a are only derived from carbon p-states (see Appendix G.3).

To further understand the accuracy of the computed quasiparticle energies for crystalline
DIP, we compare the DOS obtained from the bulk quasiparticle band structure with the photoe-
mission and inverse photoemission spectra (PES/IPES) [214] in Figure 5.6b. In principle, PES
(IPES) can be directly compared with the DOS of occupied (unoccupied) levels. Nevertheless,
when comparing the bulk-calculated DOS with the PES/IPES spectra, which probes the surface
electronic structure, there may be a discrepancy due to the difference in screening and finite
temperature effects [199]. We follow an approach similar to Ref. [199] and align the first peak
of the PES (IPES) spectrum with the first DOS maximum in the valence (conduction) region.
Additionally, we broaden the DOS by a Gaussian factor of 0.1 eV to mimic the experimental
resolution. As a result, we find that the DOS agrees well with the photo-emission on either
side of the gap. Over an energy range of ∼2.5 eV below the valence band maximum (VBM),
the energies of the three main peaks observed in the PES differ from those of the computed
DOS by less than 0.15 eV. On the other side, the predicted second peak in the conducting
region deviates by 0.3 eV from the one observed in the IPES. These shifts reflect the over-
and under-estimation of the second valence band and the second conduction band, respectively.
This is probably originated from the starting point dependence, since it is consistent with our
finding from the DOS of an individual DIP molecule, shown in Figure 5.3a, where G0W0@PBE
spectra features an over- (under-)estimation of the HOMO−1 (LUMO+1) energy with respect
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Figure 5.6: (a) G0W0@PBE quasiparticle band structure of crystalline DIP (red curves). For
comparison, the DFT-PBE band structure (blue curves) is also plotted. (b) Corresponding DOS
together with the experimental data from Ref. [214]. The experimental PES/IPES spectra has
been aligned to the theoretical reference such that the position of the first observed peaks
matches those in the computed DOS. The zero of energy has been set to the VBM.
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to the reference (evGW spectrum).
Figure 5.7 displays the computed absorption spectrum of the DIP crystal along with the ex-

perimental measurement (solid black) [232]. Without electron-hole interactions (shaded gray),
there is an intense single peak in the visible window, corresponding to the transitions from the
two topmost valence bands to the conduction band. Including excitonic effects via the BSE
(shaded blue) reveals a broader and red-shifted structure in this region. This indeed indicates
the strength of the excitonic effect, with predicted binding energy of 0.4 eV.

The onset of the BSE spectrum falls at 2.04 eV stemming from the direct π-π⋆ transitions
between HOMO and LUMO of DIP molecules, in excellent agreement with the given experiment
[232]. More recently, similar values of 2.15 and 2.23 eV were also measured by differential
reflectance spectroscopy [218] and the ultra-fast femtosecond laser [197], respectively. Within
the optical window, the BSE spectrum exhibits a broad peak around transport gap energy
(green dashed line) followed by a higher shoulder at about 2.8 eV. Experimentally, there is a
large peak around 2.8 eV, with three sharp modes features at 2.25, 2.48, and 2.6 eV [232] that
have been attributed to a vibronic progression [194, 219, 232]. Given the number of excited-
states predicted at these lower energies, our calculations would suggest these side bands are a
mixture of electronic excitations and electron-phonon coupling. It has been proposed that the
peak at 2.8 eV stems from a coupling between Frenkel and charge transfer excitations of higher
transitions [218, 229, 232], which does not take place in the spectrum of an isolated DIP molecule
[194, 219, 232], as shown in Figure 5.5a. Thus, it implies that GW/BSE method successfully
captures this specific many-body feature of the solid DIP environment. Another consequences
of the solid environment is that the computed spectrum for crystalline DIP appears red-shifted
by 0.2 (0.5) eV with respect to the onset (peak) of the isolated DIP molecule, given in Figure
5.5a. This is to be expected due to increased screening in the solid phase and in agreement
with experiment [218]. In the energy range of 250-380 nm, moreover, the BSE estimates a
set of transitions resulting in the three peaks at 3.42, 4.05, and 4.52 eV. In the absence of
corresponding experimental data over this energy range it is difficult to judge the quality of
these peaks. However, absorbance spectrum for DIP in solution, shown in Figure (5.5)a, features
a qualitatively similar optical structure at this energy range.

5.5 Electronic Structure of Doped DIP Crystals

Panels of Figure 5.8 depict the GW -predicted band structures of a DIP crystal substitutionally
doped by either F4TCNQ or F6TCNNQ molecule (one of the four molecules in the unit cell is
substituted). For each panel, the right-hand side frames illustrate the spatial distribution of a
few selected orbitals of the initial PBE calculation. In order to check the influence of possible
delocalization errors in this PBE starting-point calculation, the character and distribution of
these frontier orbitals were compared to those obtained from PBE0, showing a qualitatively
similar character (see Appendix G.4).

For both doped system, GW calculations indicate a direct Γ-point gap of ∼1.8 eV which is
about 0.5 eV smaller than that of pristine DIP (2.33 eV). The band gap narrowing arises from
the formation of new hybridized states at the valence edge. As compared to the band structure
of pristine DIP in Figure 5.6, both doped crystals feature a discrete valence band including five
subbands while the two upper are separated from the lowers by an energy gap of 0.2-0.3 eV.
The PDOS on host and dopant atoms, given in Appendix G.3, determines that the two upper
subbands are mostly composed of DIPs’ carbon-2p atomic orbitals with a modest admixture
of carbon, nitrogen, and smaller contributions from fluorine 2p states of the dopant molecules
while the three lower subbands only originate from the host carbon atoms. Analogously, visu-
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Figure 5.7: Optical absorption spectrum of the pristine DIP crystal calculated at the G0W0

(gray shaded) and the BSE-TDA (blue solid) level, compared with the experiment (black solid).
To achieve comparability with experimental resolution, spectra are broadened with a Gaussian
factor of 0.1 eV. Red bars represent energy position of the excitons with remarkable oscillator
strength. Vertical axis was normalized such that the highest peak equals to one.

Figure 5.8: Quasiparticle G0W0@PBE band structure of DIP solid doped by (a) F4TCNQ
(b) F6TCNNQ. Discussed bands in the text are highlighted using thicker lines. The spatial
distribution of the selected orbitals at Γ-point are also illustrated. To visualize orbitals, an
isosurface cutoff of 10−3–10−4 electrons×Bohr−3 was applied.
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alization of the corresponding eigenstates demonstrates a supra-molecular hybrid character for
the valence band-edge whereas the lower subbands retain only the DIP character.

As the most obvious consequence of the molecular doping, a relatively flat mid-gap band
is created at about 0.4 (1.4) eV above (below) the VBM (conduction band minimum). This
is a typical characteristic of OSCs that acceptor levels are several tenths of eV above the
valence-band edge unlike inorganic semiconductors where the dopants are within a few meV
of the band edge and can be ionized thermally [189, 193, 212]. This unoccupied state in both
doped systems stems from hybridization between the HOMO of a host DIP molecule and the
dopant LUMO, where the contribution of the latter is dominant. The molecular-resolved PDOS
analysis confirms this assignment. In agreement with a recent study [193], therefore, it implies
this band is a charge transfer state dominated by the injection of positive charge (hole) from
the dopant into the host, leading to the formation of an empty anti-bonding supra-molecular
hybrid orbital.

The overall shape of the conduction bands for both doped systems is quite similar. The
first conduction band of both doped systems is composed of three discrete states with DIP
LUMO character. Further up in energy, the second conduction bands are lowered by ∼0.6
eV as compared to the pristine DIP. This downward shift partly stems from the existing new
hybridized states at the bottom of the second conduction band. For crystalline DIP doped by
F6TCNNQ, Figure 5.8b, a strongly localized band at the energy of 2.86 eV is also distinct, with
character associated with F6TCNNQ’s LUMO+1.

Figure 5.9: The G0W0 DOS of pristine DIP (shaded gray) versus two doped crystal, namely
F4TCNQ-doped DIP (brown solid) and F6TCNNQ-doped DIP (black solid). DOS spectra are
broadened by a Gaussian factor of 0.15 eV.

The partial transfer of electrons to the dopant molecules leaves delocalized holes in the DIP
frontier orbitals. As a result, one expects an enhancement of the conductivity in these doped
DIP crystal. In fact, such conductivity increase upon p-type doping of OSCs has been already
reported in several studies [185, 193, 198, 203, 212]. Furthermore, a comparison between the
DOS of the pristine and doped crystals, shown in Figure 5.9, indicates that the formation of
new hybrid states results in a broader DOS for the doped crystals. This additional broadening
is likely to translate in an increased hole mobility as compared to the pristine DIP crystal.

