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Abstract
We propose a new hybrid quantum algorithm based on the classical Ant Colony Optimization algorithm to produce
approximate solutions for NP-hard problems, in particular optimization problems. First, we discuss some previously
proposed Quantum Ant Colony Optimization algorithms, and based on them, we develop an improved algorithm that can
be truly implemented on near-term quantum computers. Our iterative algorithm codifies only the information about the
pheromones and the exploration parameter in the quantum state, while subrogating the calculation of the numerical result
to a classical computer. A new guided exploration strategy is used in order to take advantage of the quantum computation
power and generate new possible solutions as a superposition of states. This approach is specially useful to solve constrained
optimization problems, where we can implement efficiently the exploration of new paths without having to check the
correspondence of a path to a solution before the measurement of the state. As an example of a NP-hard problem, we choose
to solve the Quadratic Assignment Problem. The benchmarks made by simulating the noiseless quantum circuit and the
experiments made on IBM quantum computers show the validity of the algorithm.

Keywords Quantum computing · Hybrid quantum algorithm · Quantum ant colony optimization · Ant colony
optimization · Quadratic assignment problem

1 Introduction

Ant Colony Optimization (ACO) was proposed by A. Col-
orni and M. Dorigo in the 1990s for solving combinational
optimization problems (Colorni et al. 1991). This bio-inspired
algorithm mimics the foraging strategy, in which each indi-
vidual tries to find the shortest path to the food based on the
information of its predecessors. This indirect communica-
tion is made by placing pheromones along the path an indi-
vidual traverses. The pheromones will be stronger the better
is the food and the shorter the path to it. This way, the ants
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will optimize the distance between the food and the colony.
Using this metaheuristic, researchers have solved instances
of NP-hard combinational problems, many of them ori-
ented to graphs, such as Travelling Salesman Problem (TSP)
(Colorni et al. 1991; Dorigo and Gambardella 1997), Vehi-
cle Routing Problem (VRP) (Bullnheimer et al. 1999),
Quadratic Assignment Problem (QAP) (Vittorio et al. 1995)
or function optimization (Toksari 2006).

Quantum computing and Quantum algorithms have been
rapidly growing since the first very successful results were
published in the early 1990s. Grover’s searching algorithm
(Grover 1996) or Shor’s factoring algorithm (Shor 1997)
proved to outperform any other classical algorithm in regard
to time complexity. In 1996, Narayanan and Moore (1996)
proposed genetic algorithms, in which mechanisms used in
quantum computing were applied to improve evolutionary
algorithms. A few years later, Han and Kim (2000) proposed
Quantum Evolutionary Algorithms (QEA), which speedups
the classical evolutionary algorithms based on the same
principles.

Based on QEA and ACO, Wang et al. (2007) proposed
a quantum-inspired ant colony optimization algorithm
(QIACO). The main novelty of QIACO is the pheromone
representation on the quantum state, using a rotation gate
to direct the measurement of the system to the optimal
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solution. Similarly, P. Li and H. Wang proposed a QIACO
algorithm based on the Bloch spherical search (BQIACO)
(Li and Wang 2012). This algorithm takes advantage of
the Bloch sphere representation, applying rotation gates in
order to move the state to the optimal solution. Mimicking
the random search pattern in ACO, both algorithms
implemented forced exploration strategies, using CNOT
gates in QIACO and Hadamard gates in BQIACO to shift
around the qubits one by one.

However, neither QIACO or BQIACO can be imple-
mented on a real quantum computer. Due to the limitations
of the information quantum mechanics allows us to retrieve
from a quantum state, the pheromone update strategies that
both propose cannot be used. In this article, we propose a
new quantum version of ACO that is implementable on a
quantum computer.

In Section 2 we introduce the original QIACO algorithm
and a recently proposed QACO algorithm. Section 3
develops the new algorithm and a discussion on the
parameter optimization. Section 4 presents the results
obtained solving QAP both by simulating the algorithm and
implementing it on the currently available IBM quantum
computers (IBM 2020). Finally, Section 5 discusses
conclusions, possible improvements and future work.

There is some confusion in the names, as the original
authors often label their algorithms as “quantum” despite
being fully classical. Instead, we refer to these algorithms
as “quantum inspired”. To label our algorithm we followed
the criterion used by other authors (O’Driscoll et al. 2019;
Yuan et al. 2021). This is better suited to the fact that the
hybrid quantum algorithms take advantage of the quantum
mechanical properties of the states, while subrogating some
calculations to classical algorithms.

2 Previous works

The algorithm presented in this article is an improvement
based on the work ofWang et al. (2007). There, they proposed
a quantum approach for the classic Ant Colony Optimiza-
tion algorithm, in which each state of the computational
basis represents a possible solution for the problem.

The information about the pheromones is then coded in
the quantum state of the system. To match the qubit and
the pheromone representation, they used the Hyper-Cube
Framework (HCF) proposed by Blum and Dorigo (2004).
As the HCF limits the pheromone values to the range [0,1],
the probability of measuring the excited state of a qubit can
be set to be the same as the probability for an ant of choosing
said edge.

To achieve that, they used a rotation gate around the Y-
axis on the Bloch sphere. This way, every qubit is assigned
an angle, this being π/4 assuming the initial state of the

qubits is |0〉. From this point on, we suppose that all qubits
start always at the state |0〉. Each time a solution is obtained,
it is compared to the best solution so far. The rotation angle
for the next generation is then updated using a lookup table.

