
Departamento Ingeniería de Sistemas y Automática

Escuela de Ingeniería de Bilbao

MAS-RECON: PLATAFORMA DE GESTIÓN

DE APLICACIONES DISTRIBUIDAS,

ADAPTABLES Y SENSIBLES AL

CONTEXTO

TESIS DOCTORAL

D. Unai Gangoiti Gurtubay

Directoras: Marga Marcos Muñoz

 Aintzane Armentia Díaz de Tuesta

Bilbao, 2022

(cc)2022 UNAI GANGOITI GURTUBAY (cc by 4.0)

En primer lugar, quiero expresar total gratitud a mis directoras de tesis Marga y Aintzane

por su paciencia, esfuerzo, apoyo y dedicación. Su confianza y ayuda, indispensable en las

últimas fases, es lo que ha hecho posible llevar a término este trabajo. Además, sus

conocimientos en el campo de aplicación han sido imprescindibles para hacer posible lo

que en algunos momentos parecía imposible.

Por otra parte, agradecimiento especial a los compañeros de Departamento de Ingeniería

de Sistemas y Automática: a todos los profesores, doctorandos y ya doctores con los que

he compartido muy de cerca largas jornadas en el laboratorio de Control 1.

En general, quiero agradecer su apoyo a todas y cada una de las personas que han vivido

y compartido conmigo la realización de este trabajo.

RESUMEN

En esta Tesis Doctoral se presenta MAS-RECON, una plataforma genérica,

personalizable y extensible para la gestión del ciclo de ejecución de aplicaciones

sensibles al contexto, que incluye desde el registro de sus elementos hasta su puesta

en marcha y la gestión de su ejecución. Estas aplicaciones se encargan de la supervisión

de su entorno para detectar cambios en él y poder responder de forma rápida y

adecuada.

En estas aplicaciones, habitualmente los datos son adquiridos por dispositivos ligeros

ubicados en el entorno a supervisar, mientras que su procesamiento suele realizarse

mediante equipos más potentes y alejados. Para asegurar la fiabilidad de la

información obtenida, tanto la adquisición de estos datos como su procesamiento y

trasmisión pueden estar sometidos a ciertos requisitos temporales y de seguridad,

siendo necesario mantener la disponibilidad del servicio, incluso cuando se producen

fallos de hardware. Además, se trata de aplicaciones dinámicas cuyo número y tamaño

puede evolucionar con el tiempo, para poder adaptarse a las circunstancias del

contexto en cada instante. Incluso, cuando se produce un cambio relevante, deben

poder responder no sólo modificando su propia ejecución, sino también actuando

sobre la ejecución de otras aplicaciones. Sin embargo, además de estos requisitos

comunes, al ser aplicaciones que pueden estar presentes en ámbitos de aplicación muy

diversos (desde la monitorización remota de la salud o la detección temprana de

catástrofes, hasta sistemas de video-vigilancia o sistemas de fabricación flexibles),

también demandan requisitos específicos de cada ámbito.

En la literatura se pueden encontrar propuestas de plataformas de gestión que cubren

algunas de estas demandas, pero no todas. Y, además, para hacer frente a las

necesidades específicas del dominio se suelen desarrollar soluciones ad-hoc que no se

pueden generalizar a otros ámbitos. En este contexto, MAS-RECON dispone de un

núcleo genérico que cubre las necesidades operacionales (arranque, parada, operación

normal y gestión del estado del sistema) y de flexibilidad (auto-adaptabilidad

conducida por la propia aplicación y disponibilidad en base a réplicas) de las

aplicaciones sensibles al contexto de cualquier campo. MAS-RECON también

contempla la variabilidad del dominio, ya que se ha diseñado para que pueda ser

personalizable e incluso extensible a domino.

Para todo ello, MAS-RECON se basa en dos tecnologías. La tecnología multi-agente

permite la implementación de inteligencia distribuida con supervisión centralizada. De

esta forma se puede distribuir la toma de decisiones a entidades del dominio al mismo

tiempo que se asegura un correcto estado global del sistema. De hecho, MAS-RECON da

un paso más que otras plataformas de la literatura, centrando su gestión de la ejecución

en las propias aplicaciones y no en sus componentes. Esto es posible gracias a la

tecnología de meta-modelado que posibilita la inclusión del concepto de aplicación en

los mecanismos de gestión. De hecho, a pesar de que el concepto de aplicación es

específico de cada ámbito, MAS-RECON proporciona la definición y gestión genérica

del estado global del sistema gracias a la definición de meta-modelos de dominio. Estos

meta-modelos tienen que seguir la estructura establecida por MAS-RECON, siendo las

entidades que los componen diferentes en cada ámbito.

En resumen, con el objetivo de desarrollar plataformas de gestión propias de dominio,

MAS-RECON propone: 1) núcleo de arquitectura genérico, donde se distinguen agentes

de dominio dotados de inteligencia y agentes de sistema para su supervisión; 2)

esqueleto del código de los agentes de dominio así como el API de los agentes de

supervisión; y 3) metodología de personalización y extensión a dominio, basada en la

definición del meta-modelo de dominio y el desarrollo de plantillas de agentes a partir

del código proporcionado.

ABSTRACT

This research work presents MAS-RECON, a generic, customizable, and extensible

platform for managing the executions cycle of context-aware applications, which

includes everything from the registration of its elements to its start-up and execution

management. These applications are responsible for monitoring the environment to

detect changes and respond quickly and appropriately.

In these applications, data is usually acquired by light devices located in the

environment to be supervised, meanwhile the processing is usually performed by

powerful and remote equipment. To ensure the reliability of the obtained information,

both the acquisition of this data and its processing and transmission may accomplish

certain time and security requirements, making it necessary to maintain the

availability of the service, even when hardware failures occur. In addition, to be able to

adapt to any circumstance applications are dynamic, and their number and size can

evolve over time. Even when a relevant change occurs, they must be able to respond

not only by modifying their own execution, but also by acting on the execution of any

other application. However, in addition to these common requirements, and

considering that applications can be used in diverse domains (from remote health

monitoring or early detection of catastrophes to video-surveillance systems or flexible

manufacturing systems), they also demand domain specific requirements.

Proposals for management platforms that cover some of these demands, but not all of

them, can be found in the literature. And furthermore, to address the specific needs of

the domain, and-hoc solutions that cannot be generalized to other areas are usually

developed. In this context, MAS-RECON has a generic core that covers operational needs

(start-up, shutdown, normal operation, and system state management) and flexibility

(self-adaptation driven by the application itself and availability based on replicas) of

context-sensitive applications in any domain. MAS-RECON also supports the variability

of the domain since it has been designed to be customizable and even extensible to

domain.

For all this, MAS-RECON is based on two technologies. Multi-agent technology allows

the implementation of distributed intelligence with centralized supervision. In this

way, decision-making can be distributed to domain entities while ensuring a correct

global state of the system. In fact, MAS-RECON goes one step further than other

platforms in the literature, focusing its execution management on the application

themselves and not on their components. This is possible thanks to the meta-modeling

technology that makes it possible to include the application concept in the management

mechanisms. Fairly, even though the application concept is specific to each domain,

MAS-RECON provides the generic definition and management of the global state of the

system by means of the definition of domain meta-models. These meta-models must

follow the structure established by MAS-RECON, being the entities that compose them

different in each area.

In summary, with the aim of developing domain specific management platforms, MAS-

RECON proposes: 1) generic architecture core, where domain agents with intelligence

and system agents for their supervision are distinguished; 2) skeleton of the code of

the domain agents as well as the API of the supervision agents; 3) customization and

domain extension methodology, based on the definition of the domain meta-model and

the development of agent templates based on the provided code.

ÍNDICE

Índice de Contenidos

i

ÍNDICE DE CONTENIDOS

1 INTRODUCCIÓN ...

1.1 MOTIVACIÓN ... 1-1

1.2 ESTADO DEL ARTE .. 1-5

1.2.1 Requisitos Operacionales (R1-R3) .. 1-7

1.2.2 Requisitos No-Operacionales .. 1-10

1.3 OBJETIVOS .. 1-18

1.4 RESULTADOS Y DISCUSIÓN ... 1-19

1.4.1 Inteligencia Distribuida: Requisitos Operacionales (R1-R3) 1-21

1.4.2 Supervisión Centralizada: Trazabilidad (R6) y Variabilidad de Dominio (R8)

 1-25

1.4.3 Flexibilidad: Auto-adaptabilidad (R5) y Auto-recuperación (R7) 1-32

1.4.4 Personalización y Extensión ... 1-37

1.4.5 Análisis de Rendimiento ... 1-41

1.5 REFERENCIAS ... 1-45

2 CONCLUSIONES ..

2.1 CONCLUSIONES ... 2-1

2.2 TRABAJO FUTURO ... 2-3

3 ANEXO: PUBLICACIONES ..

3.1 FLEXIBILITY SUPPORT FOR HOMECARE APPLICATIONS BASED ON MODELS AND MULTI-

AGENT TECHNOLOGY ... 3-1

3.2 MODEL-DRIVEN DESIGN AND DEVELOPMENT OF FLEXIBLE AUTOMATED PRODUCTION

CONTROL CONFIGURATIONS FOR INDUSTRY 4.0.. 3-29

3.3 A CUSTOMIZABLE ARCHITECTURE FOR APPLICATION-CENTRIC MANAGEMENT OF CONTEXT-

AWARE APPLICATIONS ... 3-59

Índice de Contenidos

ii

Índice de Figuras

iii

ÍNDICE DE FIGURAS

Figura 1: Arquitectura de plataforma propuesta para la gestión de sistemas de

monitorización remota de la salud (eHC) en P.1 y empleada para la gestión de

sistemas de video-vigilancia en P.4. ... 1-23

Figura 2: Arquitectura de plataforma propuesta para la gestión de sistemas de

fabricación flexible (FMS), en P.2 y P.4. .. 1-23

Figura 3: Arquitectura de la plataforma MAS-RECON: genérica, personalizable y

extensible para la gestión de aplicaciones sensibles al contexto 1-24

Figura 4: Estructura de repositorio para el estado global del sistema propuesta en P.1

para sistemas eHC ... 1-26

Figura 5: Estructuras de repositorio para el estado global del sistema propuesta en

P.3 para sistemas multi-media. .. 1-26

Figura 6: Estructuras de repositorio para el estado global del sistema propuesta en

P.2 para sistemas FMS. .. 1-27

Figura 7: Meta-modelo que define la estructura genérica del repositorio de sistema

(SR). .. 1-28

Figura 8: API genérica del System Repository Agent. ... 1-29

Figura 9: Diagrama de secuencia del arranque de entidades de recurso y de

aplicación. ... 1-30

Figura 10: Interfaces definidos para las interacciones entre Agentes de Supervisión de

Sistema (en color azul) y Agentes de dominio de Aplicación y Recurso (en color

verde), en relación con los requisitos de flexibilidad: auto-adaptabilidad (R5) y

auto-recuperación (R7). ... 1-34

Figura 11: Diagrama de secuencia de los mensajes intercambiados durante el proceso

de auto-recuperación: desde la detección del fallo hasta su recuperación. 1-37

Figura 12: Diagramas de estados (FSM) correspondiente al comportamiento genérico

de los agentes de domino: a) de recurso y b) de aplicación. 1-39

Índice de Figuras

iv

Figura 13: Tiempos de planificación (a), despliegue (b) y arranque (c) de

componentes en MAS-RECON (color azul), en comparación con la plataforma de

orquestación Kubernetes (color naranja), en función de la carga de trabajo del

sistema. ... 1-42

Figura 14: Tiempos de planificación (a), despliegue (b) y arranque (c) de

componentes en MAS-RECON (color azul), en comparación con la plataforma de

orquestación Kubernetes (color naranja), en función del número de nodos del

sistema. ... 1-43

Índice de Tablas

v

ÍNDICE DE TABLAS

Tabla 1: Requisitos de la plataforma .. 1-6

Tabla 2: Cumplimiento de requisitos por las plataformas de gestión de aplicación. .. 1-9

Tabla 3: Relación objetivos - publicaciones .. 1-20

Tabla 4: Tiempos de recuperación ante fallos de aplicaciones de diferente tamaño (N).

El fallo únicamente afecta a uno de los nodos (i.e., pérdida de N/6 componentes)

 .. 1-45

Índice de Tablas

vi

Capítulo 1 – Introducción

1 INTRODUCCIÓN

Capítulo 1 – Introducción

1-1

1.1 Motivación

Los actuales avances en las tecnologías de la información y comunicación han

permitido la expansión del llamado Internet de las Cosas (Internet of Things, IoT)

(Čolaković and Hadžialić, 2018; Perera et al., 2014) y su variante industrial IIoT

(Industrial IoT) (Boyes et al., 2018; Xu et al., 2018). Este paradigma está basado en la

interconexión universal de “objetos” o “cosas” dotadas de identidad digital, y con la

habilidad de medir, comprender, procesar y reaccionar a su entorno, pudiendo

también colaborar para lograr objetivos comunes. IoT e IIoT han permitido, por lo

tanto, el desarrollo de aplicaciones sensibles al contexto que pertenecen a dominios de

aplicación muy diferentes, que van desde la monitorización remota en la prevención

de desastres naturales (Ray et al., 2017; Shah et al., 2019) o la supervisión médica

(Baker et al., 2017; Islam et al., 2015), hasta la agricultura inteligente (Ayaz et al., 2019;

Farooq et al., 2019) o los sistemas de fabricación flexible (Flexible Manufacturing

Systems, FMS) (Chen et al., 2018; Qi and Tao, 2019).

Estas aplicaciones, a pesar de encontrarse en ámbitos de aplicación tan dispares,

presentan requisitos comunes. Por un lado, los datos de contexto generalmente son

registrados por dispositivos integrados, como dispositivos IoT e IIoT, que se ubican

generalmente cerca del entorno físico bajo supervisión. Evidentemente, lo que puede

variar son los dispositivos utilizados para la toma de datos de contexto, aunque todos

aportan el mismo tipo de funcionalidad. Por otro lado, las tareas de procesamiento de

dichos datos pueden requerir para su ejecución equipos de medio-alto rendimiento,

físicamente alejados de las medidas (distribución y heterogeneidad de nodos). Por

ejemplo, en la predicción de erupciones volcánicas, los sensores se colocan en el cráter,

pero la información capturada se analiza en una ubicación remota utilizando, por

ejemplo, algoritmos de “machine learning”. Así mismo, algunos sistemas de riego

disponen de sensores inalámbricos para monitorizar la humedad del suelo y del aire, y

drones con cámaras. Esta información se analiza en un centro de procesamiento dentro

de la finca, con el fin de tomar decisiones sobre cambios de riego, evitando el

Capítulo 1 – Introducción

1-2

desperdicio de agua y mejorando la calidad y cantidad de cultivos. Por lo tanto, de

forma general, las aplicaciones estarán formadas por un conjunto de componentes

software desplegados en nodos diferentes que tienen que comunicarse y cooperar, a

veces con limitaciones de tiempo (requisitos de tiempo). Además, es posible que estas

aplicaciones deban evolucionar con los cambios de contexto para adaptarse a nuevas

situaciones (adaptabilidad). Por ejemplo, en los sistemas de alerta temprana se puede

adaptar la resolución temporal, espacial y numérica de los sensores activos al nivel de

criticidad. Así, será posible procesar la información con mayor detalle cuando se

detecte una situación de peligro. En el mismo sentido, en caso de una alarma de

incendio en una residencia de mayores, sería interesante activar la monitorización

remota de constantes vitales de personas mayores, dotando así a los equipos de

emergencia de información útil para la gestión de la crisis. Esta adaptación implica

cambios precisos en la funcionalidad de la aplicación.

A veces, incluso es necesaria la cooperación entre diferentes aplicaciones para

monitorizar correctamente el entorno y/o reaccionar a los cambios que se detecten en

él. Se trata de sistemas cambiantes en el sentido de que las aplicaciones y los recursos

pueden incorporarse o apagarse con el tiempo (escalabilidad); cambiando, en

consecuencia, la demanda y/o la disponibilidad de recursos. Como ejemplo, en el caso

de sistemas de alerta temprana, un aumento en el nivel de criticidad puede implicar la

activación dinámica de más sensores. En el caso de residencias de mayores, será

necesario ajustar recursos a medida que el número de personas varíe o se requieran

nuevas tareas de seguimiento debidas a la evolución del estado de salud de las

personas.

Además, debido a la naturaleza sensible de la información capturada y procesada,

resulta esencial el garantizar la seguridad y privacidad de los datos (seguridad). Por

ejemplo, para que los datos médicos solo puedan ser accesibles por el personal

autorizado. O en las fábricas inteligentes, donde la falta de seguridad puede provocar

pérdidas económicas, acceso no autorizado a datos confidenciales o incluso lesiones y

la muerte de personas.

Capítulo 1 – Introducción

1-3

Finalmente, es fundamental mantener la disponibilidad del servicio, minimizando las

interrupciones y recuperando la ejecución de la aplicación desde el punto de parada,

incluso en caso de fallos de hardware. En este sentido, en sistemas de fabricación

flexible, cuando falla una máquina y para reducir las pérdidas económicas, se debe

reprogramar el plan de fabricación lo antes posible. Lo mismo ocurre en la supervisión

de salud crítica, si se quiere evitar una situación de peligro para el paciente.