To quantify the doping-induced carriers, we performed a Bader charge population analysis
of the PBE ground-state calculations. Results indicate a donation of 0.49 and 0.59 e to the
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F4TCNQ and F6TCNNQ molecules, respectively, from the neighboring DIP molecules. Such
a partial ionization is consistent with values previously reported for other OSCs doped by the
same dopants [193, 212, 233]. Figure (5.10) reveals a color map representation of the atomic
charges of F4TCNQ and F6TCNNQ when inserted in the DIP solid.
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Figure 5.10: Charge population on atomic sites of dopants (a) F4TCNQ and (b) F6TCNNQ as
inserted within DIP crystal. Positive (negative) values in the color bar indicate the deficiency
(excess) of electrons in the atom.

5.6 F4TCNQ- and F6TCNNQ-Doped DIP Crystals: Opti-
cal Absorption Spectra

The hybridized electronic structure of doped DIP crystals, as discussed in the previous section,
gives rise to a broad optical absorption associated with the existence of multiple close-in-energy
bands. For both doped DIP crystals Figure 5.11 reveals the optical absorption spectra together
with that of the pristine DIP crystal for comparison. There are three regions in the optical
structure of both doped systems, labeled as P1 to P3.

In both F4TCNQ- and F6TCNNQ-doped systems, P1 covers a low-energy range from mid-
to near-infrared (NIR) spectral region, and is composed of transitions from the valence to
the mid-gap bands. Notably, with excitonic binding energies of ∼0.4 eV, the lowest bright
excitation peaks extend to low energies in the few tenths of meV range. Therefore, this implies
that excitonic effects are responsible for the thermal accessibility of the doping-induced levels.
This is essentially the expected trend of the OSCs as reported before for a doped pentacene
crystal [212]. According to our analysis of the band structure, the P1 peak has a strong charge-
transfer character between the dopant molecules and the neighboring host molecules for both
systems. Similar peaks, although at somewhat higher energies, have been observed in the
NIR region for DIP:F6TCNNQ 1:1 mixtures [196] and ascribed to charge-transfer excitations
between the DIP donor and the F6TCNNQ acceptor. The significant strength of the P1 peak,
in spite of its charge-transfer nature, is due to the appreciable hybridization between the LUMO
of the dopant molecules and the HOMO of the DIPs. In fact, the larger intensity of the P1 peak
for the F6TCNNQ doped system is probably due to the better energy level alignment between
the EA of F6TCNNQ and host DIP’s IE that leads to more efficient hybridization.

The P2 and P3 peaks for both doped systems fall at about 1.8 and 2.8 eV, respectively.
The lowest excitation in P2 region occurs at about 0.5 eV below the corresponding G0W0

gap, indicating a relatively strong exciton binding energy. As compared to the pristine DIP
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Figure 5.11: BSE-TDA calculations of the optical absorption of DIP crystal substitutionally
doped by either (left) F4TCNQ or (right) F6TCNNQ molecule. Blue bars represent energy
position of the excitons with remarkable oscillator strength. To facilitate comparison, the
optical absorption of pristine DIP (dashed red line) is also plotted. All spectra are broadened
with a Gaussian factor of 0.1 eV.

spectrum, P2 can be attributed to the band-gap narrowing in the doped crystals. Therefore,
allowed transitions in the P2 region mainly correspond to the excitations from the two hybridized
states in the valence band-edge to the conduction band. On the other hand, P3 resembles that of
pristine DIP spectrum in both peak position and intensity and arises from transitions between
lower-lying valence states, derived only from DIP’s molecular orbitals, and the conduction band.
The difference between the widths of the P3 peak for the doped crystals and that of the pristine
DIP crystal is due to the band-gap narrowing and the splitting of the hybridized states in the
valence band of the doped systems, i.e., some of the spectral weight of the original P3 feature for
pristine DIP is shifted to P2. Moreover, minor changes in the width of P3 between F4TCNQ-
and F6TCNNQ-doped DIP spectra mostly arise from allowed transitions to the single-band
above the first conduction band (at ∼2.8 eV) in the latter (see Figure 5.8).

To sum up, electronic hybridization among dopant and DIP orbitals has a key role in de-
termining the energy positions, widths and intensities of the different peaks appearing in the
optical absorption spectra of the doped DIP crystals. Particularly, the formation of hybridized
states in the valence band-edge of both doped systems leads to a considerable band-gap narrow-
ing. Such a reduction in the bandgap along with the larger width of the valence band should
improve the electron mobility and conductivity of the studied doped DIP crystals. More impor-
tantly, hybridized bands in the valence edge of the doped crystals provide new optically active
excitations with an onset at about 1.4 eV, which is lowered by about 0.6 eV with respect to the
optical gap of pristine DIP crystal. We also found new low-energy excitations, ranging from
mid to NIR region, which originate from transitions between host-dopant hybridized states,
forming a charge-transfer complex [190, 193, 195, 208]. All these findings are in line with those
reported by earlier studies of similar OSCs p-doped by either F6TCNNQ [198] or F4TCNQ
[211].
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5.7 Conclusion

We studied the electronic and optical properties of DIP in both isolated and extended phases
using ab initio GW -BSE methodology. Excellent agreement between our results and available
experiments gave us the confidence to simulate the molecular doping of DIP with two strong
acceptors, F4TCNQ and F6TCNNQ, using the same methodology. First, we showed that the
gas-phase calculations provide a dramatic mismatch between frontier orbital energies of isolated
molecules, prohibiting any energy overlap required for molecular doping. This is, however, at
odds with the available experimental information for several OSCs and points to the importance
of taking into account the condensed-phase environment. Therefore, we turned our attention
to the solid-state and designed two substitutionally doped DIP crystals. In this way we could
take into account the renormalization of molecular gaps and the excitonic binding energies
due to the larger screening in the solid and, even more importantly, the effect associated with
the hybridization between molecular orbitals of host and dopant molecules. Only taking all
these ingredients into account it is possible to identify the salient features of an efficient p-type
molecular doping in the systems studied here.

The formation of new host-dopant hybrid states at the valence edge leads to a significant
bandgap narrowing and, as a consequence, to the appearance of optically active transitions well
below the onset of the DIP pristine crystal optical absorption. Furthermore, in the quasiparticle
band structure of both doped systems we found a hybridized mid-gap band that gives rise to
optically active transitions well within the near- and mid-infrared regions and facilitates inter-
molecular charge hopping. All this makes the proposed doped systems very interesting for
optoelectronic applications.

Interestingly, our study shows that, in spite of the less favorable (compare to F6TCNNQ)
energy alignment of its LUMO with respect to the DIP’s HOMO in the gas phase, F4TCNQ
can be expected to be an effective p-type dopant for DIP. This confirms that the information
obtained from the isolated molecules is not sufficient to determine relevant dopant-host combi-
nations. Our results indicate that the interaction and hybridization with the host environment,
including many-body effects, must be carefully considered in order to successfully identify ap-
propriate molecular dopants for a given OSC. This opens up new opportunities to find systems
with relevant properties for optoelectronic applications.
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Chapter 6

Conclusion

The present doctoral thesis aimed to demonstrate and assess the capability of the many-body
perturbation theory (MBPT) approaches to describe the electronic structure and optical prop-
erties of molecular systems, in both gas-phase and solid-state. Within MBPT, we employed the
Green’s function methods which are widely used to make an accurate description of the under-
lying physical process. In particular, we utilized the so-called GW approximation to describe
single-electron-like electronic excitations (corresponding to the removal/addition of electrons
to the system), and the Bethe-Salpeter equation to describe neutral electronic excitations in-
cluding the effect of electron-hole interaction.

We developed our own iterative implementation of the one-shot GW approach, which is able
to deal with relatively large systems with limited computational power. This implementation
makes use of a highly localized basis of numerical atomic orbitals to describe single-electron
wavefunctions along with an auxiliary dominant (atom-centered) product basis to represent
orbital products most efficiently.Additionally, a considerable advantage of the implemented
approach stems from the iterative schemes to compute the polarizability and the screened
interaction. Briefly, the central algorithms of this implementation are as follows:

• Exploiting at its maximum the inherent sparsity associated with the use of a basis set of
localized numerical atomic orbitals is a central issue. Therefore, several algorithms are
developed to compute/store the product bases in different compressed formats to be used
in the computation of the quantities such as the Fock operator, the polarizability, and
the screened interaction matrices.

• An important ingredient is the iterative calculation of the dynamical polarizability with-
out explicit storage of the whole matrix. While computing the full matrix elements of
the polarizability χ0(ω) is memory demanding, particularly for systems where atoms are
highly coordinated (e.g., 3D crystals), the proposed algorithm conducts the required op-
eration in an iterative scheme with a considerable saving in the memory requirement.

• An iterative scheme to solve the linear equation of the frequency-dependent electron-
hole matrix elements of the screened interaction I(ω) using the Krylov sub-spaces, which
precludes the explicit storage and inversion of the dielectric kernel.

