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Abstract: In this paper, we prove fixed point theorem via orthogonal Geraghty type α-admissible
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1. Introduction

In 1922, Banach initiated the famous fixed point result called Banach contraction principle.
This is one of the most important and fundamental results in complete metric space. The
generalization of b-metric space was introduced by Bakhtin and Czerwik [1,2]. It is the most
widely applied fixed point result in many branches of Mathematics and Sciences. A number
of authors have defined contractive type mappings on b-metric spaces in many different
directions to improve the results see [3–9]. The concept of Branciari metric space was initiated
by Branciari [10] in 2000. In 2015, George et al. [11] introduced the generalization of Branciari
b-metric spaces and proved some fixed point results. Thereafter, many authors initiated and
extended the results of Branciari metric spaces and Branciari b-metric spaces and proved fixed
point theorems in such spaces, see [12,13] and the references therein.

In 1973, one of the interesting results was given by Geraghty [14] in the setting
of complete metric spaces by considering an auxiliary function. Several papers have
been improved to the Geraghty contraction mapping type of fixed point theory in com-
plete b-metric spaces refers to see [15–17]. Very recently, Samet et al. [18] initiated
α-admissible mapping and also proved the fixed results for α-ψ-contractive mappings.
Tunç et al. [19,20] proved the existence of solutions of some fixed results of non-linear 2D
integral equations and also found the stability, integrability and boundedness of systems of
integro-differential equations. In 2017, Eshaghi Gordji et al. [21] has established the main
idea of the orthogonality and framework to our main finding of results. And also, Eshaghi
Gordji and Habibi [22] has extended and proved some fixed point theorem in generalized
O-metric spaces. For other results related to orthogonal concepts, see [23–30].

In this paper, we introduce the fixed point theorem for an O-generalized O-Geraghty
type α-admissible (in short, O-G-α admissible) mapping on O-complete Branciari b-metric
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space and also we presented an example and application to integral equation by using our
main results.

2. Preliminaries

We recall the following definitions and results will be needed in the sequel.
The notion of b-metric space was introduced by Bakhtin [1] in 1989, as follows:

Definition 1 ([1]). Let V be a non-void set and a constant δ ≥ 1. A function wb : V × V −→ R+

is called a b-metric if the below axioms hold, for all s, υ, ϑ ∈ V :

(A1) wb(s, υ) = 0 if and only if s = υ,
(A2) wb(s, υ) = wb(υ, s),
(A3) wb(s, υ) ≤ δ[wb(s, ϑ) +wb(ϑ, υ)].

The pair (V ,wb) is said to be a b-metric space with constant δ ≥ 1.

Example 1. Let (V ,wb) be a metric space and let γ > 1, E ≥ 0 and L > 0. For s, υ ∈ V , set
P(s, υ) = Ewb(s, υ)+ Lwb(s, υ)γ. Then (V ,wb) is a b-metric space with the parameter δ = 2γ−1

and not a metric space on V .

Branciari [10] initiated the concept of Branciari metric space as follows:

Definition 2 ([10]). Let V be a non void set. A function wb : V × V −→ R+ is called a Branciari
metric if the below axioms hold, for all s, υ ∈ V :

(B1) wb(s, υ) = 0 if and only if s = υ,
(B2) wb(s, υ) = wb(υ, s),
(B3) wb(s, υ) ≤ wb(s, ω) +wb(ω, µ) +wb(µ, υ) for all distinct points ω, µ ∈ V/{s, υ}.
The pair (V ,wb) is said to be a Branciari metric space (in short, BMS).

The notion of Branciari b-metric space was initiated by George [11] as follows:

Definition 3 ([11]). Let V be a non void set and a constant δ ≥ 1. A function wb : V ×V −→ R+

is said to be a Branciari b-metric if the below axioms hold, for all s, υ ∈ V :

(B1) wb(s, υ) = 0 if and only if s = υ,
(B2) wb(s, υ) = wb(υ, s),
(B3) wb(s, υ) ≤ δ[wb(s, ω) +wb(ω, µ) +wb(µ, υ)] for all distinct points ω, µ ∈ V/{s, υ}.
Then, the pair (V ,wb) is said to be a Branciari b-metric space (in short, Bb MS).

The following proposition was proved by Erhan [13].

Proposition 1 ([13]). Let {sı̂} be a Cauchy sequence in a BMS (V ,wb) such that limı̂→∞ wb(sı̂, υ)
= 0, where s ∈ V . Then

lim
ı̂→∞

wb(sı̂, υ) = wb(s, υ), f or all υ ∈ V .

In particular, the {sı̂} does not converge to υ if s 6= υ.

Geraghty [14] introduced the Geraghty type contraction mappings who have extended
the results for Banach contraction theorem by the property defined as the set of all functions
α : R+ → [0, 1) satisfying the condition:

lim
ı̂→∞

α($ı̂) = 1 implies lim
ı̂→∞

$ı̂ = 0.

