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Introduction

Geometric constructions with straightedge and compass go as far back as
to the time of the ancient Greeks and Egyptians. In fact, there are three
classical problems in Greek mathematics related to straightedge and com-
pass constructions which were extremely important in the development of
geometry, which are the squaring of a circle, the duplication of a cube, and
the trisection of an angle. These three problems are impossible to solve
with straightedge and compass, but the Greeks lacked the mathematical
development needed to prove this.

The proof of the impossibility of these problems had to await the math-
ematics of the 19-th century, in particular to the development of Galois
theory. In 1837 Pierre Wantzel published a paper in which he proved that
duplication of a cube and the trisection of an angle are impossible to solve
with straightedge and compass. The imposibility of the squaring of the circle
will have to await until 1882 when Ferdinand von Lindemann proved that π
is trascendental.

In his paper of 1837, Pierre Wantzel also characterized which regular
polygons are constructible with straightedge and compass. Sufficiency was
proved by Gauss in 1796, but Wantzel was the first to prove the characteri-
zation, in a theorem now known as the Gauss-Wantzel Theorem.

Theorem 0.1 (Gauss-Wantzel Theorem). A regular polygon with n sides is
constructible if and only if n = 2mp1 . . . pr where m ≥ 0 and pi are Fermat
primes.

It is remarkable that in 1827, in his Recherches sur les fonctions ellip-
tiques, Abel proved a similar sufficient condition for the constructibility of
points that divide the lemniscate curve into arcs of equal lengths. How-
ever, it was not until the modern development of Class Field Theory that in
1981 Michael Rosen proved the complete characterization, which is known
as Abel’s Theorem on the lemniscate.

Theorem 0.2 (Abel’s Theorem). The lemniscate can be divided into n equal
parts with ruler and compass if and only if n = 2mp1 . . . pr where m ≥ 0
and pi are Fermat primes.
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It turns out that it is not required to use the full power of Class Field
Theory to prove this result. In fact, one can define the lemniscate sine
function similarly as one defines the sine function with respect to the circle,
and then, consider the field extensions that arise when adjoining to Q(i)
particular values of this function, as it is done when studying cyclotomic
fields. It turns out that studying this extensions is enough to prove Abel’s
Theorem.

The similarities between the cyclotomic fields and the lemniscatic ex-
tensions go further than one can initially expect. The cyclotomic fields are
abelian extensions of Q, and there is also a partial converse to this, known
as the Kronecker-Weber Theorem.

Theorem 0.3 (Kronecker-Weber). Every finite abelian extension of Q is
contained within some cyclotomic field.

Similarly, it turns out that the lemniscatic extensions are also abelian
extensions but of Q(i), and every other abelian extension of Q(i) is contained
in some lemniscatic extension. This is covered in the following theorem, due
to Takagi (1903).

Theorem 0.4 (Takagi). Every finite abelian extension of Q(i) is contained
within some lemniscatic extension.

In general, given a number field K, the problem of knowing what al-
gebraic numbers are necessary to construct all abelian extensions of K is
known as Kronecker’s Jugendtraum or Hilbert’s twelfth problem, and it re-
mains unsolved in this generality. However, the result is known for example
when K is a quadratic imaginary field. The study of the abelian extensions
of Q(i), the lemniscatic case, is interesting because it points towards the
direction that one needs to go in order to prove Kronecker’s Jugendtraum
when K is a quadratic imaginary field.

In Chapter 1 we start with the definition of the lemniscate curve and
the lemniscate sine function sl. The function sl is defined initially in a small
interval of R, and we work our way on extending the function to C. Also, we
study the most important properties of this function, which are the addition
formula and the formulas for the multiplication by Gaussian integers. Our
main reference for this chapter is the book [Cox12] by David A. Cox.

Once we have studied the function sl, we proceed to study the lemniscatic
extensions in Chapter 2, which are the extensions that arise when adjoin-
ing special values of sl to Q(i). After studying their main properties and
characterizing their Galois groups, we will be able to prove Abel’s Theorem.
Here we will still follow [Cox12] mostly, but also [CH14] and [Ros13].
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It turns out that sl is an elliptic function, and this lets us use the power-
ful theory of elliptic functions to study the lemniscatic extensions. Chapter
3 is all about elliptic curves and elliptic functions, and our main reference
for this topic has been the book [Kob84] by Neal Koblitz. However, we have
also made use of the standard references in this topic, which are the books
[Sil86], [Sil94] and [ST15] by Joseph Silverman and John Tate.

Straightedge and compass constructions have not been covered in the
four year degree, and Appendix A is written with the aim to fill this lack of
content and ensure the work is self-contained. This appendix is interesting
on its own, because we give proofs for the three classical Greek problems
mentioned previously and the Gauss-Wantzel Theorem.

Appendix B contains a set of solved problems about the lemniscate and
the lemniscate sine function. Some of these problems are also about using
the tehniques learnt in Chapter 1 to study the regular sin function and de-
duce some of its properties, which are similar to the ones proved in that
chapter for sl.

Notation is standard and we assume the results studied in the math-
ematics degree, specially those concerning Linear Algebra, Commutative
Algebra, Galois Theory and Number Theory.





Chapter 1

The Lemniscate

In this chapter we introduce the curve known as lemniscate and the lemnis-
cate functions. The lemniscate functions play a role similar to that played
by the sine and cosine functions in the study of the circle, but in the study
of the lemniscate.

1.1 Definition and arc length

Definition 1.1. The lemniscate is the locus of all the points whose product
of distances to two given points, the focuses, is constant.

If the focuses of the lemniscate are (±a, 0) and the product of the dis-
tances is b2, its cartesian equation is

(x2 + y2)2 = b4 − a4 + 2a2(x2 − y2).

From now on, we will only consider the lemniscate given by the constants
b = a = 1/

√
2. The cartesian equation for this lemniscate simplifies to

(x2 + y2)2 = x2 − y2,

which in polar coordinates is written as

r2 = cos 2θ.

0 1−1 1/
√

2−1/
√

2

Figure 1.1: Lemniscate for a = b = 1/
√

2.
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2 1.2. The lemniscate sine function

Notice that for cos 2θ to be positive, we need θ ∈ [−π/4, π/4]. To set
the points in the lemniscate for negative cos 2θ, we allow r < 0 in this
convention of polar coordinates. This means that any (r, θ) ∈ R2 will be the
polar coordinates of (x, y) if x = r cos θ and y = r sin θ. Notice that with
this agreement, (r, θ) and (−r, θ + π) are the polar coordinates of the same
point.

Theorem 1.1. The length L of the lemniscate is given by

L = 4
∫ 1

0

dt√
1− t4

. (1.1)

Proof. Using the standard formula for the arc length of a curve given in
polar coordinates and the fact that the lemniscate is symmetric we get

L = 4
∫ π/4

0

dθ√
cos 2θ

.

The result is achieved after the change t =
√

cos 2θ.

Let us define the constant $ = L/2, similarly as π is half the circumfer-
ence of a circle with radius 1. This constant will play an important role in
the following chapters.

Definition 1.2. The lemniscatic constant $ is $ = L/2.

Observe that $ is defined in terms of the integral in (1.1), and notice
that π can be defined by a similar integral too:

$ = 2
∫ 1

0

dt√
1− t4

, π = 2
∫ 1

0

dt√
1− t2

.

In fact, both of these integrals are convergent since t ∈ [0, 1) implies that∫ 1

0

dt√
1− t4

≤
∫ 1

0

dt√
1− t2

≤
∫ 1

0

dt√
1− t

= 2.

There are other interesting facts about the lemniscate which are left as
problems (see Problems 1 and 2) because they are not strictly necessary for
our purposes.

1.2 The lemniscate sine function

We now proceed to define the lemniscate sine function. The regular sine
function can be defined as the inverse function of the arcsin function, and
similarly, we will define the lemniscate sine function as the inverse function
of some integral function measuring the arc length.
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Definition 1.3. Define the function arcsl : [−1, 1]→ [−$/2, $/2] by

arcsl(r) =
∫ r

0

dt√
1− t4

.

By the fundamental theorem of calculus arcsl is continuous on [−1, 1] and
differentiable in (−1, 1). In particular, for r ∈ (−1, 1)

arcsl′(r) = 1√
1− r4

> 0,

and as a consequence arcsl is invertible in (−1, 1), with continuous and
differentiable inverse.

Definition 1.4. Define the lemniscate sine function as the inverse of arcsl,
that is, sl : [−$/2, $/2]→ [−1, 1] given by sl(u) = arcsl−1(u).

The next figure shows a geometric interpretation of arcsl and sl, and the
similarities they present with arcsin and sin respectively.

0

1

arcsl(r) = u

sl(u) = r

0

1

arcsin(r) = u

sin(u) = r

Figure 1.2: Geometric interpretation of the lemniscate sinus.

Proposition 1.2. sl′(u) =
√

1− sl4(u) for u ∈ (−$/2, $/2). Furthermore,
sl′−($/2) = sl′+(−$/2) = 0.

Proof. The first part is obtained by applying the inverse function theorem.
Observe that if h > 0 is small, then

h =
∫ sl($/2)

sl($/2−h)

dt√
1− t4

.

Take c ∈ [sl($/2−h), sl($/2)], given by the mean value theorem, such that

h = sl($/2)− sl($/2− h)√
1− c4

.

Then,

sl−($/2) = lim
h→0+

sl($/2− h)− sl($/2)
−h

= lim
h→0+

√
1− c4,

and the result follows since c→ 1 as h→ 0. The other case is similar.
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Proposition 1.3. sl′′(u) = −2sl3(u) for u ∈ (−$/2, $/2). Furthermore,
sl′′−($/2) = −2 and sl′′+(−$/2) = 2.

Proof. Differentiating (sl′(u))2 = 1 − sl4(u) and using that sl′(u) 6= 0 in
(−$/2, $/2) we obtain the first result. When h > 0 is small, there exists
some c ∈ ($/2− h,$/2) given by the mean value theorem such that

sl′−($/2)− sl′($/2− h)
h

= sl′′(c) = −2sl3(c).

Then

sl′′−($/2) = lim
h→0+

sl′($/2− h)− sl′−($/2)
−h

= lim
h→0+

−2sl3(c),

and the result follows since c→ $/2 as h→ 0. The other case is similar.

Now we want to extend sl to the whole R in such a way that sl is dif-
ferentiable and periodic in R. In order to do that, we use the following fact
about functions defined by reflections.

Lemma 1.4. Let ϕ be a twice differentiable function defined to the left of
a point a that has zero left derivative and second left derivate at that point.
Then, the extension of ϕ obtained by reflection with respect to x = a is twice
differentiable at a.

Proof. Extend ϕ to the right of a by ϕ(a+ x) = ϕ(a− x) for x ∈ [0, ε) with
ε > 0 sufficiently small. Then,

ϕ′+(a) = lim
h→0+

ϕ(a+ h)− ϕ(a)
h

= lim
h→0+

ϕ(a− h)− ϕ(a)
h

= −ϕ′−(a) = 0,

so ϕ is differentiable at a and ϕ′(a) = 0. Similarly, for the second derivative
of ϕ at a,

ϕ′′+(a) = lim
h→0+

ϕ′(a+ h)− ϕ′(a)
h

= lim
h→0+

ϕ′(a− h)
−h

= ϕ′′−(a),

so ϕ′ is differentiable at a.

Theorem 1.5. sl can be extended to a twice differentiable periodic function
on R with period 2$.

Proof. First, extend sl to ($/2, 3$/2] by reflecting with respect to $/2,
so that sl($/2 + x) = sl($/2 − x) for x ∈ [0, $]. By the previous lemma,
this extension is twice differentiable in (−$/2, 3$/2). Observe that since
sl′($/2 + x) = sl′($/2 − x) for x ∈ (0, $), sl′+(−$/2) = sl′−(3$/2) = 0,
and similarly we deduce sl′′+(−$/2) = sl′′−(3$/2) = 0.

Then, define sl(x + 2k$) = sl(x) for any k ∈ Z and x ∈ [−$/2, 3$/2].
By construction, it is clear that sl is twice differentiable in any interval of
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the form (−$/2 + 2k$, 3$/2 + 2k$) for k ∈ Z, so it remains to show that
sl is twice differentiable at the points $/2 + 2k$.

Notice that by periodicity it suffices to check double differentiability at
−$/2. Now, this follows by periodicity too, since sl′−(−$/2) = sl′−(3$/2)
and sl′′−(−$/2) = sl′′−(3$/2).

Observe that by construction sl(−x) = −sl(x) for x ∈ [−$/2, 3$/2], so
by periodicity this property holds for all x ∈ R. In particular, this implies
that sl(0) = sl($) = 0, so by periodicity sl(k$) = 0 for k ∈ Z. Analogously,
one deduces that sl′(k$/2) = 0 for k odd.

Similarly, this construction implies that the formulas given in Proposi-
tions 1.2 and 1.3 for the first and second derivatives of sl and sl′′ are valid
for all x ∈ R.

−2 −1 1 2 3 4 5

−1

1
sl(x)

sin(x π$ )
x = k$2

Figure 1.3: Plot of sl(x) in the interval [−$, 2$] in comparison with the
plot of sin(x π$ ).

Our next goal is to prove the addition formula for sl, which relates the
values of sl(x + y), sl(x) and sl(y). In order to do that, we will use the
following lemma.

Lemma 1.6. Let g be a twice differentiable function defined on R2. Then
g(x, y) = g(x+ y, 0) if and only if ∂g/∂x = ∂g/∂y.

Proof. The first condition is equivalent to h(x) = g(x, a−x) being constant
for any fixed a. Indeed, if g(x, y) = g(x + y, 0), then g(x, a − x) = g(a, 0),
and so, h(x) = g(a, 0) is constant for any fixed a.

Conversely, assume h(x) = g(x, a−x) is constant for each fixed a. Then,
h(x) = h(a) implies g(x, a− x) = g(a, 0), so by taking a = x+ y we obtain
g(x, y) = g(x+ y, 0). Finally, since

h′(x) = ∂g

∂x
(x, a− x)− ∂g

∂y
(x, a− x),

it is clear that h is constant (for any a) if and only if ∂g/∂x = ∂g/∂y.
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Theorem 1.7 (Addition formula for sl). For any x, y ∈ R,

sl(x+ y) = sl(x)sl′(y) + sl′(x)sl(y)
1 + sl2(x)sl2(y)

.

Proof. Consider the twice differentiable function in R2 given by

g(x, y) = sl(x)sl′(y) + sl′(x)sl(y)
1 + sl2(x)sl2(y)

.

It is routine to check that ∂g/∂x = ∂g/∂y using the formulas for sl′ and sl′′.
As g(x + y, 0) = sl(x + y), the result now follows by applying the previous
lemma.

Theorem 1.8. sl(u) can be obtained from sl(2u) by extractions of square
roots and arithmetic operations. In fact, if A = 4/sl2(2u), then

sl(u) = ±

√√√√√−A∓√A2 − 16±
√(
−A±

√
A2 − 16

)2
+ 16

4 .

Proof. Using the addition formula for x = y = u, we obtain a quartic
equation x4 +Ax3 + 2x2−Ax+ 1 = 0, where x = sl2(u) and A = 4/sl2(2u).
The change y = x − 1/x transforms this equation into y2 + Ay + 4 = 0,
which is then easily solved.