We use the contour deformation technique for the required frequency integration to evaluate
the self-energy and to compute the GW correction via an iterative solution to the quasiparticle
equation. Applying the algorithms developed in this thesis, we first validated our numerical
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implementation and then demonstrated the capability of the iterative implementation to com-
pute the quasiparticle energies of some relatively large systems such as buckyball C180, C260,
C320 fullerenes and two large graphene islands.

The second project described in this thesis is an assessment of the performance of the GW
approximation, in comparison to a number of high-quality quantum chemistry methods, to
describe charged excitations for a set of open-shell molecules. While the performance of GW
has been thoroughly tested in recent years for closed-shell molecules, much less was known in the
case of open-shell molecules prior to the systematic study presented in this dissertation. Starting
from different unrestricted mean-field calculations on a spin-diagonal basis, we benchmarked
the ionization energies of 42 neutral molecules obtained from G0W0 calculations and compared
these results with a ∆CCSD(T) reference. As a result, we found that the statistical deviations
of the ionization energies computed at the G0W0 level are comparable to those previously
reported for closed-shell molecules. More importantly, we discussed the undesired starting-
point dependency within the G0W0 approach, as an accuracy-limiting factor. Remarkably, the
ionization energies obtained from the G0W0 correction on top of Kohn-Sham calculations using
standard hybrid functionals lie within a few tenths of an electronvolt from the coupled-cluster
reference or the experimental observation. In fact, we obtained a mean-absolute error (MAE)
of 0.1–0.2 eV with respect to the ∆CCSD(T) reference, which is comparable to MAEs obtained
from CISD and MP2 methods. All this demonstrates that the average performance of the
G0W0 is reasonably accurate for the open-shell systems studied here, while its computational
efficiency is favorable as compared to traditional correlated methods in quantum chemistry.

As a stringent test for the approximated exchange-correlation self-energy in the G0W0 cal-
culation, we examined the differences between the ionization energies of the neutral molecules
and the electron affinities of the corresponding cations. We realized that the deviation between
these two quantities follows a systematic behavior as a function of the content of the exact
exchange in the starting-point calculation. Among the hybrid functionals studied here, results
obtained from the range-separated CAM-B3LYP functional showed the smallest discrepancy
in this test. For G0W0 calculations started from the UHF, we also found that computing the
electron affinity of the cations on average leads to a better agreement with the ∆CCSD(T) ref-
erence when compared to ionization energy of the neutral molecules. We ascribed this apparent
improvement to the overestimation of the exchange role in UHF, giving rise to large ionization
energies.

We also discussed the capability of the GW approximation to provide the correct energy
sequence of the molecular orbitals. This capability is thoroughly discussed in the case of three
molecules, for which mean-field calculations fail to capture the correct ordering of the molecular
orbitals due to the systematic failures of approximate exchange-correlation functionals. Inter-
estingly, we found that the energy order of the frontier molecular orbitals are recovered by G0W0

correction, thanks to its self-energy contents in terms of exchange and dynamical screening. To
gain a better understating of the latter, we inspected the role of the GW self-energy compo-
nents in the three topmost occupied orbitals of the triplet oxygen molecule. Comparing with
coupled-cluster reference data, we quantified the overestimation of exchange energies in these
orbitals, particularly π orbitals, which is mitigated by the contribution of the dynamical corre-
lation term, leading to the correct and fairly accurate energy order. Furthermore, we showed
how errors in the exchange energy and the correlation energy significantly vary for molecular
orbitals with different characters. From the understanding offered in this analysis, one can ex-
plain the errors that occurred at the mean-field level and their impact on the G0W0-predicted
ionization energies.

In the last contribution described in this thesis, we studied the electronic structure and
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optical properties of a few molecular systems in both isolated and extended phases using the
ab initio GW -BSE methodology. The studied molecular systems are the subject of interest for
molecular doping purposes. Therefore, we investigated the p-type doping of the donor DIP crys-
tal with two recently proposed electron-accepting dopants, namely F4TCNQ and F6TCNNQ.
We began our study by presenting the quasiparticle and absorption spectra of the isolated
molecules. The results compare well with the available experimental information in the gas-
phase. However, based on these free-standing molecule calculations, we found that the energy
mismatch between the donor and acceptor levels is too large to expect an effective doping of
DIP neither by F4TCNQ nor by F6TCNNQ. This contradicts the hints from the available ex-
perimental information, and points to the crucial need to include the effects introduced by the
condensed-phase environment. Thus, we extend our analysis to the solid-state and compare
our results for the pristine crystals with available experiments.

For the pristine DIP crystal, in particular, the quasiparticle band structure obtained from
the GW approximation results in a transport gap in excellent agreement with photo-emission
spectroscopy data. Likewise, the optical absorption spectrum and optical gap obtained from
the solution of the Bethe-Salpeter equation are found consistent with available experimental
data. Reaching such accurate results, we then simulated the electronic structure and optical
properties of DIP crystal substitutionally doped by either F4TCNQ or F6TCNNQ molecules
using the same methodology.

For both p-doped DIP crystals, we found a significant bandgap narrowing due to the for-
mation of new host-dopant hybrid states at the valence edge. As a direct consequence, the
optical absorption spectrum of both doped crystals features a set of new optically active tran-
sitions in the visible energy window, considerably below the onset of the pristine DIP’s optical
absorption. Additionally, the quasiparticle band structures in both systems show a hybridized
mid-gap band that can potentially facilitate inter-molecular charge hopping. The appearance
of this mid-gap band gives rise to optically active transitions within the near- and mid-infrared
regions. Considering all these features, we finally proposed the doped systems as potential
candidates for optoelectronic applications. From the perspective of optoelectronic applications,
this simulation serves as a highly relevant model system opening a new window toward a number
of dopant-host candidates that can offer improved performance.
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Appendices

A A Complement to the Proof of Hohenberg and Kohn
Theorem

For the first theorem, there is no practical expression proving the one-to-one correspondence
between Vext and density. Indeed, the proof is basically given by argumentum ad absurdum,
meaning that the opposite scenario would lead to contradiction.

LEMMA: Let’s begin with two local potentials ϕ1(r) and ϕ2(r), so that, the corresponding
ground-state wavefunctions Ψ1 and Ψ2 must be different except if the potentials are either
identical everywhere or they differ only by a shift.1

For each configuration of electrons, the difference between the corresponding Schrödinger
equations becomes {

N∑
i=1

[ϕ1(ri)− ϕ2(ri)] + ∆E

}
Ψ(r1, r2, ..., rN) = 0,

where, for fix positions of electrons corresponding to the indices from 2 to N , the difference
between ϕ1(r1) and ϕ2(r1) equals to a constant in space. Now, let us imagine that Ψ1 is the
(or one of the) ground-state wavefunction(s) of Hamiltonian H1, associated with the energy
E1 = ⟨ψ1 |H1|ψ1⟩ and charge density n1(r). Analogously, Ψ2 corresponds to H2 with E2 and
n2(r). According to the variational principle, therefore,

E1 = ⟨ψ1 |H1|ψ1⟩ < ⟨ψ2 |H1|ψ2⟩ , (APP-1)

holds true; since ψ2 cannot be the ground-state wavefunction of H1, as the given precondi-
tion. One can express the difference between two Hamiltonians by the difference between the
corresponding one-electron local potential ϕ1(r) and ϕ2(r) as

⟨ψ2 | H1 | ψ2⟩ = ⟨ψ2 | H2 | ψ2⟩︸ ︷︷ ︸
E2

+ ⟨ψ2 | H1 −H2 | ψ2⟩︸ ︷︷ ︸∫
[ϕ1(r)−ϕ2(r)]n2(r)dr

. (APP-2)

By interchanging 1 and 2, one similarly arrives at an expression for ⟨ψ1 | H2 | ψ1⟩. Combination
Equations (APP-1) and (APP-2) yields

E1 < E2 +

∫
[ϕ1(r)− ϕ2(r)]n2(r) dr

E2 < E1 +

∫
[ϕ2(r)− ϕ1(r)]n1(r) dr

(APP-3)

Adding the two inequalities in the equation above leads to
1the ground-state wavefunctions Ψ can or cannot be degenerate.
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0 <

∫
[ϕ1(r)− ϕ2(r)] [n1(r)− n2(r)] dr

Considering n1(r) = n2(r) leads to an obvious wrong result of 0 < 0. Hence, it proves that two
different potentials which differ by a constant leads to the same non-degenerate ground-state
charge density. In other words, the charge density uniquely defines the external potential up
to a constant.