Además de estos requisitos comunes, las aplicaciones objeto de este trabajo también

presentan particularidades de su propio dominio, empezando por el propio concepto

de aplicación. Por ejemplo, en los sistemas de salud, una aplicación comprende el

conjunto de las tareas de seguimiento médico necesarias para supervisar la salud de

una persona. Sin embargo, en sistemas de fabricación, una aplicación puede entenderse

como las tareas de seguimiento de la fabricación de un conjunto de productos. En

ambos dominios, además, puede ser necesario resolver eventos sobrevenidos, como la

detección de un problema de salud o un fallo en un recurso de fabricación. Aunque el

objetivo en ambos casos es recuperar una situación normal, la forma de alcanzarla y

las entidades de dominio implicadas pueden ser muy diferentes.

La estructura de la aplicación también depende del dominio, ya que las aplicaciones se

componen de un conjunto de entidades que colaboran para lograr los objetivos

funcionales de la aplicación. Y, dependiendo del dominio, las entidades pueden tener

una relación jerárquica determinada. Adicionalmente, las aplicaciones pueden tener

requisitos no-funcionales que afectan a todas sus entidades. A modo de ilustración, en

un sistema de detección de incendios, si se detecta que la temperatura de una zona

aumenta, se puede incrementar el número de sensores en funcionamiento y realizar

un procesamiento más complejo de la información capturada para confirmar la

existencia de fuego. Esto implica que los requisitos de temporización (cada cuánto

tomar muestra) y de procesamiento de la aplicación cambien con el nivel de criticidad.

Los recursos hardware necesarios también pueden depender del dominio de

aplicación. En el caso de la monitorización sanitaria, ésta puede ser realizada por

Capítulo 1 – Introducción

1-4

equipos con mayor o menor capacidad de procesamiento, algunos de los cuales deben

estar conectados a hardware específico como sensores o cámaras. Mientras que, en los

sistemas de fabricación, los recursos necesarios suelen ser las propias máquinas de

fabricación, robots de ensamblaje, las fresadoras/taladradoras, transportes, etc.

Desde el punto de vista de la implementación, ya desde primeros de siglo se pueden

encontrar trabajos que usan diferentes paradigmas de arquitecturas de software

distribuidas para desarrollar aplicaciones sensibles al contexto. Así, por ejemplo, se

han utilizado sistemas basados en componentes (Vale et al., 2016), sistemas multi-

agente (Multi-Agent System, MAS) (Michael Wooldridge, 2009), arquitecturas

orientadas a servicios o microservicios (James Lewis and Martin Fowler, 2014).

Cualquier implementación de una arquitectura de software distribuida cumple con los

requisitos de distribución, heterogeneidad, escalabilidad y requisitos temporales, y

puede ser extendida con prestaciones de seguridad. También da soporte al inicio,

parada y comunicación entre sus módulos distribuidos. Para hacer frente a los

requisitos de adaptabilidad y disponibilidad se pueden añadir mecanismos de

reconfiguración a plataformas existentes. La reconfiguración dinámica permite

modificar la configuración de la aplicación cuando ocurre una situación anormal, como

un cambio de contexto o un fallo hardware. Sin embargo, según la literatura, ninguna

plataforma construida sobre estas arquitecturas de software distribuidas cubre todos

los requisitos identificados para las aplicaciones sensibles al contexto.

Específicamente, no se ha encontrado ninguna en la literatura que, de soporte a la

definición de particularidades del dominio, tanto en la supervisión centralizada del

estado de las aplicaciones como en la toma de decisiones y acciones asociadas ante

situaciones sobrevenidas, y menos aún si la intervención es a nivel de aplicación.

Probablemente, pueda deberse a que la gestión de las aplicaciones se ha entendido

habitualmente como la gestión individual de un conjunto de componentes

interrelacionados. Sin embargo, estos componentes deben considerarse como un todo

para permitir garantizar el cumplimiento de los requisitos a nivel de aplicación. En el

caso particular de la adaptabilidad, también se debe considerar la aplicación como un

conjunto cuando, para hacer frente a eventos inesperados, una aplicación debe actuar

Capítulo 1 – Introducción

1-5

sobre otra (iniciarla/detenerla o cambiar sus parámetros de ejecución…). Por ejemplo,

si en un paciente que está monitorizado de forma remota se detecta que sus constantes

vitales no están dentro de los rangos esperados, se debería poder poner en marcha

nuevas tareas de supervisión para determinar la criticidad de la situación. Por lo tanto,

para poder supervisar la ejecución de una aplicación, la plataforma debe saber qué es

una aplicación (entidades que la forman y estado en el que se encuentran) y cómo debe

cambiar su estructura en caso de que se detecten cambios en el entorno. Existen varias

propuestas en la literatura que han intentado dar solución a las demandas

dependientes del dominio, pero, en general son soluciones ad-hoc que difícilmente

pueden aplicarse a otros ámbitos. Algunas se basan en el Desarrollo Basado en Modelos

(Model Driven Development, MDD) (Mohamed et al., 2021), ya que el uso de modelos

proporciona la abstracción necesaria para lograr una propuesta genérica. Pero no

consideran un concepto de aplicación y/o definición de estado del sistema.

1.2 Estado del arte

El objetivo principal de una plataforma de gestión de aplicaciones es garantizar que las

aplicaciones se ejecutan según lo especificado. Como se comentó anteriormente, las

aplicaciones sensibles al contexto presentan requisitos comunes y requisitos

específicos del dominio. De ellos, se pueden generalizar los requisitos principales que

debe cumplir una plataforma. La Tabla 1 recoge los requisitos de la plataforma, que se

pueden dividir en tres grupos: operacionales (R1-R3), que abordan la ejecución de las

aplicaciones; y no operacionales, relacionados con la seguridad (R4) y la flexibilidad

(R5-R8).

Desde el punto de vista operacional, las aplicaciones, desplegadas en dispositivos

heterogéneos, realizan tareas de adquisición de datos, procesamiento y actuación. Por

lo tanto, la plataforma debe permitir la ejecución distribuida de estas tareas, así como

la comunicación entre ellas (R1: ejecución y comunicación distribuida). Además, es

Capítulo 1 – Introducción

1-6

necesario el soporte para un despliegue eficiente, teniendo en cuenta los recursos

disponibles y su demanda por parte de las aplicaciones (R2: despliegue eficiente de

aplicaciones). Sumado a esto, los sistemas sensibles al contexto están compuestos por

un conjunto de aplicaciones dinámico en número y tamaño, con requisitos temporales,

cuyo inicio, parada y funcionamiento normal deben ser controlados por la plataforma

de gestión de aplicaciones (R3: gestión del ciclo de vida).

Tabla 1: Requisitos de la plataforma

Tipo Requisito Descripción

Operacional

R1 Ejecución distribuida y comunicación.

R2 Despliegue eficiente de la aplicación.

R3 Gestión del ciclo de vida.

Seguridad

(no operacional)
R4 Seguridad.

Flexibilidad (no
operacional)

R5 Auto-adaptabilidad.

R6 Trazabilidad / Auto-conciencia (self-awareness).

R7 Auto-recuperación (self-healing).

R8 Variabilidad de dominio.

En cuanto a los requisitos no operacionales, la seguridad del sistema requiere de

mecanismos para asegurar la privacidad, confidencialidad, autenticidad e integridad

de los datos (R4: seguridad). Es importante remarcar que las aplicaciones sensibles al

contexto se incluyen dentro de los llamados sistemas auto-adaptativos, por lo que

también requieren de capacidad para adaptarse de forma autónoma a los cambios en

su entorno. Esto implica no solo conocer el contexto (context-awareness), sino también

la auto-conciencia (self-awareness) (Krupitzer et al., 2015). Para lograr la adaptación al

contexto, la plataforma debe estar dotada de mecanismos de reconfiguración dinámica

activados por aplicaciones y que le permitan reaccionar ante situaciones relevantes,

cambiando su comportamiento (R5: auto-adaptabilidad). La auto-conciencia implica

ser consciente de la disponibilidad de recursos de manera dinámica. Para ello, la

plataforma debe realizar un seguimiento tanto del estado de los recursos de

Capítulo 1 – Introducción

1-7

infraestructura como del estado de las aplicaciones (R6: trazabilidad / auto-conciencia

(self-awareness)).

En cuanto a la disponibilidad de las aplicaciones, la plataforma debe minimizar las

interrupciones del servicio, incluyendo capacidad para la detección de fallos y la

recuperación automática del servicio, manteniendo el estado de las aplicaciones (R7:

auto-recuperación (self-healing)).

Finalmente, cada dominio de aplicación tiene sus particularidades en términos de

especificación de aplicaciones (qué conceptos definen las aplicaciones y sus relaciones)

y gestión de ejecución, o incluso en lo referido a tipos de recursos. Para aprovechar el

gran esfuerzo que supone el diseño y desarrollo de una plataforma de gestión, sería

beneficioso disponer de una plataforma personalizable a diferentes dominios (R8:

variabilidad de dominio).

Las siguientes secciones analizan el trabajo relacionado que aborda los requisitos

identificados. La Tabla 2 recoge el análisis de las principales plataformas de gestión.

1.2.1 Requisitos Operacionales (R1-R3)

Las arquitecturas de software distribuidas consideran las aplicaciones como un

conjunto de módulos (unidades computacionales) que se ejecutan en diferentes nodos

e interactúan para lograr la funcionalidad de la aplicación. Sin embargo, la definición

del módulo y su composición difieren de una arquitectura a otra. Por ejemplo, en la

Ingeniería del Software Basada en Componentes (Component-Based Software

Engineering, CBSE) (Vale et al., 2016), los componentes se desarrollan como cajas

negras que ofrecen servicios de forma independiente a la aplicación. Las aplicaciones

son composiciones de componentes en base a su interfaz o siguiendo un modelo de

componentes. Las aplicaciones basadas en multi-agentes (MAS) consisten en

componentes software inteligentes y débilmente acoplados, llamados agentes, que son

autónomos (toman decisiones sin intervención humana directa), reactivos (reaccionan

Capítulo 1 – Introducción

1-8

a cambios en su contexto) y sociales (interactúan entre sí, cooperando o

compitiendo)(Michael Wooldridge, 2009). En la Computación Orientada a Servicios

(Service Oriented Computing, SOC), las unidades computacionales se denominan

servicios. Los proveedores publican los servicios en repositorios como cajas negras que

los consumidores pueden descubrir y usar, o incluso componer, creando nuevos

servicios (Al-Jaroodi and Mohamed, 2012). En los últimos años, la aparición del estilo

arquitectónico de microservicios ha permitido la construcción de aplicaciones

distribuidas altamente escalables, en base a servicios pequeños y poco acoplados que

se comunican a través de protocolos ligeros (James Lewis and Martin Fowler, 2014).

Las tecnologías de organización en contenedores que posibilitan una virtualización

ligera se han convertido en el estándar de facto para empaquetar microservicios en la

nube (Wang et al., 2021).

Existen aproximaciones que, basándose en un estilo arquitectónico distribuido, están

orientadas a facilitar el desarrollo y/o la gestión de aplicaciones. Suelen proporcionar

mecanismos para desplegar, comunicar y gestionar el ciclo de vida de los módulos de

la aplicación. Es el caso, por ejemplo, de Java Agent Development (JADE) (Bellifemine et

al., 2008), la implementación más utilizada del estándar Foundation for Intelligent

Physical Agents (FIPA) (Foundation for Intelligent Physical Agents, 2005) para MAS; y

de Kubernetes (Kubernetes, 2022), la herramienta más extendida para la orquestación

de aplicaciones basadas en microservicios implementadas mediante contenedores.

Cualquier plataforma construida mediante cualquiera de estas aproximaciones o

construida directamente sobre una arquitectura de software distribuida cumple

directamente con el requisito R1 (ejecución distribuida y comunicación) y con , al

menos, una versión básica de R2 (despliegue eficiente de aplicaciones) y R3 (gestión

del ciclo de vida).

Capítulo 1 – Introducción

1-9

Tabla 2: Cumplimiento de requisitos por las plataformas de gestión de aplicaciones.

PLATAFORMA
R1-R3:

REQ.
OPERACIONALES

R5:

AUTO-ADAPTABILIDAD

 R6:
TRAZABILIDAD /

AUTO-CONCIENCIA

 R7:
AUTO-RECUPERACIÓN

 R8:
VARIABILIDAD DE

DOMINIO

Conducido
por aplic.

Aplic.
objetivo

de acción

Foco
Modelo

dinámico

Transparente

para aplic.
Integridad

estado
Fallo
nodo

Concepto

aplic.
Genérica

(Khan et al., 2008) CBSE No No CC No --- --- --- No Sí

ACCADA

(Gui et al., 2011)
CBSE No No CC No --- --- --- No Sí

MUSIC

(Hallsteinsen et al., 2012)
CBSE + SOC No No CC No No Sí No No Sí

DARE

(Albassam et al., 2017)
CBSE No No CC Sí Sí Sí No No Sí

(Hussein et al., 2011) CBSE No No CC Sí --- --- --- No Sí

THOMAS / PANGEA

(Argente et al., 2011) /
(Villarrubia et al., 2017)

MAS + SOC Restringido Sí CO Sí Sí No No No Sí

iLAND

(Garcia Valls et al., 2013)
SOC No No CC Sí Sí No Sí Sí No

DAMP

(Agirre et al., 2016)
CBSE Sí Sí CA Sí Sí Sí Sí Sí No

EI4MS

(He et al., 2021)
Microservicios No No CQU Sí Sí Sí No No Sí

CC = Centrado-Componente, CO = Centrado-Organización, CA = Centrado-Aplicación, CQU = Centrado-QoS-Usuario

Capítulo 1 – Introducción

1-10

1.2.2 Requisitos No-Operacionales

Las plataformas distribuidas se pueden extender con mecanismos que permitan

cumplir requisitos no operacionales. Las siguientes subsecciones analizan lo

investigado en este sentido.

1.2.2.1 Seguridad (R4)

En (Hassija et al., 2019) se puede encontrar una completa investigación acerca de

mecanismos que permitan asegurar el acceso, almacenamiento, procesamiento y

transmisión de datos. Las soluciones más ampliamente aplicadas son, entre otras,

infraestructuras de clave pública (Public Key Infrastructure, PKI), mecanismos de

autenticación y autorización, encriptación, sockets seguros (Secure Socket Layer, SSL)

y la tecnología “blockchain”. Sin embargo, todas estas soluciones pueden incluirse en

las plataformas de forma transparente a la gestión de las aplicaciones, por lo que no se

consideran dentro del alcance de la presente tesis doctoral.

1.2.2.2 Auto-adaptabilidad (R5)

La auto-adaptabilidad generalmente se basa en la implementación de modelos de

bucles MAPE-K (es decir, hacer uso en la computación autónoma del concepto de bucle

de retroalimentación de la teoría de control) (Arcaini et al., 2015). Según (Khabou et

al., 2014), la auto-adaptabilidad es una tarea compleja que se puede dividir en cuatro

fases: (1) monitorización/recolección de parámetros del contexto; (2) detección de

cambios relevantes mediante el análisis de los datos recopilados; (3) planificación de

acciones de adaptación apropiadas para responder a los cambios; (4) ejecución de las

acciones previstas.

Capítulo 1 – Introducción

1-11

Las dos primeras fases dependen en gran medida del contexto específico, que varía de

un campo a otro (Li et al., 2015). Algunos trabajos de investigación se han centrado en

la especificación del contexto. Por ejemplo, en (Iqbal et al., 2021) se presenta un

modelo de contexto basado en ontologías, que permite mejorar las capacidades de

interacción de los distintos usuarios de dispositivos móviles adaptativos. Modela el

contexto a través de sus cuatro elementos principales: el dispositivo, el usuario, el

entorno (ubicación y tiempo) y la actividad realizada por el usuario. Estos cuatro

aspectos también son tenidos en cuenta en el modelo de contexto propuesto en

(Boudaa et al., 2018), dentro del ámbito de las ciudades inteligentes, que permite a un

sistema de recomendación proponer servicios relevantes para los usuarios. Otros

trabajos, en cambio, consideran la monitorización del contexto como parte de la

funcionalidad de la aplicación, ya que son los propios módulos de la aplicación los

encargados de capturar y procesar información del contexto, siendo por ello

innecesaria su caracterización. Esta última es la concepción adoptada en esta tesis

doctoral.

En cuanto a la fase 3 (planificación de acciones de adaptación apropiadas para

responder a los cambios), se han propuesto varias técnicas para seleccionar acciones

de adaptación. Una de ellas es expresar la auto-adaptabilidad a través de la variabilidad

de la aplicación (Galster et al., 2014), definida en base a puntos de variación (dónde

puede ocurrir un cambio planificado) y variantes (qué opciones se pueden

seleccionar). En (Khan et al., 2008) cada componente se considera como un punto de

variación y las implementaciones como las variantes correspondientes, cada una

relacionada con una situación específica en el contexto. Otros trabajos hacen uso de

reglas para la toma de decisiones, una de las soluciones más utilizadas, ya que

proporcionan un método de clasificación fácil y automatizable (Ramírez et al., 2021).