As in ACO, the algorithmmust allow random exploration
of new solutions. This is achieved by generating a random
number 0 < p < 1 for each qubit. If p is greater than the
exploration parameter pe, the outcome of the qubit will be
random. Else, it will follow the pheromones as in ACO.

Lately, ACO has been improved and used to solve
different problems more efficiently. For example, for
automated guided vehicles (Li et al. 2020), for topology-
based link prediction (Cao et al. 2018) and for query
optimization (Mohsin et al. 2021). These implementations
are based on the parallel nature of quantum systems. The
ability of having superposed quantum states that represent
different possible solutions enhances the ability to avoid
falling into local minima.

Nevertheless, QIACO is not implementable in a quantum
computer. On one hand, in order to use the lookup table,
one has to know exactly the state of each qubit. As there is
no way to achieve this out of a simulation or repeating the
experiment until obtaining the statistics of the distribution
of states, the version of QACO we propose in this article
uses a slightly different approach to the pheromone update
strategy. On the other hand, the exploration strategy of
QIACO cannot be implemented with quantum gates. The
strategy they proposed takes a measurement of the qubits,
consequently destroying the quantum state.

Recently, a quantum algorithm for ACO has been
proposed, the MNDAS algorithm (Ghosh et al. 2020). This
algorithm uses x qubits to code all possible paths, d for
the pheromones and 3 qubits as registers. The qubits are
initialized in a superposition state using Hadamard gates in
order to give each path the same weight. Then, the algorithm
takes an iterative approach to the problem using an oracle.
Its main function is to select n possible paths as in ACO and
to update the pheromone trails accordingly. Before ending
each iteration, the oracle performs an operation to evaporate
the pheromones on the selected trails. The convergence
of the algorithm is assured by preventing evaporation to
occur on the best path found so far. After a fixed number
of iterations, a quantum amplitude amplification procedure
is made in order amplify the probability density of the
solution, and then measured.

One problem of MNDAS is its lack of implementability
in near-term quantum computing systems. The number of
qubits and the couplings it employs is far from achievable.
The implementation of the algorithm on any currently
available quantum computer would need an unaffordable
amount of SWAP gates, introducing a large amount of
noise in the system. Another problem with this algorithm
is the introduction of a highly demanding oracle. The
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amount of calculations it needs to perform in each
iteration makes it difficult for a quantum computer to
maintain coherence after all the gates that are applied.
In contrast, our algorithm tackles this problem by using
an iterative quantum algorithm that does not rely on
perfectly error corrected qubits. The amount of gates our
algorithm performs in each iteration makes is suitable to be
implemented in current quantum computers.

Furthermore, the initialization of MNDAS requires to
compute the weights of all possible paths. This completely
defeats the purpose of using a metaheuristic algorithm.
Once the paths weights are obtained, the optimal solution
can be obtained using a regular search algorithm O(n), or
a Grover algorithm O(n1/2). In contrast, MNDAS has a
complexity of O(Kn + n1/2), with K a constant, so it falls
behind already existing solutions.

3 Proposed implementable QACO algorithm

The main reason why we developed this algorithm is to
provide a practical application of the well-known ACO
algorithm on a quantum computer (Fig. 1). Although no real
implementation is mentioned in this section, we designed it
so that the steps and the gates used are easily implementable
on the available computers to the date this is written.

Following an almost identical schema used in ACO,
this algorithm can be divided into 4 main steps:
pheromone application, exploration of new solutions, post-
measurement checks and pheromone update.

The qubits are divided into two groups: ant and
exploration qubits. The ant qubits are the ones in which
the information about pheromone trail is introduced, while
the exploration qubits are determined by the exploration
parameter.

3.1 Algorithm step development

3.1.1 Pheromone application

The ant qubits are the targets of the controlled gates for the
exploration process. The codification of the solutions must
be given as a map v from the solution space S to the Hilbert
space H. The number of qubits used (n) must be sufficient
so that the map v : S → H can be a bimorphism, this is
v−1(v(s)) = s, ∀s ∈ S.

Contrary to the usual codification of ACO, in QACO we
encode the pheromones not into the edges of a graph, but in
its nodes. Then, the probability of visiting each node is given
by the pheromones deposited into them. This information
is introduced on the quantum state via a rotation gate. But,
while the previous algorithm uses a rotation on the real
plane, we apply a Y-rotation (RY) gate on each qubit. To
control the possible outcomes, we limit all the rotation
angles of the ant qubits to 0 < θi < π . This way, the state
of each ant qubit after we apply the rotation gate is

|�i〉 = Ry(θi)|0〉 = sin (θi/2) |0〉 + cos (θi/2) |1〉. (1)

We can extend this to the full quantum state for the ant
qubits, just by taking the tensor product of each qubit. The
result is a superposition of all the states of the Hilbert space
canonical basis

|�ant〉 = |�1〉 ⊗ · · · ⊗ |�n〉 =
2n∑

k=0

αk|k〉, (2)

where |k〉 is the state represented by the binary expansion
of k on n bits and αk is the amplitude of the corresponding
state.

On the first iteration, each possible state has to have
the same probability to be measured, this is |αk| = 1/2n.