As for the second theorem, if one fixes the arbitrary constant for the external potential 2, the
total energy can be also expressed as a functional of the charge density: E = ⟨ψ |H|ψ⟩ = E[n],
which can be easily proven by means of the variational principle as

E = min
ψ

{⟨ψ|Ĥ|ψ⟩},

= min
n

{
min
ψ→n

{⟨ψ|Ĥ|ψ⟩}
}
,

= min
n

{
min
ψ→n

{〈
ψ

∣∣∣∣∣T̂e + V̂ee +
Ne∑
i=1

Vext (ri)

∣∣∣∣∣ψ
〉}}

,

= min
n

{
min
ψ→n

{〈
ψ
∣∣∣T̂e + V̂ee

∣∣∣ψ〉}+

∫
n(r)Vext(r)dr

}
,

= min
n

{
F [n] +

∫
n(r)Vext(r)dr

}
.

In the last equality, F [n] is the universal functional of the density, since both kinetic T̂e and
interaction V̂ee energies are explicit functionals of n(r), as described within the main-text.

2For instance, one can imagine that the potential reaches zero when the distance extends to infinity.
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B Derivation and Approximations of the Kernel within
the Bethe-Salpeter Formalism

In principle, the kernel Ξ in Equation (2.80) can be split into two terms

Ξ(3, 5; 4, 6) =
∂VH(3, 4)

∂G(5, 6)
+
∂Σ(3, 4)

∂G(5, 6)
, = ΞH + Ξxc, (APP-4)

where ΞH accounts for motion of two particles interacting via the Hartree potential, and Ξxc

includes all interactions beyond ΞH. Considering the complexity within the Ξxc, including
the self-energy, one needs to approximate this term. Within the roughest approximation, one
totally neglects the self-energy (Ξxc = 0) which reduces the BSE formalism to a time-dependent
Hartree approach

LTDH(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′) +

∫
G(1, 4)G(4, 1′) [−ivc(4, 6)]L(6, 2; 6, 2′) d46, (APP-5)

which can be recast into the Dyson-like equation below in terms of 2-point polarizability

χTDH(1, 2) = P (1, 2) + P (1, 4) vc(4, 6) χ
TDH(6, 2).

In the equation above, P is nothing else than the already introduced RPA-approximated non-
interacting polarizability in Equation (2.94).

To go beyond RPA, one might add the bare exchange part of the self-energy, Σx = iG(1, 2)vc(1, 2),
in construction of the kernel in Equation (APP-4), which yields

ΞHF(3, 5; 4, 6) = −iδ(3, 4)δ(5, 6) vc(3, 5) + iδ(3, 5)δ(4, 6) vc(3, 4).

As a result, the Bethe-Salpeter equation is now contracted to a time-dependent Hartree-Fock
approach

LTDHF(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′)

+

∫
G(1, 4)G(4, 1′) [−ivc(4, 6)] LTDHF(6, 2; 6, 2′) d46

+

∫
G(1, 5)G(6, 1′) [−ivc(5, 6)] LTDHF(6, 2; 5, 2′) d56.

(APP-6)

Within the above equation, the first term embodies the independent motion of an electron
and a hole while the second term represents the classical Hartree contribution and the last term
consists the Fock exchange interaction between excited electron and the hole. Note that the
correlation effects between pairs are entirely omitted. In contrast to Equation (APP-5), it is
worth noting that Equation (APP-6) can not be contracted to the 2-point quantities, and the
exchange term enforces a true four-point quantity. As a consequence, one can readily find that
adding interactions beyond Hartree term ΞH enforces a detour over the four-point formalism.

Now, let us insert the GW self-energy in Equation (APP-4). By doing so, the kernel now
reads

ΞGW (3, 5; 4, 6) =− iδ(3, 4)δ(5, 6) vc(3, 5) + i
∂G(3, 4)W (3, 4)

∂G(5, 6)
,

=− iδ(3, 4)δ(5, 6) vc(3, 5) + iδ(3, 5)δ(4, 6)W (3, 4),

(APP-7)
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where in the second line we neglect the variation of the screening upon the excitation, namely
∂W/∂G is set to zero. Inserting the GW kernel (APP-7) in the Bethe-Salpeter equation leads
to

LGW (1, 2; 1′, 2′) = G (1, 2′)G (2, 1′)

+

∫
G(1, 3)G (4, 1′) [iδ(3, 5)δ(4, 6)W (3, 4)

− iδ(3, 4)δ(5, 6)v(3, 5)] LGW (6, 2; 5, 2′) d3456,

= G (1, 2′)G (2, 1′)

+ i

∫
G(1, 5)G (6, 1′)W (5, 6) LGW (6, 2; 5, 2′) d56

− i

∫
G(1, 4)G (4, 1′) vc(4, 6) L

GW (6, 2; 6, 2′) d46.

(APP-8)

Comparison between the expression above and that of Equation (APP-6), one readily finds
that a time-dependent screened Coulomb potential W enters the equation giving rise to an
attractive interaction between the charge densities of an electron and a hole. As a result, the
motion of two particles is indeed correlated by Hartree interaction plus a screened dynamical
exchange contribution.

It is worth mentioning the formalism of L within TDDFT formalism. Here, the functional
derivative of the exchange-correlation potential is fxc(r1, r2, ω) (see Equation 2.29). Using fxc to
represent the role of the derivative of the self-energy in Ξxc (2.25), the Bethe-Salpeter equation
becomes [1]

LTDDFT(1, 2; 1′, 2′) = LKS
0 (1, 2; 1′, 2′) + LKS

0 (1, 3; 1′, 3′)δ(3, 3′)δ(4, 4′)

× (−i) [vc(3, 4) + fxc(3, 4)] LTDDFT(4, 2; 4′, 2′),
(APP-9)

where LKS
0 (1, 2; 1′, 2′) = GKS(1, 2′) GKS(2, 1′). Note that here L0 involves with Kohn-Sham

Green’s functions instead of the dressed G used in Equation (APP-8). A comparison between
the expression of LTDDFT (APP-9) and that of LGW (APP-8) shows the main difference in
terms of the interactions: while the LGW includes direct interaction between an electron and
a hole (monopole), in the LTDDFT there is not such a direct interaction with a structure like
W . In fact, the kernel [vc(3, 4) + fxc(3, 4)] reckons the dipole–dipole interactions in the same
way that appears in the vc. Therefore, it is challenging to propose TDDFT functionals that
precisely describe charge-transfer excitations where the occupied and unoccupied states do
overlap slightly, and therefore, the dipole is too weak.

Fourier transformation to frequency space: within Equation (APP-8), the Coulomb
potential vc is instantaneous, and Green’s functions intrinsically depend on time differences.
Despite this L is a four-point quantity and basically it depends on four time arguments. As-
suming translational time invariance within L while the propagation of the electron-hole pair is
isochronous, i.e. L(1234) = L(t1−t4; t2−t3), where t1 = t3 and t2−t4, one can contract the four
time arguments of L to a single one which ultimately allows a straightforward Fourier trans-
formation to the frequency space. Given this plus an static approximation to the dynamically
screened interaction

W (1, 2) ≈ Wstatic(x1, x2) δ(t1 − t2),

we eventually arrive at

L(ω) = L0(ω)− iL0(ω)L(ω)vc(x3, x4) + iL0(ω)L(ω)Wstatic(x3, x4),
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or

L(x1x2;x
′
1x

′
2;ω) = L0(x1x2;x

′
1x

′
2;ω) + L0(x1x4;x

′
1x3;ω) Ξ(x3x4;x5x6) L(x6x2;x5x

′
2;ω),
(APP-10)

where

L0(x1x2;x
′
1x

′
2;ω) =

1

2π

∫
G(x1x

′
2;ω + ω′)G(x2x

′
1;ω

′) dω′,

Ξ(x3x4;x5x6) = i δ(x5, x3) δ(x6, x4)Wstatic(x3x4)− iδ(x3, x4) δ(x5, x6)vc(x3x5).

The effective two-particle problem: It is more convenient to recast the Equation
(APP-10) into an effective eigenvalue problem, like what we discussed in transforming Dyson
equation to the quasiparticle equation. To do so, we start from an expression for L0 within
RPA, which reads

−iLRPA
0 (x1x2;x

′
1x

′
2;ω) =

∑
m,l

ψl (x1)ψm (x2)ψ
∗
m (x′1)ψ

∗
l (x

′
2)

ω − (εl − εm) + iη
− ψ∗

m (x′2)ψl (x2)ψ
∗
l (x

′
1)ψm (x1)

ω + (εl − εm)− iη
,

(APP-11)
where ψ and ε are the quasiparticle orbitals and energies (or solutions of a prior mean-field
calculation) for the occupied m and unoccupied l states. From the equation above, one sees it
is possible to work in transition space within a two-particle excitonic basis as follows:

ΦEXC
i (x1, x2) ≡

∑
n1n2

ci,n1n2 ψn1(x1)ψ
∗
n2
(x2), (APP-12)

where sum runs over all single-particle orbitals ψml within LRPA
0 , and ci represent the corre-

sponding coefficients within the basis functions. Transforming any four-point quantity to the
basis above becomes

A(x1x2;x3x4) =
∑

n1n2n3n4

ψn1(x1)ψ
∗
n2
(x2) A

n1n2n3n4 ψn3(x3)ψ
∗
n4
(x4),

with
An1n2n3n4 =

∫
ψn1(x1)ψ

∗
n2
(x2) A(x1x2;x3x4;ω) ψn3(x3)ψ

∗
n4
(x4) dx1x2x3x4.