Por ejemplo, (Hussein et al., 2011) y (Rocha et al., 2013) utilizan reglas para detectar y

clasificar situaciones relevantes, siendo posible razonar la mejor respuesta.

Capítulo 1 – Introducción

1-12

Las acciones a ejecutar en la fase 4 comprenden desde propuestas fijas y ad-hoc, tales

como simples avisos (Hsu and Nieh, 2020; Rocha et al., 2013) o alarmas (Baek et al.,

2021), hasta otras más flexibles, basadas en mecanismos de reconfiguración dinámica

(Agirre et al., 2016; Argente et al., 2011). En el caso de la reconfiguración dinámica, una

entidad externa automatiza y gestiona la ejecución de la adaptación, separando la

lógica de adaptación de la lógica de aplicación. La reconfiguración dinámica se ha

aplicado en dos niveles: componente y aplicación. La mayoría de los enfoques

funcionan a nivel de componente, siendo posible agregar, quitar, reemplazar y/o

volver a conectar módulos de aplicación. En ocasiones, la adaptación está restringida a

solicitudes externas, como en la plataforma DARE (Albassam et al., 2017), lo que limita

la autonomía de las aplicaciones. Otras veces, la propia plataforma es la responsable de

detectar cambios de contexto y seleccionar las implementaciones de componentes que

mejor se ajusten a un nuevo estado del contexto, como en el proyecto MUSIC

(Hallsteinsen et al., 2012) y la plataforma presentada en (Khan et al., 2008). De forma

similar, la arquitectura EI4MS (He et al., 2021) es capaz de detectar la degradación en

la calidad de servicio percibida por el usuario y calcular un plan de evolución óptimo,

que posteriormente es ejecutado por los propios microservicios que la arquitectura

gestiona. Pero, en todos estos casos la plataforma debe ser consciente de su contexto,

para ser capaz de detectar cambios en él. En el caso de la plataforma ACCADA (Gui et

al., 2011) son posibles las dos opciones: permite que usuarios externos soliciten el

reemplazo de un componente para su actualización, pero también dispone de un

módulo de sistema capaz de detectar cuándo se violan determinadas situaciones de

contexto, iniciando, en ambos casos, el correspondiente proceso de reconfiguración

dinámica.

Como la adaptación a nivel de componente no cubre el concepto de aplicación, se han

propuesto aproximaciones para extender la reconfiguración dinámica al nivel de

aplicación. La plataforma THOMAS combina tecnologías orientadas a agentes y

servicios para permitir organizaciones estructuradas de agentes (Argente et al., 2011).

En este caso, la reconfiguración dinámica implica la incorporación de nuevas

Capítulo 1 – Introducción

1-13

estructuras organizacionales, así como la inclusión o eliminación de miembros. Sin

embargo, estas capacidades están restringidas a ciertos roles de agente. En el

middleware iLAND (Garcia Valls et al., 2013), la reconfiguración dinámica consiste en

una recomposición acotada en el tiempo de las aplicaciones basadas en servicios

durante su ejecución, siendo iniciada por el propio middleware cuando las aplicaciones

se arrancan o detienen. Otros trabajos van un paso más allá, permitiendo que los

componentes soliciten acciones de adaptación dirigidas a toda la aplicación. Este es el

caso de la plataforma DAMP (Agirre et al., 2016) donde es posible arrancar y parar

aplicaciones, pero sólo si han sido previamente desplegadas, con el consecuente

consumo de recursos.

1.2.2.3 Trazabilidad/Auto-conciencia (self-awareness) (R6)

Algunas de las plataformas de gestión analizadas rastrean el estado del sistema para

tomar las decisiones más adecuadas en tiempo de ejecución. La mayoría utiliza algún

tipo de repositorio, que varía de una plataforma a otra. Por ejemplo, el framework

DARE (Albassam et al., 2017) dispone de un mapa de configuración con el mapeo de

los componentes en ejecución a los nodos, que se calcula automáticamente mediante

técnicas de sondeo o gossip. Las plataformas (Khan et al., 2008), (Gui et al., 2011) y

(Hallsteinsen et al., 2012) toman decisiones en tiempo de ejecución basadas en

modelos de adaptación proporcionados durante el diseño. Estos modelos contienen

alternativas de implementación según diferentes valores de contexto. Los algoritmos

de composición del middleware iLAND (Garcia Valls et al., 2013) soportan un modelo

de aplicación configurado con parámetros de calidad de servicio (Quality of Service,

QoS) sobre el procesamiento de datos y la necesidad de recursos por parte de los

servicios de la aplicación. El modelo de sistema usado en EI4MS (He et al., 2021) para

la construcción de los planes de evolución describe el estado de despliegue actual del

sistema mediante la siguiente información: servicios lógicos existentes, nodos

cloud/edge disponibles, demandas del usuario, etc. En (Hussein et al., 2011), el modelo

de contexto está separado del modelo de sistema, pero ambos incluyen aspectos

Capítulo 1 – Introducción

1-14

dinámicos que los relacionan en tiempo de ejecución. Concretamente, cada

componente dispone de un conjunto de funciones con las cuales es capaz de calcular la

implementación de servicio que mejor se adapta a cada situación de contexto. Cabe

mencionar que todos estos trabajos consideran una aplicación como un grafo de

componentes que interactúan, cada uno de los cuales puede tener varias realizaciones

o implementaciones, excepto el último trabajo, (Hussein et al., 2011), que permite una

definición jerárquica de los componentes. Es más, todas estas propuestas están

centradas en los componentes y no consideran el concepto de aplicación, entendido

como un conjunto de componentes interrelacionados que deben ser gestionados como

un todo. Como resultado, no proporcionan una gestión de la ejecución centrada en las

aplicaciones que pueda cubrir demandas a nivel de aplicación.

Existen aproximaciones que intentan definir estructuras de aplicación más complejas.

En el contexto de MAS, se han propuesto metodologías de ingeniería orientada a

agentes que tienen en cuenta aspectos sociales para el llamado open-MAS (Coutinho et

al., 2019): un conjunto dinámico de agentes, que pueden ser proporcionados por

diferentes desarrolladores, cada uno de ellos con un interés propio. En concreto, estas

metodologías permiten especificar sociedades de agentes u organizaciones de agentes,

que desempeñan diferentes roles, y cuyas interacciones están conducidas mediante un

conjunto de reglas, normas y restricciones (Gómez-Sanz and Fuentes-Fernández, 2015;

Isern et al., 2011). Partiendo de esta idea de sociedades de agentes, los autores en

(Argente et al., 2011) y (Zato et al., 2013) proponen plataformas para la gestión en

tiempo de ejecución de organizaciones virtuales dinámicas en open-MAS.

Proporcionan facilidades para que los agentes ingresen o abandonen voluntariamente

una organización virtual, así como también para la creación, eliminación y modificación

de organizaciones virtuales bajo demanda. Sin embargo, es precisamente el carácter

individualista de este tipo de agentes lo que imposibilita la gestión centrada en

aplicaciones. La plataforma DAMP (Agirre et al., 2016) considera una aplicación como

una entidad única para lograr el cumplimiento de QoS de la aplicación. Proporciona un

servicio de middleware que permite el registro de aplicaciones antes de su ejecución.

Capítulo 1 – Introducción

1-15

Esta información, junto con la supervisión de la disponibilidad de recursos, se utiliza

en tiempo de ejecución para reconfigurar las aplicaciones cuando es necesario.

1.2.2.4 Auto-recuperación (self-healing) (R7)

Se entiende por auto-recuperación la capacidad del sistema para detectar cuándo un

servicio deja de estar disponible y restaurarlo. Puede ser un proceso proactivo y/o

reactivo (Psaier and Dustdar, 2011). Los sistemas de recuperación proactivos implican

prevención, es decir, detectar la degradación del servicio antes de que falle. Las tareas

de prevención se pueden tener en cuenta desde la fase de diseño, como un caso

particular de auto-adaptabilidad, e incluso es posible decidir el momento óptimo en el

que actuar. Por el contrario, la auto-recuperación reactiva es un desafío mayor, ya que

interviene cuando ya se ha producido el fallo y debe permitir la recuperación del

servicio ante problemas repentinos y no previsibles, tanto en componentes como en

nodos. A veces, incluso es necesario mantener la coherencia del estado de la aplicación.

Los mecanismos de detección de fallos generalmente se basan en los llamados

mensajes de latido (heartbeat messages). Se distinguen dos enfoques: 1) sondeo o

gossip: una entidad solicita a componentes o nodos confirmación de su estado (Huan

and Hidenori, 2012); y 2) prueba de vida: un componente o nodo informa de su estado.

Algunos trabajos proponen una gestión centralizada de mensajes de latido a través de

un módulo de plataforma encargado de detectar fallos en nodos. Por ejemplo, la

plataforma DAMP (Agirre et al., 2016) y el middleware iLAND (Garcia Valls et al., 2013)

utilizan técnicas de prueba de vida, mientras que (Ruiz et al., 2015) se basa en

mecanismos de sondeo. Otro ejemplo de propuesta centralizada se presenta en

(Vayghan et al., 2021), donde se hace uso de la interfaz de programación (Application

Programming Interface, API) de Kubernetes para monitorizar eventos de servicios que

puedan indicar fallos en los pods. También existen propuestas descentralizadas que

mejoran la autonomía y la capacidad de detección de fallos de los sistemas. En el

framework DARE (Albassam et al., 2017), cada nodo alberga un módulo encargado de

Capítulo 1 – Introducción

1-16

sondear y reportar posibles fallos de nodo, mientras que en (Huan and Hidenori, 2012)

todos los nodos se encargan de revisar el correcto funcionamiento del resto.

En cuanto a la recuperación de los fallos, los trabajos de (Hallsteinsen et al., 2012) y

(García-Magariño and Gutiérrez, 2013) dan soporte a la recuperación reactiva a través

de la propia programación de los componentes. Sin embargo, aunque la inclusión de

código específico en los módulos de la aplicación permite una rápida detección y

recuperación ante fallos, la lógica de la aplicación debe garantizar su propia

disponibilidad. Para evitar esta dependencia, las plataformas habitualmente han

proporcionado gestión de réplicas de manera transparente a la aplicación (Guerraoui

and Schiper, 1997).

Otros trabajos proponen una entidad central con una visión global del sistema. Este

enfoque permite la separación de la lógica de recuperación de la lógica de la aplicación

y permite tomar decisiones más adecuadas. Por ejemplo, (Agirre et al., 2016) y (Garcia

Valls et al., 2013) utilizan algoritmos de recomposición para seleccionar la mejor

réplica, mientras que las arquitecturas de (Ruiz et al., 2015) y (Albassam et al., 2017)

cuentan con un módulo específico para determinar si un fallo se puede recuperar o no.

La consistencia del estado de la aplicación es un aspecto relevante a la hora de

recuperar un fallo inesperada, ya que asegura la continuidad del servicio. Se pueden

encontrar dos enfoques principales (Funk et al., 2007). Por un lado, la recuperación

basada en puntos de control permite la reversión del sistema a su estado coherente

más reciente (Huan and Hidenori, 2012). Para ello, no solo es necesario almacenar el

estado del sistema, sino también los mensajes recibidos entre los diferentes puntos de

control. Por otro lado, una solución más fácil y flexible es proporcionar mecanismos

para transferir y restaurar el estado de la aplicación. En (Agirre et al., 2016) los

componentes envían periódicamente su estado a la plataforma, que lo almacena para

su posible restauración en las implementaciones seleccionadas. Sin embargo, esto

provoca una sobrecarga en la plataforma y solo es posible para componentes

periódicos. En la propuesta realizada en (Vayghan et al., 2021), el componente llamado

Capítulo 1 – Introducción

1-17

State Controller está integrado en Kubernetes para permitir la recuperación de pods

con estado. Aunque esta propuesta tiene en cuenta la elasticidad (es decir, que varios

pods ofrezcan el mismo servicio), la transferencia del estado está limitada entre los

integrantes de parejas de pods.

1.2.2.5 Conclusiones y variabilidad de dominio (R8)

En conclusión, para cumplir con los requisitos no operacionales, es necesaria una

plataforma de gestión que extienda la implementación de una arquitectura de software

distribuida. La reconfiguración dinámica es el mejor mecanismo para lograr la auto-

adaptabilidad y la recuperación ante fallos. En ambos casos, los enfoques

descentralizados mejoran la autonomía del sistema, disminuyendo la sobrecarga de la

plataforma. Sin embargo, se necesita una visión global de todo el sistema para tomar

las decisiones que mejor se adapten a las necesidades de todas las aplicaciones en

ejecución, en un momento concreto. Al analizar los trabajos de la literatura se observa

que las plataformas de gestión suelen centrarse en alguno de los requisitos

identificados, pero no los cubren todos. Además, no existe una gestión de la ejecución

centrada en las aplicaciones, ya que la mayoría de las propuestas ni siquiera tienen en

cuenta a las aplicaciones como entidad. Y, si lo hacen, las consideran como una

estructura ad-hoc y/o fija. Lograr una gestión centrada en la aplicación requiere que la

plataforma sea consciente del concepto de aplicación en un dominio específico. Una

definición ad-hoc de las aplicaciones hace que la correspondiente plataforma de

gestión sea también una solución ad-hoc (Agirre et al., 2016; Garruzzo et al., 2007;

Rosaci and Sarné, 2006). Adaptar estas plataformas a otros dominios implica

rediseñarlas y/o volver a implementarlas, como el caso de la arquitectura MASHA que

inicialmente fue desarrollada para sitios web (Rosaci and Sarné, 2006) y

posteriormente fue adaptada a sistemas de eLearning (Garruzzo et al., 2007). Por lo

tanto, tener una arquitectura genérica y personalizable reduciría o incluso evitaría la

necesidad de este arduo trabajo (R8: Variabilidad de dominio). Para ello, es

fundamental poder definir la estructura de la aplicación de forma abstracta.

Capítulo 1 – Introducción

1-18

1.3 Objetivos

Esta sección describe el objetivo principal y los objetivos parciales de la presente tesis,

relacionándolos con las publicaciones en las que se han acometido (ver Tabla 3).

O.0. El objetivo general del presente trabajo se centra en la definición de una

plataforma genérica, personalizable y extensible para la gestión de

aplicaciones sensibles al contexto, que, además de los servicios básicos de

gestión, también cubra las demandas de flexibilidad de este tipo de

aplicaciones.

Con el fin de lograr este objetivo principal, se plantean los siguientes objetivos

parciales que abarcan diferentes aspectos relacionados con las aplicaciones sensibles

al contexto, la gestión de su ejecución y la personalización de la plataforma a dominios

concretos:

O.1. Identificar los requisitos de gestión de ejecución de las aplicaciones sensibles

al contexto: análisis de aplicaciones pertenecientes a diferentes dominios para

identificar sus requisitos tanto funcionales como no funcionales, así como

comunes y específicos de dominio.

O.2. Gestión de la ejecución centrada en las aplicaciones:

O.2.1. Identificar e incluir el concepto de aplicación en la plataforma resulta

clave para poder considerar la aplicación como una entidad a

gestionar y cubrir aquellos requisitos que afectan al conjunto de una

aplicación.

O.2.2. Dotar a la plataforma de mecanismos que favorezcan la inteligencia

distribuida y que permitan la descentralización de la toma de

decisiones, mejorando la autonomía del sistema.

Capítulo 1 – Introducción

1-19

O.2.3. Dotar a la plataforma de mecanismos para la gestión del estado del

sistema, que permitan trazar la ejecución de las aplicaciones y

gestionar eficientemente los recursos del sistema, consiguiendo la

supervisión centralizada de la inteligentica distribuida.

O.2.4. Dotar a la plataforma de mecanismos de reconfiguración dinámica

para hacer frente a las necesidades de flexibilidad de las

aplicaciones. Esta reconfiguración puede ser conducida por la propia

aplicación (auto-adaptabilidad) o conducida por la propia

plataforma de forma transparente a la aplicación (disponibilidad,

QoS flexible…).

O.3. Personalización y extensión de la plataforma a dominios concretos:

O.3.1. Definir de forma genérica el concepto de aplicación, así como el

estado del sistema y la interfaz para su gestión.

O.3.2. Identificar el núcleo de la plataforma común a todos los dominios.

O.3.3. Establecer una metodología de personalización para hacer frente a

las particularidades del dominio.

O.3.4. Definir mecanismos de extensión de la plataforma que permitan

hacer frente a QoS específica de dominio y/o aplicación.

1.4 Resultados y Discusión

El trabajo desarrollado a lo largo de esta tesis doctoral ha dado lugar a un conjunto de

resultados que han sido publicados en revistas con índice de impacto y presentados

tanto en conferencias internacionales de reconocido prestigio en el campo de la

investigación como en conferencias nacionales. De entre todos ellos, se han

seleccionado los 5 más importantes que permitan describir en detalle los resultados

alcanzados, relacionándolos con los objetivos planteados (ver Tabla 3):

Capítulo 1 – Introducción

1-20

P.1. Armentia, A., Gangoiti, U., Priego, R., Estévez, E., y Marcos, M. (2015). Flexibility

Support for Homecare Applications Based on Models and Multi-Agent

Technology. Sensors, 15 (12), pp. 31939–31964.

https://doi.org/10.3390/s151229899.