Theorem 1 ([14]). Let (V ,wb) be a complete metric space and a mapping P : V → V is satisfying
the following:
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wb(Ps,Pυ) ≤ γ(wb(s, υ))wb(s, υ), ∀s, υ ∈ V ,

where γ ∈ Fδ. Then P has a UFP (Briefly unique fixed point).

Dukic et al. [15] reconsidered the above Theorem 1 for the framework of b-metric
spaces in 2011.

Consider a b-metric space (V ,wb) with constant δ ≥ 1 and the set Fδ of all functions
γ : R+ → [0, 1

δ ), satisfying the condition:

lim
ı̂→∞

γ($ı̂) =
1
δ
⇒ lim

ı̂→∞
$ı̂ = 0. (1)

Theorem 2 ([15]). Let (V ,wb) be a complete b-metric space with constant δ ≥ 1 and P : V → V
be a self-map. Suppose that there exists γ ∈ Fδ such that,

wb(Ps,Pυ) ≤ γ(wb(s, υ))wb(s, υ)

for all s, υ ∈ V . Then P has a UFP s0 ∈ V .

Remark 1 ([15]). If we replace BMS by Bb MS, then proposition (1) holds.

Definition 4 ([15]). A mapping P : V → V is called α-admissible if for all s, υ ∈ V we have

α(s, υ) ≥ 1⇒ α(Ps,Pυ) ≥ 1,

where α : V × V → R+ is a given function.

Definition 5 ([15]). Let (V ,wb) be a Bb MS with a parameter δ ≥ 1 and let α : V × V → R+

and γ ∈ Fδ be two functions. A generalized Geraghty type α-admissible (in short, G-α-admissible)
contractive mapping P : V → V is of type-(1) if it is α-admissible and the following condition holds

α(s, υ)wb(Ps,Pυ) ≤ γ(K(s, υ))K(s, υ), ∀s, υ ∈ V ,

where

K(s, υ) = max{wb(s, υ),wb(s,Ps),wb(υ,Pυ)}.

Theorem 3 ([15]). Let (V ,wb) be a Bb MS with a parameter δ ≥ 1 and let α : V × V → R+ and
γ ∈ Fδ be two functions. Let P : V → V be an α-admissible mapping satisfying

α(s, υ)wb(Ps,Pυ) ≤ γ(K(s, υ))K(s, υ), ∀s, υ ∈ V , (2)

where

K(s, υ) = max{wb(s, υ),wb(s,Ps),wb(υ,Pυ)}.

Then P has a UFP.

We next define the Geraghty type mappings of another class on Bb MS.

Definition 6 ([15]). Let (V ,wb) be a Bb MS with a parameter δ ≥ 1 and let α : V × V → R+

and γ ∈ Fδ be two functions. Then a G-α-admissible contractive mapping P : V → V is of type-(2)
if it is α-admissible and the following condition holds

α(s, υ)wb(Ps,Pυ) ≤ γ(N (s, υ))N (s, υ), ∀s, υ ∈ V ,

where

N (s, υ) = max{wb(s, υ),
1
2
[wb(s,Ps),wb(υ,Pυ)]}.
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Remark 2 ([15]). For all s, υ ∈ V the relation wb(s, υ) ≤ N (s, υ)) ≤ K(s, υ) holds.

Theorem 4 ([15]). Let (V ,wb) be a Bb MS with a parameter δ ≥ 1 and let α : V × V → R+ and
γ ∈ Fδ be two functions. Let P : V → V be an α-admissible mapping satisfying

α(s, υ)wb(Ps,Pυ) ≤ γ(N (s, υ))N (s, υ), ∀s, υ ∈ V ,

where

N (s, υ) = max{wb(s, υ),
1
2
[wb(s,Ps),wb(υ,Pυ)]}.

Then, P has a UFP.

Gordji et al. [21] proposed an orthogonal sets and generalized Banach fixed point
theorems in 2017. He gave the following definition in [21].

Definition 7 ([21]). Let V 6= φ and ⊥⊆ V × V be a binary relation. If ⊥ satisfies the condition.

∃ s0 ∈ V : (∀s ∈ V , s ⊥ s0) or (∀s ∈ V , s0 ⊥ s),

then, it is said to be an orthogonal set (in short, O-set). We denote this O-set by (V ,⊥).

Example 2 ([21]). Let V = R+ and define s ⊥ υ if sυ ∈ {s, υ}. Then, setting s0 = 0 or s0 = 1,
(V ,⊥) is an orthogonal-set.

Definition 8 ([21]). Let (V ,⊥) be an O-set. A sequence {sı̂} is said to be an orthogonal sequence
(in short, O-sequence) if

(∀ı̂ ∈ N, sı̂ ⊥ sı̂+1) or (∀ı̂ ∈ N, sı̂+1 ⊥ sı̂).