Applying the transformation above to the Equation (APP-10), the Bethe-Salpeter equation
in the transition space reads

Ln1n2n3n4(ω) = Ln1n2n3n4
0 (ω) + Ln1n2n5n6

0 (ω) Ξn5n6n7n8 Ln7n8n3n4(ω),

or, alternatively in matrix notation it becomes

[L(ω)] = [L0(ω)] + [L0(ω)] [Ξ] [L(ω)] . (APP-13)

To recast the equation above into a form more convenient for contracting L to χ, namely
χ(1, 2) = −iL(1, 2; 1+, 2+), one only needs to multiply the equation above with a factor −i,
which yields

[−iL(ω)] = [−iL0(ω)] + [−iL0(ω)] [iΞ] [−iL(ω)] . (APP-14)
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So far, we only recast the Bethe-Salpeter equation into a matrix notation while our aim is
to find a two-particle eigenvalue problem. Recalling from the matrix representation of LRPA

0

in Equation (APP-11), we indeed find that the matrix
[
−iLRPA

0 (ω)
]

is diagonal in the basis
of (APP-11), i.e. n1 = n3 and n2 = n4. Further, only occupied ⇌ unoccupied transitions
contribute while occupied (unoccupied) to occupied (unoccupied) do not happen. This trend
can be seen in the following matrix representation:

[−iL0(ω)] =

(n1n2)(n3n4) →
↓

{mm}
{ll}
{ml}
{lm}

{mm} {ll} {ml} {lm}
0 0 0 0
0 0 0 0
0 0 −1

∆εn2n1−ω
0

0 0 0 1
∆εn2n1−ω


(APP-15)

where ∆εn2n1 = εn1 − εn2 . Introducing occupation factors fi(fm = 1, fl = 0), one can compress
the matrix representation above as

−iLn1n2n3n4
0 (ω) =

(fn2 − fn1)δ(n1, n3)δ(n2, n4)

∆εn2n1 − ω
,

where fn2 = fn1 retains zero elements on the diagonal. Introducing the matrix F which em-
bodies the nominator in the last equation, [−iL0(ω)] in Equation (APP-15) can be split into
two matrices below

[−iL0(ω)] =
[
−iL̃0(ω)

]
[F ], (APP-16)

with

[
−iL̃0(ω)

]
[F ] =

[
1

∆εn2n1−ω
0

0 1
∆εn2n1−ω

]
−1︷ ︸︸ ︷

(fn2 − fn1) 0
0 (fn2 − fn1)︸ ︷︷ ︸

1

 .
Since [−iL0(ω)] is a diagonal matrix (see (APP-15)), it is straightforward to show the inverse
of

[
−iL̃0(ω)

]
[
−iL̃0(ω)

]−1

=

[
∆εn2n1 0

0 ∆εn2n1

]
− ω

[
1 0
0 1

]
. (APP-17)

Having Equations (APP-16) and (APP-17), we can re-write the Bethe-Salpeter matrix equation
of (APP-13) as

[−iL(ω)] =
[[
−iL̃0(ω)

]−1

− [F ] [iΞ]

]−1

[F ] ,

= ( [H2p]− ωI )−1 [F ] ,

(APP-18)

where the frequency dependence has been singled out as compared to the former expression
(APP-13). As a result, we are now able to introduce a (non-Hermitian) frequency-independent
two-particle effective Hamiltonian H2p whose matrix representation is

[H2p] =

[
∆εlm 0
0 ∆εml

]
+

[
Ξml,ml Ξml,lm
−Ξlm,ml Ξlm,lm

]
=

[
[Hres]

[
Hcpl

]
−
[
Hcpl

]∗ − [Hres]∗

]
. (APP-19)
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Matrix [H2p] includes four terms: [Hres] known as the resonant part accounting for tran-
sitions from occupied to unoccupied states. [Hres]∗ which is an anti-resonant part considering
transitions from unoccupied to occupied and therefore it returns negative-frequency transitions.
The coupling terms

[
Hcpl

]
and −

[
Hcpl

]∗ that account for the coupling between the resonant and
the anti-resonant parts, and thus, they couple occupied to unoccupied, as well as, unoccupied
to occupied transitions. Within TDA, discussed in Section 2.4.3, these coupling contributions
in the Hamiltonian are omitted, resulting in a Hermitian block-diagonal matrix of [H2p]. For
such a Hamiltonian, one obtains the eigenvalues by diagonalizing the [Hres] block. Upon having
these eigenvalues, the same values with an opposite sign stand for − [Hres]∗ term.

Focusing on the resonant term of the [H2p], we can obtain the polarizability L(ω) for the
resonant block analogue to equation (APP-18)

[−iL(ω)] = ([Hres]− ωI )−1 [F ] . (APP-20)

Within the last expression, one needs to invert a matrix stemmed from four-point quantities
for each frequency ω. As a more convenient alternative, this problem can be recast into an
eigenvalue problem

[Hres] |As⟩ = Ωs |As⟩ , (APP-21)

where Ω and |λ⟩ are the eigenvalues and eigenvectors of [Hres].
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C Our implementation

Within Chapter 3, we presented direct and iterative implementations to calculate the proper-
ties of electronic excitations in finite systems using the one-shot GW approximation. These
algorithms are mostly written in Python programming language that allows us to employ a
quick and compact implementation of many numerical methods with the help of integrated
NumPy/SciPy libraries. To achieve a competitive speed in part of algorithms, some compu-
tationally intensive operations, such as those computing localized functions as a basis set to
represent the spatial degrees of freedom, are borrowed from the software package MBPT-LCAO
[132, 234] — a package in FORTRAN language introduced in the same group several years ago.
To make use of an extensive and efficient platform for quantum chemistry calculations, our
implementation was initially integrated into another open-source package of electronic struc-
ture — Python-based simulations of chemistry framework (Pyscf) [150, 235, 236]. The Pyscf
package provides a lightweight methodology development that can be used to simulate the prop-
erties of molecules, crystals in both ground and excited-state. This package covers a variety of
electronic structure methods, from Hartree-Fock to full configuration interaction, as well as an
implementation of the GW approximation exploiting GTO basis sets. Our implementation is
available in the development version of Pyscf, distributed over the GitHub platform, within
the branch of nao. In Ref. [44], a detailed guideline to clone the main Pyscf’s repository
and checkout the nao branch is given3. Upon successful installation of the Pyscf package, the
sub-directory nao corresponding to our codes is available in the root directory of the Pyscf
package while a sub-directory lib/nao gathers our Fortran scripts. Starting from a Python
shell, the module nao can be loaded by

1 from pyscf import nao

Recently, an independent version of our implementation has been released – Python numer-
ical atomic orbitals (Pynao) [237]. User documentation with an easy installation manual is
available at the homepage. Here, the user only installs our implementation and provides explicit
mean-field solutions obtained separately by other codes. As a matter of fact, the flexibility of
Python in data managing provides ease of extensibility to interface our implementation with
other software packages. In particular, the current code is able to read mean-field outputs given
by Siesta [115], Gpaw [238], and Pyscf [150] packages.

At the present time, Pynao is a package for computing electron excited-state properties of
finite systems based on MBPT, employing different ab initio methodology as follows:

• Linear-response TDDFT [44, 239]

• One-shot GW approximation

• Solvers of the Bethe-Salpeter equation [240]

During this Ph.D. project, we have established Python classes to carry out direct and
iterative GW calculations for molecules and clusters. A Hartree-Fock kernel has been also
developed in this code, which prepares mean-field solutions for the subsequent GW runs. A
few examples of Python inputs to run Pynao or Pyscf associated with nao module are given
in the following.