P.2. Priego, R., Iriondo, N., Gangoiti, U., y Marcos, M. (2017). Agent-based

middleware architecture for reconfigurable manufacturing systems. The

International Journal of Advanced Manufacturing Technology, 92 (5), pp.

1579–1590. https://doi.org/10.1007/s00170-017-0154-z.

P.3. Armentia, A., Gangoiti, U., Orive, D., y Marcos, M. (2017). Dynamic QoS

Management for Flexible Multimedia Applications. In: 20th IFAC World

Congress, Toulouse, France. IFAC-PapersOnLine, 50 (1), pp. 5920–5925.

https://doi.org/10.1016/j.ifacol.2017.08.1483.

P.4. Gangoiti, U., López, A., Armentia, A., Estévez, E., y Marcos, M. (2021). Model-

Driven Design and Development of Flexible Automated Production Control

Configurations for Industry 4.0. Applied Sciences, 11 (5), 2319, pp. 1–27.

https://doi.org/10.3390/app11052319.

P.5. Gangoiti, U., López, A., Armentia, A., Estévez, E., Casquero, O., y Marcos, M.

(2022). A customizable architecture for application-centric management of

context-aware applications. IEEE Access, 10, pp. 1603-1625.

https://doi.org/10.1109/ACCESS.2021.3138586.

Es importante señalar que, de estas 5 publicaciones, sólo 3 conforman el compendio de

la presente tesis doctoral. En concreto: P.1, P.4 y P.5.

Tabla 3: Relación objetivos - publicaciones

Objetivo Publicación

O.0 P.5

O.1 P.1, P.2, P.3, P.4

https://doi.org/10.3390/s151229899
https://doi.org/10.1007/s00170-017-0154-z
https://doi.org/10.1016/j.ifacol.2017.08.1483

Capítulo 1 – Introducción

1-21

Objetivo Publicación

O.2

O.2.1 P.1, P.2, P.3, P.4

O.2.2 P.1, P.2, P.3, P.4

O.2.3 P.1, P.2, P.3

O.2.4 P.1, P.2, P.4

O.3

O.3.1 P.1, P.5

O.3.2 P5

O.3.3 P.1, P.4, P.5

O.3.4 P3, P.5

A lo largo de los siguientes apartados se describen los resultados de la presenta tesis

doctoral en referencia al cumplimiento de los requisitos de plataforma identificados

(ver Tabla 1). Se detallarán los artículos donde se ha trabajado cada aspecto, así como

con qué objetivo de la tesis doctoral tiene relación. Resulta importante recordar que el

requisito de seguridad (R4) se considera fuera del ámbito de este trabajo.

1.4.1 Inteligencia Distribuida: Requisitos Operacionales

(R1-R3)

La presente tesis doctoral ha sido un trabajo de apoyo tanto para otras tesis doctorales

como para proyectos de investigación realizados en diferentes dominios. Así, a lo largo

de su desarrollo se han propuesto diferentes plataformas de dominio ad-hoc que han

permitido identificar los requisitos comunes a todos los campos y trabajar soluciones

que permiten su cumplimiento. Del mismo modo, también ha sido posible identificar y

abordar particularidades propias de cada dominio (objetivo O.1).

Capítulo 1 – Introducción

1-22

Las figuras Figura 1, Figura 2 y Figura 3 muestran las diferentes arquitecturas

propuestas en estos trabajos. Inicialmente, en P.1 se propuso la arquitectura mostrada

en la Figura 1, que se corresponde con el dominio de la monitorización remota de la

salud (eHealthcare, eHC). Es importante señalar que esta misma arquitectura de

plataforma se pudo emplear para la gestión de aplicaciones para la detección de

intrusos en el campo de los sistemas de video-vigilancia, tal y como se presenta en P.3.

Sin embargo, para el caso de los sistemas de fabricación flexible (FMS) que dieron lugar

a P.2 y P.4 (ver Figura 2) la plataforma inicial tuvo que ser rediseñada en su mayor

parte, ya que la estructura de la aplicación, los recursos y la gestión de la aplicación

eran diferentes. Así, a pesar de compartir una arquitectura base similar (resaltada en

un recuadro verde en la Figura 2), fue necesario incluir nuevos elementos encargados

de la gestión de la aplicación (Plant_AAS Agent, que hacen las veces del Application

Manager de la Figura 1), de la gestión de los recursos (Controller_AAS Agent, que

complementan a los Node Agent de la Figura 1, y que, por simplicidad, no se muestran

en la Figura 2) y de la supervisión del sistema para la recuperación de fallos de recurso

específico de dominio (QoS Manager). Gracias a la experiencia adquirida en estos

dominios ha sido posible abordar la tarea indicada por el objetivo O.0, principal

aportación de P.5: la definición de una plataforma genérica, personalizable y extensible

para la gestión de aplicaciones sensibles al contexto, que, además de los servicios

básicos de gestión, también cubra las demandas de flexibilidad de este tipo de

aplicaciones. La Figura 3 muestra la arquitectura de dicha plataforma, llamada MAS-

RECON.

Capítulo 1 – Introducción

1-23

Figura 1: Arquitectura de plataforma propuesta para la gestión de sistemas de monitorización

remota de la salud (eHC) en P.1 y empleada para la gestión de sistemas de video-vigilancia en

P.4.

Figura 2: Arquitectura de plataforma propuesta para la gestión de sistemas de fabricación

flexible (FMS), en P.2 y P.4.

Agent Communication Channel (ACC) local cache of

agent addresses

Directory Facilitator

(DF)

Agent Management

System (AMS)

Middleware

Manager

System

Repository

AM EM NA

Event

Manager

Event runtime

information

Event

Manager

Event runtime

information

Event

Manager

Event runtime

information

Node Agent

Node runtime

information

Node Agent

Node runtime

information

Node Agent

Node runtime

information

Application

Manager

Application

runtime

information

Application

Manager

Application

runtime

information

Application

Manager

Application

runtime

information

JADE

Extension

Capítulo 1 – Introducción

1-24

Figura 3: Arquitectura de la plataforma MAS-RECON: genérica, personalizable y extensible para

la gestión de aplicaciones sensibles al contexto

Para cumplir con los requisitos operacionales (R1-R3), la plataforma se basa en

tecnología multi-agente, que ha sido ampliamente utilizada para el desarrollo de

sistemas complejos. Como se muestra en la Figura 3, sin pérdida de generalidad, MAS-

RECON se ha construido sobre el framework JADE (Bellifemine et al., 2008), un

framework de agentes compatible con FIPA, completamente desarrollado en el

lenguaje de programación Java. La Fundación FIPA promueve la tecnología basada en

agentes y la interoperabilidad del estándar FIPA con otras tecnologías. Cualquier

infraestructura compatible con FIPA debe admitir la gestión de agentes por medio de

los siguientes módulos (parte inferior de las figuras Figura 1, Figura 2 y Figura 3): el

Directory Facilitator (DF), el Agent Management System (AMS) y el Agent

Communication Channel (ACC). De acuerdo con la especificación FIPA, debe haber al

menos un agente DF en la plataforma, que proporciona las páginas amarillas donde los

agentes pueden registrar los servicios ofrecidos o buscar los servicios requeridos. El

AMS gestiona la creación, eliminación y migración de agentes. El ACC posibilita la

interoperabilidad dentro y entre diferentes plataformas. Finalmente, el llamado

Internal Platform Message Transport (IPMT) proporciona un servicio de enrutamiento

de mensajes entre agentes en una plataforma particular. Este framework JADE se ha

Capítulo 1 – Introducción

1-25

extendido mediante la creación de nuevos agentes, cada uno con una misión diferente

(parte superior de las figuras Figura 1, Figura 2 y Figura 3).

El uso de tecnología multi-agente permite la definición de mecanismos de negociación

entre agentes para la toma de decisiones distribuida, cumpliéndose el objetivo O.2.2.

En las publicaciones P.1, P.2, P.3 y P.4 se han implementado diferentes propuestas de

negociación acordes al dominio y objetivos perseguidos en cada una (balanceo de carga

en P.1 y P.3, recuperación de la lógica de control de autómatas en fallo en P.2 y P.4).

Así, en P.5 se propone la generalización de esta toma de decisiones distribuida

mediante la introducción de inteligencia dentro de las entidades de dominio (Resource

Agents y Application Agents en Figura 3).

1.4.2 Supervisión Centralizada: Trazabilidad (R6) y

Variabilidad de Dominio (R8)

Las entidades de dominio son controladas a nivel de sistema mediante agentes de

supervisión (System Supervisoty Agents en Figura 3). Para poder llevar a cabo esta

supervisión centralizada es necesario que la plataforma conozca cuál es el estado

global del sistema, para lo cual debe estar almacenado en algún repositorio. Las

publicaciones P.1, P.2 y P.3 abordaron el problema de la definición, almacenamiento y

gestión de dicho estado en tres campos de aplicación diferentes: eHC, FMS y multi-

media, respectivamente (objetivo O.2.3). Las figuras Figura 4, Figura 5 y Figura 6

muestran las diferentes estructuras de repositorio de sistema propuestas. Con el

objetivo de lograr una gestión centrada en las propias aplicaciones, en estos

repositorios se almacena información de las diferentes entidades que componen los

sistemas, relevante para permitir su trazabilidad (objetivo O.2.1).

Capítulo 1 – Introducción

1-26

Figura 4: Estructura de repositorio para el estado global del sistema propuesta en P.1 para

sistemas eHC

Figura 5: Estructuras de repositorio para el estado global del sistema propuesta en P.3 para

sistemas multi-media.

System Repository

Runtime

Node

Design

System

Application

Component

CompImplementation

Scenario

Action

InternalEvent

PropagatedEvent

constraint target

• platform

• coreNumber

• memory

• network

• CPUScore

• storage

• platform

• classFile

Application Node Event

• negotiation

criteria

System Repository

Runtime

Node

Design

System

Application

Component

CompImplementation

Scenario

Action

InternalEvent

PropagatedEvent

constraint target

• platform

• coreNumber

• memory

• network

• CPUScore

• storage

• platform

• classFile

Application Node Event

• negotiation

criteria

QoSType

Level

ResDemand
related to

affects to

Capítulo 1 – Introducción

1-27

Figura 6: Estructuras de repositorio para el estado global del sistema propuesta en P.2 para

sistemas FMS.

Como se puede observar, la estructura inicial propuesta para sistemas eHC (Figura 4)

tuvo que ser extendida para poder gestionar la QoS dinámica propia de los sistemas

multi-media (resaltado en naranja en la Figura 5). En el caso de los sistemas FMS

(Figura 6), las entidades de dominio que representan al paciente (Scenario), a su

supervisión médica (Application) y a los componentes de computación software que

implementa dichas tareas de supervisión (Component) dan paso a controladores y

componentes mecatrónicos (ControllerAgent y MechatronicComponentAgent en Figura

6). El objetivo de la gestión de las aplicaciones también es diferente, ya que en estos

sistemas se busca la tolerancia a fallos de controlador. Por todo ello, la estructura del

repositorio es totalmente diferente.

Se puede concluir que la estructura del repositorio para almacenar el estado global del

sistema es totalmente dependiente del concepto de aplicación de cada dominio

concreto. Por lo tanto, en P.5 se propone que la información necesaria para lograr la

supervisión centralizada a nivel del sistema se almacene en el System Repository (SR)

y que la estructura concreta de dicho repositorio esté definida por el dominio,

Capítulo 1 – Introducción

1-28

siguiendo el meta-modelo de la Figura 7 y haciendo referencia a las entidades que

contiene: agentes recursos así como entidades y agentes de aplicación (ResourceAgent,

AppEntity y AppAgent, respectivamente, en la Figura 7, que se corresponden con

Resource Agents y Application Agents de la Figura 3). Por lo tanto, será el dominio el que

defina el tipo concreto de entidades, tanto de recurso como de aplicación, sus

características y las relaciones entre ellas.

Figura 7: Meta-modelo que define la estructura genérica del repositorio de sistema (SR).

El hecho de que la estructura del SR se base en un meta-modelo de dominio permite

una manipulación genérica de su contenido, tal y como se propone en P.5. Además,

teniendo en cuenta que la información almacenada en el SR es aquella necesaria para

la gestión de aplicaciones, tanto la común a todos los dominios como la dependiente

del dominio, todos los agentes del sistema accederán al SR para operaciones de lectura

y/o escritura. Por lo tanto, en P.5. también se propone que el System Repository Agent

(SRA) sea un punto de acceso único al SR (ver Figura 3). Así, estas dos entidades, SR y

SRA, constituyen el núcleo de la plataforma común a todos los dominios (objetivo

O.3.2) y constituyen la base de la gestión centrada en la aplicación, contribuyendo

además a cumplir con los requisitos R6 (Trazabilidad/Auto-conciencia) y R8

Capítulo 1 – Introducción

1-29

(Variabilidad de dominio). Además, gracias a ellos se puede concluir que MAS-RECON

también cumple con el objetivo O.3.1.

En concreto, se propone que el SR sea administrado únicamente por el SRA a través de

la API genérica que se muestra en la Figura 8. Esta API consta de diferentes interfaces

mediante los cuales se permite: 1) el registro de recursos y aplicaciones del dominio

(interfaces iRegAgent e iRegApplicatoin, respectivamente); 2) el inicio y parada de

aplicaciones (interfaz iExecManagement); y 3) la gestión, consulta/escritura, de

propiedades de las entidades que forman las aplicaciones (interfaz iSystemInfo).

Figura 8: API genérica del System Repository Agent.

La combinación de inteligencia distribuida y supervisión centralizada permite que

MAS-RECON sea capaz de extender los requisitos operacionales básicos

proporcionados por JADE, permitiendo que el arranque, parada y la operación normal

de las aplicaciones se adapten a las necesidades del campo de aplicación. A modo de

ejemplo, la Figura 9 muestra el proceso de arranque de una aplicación. En primer lugar,

las entidades de recurso registran sus agentes de recurso cuando son arrancadas

(Resources Startup en la Figura 9), proporcionando información sobre los servicios

ofrecidos por el recurso. Una vez iniciados, estos agentes realizan dos tareas. Por un

Capítulo 1 – Introducción

1-30

lado, supervisan el recurso físico asociado (e.g., los nodos de procesamiento pueden

monitorizar la memoria disponible). Y, por otro lado, participan en procesos de

negociación para decidir, de forma distribuida, el recurso más adecuado para realizar

una tarea, según criterios específicos.

Figura 9: Diagrama de secuencia del arranque de entidades de recurso y de aplicación.

Por su parte, las aplicaciones deben registrarse antes de ser iniciadas (Application

Registration en la Figura 9). En P.5 se propone un proceso de registro genérico que

permite guardar información acerca del diseño de las aplicaciones dentro del SR, que

está basado en la definición de un meta-modelo de dominio que sigue la estructura de

la Figura 7. Un Agente de Supervisión de Sistema específico de dominio será el

Capítulo 1 – Introducción

1-31

encargado de permitir que usuarios externos puedan registrar aplicaciones. Este

agente pertenece al grupo Other Agents de la Figura 3 y está representado por el agente

Launcher Agent en la Figura 9. Tal y como se observa en esta figura, el proceso de

registro está dividido en dos fases:

1) La fase inicial que consiste en el registro ordenado de todas las entidades que

componen la aplicación, una a una siguiendo un orden descendente en la

jerarquía de la aplicación, tal y como define el meta-modelo de dominio.

2) La segunda fase que comprende la validación de la aplicación contra el meta-

modelo de dominio, una vez se ha completado el registro de sus entidades. Así,

se garantiza que las aplicaciones registradas se ajustan a la estructura de

aplicación definida para dicho dominio.

Una vez validada, se puede solicitar el arranque de la aplicación que implica el registro,

la instanciación, y el despliegue de uno o más agentes de aplicación por cada entidad

registrada (Application Startup en la Figura 9). El arranque de aplicaciones se trabajó

para el dominio de eHC en P.1 y para el dominio FMS en P.2, pudiendo identificarse, en

ambos casos, dos partes diferenciadas que se formalizaron en P.5:

1) El proceso se inicia con el arranque genérico de las entidades de aplicación de

primer nivel (aquéllas que en el SR cuelgan directamente del elemento System),

controlado por MAS-RECON. Para ello, el SRA busca los nodos de procesamiento

que ofrecen los servicios requeridos por dichas entidades y lanza un proceso de

negociación entre sus correspondientes Agentes de Recurso (Negotiation

Process en la Figura 9). El proceso de negociación requiere: datos del agente,

criterios de negociación y acciones a ejecutar en el nodo ganador (en este caso,

registrar e instanciar el nuevo agente de aplicación).

2) Los agentes correspondientes a las entidades de primer nivel se encargan de

iniciar la puesta en marcha de entidades de nivel inferior (Domain dependent

actions en la Figura 9), de forma descentralizada y siguiendo un orden

descendente en la jerarquía de la aplicación. Así, en esta parte del arranque, las

Capítulo 1 – Introducción

1-32

entidades de cada nivel son responsables del arranque de todas aquéllas de su

nivel inferior. Al depender de la estructura concreta de la aplicación, se trata de

una fase específica del dominio que se debe determinar en la personalización a

dominio de MAS-RECON.