We first introduce the concept of an O-contractions of Geraghty type mapping.

Definition 9. The triplet (V ,⊥,wb) is called an O-Bb MS if (V ,⊥) is an O-set and (V ,wb) is
Branciari b-metric wb on V with a real number δ ≥ 1.

Definition 10. Let (V ,⊥,wb) be an O-complete Bb MS. A mapping P : V → V is called orthogo-
nal continuous at s ∈ V if for each O-sequence {sı̂} in V with sı̂ → s, we have P(sı̂)→P(s).

Definition 11. Let (V ,⊥,wb) be an O-complete Bb MS. Then, V is called orthogonal complete if
each Cauchy O-sequence is convergent.

Definition 12. Let (V ,⊥,wb) be an O-complete Bb MS. A mapping P : V → V is called
⊥-preserving if Ps ⊥Pυ whenever s ⊥ υ for all s, υ ∈ V .

Here, we discuss orthogonal Geraghty type-contraction on O-complete Bb MS. Let

s ⊥ υ or υ ⊥ s, wb(Ps,Pυ) > 0 =⇒ wb(Ps,Pυ) ≤ ζwb(s, υ), ∀s, υ ∈ V ,

where 0 < ζ < 1
δ .

Definition 13. Let (V ,⊥,wb) be an O-complete Bb MS with an O-element s0 and parameter
δ ≥ 1. Let α : V × V → R+ and γ ∈ Fδ be two functions. A generalized O− G− α-admissible
contractive mapping P : V → V is of type-(1) if it is α-admissible and holds

s ⊥ υ or υ ⊥ s, wb(Ps,Pυ) > 0

⇒ α(s, υ)wb(Ps,Pυ) ≤ γ(K(s, υ))K(s, υ), ∀s, υ ∈ V ,

where
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K(s, υ) = max{wb(s, υ),wb(s,Ps),wb(υ,Pυ)}.

3. Main Results

In this section, we use O − G − α admissible contraction map to demonstrate the
unique fixed point results in O-complete Bb MS. The advantages of our main results are
as follows:

1. The following fixed point theorem of self mapping which is defined on orthogo-
nal b-metric spaces are given by using extensions of orthogonal Geraghty-alpha—
contractions.

2. To find the existence and uniqueness solution of the integral equation based on our
main results.

3. We are comparing numerical difference between an approximation solution and an
exact solution.

Theorem 5. Let (V ,⊥,wb) be an O-complete Bb MS with an O-element s0 and parameter δ ≥ 1.
Let the two given functions α : V × V → R+ and γ ∈ Fδ. Let P : V → V be an α-admissible
mapping satisfying:

(i) P is ⊥- preserving.
(ii) P is O− G− α- admissible contraction.
(iii) P is O-continuous.

Then, P has a UFP.

Proof. Consider (V ,⊥) is an orthogonal set, there exists

s0 ∈ V : ∀s ∈ V , s ⊥ s0 (or) ∀s ∈ V , s0 ⊥ s.

It follows that s0 ⊥ Ps0 or Ps0 ⊥ s0. Let

s1 = Ps0, s2 = Ps1 = P2s0 · · · sı̂ = Psı̂−1 = Pı̂s0 ∀ı̂ ∈ N.

For any s0 ∈ V , set sı̂ = Psı̂−1. Now, we assume that the below cases:

(a) If ∃ ı̂ ∈ N∪ {0} such that sı̂ = sı̂+1 then Psı̂ = sı̂. It is clear that sı̂ is a fixed point of
P. Hence, the proof is complete.

(b) If sı̂ 6= sı̂+1, for any ı̂ ∈ N∪ {0}, then we have wb(sı̂+1, sı̂) > 0, for each ı̂ ∈ N.

Since P is ⊥-preserving, we have

sı̂ ⊥ sı̂+1 (or) sı̂+1 ⊥ sı̂.

This implies that {sı̂} is an O-sequence. Since P is α-admissible, from α(s0,Ps0) ≥ 1
we have

α(s0, s1) = α(s0,Ps0) ≥ 1⇒ α(Ps0,Ps1) = α(s1, s2) ≥ 1,

and inductively,

α(sı̂, sı̂+1) ≥ 1, ∀ı̂ ∈ N. (3)

Also, from the condition α(s0, T2s0) ≥ 1 we have,

α(s0, s2) = α(s0,P2s0) ≥ 1⇒ α(Ps0,Ps2) = α(s1, s3) ≥ 1, (4)

and hence,

α(sı̂, sı̂+2) ≥ 1, ∀ı̂ ∈ N.

Define the O-sequences {qı̂} and {κı̂} as

qı̂ = wb(sı̂−1, sı̂), κı̂ = wb(sı̂−1, sı̂+1).
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We will prove that both the O-sequence {qı̂} and {κı̂} converge to 0, that is,

lim
ı̂→∞

wb(sı̂−1, sı̂) = lim
ı̂→∞

wb(sı̂−1, sı̂+1) = 0.