Remark 1.1. Observe that the last theorem implies that the midpoint of
an arc of the lemniscate with constructible endpoints is also constructible.
Indeed, by the addition formula, if sl(x) and sl(y) are constructible, then so is
sl(x+y), and by applying the last theorem, sl((x+y)/2) is also constructible
(see Appendix A).

Notice also that if (r, θ) is a point in polar coordinates of the lemniscate
and r is constructible, then the point is constructible too. Indeed, since r is
constructible, so is r2 = cos 2θ = 2 cos2 θ − 1. Hence, cos θ =

√
(r2 + 1)/2

and sin θ =
√

1− cos2 θ are constructible, from which follows that both
x = r cos θ and y = r sin θ are constructible.

Thanks to the previous remark, we are able to divide the lemniscate
into 2n equal points for any n. For example, for n = 3 this is equivalent
to computing sl(2$/8) = sl($/4), which can be obtained from sl($/2) = 1
by applying the previous formula with A = 4. Taking into account that
sl($/4) is a positive real number, we get

sl($/4) =
√√

2− 1.
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1.3 Multiplication by Integers.

As it can be seen in Problem 6, there exist some recurrence formulas to com-
pute sin(mx) for m ∈ Z, which depend on some polynomials Pm(x). In this
section, we aim to show that similar recurrence formulas and polynomials
exist for sl(mx).

Lemma 1.9. For any x, y ∈ R,

sl(x+ y) + sl(x− y) = 2sl(x)sl′(y)
1 + sl2(x)sl2(y)

.

Proof. It follows directly from applying the addition formula to compute
sl(x+ y) and sl(x− y), and summing the results afterwards.

Proposition 1.10. There exist rational functions Rm ∈ Q[x], with m ∈ N,
such that

sl(mx) =
{

sl(x)Rm(sl(x4)), if m is odd;
sl(x)sl′(x)Rm(sl(x4)), if m is even.

Proof. By induction. The cases m = 0 and m = 1 trivially hold by consid-
ering the polynomials R0(x) = 0 and R1(x) = 1. Now let m ≥ 1 and assume
the result is true for n ≤ m. Applying the previous lemma, we get

sl((m+ 1)x) + sl((m− 1)x) = 2sl(mx)sl′(x)
1 + sl2(mx)sl2(x)

.

Then, if m + 1 is odd, applying the induction hypothesis (using that m is
even and m− 1 is odd) and using the formula for sl′(x), we obtain

sl((m+ 1)x) = sl(x)Rm+1(sl4(x)),

where
Rm+1(x) = 2(1− x)Rm(x)

1 + x(1− x)R2
m(x) −Rm−1(x). (1.2)

Similarly, when m+ 1 is even, we obtain

sl((m+ 1)x) = sl(x)sl′(x)Rm+1(sl4(x)),

where
Rm+1(x) = 2Rm(x)

1 + xR2
m(x) −Rm−1(x). (1.3)

Note that formulas (1.2) and (1.3) define recurrence relations to compute
these functions.
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Proposition 1.11. There exist coprime polynomials Pm, Qm ∈ Z[x] such
that Rm = Pm/Qm and Qm(0) = 1. Moreover, these polynomials are unique.

Proof. Uniqueness is clear since Z[x] is a UFD with only two units, ±1. Since
Rm ∈ Q[x], it is clear that we can write it as pm/qm where pm, qm ∈ Z[x].
Formulas (1.2) and (1.3) define recurrence relations for the polynomials pm
and qm, in fact,

qm+1(x) =
{
qm−1(x)(q2

m(x) + x (1− x)p2
m(x)), if m+ 1 is odd;

qm−1(x)(q2
m(x) + x p2

m(x)), if m+ 1 is even.

In both cases, qm+1(0) = qm−1(0)q2
m(0), and so, it is clear by induction that

qm(0) = 1. After removing common factors, we can write Rm = Pm/Qm
where Pm, Qm ∈ Z[x] are coprime. Since Qm(0)|qm(0), we can take Pm and
Qm so that Qm(0) = 1.

Since Pm and Qm are uniquely determined, we are able to make the
following definition.

Definition 1.5. The polynomials xPn(x4), for n odd, and x(1−x2)Pn(x4),
for n even, are called the nth division polynomials of the lemniscate.

As it is shown in Problem 7, the real roots of these polynomials (with
modulus smaller than or equal to 1) are sl(m2$

n ), with m ∈ Z and |m| ≤ n/4.
Division polynomials also have complex roots, and in order to understand
them we need to extend sl to the complex plane.

1.4 The Complex Lemniscate Function.

Before extending sl to C, we study the extension of arcsl to the complex
plane. In order to do that, we compute its Taylor series.

Proposition 1.12. The Taylor series of arcsl for x ∈ (−1, 1) is

arcsl(x) =
∞∑
n=0

(−1)n(2n− 1)!!
(4n+ 1)2nn! x4n+1.

Proof. Recall that
arcsl(x) =

∫ x

0

dt√
1− t4

.

Consider the function f(x) = (1 − x)−1/2, so that arcsl′(x) = f(x4). For
x ∈ (−1, 1) its Taylor series is the following binomial series

f(x) =
∞∑
n=0

(
−1/2
n

)
(−x)n =

∞∑
n=0

(−1)n(2n− 1)!!
2nn! xn.
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Then, since arcsl′(x) = f(x4), it follows that

arcsl(x) =
∫ x

0
f(t4)dt =

∞∑
n=0

(−1)n(2n− 1)!!
(4n+ 1)2nn! x4n+1.

Corollary 1.13. The function arcsl can be extended to the disk |z| < 1 by
means of the Taylor series

arcsl(z) =
∞∑
n=0

(−1)n(2n− 1)!!
(4n+ 1)2nn! z4n+1. (1.4)

Proof. Clearly this Taylor series defines an analytic function in the disk
|z| < 1, and it is clear by the previous proposition that it extends the real
function arcsl.

Lemma 1.14. arcsl(iz) = i · arcsl(z) for z in the disk |z| < 1.

Proof. It follows directly by plugging iz into the Taylor series (1.4).

Since arcsl is holomorphic in the disk |z| < 1 and arcsl′(0) 6= 0, there is
a holomorphic function g defined on a disk |z| < ε which is the local inverse
of arcsl.

Recall that the local inverse of arcsl in the interval (−ε, ε) ⊂ R is sl, so g
and sl coincide in this interval by uniqueness of the inverse function. Thus,
we consider g to be the extension of sl to the disk |z| < ε, which we also
denote sl.

Since arcsl(sl(z)) = z for |z| < ε, then arcsl(i ·sl(z)) = i ·arcsl(sl(z)) = iz.
Consequently, sl(iz) = sl(arcsl(i · sl(z))) = i · sl(z) for |z| < ε. This suggests
that the extension of sl(z) satisfies sl(iz) = i · sl(z) in the extended domain
of sl.

In order to extend sl to the largest possible domain in C we will take a
different approach. The previous paragraph suggests that we should have
sl(iy) = i · sl(y) for any real y, and since we also want the addition law to
hold for complex numbers, there is only one possible definition for sl(x+ iy)
that satisfies these conditions.

Definition 1.6. Define the complex lemniscate sin function by

sl(z) = sl(x+ iy) = sl(x)sl′(y) + i · sl(x)sl′(y)
1− sl2(x)sl2(y)

. (1.5)

Notice that this function indeed extends sl, since by plugging y = 0 in
the previous formula we recover the real lemniscate sinus.

The idea behind formula (1.5) is that we are applying the complex ad-
dition formula to x and iy, taking into account that sl(iy) = i · sl(y) and
sl′(iy) = sl′(y).
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Proposition 1.15. sl(iz) = i · sl(z) for any complex z ∈ C.

Proof. Applying formula (1.5) to iz = −y + ix, one can check that indeed
sl(iz) = i · sl(z).

In what follows, we study the properties of sl as a complex function.

Theorem 1.16. The function sl is holomorphic for all z 6= (m+in)$2 , were
m,n ∈ Z are odd.

Proof. sl is not defined when the denominator of (1.5) vanishes, that is, when
sl2(x) = sl2(y) = 1. In this case, x = m$

2 and y = n$2 , for some odd integers
m and n. Now assume z 6= (m+ in)$2 and write sl(z) = u(x, y) + i · v(x, y)
where

u(x, y) = sl(x)sl′(y)
1− sl2(x)sl2(y)

, v(x, y) = sl(y)sl′(x)
1− sl2(x)sl2(y)

.

In order to prove that sl is analytic at z, it suffices to show that u(x, y)
and v(x, y) satisfy the Cauchy-Riemman equations. After some standard
manipulations and using the real formulas for sl′(x) and sl′′(x), one can
check that indeed ∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x.

Theorem 1.17. The addition formula holds for complex numbers: for all
z, w ∈ C for which both sides of the equation are defined,

sl(z + w) = sl(z)sl′(w) + sl(w)sl′(z)
1 + sl2(z)sl2(w)

.

Proof. Define the complex function

g(z, w) = sl(z)sl′(w) + sl(w)sl′(z)
1 + sl2(z)sl2(w)

.

Consider g(z, w0) for any fixed w0 ∈ R. By the addition formula for real
numbers, g(z, w0) = sl(z+w0) for any z ∈ R. Then, by the identity theorem
for complex functions, g(z, w0) = sl(z + w0) holds for any z ∈ C for which
both functions are defined.

Now consider g(z0, w) for any fixed z0 ∈ C. By the previous paragraph,
g(z0, w) = sl(z0 +w) for any w ∈ R where both functions are analytic. Then,
by the identity theorem, g(z0, w) = sl(z0 +w) holds for any w ∈ C for which
both functions are defined. As a consequence, g(z, w) = sl(z + w) for all
z, w ∈ C for which both functions are defined.

In the next two theorems we show that the relations satisfied by sl, sl′
and sl′′ in the real case are also satisfied in the complex case.

Theorem 1.18. For any z ∈ C such that z 6= (m + in)$2 , where m,n ∈ Z
are odd, we have (sl′(z))2 = 1− sl4(z).
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Proof. Define the function g(z) = 1 − sl4(z). Since sl(z) is analytic, both
sl′(z) and sl4(z) are analytic, so in particular g(z) is analytic too. Now,
since g(z) = (sl′(z))2 for all z ∈ R, it follows by the identity theorem that
g(z) = (sl′(z))2 for all z ∈ C where the functions are defined.

Theorem 1.19. For any z ∈ C such that z 6= (m + in)$2 , where m,n ∈ Z
are odd, we have sl′′(z) = −2 · sl4(z).

Proof. The proof is completely analogous to the one done in Theorem 1.18

The following theorem reveals that sl has some kind of periodicity over
the Gaussian integers, and now we proceed to study it.

Theorem 1.20. For any m,n ∈ Z we have that

sl(z +m$ + in$) = (−1)n+msl(z).

Proof. By the addition formula, we have that sl(z +$) = −sl(z) and
sl(z + i$) = −sl(z). Then, by induction, sl(z + m$) = (−1)msl(z) and
sl(z + in$) = (−1)nsl(z), and consequently

sl(z +m$ + in$) = (−1)msl(z + in$) = (−1)n+msl(z).

Definition 1.7. A Gaussian integer β = a + bi ∈ Z[i] is said to be even if
a ≡ b (mod 2), otherwise it is odd. Define the lattice L of even Gaussian
integers by L = {β ∈ Z[i] such that β is even}.

Theorem 1.21. L = 〈1± i〉 as an additive subgroup of Z[i].

Proof. Since the addition and substraction of even Gaussian integers is again
even, it follows that L is an additive subgroup of Z[i]. Thus, since 1 + i and
1− i are even, it is clear that 〈1± i〉 ⊆ L.

To show that the converse, let a + bi ∈ L. Since a ≡ b (mod 2), there
exists some k ∈ Z for which a = b+ 2k. Then,

a+ bi = (b+ k)(1 + i) + k(1− i) ∈ 〈1± i〉.

Theorem 1.22. sl(z + β$) = sl(z) for all β ∈ L.

Proof. Let β = a + bi ∈ L. Since a ≡ b (mod 2), then (−1)a+b = 1. The
result follows by applying Theorem 1.20.



12 1.5. Multiplication by Gaussian Integers.

The last theorem implies that sl is a meromorphic and double periodic
function, with periods 1 ± i. This fact will be very important to relate the
lemniscate to the theory of elliptic curves in Chapter 3, since it implies that
sl is an elliptic function.

To end this chapter, we study the zeros and poles of sl.

Theorem 1.23. sl is a meromorphic function on C with

(i) Simple zeros occurring at z = (m+ in)$, with m,n ∈ Z and

(ii) Simple poles occurring at z = (m+ in)$2 , with m,n ∈ Z odd.

Proof. (i) If sl(z) = 0, then by Theorem 1.18 sl′(z) 6= 0 and thus the zeros
are simple.

Let z = x + iy be a zero of sl. By (1.5), sl(x)sl′(y) = sl(y)sl′(x) = 0.
Assume sl(x) = 0. Since x ∈ R, then x = m$ for some m ∈ Z and so
sl′(x) 6= 0. Thus, sl(y) = 0, and so, y = n$ for some n ∈ Z, which implies
that z = (m+ in)$.

On the other hand, if sl′(y) = 0, since y ∈ R then sl(y) = ±1 6= 0 and so
sl′(x) = 0. This implies sl(x) = ±1, and consequently, 1 − sl2(x)sl2(y) = 0
and sl(z) is not defined, so this case doesn’t occur.

(ii) By Theorem 1.16 we know that the poles are at z = (m+ in)$2 , with
m,n ∈ Z odd, so it suffices to show that these poles are simple. To prove
this, we will show that 1/sl(z) has simple zeros at these points. Indeed, let
z0 be any of these points. Then, since

(
d

dz

( 1
sl(z)

))2
=
(

sl′(z)
sl2(z)

)2

= 1− sl4(z)
sl4(z)

= 1
sl4(z)

− 1,

it folllows that the derivative at z0 of 1/sl(z) is different from zero, and thus
they are simple zeros.

1.5 Multiplication by Gaussian Integers.

Similarly as done in Section 1.3, we develop formulas to compute sl(βz),
with β ∈ Z[i], in terms of some rational functions Rβ ∈ Q(i)[z].

Lemma 1.24. For any z, w ∈ C such that both sides of the equation are
defined,

sl(z + w) + sl(z − w) = 2sl(z)sl′(w)
1 + sl2(z)sl2(w)

.

Proof. It follows directly from applying the addition formula to compute
sl(z + w) and sl(z − w), and summing the result afterwards.
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Proposition 1.25. There exists a rational function Rβ ∈ Q(i)[x], for each
β ∈ Z[i], such that

sl(βz) =
{

sl(z)Rβ(sl(z4)), if β is odd;
sl(z)sl′(z)Rβ(sl(z4)), if β is even.

Proof. Since sl(iεβz) = iεsl(βz) for any 0 ≤ ε ≤ 3, it suffices to define Rβ
for one β among its associates, and then set Riεβ = iεRβ. Now we proceed
by induction on N(β), the norm of β.

Take R0(x) = 0, R1(x) = 1 and R1+i(x) = (1+ i)/(1−x) for the basis of
the induction. Then, let β ∈ Z[i] and assume the result is true for α ∈ Z[i]
with N(α) < Nβ). Notice that if Nβ) > 2 there exists some 0 ≤ ε ≤ 3 such
that Niεβ − 2) < Niεβ − 1) < Nβ) (it suffices to take ε so that Re(iεβ) ≥ 2).