1.4.3 Flexibilidad: Auto-adaptabilidad (R5) y Auto-

recuperación (R7)

La plataforma MAS-RECON cumple con el objetivo O.2.4 proporcionando mecanismos

para hacer frente a las necesidades de flexibilidad de las aplicaciones, permitiendo dos

tipos de reconfiguración dinámica:

1. Decidida por la propia aplicación, que es capaz de adaptarse a cambios en su

entorno (soporte a la auto-adaptabilidad, R5)

2. Conducida por la propia plataforma, de forma transparente a la aplicación, con

el objetivo de asegurar la disponibilidad de la aplicación, incluso a pesar de

fallos de recurso (soporte a la auto-recuperación, R7).

En lo que se refiere a la auto-adaptabilidad, inicialmente, en P.1 se exploraron

mecanismos que permitían al personal médico definir cómo debe evolucionar la

supervisión de los pacientes (es decir, las aplicaciones) ante cambios en su estado de

salud. Para ello, se introdujeron dos conceptos: 1) concepto de evento, que permitía

identificar situaciones relevantes ante las que era necesario reaccionar; 2) concepto de

acción, para definir qué tareas se deben llevar a cabo en respuesta a dichos eventos.

Tareas que se aplicaban sobre aplicaciones completas. Es importante destacar que

tanto los eventos como las acciones tenían que ser registrados en el SR, de forma que

se separaba la lógica de la aplicación de la lógica de adaptación. Desde el punto de vista

de la gestión de aplicaciones, se dotó a la plataforma de un agente para la supervisión

de los eventos (Event Manager en la Figura 1), responsable de recibir los avisos de

eventos y del control de las acciones asociadas. Concretamente, se permitía crear

Capítulo 1 – Introducción

1-33

aplicaciones nuevas (iniciar la supervisión de nuevas variables biomédicas), parar

aplicaciones existentes (dejar de controlar ciertas variables) o modificar los

parámetros de ejecución de determinadas aplicaciones. De esta forma, se conseguía

también una buena gestión de los recursos del sistema, que sólo se asignaban cuando

era necesario. Eran los componentes de aplicación los encargados de la detección de

situaciones relevantes (como resultado de la ejecución de su funcionalidad) y de su

comunicación al Event Manager mediante invocación de métodos de su API.

Este proceso de adaptación conducido por la propia aplicación se generalizó en P.5

donde se estableció que la detección de eventos es una tarea propia de los agentes de

aplicación, agentes de dominio encargados de capturar y procesar información del

entorno, abstrayendo así a la plataforma de las particularidades del contexto. También

se establecieron dos acciones genéricas, comunes a todos los campos de aplicación:

crear y parar aplicaciones. De esta forma, la especificación de eventos y acciones

propios del domino se delega en la definición del meta-modelo de dominio. Finalmente,

también se generalizó la comunicación entre el agente encargado de la gestión de

eventos (Event Agent en la Figura 3), los agentes de dominio y el SRA. En concreto, los

agentes de dominio avisan al agente de supervisión Event Agent de la ocurrencia de un

evento invocando a métodos de su interfaz IEvent (ver Figura 10). Este agente busca

en el SR, a través del API del SRA, las acciones asociadas a dicho evento y, finalmente,

lanza y supervisa la ejecución de dichas acciones, a través de la interfaz IAction, que los

agentes de dominio deben implementar con tareas propias de su ámbito.

Con respecto a la auto-recuperación, este proceso comprende dos tareas: la detección

del fallo y la recuperación de la ejecución de la aplicación, incluso para el caso de

aplicaciones con estado (aquellas cuyo estado de ejecución actual depende de los

anteriores). Todo ello, de forma transparente para la aplicación. A lo largo de los

diferentes trabajos publicados durante el desarrollo de la presente tesis doctoral se

han realizado diferentes propuestas en torno a este proceso.

Capítulo 1 – Introducción

1-34

Figura 10: Interfaces definidos para las interacciones entre Agentes de Supervisión de Sistema

(en color azul) y Agentes de dominio de Aplicación y Recurso (en color verde), en relación con

los requisitos de flexibilidad: auto-adaptabilidad (R5) y auto-recuperación (R7).

Inicialmente, en P.1 se propuso una solución simple basada en la naturaleza móvil de

los agentes, que también se emplea en P.3. La detección del fallo se fundamenta en la

capacidad de JADE de avisar sobre la no entrega de mensajes ACL. Para el dominio de

eHC también se propuso un mecanismo de detección de inactividad en agentes

periódicos. Todos los avisos de agentes en fallo llegan a un gestor de la aplicación

llamado Application Manager (ver Figura 1) quien inicia una tarea de recuperación por

cada fallo, estableciendo un proceso de negociación entre todos los nodos de

procesamiento disponibles (para ser más exactos, entre sus correspondientes agentes

Node Agent). Se puede seleccionar así el nodo más adecuado y se crea en él una nueva

Capítulo 1 – Introducción

1-35

instancia del agente en fallo. El estado de la aplicación, es decir, el estado de los agentes

que la componen, se guarda de forma centralizada en el SR. Por lo tanto, los agentes

estarán dotados de los mecanismos necesarios para actualizar su estado en el SR tras

cada ejecución.

Aunque esta solución asegura la recuperación de la ejecución de la aplicación, las

decisiones tomadas pueden no ser las más adecuadas ya que los agentes Application

Manager no disponen de visión global del estado del sistema (sólo conocen el estado

de la aplicación que supervisan). Esta limitación se resuelve en la propuesta realizada

en P.2 y P.4, que introduce dos novedades. Por un lado, la gestión de réplicas que

permite liberar al SR del almacenamiento del estado, de forma que éste se transfiere

de la instancia activa a sus réplicas. Así, se agiliza también el proceso de recuperación,

ya que en caso de fallo de la instancia activa cualquiera de las réplicas puede ocupar su

lugar. Por otro lado, la implementación de Agentes de Supervisión de Sistema para la

trazabilidad de la QoS, que disponen de visión global del sistema lo que les permite

realizar operaciones de diagnóstico y toma de decisiones más específicas. Es

importante destacar que la propuesta realizada en P.2 y P.4 sería válida para cualquier

QoS, siendo la disponibilidad de las aplicaciones un caso particular.

En esta propuesta, la detección del fallo es tarea de las réplicas de las instancias activas.

Los avisos de fallos son recibidos por un agente de monitorización (perteneciente al

grupo de agentes llamado QoS Manager en Figura 2) encargado de la confirmación del

fallo y de evitar falsos positivos. Por su parte, un agente de diagnóstico y decisión

(también perteneciente al grupo de agentes QoS Manager en Figura 2) toma las

decisiones de recuperación oportunas, tras analizar el estado global del sistema.

Nótese que las acciones de recuperación son propias del dominio y de la QoS

monitorizada, por lo tanto, no genéricas. Por ejemplo, en el ámbito de FMS descrito en

P.2 y P.4, y para el aseguramiento de la disponibilidad del servicio como QoS, dichas

acciones de recuperación están enfocadas a lograr cambiar de una configuración de

Capítulo 1 – Introducción

1-36

controladores a otra diferente, de la manera más rápida y eficiente posible, sin

interrumpir su funcionamiento normal.

Partiendo de la experiencia adquirida en estos trabajos previos y siguiendo la filosofía

de toma de decisiones descentralizada con supervisión a nivel de sistema, en P.5 se

generaliza el proceso de auto-recuperación basado en réplicas descrito en P.2 y P.4,

con el objetivo de asegurar la disponibilidad de las aplicaciones en todo momento,

incluyendo aplicaciones con estado y el caso de caída de nodos de procesamiento. Por

un lado, la detección del fallo es distribuida y la llevan a cabo los agentes de dominio

(tanto de aplicación como de recurso), haciendo uso de la potencialidad de JADE antes

comentada. Por otro lado, dos Agentes de Supervisión de Sistema centralizan la

verificación y recuperación del fallo (Health Monitor Agent – HMA – y Recovery Agent –

ReA – en Figura 3). En P.5 se define una interfaz común a todos los dominios para estos

Agentes de Supervisión de Sistema, mostrada en la Figura 10. En base a esta API, MAS-

RECON también establece la secuencia de mensajes que deben intercambiar los

diferentes agentes que intervienen en el proceso de auto-recuperación, desde la

detección del fallo hasta su recuperación, independientemente del dominio. La Figura

11 muestra esta secuencia.

Los agentes de dominio avisan al HMA de la detección de un fallo mediante su interfaz

INotify (Detect en Figura 11). El HMA hace uso de la interfaz IResolve implementada por

los agentes de dominio para comprobar que se trata de un fallo real (Resolve & Confirm

en Figura 11). Después, analiza si el fallo ha sido previamente notificado,

descartándolo, o si se trata de un nuevo fallo, en cuyo caso avisa al agente ReA a través

de su interfaz IConfirm. Finalmente, el agente ReA supervisa todo el proceso de

recuperación que depende de si el agente en fallo es la instancia activa o una de las

réplicas (Recover en Figura 11). Como se ha comentado anteriormente, al ser las

acciones de recuperación propias del dominio, los agentes de dominio deben

implementar la interfaz IRecovery para poder recibir órdenes del agente ReA.

Capítulo 1 – Introducción

1-37

Figura 11: Diagrama de secuencia de los mensajes intercambiados durante el proceso de auto-

recuperación: desde la detección del fallo hasta su recuperación.

1.4.4 Personalización y Extensión

En los apartados anteriores se ha descrito la propuesta de la plataforma genérica MAS-

RECON, común a todos los dominios. Sin embargo, cuando se trabaja en un ámbito

concreto es necesario personalizar, y a veces extender, MAS-RECON para obtener una

plataforma que cubra las particularidades de dicho dominio. Una de las principales

Capítulo 1 – Introducción

1-38

aportaciones de P.5 es la metodología para implementar esta personalización y

extensión (objetivo O.3.3).

El primer mecanismo para la personalización de MAS-RECON ya se ha introducido

anteriormente y consiste en la definición del meta-modelo de dominio que incluye el

concepto de aplicación. Así, el modelo del SR de cada dominio comprende tanto los

recursos de dicho campo como la estructura de las aplicaciones, recogiendo sus

características relevantes desde el punto de vista de su gestión y las relaciones entre

todos ellos. Nótese que los eventos concretos a los que atender, así como las acciones

a ejecutar como respuesta, también estarán recogidos en dicho modelo. En P.5 se

detalla el proceso a seguir para la particularización del SR al dominio eHC.

El segundo mecanismo para la personalización de MAS-RECON está relacionado con el

desarrollo de los agentes de dominio. En P.1 y P.2 se desarrollaron agentes de

aplicación y/o de recurso para los dominios eHC y FMS, respectivamente, pudiendo

identificarse aquellos comportamientos de los agentes comunes y específicos. Todo

esto permitió que en P.5 se propusiera el esqueleto del código de los agentes de recurso

y de aplicación que MAS-RECON proporciona. En ambos casos se trata de una

implementación de las máquinas de estado (Finite State Machine, FSM) que definen el

comportamiento genérico de dichos agentes y que se muestran en la Figura 12. Por lo

tanto, el desarrollo de los agentes de dominio consiste en extender cada uno de los

estados de la FSM con código que implemente las interacciones necesarias entre los

diferentes agentes del sistema, para cumplir con las necesidades del dominio. Es

importante recordar que, para algunas de estas interacciones, MAS-RECON ya

establece algunas interfaces mínimas (ver Figura 8 y Figura 10) o incluso secuencia de

mensajes (ver Figura 11). Es más, para algunas tareas comunes a todos los dominios,

tales como la detección de fallo por mensaje no entregado, la recuperación de réplicas

o el lanzamiento de procesos de negociación, MAS-RECON también proporciona el

código asociado.

Capítulo 1 – Introducción

1-39

Figura 12: Diagramas de estados (FSM) correspondiente al comportamiento genérico de los

agentes de domino: a) de recurso y b) de aplicación.

De esa manera, además de los nodos de procesamiento comunes a todos los dominios

y proporcionados por MAS-RECON, es posible definir agentes de recurso del dominio

para los cuales se pueden incluir acciones de inicialización y finalización concretas

(estados Booting y Stopping, respectivamente). Además, se pueden establecer

diferentes procesos de negociación definiendo criterios particulares y acciones

concretas a realizar por los ganadores de dichas negociaciones (estado Negotiating).

Finalmente, estos agentes propios de dominio también podrán implementar tareas

específicas de supervisión de sus recursos (estado Running). Por ejemplo, en P.3 se

extendió la funcionalidad de los nodos de procesamiento para que pudieran detectar e

informar acerca de situaciones de sobreutilización e infrautilización de sus recursos.

En cambio, en P.2 y P.4 fue necesario incorporar agentes encargados de la supervisión

de recursos específicos de dominio, como los componentes mecatrónicos o las

estaciones.

En lo que se refiere a los agentes de aplicación, en los estados Booting y Stopping

también se pueden incluir acciones de inicialización y finalización, respectivamente.

Además, en el estado de Booting también se debe implementar la fase 2 del proceso de

Capítulo 1 – Introducción

1-40

arranque antes descrito, la fase dependiente del dominio. En los estados Running y

Tracking se incluye código relativo a la funcionalidad de la aplicación, así como el

relativo a la supervisión específica de sus entidades. Por lo tanto, son estados centrados

en la operación normal de las aplicaciones y en hacer frente a sus necesidades de

flexibilidad. Para ello, en estos estados se deben implementar, como mínimo, las

interfaces de la Figura 10 establecidas para los agentes de dominio. Por ejemplo, se

pueden personalizar mecanismos de detección de fallo, como en P.1 donde se usa un

tiempo límite para los componentes periódicos.

En P.5 se detalla el proceso de personalización de agentes de dominio a partir de las

FSMs presentadas en la Figura 12, con el objetivo de lograr aquellos agentes de dominio

que en P.1 se desarrollaron de forma ad-hoc para eHC. En P.4 se da un paso más y se

demuestra cómo esta personalización se puede automatizar haciendo uso de la

ingeniería conducida por modelos (Model Driven Engineering, MDE), aplicando

transformaciones modelo-a-modelo (Model-to-Model, M2M) y modelo-a-texto (Model-

to-Text, M2T) sobre modelos de información que recogen el comportamiento esperado

de las diferentes entidades del dominio.

El último de los mecanismos de personalización propuesto por MAS-RECON se refiere

a los Agentes de Supervisión de Sistema, permitiendo atender el cumplimiento de

requisitos específicos de dominio. Por un lado, es posible añadir interfaces nuevos a los

agentes de supervisión proporcionados en MAS-RECON, tal y como se hace en P.4 para

supervisar diferentes parámetros de QoS: disponibilidad de la lógica de control y

balanceo de carga. Para cada QoS se definen diferentes algoritmos de diagnóstico y

decisión. Por otro lado, es posible extender MAS-RECON mediante la incorporación de

nuevos Agentes de Supervisión de Sistema (objetivo O.3.4), siendo también necesario

incluir el código para interactuar con estos nuevos agentes en las implementaciones de

los agentes de dominio. Así, para hacer frente a las necesidades de QoS flexible

(aplicaciones que aceptan cierta degradación de su calidad), como ocurre en

aplicaciones multimedia, se pueden incorporar mecanismos que permitan adecuar la

Capítulo 1 – Introducción

1-41

calidad de las aplicaciones a los recursos disponibles y también incorporar algoritmos

avanzados de control de admisión.

1.4.5 Análisis de Rendimiento

Una vez propuesta la plataforma genérica y habiéndola implementado sobre JADE, se

procedió a realizar un análisis de su rendimiento en diferentes aspectos: despliegue de

aplicaciones y recuperación ante fallos.

Por un lado, se analizó el rendimiento de MAS-RECON con respecto al despliegue de

aplicaciones, haciendo uso de una aplicación muy simple formada por componentes

(entidades de aplicación) conectados en cadena. En primer lugar, se midieron los

tiempos de despliegue para diferentes cargas de trabajo sobre un sistema formado por

un número fijo de 20 nodos y con una carga máxima de 600 componentes. En segundo

lugar, los tiempos de despliegue se analizaron manteniendo el sistema en una situación

de carga máxima y variando el número de nodos entre los que repartirla.

La Figura 13 recoge las medidas del primer test, donde se muestran los tiempos medios

de (a) planificación, (b) despliegue y (c) arranque para las siguientes cargas de trabajo:

del 10% (60 componentes); 25% (150 componentes); 50% (300 componentes); 75%

(450 componentes); y 100% (600 componentes). Para poder disponer de una medida

relativa, estas mismas pruebas se realizaron también sobre Kubernetes, que, tal y como

se ha indicado anteriormente, se considera la herramienta más extendida para la

orquestación de aplicaciones basadas en microservicios e implementadas mediante

contenedores. Como se puede observar en la figura, Kubernetes es más rápido en la

planificación (ver Figura 13.a), y también en el arranque de componentes (ver Figura

13.c), en este caso sobre todo para cargas de trabajo bajas, ya que para cargas altas los

tiempos convergen. Sin embargo, MAS-RECON es más rápido en la creación y

despliegue de componentes (ver Figura 13.b).

Capítulo 1 – Introducción

1-42

Figura 13: Tiempos de planificación (a), despliegue (b) y arranque (c) de componentes

en MAS-RECON (color azul), en comparación con la plataforma de orquestación

Kubernetes (color naranja), en función de la carga de trabajo del sistema.