Regarding (3) and the fact that 0 ≤ γ($) < 1
δ , the contractive condition (2) with s = sı̂

and υ = sı̂+1 becomes

wb(sı̂, sı̂+1) = wb(P(sı̂−1, sı̂),P(sı̂1 , sı̂)

≤ α(sı̂−1, sı̂)wb(P(sı̂−1, sı̂)

≤ γ(ω(sı̂−1, sı̂))K(sı̂−1, sı̂)

≤ 1
δ
K(sı̂−1, sı̂) ∀ı̂ ≥ 1, (5)

where

K(sı̂−1, sı̂) = max{wb(sı̂−1, sı̂),wb(sı̂−1,Psı̂−1),wb(sı̂,Psı̂)}
= max{wb(sı̂−1, sı̂),wb(sı̂−1, sı̂),wb(sı̂, sı̂+1)}
= max{wb(sı̂−1, sı̂),wb(sı̂, sı̂+1)}.

Suppose that K(sı̂−1, sı̂) = wb(sı̂, sı̂+1) for some ı̂ ≥ 1 . Then, we have

wb(sı̂, sı̂+1) ≤ γ(wb(sı̂, sı̂+1)wb(sı̂, sı̂+1))

<
1
δ
wb(sı̂, sı̂+1) ∀ı̂ ∈ N,

which is a contradiction. Therefore, ∀ı̂ ≥ 1, K(sı̂−1, sı̂) = wb(sı̂−1, sı̂). In this case, the
inequality (5) implies

wb(sı̂−1, sı̂) ≤ γ(wb(sı̂−1, sı̂)wb(sı̂−1, sı̂))

<
1
δ
wb(sı̂−1, sı̂)

< wb(sı̂−1, sı̂) ∀ı̂ ≥ 1. (6)

In other words, the positive and decreasing O-sequence {qı̂} = {wb(sı̂−1, sı̂)} is
O-convergent to some wb ≥ 0. Taking limit in (6) we get,

wb = lim
ı̂→∞

qı̂+1 ≤ lim
ı̂→∞

γ(qı̂)qı̂ = wb lim
ı̂→∞

γ(qı̂) ≤
1
δ
wb.

This implies limı̂→∞ γ(qı̂) =
1
δ and hence, by (1),

lim
ı̂→∞

qı̂ = lim
ı̂→∞

wb(sı̂−1, sı̂) = 0. (7)

On the other hand, we observe that repeated application of (6) leads to

qı̂+1 <
1
δ
qı̂ <

1
δ2 qı̂−1 < · · · < 1

δı̂+1 q0. (8)

Now, taking into account (4), we substitute s = sı̂−1 and s = sı̂+1 in (2). This yields

wb(sı̂, sı̂+2) = wb(P(sı̂−1, sı̂+1),P(sı̂−1, sı̂+1)

≤ α(sı̂−1, sı̂+1)wb(P(sı̂−1, sı̂+1)

≤ γ(ω(sı̂−1, sı̂+1))K(sı̂−1, sı̂+1)

≤ 1
δ
K(sı̂−1, sı̂+1) ∀ı̂ ∈ N, (9)

where
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K(sı̂−1, sı̂+1) = max{wb(sı̂−1, sı̂+1),wb(sı̂−1,Psı̂−1),wb(sı̂+1,Psı̂+1)},
= max{wb(sı̂−1, sı̂+1),wb(sı̂−1, sı̂),wb(sı̂+1, sı̂+2)}.

Regarding (6), the maximum K(sı̂−1, sı̂+1) is either wb(sı̂−1, sı̂+1) or wb(sı̂−1, sı̂), that
is, either κı̂ or qı̂. From the inequality (9) we have,

κı̂+1 = wb(sı̂, sı̂+2) <
1
δ

ω(κı̂) =
1
δ

max{κı̂, qı̂} ∀ı̂ ∈ N. (10)

In addition, from (6) we have,

qı̂+1 < qı̂ ≤ max{κı̂, qı̂}.

We deduce that,

max{κı̂+1, qı̂+1} ≤ max{κı̂, qı̂} ∀ı̂ ≥ 1.

that is, the O-sequence max{κı̂, qı̂} is non increasing and hence, it O-converges to some
j ≥ 0. Choose that j > 0. Taking limits we get

j = lim
ı̂→∞

max{κı̂, qı̂}

= lim
ı̂→∞

κı̂.