Fig. 1 Graphic representation of the paths in ACO and QACO in a
2 node graph for a path finding problem. In ACO, the ant arrives at
the end by choosing a non visited node at each step. In this example,
the maximum steps for the classical ant are 3, with 5 different paths.
However, 2 of these paths yield the same result, since the codification

only depends on the visited nodes, not in the order they are visited. In
QACO, the ant lives in a state that is a superposition of each possible
path. Using 2 qubits, we can assign each one to a node, where |1i〉 and
|0i〉 represents the ant visiting and not the node i respectively. In the
moment the ant is measured, one of the paths is selected
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Therefore, the starting values of the rotation angles must be
θ0i = π/2.

3.1.2 Exploration of new solutions

Exploration parameter The probability for exploration of
new solutions can be defined by one parameter, 0 ≤ βe ≤ 1.
In this case, we use the angle of a RY gate to code this
parameter as the probability to measure the excited state
of that qubit. On an ideal quantum computer in which the
graph of connectivity between qubits is fully connected,
we would only need one qubit. But most of the quantum
computers currently available have at most 4 pairings for
each qubit, as this is the case for the IBM Yorktown-ibmqx2.
In order to avoid the use of SWAP gates to implement the
controlled gates, this qubit can be “duplicated” simply by
applying the same RY gate to different qubits.

These qubits control the gates for the exploration process.
As the probability to apply a gate depends on the probability
to measure the excited state and the state of a qubit must be
normalized, the exploration qubit state can be written as

|�e〉 = √
1 − βe|0〉 ± √

βe|1〉 ⇒ |〈1|�e〉|2 = βe. (3)

We can generate this state using an RY gate with an angle
of θe = 2 arcsin(

√
βe).

To correctly implement the exploration strategy, we must
reset the exploration qubit after each controlled gate is
applied. This way, we avoid the entanglement between the
ant and the exploration qubits. If we do not reset the qubit,
the system would only have two possible outcomes, one
with all controlled gates applied and the other without. We
further explain this effect on Appendix 2.

Ant exploration strategy In ant colony algorithms, the
mechanism which allows to have new solutions is based
on random exploration. The classical strategy decides to
randomly explore based on an exploration parameter, that
gives the frequency at which this random exploration
happens. This decision is made at every step on the path,
avoiding backtracking on already visited edges.

In QACO, we can introduce this mechanism explicitly
using controlled gates. When the problem is unconstrained,
this can be implemented using CNOT gates. This allows the
system to arrive to every possible solution from any node
in the graph. Using the exploration qubits as the control
qubit, we can target each of the ant qubits. This way, the
probability for a qubit to change its state is βe. Applying
this to every other qubit, the probability of flipping k qubits
is P(k) = βk

e (1 − βe)
n−k . Thus, in each iteration there is a

non-zero probability for the algorithm to yield an arbitrary
solution. However, the probability of exploring k times
decreases with k; thus, we favor the local exploration of
solutions.

This strategy is useful when the problem is uncon-
strained, that is, when all the possible outcomes are a valid
solution for the problem. But when there are restrictions,
this strategy may result in measuring incorrect solutions.
To improve the efficiency of the exploration in these cases,
we propose using gates that act on the state taking it from
an allowed solution to another. This way, if we consider an
ideal quantum computer, we keep the probability of mea-
suring an allowed solution constant. Equivalently, the leak
of probability to a non allowed state is ideally 0. Then, one
would have to design a strategy for the specific constraint
set of the problem to solve.

In order to illustrate this concept, let us suppose that the
constraint we want to address allows solutions with m 1’s.
For this particular problem, flipping 1 qubit would turn a
valid solution to a non valid one. However, flipping 2 qubits
at the same time preserve the number of ones of the state.
To apply this change to a state, we can apply a Fredkin
gate. The Fredkin gate can be understood as a controlled
SWAP gate between 2 target qubits. This gate maintains the
probability of measuring a certain number of excited qubits.
The number of gates needed to explore the whole space is
n(n − 1)/2 − 1, as we need one gate for each different pair
of qubits and applying all possible swap gates would yield
the same state as the initial.

Being the Fredkin gate with the control qubit c and two
targets t1 and t2 (CSWAP(c, t1, t2)), the commutation rule
between 2 Fredkin gates with the same control qubit is

[CSWAP(c, m, n),CSWAP(c, x, y)]

⎧
⎪⎨

⎪⎩

= 0 if {m, n}∩{x, y} = ∅,

= 0 if {m, n}={x, y},
= 0 otherwise.

(4)

As the Fredkin gates do not commute, the order in which
the gates are applied determines the states the system can
jump to. As there are multiple ways to explore, the order in
which the gates are applied must be randomized. This way,
even though the exploration is biased on each generation,
the effect is averaged out through all the iterations. In
addition to this, the iterative nature of the exploration
process could also average out the possible errors generated
while applying any of the gate throughout the process.

This exploration strategy generates an entangled state
that efficiently encodes the paths of the ants as a
superposition. The entanglement is made so that in an ideal
quantum computer, the measurement of all the ant qubits
corresponds to a path.

3.1.3 Post-measurement checks: solution generator

In the cases when the problem is constrained to certain
solutions, the measurement of the ant qubits can turn out to
be an invalid solution. This invalid result comes from the
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information about the pheromone state or the effect of noise.
Instead of discarding the solution, we propose to generate a
new result.