In a similar fashion to Proposition 1.10, apply Lemma 1.24 with w = 1
and z = iεβ − 1 to write sl(iεβz) in terms of sl(iεβz − 1) and sl(iεβz − 2).
Then, applying the induction hypothesis, taking into account that if iεβ is
odd (even) then iεβ − 1 is even (odd) and iεβ − 2 is odd (even), we obtain
the following recurrence formulas (note that ε may vary for each β)

Riεβ(x) =


2(1− x)Riεβ−1(x)

1 + x(1− x)R2
iεβ−1(x) −Ri

εβ−2(x), if β odd;

2Riεβ−1(x)
1 + zR2

iεβ−1(x) −Ri
εβ−2(x), if β even.

(1.6)

Proposition 1.26. There exist coprime polynomials Pβ, Qβ ∈ Z[i][x] such
that Rβ = Pβ/Qβ and Qβ(0) = 1.

Proof. As in the previous proposition, it suffices to prove the result for one
β among its associates, so given β, take 0 ≤ ε ≤ 3 so that one of the previous
recurrence formulas applies.

Since Rβ ∈ Q(i)[x], write it as pβ/qβ where pβ, qβ ∈ Z[i][x]. The formulas
given in (1.6) define recurrence relations for these polynomials, in fact, by
taking q0(x) = 1, q1(x) = 1 and q1+i(x) = 1− x we get

qiεβ(x) =
{
qiεβ−2(x)(q2

iεβ−1(x) + x(1− x)p2
iεβ−1(x)), if β is odd;

qiεβ−2(x)(q2
iεβ−1(x) + xp2

iεβ−1(x)), if β is even.

So by induction we can assume qiεβ(0) = 1. Since Z[i] is a UFD, then
Z[i][x] is also a UFD, and so, we can remove common factors and write
Riεβ = Piεβ/Qiεβ where Piεβ, Qiεβ ∈ Z[i][x] are coprime. Since Qiεβ(0) di-
vides qiεβ(0), we can take these polynomials so that Qiεβ(0) = 1.
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In what follows we assume β to be odd. Luckily, this assumption will
be enough for our purposes, but this means that some interesting theorems
in Chapter 2 will be only available for β odd. Fortunately, we recover full
generality in Chapter 3.

Proposition 1.27. Let β ∈ Z[i] be odd. There exists a unique 0 ≤ ε ≤ 3
such that β ≡ iε (mod 2(1+i)), and for this ε, the expression Rβ = iεPβ/Qβ
in lowest terms with Qβ(0) = 1 is unique.

Proof. Uniqueness of ε is clear because if iε ≡ 1 (mod 2(1 + i)), then ε = 0.
Without loss of generality, assume β = n + mi with n odd and m even.
Observe that n + m ± 1 is a multiple of 4 for an appropiate sign, and so
n−m± 1 = n+m± 1− 2m is also a multiple of 4. Thus, for some z ∈ Z[i],

(β ± 1)(1− i) = n+m± 1− (n−m± 1)i = 4z = 2(1 + i)(1− i)z,

and consequently β ≡ ±1 (mod 2(1 + i)) and the existence of ε is proven.
For this ε, since the expression of Rβ = Pβ/Qβ, Qβ(0) = 1, in lowest

terms is unique, by replacing Pβ(x) with i−εPβ(x), we can write Rβ =
iεPβ/Qβ in a unique way.

Our next goal is to prove that Pβ is monic. In order to do that, we need
the following lemma.

Lemma 1.28. Let β ∈ Z[i] be odd and take ε given by Proposition 1.27.
Then

sl(βz) · sl
(
βz + β(1 + i)$2

)
= i3+2ε.

Proof. Using the addition formula and the formula for sl′, we get

sl
(
z + $

2

)
sl
(
z + $

2 i
)

= i.

By replacing z with z +$/2, and afterwards z with i−εβz, we obtain

sl(βz) · sl
(
βz + iε(1 + i)$2

)
= i3+2ε.

Finally, since β ≡ iε (mod 2(1 + i)) and 2(1 + i)2$/2 = 2$i is an even
multiple of $, we can replace iε by β in the last expression to obtain

sl(βz) · sl
(
βz + β(1 + i)$2

)
= i3+2ε.

This lemma is interesting on its own, since for β = 1, ε = 0 and we get
sl(z) ·sl(z+(1+i)$/2) = −i, from where we can deduce the value of 1/sl(z).
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Theorem 1.29. Pβ is monic for β ∈ Z[i] odd.

Proof. Let w = z + (1 + i)$/2. By the previous lemma, sl(z) · sl(w) = i3

and sl(βz) · sl(βw) = i3+2ε, with ε given by Proposition 1.27. Then,

Pβ(sl4(z))
Qβ(sl4(z))

= sl(βz)
iεsl(z) = iεsl(w)

sl(βw) = Qβ(1/sl4(z))
Pβ(1/sl4(z))

.

Since Pβ andQβ are polynomials, the formula Pβ(x)Pβ(1/x) = Qβ(x)Qβ(1/x)
holds for every x ∈ C, since it holds for infinitely many values of x. Now let
deg(Pβ) = d and deg(Qβ) = e. Then,

xePβ(x)(xdPβ(1/x)) = xdQβ(x)(xeQβ(1/x)),

so by taking degrees d = e. Furthermore, since Pβ(x) andQβ(x) are coprime,
it follows that xdQβ(1/x) divides Pβ(x), so we can write Pβ(x) = λxdQβ(1/x)
for some λ ∈ Z[i]. Evaluating at x = 1 we obtain

λ = Pβ(1)
Qβ(1) = Pβ(sl4($/2))

Qβ(sl4($/2))
= sl(β$/2)
iεsl($/2) = sl(β$/2)

iε
.

Since β ≡ iε (mod 2(1 + i)), then sl(β$/2) = iε, so λ = 1 and thus
Pβ(x) = xdQβ(1/x). Since Qβ(0) = 1, it follows that Pβ is monic.

Recall that if β ∈ Z[i] is odd then sl(βz) = sl(z)Rβ(sl(z4)). In particular,
sl(βz) = 0 if and only if sl(z)Pβ(sl4(z)) = 0, so in order to study these roots
we will study the polynomials xPβ(x4).

The last goal of this chapter will be to compute the degree of xPβ(x4)
for β odd.

Definition 1.8. For any β ∈ Z[i] odd, the monic polynomial given by
Dβ(x) = xPβ(x4) is called the β-division polynomial of the lemniscate.

Proposition 1.30. Let β ∈ Z[i] be odd. Then the set of roots of Dβ is
Zβ = {sl(z) | sl(βz) = 0}, which is also given by

Zβ =
{

sl
(
γ

β
$

)
| γ ∈ Z[i]

}
=
{

sl
(
γ

β
$

)
| γ ∈ Z[i] is odd

}
. (1.7)

Furthermore, the roots of Dβ are simple, and so deg(Dβ) = |Zβ|.

Proof. Let Bβ(x) = Qβ(x4). Since Pβ and Qβ are coprime, so are Dβ and
Bβ. Therefore, since sl(βz) = iεDβ(sl(z))/Bβ(sl(z)) and sl is surjective (this
is proven in Corollary 3.4 of Chapter 3), it is clear that the roots of Dβ are
Zβ.

Furthermore, since the zeros of sl are γ$ for γ ∈ Z[i], it is clear that the
first equality in (1.7) holds.
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Finally, observe that if γ ∈ Z[i] is even, then −γ + β is odd, and so we
can write sl( γβ$) = sl(−γ+β

β $) in terms of odd Gaussian integers, proving
the last equality.

Since sl(βz) = iεDβ(sl(z))/Bβ(sl(z)) and all roots of sl are simple, we
conclude that all roots of Dβ are simple too.

Lemma 1.31. sl(z) = sl(z′) if and only if z′ = (−1)n+mz + (n+mi)$.

Proof. If z′ = (−1)n+mz + (n + mi)$ then it is clear that sl(z) = sl(z′).
Conversly, assume sl(z) = sl(z′), in which case sl′(z′) = ±sl′(z). Depending
on the sign of the last equality, it follows by the addition law that one of
sl(z+ z′) or sl(z− z′) is zero, so z′ = ±z+ (n+mi)$, with n,m ∈ Z. Using
that sl(z) = sl(z′), we deduce that the sign is given by (−1)n+m.

Proposition 1.32. Let γ, γ′ ∈ Z[i] be odd. Then sl( γβ$) = sl(γ′β $) if and
only if γ ≡ γ′ (mod β). In particular, |Zβ| = |Z[i]/(β)|.

Proof. Assume sl( γβ$) = sl(γ′β $). Then, by the previous lemma,
γ′ − (−1)n+mγ = β(n+mi), and by studying the parity at both sides, it
follows that (−1)n+m = 1, and so, γ ≡ γ′ (mod β).

Conversely, if γ ≡ γ′ (mod β) then γ′ = γ + β(n + mi). Again, by
studying parity n+m is even, so γ′ = (−1)n+mγ + β(n+mi) and applying
the previous lemma we get the desired result.

This shows that the map from Zβ to Z[i]/(β) sending sl( γβ$) to γ is
injective. But, since β is odd, any element in Z[i]/(β) can be represented by
an odd Gaussian integer, so the map is bijective and |Zβ| = |Z[i]/(β)|.

Although the next result is a particular case of a well-known result in
number theory, we include a proof for completeness.

Proposition 1.33. Let β ∈ Z[i] be odd, then |Z[i]/(β)| = N(β). In partic-
ular, deg(Pβ) = (N(β)− 1)/4.

Proof. Let α ∈ Z[i] be nonzero and write α = m(a+ bi) with gcd(a, b) = 1.
By Bezout’s identity, take c, d ∈ Z such that ad − bc = 1. Then, consider
the map ϕ : Z[i]→ Z⊕ Z given by

µ+ γi 7→ (µ, γ)
(
d −b
−c a

)
.

Clearly it is a group homomorphism, and it is bijective because the matrix
is invertible over Z (its determinant is ad− bc = 1), so ϕ is an isomorphism.

One can check that ϕ(α) = (m, 0) and ϕ(αi) = (−m(ac+bd),m(a2+b2)).
Consequently, the image of the ideal (α) is

ϕ((α)) = ϕ(〈α, αi〉) = 〈ϕ(α), ϕ(αi)〉 =
= 〈(m, 0), (−m(ac+ bd),m(a2 + b2))〉 = 〈(m, 0), (0,m(a2 + b2))〉,
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and since ϕ is an isomorphism, it follows that

Z[i]
(α) '

Z⊕ Z
〈(m, 0), (0,m(a2 + b2))〉 '

Z
mZ
⊕ Z
m(a2 + b2) .

In particular, by taking cardinals we get∣∣∣∣Z[i]
(α)

∣∣∣∣ =
∣∣∣∣ Z
mZ
⊕ Z
m(a2 + b2)

∣∣∣∣ = m2(a2 + b2) = N(α).

As a consequence, deg(Dβ) = N(β) by the previous proposition, and since
deg(Dβ) = 1 + 4deg(Pβ), we get that deg(Pβ) = (N(β)− 1)/4.





Chapter 2

Lemniscatic Extensions

In this chapter we study the extensions Q(i, sl(2$/β))/Q(i) for β ∈ Z[i] odd.
As an important application, we prove Abel’s theorem on the lemniscate,
which is the analogue of Theorem A.12 for the lemniscate.

2.1 Lemniscatic Extensions

In this section we study the extensions Q(i, sl(2$/β))/Q(i) for β ∈ Z[i] odd,
similarly as done in Problem 8 for the extensions Q(i, sin(2π/n))/Q(i) with
n odd. As a consequence, we will prove sufficiency in Abel’s theorem.

Definition 2.1. Let β ∈ Z[i] be odd. The β-th lemniscatic extension is
Lβ/Q(i) where Lβ = Q(i, sl(2$/β)).

Theorem 2.1. Lβ/Q(i) is a Galois extension.

Proof. We aim to show that Lβ is the splitting field of Dβ ∈ Q(i)[x] over
Q(i). Recall that the roots of Dβ are Zβ, given by

Zβ = {sl(γ
β
$)|γ ∈ Z[i] is odd}. (2.1)

Then, Zβ = {sl(2γ
β $)|γ ∈ Z[i]} = {sl(2γ

β $)|γ ∈ Z[i] is odd}. For the first
equality, replace γ by β − γ in (2.1), and then, replace γ by γ + β when γ
is even. Then, for any odd γ ∈ Z[i], we have that

sl
(2γ
β
$

)
= sl

(2$
β

)
Rγ

(
sl
(2$
β

)4
)
∈ Lβ,

so Lβ is the splitting field of Dβ and consequently Galois over Q(i).

Theorem 2.2. Gal(Lβ/Q(i)) is abelian. Furthermore, it is isomorphic to
a subgroup of (Z[i]/βZ[i])×.

19



20 2.1. Lemniscatic Extensions

Proof. Let G = Gal(Lβ/Q(i)) and σ ∈ G. Since σ permutes the roots
of Dβ, σ(sl(2$/β)) = sl(2γ$/β) for some odd γ ∈ Z[i]. Then, if
sl(2γ$/β) = sl(2α$/β) for some α ∈ Z[i] odd, by applying Proposition
1.32, it follows that γ ≡ α (mod β), so γ is well defined mod β. We denote
σ by σγ . Using that σ is an automorphism, we get

(σγ ◦ σα)(sl(2$/β)) = σγ(σα(sl(2$/β))) = σγ(sin(2α$/β)) =
= σγ(sl(2$/β)Rα(sl4(2$/β))) =
= sl(2γ$/β)Rα(sl4(2γ$/β)) = sl(2γα$/β),

that is, σγ ◦ σα = σαγ . The inverse of σγ is of the form σα, and
since σγ ◦ σα = σγα = σ1, it follows that γα ≡ 1 (mod β), and in partic-
ular γ ∈ (Z[i]/βZ[i])×. Putting it all together, we conclude that the map
ρ : G→ (Z[i]/βZ[i])× given by σγ 7→ γ is a monomorphism.

In fact, the homomorphism ρ given in the previous proof is an isomor-
phism, but we still need some work to prove this result. However, knowing
that ρ is an injective homomorphism is enough to prove sufficiency in Abel’s
theorem. In order to do this, we need to know the order of the group
(Z[i]/βZ[i])×.
Lemma 2.3. Let β ∈ Z[i] and assume β = πe1

1 . . . πerr is the factorization of
β as a product of prime elements in Z[i]. Then (Z[i]/βZ[i])× is isomorphic
to the direct product ⊗j(Z[i]/πejj Z[i])×.
Proof. It is a direct application of the Chinese Reminder Theorem.