Alternatively, letting ı̂→ ∞ in (10) we get

j = lim
ı̂→∞

κı̂+1 < lim
ı̂→∞

max{κı̂, qı̂} = j,

which is a contradiction. Hence j = 0, and then we have,

lim
ı̂→∞

κı̂ = lim
ı̂→∞

wb(sı̂−1, sı̂+1) = 0. (11)

Next, we will prove that sı̂ 6= s ̂ for all ı̂ 6= ̂. Assume that sı̂ = s ̂ for every ı̂, ̂ ∈ N
with ı̂ 6= ̂ , we have wb(sı̂, sı̂+1) > 0 for each ı̂ ∈ N. Without loss of generality, we may
take ̂ > ı̂ + 1. The assumption sı̂ = s ̂ implies

wb(sı̂,Psı̂) = wb(s ̂,Ps ̂).

Using the inequality (5) we have,

wb(sı̂, sı̂+1) =wb(sı̂,Psı̂) = wb(s ̂,Ps ̂)

=wb(Ps ̂−1,Ps ̂) ≤ α(s ̂−1s ̂)wb(s ̂−1,Ps ̂)

≤γ(K(sı̂−1, sı̂))K(s ̂−1, s ̂)

<
1
δ
wb(s ̂−1, s ̂),

where

K(s ̂−1, s ̂) = max{wb(s ̂−1, s ̂),wb(s ̂−1,Ps ̂−1),wb(s ̂,Ps ̂)}
= max{wb(s ̂−1, s ̂),wb(s ̂−1, s ̂),wb(s ̂, s ̂+1)}
= max{wb(s ̂−1, s ̂),wb(s ̂, s ̂+1)} = wb(s ̂−1, s ̂).

Then, we have

wb(s ̂, s ̂+1) ≤ γ(wb(s ̂−1, s ̂)wb(s ̂−1, s ̂))

<
1
δ
wb(s ̂−1, s ̂)

< wb(s ̂−1, s ̂) ∀ ̂ > ı̂ + 1.

Continuing the process we conclude,
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wb(s ̂, s ̂+1) < wb(s ̂−1, s ̂) < wb(s ̂−1, s ̂) < · · · < wb(sı̂, sı̂+1),

which contradicts the assumption sı̂ = s ̂ for some ı̂ 6= ̂. Hence sı̂ 6= s ̂ for all ı̂ 6= ̂.
Now to prove that {sı̂} is a O-Cauchy sequence, that is,

lim
ı̂→∞

wb(sı̂, sı̂+ζ) = 0, ∀ζ ∈ N. (12)

Notice that (12) is satisfied for ζ = 1 and ζ = 2 due to (7) and (11). Hence, we choose
ζ ≤ 3. Now we consider two cases, for ζ ∈ N.

Case 1. Consider ζ = 2 ̂ + 1 where ̂ ≥ 1. We have sj 6= sδ for all j 6= δ and
sj 6= sj+1 for all j ≥ 0. We use the inequality (B3) in (3), hence,

wb(sı̂, ζn+k) =wb(sı̂, sı̂+2 ̂+1) ≤ δ[wb(sı̂, sı̂+1) +wb(sı̂+1, sı̂+2) +wb(sı̂+2, sı̂+2 ̂+1)]

≤δ[wb(sı̂, sı̂+1) +wb(sı̂+1, sı̂+2)]

+ δ2[wb(sı̂+2, sı̂+3) +wb(sı̂+3, sı̂+4) +wb(sı̂+4, sı̂+2 ̂+1)]

...

≤δ[wb(sı̂, sı̂+1) +wb(sı̂+1, sı̂+2)] + δ2[wb(sı̂+2, sı̂+3) +wb(sı̂+3, sı̂+4)]

+ δ3[wb(sı̂+4, sı̂+5) +wb(sı̂+5, sı̂+6)] + ... + δ ̂+1[wb(sı̂+2 ̂, sı̂+2 ̂+1)]

≤δ[wb(sı̂, sı̂+1) + δ2[wb(sı̂+1, sı̂+2) + δ3[wb(sı̂+2, sı̂+3) + · · ·
+ δı̂+2 ̂−1wb(sı̂+2 ̂, sı̂+2 ̂+1).

Then, by the inequality (8) we conclude

wb(sı̂, sı̂+ζ) ≤
1

δı̂+1wb(s0, s1) +
1
δı̂ wb(s0, s1) + · · ·+

1
δı̂+2 ̂

wb(s0, s1)

= wb(s0, s1)
[ ı̂+2 ̂

∑
ζ=0

1
δı̂ −

ı̂−2

∑
ζ=0

1
δı̂

]
= wb(s0, s1)

[ δı̂+2 ̂+1 − 1
δı̂+2 ̂(δ−1)

− δı̂−1 − 1
δı̂−2(δ−1)

]
.

Letting ı̂→ ∞ in the above inequality, we get

0 ≤ lim
ı̂→∞

wb(sı̂, sı̂+ζ) ≤ lim
ı̂→∞

wb(s0, s1)
[ δı̂+2 ̂+1 − 1

δı̂+2 ̂(δ−1)
− δı̂−1 − 1

δı̂−2(δ−1)

]
= 0.