The new solution must be as close to the previous one
as possible. Following this idea, we choose to use the
Hamming distance between the solutions to distribute the
probabilities, so that the closer ones are favored. We set the
probability of choosing a solution as inversely proportional
to the Hamming distance from the original measurement, pi

∝ 1/di . We define pi · di = pj · dj ∀i, j . Working with both
equations, and the condition that the sum of the probabilities
is 1, one arrives to

p−1
i = di

∑

j

1

dj

. (5)

The algorithm to choose a solution is presented in
Algorithm 1.

3.1.4 Pheromone update

At the end of each generation a solution is produced. If the
stopping criteria are not met, we update the pheromones
using a new lookup table (Table 1). This table takes into
account the best solution obtained so far (f (b)) and the
solution for the current generation (f (x)). The idea beneath
these values is to implement the same mechanism used
in ACO. We reinforce the best solutions by updating the
rotation angle so that in the next generation the probability
to measure it increases. But when a better solution is found,
the rotation angle update is higher. This way, we reinforce
positively the exploration of new best solutions.

To update the angle value, the angle for the next iteration
for each ant qubit (θ ′

i ) is calculated by summing the value
obtained from the lookup table (Table 1) to the value used
in the current iteration (θi), θ ′

i = θi + �θi . The election of
values on the table is discussed on Section 4.2.

In this algorithm we force the values of the rotation angle
to the interval [0, π ]. If an angle is out of this interval,
the next update will try to correct the angle back. When
the algorithm is near convergence, the rotation angle will

Table 1 Lookup table for the pheromone rotation angle update �θi .
xi is the state of the qubit i on the current generation, and bi the state
of the qubit i on the best solution so far. f (x) and f (b) are the values
for the fitness function for the current generation and the best solution
so far respectively. Values with * are multiplied by −1 if cos(θi /2)<0

xi bi f(x) better than f(b)? �θi

0 0 True − 0.01π*

0 0 False 0.04π

0 1 True − 0.05π*

0 1 False 0.07π

1 0 True 0.05π*

1 0 False − 0.07π

1 1 True 0.01π*

1 1 False − 0.04π

oscillate around 0 or π , and the state of the qubit after
applying the RY gate will oscillate as well around |0〉 or |1〉.

Note that we have defined the angle update values in
terms of a single ant. In ACO there is a choice of strategies
for updating the pheromone trails. In this regard, QACO
could benefit from exploring other update strategies, in
which the pheromone rotation angles could depend on
the fitness value or in more than one ant, among other
possibilities. However, as it will be shown in Section 3.4 one
ant suffices for the algorithm not to converge to suboptimal
solutions. This statement agrees with the results found for
another hybrid quantum algorithm in Sweke et al. (2020).

3.2 Stopping criteria

In ACO, we have to define a termination condition for the
algorithm to exit the iteration loop. When we have no prior
information about a lower bound for the optimal solution,
we can define 2 different conditions (p. 105 Dorigo and
Stützle 2004). One can be to set a fixed maximum time
or iterations the algorithm can run. Using this criterion,
making an infinite number of iterations will yield the correct
result to the problem, as every possible path is allowed to
be obtained in every iteration. This way, the probability
of getting the result after infinite iterations will be 100%.
Although valid, this termination criterion is not useful, as it
is difficult to set the correct number of iterations a priori.
Besides, the number of iterations could be set higher than
necessary, lowering the efficiency of the algorithm.

The other termination condition can be set to define
a convergence or stagnation condition. This can be
understood as having a situation in which no better results
are found on consecutive iterations. To take this into
account, we introduced a new parameter converCondition.
At the end of each iteration, the algorithm checks if the
result is better than the best solution so far. If this is true, the
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Fig. 2 Example of the diagram for the circuit that implements the j th iteration of QACO for a constrained problem size n = 3. The pheromone
update is made once the solution for the iteration is selected. The solution checking and conditional solution generation is shorten as “GenS”

condition counter is reset to 0. Else, the counter increases
in 1. When this counter is equal to converCondition the
algorithm stops and returns the best solution so far.

3.3 Algorithm

The implementation of the algorithm is very similar to the
classical ACO. Having discussed the steps in the previous
sections, the algorithm is presented in Algorithm 2. In Fig. 2
we expand an example of the diagram for the quantum
circuit that implements one iteration of the algorithm.
Figure 3 shows a flux diagram showing the workflow of the
algorithm.

The quantum state of the ant qubits is measured each
iteration. After the post-measurement checks and the
pheromone update, a new quantum state is generated at the
start of a new iteration. Hence, the iterative nature of the
proposed algorithm.

3.4 Convergence of QACO

It is easy to see that the algorithm we propose here will
arrive at the optimal solution given enough iterations,
since there is a non-zero probability of measuring every
possible solution at each iteration. For analyzing the
convergence behavior of QACO, let’s analyze it in a worst-
case scenario where the algorithm is trapped in a local
minimum.

If QACO is trapped in a suboptimum point, the
pheromones will initially guide the ants towards a subop-
timal configuration s. This means that the state of the ant
qubits will be close to the corresponding state of the com-
putational basis, |�ants〉 = Ry

(
θk,j

)⊗n |0〉⊗n ≈ |s〉. In
this case, the algorithm completely depends on the explo-
ration strategy to search for a better solution. As we have
shown in Section 3.1.2, the algorithm favors the local search
of new solutions. Let’s again take the worst scenario in
which the ant has only searched once. Most likely, the
new solution will have a worse fitness value than the local
minimum. However, the fact that we have obtained a dif-
ferent solution introduces a variation in the pheromones.
This way, the probability of searching new solutions has
increased compared to the previous iteration. We can check
this by calculating the projection of the state after apply-
ing the pheromones to the state encoding the suboptimal
configuration, and noticing that the state of the next gen-
eration has decreased probability of being in the |s〉 state,
|〈s|�ants(k)〉|2 > |〈s|�ants(k + 1)〉|2.