Theorem 2.4. Let β ∈ Z[i]. Then

|(Z[i]/βZ[i])×| = N(β)
∏
π|β

(
1− 1

N(π)

)
,

where π runs over the irreducible factors of β.
Proof. Let π ∈ Z[i] be prime. Since Z[i] is a principal ideal domain, we have
Bezout’s identity, and as a consequence,

(Z[i]/πeZ[i])× = (Z[i]/πeZ[i])\(πZ[i]/πeZ[i]).
But, as a group, πZ[i]/πeZ[i] ' Z[i]/πe−1Z[i], thus |(Z[i]/πeZ[i])×| =
N(πe) − N(πe−1) = N(πe)(1 − 1/N(π)). Consequently, if β = πe1

1 . . . πerr
is the factorization of β as a product of prime elements in Z[i], then, by
applying the previous lemma we get that

|(Z[i]/βZ[i])×| =
r∏
j=1
|(Z[i]/πejj Z[i])×| =

r∏
j=1

N(πejj )
(

1− 1
N(πj)

)
=

= N(β)
r∏
j=1

(
1− 1

N(πj)

)
.
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Proposition 2.5. Let n ∈ N be odd. Then

|(Z[i]/nZ[i])×| = ϕ(n)n
∏
p≡3

(
1 + 1

p

)∏
p≡1

(
1− 1

p

)
,

where p runs over the prime factors of n and the congruences are mod 4.

Proof. Recall that the odd primes in Z[i] are the rational primes
p ≡ 3 (mod 4) and a + bi with a2 + b2 ≡ 1 (mod 4) a rational prime. As-
sume n = pe1

1 . . . perr α
t1
1 . . . αtss , where pi are primes of the first kind and

αj = aj + bji primes of the second kind. Notice that if a+ bi divides n, then
a− bi divides n too, so p = a2 + b2 divides n and the factor (1− 1/(a2 + b2))
appears twice in the product of the previous theorem. Applying this theo-
rem,

|(Z[i]/nZ[i])×| = N(n)
r∏
i=1

(
1− 1

p2
i

)
s∏
j=1

(
1− 1

a2
j + b2

j

)2

=

= n2 ∏
p≡3

(
1− 1

p2

)∏
p≡1

(
1− 1

p

)2
=

= ϕ(n)n
∏
p≡3

(
1 + 1

p

)∏
p≡1

(
1− 1

p

)
,

where we have used that

ϕ(n) = n
∏
p|n

(
1− 1

p

)
.

Corollary 2.6. Let n ∈ N be odd. Then (Z[i]/nZ[i])× is a 2-group if and
only if n is a product of different Fermat primes.

Proof. By the previous proposition, ϕ(n) divides |(Z[i]/nZ[i])×|, so if this
number is a power of 2, then ϕ(n) = 2m and as in Theorem A.5, it fol-
lows that n is product of different Fermat primes. Conversely, assume
n = p1 . . . pr with pi Fermat primes. By the previous proposition,

|(Z[i]/nZ[i])×| = ϕ(n)n
∏
p≡3

p+ 1
p

∏
p≡1

p− 1
p

=

= ϕ(n)
∏
p≡3

(p+ 1)
∏
p≡1

(p− 1) .

Since n is the product of different Fermat primes, ϕ(n) = 2m. Clearly,
p = 22k + 1 ≡ 1 (mod 4) unless p = 3, but in this case, p + 1 is a power
of 2 too, so we conclude that (Z[i]/nZ[i])× is a 2-group.
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We now prove sufficiency in Abel’s theorem.

Theorem 2.7. Let n = 2sp1 . . . pr with pi different Fermat primes. Then the
lemniscate can be divided into n equal arcs using straightedge and compass.

Proof. By the previous corollary, |(Z[i]/p1 . . . prZ[i])×| is a power of 2, and
since |(Z[i]/2sZ[i])×| = N(2s) = 22s, it follows by the Chinese Reminder
Theorem that |(Z[i]/nZ[i])× is a power of 2. Consequently, the degree of
the extension Ln/Q is a power of 2, and by Theorem A.9, the elements in
Ln are constructible.

2.2 Lemniscatic Extensions: Odd Prime Case

In this section we consider the lemniscatic extension Lβ/Q(i) for β ∈ Z[i]
an odd Gaussian prime and show that the Galois group is isomorphic to
(Z[i]/βZ[i])× in this case. For this we need to prove that the polynomial
Pβ(x4) ∈ Q(i)[x] is irreducible and, as in the case of the cyclotomic polyno-
mials, we’ll achieve this goal by applying Eisenstein’s irreducibility criterion.
Notice that Eisenstein’s criterion, usually proved in Z[x], works aswell for
polynomials with coefficients in any unique factorization domain R.

In the sequel, let ϕ(z) = ∑∞
i=1 ciz

i, ci ∈ Q, c1 = 1, be a formal power
series and R ⊆ C a unique factorization domain with field of fractions K.

Lemma 2.8. There exist polynomials Si ∈ Q[x] with degSi < i such that
for any β ∈ C,

ϕ(βz) =
∞∑
i=1

(βSi(β))ϕ(z)i.

Proof. We expand formally the series ∑∞k=1 bkϕ(z)k.

ϕ(βz) =
∑
k≥1

bkϕ(z)k =
∑
k≥1

bk

 ∞∑
i≥1

ciz
i

k =
∑
k≥1

i1,...,ik≥1

bkci1 . . . cikz
i1+···+ik =

=
∑
l≥1

(
∑
k≤i

i1,...,ik≥1
i1+···+ik=i

bkci1 . . . cik)zi

Use that c1 = 1 and equate the coefficient of zi with ciβ
i to get for i ≥ 1,

ciβ
i =

∑
1≤k≤i

i1,...,ik≥1
i1+···+ik=i

bkci1 . . . cik = bi +
∑

1≤k<i
i1,...,ik≥1
i1+···+ik=i

bkci1 . . . cik .
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Now the proof follows defining inductively the polynomials Si, by S1(x) = 1
and for s ≥ 2,

Si(x) = cix
i−1 −

∑
k<i

i1,...,ik≥1
i1+···+ik=i

Sk(x)ci1 . . . cik .

Lemma 2.9. Assume Si is nonzero and for β ∈ R set bi(β) = βSi(β),
which we assume to be in R. Let β ∈ R be prime and i < |R/(β)|. Then β
divides bi(β) in R.
Proof. Let Si = Ti/si, with Ti ∈ Z[x] and si ∈ Z coprime with the greatest
common divisor of the coefficients of Ti. Then, for any β ∈ R,

sibi(β) = siβSi(β) = βTi(β).

Let α ∈ R be a prime dividing si. Since α | si, and si is coprime with the
greatest common divisor of the coefficients of Ti, it follows that α - Ti, so
Ti 6= 0 in R/(α)[x]. Since α | sibi(β) = βTi(β), then Ti(β)β = 0, and since
R/(α) is an integral domain, then either β = 0 or Ti(β) = 0. In particular,
for all β ∈ R such that β 6= 0, Ti(β) = 0, so deg Ti ≥ deg Ti ≥ |R/(α)| − 1.
Since deg Ti < i, it follows that i ≥ |R/(α)|.

Now, since β ∈ R is prime dividing βTi(β), it divides sibi(β) too. How-
ever, if i < |R/(α)|, it cannot divide si, and since β is prime, it must divide
bi(β) in R.

Theorem 2.10. Let P,Q ∈ R[x] such that Q(0) ∈ R×, P is monic and
deg P = |R/(β)| − 1. If there is some prime β ∈ R for which

ϕ(βz) = ϕ(z)P (ϕ(z))
Q(ϕ(z)) ,

then P is irreducible over K.
Proof. We have

∞∑
i=1

biϕ(z)i = ϕ(βz) = ϕ(z)P (ϕ(z))
Q(ϕ(z)) ,

where bi = βSi(β). Define B(z) = ∑∞
i=1 biz

i so that B(z)Q(z) = zP (z).
Since Q(0) is a unit, 1/Q(z) can be expanded as geometric series with
coefficients in R, and consequently, so can B(z). Since β is a prime, by
the previous lemma for any i < |R/(β)|, β divides bi, so z|R/(β)|−1 divides
B(z)Q(z) = zP (z) in R/(β)[x]. In particular, z|R/(β)|−2 divides P (z) in
R/(β)[x]. Since P is monic with deg P = |R/(β)| − 1, it follows that β di-
vides all coeficients of P , except the leading coefficient. Furthermore, since
the value of B(z)/z at z = 0 is b1 = βS1(β) = β, then P (0) = Q(0)β
with Q(0) a unit, so β2 does not divide the independent term of P . Thus,
applying Eisenstein’s criterion, it follows that P is irreducible over K.
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Theorem 2.11. Let β ∈ Z[i] be odd prime. Then Irr(sl(2$/β),Q) =
Pβ(x4), and so, Gal(Lβ/Q(i)) ' (Z[i]/βZ[i])×.

Proof. Observe that Pβ(x4) is monic by Theorem 1.29 and that deg Pβ(x4) =
|Z[i]/βZ[i]| − 1 by Proposition 1.33. Then, by Proposition 1.25, it follows
that for any β ∈ Z[i] odd prime

sl(βz) = sl(z)Pβ(sl4(z))
Qβ(sl4(z))

,

where P,Q ∈ Z[i][x] with Q(0) = 1, and sl can be expanded as a formal
power series around 0, sl(z) = z+ . . ., with the coefficient of z being 1 since
sl′(0) = 1. Applying the previous theorem, Pβ(x4) is irreducible over Q(i).
Since sl(2$/β) is one of the roots of Pβ(x4), then Irr(sl(2$/β),Q(i)) =
Pβ(x4), and so, Lβ is the splitting field of this polynomial. Consequently,
|Gal(Lβ/Q(i))| = |Z[i]/βZ[i]|−1 = |(Z[i]/βZ[i])×|, and the monomorphism
of Theorem 2.2 is an isomorphism.

The technique used to prove the irreducibility of Pβ(x4) is useful in other
scenarios too. In fact, in Problem 9, Theorem 2.10 is used to prove the
irreducibility of Tp(x)/x over Q, where Tp is the p-th Chebyshev polynomial
and p is a prime number.

2.3 Lemniscatic Extensions: General Case

In this section we prove that for any odd Gaussian integer β, the Galois
group of the lemniscatic extension Lβ/Q(i) is isomorphic to (Z[i]/βZ[i])×.
Furthermore, we will conclude Abel’s theorem.

We know that Lβ is the splitting field of Dβ(x) = ∏
γ(x−sl(2$

β γ)), where
(with some abuse of notation) γ runs over the elements in Z[i]/βZ[i]. The
elements in this ring can be enumerated according to their greatest common
divisor with β. More precisely, for α ∈ Z[i] odd, we say that α is normalised
if α ≡ 1 (mod 2(1 + i)). Then Z[i]/βZ[i] is the disjoint union of the sets
{γ|(γ, β) = α}, where α runs over the normalised divisors of β.

Definition 2.2. Let β ∈ Z[i] be odd and define the β-th lemniscatic poly-
nomial as

Λβ(x) =
∏

γ∈(Z[i]/βZ[i])×
(x− sl(2$

β
γ)).

Proposition 2.12. Let β ∈ Z[i] be odd. Then Λβ ∈ Z[i][x] and

Dβ =
∏
α|β

Λα,

where α runs over the normalised divisors of β.
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Proof. σ ∈ Gal(Lβ/Q(i)) permutes the elements sl(2$
β γ), γ ∈ (Z[i]/βZ[i])×,

so σ(Λβ(x)) = Λβ(x), for all σ ∈ Gal(Lβ/Q(i)), and thus Λβ(x) ∈ Q(i)[x].
Since the elements sl(2$

β γ) are roots of the monic polynomial Dβ ∈ Z[i][x],
they are algebraic integers, and thus, so are the coefficients of Λβ. Since the
ring of integers of Q(i) is Z[i], it follows that Λβ ∈ Z[i][x].

For the second part we will show that both polynomials have the same
roots. Since α is a divisor of β, it is clear that the roots of ∏α|β Λα are
all roots of Dβ. Now let sl(2$

β γ), γ ∈ (Z[i]/βZ[i])×, be a root of Dβ.
By removing common factors, we can write sl(2$

β γ) = sl(2$
α ρ) with α a

normalised divisor of β and ρ ∈ (Z[i]/αZ[i])×, so this element is a root of
Λα too.

We now aim to show that the polynomials Λβ are irreducible. In order
to do that, let f ∈ Q(i)[x] be an irreducible monic factor of Λβ in Q(i)[x].
By Gauss’s Lemma, f ∈ Z[i][x]. Let sl(2$

β γi), 1 ≤ i ≤ r be the roots of f
and for π ∈ Z[i] an odd prime define

fπ =
r∏
i=1

(x− sl(2$
β
πγi)).

Lemma 2.13. Let β ∈ Z[i] be odd and f an irreducible factor of Λβ. If
π ∈ Z[i] is an odd prime, then fπ ∈ Z[i][x]. Furthermore, if π - β, then
fπ | Λβ.

Proof. Since sl(2$
β γi) is a root of f ∈ Z[i][x], which is monic and irreducible,

f = Irr(sl(2$
β γi),Q(i)). Thus, if σ ∈ Gal(Lβ/Q(i)), then σ(sl(2$

β γi)) =
sl(2$

β γj) for some j, and so,

σ

(
sl(2$

β
πγi)

)
= σ

(
sl(2$

β
γi)Rπ

(
sl4(2$

β
γi)
))

=

= sl(2$
β
γj)Rπ

(
sl4(2$

β
γj)
)

= sl(2$
β
πγj).

Hence, σ(fπ(x)) = fπ(x) for any σ ∈ Gal(Lβ/Q(i)), and so fπ ∈ Q(i)[x].
All sl(2$

β πγi) are roots of Dβ ∈ Z[i][x], hence algebraic integers, so the
coefficients of fπ are algebraic integers too. Since, the algebraic integers of
Q(i) are Z[i], we conclude that fπ ∈ Z[i][x].

That fπ divides Λβ if π - β follows from the fact that sl(2$
β πγi) are roots

of Λβ for all i, because (π, β) = 1.

Lemma 2.14. Let R be a unique factorization domain with a maximal
ideal M such that R/M is a finite field with q elements. Consider f ∈ R[x]
monic with roots u1, . . . , un and assume f ∈ R/M[x] is separable. Then, if
g(x) = ∏r

i=1(x− uqi ), it follows that f = g.
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Proof. Notice first that g ∈ R[x]. In fact, if F is the fraction field of R and
L is the splitting field of f over F , then g ∈ F [x] since it is fixed under
Gal(L/F ). Then, since all its roots are integral and the ring of integers of
F is R, it follows that g ∈ R[x]. Since (x− u) | (xq − uq), then f(x) | g(xq).
Thus, f(x) | g(x)q, since R/M is a finite field of q elements and a = aq

for any element in this field. Now, since f is separable, f = f1 . . . fn, with
fi ∈ R/M[x] irreducible and distinct. Then, for each i, fi | g implies that
f | g too. Both g and f are monic with the same degree, so g = f .

Proposition 2.15. Let β ∈ Z[i] be odd and f an irreducible factor of Λβ.
Let π ∈ Z[i] be an odd prime such that π does not divide the discriminant
of Λβ, ∆(Λβ), and π - β. Then, f = fπ.

Proof. Assume f 6= fπ. Notice that they are both monic and have the same
degree. Since f is irreducible, they are coprime, so ffπ | Λβ.

By Theorem 2.11, Pπ(x4) is an Eisenstein monic polynomial of degree
Nπ) − 1, so xPπ(x4) ≡ xNπ) (mod π). By (the proof of) Theorem 1.29,
Pπ(x) = xdQπ(1/x) with d = deg(Qπ(x)), so Qπ has the same coefficients as
Pπ but in reversed order. In particular, it follows that Qπ(x4) ≡ 1 (mod π).
Consequently,

xRπ(x4) = xPπ(x4)
Qπ(x4) ≡ x

N(π) (mod π).