Case 2. Consider ζ = 2 ̂ where ̂ ≥ 2. Again, using the inequality (B3) in Definition 3,
we obtain

wb(sı̂, ζn+k) =wb(sı̂, sı̂+2 ̂) ≤ δ[wb(sı̂, sı̂+1) +wb(sı̂+1, sı̂+2) +wb(sı̂+2, sı̂+2 ̂)]

≤δ[wb(sı̂, sı̂+1) +wb(sı̂+1, sı̂+2)]

+ δ2[wb(sı̂+2, sı̂+3) +wb(sı̂+3, sı̂+4) +wb(sı̂+4, sı̂+2 ̂)]

≤δ[wb(sı̂, sı̂+1) +wb(sı̂+1, sı̂+2)] + δ2[wb(sı̂+2, sı̂+3) +wb(sı̂+3, sı̂+4)]

+ · · ·+ δ ̂−1[wb(sı̂+2 ̂−4, sı̂+2 ̂−3) +wb(sı̂+2 ̂−3, sı̂+2 ̂−2)

+wb(sı̂+2 ̂−2, sı̂+2 ̂)]

≤δ[wb(sı̂, sı̂+1) + δ2[wb(sı̂+1, sı̂+2) + δ3[wb(sı̂+2, sı̂+3) + · · ·
+ δı̂+2 ̂−3wb(sı̂+2 ̂−3, sı̂+2 ̂−2) + δ ̂−1wb(sı̂+2 ̂−2, sı̂+2 ̂).

By the inequality in (8), we have
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wb(sı̂, sı̂+ζ) ≤
1

δı̂+1wb(s0, s1) +
1
δı̂ wb(s0, s1) + · · ·+

1
δı̂+2 ̂−2wb(s0, s1)

+ δ ̂−1wb(sı̂+2 ̂−2, sı̂+2 ̂)

= wb(s0, s1)
[ ı̂+2 ̂2

∑
ζ=0

1
δζ
−

ı̂−2

∑
ζ=0

1
δζ

]
+ δ ̂−1wb(sı̂+2 ̂−2, sı̂+2 ̂)

= wb(s0, s1)
[ δı̂+2 ̂+1 − 1

δı̂+2 ̂(δ−1)
− δı̂−1 − 1

δı̂−2(δ−1)

]
+ δ ̂−1wb(sı̂+2 ̂−2, sı̂+2 ̂). (13)

From (11) we have limı̂→∞ δ ̂−1wb(sı̂+2 ̂−2, sı̂+2 ̂) = 0 and hence, using (13) we obtain

0 ≤ lim
ı̂→∞

wb(sı̂, sı̂+ζ)

≤ lim
ı̂→∞
{wb(s0, s1)

[ δı̂+2 ̂+1 − 1
δı̂+2 ̂(δ−1)

− δı̂−1 − 1
δı̂−2(δ−1)

]
+ δ ̂−1wb(sı̂+2 ̂−2, sı̂+2 ̂)} = 0,

lim
ı̂→∞

wb(sı̂, sı̂+ζ) = 0.

Therefore, O-sequence {sı̂} in (V ,wb) is O-Cauchy sequence. Since (V ,wb) is a O-
complete OBb MS, there exists ω ∈ V such that

lim
ı̂→∞

wb(sı̂, ω) = 0. (14)

Since P is a O-continuous map, from (14) we get

lim
ı̂→∞

wb(Psı̂,Pω) = lim
ı̂→∞

wb(sı̂+1,Pω) = 0,

that is, the O-Cauchy sequence {sı̂} is O-convergent to Pω. Then the proposition (1)
implies that Pω = ω, i.e., ω is a fixed point of P.

Since γ ∈ Fδ, we conclude limı̂→∞ ω(sı̂, ω) = 0. Therefore, ω = Pω. We prove now
the point ω ∈ V is unique.

Assume that ω and µ are distinct fixed points of P. Suppose that, Pı̂ω = ω 6= µ = Pı̂µ
for all ı̂ ∈ N. By choice of s0 in the first part of proof, we obtain

(s0 ⊥ ω, s0 ⊥ µ) or (ω ⊥ s0, µ ⊥ s0).

Since P is ⊥-preserving, we have

(Pı̂s0 ⊥ Pı̂ω, Pı̂s0 ⊥ Pı̂µ) or (Pı̂ω ⊥ Pı̂s0, Pı̂µ ⊥ Pı̂s0),

for all ı̂ ∈ N. Since P is an orthogonal Geragthy contraction, we get

wb(ω, µ) = wb(Pω,Pµ) ≤ γ(K(ω, µ))K(ω, µ),

where

K(ω, µ) = max{wb(ω, µ),wb(ω,Pω),wb(µ,Pµ)}
≤ wb(ω, µ).

Therefore, we have wb(ω, µ) < 1
δwb(ω, µ), which is a contradiction. Then, ω = µ.

Hence P has a UFP in V .