The likelihood of exiting a local minimum and finding a
better solution is at least βq

e (1 − βe)
p−q , with p the number

of different exploration operations and q the number
of exploration operations that separates the local and
global minimum solutions. Furthermore, due to the small
probability for the ant in a given exploration not to explore
of (1 − βe)

p, our exploration strategy does not require more
than one ant to start escaping the minimum point. Given
that each time the algorithm finds a different solution the
probability of searching new ones increases, it is proven that
QACO will never converge to a local minimum.
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Fig. 3 Flux diagram of the proposed QACO algorithm. The steps
within the box are performed in a quantum computer, and the dashed
lines indicate that the information between steps is in a quantum state

4 Implementation of QACO

Ant Colony algorithms are usually constructed to obtain an
approximate solution for NP-complete problems (Kleinberg
and Tardos 2006, pp. 463–465). Every NP-problem is
equivalent to every other problem in the setup to a
polynomial time transformation (Knuth 1974). This means
that we can choose to solve one set of them, in this case
we have chosen to solve the Quadratic Assignment Problem
(QAP) (Loiola et al. 2007).

In order to correctly analyze the results we have obtained,
we have to keep in mind the “No Free Lunch Theorem”

(Ho and Pepyne 2002). This theorem states that a global
optimization strategy does not exist over the complete set of
problems. We can only obtain a better efficiency if we limit
ourselves to solve a particular kind of problem.

4.1 Quadratic Assignment Problem (QAP)

The QAP consist on searching the input X that maximizes
the function given by

f (X,M) = XtMX =
n∑

i=1

i∑

j=1

XiMijXj , Mij ∈ R, (6)

where X is a column vector with values 1 or 0 and M is
the problem matrix. For simplicity, and without losing any
generality, we can choose M to be a triangular matrix. For
the problem not to be trivial, M has to have both positive
and negative elements. The solution may be allowed to
have any number of 1’s in its solution or may have some
constraints. We will be referring to the first case as UQAP
(Unconstrained QAP) and the latest CQAP (Constrained
QAP).

For UQAP, the solution set has size 2n, where n is the
size of the matrix. Any known exact algorithm will have
an exponential complexity O(2n). This rapid growth in
complexity limits our capacity to simulate bigger problems,
in which our algorithm would come in useful. There is also
a limit in the number of qubits we can simulate or to which
we have access to.

4.2 Parameter optimization

Before running the algorithm, we have to select the
input parameters: converCondition, maxI ter , and the
pheromone rotation angles. For this, we have decided to
search for the set of parameters that returns a good quality
of solutions for QAP problems generated with uniformly
random numbers. In particular, we have aimed to minimize
the number of iterations before stopping needed to obtain an
optimal solution. On top of this, we have added an additional
constraint for the input parameters to be considered. The
criterion we used for deciding if the quality is acceptable
or not is to have at least 98.5% of correct results after
running the algorithm a number of times (100 runs per
instance) for different problem instances (100 instances).
If the parameters obtained yield results with lower success
ratio, then they are discarded. The problems employed
are generated as random triangular matrices, so that the
diagonal elements have the same weight as the elements
outside the diagonal on the solution. To fully test QACO, we
have solved both the unconstrained version of QAP (UQAP)
and the constrained version (CQAP).
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For the optimization, we have used the surrogate opti-
mization algorithm implemented in the “Global Optimiza-
tion Toolbox” in Matlab 2019b. We run the program for
every distinct problem for matrices size n = 3 to n = 7. As
the constraint of having m 1’s on the solution is equivalent
to having n − m in terms of the size of the solution set, we
omitted the values of m > �n/2� + 1. We set the maximum
function evaluation parameter to 500. In the following para-
graphs, we discuss the optimization of each parameter using
the results shown in Table 2.

4.2.1 Pheromone rotation angle update

The results obtained are not sufficient to determine
an optimum parameter relation. The results seem to
follow a random distribution, with no correlation between
parameters. As there is no clear way to set the parameters,
we decided to use the median values truncated to the second
decimal (Table 1).

4.2.2 Exploration parameter

In the original algorithm (Wang et al. 2007), they proposed
to use a varying exploration parameter, as it is usual in
other ACO algorithms. We have tried linear βe parameters,
with positive and negative gradient and with constant values.
The best result is obtained with negative gradient. However,
the differences between the results are so similar, that they
might be caused purely by random fluctuations. Taking
this into account, we have chosen to use the positive
gradient βe because it yielded the most consistent results

and for keeping the same argument that can be made for
classic ACO algorithm. At first, the ants explore the paths
randomly. As the number of iterations increases, some
suboptimal paths are found. To discard the suboptimal
results, the increase of the exploration parameter forces
the algorithm to search for new paths. In general, the
exploration parameter is

βe(i) = βe0 + 1 − βe0

maxI ter
i, (7)

with βe0 the exploration parameter at the first iteration,
maxI ter the maximum iteration count, and i the number
of the current iteration. Using this formula, the parameter
is restricted to values 0 ≤ βe ≤ 1. The parameters chosen
are the median of the different values obtained rounded
up to the second decimal, βe0 = 0.13 and maxI ter =
1.05 · converCondition.