Now let p ⊆ OLβ be a prime ideal containing π. Then, since sl(2$
β πγi) =

sl(2$
β γi)Rπ(sl(2$

β γi)), we have that sl(2$
β πγi) ≡ sl(2$

β γi)N(π) (mod p). Now
define

f̃π(x) =
r∏
i=1

(
x− sl(2$

β
γi)N(π)

)
.

Similarly as in Lemma 2.13, σ(f̃π(x)) = f̃π(x) for any σ ∈ Gal(Lβ/Q(i)),
since σ(sl(2$

β γi) = sl(2$
β γj), so f̃π(x) ∈ Q(i)[x]. Furthermore, since its

roots are algebraic integers, its coefficients are also algebraic integers, so
f̃π(x) ∈ Z[i][x]. Now, since sl(2$

β πγi) ≡ sl(2$
β γi)N(π) (mod p), it follows

that f̃π ≡ fπ (mod p). But, since π ∈ p ∩ Z[i] is prime, πZ[i] ⊆ p ∩ Z[i] is a
maximal ideal, so πZ[i] = p ∩ Z[i], and, f̃π = fπ (mod π).

On the other hand, notice that R = Z[i] is a unique factorization domain
with maximal ideal M = πZ[i] such that R/M is a finite field with q = N(π)
elements, and that f and f̃π satisfy the conditions of Lemma 2.14. Hence,
f ≡ f̃π (mod π). Indeed, notice that f is separable in R/M[x] because Λβ
is separable, as π - ∆(f).

Combining both congruences, it follows that fπ ≡ f (mod π). In partic-
ular, since ffπ | Λβ, then f2 | Λβ (mod π), and so, Λβ is not separable mod
π. However, since π - ∆(Λβ), Λβ should be separable mod π. This way we
reach a contradiction, so we conclude that it must be f = fπ.

Theorem 2.16. Let β ∈ Z[i] be odd. Then Λβ is irreducible over Q(i).
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Proof. Consider f ∈ Z[i][x] an irreducible factor of Λβ as before. Let
sl(2$

β γi) be any root of f . Define η to be the product of all primes in
Z[i] dividing ∆(Λβ) but not dividing β. Let sl(2$

β α) be any root of Λβ. By
the Chinese reminder theorem, there exists some ω ∈ Z[i] such that

ω ≡ αγ−1
i (mod β), ω ≡ 1 (mod 2(1 + i)), ω ≡ 1 (mod η).

In particular, ω is odd, and ω = π1 . . . πk, where πi ∈ Z[i] are odd normalized
primes coprime with β∆(Λβ). Then, iterating Proposition 2.15, it follows
that f = fπ1 = fπ1π2 = · · · = fπ1π2...πk . Thus,

sl
(2$
β
α

)
= sl

(2$
β
αγ−1

i γi

)
= sl

(2$
β
ωγi

)
= sl

(2$
β
π1 . . . πkγi

)
is a root of fπ1π2...πk = f . Hence, f and Λβ have the same roots, and since
Λβ is separable and monic, it follows that f = Λβ. So in particular, Λβ is
irreducible over Q(i).

Corollary 2.17. Let β ∈ Z[i] be odd. Then Gal(Lβ/Q(i)) ' (Z[i]/βZ[i])×.

Proof. Theorem 2.2 shows that Gal(Lβ/Q(i)) is isomorphic to a subgroup
of (Z[i]/βZ[i])×, so it suffices to show that they have the same cardinal.
Since sl(2$

β ) is a root of the irreducible polynomial Λβ, it follows that
Irr(sl(2$

β ),Q(i)) = Λβ, so in particular,

|Gal(Lβ/Q(i))| = [Lβ : Q(i)] = deg(Λβ) = |(Z[i]/βZ[i])×|.

This is the main result concerning this chapter, and it is analogue to the
cyclotomic extensions having Galois grouop isomorphic to (Z/nZ)×. With
this result and thanks to the previous work we have done, we are able to
finally prove Abel’s theorem on the lemniscate.
Theorem 2.18 (Abel’s theorem). Assume that the lemniscate can be divided
into n equal arcs using straightedge and compass. Then, n = 2sp1 . . . pr with
pi different Fermat primes.

Proof. In this case, the number sl(2$
n ) is contructible, so |Gal(Q(sl(2$

n ))/Q)|
is a power of 2 by Theorem A.10. Now, since

|Gal(Q(sl(2$
n

))/Q)| = |Gal(Ln/Q(i))| = |(Z[i]/nZ[i])×|,

it follows that |(Z[i]/nZ[i])×| is a power of 2 too, and then, by Corollary 2.6,
that n = 2sp1 . . . pr with pi different Fermat primes.

Theorems 2.7 and 2.18 together give a characterization of when the lem-
niscate can be divided into n equal arcs using straightedge and compass in
terms of the factorization of n, which is the analogue of Theorem A.12 for
the lemniscate.





Chapter 3

The lemniscate and Elliptic
Curves

In this chapter we study the relationship of the lemniscate with the theory
of elliptic curves. It happens that sl is an elliptic function with complex
multiplication, which explains why lemniscatic extensions are abelian.

3.1 Introduction to Elliptic Curves

In this section we provide a brief introduction to the theory of elliptic curves.
We start with some basic definitions.

Definition 3.1. Let ω1, ω2 ∈ C be such that {ω1, ω2} is an R-basis of C.
The lattice they generate is L = {mω1 + nω2 | m,n ∈ Z}. The fundamental
parallelogram associated to this lattice is F = {aω1 + bω2 | 0 ≤ a, b ≤ 1}.

Definition 3.2. Given a lattice L, a meromorphic function f on C is said
to be an elliptic function relative to L if f(z+α) = f(z) for all α ∈ L. The
set of elliptic functions relative to L is denoted EL.

Example 3.1. sl is an elliptic function over the lattice L generated by
(1± i)$. Indeed, it is double periodic by Theorem 1.22, and meromorphic
by Theorem 1.23.

Observe that any f ∈ EL is determined by its values on F , and that
its values on opposite sides of F are equal. Thus, an elliptic function is a
function on the set F with opposite sides glued together, that is, a torus
which can be described as the quotient C/L.

The next proposition is extremely useful to show when two elliptic func-
tions are equal.

Proposition 3.2. Let f ∈ EL and assume f has no poles in F . Then f is
constant.

29
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Proof. Since f has no poles in F , then by periodicity f is an entire function.
Also, since F ⊆ C is compact, f is bounded in F , and by periodicity it
follows that f is bounded in C. The result now follows from Liouville’s
Theorem (every bounded entire function is constant).

Obviously EL is a field. Furthermore, if f ∈ EL, f ′ ∈ EL. We have the
following corollary.
Corollary 3.3. If f, g ∈ EL, f, g 6= 0, have the same zeros and poles (count-
ing multiplicities), then f = cg for some c ∈ C.

Proof. Notice that f/g ∈ EL has no poles in F , so the result follows from
the previous proposition.

Corollary 3.4. Elliptic functions are surjective.

Proof. Let f ∈ EL be non-constant, and assume there exists some z0 ∈ C
for which f(z) 6= z0 for all z ∈ C. Then, the function g(z) = 1/(f(z)− z0) is
non-constant and holomorphic in C. Furthermore, g ∈ EL by the periodicity
of f , so by Proposition 3.2 g is constant, reaching a contradiction.

The following example of an elliptic function is the Weierstrass ℘-function
relative to a lattice L. As we will see, this function turns out to be very
useful when studying elliptic curves.
Definition 3.3. Let L be any lattice. The Weierstrass ℘-function relative
to L, denoted ℘(z;L) or simply ℘, is the function

℘(z) = 1
z2 +

∑
α∈L
α 6=0

( 1
(z − α)2 −

1
α2

)
. (3.1)

Theorem 3.5. Let L be any lattice. Then ℘ ∈ EL, and its only poles are
double poles at each lattice point.

Proof. See Proposition 7 in page 17 of [Kob84].

It is not clear in general what are the zeros of ℘. However, it is a
general result that an elliptic function f ∈ EL has the same number of zeros
and poles in C/L counting multiplicities (see Proposition 5 in page 16 of
[Kob84]), so ℘ has two simple zeros in C/L or a double zero.

The situation for ℘′ is more clear. In fact, notice that the only pole of
℘′ in C/L is a triple pole at 0, so ℘′ must have three zeros counting mul-
tiplicities. Using the fact that ℘ is even, one checks that $1/2, $2/2 and
($1 +$2)/2 are the three (simple) zeros of ℘′ in C/L.

An important property of the Weierstrass ℘-function is that any elliptic
function can be expressed as a rational expression in ℘ and ℘′, as it can
be seen in Proposition 8 of [Kob84]. For example, we have the following
expression for sl.
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Example 3.6. If L be the lattice generated by (1± i)$, then

sl(z) = −2 ℘(z)
℘′(z) .

To prove this it suffices to show that sl · ℘′ and ℘ have the same poles and
zeros with same multiplicities in C/L, because then, by Corollary 3.3, it
follows that sl(z)℘′(z) = c℘(z) for some c ∈ C, which can be checked to be
−2 by comparing the first term of the Laurent series of sl · ℘′ and ℘.

Now, one can check that the only poles and zeros of sl · ℘′ in C/L are
a double pole at 0 and double zero at $. Since the only pole of ℘ in C/L
is a double pole at 0, it only remains to show that ℘ has a double zero at
$. Indeed, since ℘(iz) = −℘(z) and i$ ≡ $ in C/L, ℘($) = 0, and since
℘′($) = 0, we conclude the desired result.

As another example, notice that the elliptic functions ℘′(z)2 and

(℘(z)− ℘(ω1/2))(℘(z)− ℘(ω2/2))(℘(z)− ℘((ω1 + ω2)/2)

have the same poles and zeros in F counting multiplicities, so by Corollary
3.3 they are equal except for a constant. By comparing the first term of
their Laurent series one checks that this constant is 1.

Thus, (℘′)2 satisfies a cubic equation in ℘ with roots ℘($1/2), ℘($2/2)
and ℘(($1 + $2)/2). Furthermore, one can check that these roots are dif-
ferent, see for example [Kob84], which will be important when defining the
concept of an elliptic curve. Say this cubic equation is given by

℘′(z)2 = a℘(z)3 + b℘(z)2 + c℘(z) + d.

Then, the coefficients can be computed by comparing the Laurent ex-
pansions of these two functions. In fact, as it is shown in [Kob84],

℘′(z)2 = 4℘(z)3 − g2(L)℘(z)− g3(L), (3.2)

where
g2(L) = 60

∑
α∈L
α 6=0

1
α4 , g3(L) = 140

∑
α∈L
α 6=0

1
α6 . (3.3)

Definition 3.4. Let K be any subfield of C and let a, b ∈ K. An elliptic
curve over K is a projective curve E in CP2 given by an equation of the
form y2 = f(x), where f(x) = 4x3 − ax− b is separable over K.

The points in E that have coordinates in some field extension L of K
are the L-points of E, sometimes denoted E(L).

The relationship between ℘ and ℘′ given by (3.2) tells us that these two
functions parametrize the elliptic curve given by y2 = 4x3−g2x−g3. In fact,
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consider the following function, defined from the torus C/L to the projective
space CP2 and given by

z 7→
{

(℘(z) : ℘′(z) : 1), if z 6= 0,
(0 : 1 : 0), if z = 0,

(3.4)

Proposition 3.7. The map (3.4) is a one-to-one correspondence between
C/L and the elliptic curve y2 = 4x3 − g2x− g3 in CP2.

Proof. See Proposition 10 in page 24 of [Kob84].

In fact, this correspondence between C/L and the elliptic curve E can
be used to carry over the addition law in the torus to E. With some abuse
of notation, let Pz denote the point (℘(z), ℘′(z)) in E.
Definition 3.5. Let E be an elliptic curve over K and let Pz1 and Pz2 be
two points in E. Define Pz1 + Pz2 = Pz1+z2 .
Theorem 3.8. Let E be an elliptic curve over K. Then, the addition law
defined previously gives E a group structure.

Proof. It follows from using correspondence (3.4) to translate the addition
law in C/L to E.

The remarkable fact about this addition law is that if P1 = (x1, y1) and
P2 = (x2, y2), then, the coordinates of P1 + P2 can be expressed directly in
terms of x1, x2, y1, y2 by rational functions, without the need of using the
correspondence (3.4) to compute them. This gives a very nice geometric
interpretation of this operation (the tangent-chord rule), which Kobltiz ex-
plains further in [Kob84]. This relation can also be thought of as an addition
law for ℘, analog to the addition law for sl.

To end this section, we will study the torsion points of an elliptic curve.
These points are the ones which have finite order with respect to the addition
law in the elliptic curve.
Proposition 3.9. Let E be an elliptic curve over K. Then a point Pz has
finite order dividing n if and only if z = α/n, for some α ∈ L. Furthermore,
E[n], the subgroup of E(C) with points of order dividing n, is isomorphic to
Z/nZ× Z/nZ and it has n2 points.

Proof. Clearly, a point Pz has finite order dividing n if and only if nz ∈ L,
that is, when z = α/n, for some α ∈ L.

There is a natural isomorphism from R/Z × R/Z to C/L induced by
the map (a, b) 7→ aω1 + bω2. Thus, we can see the correspondence (3.4)
as a one-to-one correspondence between R/Z × R/Z and E. Under this
correspondence, the torsion subgroup of the elliptic curve is the image of
Q/Z×Q/Z. In particular, the subgroup of elements of order dividing n, is
the image of 1

nZ/Z×
1
nZ/Z ' Z/nZ×Z/nZ and we conclude the result.
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This situation is the two-dimensional analog of the circle group, whose
torsion subgroup is precisely the group of all roots of unity, that is, all e2πiz

for z ∈ Q/Z.
Just as the cyclotomic fields are central to algebraic number theory, we

would expect that the fields obtained by adjoining the coordinates of torsion
points of elliptic curves should have a special significance, so we study them.

Let K(E[n]) denote the subfield of C obtained by adjoining to K the x-
and y-coordinates of all points in E[n].

Lemma 3.10. Let L/K be any field extension, and σ : L → C be a field
embedding fixing K. Consider an elliptic curve E over K and let P ∈ E[n]
with coordinates on L. Then σ(P ) ∈ E[n].

Proof. It follows from the fact that σ induces an automorphism of the group
of L-points in the elliptic curve.

Proposition 3.11. Let E be an elliptic curve over K. Then, K(E[n])/K is
a (finite) Galois extension and its Galois group is isomorphic to a subgroup
of GL2(Z/nZ).

Proof. K(E[n]) is obtained by adjoining a finite set of complex numbers
which are permuted by any automorphism of C fixing K, so K(E[n])/K is
a (finite) Galois extension.

Recall that E[n] is isomorphic to Z/nZ×Z/nZ by Proposition 3.9. Since
any σ ∈ Gal(K(E[n])/K) gives an automorphism of E[n] by the previous
lemma, σ can be viewed as an invertible linear map of Z/nZ × Z/nZ to
itself, so Gal(K(E[n])/K) is isomorphic to a subgroup of GL2(Z/nZ).