A simple example that employs the direct approach to compute the quasiparticle spectrum
of a benzene molecule is given in the following:

3See also https://github.com/cfm-mpc/pyscf
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1 from pyscf import gto, scf
2 from pyscf.nao import gw as gw_c
3

4 #Benzene (C6H6), D6h symm.
5 mol = gto.Mole()
6 mol.verbose = 3
7 mol.output = None
8 mol.atom = [
9 ["C", (-0.65830719, 0.61123287, -0.00800148)],

10 ["C", ( 0.73685281, 0.61123287, -0.00800148)],
11 ["C", ( 1.43439081, 1.81898387, -0.00800148)],
12 ["C", ( 0.73673681, 3.02749287, -0.00920048)],
13 ["C", (-0.65808819, 3.02741487, -0.00967948)],
14 ["C", (-1.35568919, 1.81920887, -0.00868348)],
15 ["H", (-1.20806619, -0.34108413, -0.00755148)],
16 ["H", ( 1.28636081, -0.34128013, -0.00668648)],
17 ["H", ( 2.53407081, 1.81906387, -0.00736748)],
18 ["H", ( 1.28693681, 3.97963587, -0.00925948)],
19 ["H", (-1.20821019, 3.97969587, -0.01063248)],
20 ["H", (-2.45529319, 1.81939187, -0.00886348)],]
21

22

23 mol.basis = {"H": 'ccpvqz',
24 "C": 'ccpvqz',}
25 mol.build()
26

27 mf = scf.RHF(mol)
28 mf.kernel()
29

30 gw = gw_c(mf = mf, gto = mol, nff_ia = 32, nocc = 6, nvrt = 6)
31 gw.kernel_gw()
32 gw.report()

Within the script above, we initially carry out a starting-point RHF calculation as im-
plemented within the Pyscf package. To do so, we import the PySCF’s objects gto, and
scf. The former is used to construct the object mol which requires two main keywords: the
geometry (in Cartesian format) and a choice of GTO basis-set. For the basis set, we selected
Dunning’s correlation consistent basis sets with quadruple-ζ. Mean-field solutions (orbitals and
eigen-energies) are requested by mf.kernel(). Later in the script, we use the imported gw class
which initializes NAOs and the product basis based on the preceding RHF calculation by given
mf = mf, gto = mol. Three other arguments of nff_ia=32, nocc=6, nvrt=6 determine the
number of points for the frequency grid along the imaginary axis and the number of occupied
and virtual states which are desired to be corrected by the G0W0 self-energy. Given nocc and
nvrt options, the final spectrum applies a rigid energy shift (scissor) for other states out of the
range of {nocc . . . nvrt}, to mimic the GW correction. The GW correction is requested in the
line 31 by gw.kernel_gw(), which delivers the quasiparticle energies. By adding gw.report()
flag at the end of the script, the code provides an extensive report, including quasiparticle
energies, mean-field energetics, the execution timings of main algorithms, choice of the other
variables used in the calculation, and so on. To visualize the quasiparticle spectrum, module
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plot_spectra is implemented that plots the quasiparticle energies using a Gaussian/Lorentzian
broadening. Figure APP-1 shows such a spectrum for the outputs of the script above.
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Figure APP-1: Quasiparticle spectrum computed at G0W0@HF level for Benzene (C6H6),
D6h symmetry.

To accomplish GW calculations involving large systems, one should use the iterative algo-
rithm as discussed in Section 3.5.2. A simple script to do so is shown below, where gw_iter
class is imported in the second line.

1 from pyscf import gto, scf
2 from pyscf.nao import gw_iter
3 import numpy as np
4

5 pos = "Path/to/C180.xyz/file/"
6 #available at https://nanotube.msu.edu/fullerene/fullerene-isomers.html
7

8 mol = gto.M(atom=pos, basis='ccpvdz',spin=0)
9 mf = scf.RHF(mol)

10 mf.kernel()
11

12 gw = gw_iter(mf=mf, gto=mol,
13 verbosity = 3,
14 niter_max_ev = 1000,
15 tol_ev = 1e-05,
16 nocc = 6, nvrt = 6,
17 nff_ia = 32,
18 write_R = True,
19 restart = False,
20 limited_nbnd= False,
21 use_initial_guess_ite_solver = True,
22 dtype= np.float32,
23 kmat_algo = "sm0_sum",
24 gw_xvx_algo="ac_blas",
25 krylov_solver="lgmres",
26 krylov_options={'tol': 1.0e-4, 'maxiter': 1e+06}
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27 )
28 gw.kernel_gw_iter()
29 gw.report()

Having RHF mean-field solutions, as asked in line 7-9, the gw_iter object takes some
arguments as follows:

• kmat_algo (String). Determines the algorithm for computing the dense table of Σx (3.6).
Available options are ’fci’, ’ac_vertex_fm’, ’dp_vertex_fm’, ’dp_vertex_loops_fm’,
’dp_vertex_loops_sm’, ’sm0_prd’, ’sm0_sum’ algorithms. While the three former work
for small-scale systems, ’sm0_sum’ is recommends to deal with large-scale problems. All
algorithms are gathered in m_kmat_den.py script.

• gw_xvx_algo (String). Determines the algorithm for computing the product vertices
among molecular orbitals, see Appendix D. Implemented algorithms are ’simple’,
’ac’, ’ac_blas’, ’dp’,’ac_sparse’, ’dp_coo’, ’dp_sparse’. The first four algo-
rithms perform the dense format of vertices and direct matrix-matrix multiplications
leading to the fast operations. The last four algorithms, on the other hand, employ the
sparse algebra and allow calculations of large systems, however, the computational cost to
get the sparse version of the atom-centered product can be time-consuming. Algorithms
are gathered in m_gw_xvx.py script.

• use_initial_guess_ite_solver (Boolean). Applying a starting guess for spanning the
Krylov sub-spaces. As said in Section 3.5, the converged solution of a former iteration
can be used as a guess in further iteration. Using this option, solvers often converge in
fewer iterations.

• krylov_solver (String). Determines currently assailable solvers in the Scipy library. For
instance: ’gmres’, ’bicgstab’, ’cgs’, ’gcrotmk’, and ’lgmres’. A benchmark on
the performance of different solvers is given in Appendix E.

• niter_max_ev (Integer). Sets the maximum number of quasiparticle cycles.

• tol_ev (Real), Sets the target threshold for the maximum difference in iterative solution
to the quasiparticle equation (3.16).

• write_R (Boolean). Stores matrix elements of I (3.15) in h5py format for a restart or
subsequent BSE calculation, for example.

• restart (Boolean). Reads the RESTART file.
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D Product Vertex Among Eigen-states

The product vertex between orbitals Υnm
µ (3.10) has been called in computing of many physical

quantities. The product vertex is a dense table that asymptotically takes O(N3) elements of
memory. To avoid memory depletion, we developed several implementations for this purpose.
Given expression (3.10), Υnm

µ requires the product of at least three matrices as follows:

• V ab
µ : product vertex coefficients, where a and b are the numbers of molecular orbitals and
µ is the basis size. As highlighted in Section 3.2, this matrix within the dominant product
basis is highly sparse, providing a possibility for a huge computational saving.

• Xn
a : LCAO expansion coefficients (3.1) as a dense matrix of size n× a. n represents the

number of states which are selected to be corrected within the operation. For algorithm
shown in Figure 3.7, we often store the table Υnm

µ for a few states on both sides of the gap
(see arguments of nocc and nvrt in Appendix C, determining the number of occupied
and virtual states which are desired to be corrected by the G0W0 self-energy).

• Xm
b : expansion coefficients as a square dense matrix for all molecular orbitals.

Note that employing the auxiliary atom-centered basis (3.4), adds another two-dimensional
sparse matrix of Cν

µ, expansion coefficients of the dominant products in terms of atom-centered
product functions, into the items above: V ab

µ = Ṽ ab
ν Cν

µ. Due to a higher sparsity in Ṽ ab
ν , this

factorization can lead to a lower number of mathematical operations, and thus, speeds up the
calculation.

A straightforward algorithm to compute Υnm
µ is sketched in Figure APP-2. Having vertex

coefficients V ab
µ , one computes its product with Xn

a , yielding another three-dimensional matrix
αnbµ . Using a loop running over the orbital index n, one then computes multiplication between
each block of αbµ and Xm

b . To achieve optimal performance, the matrix-matrix operations within
this step can be conducted through BLAS.DGEMM library, for example. This operation gives the
target Υnm

µ for each spin argument.

V ab
µ

Υσnm
µ = [ ]

for spin do

αnbµ = Xn
a V ab

µ

for all n do

Υ
[n]m
µ = α

[n]b
µ Xm

b

end for

Υσnm
µ .append (Υnm

µ )

end for

Figure APP-2: Basic algorithm to compute the product vertex among molecular orbitals.
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To take advantage of the sparsity of the dominant product basis, we used different repre-
sentations of vertex V ab

µ (or Ṽ ab
ν Cν

µ) in the compressed sparse row (CSR), compressed sparse
column (CSC), or coordinate list (COO) format. Using the sparse version of the product basis,
one can accomplish the sequence of operations in the algorithm above in the sparse algebra,
leading to a huge computational saving, particularly when one needs to deal with the Υnm

µ of
a large system. Depending on the system size, however, different sparse algebra might lead to
faster/slower operations. Therefore, an object self.gw_xvx_algo is designed in the gw_iter
class that allows the user to choose a suitable algorithm to extract vertex coefficients and
conduct different sparse algebra, returning Υnm

µ .
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E Krylov Solvers

As discussed in Section 3.5.2, the iterative approach to solve the linear algebra Equation (3.18)
is designed to employ the Krylov sub-spaces method. SciPy library [125] provides different it-
erative solvers to deal with typical linear algebra of x = A−1b. While the default solver is deter-
mined to be lgmres, other available choices can be requested by e.g. gw_iter.krylov_solver
= "bicgstab".
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Figure APP-3: Benchmark on the performance of different Krylov solvers for a test-set of
closed-shell molecules.