Capítulo 1 – Introducción

1-43

Figura 14: Tiempos de planificación (a), despliegue (b) y arranque (c) de componentes en MAS-

RECON (color azul), en comparación con la plataforma de orquestación Kubernetes (color

naranja), en función del número de nodos del sistema.

La Figura 14 recoge las medidas del segundo test y muestra los tiempos medios de (a)

planificación, (b) despliegue y (c) arranque para el siguiente número de nodos (N):

Capítulo 1 – Introducción

1-44

N=1, N=5, N=10, N=15, N=20. Para cada prueba se mantuvo una carga de trabajo del

100%, equivalente a 30*N componentes. El análisis de los resultados obtenidos es

similar al del primer test en lo que se refiere a planificación y despliegue. Sin embargo,

en este caso se observa que los tiempos de arranque son mejores en Kubernetes para

sistemas pequeños, y que a medida que el número de nodos aumenta esta diferencia

entre MAS-RECON y Kubernetes disminuye, pudiendo deducir que para sistemas

grandes MAS-RECON será mejor.

De estos dos test se puede concluir que los tiempos de MAS-RECON pueden ser

ligeramente peores a los de otras plataformas. Sin embargo, lejos de ser una limitación

este aumento en los tiempos medidos se debe a la gran capacidad de personalización y

adaptación al dominio que ofrece MAS-RECON, y que sobrecarga ligeramente al

sistema. De hecho, el algoritmo de arranque implementado para MAS-RECON en las

pruebas permitía un arranque ordenado y sincronizado de los diferentes componentes

concatenados (del último al primero), evitando incoherencias en la ejecución de la

aplicación. Este arranque sincronizado es imposible de conseguir en Kubernetes sin

personalizar sus mecanismos de despliegue.

Con respecto a los tiempos de recuperación ante fallos de MAS-RECON, se realizaron

pruebas en un sistema formado por un número fijo de nodos (6 nodos) entre los que

se desplegaron aplicaciones de diferentes tamaños (N componentes). El despliegue

inicial de estas aplicaciones, con un factor de réplica 0 (es decir, sin réplicas) aseguraba

el balanceo de carga entre los diferentes nodos, por lo que la carga de cada uno de ellos

era de N/6 componentes. Se realizaron pruebas en las que se provocaba el fallo de uno

de los 6 nodos para los siguientes tamaños de aplicación: 60 componentes

(recuperación de 10 componentes), 150 componentes (recuperación de 25

componentes), 300 componentes (recuperación de 50 componentes), 450

componentes (recuperación de 75 componentes) y 600 componentes (recuperación de

100 componentes). En cada prueba se midieron 3 tiempos: 1) tiempo de reacción:

tiempo transcurrido desde el fallo hasta que la plataforma empieza a responder. Es

Capítulo 1 – Introducción

1-45

decir, hasta que el HMA recibe la notificación del fallo; 2) tiempo de restauración:

tiempo transcurrido desde la detección del fallo hasta que se recupera el primero de

los componentes afectados; y 3) tiempo de recuperación: tiempo transcurrido desde la

detección del fallo hasta que se restaura la totalidad de la aplicación.

La Tabla 4 muestra los tiempos obtenidos para las diferentes pruebas realizas. Como

se puede observar, el tiempo de reacción no sufre variaciones ya que la detección del

fallo es una tarea independiente de la carga del sistema. Algo similar ocurre con los

tiempos de restauración, ya que se miden con respecto al primer componente

recuperado, independientemente del número total de componentes afectados. Sin

embargo, como era de esperar, el tiempo de recuperación sí que aumenta con el

número total de componentes afectados, pero el ratio entre este tiempo y el número de

componentes se mantiene constante (1 segundo aproximadamente).

Tabla 4: Tiempos de recuperación ante fallos de aplicaciones de diferente tamaño (N). El fallo

únicamente afecta a uno de los nodos (i.e., pérdida de N/6 componentes)

 N=60 N=150 N=300 N=450 N=600

Reacción 3,14s 3,14s 3,14s 3,54s 3,81s
Restauración 5,28s 5,56s 5,33s 4,35s 5,97s
Recuperación 8,38s 18,62s 52,87s 85,81s 96,16s

1.5 Referencias

Agirre, A., Parra, J., Armentia, A., Estévez, E., Marcos, M., 2016. QoS Aware Middleware
Support for Dynamically Reconfigurable Component Based IoT Applications.
Int. J. Distrib. Sens. Netw. 2016, 1–17. https://doi.org/10.1155/2016/2702789

Albassam, E., Porter, J., Gomaa, H., Menasce, D.A., 2017. DARE: A Distributed Adaptation
and Failure Recovery Framework for Software Systems, in: 2017 IEEE
International Conference on Autonomic Computing (ICAC). IEEE, Columbus, OH,
USA, pp. 203–208. https://doi.org/10.1109/ICAC.2017.12

Capítulo 1 – Introducción

1-46

Al-Jaroodi, J., Mohamed, N., 2012. Service-oriented middleware: A survey. J. Netw.
Comput. Appl. 35, 211–220. https://doi.org/10.1016/j.jnca.2011.07.013

Arcaini, P., Riccobene, E., Scandurra, P., 2015. Modeling and Analyzing MAPE-K
Feedback Loops for Self-Adaptation, in: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
IEEE, Florence, Italy, pp. 13–23. https://doi.org/10.1109/SEAMS.2015.10

Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., Rebollo, M., 2011. An abstract
architecture for virtual organizations: The THOMAS approach. Knowl. Inf. Syst.
29, 379–403. https://doi.org/10.1007/s10115-010-0349-1

Ayaz, M., Ammad-Uddin, M., Sharif, Z., Mansour, A., Aggoune, E.-H.M., 2019. Internet-of-
Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE
Access 7, 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609

Baek, J., Alhindi, T.J., Jeong, Y.-S., Jeong, M.K., Seo, S., Kang, J., Heo, Y., 2021. Intelligent
Multi-Sensor Detection System for Monitoring Indoor Building Fires. IEEE Sens.
J. 21, 27982–27992. https://doi.org/10.1109/JSEN.2021.3124266

Baker, S.B., Xiang, W., Atkinson, I., 2017. Internet of Things for Smart Healthcare:
Technologies, Challenges, and Opportunities. IEEE Access 5, 26521–26544.
https://doi.org/10.1109/ACCESS.2017.2775180

Bellifemine, F., Caire, G., Poggi, A., Rimassa, G., 2008. JADE: A software framework for
developing multi-agent applications. Lessons learned. Inf. Softw. Technol. 50,
10–21. https://doi.org/10.1016/j.infsof.2007.10.008

Boudaa, B., Hammoudi, S., Benslimane, S.M., 2018. Towards an Extensible Context
Model for Mobile User in Smart Cities, in: Computational Intelligence and Its
Applications. CIIA 2018. IFIP Advances in Information and Communication
Technology, IFIP Advances in Information and Communication Technology.
Springer International Publishing, Springer, Cham, pp. 498–508.
https://doi.org/10.1007/978-3-319-89743-1_43

Boyes, H., Hallaq, B., Cunningham, J., Watson, T., 2018. The industrial internet of things
(IIoT): An analysis framework. Comput. Ind. 101, 1–12.
https://doi.org/10.1016/j.compind.2018.04.015

Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B., 2018. Smart Factory of Industry
4.0: Key Technologies, Application Case, and Challenges. IEEE Access 6, 6505–
6519. https://doi.org/10.1109/ACCESS.2017.2783682

Čolaković, A., Hadžialić, M., 2018. Internet of Things (IoT): A review of enabling
technologies, challenges, and open research issues. Comput. Netw. 144, 17–39.
https://doi.org/10.1016/j.comnet.2018.07.017

Coutinho, L.R., Brandão, A.A.F., Boissier, O., Sichman, J.S., 2019. Towards Agent
Organizations Interoperability: A Model Driven Engineering Approach. Appl.
Sci. 9, 1–38. https://doi.org/10.3390/app9122420

Farooq, M.S., Riaz, S., Abid, A., Abid, K., Naeem, M.A., 2019. A Survey on the Role of IoT
in Agriculture for the Implementation of Smart Farming. IEEE Access 7,
156237–156271. https://doi.org/10.1109/ACCESS.2019.2949703

Foundation for Intelligent Physical Agents, 2005. Standard FIPA specifications [WWW
Document]. URL http://www.fipa.org/specifications/ (accessed 9.8.22).

Capítulo 1 – Introducción

1-47

Funk, C., Ehm, C., Linnhoff-Popien, C., Kuhmunch, C., 2007. Support of Stateful Services
in Pervasive Environments, in: Fifth Annual IEEE International Conference on
Pervasive Computing and Communications Workshops (PerComW’07). IEEE,
White Plains, NY, USA, pp. 483–488.
https://doi.org/10.1109/PERCOMW.2007.110

Galster, M., Weyns, D., Tofan, D., Michalik, B., Avgeriou, P., 2014. Variability in Software
Systems—A Systematic Literature Review. IEEE Trans. Softw. Eng. 40, 282–306.
https://doi.org/10.1109/TSE.2013.56

Garcia Valls, M., Lopez, I.R., Villar, L.F., 2013. iLAND: An Enhanced Middleware for Real-
Time Reconfiguration of Service Oriented Distributed Real-Time Systems. IEEE
Trans. Ind. Inform. 9, 228–236. https://doi.org/10.1109/TII.2012.2198662

García-Magariño, I., Gutiérrez, C., 2013. Agent-oriented modeling and development of
a system for crisis management. Expert Syst. Appl. 40, 6580–6592.
https://doi.org/10.1016/j.eswa.2013.06.012

Garruzzo, S., Rosaci, D., Sarne, G.M.L., 2007. MASHA-EL: A Multi-Agent System for
Supporting Adaptive E-Learning, in: 19th IEEE International Conference on
Tools with Artificial Intelligence(ICTAI 2007). IEEE, Patras, Greece, pp. 103–
110. https://doi.org/10.1109/ICTAI.2007.83

Gómez-Sanz, J.J., Fuentes-Fernández, R., 2015. Understanding Agent-Oriented Software
Engineering methodologies. Knowl. Eng. Rev. 30, 375–393.
https://doi.org/10.1017/S0269888915000053

Guerraoui, R., Schiper, A., 1997. Software-Based Replication for Fault Tolerance.
Computer 30, 68–74. https://doi.org/10.1109/2.585156

Gui, N., De Florio, V., Sun, H., Blondia, C., 2011. Toward architecture-based context-
aware deployment and adaptation. J. Syst. Softw. 84, 185–197.
https://doi.org/10.1016/j.jss.2010.09.017

Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J., Mamelli, A.,
Papadopoulos, G.A., 2012. A development framework and methodology for self-
adapting applications in ubiquitous computing environments. J. Syst. Softw. 85,
2840–2859. https://doi.org/10.1016/j.jss.2012.07.052

Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B., 2019. A Survey on IoT
Security: Application Areas, Security Threats, and Solution Architectures. IEEE
Access 7, 82721–82743. https://doi.org/10.1109/ACCESS.2019.2924045

He, X., Tu, Z., Xu, X., Wang, Z., 2021. Programming framework and infrastructure for
self-adaptation and optimized evolution method for microservice systems in
cloud–edge environments. Future Gener. Comput. Syst. 118, 263–281.
https://doi.org/10.1016/j.future.2021.01.008

Hsu, T.-Y., Nieh, C.P., 2020. On-Site Earthquake Early Warning Using Smartphones.
Sensors 20, 2928. https://doi.org/10.3390/s20102928

Huan, W., Hidenori, N., 2012. Failure Detection in P2P-Grid Environments, in: 32nd
International Conference on Distributed Computing Systems Workshops. IEEE,
Macau, China, pp. 369–374. https://doi.org/10.1109/ICDCSW.2012.18

Hussein, M., Han, J., Colman, A., 2011. An Approach to Model-Based Development of
Context-Aware Adaptive Systems, in: 2011 35th IEEE Annual Computer

Capítulo 1 – Introducción

1-48

Software and Applications Conference. IEEE, Munich, Germany, pp. 205–214.
https://doi.org/10.1109/COMPSAC.2011.34

Iqbal, M.W., Ch, N.A., Shahzad, S.K., Naqvi, M.R., Khan, B.A., Ali, Z., 2021. User Context
Ontology for Adaptive Mobile-Phone Interfaces. IEEE Access 9, 96751–96762.
https://doi.org/10.1109/ACCESS.2021.3095300

Isern, D., Sánchez, D., Moreno, A., 2011. Organizational structures supported by agent-
oriented methodologies. J. Syst. Softw. 84, 169–184.
https://doi.org/10.1016/j.jss.2010.09.005

Islam, S.M.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.-S., 2015. The Internet of
Things for Health Care: A Comprehensive Survey. IEEE Access 3, 678–708.
https://doi.org/10.1109/ACCESS.2015.2437951

James Lewis, Martin Fowler, 2014. Microservices [WWW Document]. URL
https://martinfowler.com/articles/microservices.html (accessed 7.20.21).

Khabou, N., Rodriguez, I.B., Gharbi, G., Jmaiel, M., 2014. A Threshold based Context
Change Detection in Pervasive Environments: Application to a Smart Campus,
in: 5th International Conference on Ambient Systems, Networks and
Technologies (ANT-2014). Hasselt, Belgium, pp. 461–468.
https://doi.org/10.1016/j.procs.2014.05.448

Khan, M.U., Reichle, R., Geihs, K., 2008. Architectural Constraints in the Model-Driven
Development of Self-Adaptive Applications. IEEE Distrib. Syst. Online 9, 1–10.
https://doi.org/10.1109/MDSO.2008.19

Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C., 2015. A survey on
engineering approaches for self-adaptive systems. Pervasive Mob. Comput. 17,
184–206. https://doi.org/10.1016/j.pmcj.2014.09.009

Kubernetes, 2022. Kubernetes [WWW Document]. URL https://kubernetes.io/
(accessed 3.10.22).

Li, X., Eckert, M., Martinez, J.-F., Rubio, G., 2015. Context Aware Middleware
Architectures: Survey and Challenges. Sensors 15, 20570–20607.
https://doi.org/10.3390/s150820570

Michael Wooldridge, 2009. An Introduction to MultiAgent Systems, 2nd ed. Wiley
Publishing, Hoboken, NJ, USA.

Mohamed, M.A., Kardas, G., Challenger, M., 2021. Model-Driven Engineering Tools and
Languages for Cyber-Physical Systems–A Systematic Literature Review. IEEE
Access 9, 48605–48630. https://doi.org/10.1109/ACCESS.2021.3068358

Perera, C., Liu, C.H., Jayawardena, S., Chen, M., 2014. A Survey on Internet of Things
From Industrial Market Perspective. IEEE Access 2, 1660–1679.
https://doi.org/10.1109/ACCESS.2015.2389854

Psaier, H., Dustdar, S., 2011. A survey on self-healing systems: approaches and systems.
Computing 91, 43–73. https://doi.org/10.1007/s00607-010-0107-y

Qi, Q., Tao, F., 2019. A Smart Manufacturing Service System Based on Edge Computing,
Fog Computing, and Cloud Computing. IEEE Access 7, 86769–86777.
https://doi.org/10.1109/ACCESS.2019.2923610

Capítulo 1 – Introducción

1-49

Ramírez, A., Moreno, N., Vallecillo, A., 2021. Rule-based preprocessing for data stream
mining using complex event processing. Expert Syst. 38, e12762.
https://doi.org/10.1111/exsy.12762

Ray, P.P., Mukherjee, M., Shu, L., 2017. Internet of Things for Disaster Management:
State-of-the-Art and Prospects. IEEE Access 5, 18818–18835.
https://doi.org/10.1109/ACCESS.2017.2752174

Rocha, A., Martins, A., Freire, J.C., Kamel Boulos, M.N., Vicente, M.E., Feld, R., van de Ven,
P., Nelson, J., Bourke, A., ÓLaighin, G., Sdogati, C., Jobes, A., Narvaiza, L.,
Rodríguez-Molinero, A., 2013. Innovations in health care services: The CAALYX
system. Int. J. Med. Inf. 82, e307–e320.
https://doi.org/10.1016/j.ijmedinf.2011.03.003

Rosaci, D., Sarné, G.M.L., 2006. MASHA: A multi-agent system handling user and device
adaptivity of Web sites. User Model. User-Adapt. Interact. 16, 435–462.
https://doi.org/10.1007/s11257-006-9015-4

Ruiz, A., Juez, G., Schleiss, P., Weiss, G., 2015. A safe generic adaptation mechanism for
smart cars, in: 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE). IEEE, Gaithersbury, MD, USA, pp. 161–171.
https://doi.org/10.1109/ISSRE.2015.7381810

Shah, S.A., Seker, D.Z., Rathore, M.M., Hameed, S., Ben Yahia, S., Draheim, D., 2019.
Towards Disaster Resilient Smart Cities: Can Internet of Things and Big Data
Analytics Be the Game Changers? IEEE Access 7, 91885–91903.
https://doi.org/10.1109/ACCESS.2019.2928233

Vale, T., Crnkovic, I., de Almeida, E.S., Silveira Neto, P.A. da M., Cavalcanti, Y.C., Meira,
S.R. de L., 2016. Twenty-eight years of component-based software engineering.
J. Syst. Softw. 111, 128–148. https://doi.org/10.1016/j.jss.2015.09.019

Vayghan, L.A., Saied, M.A., Toeroe, M., Khendek, F., 2021. A Kubernetes controller for
managing the availability of elastic microservice based stateful applications. J.
Syst. Softw. 175, 1–13. https://doi.org/10.1016/j.jss.2021.110924

Villarrubia, G., Hernández, D., De Paz, J.F., Bajo, J., 2017. Combination of multi-agent
systems and embedded hardware for the monitoring and analysis of diuresis.
Int. J. Distrib. Sens. Netw. 13, 1–17.
https://doi.org/10.1177/1550147717722154

Wang, Y., Kadiyala, H., Rubin, J., 2021. Promises and challenges of microservices: an
exploratory study. Empir. Softw. Eng. 26, 1–44.
https://doi.org/10.1007/s10664-020-09910-y

Xu, H., Yu, W., Griffith, D., Golmie, N., 2018. A Survey on Industrial Internet of Things: A
Cyber-Physical Systems Perspective. IEEE Access 6, 78238–78259.
https://doi.org/10.1109/ACCESS.2018.2884906

Zato, C., Villarrubia, G., Sánchez, A., Bajo, J., Corchado, J.M., 2013. PANGEA: A New
Platform for Developing Virtual Organizations of Agents. Int. J. Artif. Intell. 11,
93–102.