Notice that this is a generalization of the situation with the n-th cyclo-
tomic field Q(ζn), with ζn = e2πi/n. Indeed, recall that Gal(Q(ζn)/Q) is iso-
morphic to (Z/nZ)× ' GL1(Z/nZ). However, one major difference between
both cases is that Gal(Q(ζn)/Q) ' GL1(Z/nZ), while Gal(K(E[n])/K) is
only isomorphic to a subgroup of GL2(Z/nZ).

3.2 The lemniscate elliptic curve

The lemniscate function sl is an elliptic function with period lattice L
generated by (1 ± i)$. By the correspondence between lattices and el-
liptic curves, L defines an elliptic curve with Weierstrass equation y2 =
4x3 − g2(L)x− g3(L), where g2(L) and g3(L) are given by (3.3).

The goal of this section is to compute this curve. In order to do that, we’ll
work out first the elliptic curve associated to the sublattice L′ = 〈2$, 2$i〉
and then derive the elliptic curve associated to L from it.

Similarly as before, let y2 = 4x3 − g2(L′)x− g3(L′) be the elliptic curve
associated to the lattice L′. Since L′ is invariant under multiplication by i,
g3(L′) is easy to compute.
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Proposition 3.12. g3(L′) = 0.

Proof. Since iL′ = L′ we can replace α by iα in the series defining g3(L′),
and this changes the sign of the sum but not its value, hence g3(L′) = 0.

The computation of g2(L′) requires more work. For the sake of conve-
nience, let’s define the sets

L0 = 〈$,$i〉; L1 = {n+mi

2 $ | n,m odd}; L2 = {n+mi

2 $ | n 6≡ m (mod 2)}.

Proposition 3.13.

sl′(z)
sl(z) =

∑
α∈L0

z3

z4 − α4 −
∑
β∈L1

z3

z4 − β4 . (3.5)

Proof. Notice that sl′(z)/sl(z) is an elliptic function over L with only simple
poles at each α ∈ L0 and β ∈ L1. On the other hand, it is routine to check
that the series on the right hand side define a holomorphic function f(z) for
z outside L0 and L1, where it has simple poles (see Lemmas 1 and 2 in page
17 of [Kob84]).

To show periodicity of f , consider f as the limit of the partial sums over
the elements of L0 and L1 in the squares Bn = [−n, n]$× [−n, n]$i. Then,
f(z + $)− f(z) and f(z + $i)− f(z) can be expressed as the limit of the
corresponding partial sums, which happen to converge to 0.

Applying Proposition 3.2 to the difference of the function sl′/sl and f ,
which have the same simple poles with same residues, this difference must
be constant. One checks that this constant is 0 by comparing the first term
of the Laurent expansions of both sides of the equation (see (3.6)).

Corollary 3.14. Let |Li| =
∑
α−4, where the sum extends to the non-zero

elements in Li. Then |L1| − |L0| = −2/5.

Proof. Multiplying equation (3.5) by z and then expanding both sides as
Taylor series, we obtain

1− 2
5z

4 + . . . = 1 + (|L1| − |L0|)z4 + . . . , (3.6)

from which the result follows.

Proposition 3.15. |L1| = −5|L0|.

Proof. Notice that 1
2L0 = L0 ∪ L1 ∪ L2, where the union is disjoint. Hence

it is clear that |12L0| = |L0|+ |L1|+ |L2|. One can check that L2 = (1+i)
2 L1,

so we get |L2| = −4|L1|. Furthermore, one has |12L0| = 16|L0|. Combining
all together, we get that |L1| = −5|L0|.
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Corollary 3.16. |L0| = 1/15. Consequently,
∑
z−4 = $4/15, where the

sum extends to the non-zero Gaussian integers.

Proof. It follows from combining Corollary 3.14 and Proposition 3.15.

Notice the analogy with the Bassel problem, where ∑ z−2 = π2/6 and
the sum extends to the positive integers.

Proposition 3.17. The elliptic curve associated to L′ is y2 = 4x3 − 1
4x.

Proof. Recall that g3(L′) = 0 by Proposition 3.12. Now, notice L′ = 2L0,
so |L0| = 16|L′|. By the previous corollary |L0| = 1/15, so |L′| = 1/240.
Then, g2(L′) = 60|L′| = 1/4, and we conclude the result.

Corollary 3.18. The elliptic curve associated to L is y2 = 4x3 + x.

Proof. Observe that L′ = (1 + i)L. Then, by replacing α by (1 + i)α in
the sums of g2(L′) and g3(L′), we obtain the relations g2(L′) = −1/4 g2(L)
and g3(L′) = −i/8 g3(L). By the previous proposition g2(L′) = −1/4 and
g3(L′) = 0, so g2(L) = 1 and g3(L) = 0, and we conclude the result.

Corollary 3.19. sl(2$/n) ∈ Q(E[n]), where E[n] denotes the n-torsion
points of the elliptic curve y2 = 4x3 + x.

Proof. Let z = 2$/n and ℘ be the Weierstrass function associated to the
lattice L. Since nz ∈ L, it follows that Pz = (℘(z), ℘′(z)) ∈ E[n], by the
discussion at the end of section 3.1. Then, since Q(E[n]) is the field obtained
by adjoining to Q all the x- and y-coordinates of the points in E[n], it
follows that ℘(z), ℘′(z) ∈ Q(E[n]). Finally, by example 3.6, it follows that
sl(z) = −2℘(z)/℘′(z), so we conclude that sl(z) ∈ Q(E[n]).

3.3 Elliptic Curves with complex multiplication

The fact that the lemniscatic extensions are abelian follows from the more
general fact that any elliptic curve defined over a field K with complex
multiplication satisfies that Gal(K(E[n])/K) is almost abelian.

The aim of this section is to develop a more restricted version of the
theory of complex multiplication to prove that all lemniscatic extensions
Ln/Q(i) are abelian, including those with n even.

Definition 3.6. A lattice L ⊆ C has complex multiplication (CM for short)
if there exists γ ∈ C, γ 6∈ R, such that γL ⊆ L. An elliptic curve associated
to a lattice with CM is said to have CM.

Notice that if γL ⊆ L, then K = Q(γ) is an imaginary quadratic field.
This is because in this case (γ$1, γ$2) = ($1, $2)M for some M ∈M2(Z),
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so γ is an eigenvalue of M and thus a root of its characteristic polynomial,
which is quadratic.

In the sequel, we will assume the much stronger condition γL = L.
In fact, notice that this condition implies that γ ∈ O×K (because γ is an
eigenvalue of a matrix M ∈ GL2(Z)), so γ 6= ±1 implies K = Q(i) or Q(ω),
with ω = e2πi/3, and so there are only two essentially different possibilities
for γ, namely γ = i or ω.

Proposition 3.20. Let L be a lattice with CM by γ. Then, the map mγ

which sends (x, y) 7→ (γ−2x, γ−3y) is an automorphism of the elliptic curve
associated to L.

Proof. Since γL = L, multiplication by γ induces an automorphism on the
torus C/L → C/L, which corresponds to the automorphism of the elliptic
curve given by (℘(z), ℘′(z)) 7→ (℘(γz), ℘′(γz)). Now we compute ℘(γz):

℘(γz) = 1
γ2z2 +

∑
α∈L
α 6=0

( 1
(γz − α)2 −

1
α2

)
=

= 1
γ2

 1
z2 +

∑
α∈L
α 6=0

(
1

(z − α
γ )2 −

1
(αγ )2

) = γ−2℘(z),

where the last equality holds because γ−1L = L. Taking derivatives in
℘(γz) = γ−2℘(z) we obtain ℘′(γz) = γ−3℘′(z), concluding the proof.

Proposition 3.21. In the conditions of the previous proposition, let K be a
field containing γ and the coefficients of the associated elliptic curve. Then,
the elements of Gal(K(E[n])/K) and mγ, viewed as endomorphisms of the
group E[n], commute.

Proof. Ineed, let σ be any automorphism of Gal(K(E[n])/K). Since σ fixes
γ ∈ K, then (σ ◦mγ)(x, y) = σ((γ−2x, γ−3y)) = (γ−2σ(x), γ−3σ(y)). Simi-
larly, (mγ ◦ σ)(x, y) = mγ(σ(x), σ(y)) = (γ−2σ(x), γ−3σ(y)).

To conclude from the previous proposition that the Galois group is
abelian we apply a general result on centralizers of matrices.

Lemma 3.22. Let M ∈M2(Z/nZ) be such that M is not scalar over Z/pZ
for every prime p | n. Then, there exists some P ∈ GL2(Z/nZ) such that
P−1MP is of the form

( 0 1
a b

)
for some a, b ∈ Z/nZ.

Proof. By the Chinese Reminder Theorem it suffices to prove the result for
n = pe with p prime.

Since M is not scalar over Z/pZ, there exists some u ∈ Z/pZ × Z/pZ
such that {u, uM} is a Z/pZ-basis of this space. Let P ∈M2(Z/pZ) be the
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matrix whose rows are u and uM . Since {u, uM} is a basis, P is invertible
over Z/pZ, and so, P , viewed as a matrix in M2(Z), has det(P ) coprime
with p, so coprime with n too. This means that P is invertible over Z/nZ,
so {u, uM} is a Z/nZ-basis of Z/nZ×Z/nZ, which implies that M is similar
to a matrix of the desired form.

Proposition 3.23. For any commutative ring R, the centralizer in M2(R)
of a matrix C =

( 0 1
a b

)
is the R-submodule of M2(R) generated by the iden-

tity matrix and C. In particular, this centralizer is a commutative subring
of M2(R), so in the conditions of Lemma 3.22 the centralizer of M is a
commutative subring of M2(Z/nZ).

Proof. The centralizer in M2(R) of C =
( 0 1
a b

)
is the set {B ∈ M2(R) |

BC = CB}. By considering an arbitrary matrix B ∈ M2(R) of the form
( x y
z w ) and imposing it to satisfy BC = CB, one gets the equations z = ay

and w = x+ by, which imply that B = xI2 + yC. Hence, the centralizer is
generated by I2 and C, and since they commute, it is abelian.

Definition 3.7. A lattice L ⊆ C is invariant under conjugation if L = L.
An elliptic curve associated to a lattice invariant under conjugation is said
to be invariant under conjugation.

Notice that in this case the conjugation map C/L → C/L is well defined,
and so it induces and endomorphism on the elliptic curve associated to L,
which is in fact the map (x, y) 7→ (x, y).

Proposition 3.24. Assume the conditions of Proposition 3.21, and also
that L is invariant under conjugation. Then, the endomorphism mγ acting
on E[p] is not scalar for any prime p | n.

Proof. If p = 2 then E[2] ' Z/2Z× Z/2Z, by Proposition 3.9, and so mγ is
scalar if and only if it is the identity. Now, since z = $1/2 is of the form
α/2 for some α ∈ L, Pz = (x, 0) ∈ E[2]. Then, mγ(x, 0) = (γ−2x, 0), so mγ

is not the identity and thus not scalar.
If p > 2 then E[p] has at least 9 elements by Proposition 3.9, so there

exists some (x, y) ∈ E[p] with x, y 6= 0. If we assume that mγ is scalar, then
it commutes with the conjugation map, which implies both γ−2 = γ−2 and
γ−3 = γ−3. However, this is a contradiction because γ = i or ω.

Theorem 3.25. Any elliptic curve defined over a field K with CM by γ ∈ K
and invariant under conjugation satisfies that Gal(K(E[n])/K) is abelian.

Proof. Any σ ∈ Gal(K(E[n])/K) commutes with the action of mγ in E[n]
by Proposition 3.21, so Gal(K(E[n])/K) is contained in the centralizer of
mγ in End(E[n]) ' M2(Z/nZ), which is commutative by Propositions 3.23
and 3.24.
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Corollary 3.26. The lemniscatic extensions are abelian.

Proof. The lemniscatic elliptic curve y2 = 4x3 + x over Q(i) has CM by
i, since iL = L for L = 〈(1 ± i)$)〉. Furthermore, it is invariant under
conjugation since 1± i = 1 ∓ i and $ ∈ R. Applying the last theorem, it
follows that Gal(Q(E[n], i)/Q(i)) is abelian. Since sl(2$/n) ∈ Q(E[n]) by
Corollary 3.19, we conclude by Galois theory that Gal(Q(sl(2$/n), i)/Q(i))
is abelian.

Notice that Corollary 3.26 is true for both n odd or even.

3.4 Final comments

Let ζn be a primitive n-th root of unity and consider the cyclotomic field
Q(ζn). Then, Gal(Q(ζn)/Q) ' (Z/nZ)×, and it is in particular abelian. The
Kronecker-Weber Theorem provides a partial converse.

Theorem 3.27 (Kronecker-Weber). Every finite abelian extension of Q is
contained inside some cyclotomic field.

In fact, one could ask for analogues of the Kronecker-Weber Theorem for
any number field. If K is any number field, what are the algebraic numbers
necessary to construct all abelian extensions of K analogue to the roots of
unity in the Kronecker-Weber Theorem? This problem is known as Hilbert’s
twelfth problem and it remains unsolved in this generality.

However, there are some particular cases in which Hilbert’s twelfth prob-
lem has been solved. For example, consider the following theorem concerning
the abelian extensions of Q(i), due to Takagi (see [Tak03]).

Theorem 3.28 (Takagi). Every finite abelian extension of Q(i) is contained
inside some lemniscatic extension.

The case when the field is quadratic imaginary is known as Kronecker’s
Jugendtraum, and in this context Hilbert’s twelfth problem is solved. In
what follows, we will provide some ideas in order to explain the solution.

Let K be a quadratic imaginary field and OK = Z[τ ] its ring of integers.
Define LK to be the set of lattices of C with complex multiplication by OK
modulo homotheties. Here, two lattices L and L′ are homothetic if L′ = λL
for some λ ∈ C. Then, the ideal class group of K acts naturally on LK .

Indeed, let L ∈ LK be some lattice. If a ⊆ OK is an ideal, then aL ∈ LK
is another lattice too (this is basically because aL ⊆ L has rank 2 as a
Z-module). Notice also that since a is an ideal of OK , aL has complex
multiplication by OK . Furthermore, if a and b belong to the same ideal
class, then a = λb for some λ ∈ K, so aL = λbL and they are homothetic.
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The action of the ideal class group of K on LK turns out to be regular,
as it can be seen in Proposition 1.2 of [Sil94]. In particular, this implies
that there are at most hK (the class number of K) different lattices (up to
homotheties) with complex multiplication by OK .

Now we introduce the j-invariant of an elliptic curve, which is an impor-
tant invariant of elliptic curves. As we will see later, the j-invariant plays
an important role in constructing a solution to Kronecker’s Jugendtraum.

Definition 3.8. Let E be an elliptic curve over K given by the Weierstrass
equation y2 = 4x3 − g2x − g3. The j-invariant associated to this elliptic
curve is defined as

j(E) = 1728 g3
2

g3
2 − 27g2

3
.

Notice that g3
2− 27g2

3 is non-zero since it is the discriminant of the cubic
polynomial 4x3 − g2x − g3, which has three different roots by construction
(see equation (3.2)).

The j-invariant is a fundamental invariant of elliptic curves, since it
distinguishes isomorphic elliptic curves.