Corollary 1. Let (V ,wb) be an O-complete Bb MS with a parameter δ ≥ 1 and let γ ∈ Fδ be a
function. Let P : V → V be an O-continuous self mapping satisfying

s ⊥ υ or υ ⊥ s, wb(Ps,Pυ) > 0

⇒ wb(Ps,Pυ) ≤ γ(wb(s, υ))wb(s, υ), ∀s, υ ∈ V .
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Then, P has a UFP.

Next, we give an example to support our Theorem (5).

Example 3. Let V = I ∪ J where I = { 1
2 , 1

4 , 1
6 , 1

8} and J = [1, 2]. Define the binary relation ⊥
on V by s⊥υ if s, υ ≥ 0. Define the function wb : V × V → R+ such that wb(s, υ) = wb(υ, s)
as follows:

For s, υ ∈ V or s ∈ I and υ ∈ J , wb(s, υ) = |s− υ| and

wb(
1
2

,
1
4
) = wb(

1
6

,
1
8
) = 0.2.

wb(
1
2

,
1
6
) = wb(

1
4

,
1
6
) = wb(

1
4

,
1
8
) = 0.1.

wb(
1
2

,
1
8
) = 1.

Clearly, (V ,⊥,wb) is an O-complete Bb MS with constant δ = 10
3 . Let P : V → V be defined as

Ps =

{
s
8 i f s ∈ J
1
6 i f s ∈ I .

Clearly, P is an ⊥-preserving. Now, we verify that P is an orthogonal Geraghty type α-
admissible contraction. We see that

wb(Ps,Pυ) =


0 i f s, υ ∈ I
0.2 i f s ∈ I , υ = 1
0.1 i f s ∈ I , υ = 2
0.1 i f s, υ ∈ J .

Then, for all s, υ ∈ V the mapping P satisfies the condition

wb(Ps,Pυ) ≤ 3
20

wb(s, υ) =
1 \ 2
10 \ 3

wb(s, υ).

Consider a mapping P : [0, ∞)→ R defined by P(s) = s, it is clearly that γ ∈ Fδ, and we get

wb(Ps,Pυ) ≤ γ(K(s, υ))K(s, υ) ∀ s, υ ∈ V .

Hence, the condition of Corollary 1 holds with γ($) = 1
2δ = 3

20 and P has a UFP which is
s = 1

6 .

4. Applications

As an application of Theorem 5, we find the existence and uniqueness of the following
integral equation:

ω($) = λ($) +
∫ a

0
G($, δ)H($, δ, ω(δ))dδ, $ ∈ [0, a], a > 0. (15)

Consider V = C([0, a],R) be a real continuous functions on [0, a] and P : V → V the
mapping defined by

wb(ω, µ) = max
0≤$≤a

|ω($)− µ($)|2, ω, µ ∈ V . (16)

Obviously, (V ,w) is a complete b-metric space with constant δ = 2 and ω($) is a
solution of the Equation (15) iff ω($) is a fixed point of P.

Theorem 6. Suppose that
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(R1) The mappings G : [0, a] × R → R+, H : [0, a] × R → R, and λ : [0, a] → R are
O-continuous functions.

(R2) There exists, for all $, δ ∈ [0, a] and ω, µ ∈ V such that

|H($, δ, ω(δ))−H($, δ, µ(δ))| ≤

√
e−K(ω,µ)K(ω, µ)

2
. (17)

(R3) For all $, δ ∈ [0, a], we have

max
∫ a

0
G($, δ)2dδ ≤ 1

a
.

Then, (15) has a unique solution in V .

Proof. Consider the O-relation ⊥ on V defined by

ω⊥µ ⇐⇒ ω($)µ($) ≥ ω($) or ω($)µ($) ≥ µ($), ∀$ ∈ [0, a].

Then (V ,⊥) is an O-set. In fact, if {ωı̂} is an arbitrary Cauchy O-sequence in V , then
there exists a subsequence {ω ˆın} of {ωı̂} for which ω ˆın = 0 for all n ≥ 1 or there exists a
monotone subsequence {ω ˆın} of {ωı̂} for which ω ˆın ≤ 1

2 for all n ≥ 1. It follows that {ω ˆın}
converges to a point ω ∈ [0, 1

2 ] ⊂ V . Therefore, (V ,⊥,wb) is an O-complete Bb MS with
parameter δ = 2. For each ω, µ ∈ V with ω⊥µ and $ ∈ [0, a], we have

P(ω($)) = λ($) +
∫ a

0
G($, δ)H($, δ, ω(δ))dδ ≥ 1. (18)

Accordingly [(Pω)($)][(Pµ)($)] ≥ (Pµ)($) and so (Pω)($)⊥(Pµ)($). Then, P is
⊥-preserving.