4.2.3 Convergence condition

Using the same criteria as before, we tried to optimize the
converCondition parameter. Using the same values of the
Table 2, we see that the best fit value for this parameter
grows as an potential function of the number of possible
solutions for a problem (nComb). Fitting the results (Fig. 4)
to a function dependant of nComb we obtain

converCondition(nComb) = 23.3 · nComb0.5 − 35.1. (8)

Table 2 Values of the parameters in QACO that optimizes the mean number of iterations to get a solution which is incorrect at most 1.5% of the
times over 100 runs for each of the 100 randomly generated problems

n m Comb IterM CC βe IterF 00T 00F 01T 01F

3 1 3 7.00 7 0.964 1.000 0.001 0.090 0.100 0.005

3 3 8 25.87 24 0.070 1.038 0.002 0.063 0.100 0.091

4 1 4 12.48 11 0.211 1.144 0.006 0.037 0.052 0.070

4 2 6 18.61 17 0.001 1.073 0.039 0.076 0.005 0.037

4 4 16 48.56 45 0.123 1.067 0.009 0.036 0.051 0.066

5 1 5 16.70 14 0.241 1.249 0.002 0.032 0.053 0.093

5 2 10 34.89 34 0.793 1.028 0.057 0.064 0.067 0.044

5 5 32 91.97 91 0.087 1.004 0.062 0.030 0.025 0.042

6 1 6 19.83 19 0.133 1.020 0.003 0.029 0.055 0.077

6 2 15 55.00 55 0.998 1.000 0.021 0.020 0.083 0.026

6 3 20 63.45 59 0.001 1.068 0.024 0.050 0.022 0.064

6 6 64 156.80 129 0.082 1.475 0.033 0.046 0.054 0.091

Comb is the number of valid solutions to each problem, I terM is the mean number of iterations until convergence, CC is converCondition, βe is
the exploration parameter, I terF is the factor so that the maximum number of iterations is given by maxI ter = converCondition · I terF , and
00T , 00F , 01T and 01F are the values for the rotation angle update ordered as shown in Table 1. Each row shows the results for each problem
size n, m
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4.3 Simulation of QACO

In order to simulate these problems we have used Matlab
2019b. We have simulated an ideal quantum computer, in
which there is no noise and the gates are also ideal. We
can use the matrix representation for the gates and column
vectors in the computational basis for the state. As every
gate of the circuit is unitary, we can apply the gates in
braket notation maintaining the normalization condition,
Ugate|�〉 = |� ′〉, where |�〉 is the state before and |� ′〉
after we apply the gate. As we have previously mentioned,
as not all the gates commute with each other, the order in
with we apply them affects the result.

The simulation of the measurement is implemented
by choosing randomly a final state of the computational
basis. For this, we use the probability distribution given
by | 〈�|�〉 |. Apart from these particularities, the algorithm
follows the same steps as explained in Section 3.

4.4 Experiment on IBM’s quantum computers

For implementing our algorithm on a real quantum
computer, we have chosen to use IBM’s computers. Our
main goal with this implementation is to minimize the
number of quantum gates needed in each iteration. As
the decoherence time is still a constraint, a smaller set of
gates would help to maintain the information on the system
with as less perturbations as possible. For this, we have to
correctly analyze the topology of the computer we will use.

IBM’s quantum computers are based on superconducting
systems that have their qubits on a 2D lattice, we

have a plane graph representing the possible coupling
between qubits, being the nodes the qubits and the
vertex the couplings. Different computers have different
configurations, some of which have a connectivity graph
more suited for this algorithm. For implementing QACO we
have chosen the 2 with the configurations that maximizes
the number of ant qubits per exploration qubit (Fig. 5):
ibmq 5 yorktown - ibmqx2 and ibmq 16 melbourne.

Depending on the problem size and type (constrained
or unconstrained) one has to find the correct computer
and arrangement of qubits. In the case of unconstrained
problems, the aim is to maximize the number of ant qubits
while having them connected to at least one exploration
qubit. This way, we can apply CNOT gates without having
to use SWAP gates that introduce errors on the system.
As we can see in Fig. 5, square lattices might be the
best configurations to solve these problems. In the current
generation superconducting circuits, square lattices let us
connect up to 3 ant qubit to a single exploration qubit. The
downside of this arrangement is that we lose some of the
entanglement of the system. This could lead to a worse
convergence velocity, as the final measurement is allowed
to be a combination of different paths. A solution for this
problem could be to assign each qubit to a random position
in the system in each iteration. Similarly to the exploration
strategy with Fredkin gates, this defect could be averaged
over all iterations.

If we have constrained problems, we need more connec-
tivity between qubits. As we need to apply Fredkin gates,
we need 3 qubit cycles in the connectivity graph. This high
connectivity is a problem in large-scale superconducting

Fig. 4 Results for the parameter
optimization. Mean iterations
until convergence I term

(circle), converCondition

(square) and MaxI ter (triangle)
vs nComb. The solid curve is
the fitting curve for
converCondition from Eq. 8
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Fig. 5 ibmq 5 yorktown -
ibmqx2 (above) and
ibmq 16 melbourne (below)
qubit arrangements. For QACO
implementation, the optimal
position of the exploration
qubits for UQAP problems are
colored. Double lines represent
the couplings between the ant
and exploration qubits, single
lines represent unused couplings

quantum circuits. At the moment, the only IBM computer
that has this type of topology is the ibmq 5 yorktown -
ibmqx2 computer. If the connection graph for this computer
were complete we could solve any type of unconstrained
problem with size n = 4. Unfortunately we only have 2
cycles in this graph, so we are limited to solve constrained
problems in which the solution is restricted to have one 1 in
two subsets of two qubits.