Definition 3.9. Two elliptic curves E and E′ are said to be isomorphic if
they there exists an isomorphism between E and E′ as algebraic varieties
which sends the identity of E to the identity of E′.

Theorem 3.29. Two elliptic curves E and E′ are isomorphic if and only
if j(E) = j(E′).

Proof. See Proposition 1.4 in page 50 of [Sil86].

There is a correspondence between isomorphism classes of elliptic curves
and lattices modulo homotheties, so there are finitely many possible values
for the j-invariants of elliptic curves with complex multiplication by OK . In
fact, there are at most hK possible such values.

On the other hand the group of field automorphisms of C acts on the set
of elliptic curves with complex multiplication by OK acting on the corre-
sponding Weierstrass equations and therefore permutes the possible values
of j. Since there are finitely many of them, we conclude that j(E), the
j-invariant of an elliptic curve E with complex multiplication by OK , is
algebraic and |Q(j(E)) : Q| ≤ hK . In fact, |K(j(E)) : K| = hK and even
more, K(j(E)) is the Hilbert class field of K (the maximal abelian extension
of K which is unramified everywhere).

Of course, if K has class number 1, as in the case when K = Q(i), then
j(E) is a rational number. In fact it is an integer because in general j(E) is
an algebraic integer (which is more difficult to prove).
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In general, K(j(E), E[n])/K is a Galois extension but not always abelian.
However, K(j(E), E[n])/K(j(E)) is indeed abelian. To get genuine abelian
extensions ofK one has to adjoin E[n] only partially (usually the x-coordinates
will do) and these extensions provide the solution to Kronecker’s Jugend-
traum (see Corollary 5.7 in chapter 2 of [Sil94]).



Appendix A

Straightedge and compass
constructions

In this appendix we formalize what is a straightedge and compass construc-
tion introducing the concepts of constructible points and constructible num-
bers. We go on to characterize the regular polygons that can be constructed
with straightedge and compass.

Definition A.1. A point P in the plane is constructible with straightedge
and compass or constructible for short, if there is a sequence of points P0 =
(0, 0), P1 = (1, 0), P2, . . . , Pn = P such that for all 2 ≤ i ≤ n, one of the
following cases hold:

(i) Pi is the intersection point of two lines, each of which goes through
two points Pj and Pk with j, k < i.

(ii) Pi is one of the intersection points of two circles, each of which has
center in a point Pj and passes through another point Pk, with j, k < i.

(iii) Pi is one of the intersection points of a line joining two points Pj and
Pk with j, k < i and a circle with center Pl passing trough another
point Pm with l,m < i.

Definition A.2. A complex number z = a+ bi is constructible if the point
P = (a, b) is constructible.

Remark. Notice that most of the classical constructions using straightedge
and compass determine constructible points. In particular, the following
points are constructible.

(i) The midpoint of a segment with constructible endpoints.

(ii) The points that complete a parallelogram, given three constructible
points.
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(iii) The midpoint of an arc with constructible endpoints and constructible
center (bisection of an angle).

(iv) Given three constructible points A, B and C in a circle, the point X
in the same circle such that >BX = >

AC (so that the arc >AX is the sum
of >AB and >

AC; angle addition).

Theorem A.1. The set of constructible numbers C is a subfield of C.

Proof. C is an additive subgroup of C, because 0 ∈ C by definition and
it is closed for addition (by (ii) in the previous remark) and for taking
additive inverses. For multiplication we consider the numbers in polar form.
To prove that C is closed for multiplication, it suffices to prove closeness
for multiplication of constructible positive real numbers, since adding the
arguments can be done by (iv) in the remark. Similarly, to prove that C−{0}
is closed for inversion, it is enough to consider real positive numbers. Both
constructions are immediate from the pictures in Figure A.1.

i

bi

a ab0

i

ai

1/a 10

Figure A.1: Constructions for the product of two real constructible numbers
and the inverse of a real constructible number.

Theorem A.2. C is closed under taking square roots.

Proof. Consider the numbers in polar form. To compute the square roots of
a constructible number we need to bisect the argument ((iii) in the remark)
and take the square root of its modulus (see Figure A.2). Since the angle at
di is a right angle, the two small triangles that share side from 0 to di are
similar. Consequently 1/d = d/r, which shows that d =

√
r is constructible.

−1 r

di

0

Figure A.2: Construction of the square root of a real constructible number.
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Corollary A.3. Let F ⊆ C be a field such that there exists a tower of
subfields

Q = F0 ⊆ F1 ⊆ . . . ⊆ Fn = F, [Fi : Fi−1] = 2, 1 ≤ i ≤ n. (A.1)

Then F ⊆ C.

Proof. Obviously F0 = Q ⊆ C. Argue by induction using the fact that since
[Fi : Fi−1] = 2, Fi = Fi−1(

√
u) for some u ∈ Fi−1 and C is closed under

taking square roots.

Theorem A.4. Let z ∈ C. Then there exists a tower of fields as in (A.1)
such that z ∈ Fn. As a consequence z is algebraic and [Q(z) : Q] is a power
of 2.

Proof. Observe that if (x, y) is a point of intersection between two lines, two
circles or a line and a circle whose equations have coefficients in some field
F , then |F (x, y) : F | ≤ 2. Let z be a constructible number and take the
sequence of numbers 0, 1, z1, . . . , zn = z, where zk = xk + iyk, given by the
constructibility of z. Consider the tower of fields

Q ⊂ Q(i) = F0 ⊆ F1 ⊆ . . . ⊆ Fn, where Fk = Fk−1(xk, yk) for 1 ≤ k ≤ n.

Then, |Fk : Fk−1| ≤ 2 for 1 ≤ k ≤ n and z ∈ Fn.

As a consequence of the previous theorem, the three classical problems
have a negative solution.

(i) The duplication of the cube is not possible with straightedge and com-
pass because 3√2 is not constructible since [Q( 3√2) : Q] = 3.

(ii) The angle trisection is not possible with straightedge and compass.
Indeed, observe that the trisection of 60° implies the constructibility
of cos 20°, which contradicts that the minimal polynomial of cos 20° is
4x3 − 3x− 1/2.

(iii) The squaring of the circle is not possible with straightedge and com-
pass because π is trascendental and thus not constructible.

Theorem A.5. If a regular polygon of n sides is constructible then n =
2mp1 . . . pr, where m ≥ 0 and p1, . . . , pr are Fermat primes.

Proof. The constructibility of a regular polygon of n sides is equivalent to
the constructibility of a primitive n-th root of unity, say ζn = e

2πi
n . If ζn

is constructible, then [Q(ζn) : Q] = ϕ(n) is a power of 2 by Theorem A.4.
Recall that if n = qa1

1 . . . qarr , where qi are distinct primes, then

ϕ(n) = qa1−1
1 (q1 − 1) . . . qar−1

r (qr − 1).

If qi is odd, then qai−1
i (qi − 1) is a power of 2, and so ai = 1 and qi is a

Fermat prime.
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A number z with [Q(z) : Q] a power of 2 is not necessarily constructible.
We need a stronger condition, namely, that the normal closure of Q(z)/Q
has a power of 2 degree. We procede to prove that in fact this condition is
necessary for z to be constructible.

Lemma A.6. Let E ⊆ F ⊆ C be a field extension where [F : E] = 2 and
E/Q is a Galois extension. Then, there exists a Galois extension E′/Q such
that F ⊆ E′ and [E′ : E] is a power of 2.

Proof. Since [F : E] = 2, F = E(
√
u) for some u ∈ E. Let p(x) be the

minimal polynomial of u over Q and consider g(x) = p(x2). Since E/Q is
Galois, it is the splitting field of some polynomial f(x) ∈ Q[x]. Let E′ be
the splitting field of f(x)g(x). Then E′/Q is Galois and clearly E ⊆ E′. If
u1 = u, u2, . . . , uk are the roots of p(x), then±√u1, ±√u2, . . . ,±

√
uk are the

roots of g(x). As a consequence, E′ = E(√u1, . . . ,
√
uk) = F (√u2, . . . ,

√
uk)

and [E′ : F ] is a power of 2.

Theorem A.7. Consider a tower of fields as in (A.1). Then, there exists
a Galois extension E/Q such that F ⊆ E and [E : Q] is a power of 2.

Proof. Proceed by induction. The case n = 0 is trivial. Assume the result
is true for n− 1 and let’s prove it for n. By induction, there exists a Galois
extension E/Q such that Fn−1 ⊆ E and [E : Q] is a power of 2. Since
Fn = Fn−1(

√
u), apply the previous lemma with F = E(

√
u).

Theorem A.8. Constructible numbers are cointained in Galois extensions
of Q of degree a power of 2.

Proof. Let z ∈ C and consider an extension as in (A.1), which exists by
Theorem A.4. By the previous theorem, there exists a Galois extension
E/Q such that z ∈ E and [E : Q] is a power of 2.

Observe that if z is a root of an irreducible quartic with Galois group
not a 2-group then Q(z)/Q has degree 4 but according to this last theorem
z is not constructible.

Theorem A.9. Let E/Q be a Galois extension of degree a power of 2. Then
E ⊆ C.

Proof. Consider the group G = Gal(E/Q). Since [E : Q] is a power of 2, G
is a 2-group. By a standard property of 2-groups, there exists a sequence of
subgroups

1 = N0 ≤ N1 ≤ . . . ≤ Nn = G

such that |Ni : Ni−1| = 2 for 1 ≤ i ≤ n. Applying the Galois correspondence,
we get a tower of fields as in (A.1). By Corollary A.3, we get that E ⊆ C.

Theorem A.10. Let z ∈ C. Then z is constructible if and only if it is
algebraic and the normal closure of Q(z)/Q has degree a power of 2.
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Proof. Assume that z is constructible. Then by Theorem A.4, z is algebraic,
and by Theorem A.8 the normal closure of Q(z)/Q has degree a power of
2. For the converse, assume that z is algebraic and that the normal closure
of Q(z)/Q, say F , has degree a power of 2. Then F/Q is Galois and has
degree a power of 2, so by Theorem A.9, F ⊆ C and in particular z is
constructible.

Theorem A.11. Assume that n = 2mp1 . . . pr where m ≥ 0 and pi are
Fermat primes. Then, the regular polygon with n sides is constructible.

Proof. In this case ϕ(n) is a power of 2, so for a primitive n-th root of unity
ζn, Q(ζn)/Q is a Galois extension of degree a power of 2, which by Theorem
A.10 is equivalent to ζn being constructible.

Together, Theorems A.5 and A.11 characterize which regular polygons
are constructible in terms of the number of sides they have. This character-
ization is known as Gauss-Wantzel Theorem.

Theorem A.12 (Gauss-Wantzel Theorem). A regular polygon with n sides
is constructible if and only if n = 2mp1 . . . pr where m ≥ 0 and pi are
Fermat primes.

Proof. It follows from combining Theorems A.5 and A.11.
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Problems

Problem 1. Find a rational parametrization of the lemniscate. (Hint. By
considering the intersection of the lemniscate with the lines y = mx one
gets an irrational parametization, which is transformed into a trigonometric
parametrization with the change m = cos t, which, as usual, finally yields a
rational parametrization in terms of s = tan t/2.)

Solution. Consider the intersection of the lemniscate with the lines y = mx,
that is, the system {

(x2 + y2)2 = x2 − y2

y = mx.

After solving this system, one gets an irrational parametrization, which is
transformed into a trigonometric parametrization with the change m = cos t.
To obtain a rational parametrization, use the change s = tan t/2, which
finnaly yields to 

x = s(1 + s2)
s4 + 1

y = s(1− s2)
s4 + 1 .

Problem 2. Compute the area enclosed by the lemniscate. (Hint. An easy
computation using polar coordinates. Explain how to do it using cartesian
coordinates.)

Solution. By symmetry, we only need to compute the area enclosed in the
first quadrant. Using the polar equation of the lemniscate, we get that

A = 4
∫ π/4

0

r2

2 dθ =
∫ π/4

0
2 cos 2θdθ = 1.

To compute the area in cartesian coordinates, we first write y as a function of
x from the equation (x2+y2)2 = x2−y2 and then compute the corresponding

47
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integral

A =
∫ 1

0

√
−(2x2 − 1) +

√
(2x2 + 1)2 − 4x2(x2 − 1)

2 dx.

Using the rational parametrization obtained in the previous exercise, this
integral is equivalent to the following rational integral.

A =
∫ ∞
−∞

s(1− 2s3 − s4 − 6s5)
(1 + s4)2 ds.

Problem 3. The goal of this problem is to relate$ and π with the arithmetic-
geometric mean of two positive numbers.

(i) Given 0 < a < b define the sequence x1 = a, x2 = b, x2n+1 = √x2nx2n−1,
x2n+2 = (x2n +x2n−1)/2, n ≥ 1. Show that this sequence converges to
a limit a < l < b, which is called the aritmetic-geometric mean of a and
b. We denote it agm(a, b). (Hint. For any x, y > 0,√xy ≤ (x + y)/2,
so the odd terms of {xn} increase and the even terms decrease).

(ii) Let

I(a, b) =
∫ 1

0

dt√
(1− t2)(a2 + (b2 − a2)t2)

.

Show that the changes of variables t2 = x2

x2+b2 and x = s +
√
s2 + ab

transform this integral into

I(a, b) =
∫ +∞

0

dx√
(x2 + a2)(x2 + b2)

=
∫ +∞

0

ds√
(s2 + a2

1)(s2 + b2
1)
,

where a1 =
√
ab and b1 = a+b

2 . Conclude that I(a, b) = I(a1, b1) and
I(a, b) = π

2agm(a,b) .

(iii) Show that $ = π
agm(1,

√
2) .

Solution.

(i) Observe that since √xy ≤ (x+ y)/2,∀x, y > 0, it follows that x2n+1 <
x2n+2,∀n ≥ 1. From here we deduce that the sequence of odd (even)
terms is increasing (decreasing):

x2n+3 = √x2n+2x2n+1 >
√
x2n+1x2n+1 = x2n+1.

This implies that the sequence of odd (even) terms is upper (lower)
bounded, x2n+1 < x2n < x2 = b, and hence it has limit l1. Similarly,
the sequence of even terms has limit l2. By taking limits in any of the
expressions defining the sequence, l1 = l2 = l, and so, the sequence is
convergent with limit l.
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(ii) It is a matter of routine calculations to check that the specified changes
of variables transform the integral into the equivalent expressions.
From this expressions it is clear that I(a, b) = I(a1, b1), and as a
consequence, I(a, b) = I(x2n+1, x2n),∀n ≥ 1. In order to be able to
take limits in this last expression, we need to apply the dominated con-
vergence theorem. Since {xn} is bounded, there exists some constant
c > 0 for which∫ +∞

0

ds√
(s2 + a2

n)(s2 + b2
n)
≤
∫ +∞

0

ds√
(s2 + c2)(s2 + c2)

=

=
∫ +∞

0

ds

(s2 + c2) = π

2c <∞.

As a consequence, by taking limits, I(a, b) = I(agm(a, b), agm(a, b))
and from here we deduce that

I(a, b) = I(agm(a, b), agm(a, b)) =

=
∫ +∞

0

ds√
(s2 + agm(a, b)2)(s2 + agm(a, b)2)

= π

2agm(a, b) .

(iii)

agm(1,
√

2) = 2
π
I(1,
√

2) = 2
π

∫ 1

0

dt√
1− t4

= $

π
.