Capítulo 1 – Introducción

1-50

Capítulo 2 – Conclusiones

2 CONCLUSIONES

Capítulo 2 – Conclusiones

2-1

2.1 Conclusiones

En la presenta tesis doctoral se ha propuesto la plataforma MAS-RECON para la gestión

de la ejecución de las aplicaciones sensibles al contexto, que cubre tanto sus requisitos

operacionales como los de flexibilidad. MAS-RECON es una plataforma genérica para

todos los dominios que al mismo tiempo es personalizable y extensible a dominios

concretos. Por lo tanto, MAS-RECON no sólo cubre las necesidades de gestión comunes

a todos los campos, sino que también puede hacer frente a las necesidades específicas

del dominio. A lo largo de este trabajo se han realizado propuestas en distintos

dominios de aplicación (eHC, FMS y multimedia) permitieron identificar: 1) requisitos

operacionales de la plataforma comunes a todos los dominios; 2) el concepto de

aplicación, dependiente del dominio; y 3) requisitos de flexibilidad, comunes y

específicos de dominio. En cada uno de los campos se propuso una solución ad-hoc

para los problemas particulares, y de todos ellos emergió el resultado principal de este

trabajo: una plataforma base que ofrece servicios básicos de gestión de aplicaciones,

como arranque, parada y operación normal, y servicios de flexibilidad comunes a todos

los dominios, como la auto-adaptabilidad y la auto-recuperación. Por otro lado, dando

solución a la especificidad del campo, la plataforma MAS-RECON es capaz de

personalizarse, fundamentalmente en base a la definición de un meta-modelo del

dominio y otros mecanismos relacionados con el desarrollo del código de los agentes.

Se ha probado que el uso de tecnología de meta-modelado permite tanto la definición

como la gestión genérica del estado del sistema, propio de cada campo. Siendo una

tecnología clave para hacer frente a la variabilidad de dominio, ya que permite definir

de forma genérica el concepto de aplicación, propio de cada campo. Así, MAS-RECON

considera el concepto de la aplicación desde las primeras etapas de su diseño,

entendida como un conjunto de entidades que se relacionan de una forma específica

dentro de un dominio. Esto permite que MAS-RECON pueda ofrecer una gestión de la

ejecución centrada en las propias aplicaciones y no en los módulos que las componen.

Capítulo 2 – Conclusiones

2-2

También se ha demostrado que la tecnología multi-agente es adecuada para llevar a

cabo la idea de inteligencia distribuida con supervisión centralizada. Así, es posible

hacer frene a sucesos inesperados como pueden ser cambios en el contexto o fallo de

agentes y recursos. Concretamente, se ha introducido inteligencia dentro de las

entidades de dominio, encargadas de la detección de estos sucesos inesperados, de la

toma de decisiones distribuida y de la ejecución de tareas concretas de reacción y/o

recuperación. Se propone el uso de agentes de sistema con acceso al estado global del

sistema para la supervisión centralizada de los agentes de dominio. De esta forma se

puede hacer frente a todos aquellos requisitos que afecten al conjunto de la aplicación,

como es el caso de la auto-adaptabilidad y auto-recuperación. Como resultado, es

posible separar la lógica de adaptación a cambios de contexto de la lógica de aplicación

También es posible el despliegue descentralizado de las aplicaciones y la recuperación

rápida del servicio para aplicaciones con estado, incluso en el caso de fallo de nodo.

MAS-RECON proporciona la estructura que debe seguir el repositorio de sistema de

cualquier dominio, el API de aquellos agentes de sistema comunes a todos los dominios

y el esqueleto del código de los agentes de dominio, tanto de recurso como de

aplicación, junto con una implementación básica de aquellos mecanismos e interfaces

que estos agentes necesitan para su comunicación con los agentes de sistema.

Por otro lado, MAS-RECON también establece una metodología de personalización a

dominio y extensión basada, fundamentalmente, en la definición del meta-modelo de

dominio, que describe la estructura de las aplicaciones, y en el desarrollo de plantillas

de agentes, que implementan las comunicaciones definidas entre las entidades del

dominio y los agentes de sistema. De hecho, se puede decir que MAS-RECON va más

allá que otras plataformas de gestión, siendo una especie de entorno de desarrollo que

facilita la implementación de agentes mediante la definición de plantillas.

Se puede concluir, por lo tanto, que MAS-RECON junto con esta metodología de

personalización permite desarrollar plataformas específicas de dominio que cumplen

Capítulo 2 – Conclusiones

2-3

con los requisitos de las aplicaciones sensibles al contexto, tanto los operacionales

como los de flexibilidad, y tanto los comunes como los específicos de dominio.

Sin embargo, resulta importante destacar dos limitaciones de MAS-RECON. Por un lado,

tal y como se ha observado en el análisis de rendimiento realizado, el hecho de que sea

una plataforma genérica y personalizable hace que su rendimiento sea ligeramente

peor que el de otras plataformas genéricas, pero cuya personalización resulta más

laboriosa. Se debería, por lo tanto, evaluar para cada caso concreto si optar por MAS-

RECON y su capacidad para hacer frente a requisitos específicos del dominio, u optar

por otra alternativa menos personalizable pero óptima.

La otra limitación que presenta MAS-RECON está relacionada con el hecho de que no

cubre el requisito de seguridad, ya que se ha considerado que podría extenderse

mediante mecanismos existentes que cada usuario debería incorporar. Esto hace que

MAS-RECON no sea una plataforma segura, aspecto que actualmente está cobrando una

importancia vital.

2.2 Trabajo Futuro

La primera línea de trabajo está relacionada con la segunda limitación identificada en

el apartado anterior y consiste en estudiar los mecanismos de seguridad existentes e

incorporarlos en el núcleo genérico que proporciona MAS-RECON, analizando cómo

ello afecta a su rendimiento. Así, MAS-RECON podría ser una plataforma genérica,

personalizable, extensible y segura.

Finalmente, otra línea de trabajo futuro podría estar enfocada al desarrollo de

plataformas genéricas y personalizables dentro de dominios concretos (meta-

plataformas). En efecto, el esfuerzo necesario para particularizar MAS-RECON a un

dominio concreto puede resultar un inconveniente, ya que integrar nuevos agentes

Capítulo 2 – Conclusiones

2-4

específicos requiere un conocimiento profundo de la plataforma. Así, tras analizar en

detalle todas las necesidades de un campo concreto, y haciendo uso de la ingeniería

conducida por modelos y las transformaciones de modelos, sería posible personalizar

MAS-RECON para obtener una plataforma y unas plantillas de agentes de dominio que,

a su vez, serían personalizables para un conjunto de aplicaciones concreto.

3 ANEXO: PUBLICACIONES

Anexo: Publicaciones

3-1

3.1 Flexibility Support for Homecare Applications

Based on Models and Multi-Agent Technology

Armentia, A., Gangoiti, U., Priego, R., Estévez, E., y Marcos, M. (2015). Flexibility Support

for Homecare Applications Based on Models and Multi-Agent Technology. Sensors, 15

(12), pp. 31939–31964.

DOI: https://doi.org/10.3390/s151229899.

JCR©2015: 2,033

Categoría: Instruments & Instrumentation

Cuartil: Q1 (12/56)

https://doi.org/10.3390/s151229899

Anexo: Publicaciones

3-2

Article

Flexibility Support for Homecare Applications Based
on Models and Multi-Agent Technology

Aintzane Armentia 1,*, Unai Gangoiti 1,†, Rafael Priego 1,†, Elisabet Estévez 2,† and Marga Marcos 1,†

Received: 10 November 2015; Accepted: 13 December 2015; Published: 17 December 2015
Academic Editor: Vittorio M. N. Passaro

1 Automatic Control & Systems Engineering Department, ETSI Bilbao, University of the Basque
Country (UPV/EHU), 48013 Bilbao, Spain; unai.gangoiti@ehu.eus (U.G.); rafael.priego@ehu.eus (R.P.);
marga.marcos@ehu.eus (M.M.)

2 Electronic and Automation Engineering Department, University of Jaen (UJA), 23071 Jaén, Spain;
eestevez@ujaen.es

* Correspondence: aintzane.armentia@ehu.eus; Tel.: +34-946-017-216; Fax: +34-946-014-187
† These authors contributed equally to this work.

Abstract: In developed countries, public health systems are under pressure due to the increasing
percentage of population over 65. In this context, homecare based on ambient intelligence technology
seems to be a suitable solution to allow elderly people to continue to enjoy the comforts of home and
help optimize medical resources. Thus, current technological developments make it possible to build
complex homecare applications that demand, among others, flexibility mechanisms for being able
to evolve as context does (adaptability), as well as avoiding service disruptions in the case of node
failure (availability). The solution proposed in this paper copes with these flexibility requirements
through the whole life-cycle of the target applications: from design phase to runtime. The proposed
domain modeling approach allows medical staff to design customized applications, taking into
account the adaptability needs. It also guides software developers during system implementation.
The application execution is managed by a multi-agent based middleware, making it possible to
meet adaptation requirements, assuring at the same time the availability of the system even for
stateful applications.

Keywords: AAL systems; homecare; adaptability; availability; stateful components; domain modeling;
multi-agent systems

1. Introduction

Developed countries are suffering a demographic change as a result of the growing number of
older people as well as an increase in longevity [1–3]. Elderly suffer from typical age-related diseases
demanding expensive medical care that is pressuring public health systems. Governments, conscious
of this problem, are funding research projects aiming at providing new ways of medical care [4–7].
Indeed, issues like extending healthy life expectancy, improving quality of life, and maintaining
autonomy and independence, are part of the term “active ageing” that was adopted by the World
Health Organization in the late 1990s [8]. In this context, home-based care solutions seem useful
to provide personalized care, improve comfort, autonomy, confidence and safety of the residents,
optimizing, at the same time, medical resources [2,9,10].

During the last years, Ambient Assisted Living (AAL) systems have emerged as an adequate
technological support for elderly and disabled to enhance their quality of life avoiding social
isolation [11–15]. AAL systems have been studied by several authors with different purposes, from
energy efficiency or comfort optimization to dealing with safety or recognizing elderly activity [16–22],
as well as for home care [11,14]. In the particular case of home care for elderly, smart homes are

Sensors 2015, 15, 31939–31964; doi:10.3390/s151229899 www.mdpi.com/journal/sensors

Sensors 2015, 15, 31939–31964

equipped with sensors, actuators and other appliances, whereas patients are provided with medical
sensors and medical staff with personal computers, mobile phones, or PDAs. The captured data are
analyzed in order to be aware of the continuous evolution of the patients and the environment, as
well as for early detection of alarming situations (alarm triggering). This is also the case in homecare
applications where mechanisms to define and process the sensing and processing of biomedical and
environmental signals are needed. However, sometimes a simple alarm warning might not be enough,
and flexibility to evolve as patient status and its environment do is also necessary, indeed often without
direct external intervention (adaptability). This might imply starting new applications, stopping, or
even modifying existing ones. Thus, to achieve the goal of adaptable monitoring of elderly, applications
must be context-aware being able to modify their behavior according to changes on their context.

Besides, these applications are commonly executed in distributed and heterogeneous
environments, and mechanisms for managing widespread and specific devices with different
capabilities (from embedded devices to those with high processing capacities) are necessary. As
they supervise the health of patients, their response must be efficient in order to react as quickly
as possible to dangerous situations, so a suitable resource management system is needed, not only
because it is essential for dealing with the limitations of embedded systems, but also to ensure efficiency.
Preventing service disruptions is also mandatory in order to avoid information losses, especially in
emergency cases. Consequently, availability must be guaranteed in case of failure in processing nodes
or sensor devices. Finally, other critical aspects are privacy, confidentiality and integrity of the data
about patients (safety and security).

Therefore, AAL systems for the elderly raise several challenges for developers that have to be
taken into account at the requirements analysis and design phases, and that have to be ensured at
runtime [23–25]. There are several works that deal with safety, privacy and security issues related
to data storage, processing and transmission. Message encryption using Public Key Infrastructure
(PKI) and Secure Socket Layer (SSL) [26], authorization and authentication mechanisms [27,28], and
the development of security frameworks [29,30] or safety policies [31] are the most usual solutions.

On the other hand, there are also middleware systems that help an application to interact or
communicate with other applications or hardware through networks. These kinds of middleware
systems are commonly built over a framework layer which solves ubiquity challenges. Examples of
such frameworks are Open Services Gateway Initiative (OSGi) [32], Remote Procedure Call (RPC) [33],
Object Request Broker (ORB) [34], Reflection [35] or Foundation for Intelligent Physical Agents
(FIPA) [36] compliant frameworks.

Self-adaptive systems are commonly defined in the literature as those capable of automatically
modifying themselves in response to changes in their operating environment [37]. This requires
self-awareness and context-awareness, i.e., the system must be aware of its own state by means of
monitoring both, existing resources and its context. Nevertheless, most of them are ad-hoc solutions
that assume stateless applications and, as far as authors know, they do not offer means for defining the
application evolution to context changes.

This paper focuses on these issues, adaptability and availability, identifying the needs of the
target applications and offering appropriate mechanisms to meet both requirements at the different
phases of the application life cycle. In particular, mechanisms for defining, based on the medical
expertise, how the application must evolve to context changes as well as mechanisms to manage the
application at run-time, assuring that the application is available in case of device failure even for
stateful applications. This latter is achieved by means of a multi-agent based middleware (MAS).

Previous works of authors are related to applying modeling techniques for developing
service-based applications without the necessity of a central orchestrator [38,39]. Additionally, the
preliminary idea of the multi-agent based middleware proposed in this work was presented in [40].
With respect to these previous works, this paper contributes a domain modeling approach that allows
systems definition from different points of view. The user view (medical staff) defines, using concepts
from the area of expertise, the monitoring of patients and their environment, including the adaptation

31940

Sensors 2015, 15, 31939–31964

of the applications to context changes (patient or environment). The software view guides the software
developer in the design and implementation of the components required for providing the medical
care specified in the user view. The paper also extends the preliminary middleware to manage events
signaling special situations and the associated actions to be taken. Finally, application availability
is assured by taking advantage of the mobile nature of agents. This is a generic approach as the
middleware offers generic agent templates to be used to define any application that evolves with
its context.

The remainder of this paper is as follows: Section 2 presents some related work on both
adaptability and availability in home care AAL systems. Section 3 identifies the challenging
requirements demanded by homecare applications. This section also includes a brief description
of the proposed solution that consists of a domain modeling approach and a MAS middleware. In
Section 4 the modeling approach for defining the application dynamic behavior is presented while
Section 5 presents the MAS-RECON middleware that provides a set of agent types for implementing
flexible homecare applications as well as mechanisms to manage their execution. Section 6 is dedicated
to the assessment of the proposal based on the implementation of a healthcare demonstrator and some
experimental tests. Finally, Section 7 outlines the most important conclusions and future work.

2. Related Work

This section comprises some research work dealing with the focus of the paper, i.e., adaptability
and availability in homecare applications for elderly.

As far as authors know, the majority of works in the literature lack adaptability mechanisms, as
they focus on alarm triggering in case of danger, asking for medical assistance or warning the patient.
In this context, some works provide closed solutions that can be configured by the final user such
as [41]. Other works provide means for application design aiming at alarm identification [28,42–46]
or at the specification of the responses [47,48], which commonly correspond to warning or alarm
triggering. For instance, the Millennium Home System [47] allows defining how to select the best
mode of interaction with the user, and whether the resident or an external service have to be warned.
In this context, one of the easiest ways of covering a broad range of situations and responses is the use
of the event-condition-action (ECA) paradigm [49]. How ECA rules allow defining the actions that
have to be executed when certain events are detected is presented in [48].