On top of these problems, we are limited to the
constraints of the IBM provider. As our algorithm changes
the gate’s parameters at each iteration, we can not run the
algorithm at once. This forces us to send new petitions to the
provider sequentially. Taking these limitations into account,
we have run the algorithm on the IBM quantum computers
just once, in order to check that the algorithm successfully
converges to the optimal configuration for each problem
instance.

4.5 ACO

We have also used ACO to solve the problems in order
to have a fair comparison between QACO and its classical
counterpart. For this we have used a simple version of ACO,
which is based on the original article from Blum and Dorigo
(2004). This version is summarized into Algorithm 3. The
input parameters for the algorithm are similar to the ones
used for QACO, with the same βe = 0.13, maxI ter =
62 and converCondition = 59, while the pheromone
evaporation value ρ = 0.05 is the same as the one in the
original ACO paper. To fully mimic the implementation
of QACO, we have only launched one ant per iteration
of ACO. However, a key point of ACO is to have a
swarm of ants exploring new solutions. Thus, we have

also allowed the algorithm to have more than one ant per
iteration.
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4.6 Results

We have successfully computed a small set of unconstrained
problems. The benchmark instances that are more often
used to test the performance of algorithm solving QAP
are too large to be solved by our simulator. The typical
instance sizes go from 25 (Glover et al. 1998) to 7000
variables (Palubeckis 2004). As we have limitations on
the size of the problems we can simulate due to memory
consumption of quantum simulations and limitations on
the number of qubits on the free access IBM’s computers,
we have decided to solve smaller problems. Since, as to
our knowledge, there are no benchmark instances of this
size, the problem instances have been generated randomly
as triangular matrices of different sizes. In particular, we
solved 5 problems size n = 4 on ibmq 5 yorktown -
ibmqx2 computer.1 The problem instances used are written
in Appendix 1.

We have compared the results obtained from IBM
computers with simulations of QACO and ACO we made
in Matlab. For this, we have computed 100 different runs
of the algorithms. For ACO we have first launched the
algorithm with just one ant per generation. The performance
of each algorithm is measured by two parameters obtained
after running the algorithm a number of times for the
same problem. For testing the convergence rate of the
algorithm we have used the mean number of iterations for
the algorithm to stop. For testing the quality of the results we
have measured the percentage of incorrect solutions, which
was previously obtained using an exact algorithm. In order
to have a fairer comparison between ACO and QACO, we
have also run ACO with more than one ant per iteration.
The objective of this fair comparison is to obtain the same
quality solutions. To achieve this, we have run ACO 100
times for the same problem with one ant per iteration. If
there were more than 1% of incorrect solutions, we rerun the
algorithm for one extra ant, until the results met our criteria.
In Table 3 we show the outcomes of the two performance
parameters for 5 problems of size 4. The experiments done
in the IBM quantum computers produced the correct answer
in every trial we made.

Although not tested, launching the experiment a number
of times could reproduce the results obtained in the
simulations, with little to no differences. More importantly,
it is shown that QACO outperforms ACO in terms of
consistency of finding the optimal solution to the problems
with the same number of ants per iteration. Since the size
of the problems we tested is small, the algorithms can only
stop at a small set of different iteration numbers. This makes

1When we started this paper, the ibmq 16 melbourne computer was
still online. However, at the moment of running the algorithm it is
scheduled to be retired. Although we had planned to solve an n = 11
sized problem, we could not run it in time.

Table 3 Results of the benchmark given by the problem matrices from
the Appendix 1

QACO IBM QACO ACO

single run simulation

M1 Mean iter 60 60.62 60.22 60.73

Ants 1 4

Error % 0 0 53 0

M2 Mean iter 58 60.69 60.67 60.49

Ants 1 8

Error % 0 1 62 0

M3 Mean iter 61 60.68 59.75 60.50

Ants 1 4

Error % 0 1 70 0

M4 Mean iter 61 60.72 60.70 60.45

Ants 1 8

Error % 0 3 53 0

M5 Mean iter 61 60.62 60.70 60.74

Ants 1 2

Error % 0 0 2 0

the probability distribution of the exit iteration number
narrow, thus, we can not extract any conclusion about the
convergence speed.

5 Conclusions and future work

In this work we presented a new global search algorithm
inspired on the classic ACO algorithm. The new proposed

QACO is an iterative quantum hybrid algorithm that
can be implemented in computers with non-error corrected
qubits. Based on previous works, we use a pheromone rep-
resentation on the Bloch sphere. We propose a general
exploration strategy using controlled gates, which effi-
ciently explores for new solutions in constrained problems.
However, there are still some questions open for a future
research, for instance, allowing a more complex pheromone
update strategy or increasing the number of ants per itera-
tion.