Problem 4. Define the lemniscate cosine function cl by cl(x) = sl($2 − x).

(i) Use the addition formula for sl to prove that

sl2 x+ cl2 x+ sl2 x cl2 x = 1.

(ii) Show that sl′ x = (1 + sl2 x) clx.

(iii) Prove that
sl(u+ v) = slu cl v + clu sl v

1− slu sl v clu cl v .

Solution.

(i) By the addition formula and the identity for sl′ we get

cl(x) = sl($/2− x) =
±
√

1− sl4(x)
1 + sl2(x)

.

From which follows that

(cl(x) + cl(x)sl2(x))2 = 1− sl4(x).
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After expanding and factorizing accordingly, we get the following equal-
ity,

(sl2(x) + cl2(x) + sl2(x)cl2(x))(1 + sl2(x)) = |1 + sl2(x)|,

from which the result follows.

(ii) From (i) it follows that

cl2(x)(1 + sl2(x)) = 1− sl2(x).

Multiplying both sides of the equation by 1 + sl2(x) and taking square
roots, we get

|cl(x)|(1 + sl2(x)) = |sl′(x)|,

by using the formula for sl′(x). Since sl′(x) and cl(x) have the same
sign in [−$/2, 3$/2], then by periodicity they have the same sign in
R, and so we get the desired equality.

(iii) By the addition formula

sl(u+ v) = sl(u)sl′(v) + sl′(u)sl(v)
1 + sl2(u)sl2(v)

.

After multiplying and dividing by 1− sl(u)sl(v)cl(u)cl(v), one can fac-
torize the numerator into (sl(u)cl(v)+sl(v)cl(u))(1+sl2(u)sl2(v)), from
which the result follows.

Problem 5.

(i) Show that sl(mx) ∈ Q(sl(x), sl′(x)). Conclude that if the point in the
lemniscate with arc length u is constructible, so are the points with
arc length mu. In particular, if sl(2$/n) is constructible, so are all
the nth division points of the lemniscate.

(ii) Show that if sl(2$/n) and sl(2$/m) are constructible, sl(2$/l), where
l is the least common multiple of n and m, is also constructible. (Hint.
Use Bezout’s identity.)

Solution.

(i) By induction on m, we will show that both sl(mx) and sl′(mx) be-
long to F = Q(sl(x), sl′(x)). First observe that sl(0) = 0 ∈ F and
sl′(0) = 1 ∈ F . Now let m ≥ 1 and assume the result is true for all
n < m. Then, by the addition formula

sl(mx) = sl((m− 1)x+ x) = sl(x)sl′((m− 1)x) + sl′(x)sl((m− 1)x)
1 + sl2(x)sl2((m− 1)x)

.
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By the induction hypothesis sl((m− 1)x) and sl′((m− 1)x) are in F ,
and so sl(mx) ∈ F . Now consider

sl((m− 1)x) = sl(mx− x) = sl(mx)sl′(x)− sl′(mx)sl(x)
1 + sl2(x)sl2(mx)

.

From this expression we can write

sl′(mx) = sl((m− 1)x)(1 + sl2(x)sl2(mx))− sl(mx)sl′(x)
sl(x) ,

and since sl(x), sl′(x), sl((m− 1)x) and sl(mx) are in F , it follows that
sl′(mx) ∈ F .

Now assume that the point in the lemniscate (x, y) with arc length u
is constructible. Then

sl(u) = r =
√
x2 + y2

is constructible, and since C is closed under taking square roots,

sl′(u) =
√

1− sl4(u)

is also constructible. Consequently, F ⊂ C, and thus, by part (i),
sl(mu) is constructible. In particular, this implies that the point in
the lemniscate with arc length mu is constructible.

If we assume that sl(2$/n) is constructible, then the points in the
lemniscate with arc length 2m$/n are also constructible, and thus all
nth division points of the lemniscate are constructible.

(ii) Let l = lcm(m,n) and d = mcd(m,n). By Bezout’s identity, there
exist x, y ∈ Z such that nx+my = d. Then

y

n
+ x

m
= my + nx

nm
= d

nm
= 1
l
.

Then, applying the addition formula we get

sl
(2$
l

)
= sl

(
y

2$
n

+ x
2$
m

)
=

sl
(
x2$
m

)
sl′
(
y 2$
n

)
+ sl′

(
x2$
m

)
sl
(
y 2$
n

)
1 + sl2

(
x2$
m

)
sl2
(
y 2$
n

) .

If we assume that sl(2$/m) and sl(2$/n) are constructible, then by
part (i) so are sl(2x$/m) and sl(2y$/n), and thus, sl(2$/l) is con-
structible too.
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Problem 6. Use sin((m+ 1)x) + sin((m− 1)x) = 2 sin(mx) cos(x) to prove
that there exist polynomials Pm(x) such that sin(mx) = sin(x)Pm(sin2(x))
if m is odd and sin(mx) = sin(x) cos(x)Pm(sin2(x)) if m is even. Find
recurrence formulas for these polynomials.

Solution. Proceed by induction. The cases m = 0 and m = 1 trivially hold
true with P0(x) = 0 and P1(x) = 1. Let m ≥ 3 and assume that the result
is true for n ≤ m. Then, if m+ 1 is odd

sin((m+ 1)x) = 2 sin(mx) cos(x)− sin((m− 1)x) =
= 2 sin(x) cos2(x)Pm(sin2(x))− sin(x)Pm−1(sin2(x)) =
= sin(x)(2Pm(sin2(x))− 2 sin2(x)Pm(sin2(x))− Pm−1(sin2(x))) =
= sin(x)Pm+1(sin2(x)),

where Pm+1(x) = 2Pm(x)(1− x)− Pm−1(x).

Similarly, when m+ 1 is even we have

sin((m+ 1)x) = 2 sin(mx) cos(x)− sin((m− 1)x) =
= 2 sin(x) cos(x)Pm(sin2(x))− sin(x) cos(x)Pm−1(sin2(x)) =
= sin(x) cos(x)Pm+1(sin2(x)),

where Pm+1(x) = 2Pm(x)− Pm−1(x).

Problem 7. The polynomials xPn(x4) (n odd) and x(1 − x2)Pn(x4) (n
even) are called the nth division polynomials of the lemniscate. Show that
sl(m2$

n ), m ∈ Z are real roots of modulus smaller than 1 of these polyno-
mials.

Solution. By periodicity of sl, we have that sl(2m$) = sl(0) = 0, for all
m ∈ Z. Thus, sl(n2m$

n ) = 0. If n is odd, then

0 = sl
(
n

2m$
n

)
= sl

(2m$
n

)
Rn

(
sl4
(2m$

n

))
=

= sl
(2m$

n

) Pn
(
sl4
(

2m$
n

))
Qn

(
sl4
(

2m$
n

)) .
Thus, sl(2m$

n ) is a root of the polynomial xPn(x4) for all m ∈ Z.

Conversly, assume that r is a real root of xPn(x4) with modulus |r| ≤ 1
and let u = arcsl(r), so that sl(u) = r. Then

0 = rPn(r4) = sl(u)Pn(sl4(u)) = sl(u)Pn(sl4(u))
Qn(sl4(u))

= sl(u)Rn(sl4(u)) = sl(nu).
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Since the zeros of sl are of the form 2m$ with m ∈ Z, it follows that
r = sl(2m$

n ) for some m ∈ Z.

In the case where n is even, we proceed analogously. Using the formula
for sl′, we get

0 = sl
(
n

2m$
n

)
= sl

(2m$
n

)
sl′
(2m$

n

)
Rn

(
sl4
(2m$

n

))
=

= sl
(2m$

n

)√
1− sl4

(2m$
n

)Pn (sl4
(

2m$
n

))
Qn

(
sl4
(

2m$
n

)) .
By taking squares at both sides, this means that

0 = sl2
(2m$

n

)(
1− sl4

(2m$
n

))
P 2
n

(
sl4
(2m$

n

))
.

Hence, sl(2m$
n ) is a root of the polynomial x2(1−x4)P 2

n(x4). Since 1−x4 =
(1 + x2)(1− x2) and (1 + x2) has no real roots, it follows that sl(2m$

n ) is a
root of the polynomial x2(1− x2)P 2

n(x4).

Conversly, assume that r is a real root of x2(1 − x2)P 2
n(x4) with mod-

ulus |r| ≤ 1 and let u = arcsl(r), so that sl(u) = r. Then r is a root of
x2(1− x4)P 2

n(x4), and thus

0 = sl2(u)(1− sl4(u))P 2
n(sl4(u)).

Then, dividing by Q2
n(4(u)) at both sides and then taking square roots, it

follows that
0 = sl(u)sl′(u)Rn(sl4(u)) = sl(nu).

Similarly, as before, since the zeros of sl are of the form 2m$ with m ∈ Z,
it follows that r = sl(2m$

n ) for some m ∈ Z.

Problem 8. Let n be an odd number and Pn the polynomial in Problem 6.

(i) Show that sinnx = (−1)(n−1)/2Tn(sin x), where Tn is the n-th Cheby-
shev polynomial, so Tn(x) = xPn(x2). (Chebyshev polynomials are
defined by the relation cosnx = Tn(cosx).)

(ii) Show that the roots of Tn are

{sin(kπ/n)|k ∈ Z} = {sin(kπ/n), k = 0, . . . , n− 1} =
= {sin(2kπ/n)|k ∈ Z, k odd}.

Conclude that Q(sin(2π/n)) is the splitting field of Tn over Q, so
Q(sin(2π/n))/Q is a Galois extension.
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(iii) Let G be the Galois group of the extension Q(sin(2π/n))/Q. If σ ∈ G,
then σ(sin(2π/n)) = sin(2kπ/n) for some odd integer k, which is
unique mod n. Show that the map ρ : G → (Z/nZ)×, σk 7→ k is a
well-defined injective homomorphism.

(iv) Show that Q(i, sin(2π/n)) = Q(i, ζn), where ζn is a primitive n-th root
of unity. (Hint. Use the double angle formula for sin(4π/n).) What is
the degree of Q(sin(2π/n))/Q? Conclude that the homomorphism ρ in
(iii) is an isomorphism. (Hint. The key is that i /∈ Q(ζn) because iζn
is a primitive 4n-th root of unity.). Show also that the Galois group
of Q(i, sin(2π/n))/Q(i) is isomorphic to (Z/nZ)×.

(v) Show that if p is an odd prime, Tp(x)/x is an irreducible polynomial
over Q(i).

Solution. (i) It follows by replacing x by π/2− x in the definition of Tn.

(ii) Clearly Tn(sin kπ/n) = 0 and the first equality holds. On the other
hand, deg(Tn) = n so these are all roots of Tn. To show the second
equality, notice that if k is odd, then sin kπ

n = sin(π − kπ
n ) = sin( (n−k)π

n )
and n − k is even. Then every root is of the form sin 2kπ

n , and if k is
even consider sin 2kπ

n = sin(2π + kπ
n ) = sin(2(n+k)π

n ). Since sin(k 2π
n ) =

(−1)(n−1)/2Tk(sin 2π
n ) ∈ Q(sin 2π

n ) for k odd, Tn splits over Q(sin 2π
n ) and so

it is the splitting field of Tn.

(iii) Since σ permutes the roots of Tn, σ(sin(2π/n)) = sin(2kπ/n)
for some odd integer k. Then, if sin(2kπ/n) = sin(2mπ/n), using that
sin x = sin y if and only if y = (−1)lx + lπ and that k,m, n are odd, we
conclude that l is even and that k is unique mod n. If we denote σ by σn
we get

(σk · σm)(sin(2π/n)) = σk(σm(sin(2π/n))) = σk(sin(2mπ/n)) =
= σk((−1)(n−1)/2Tm(sin(2π/n))) =
= (−1)(n−1)/2Tm(sin(2kπ/n)) = sin(2kmπ/n),

that is, σk · σm = σkm. The inverse of σk is of the form σm, and
σk · σm = σkm = σ1, so kl ≡ 1 (mod n), and so (k, n) = 1. Consequently,
the map ρ : G→ (Z/nZ)× given by σk 7→ k is a well-defined monomorphism.

(iv) The inclusion Q(i, sin(2π/n)) ⊆ Q(i, ζn) follows from the fact
that sin(2π/n) = (ζ − ζ−1)/2i. By (ii), sin(4π/n) ∈ Q(i, sin(2π/n)),
and using the double angle formula, it follows that
cos(2π/n) = sin(4π/n)/(2 sin(2π/n)) ∈ Q(i, sin(2π/n)). As a consequence,
ζn ∈ Q(i, sin(2π/n)), and the reverse inclusion holds.
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Observe [Q(ζn, i) : Q(ζn] ≤ [Q(i) : Q] = 2. Assume it is 1. Then,
i ∈ Q(ζn), so in particular iζn ∈ Q(ζn). Since n is odd, iζn is 4n-th primi-
tive root of unity, and we get a contradiction by studying the degrees of the
tower of fields Q ⊂ Q(iζn) ⊂ Q(ζn). Thus, [Q(ζn, i) : Q(ζn] = 1, from which
we deduce that [Q(ζn, i) : Q] = 2ϕ(n).

As a consequence, [Q(sin(2π/n), i) : Q] = 2ϕ(n). Similarly as before,
[Q(sin(2π/n), i) : Q(sin(2π/n))] ≤ 2, and since Q(sin(2π/n)) ⊂ R, we
conclude that [Q(sin(2π/n)) : Q] = ϕ(n). Then, |G| = ϕ(n), and since
|(Z/nZ)×| = ϕ(n) too, it follows that the monomorphism ρ of (iii) is an
isomorphism. Consider the map

Gal(Q(sin(2π/n), i)/Q(i))→ Gal(Q(sin(2π/n))/Q)
σ 7→ σ∣∣Q(sin(2π/n))

.

It is a well defined homomorphism, and clearly injective. Since both exten-
sions have the same degree, it is also bijective and thus and isomorphism.
Consequently, Q(i, sin(2π/n))/Q(i) is isomorphic to (Z/nZ)×.

(v) If p is an odd prime then [Q(sin(2π/p), i) : Q(i)] = ϕ(p) = p− 1.
Then, since sin(2π/p) is a root of the polynomial Tp(x)/x and it has de-
gree p − 1, it follows that Tp(x)/x is the minimal polynomial of sin(2π/p)
over Q(i) and hence irreducible.

Problem 9. Let p be an odd prime number and Tp the p-th Chebyshev
polynomial. Prove using Theorem 2.10 that Tp(x)/x is irreducible over Q.

Solution. deg(Tp(x)/x) = p − 1 = |(Z/pZ)×|. By Problem 8, Tp(x)/x =
Pn(x2), where Pn is defined in Problem 6, so by induction, the leading
coefficient of Tp(x)/x is 2p−1 and no odd prime divides it. Furthermore, this
problem says that

sin px = (−1)(p−1)/2Tp(sin x),

where Tp ∈ Z[x], and sin x has power series expansion sin x = x+ . . . Hence,
applying Theorem 2.10, it follows that Tp(x)/x is irreducible over Q.
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[Tak03] Teji Takagi. Über die im Bereich der rationalen complexen Zahlen
Abel’schen Zahlkörper. Ph.D. thesis, J. College of Science, Imperial
Univ. of Tokyo, 1903.

57