Let ω, µ ∈ V with ω⊥µ. Suppose that P(ω) 6= P(µ). For each $ ∈ [0, a], we have

w(Pω,Pµ) = max
$∈[0,a]

|Pω($)−Pµ($)|2

= max
$∈[0,a]

{∣∣∣λ($) + ∫ a

0
G($, δ)H($, δ, ω(δ))dδ− λ($)−

∫ a

0
G($, δ)H($, δ, µ(δ))dδ

∣∣∣2}
= max

$∈[0,a]

{∣∣∣ ∫ a

0
G($, δ)(H($, δ, ω(δ))−H($, δ, µ(δ)))dδ

∣∣∣2}
≤ max

$∈[0,a]

{ ∫ a

0
G($, δ)2dδ

∫ a

0
|H($, δ, ω(δ))−H($, δ, µ(δ))|2dδ

}

≤ 1
a

∫ a

0

∣∣∣
√

e−K(ω,µ)K(ω, µ)

2

∣∣∣2dδ

≤ e−K(ω,µ)

2
K(ω, µ).

Thus, w(Pω,Pµ) ≤ γ(K(ω, µ))K(ω, µ), for each ω, µ ∈ V . Therefore, all the condi-
tions of Theorem (5) for γ($) = e−$

2 , $ > 0 and γ(0) ∈ [0, 1
2 ) are satisfied. Hence, the (15)

has a unique solution.

Example 4. Let us consider the equation

g(s) = sin(πs2)− s2

π
+
∫ x

0
s2υg(υ)δυ, 0 ≤ x ≤ 1. (19)

Clearly, above Equation (19) satisfy the assumption of Theorem 6, that is:

sin(πs2)− s2

π
is an orthogonal continuous function on [0, 1].
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Kernel, K(s, υ) is an orthogonal continuous on R = {(s, υ), 0 < s, υ < 1}.

We get

gϑ+1(s) = sin(πs2)− s2

π
+
∫ x

0
s2υgϑ(υ)δυ, 0 ≤ x ≤ 1.

Choosing sin(πs2)− s2

π
as the initial function, we can apply fixed point iteration method to

get numerical solution:

g1(s) = sin(πs2)− s2

π
+
∫ x

0
s2υg0(υ)δυ

= sin(πs2)− s2

π
+
∫ x

0
s2υ sin(πυ2)δυ

= sin(πs2)− s2

π
+ s2 1

2π
(1− cos(πs2)).

g2(s) = sin(πs2)− s2

π
+
∫ x

0
s2υg1(υ)δυ

= sin(πs2)− s2

π
+
∫ x

0
s2υ
(

sin(πυ2)− υ2

π
+ υ2 1

2π
(1− cos(πυ2))Big)δυ

= sin(πs2)− s2

π
+

s2

8π3

(
− 4π2 − 2 + 4π2 cos(πs2) + π2s4 + 2s2π sin(πs2) + 2 cos(πs2)

)
.

g3(s) = sin(πs2)− s2

π
+
∫ x

0
s2υg2(υ)δυ

= sin(πs2)− s2

π
+
∫ x

0
s2υ
(

sin(πυ2)− υ2

π
+

υ2

8π2 (−4π2 − 2 + 4π2 cos(πυ2) + υ4π2

+ 2s2π sin(πs2) + 2 cos(πs2))
)

δυ

= sin(πs2)− s2

π
+ s2

{
− 1

64π6

(
− 32π5 − 16π3 − 24π + 32π5 cos(πs2) + 8s4π5 − 4s4π3

+ 16s2π4
(

sin(πs2) + 16π3 cos(πs2) + s8π5 − 8s4π3 cos(πs2) + 24s2π2 sin(πs2)

+ 24π cos(πs2)
))}

.

Consider that for |s| ≤ 1, an O-sequence {gϑ(s)} will converge to g(s) = sin(πs2)− s2

π
.

Now, we find the difference between an approximation solution and an exact solution from
Table 1 and Figure 1.

Table 1. Comparison between an approximation solution and an exact solution.

sj Approximation Solution Exact Solution Absolute Error

0.000 0.000 0.000 0.000
0.100 0.023 0.028 0.005
0.200 0.102 0.113 0.011
0.300 0.234 0.250 0.016
0.400 0.412 0.431 0.019
0.500 0.609 0.628 0.018
0.600 0.779 0.790 0.011
0.700 0.848 0.844 0.004
0.800 0.730 0.701 0.029
0.900 0.358 0.304 0.054
1.000 −0.251 −0.318 0.067



Axioms 2022, 11, 728 13 of 14

Figure 1. Graph of the comparison between an approximation and exact solution with h = 0.1.

The comparison shows that the absolute error between an approximation and an exact solution
is very small.

5. Conclusions

In this paper, we proved fixed point theorem for an O− G− α-admissible contraction
mapping in an O-complete Bb MS. We have provided a non-trivial example to support
our main Theorem 5. Also, we provided an application to find the existence and unique-
ness of a solution to the integral equation and compared the approximate solution and
exact solution.
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