To evaluate the performance of different solvers, we benchmarked the execution time to
solve the linear algebra of Equation (3.18) for a test-set of closed-shell molecules. For such
relatively small molecules, results suggest that “bicgstab” solver achieves the approximate
solution slightly faster than other solvers (see Figure APP-3).

Note that solvers in general take some optional inputs that directly impact the accuracy of
the solution and the number of iteration to achieve convergence. The mains options are tol,
atol, determining the relative and absolute tolerances that must be exceeded for stopping the
cycle. In connection with the discussion in Section 3.5.1, the stopping criterion achieves when
the norm of residual ||r|| satisfies the following relation: ||r|| ≤ max(tol ×||b||, atol). Within
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our implementation, the user can request different values for these tolerances by adding the
keyword krylov_options into the input script. This flag reads a dictionary and by default is:
krylov_options = {’tol’: 1.0e-3, ’atol’: 1.0e-3}.
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F Ball-and-Stick Models of the Studied Fullerenes
and Graphene Islands

Figure APP-4: Ball-and-stick model of the studied finite systems in Chapter 3. The fullerene
geometries are based on the optimized structures given by Ref. [133]. For islands, atomic
coordinates are relaxed at the DFT-PBE level along with vdW correction. Brown and pink
balls represent C and H atoms, respectively.
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G Molecular Doping: Supplementary Material

G.1 Convergence Test for the Studied Molecular Crystals

– Mean-field calculations: We carefully studied the convergence of the ground-state total
energy with respect to both plane-wave cut-off, that controls the size of the basis set, and the
k-point mesh for sampling of the Brillouin zone. For the pristine DIP crystal, we find that a
plane-wave cut-off of 130 Ry and a k-point mesh of 2×2×2 provide reasonably well converged
results. In fact, such choices are sufficient to converge the total energy to less than 10−4 eV,
as shown in Figure APP-5. The same procedure has been repeated for pristine F4TCNQ
and F6TCNNQ crystals as well as the two doped crystals, i.e. F4TCNQ- and F6TCNNQ-DIP
crystals. Table APP-1 lists these converged parameters using for the final reported calculations.

Figure APP-5: The DFT-PBE total energy convergence with respect to the Brillouin zone
sampling (k-point) and the wavefunction cut-off for the pristine DIP crystal.

Table APP-1: Converged parameters used at the DFT-PBE level.

Crystal Wavefunction cut-off (Ry) k-mesh
DIP 130 2×2×2
F4TCNQ 140 8×8×8
F6TCNNQ 120 4×4×4
F4TCNQ:DIP 140 6×6×6
F6TCNNQ:DIP 140 6×6×6

– GW@PBE calculations: The GW methodology is computationally demanding. Such
calculations using the plane-wave bases additionally require stringently converged parameters.
Particularly, one needs to converge two interdependent parameters, namely, the number of

143



virtual bands and the energy cut-off for the dielectric matrix ϵ. Figure APP-6 shows the
changes of the fundamental bandgap (Eg) and the direct gap at Γ-point (Eg@Γ) of the DIP
crystal with respect to these parameters. We found that 1728 empty bands with an energy
cut-off of 20 Ry for the dielectric matrix are sufficient to converge both Eg and Eg@Γ-point
within 0.01 eV. Moreover, all calculations feature an indirect gap along the X→ Γ path in the
Brillouin zone.

Due to the lack of symmetry in the two studied doped crystals, their computational costs
are even more expensive. Therefore, we limited the convergence test only for the F6TCNNQ-
doped DIP crystal, keeping fixed the energy cut-off of 24 Ry for the dielectric matrix. This
value was already shown to be more than adequate for the pristine DIP crystal. Quasiparticle
calculations at Γ-only point considering 2332 and 3200 empty bands results in a gap of 1.87 and
1.86 eV while the mid-gap band positions at 447 and 433 meV, respectively. For this system,
therefore, we opted for the converged values of 24 Ry and 2332 bands covering an energy
range of 55 eV above Fermi energy. Likewise, we used an ϵ cut-off of 24 Ry with a number of
unoccupied bands covering a similar energy range for the F4TCNQ-doped DIP crystal. Table
APP-2 outlines these converged parameters for the three studied crystals. Energy cut-off for
the bare Coulomb interactions in all calculations was set the same as the cut-off energy for the
plane-wave basis as listed in Table APP-1.

Figure APP-6: Convergence of the direct and indirect quasiparticle band-gap (eV) of the
pristine DIP crystal with respect to the energy cut-off (Ry) for the dielectric matrix and the
number of empty bands.

Table APP-2: Converged parameters used in G0W0 calculations. Third and forth columns list
the number of unoccupied bands and the corresponding energy range covered by them.

Crystal ϵ cut-off
(Ry)

# Unoccupied
(bands)

Energy range (eV)
above EF

DIP 20 1728 (6× #occ bands) ∼45
F4TCNQ:DIP 24 2112 (8× #occ bands) ∼52
F6TCNNQ:DIP 24 2332 (8× #occ bands) ∼55
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G.2 Geometry Optimization of the Doped Crystals

The geometries of the doped crystals were optimized in two steps. First, only the atomic
positions of the dopant molecule were optimized while the structural parameters and host DIP
molecules were kept fixed (labeled as the only-dopant relaxation). As the second step, we
relax all molecules within the unit cell, including both dopant and host DIPs (labeled as the
full relaxation). In both steps, the DFT (PBE and Grimme-D3) relaxation continued until
the total energy and forces were converged within 10−4 eV and 0.01 eV/Å, respectively. For
both F4TCNQ- and F6TCNNQ-doped DIP crystals, we carefully compared the ground-state
electronic structures of the fully relaxed unit cell with that of computed for only-dopant relaxed
lattice. Although we found a slight displacement of the DIP molecules within the unit cell after
full relaxation, the differences in the electronic structure are rather insignificant as can be seen
in Figure APP-7. Particularly the bandgap and the energy position of the mid-gap band are
quantitatively similar. Given these results, we decided to perform our post-DFT calculations
with the lattice for which only the dopant molecule were optimized.
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Figure APP-7: Total DOS (gray shaded) and molecular-resolved PDOS on the DIPs and the
dopants for our two models: (top) F4TCNQ-doped DIP and (bottom) F6TCNNQ-doped DIP.
Right (left) panels represent the results in which all molecules (only the dopant molecules) are
relaxed. Fermi energy was set to zero.
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G.3 Electronic Structure of the Studied Crystals at the DFT-
PBE Level

– Pristine DIP Crystal: Electronic band structure of DIP crystal at the DFT-PBE level along
a k -path suggested by Ref. [224] is shown in Figure APP-8a. Both valence and conduction
bands are composed of four sub-bands which are associated with the HOMO or LUMO orbitals
of the four DIP molecules within the unit-cell. The DFT-PBE calculation estimates an indirect
gap of 1.30 eV.

Total DOS in Figure APP-8b features sharp peaks for the valence and conduction bands,
indicating of a tight localization of electrons within each molecule. The corresponding PDOS,
Figure APP-8c, shows that both valence and conduction manifolds mostly derive from carbon
2p states (π character states), whereas the s component is found on states far from band-edges.

Notice that in Section 5.4, we adopted the G0W0 as a standard approach in which the
eigenstates are the same as those of PBE mean-field and only the diagonal components of
the self-energy are considered in order to correct the positions of the Green’s function poles.
Therefore, the G0W0 quasiparticle PDOS is expected to be analogous to that of the mean-field,
once the energy shifts of the different levels are taken into account. Note that we have verified
that the quasiparticle corrections do not lead to any swapping among the energy levels.

Figure APP-8: (a) Electronic band structure, (b) DOS, and (c) PDOS of DIP crystal at the
DFT-PBE level. The zero of energy is set to the VBM.

– Pristine F4TCNQ and F6TCNNQ Crystals: In addition to the discussion in Chapter
5, we computed the ground-state electronic structure of pristine F4TCNQ and F6TCNNQ
crystals. To do this, a slip-stacked packing of crystalline F4TCNQ [241] (space group P-bca,
CCDC no. 1105579) and F6TCNNQ [88] (space group -R 3, CCDC no. 1859755)4 were used
in which the unit cell consists of four and nine molecules, respectively. Similarly to the case
of the DIP crystal, a PBE parametrization for the exchange-correlation potential, with norm-

4The crystal structure of F6TCNNQ presents some disorder with two possible molecular orientations. Here,
we performed one of the two structures, which is kindly shared with us by authors of Ref. [88].
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conserving pseudo-potentials, and Van der Waals correction in the Grimme-D3 scheme were
employed. The k-point sampling of the Brillouin zone and cut-off energies for the plane-wave
basis set are listed in Table APP-1.