We have simulated the algorithm for problems sizes
n = 3 to n = 6 to obtain the optimal parameters
for random BQP problems, showing that the algorithm
is capable of solving QAP optimization problems. An
improvement in the simulations could be made if instead
of using the vector representation for the quantum state,
the density matrix representation was used. For this we
would need to have more powerful computers with a higher
memory capacity. This would better address the usefulness
of the entanglement for the CQAP, which can not be fully
simulated with the vector representation.
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We give some guidelines to implement the algorithm
in a quantum computer. We have in fact implemented the
algorithm on an IBM quantum computer and successfully
obtained the expected result results. The results of a
bechmarking for a set of 5 problems of size n = 4 shows
that our QACO algorithm outperforms a simple version of
ACO. However, the experiments done are not sufficient to
fully prove the usefulness of this algorithm. In regard to
the implementation on a real quantum computer, we are
confident that if we set an experiment with a larger number
of trials, the results will match the simulations. We also
expect that for larger problem sizes, the proposed QACO
algorithm could outperform ACO in terms of obtaining the
optimal result in less iterations.

Appendix 1. Problemmatrices

M are the problem matrices and x the solution:

M(4)
1 =

⎛

⎜⎜⎝

−0.269 0.411 −0.079 0.175
−0.086 −0.222 −0.170

−0.463 0.244
−0.139

⎞

⎟⎟⎠ , x
(4)
1 = [1100],

M(4)
2 =

⎛

⎜⎜⎝

0.430 −0.496 −0.443 0.223
0.254 0.029 −0.359

−0.424 −0.183
0.301

⎞

⎟⎟⎠ , x
(4)
2 = [1001],

M(4)
3 =

⎛

⎜⎜⎝

−0.039 −0.327 0.311 0.100
0.364 0.051 −0.387

0.271 0.116
0.261

⎞

⎟⎟⎠ , x
(4)
3 = [1011],

M(4)
4 =

⎛

⎜⎜⎝

−0.092 −0.425 0.001 −0.116
0.167 −0.110 −0.370

0.394 −0.061
0.104

⎞

⎟⎟⎠ , x
(4)
4 = [0110],

M(4)
5 =

⎛

⎜⎜⎝

0.409 −0.195 − 0.248 0.132
−0.200 0.242 −0.408

−0.205 0.248
−0.298

⎞

⎟⎟⎠ , x
(4)
5 = [1000].

Appendix 2. Exploration qubit reset

In Section 3.1.2, we state that in order to correctly explore
new solutions, the control qubits holding the information

about the exploration probability βe must be reset after
each controlled operation. In this appendix, we illustrate
this effect on a small system, but the results here can be
straightforwardly extended to any system in which we apply
controlled operations with a single control qubit.

Let’s suppose a system where we have a single
exploration qubit and two ant qubits. The initialization of
the ant qubits do not have any effect on this process, so for
simplicity, suppose that the system starts with all qubits in
the ground state, |�in〉 = |0〉 ⊗ |00〉. Furthermore, suppose
that the exploration strategy employed consists of CNOT
gates. The two different circuits we have to compare are
shown in Fig. 6. The evolution of the quantum state for the
circuit in which we do not reset the exploration qubit is the
following:

|�in〉 = |0〉 ⊗ |00〉 = |000〉 → Ry on qubit 1,
|�1〉 = (√

1 − β|0〉 + √
β|1〉) ⊗ |00〉

= √
1 − β|000〉 + √

β|100〉 → CNOT 1-2,
|�2〉 = √

1 − β|000〉 + √
β|110〉 → CNOT 1-3,

|�3〉 = √
1 − β|000〉 + √

β|111〉 → Trace out qubit 1,
|�out〉 = √

1 − β|00〉 + √
β|11〉.

For the circuit in which the qubit is reset the evolution is:

|�in〉 = |0〉 ⊗ |00〉 = |000〉 → Ry on qubit 1,
|�1〉 = (√

1 − β|0〉 + √
β|1〉) ⊗ |00〉

= √
1 − β|000〉 + √

β|100〉 → CNOT 1-2,
|�2〉 = √

1 − β|000〉 + √
β|110〉 → Trace out qubit 1,

|�3〉 = √
1 − β|00〉 + √

β|10〉 → Add qubit 1,
|�4〉 = |0〉 ⊗ (√

1 − β|00〉 + √
β|10〉) → Ry on qubit 1,

|�5〉 = (√
1 − β|0〉 + √

β|1〉) ⊗ (√
1 − β|00〉 + √

β|10〉)
= (1 − β)|000〉 + √

β(1 − β)|100〉 + √
(1 − β)β|010〉 + β|110〉

→ CNOT 1-3,
|�6〉 = (1 − β)|000〉 + √

β(1 − β)|101〉 + √
(1 − β)β|010〉 + β|111〉

→ Trace out qubit 1,
|�out〉 = (1 − β)|00〉 + √

β(1 − β)|01〉 + √
(1 − β)β|10〉 + β|11〉.

As we see here, in the case in which we do not reset
the exploration qubit, there are only two possible outcomes:
no exploration happened at all, or all possible exploration
steps happened. On the contrary, resetting the exploration
qubit allows for the expected exploration. In this case,
the probability of applying one exploration step has the
expected probability of β. This way we can achieve a
smooth exploration over the whole search space, as it is
intended for both ACO and QACO.
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Fig. 6 In the top circuit the
exploration qubit is not reset
after it is employed as the
control qubit for the CNOT
gates. This entangles the circuit
in such way that the exploration
done is not properly done. In the
circuit below, as the exploration
qubit is reset after each CNOT
gate, we recover the proper
exploration probabilities. The
horizontal lines mark each of the
circuit steps
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