The electronic band structures of the F4TCNQ and F6TCNNQ crystals, shown in Figure
APP-9, feature an energy gap of 1.41 and 0.76 eV at the DFT level, respectively. For both
systems, valence and conduction bands are roughly flat, forming degenerate states at most of
the high-symmetric points. As a result, one finds sharp and distinct peaks in the DOS plot
(middle panels). PDOS calculations (right panels) indicate that valence and conduction bands
are mainly formed by carbon and nitrogen 2p atomic orbitals and some smaller contributions
from the fluorine 2p states. In both systems, the number of sub-bands contributing in valence
and conduction bands is consistent with the number of molecule in the unit-cell.

– DIP Crystal Doped by F4TCNQ/F6TCNNQ: Here, we discuss the the ground-state
electronic structure of the two doped DIP crystals. Panels of Figure APP-10 and APP-11
depict the DFT-PBE electronic band structure, DOS, and molecular-resolved PDOS of the two
DIP crystals substitutionally doped by either F4TCNQ or F6TCNNQ molecules, respectively.
For both doped systems, the hybrid HOMO-DIP/LUMO-dopants appear at the top of the
valence band, close to the Fermi level. This includes the flat mid-gap band that we found
its spatial distribution with a large LUMO-dopant content (see Figure 5.8). The molecular-
resolved PDOSs, plotted in panels (c) and (d), confirm that this mid-gap band in both doped
crystals is derived from carbon 2p orbitals of the host molecules as well as nitrogen and carbon
2p components of the dopant molecule.

Besides the mid-gap band, the band structures of both doped systems reveals five subbands
in the valence, in which the two uppers are separated from the lowers by an energy gap of
∼0.15 eV. The corresponding PDOSs show that the two upper states are formed by both host
and dopant contributions, while the three lower subbands only originate from the host carbon
atoms. The conduction band of both systems consists of three discrete subbands stemming
from the LUMO of three host DIP molecules within the unit-cell. The estimated bandgap
at the mean-field level of F4TCNQ and F6TCNNQ-doped DIP crystals are 1.19 and 1.21 eV,
respectively, which are slightly narrowed with respect to the DFT-PBE bandgap of the pristine
DIP (1.30 eV) shown in Figure APP-8.

Figure APP-12 compares the gas-phase DOS of isolated F4TCNQ and F6TCNNQ molecules
with the DOS computed for the same molecule as inserted within DIP crystal, both at the DFT-
PBE level. Both acceptor molecules feature a considerably down-shifted energy levels when they
are inserted in the DIP crystal environment. In fact, the LUMO of the dopants appears pinned
at the Fermi level.
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Figure APP-9: Electronic structure of (a-c) F4TCNQ and (d-f) F6TCNNQ crystals at the
DFT-PBE level. VBM is set to zero. k-path is suggested by Ref. [224].
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Figure APP-10: The DFT-PBE (a) band structure, (b) total DOS, and projected-PDOS on (c)
three host DIP molecules and (d) the dopant F4TCNQ molecule within the doped crystal.

Figure APP-11: The DFT-PBE electronic structure of F6TCNNQ-doped DIP crystal.
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Figure APP-12: DOS calculated for (left) F4TCNQ and (right) F6TCNNQ molecules at the
DFT-PBE level. Shaded blue areas illustrate the DOSs obtained in the gas-phase and red areas
correspond to the DOSs calculated for the molecule inserted within the solid DIP environment.
The same Gaussian broadening is used in all the plots. To facilitate the comparison, the HOMO
levels of the isolated molecules are set to zero.

G.4 Dopability Estimated by DFT-PBE Solutions Versus Hybrid
Functionals

– Quasiparticle spectra of dimer models: In Chapter 5, we adopted a diagonal G0W0

approach in which the quasiparticle eigenstates are kept identical to those obtained from the
prior mean-field DFT-PBE calculations. This can give rise to a large starting point dependence.
For molecular doping, where the alignment of energy levels plays the key role, it is crucial to
assess the role of initial mean-field solutions in the final level alignment. Such an assessment
in extended phase at the GW level will be computationally cumbersome. Therefore, we intro-
duced a dimer model including one DIP molecule and a dopant to evaluate the quality of the
G0W0@PBE solutions with respect to those starting from hybrid functionals.

Figure APP-13: Ball-and-stick model of two dimer models.

Figure APP-13 shows the ball-stick representation of the two dimers; D1 includes one
molecular DIP plus an F4TCNQ and D2 which is composed of a DIP molecule along with
an F6TCNNQ. The geometries of dimers are taken from those of the corresponding doped
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Figure APP-14: Comparison of the frontier orbital levels of the individual molecules and
the DIP-dopant dimers (left: D1, right D2 as labeled in Figure APP-13), using one-shot GW
starting from PBE, B3LYP and PBE0 functionals. Solid and dashed lines represent the two
topmost occupied and the two lowest virtual states, respectively. Simulations are done using
the Molgw with a cc-pVQζ basis. The frozen core approximation was applied in the case of
the dimers.

crystals. We benchmarked the quasiparticle spectra of the two dimers using the G0W0 on top
of three different mean-field solutions, i.e. PBE, PBE0, and B3LYP. Panels of Figure APP-14
show the energy levels of the D1 (left hand-side) and D2 (right hand-side) dimers. For both
D1 and D2 dimers, we find that the energies of the frontier orbitals are qualitatively similar,
particularly at the IE and EA levels. An inspection of the corresponding eigenstates also shows
a fairly close character.

– Hybrid DFT-PBE0 solutions for doped crystals: Here, we have carried out a study of
the ground-state electronic structure of both doped DIP crystals by means of standard hybrid
PBE0 functional5, as implemented in the Vasp suite [242]. Doing this, we can compare the
quality of the hybrid PBE0 solutions with those obtained from the semi-local PBE functional,
discussed in Section 5.5. Figures APP-15 and APP-16 exhibit the PBE0-DOS of both doped
systems. These Figures also illustrate the spatial distribution of charge density decomposed for
a few peaks in DOS plot, labeled by roman numbers. For both doped crystals, we find that
DOS peak and the corresponding eigenstate(s) feature properties coming as follows:

• Peak I includes three states. Sum of the corresponding partial charge densities, as shown
in the lower panel, confirms that these states are entirely originating from host DIPs.

• Peak II represents two fully occupied states with a hybridized character stemming from
both DIPs and dopant orbitals while the former is dominant.

• Peak III features a hybridized state above Fermi with a substantial contribution of the
dopant orbital and smaller role of DIPs.

5We used a plane-wave cut-off of 400 eV, a converged Γ-centered sampling of 2×2×2 in the Brillouin zone,
and the projector augmented wave potentials for describing the core and nuclei.
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• Peak IV in the DOS of both doped crystals denotes to three states of DIP-only orbitals.

• Peak V within the DOS of F6TCNNQ-doped DIP, Figure APP-16, is solely derived from
a single state of F6TCNNQ.

All these features remain completely consistent with the discussion of doped crystals in
Section 5.5. For each doped DIP crystal, we indeed find that the DOS obtained from PBE0
functional is qualitatively similar to that computed using PBE. More interestingly, DOS-PBE0
is quantitatively close to the quasiparticle DOS computed at the G0W0@PBE level. Inspecting
the PBE0 orbitals, moreover, we find that the quality of the PBE0 orbitals remains similar
to the PBE orbitals, visualized in Figure 5.8. These findings point to a small qualitative
dependence of our results on the used mean-field solutions and ensures us that the choice of the
DFT-PBE functional as the starting point provides results qualitatively similar to the hybrid
PBE0 functionals. Notice that the DFT-PBE is computationally cheaper by far than hybrid
functionals.

Figure APP-15: DOS of F4TCNQ-doped DIP crystal obtained from the DFT using the hybrid
PBE0 functional. DOS is broadened by a Gaussian factor of 0.05 eV and the Fermi energy is
set to zero. Lower panels represent the distribution of the charge densities for the four peaks
as labeled in DOS plot. To visualize densities, an isosurface cut-off of ∼ 10−4 electron×Bohr−3

was applied.
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Figure APP-16: DOS of F6TCNNQ-doped DIP computed by the DFT-PBE0. Lower panels
represent the distribution of the charge density for five labeled peaks in DOS plot.
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"The GW approximation can be understood from 
a picture where an electron that propagates in a 
system is represented by an object traveling on 
water: in the Hartree-Fork approximation, the 
water would be frozen. In the GW, the electron 
acts like a boat that creates waves, since it 
couples to other excitations in the system. These 
“waves”, which can for example be plasmons, 
change the propagation of the electron."
Lucia Reining. Computational Molecular Science, 8(3), e1344 

(2018).
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