With respect to alarm identification there exist different approaches in the literature. For example,
the CommonSens system [42] proposes an event language to describe events, and the Necesity
project [43] presents a rule-based classifier that determines if a situation is normal or abnormal. Some
authors make use of modeling methodologies [50] as they allow representing a system at different
abstraction levels, hiding irrelevant technical details [28,44,45]. In this sense, the specification and
verification approach in [44] combines UML diagrams and formal methods for establishing time
requirements associated to events. These design approaches have something in common; they focus
on software developers. On the contrary, but also based on modeling techniques, there are works
that incorporate domain experts in the system design and development as in [45] where physicians
define the conditions to trigger the alerts to display in a view, or in [28] where they model the care
process and nurses manually initiate the different actions related to an alarm. The CAALYX system [46]
proposes a special purpose language for caretakers to define the clinical rules. These rules detect
health alteration by means of observation templates that are customized for patients in the so-called
observation patterns. Among the analyzed works, the CAALYX system might be the most similar to the
work presented in this paper. However, as far as authors know, it is neither possible to automatically
start the execution of new observation patterns as a result of an alert (dynamic adaptation), or to relate
changes on the environment with the monitoring of patients.

Related to implementation issues, there is a substantial body of literature on self-adaptive systems
based on reconfigurable middleware systems. As previously stated, this kind of middleware systems

31941

Sensors 2015, 15, 31939–31964

are commonly built over a framework layer which solves ubiquity challenges simplifying component
management, update and communication.

The THOMAS middleware [27] combines multi-agent technology and service orientation,
offering registration mechanisms for services, their implementations and organizations. It allows
the organizational structure to be dynamically modifying by creating new ones, or by adding and
removing members. However, this capability is restricted to some concrete roles. In the CARISMA
project [35], self-adaptation is tackled by defining profiles as fixed sets of actions the middleware should
take when a specific event happens. Another approach is based on the so-called sentient objects [51]
which are able to take decisions and perform actions. Actions to be performed as a response to context
changes can be statically defined as part of the middleware at design time [52], or they can be built at
runtime [53,54]. Nevertheless, these approaches are not fully generic as they are presented as part of
an application domain and therefore they represent an ad hoc solution to a concrete problem. On the
contrary, the iLAND project [55] proposes a general-purpose middleware for real-time systems with
time-bounded reconfiguration capabilities. However, it only supports sequential stateless applications
and it does not provide support for managing context events.

Application availability even in case of device failure is usually managed at the application
level, and therefore the application state is implicitly managed by itself. This is the case of the
architectures defined in [27,56] offering redundant service providers. The service oriented component
model described in [57] provides location independent peer to peer (P2P) communications between
components. The GAL platform [58] also defines services as reusable blocks and availability is assured
by means of redundancy on services. In the iLAND middleware [55], availability is supported by
creating several implementations related to a service. Therefore, the formers present application aware
recovery and the latter only supports stateless services recuperation in case of a node failure.

3. Flexibility Requirements for Home Care AAL Systems

For a better understanding of the requirements identified in this section, the next paragraphs
describe some use cases related to an old people’s home. These use cases have been documented in
and inspired by some literature works related to heart rate, blood pressure, oxygen saturation and
body temperature monitoring [59–63]. They illustrate simple examples of real use cases being simple
enough to represent the flexibility demands of this type of applications.

Use Case 1 (UC1)—Body temperature monitoring. After a surgical operation, the body temperature
of a patient is measured four times a day. These values are stored for further analysis. Additionally, if
the temperature is over a concrete threshold (according to the patient particularities), the medical staff
has to be warned in order to supervise a possible infection.

Use Case 2 (UC2)´Heart rate monitoring. In order to detect a possible heart attack, the pulse
rate of a patient is monitored every 10 min. However, if the heart rate trend indicates an abnormal
increase (according to the patient particularities), apart from warning the medical staff, the acquisition
frequency must be increased for a more detailed monitoring.

Use Case 3 (UC3)—Fire detection. In a nursing home, monitoring the physical environment is
crucial. In case of fire, collecting information about health of patients might help emergency services
to make decisions on arrival. Thus, buildings are usually equipped with fire detectors and upon the
detection of a fire new health monitoring tasks must be launched for every patient, such as pulse rate
and oxygen saturation level monitoring.

Use Case 4 (UC4)—Blood pressure monitoring. The main objective of this use case is to monitor
the blood pressure of a patient, four times a day. However, as it is presented in [62], blood pressure
measures are only relevant if the patient is relaxed. This situation can be checked by means of its pulse
rate. Therefore, before taking a blood pressure reading it is necessary to supervise the pulse rate of the
patient (one measure every 30 s) until it is relaxed or a maximum waiting time is exceeded. Of course,
if the pulse rate or the blood pressure is out of range, medical staff has to be warned.

31942

Sensors 2015, 15, 31939–31964

As it can be concluded from these examples, target applications have three main objectives:
(1) monitoring; (2) early recognition; and (3) rapid and suitable reaction. To match these goals, context
information is captured by means of sensors that monitor vital functions (all use cases) and acquire
environmental measures (UC4), taking into account that each measurement must be performed at
the right frequency (temperature is taken every six hours in UC1 whereas heart rate is measure every
10 min in UC2). The processing of these data enables a continuous monitoring of the patient health
and their environment, being possible to foresee risky situations and to provide the most suitable
assistance in case of emergency. Furthermore, actions for acquiring biomedical sensor measurements
and related processing must be customized for every particular elder, although there are similarities
among many of them. Indeed, there exist medical guidelines that give support to medical professionals
in making general decisions on the treatment of a patient, which, in the end, varies from patient to
patient. For instance, pulse measurement can be always carried out in the same manner, whilst a
concrete pulse value has a different meaning according to various factors such as the patient age,
physical activity, ambient temperature, etc.

Target applications supervise dynamic systems that can evolve to dangerous situations.
For instance, the pulse rate of a patient increases in case of heart attack. In these situations, besides the
usual monitoring and alarm detection, a reaction to the alarm must be defined. Warning medical staff,
as in UC1, is the easiest response which is already performed by the works described in the related
work section. However, sometimes the application has to evolve in response to relevant changes on
its context. As a result, it could be necessary to change the acquisition rate as in UC2 (in case of a
possible heart attack), or to initiate the processing of new biomedical values as it is stated in UC3
(new monitoring tasks have to be launched after fire detection) and UC4 (blood pressure monitoring is
started). Sometimes, as in UC4 it is necessary to stop current actions (heart rate monitoring is stopped
after patient is relaxed).

Finally, continuous monitoring implies to assure application availability even in case of node
failure. Furthermore, service recovery has to be application unaware, that is, the application design
has not to be altered to match this requirement. Special attention has to be paid to the particular
case of those services whose result depends on previous executions (the so-called stateful services).
For example, in the UC4 (blood pressure monitoring), several subsequent pulse rates must be analyzed
in order to assure the relaxed condition. When a node executing this analysis fails, the recovery process
implies restoring the previous pulse rate values. In summary, the main requirements demanded by the
target applications are collected in Table 1.

Table 1. Requirements demanded by the target applications and their relation with the proposed
use cases.

Requirement Identifier Requirement Description Use Cases that Represent It

R1
Personalized sensing and processing

Support for different sensors,
customized processing and thresholds. All

R2
Distributed and heterogeneous

environments

Integration of distributed sensors and
heterogeneous platforms (resources). All

R3
Activation and execution types Actions triggered by time or by event. All

R4
Adaptability

Context changes awareness:
modifying timing properties,

launching/stopping applications . . .
UC2, UC3 and UC4

R5
Availability

If a device fails, application must
remain unaffected. All

In order to meet the requirements identified above, this paper proposes to divide a monitoring
action into a set of measuring and processing tasks that are customized according to the particular
health problems of the patient. These tasks can be executed in distributed and heterogeneous devices
and have to be interconnected to achieve the monitoring goal. With this purpose, this paper proposes a

31943

Sensors 2015, 15, 31939–31964

system architecture that consists of a domain modeling approach and a multi-agent based middleware,
the so-called MAS-RECON middleware.

The domain modeling approach guides the specification of applications and the implementation
of the corresponding components. It has two stakeholders, medical professionals and software
developers, and therefore it has been divided in two domains: the user view and the software view.
The definition of the user view is the responsibility of the medical professionals as they define the
customized treatment for every patient. It consists of a set of interconnected tasks in order to provide
the required medical service, which includes the monitoring, alarming situation detection and reaction.
On the other hand, software developers are the responsible for the software view which is based on the
previous one. It comprises the set of components in charge of acquiring and processing the biomedical
and environmental signals. These components are connected following the logic established by
the medical staff. Therefore, software developers implement the required medical services and the
application logic to connect them. In a sense, the modeling approach allows the medical professionals
to specify the software developers what to do and how to do it, by using concepts close to its area
of expertise.

The MAS-RECON middleware extends the Java Agent DEvelopment (JADE) framework [64]
and manages the execution of applications. In order to implement the application code, software
developers are provided with code templates that have to be filled in with the functional specification
of the user view. At runtime, the proposed middleware architecture together with the logic added to
the code templates and the negotiation capabilities of agents are the means to support the flexibility of
applications and fault tolerance. The next sections detail the proposed domain modeling approach
and middleware architecture.

4. Domain Modeling Approach for Application Specification

In order to reach a correct and full-customized health monitoring, it is necessary to incorporate
domain experts in the system definition and development. With this purpose, this section describes a
domain modeling approach that allows defining the whole application abstracting the implementation
issues. As previously mentioned, two different but related domains have been identified: the user
view and the software view. More precisely, the software view generalizes the user view by extending
existing concepts with new properties and by adding new concepts.

4.1. User View

Medical professionals and maintenance staff provide the information related to the user view
that is constituted by a set of concepts and relationships among them. These concepts allow defining
the functional requirements (R1, R2 (Table 1)), the timing requirements (R3) and the dynamism (R4)
needed for the health monitoring of patients and the supervision of the environment, from the medical
professionals perspective. Availability requirement (R5) is application unaware and thus, it is not
covered by the modeling.

4.1.1. Functional Requirements (R1, R2)

This view defines the health monitoring of every patient and the supervision of the environment
by means of the Scenario concept. Figure 1 illustrates the concept of Scenario through the specification
of a nursing home (System concept) with three patients (Scenarios).

Health monitoring has to be customized to each patient. Therefore, physicians have to identify
which biomedical variables to monitor and how to process them, using the Application concept. For
example, as it is depicted in Figure 1, the special monitoring for emergency situations described in
UC3 is defined for every patient. “Patient 1” represents a resident without any relevant health problem.
Its temperature is monitored as it has been operated on. “Patient 2” is related to a resident with
hypertension. Thus, its blood pressure has to be controlled as it is explained in UC4. Finally, “Patient
3” refers to a resident with heart disease (UC2).

31944

Sensors 2015, 15, 31939–31964
Sensors 2015, 15, page–page

7

Figure 1. Graphical representation of the user view specification related to a nursing home with

three patients.

The monitoring of a biomedical or environmental variables involves several tasks

(AppComponent concept), including: data acquisition at concrete frequencies from sensors (or

extracted from a repository in bulk); and processing activities to obtain useful data for the medical

staff. Medical professionals have to describe these tasks (name and providedServiceDesc properties)

from which software developers implement the needed software components (again,

AppComponent concept).For example, in order to check the body temperature, four tasks are

necessary: one for temperature acquisition (once a day), another for storing these measures in a

repository, other one to check if the captured values are out of the normal range of the resident, and

the last one to warn the medical staff in case of detecting an abnormal situation.

4.1.2. Timing Requirements (R3)

Non-Functional requirements are collected as properties related to the previous concepts.

Indeed, specifying the timing requirements of every monitoring is essential (timingProps of the

Application concept). More precisely, it is necessary to identify when the monitoring has to be

activated (activation properties) and how it has to be performed after activation (execution

properties). For example, in the case of “Patient 2” blood pressure has to be measured four times a

day which implies that it has to be periodically activated every 6 h. However, after activation its

pulse rate has to be periodically monitored every 30 s until relaxing (periodic execution), whereas

blood pressure is measured just once (one-shot execution). Additionally, there are also configuration

parameters (configParam property) such as the patient identifier that allow the customization of the

health and environment monitoring.

4.1.3. Adaptability (R4)

Lastly, the Event concept allows medical professionals and maintenance staff to identify

relevant context changes that demand a reaction. Therefore, they have to detail how to detect every

relevant situation and how to react to them. Note that, as it is collected in [65], the context term may

have very different meanings. In this work, it refers to the health status of a patient and/or the state

of the physical environment. Detecting a context change is the result of data processing. For

example, in the heart rate monitoring described in UC2, an abnormal increase of the heartbeat is

Scenario

Application

Application Event

Propagated Event

Received Event

Action (M: ModifyQoS; C: Create; D: Destroy)

Patient 1

Emergency

Monitoring

Body

Temp.

C

Patient 3

Emergency

Monitoring

Pulse

Rate OutOfRange

M

C

Patient 2

Emergency

Monitoring

Blood

PressureCheck

Relaxed Relaxed

C

C
D

Environment

Fire

Detection

Fire

Fire_Tx

Fire_Rx_P2

Fire_Rx_P3

Fire_Rx_P1

Figure 1. Graphical representation of the user view specification related to a nursing home with
three patients.

The monitoring of a biomedical or environmental variables involves several tasks (AppComponent
concept), including: data acquisition at concrete frequencies from sensors (or extracted from a
repository in bulk); and processing activities to obtain useful data for the medical staff. Medical
professionals have to describe these tasks (name and providedServiceDesc properties) from which
software developers implement the needed software components (again, AppComponent concept).
For example, in order to check the body temperature, four tasks are necessary: one for temperature
acquisition (once a day), another for storing these measures in a repository, other one to check if the
captured values are out of the normal range of the resident, and the last one to warn the medical staff
in case of detecting an abnormal situation.

4.1.2. Timing Requirements (R3)

Non-Functional requirements are collected as properties related to the previous concepts. Indeed,
specifying the timing requirements of every monitoring is essential (timingProps of the Application
concept). More precisely, it is necessary to identify when the monitoring has to be activated (activation
properties) and how it has to be performed after activation (execution properties). For example, in
the case of “Patient 2” blood pressure has to be measured four times a day which implies that it has
to be periodically activated every 6 h. However, after activation its pulse rate has to be periodically
monitored every 30 s until relaxing (periodic execution), whereas blood pressure is measured just once
(one-shot execution). Additionally, there are also configuration parameters (configParam property)
such as the patient identifier that allow the customization of the health and environment monitoring.

4.1.3. Adaptability (R4)

Lastly, the Event concept allows medical professionals and maintenance staff to identify relevant
context changes that demand a reaction. Therefore, they have to detail how to detect every relevant
situation and how to react to them. Note that, as it is collected in [65], the context term may have
very different meanings. In this work, it refers to the health status of a patient and/or the state of the
physical environment. Detecting a context change is the result of data processing. For example, in the
heart rate monitoring described in UC2, an abnormal increase of the heartbeat is considered a relevant
context change (OutOfRange event in Figure 1). In the same manner, it is essential for UC3 specifying

31945

Sensors 2015, 15, 31939–31964

under which circumstances the captured environmental signals (smoke, temperature, etc.) are related
to a fire (Fire event in Figure 1). In UC4, the instant at which the patient relaxes is relevant (Relaxed
event in Figure 1). This is detected after processing several pulse rates, between its maximum heart
rate (HRmax) and its resting heart rate (HRrest).

On the other hand, specifying how to react against a relevant context change comprises the actions
to be performed after its detection (Action concept). There are several types of actions and every one
refers to an Application, the target of the action from now on. For instance, in UC2, after detecting
a risky situation, it is necessary to increase the acquisition frequency (Modify action). Therefore, the
target of the action is the monitoring itself. In Figure 1 this fact is represented by a purpled line that
starts on the OutOfRange event and which points to the monitoring itself. However, as it is also
depicted in Figure 1, once a patient is relaxed (i.e., the Relaxed event is triggered) the actions are to
finish pulse rate monitoring (Destroy action) and to start blood pressure monitoring (Create action).
Note that in these examples, after detecting a context change of a patient, the actions performed are
related to monitoring tasks of the same patient. But sometimes the actions drawn from a context
change goes beyond the patient itself, that is, context changes are propagated (TxScnEvent concept).
This is the case of the fire detection that requires the starting of a particular emergency monitoring for
all the patients at the nursing home, as it is illustrated in Figure 1 (Fire_Tx). Therefore, a scenario can
propagate events and it can also receive events propagated by other scenarios (RxScnEvent concept).
The latter also has associated actions whose target application belongs to the scenario itself.

4.2. Software View

The software view inherits the user view and extends it to define the tasks specified by the medical
professionals. In this context, an Application is defined as a set of components (AppComponent
concept) that cooperate to achieve application tasks (R1, R2). Therefore, at the software view an
application component represents a set of monitoring activities (service unit, from now on), together
with the application logic (which data has to be sent, when and to which components) and the
event-triggering logic (detection of relevant context changes and reaction), previously defined at the
user view. A service unit requires a set of input parameters to offer its service and it provides a
set of output parameters after its execution. From now on, component parameters and service unit
parameters are interchangeably used (Parameter concept). Figure 2 illustrates the CheckHRTrend
component belonging to UC2. It detects if the heart rate evolves to exceed the normal range of
the “Patient 3” (isOut parameter). It requires a pulse value (Pulse parameter) and the time instant
(TimeStamp parameter).

Sensors 2015, 15, page–page

8

considered a relevant context change (OutOfRange event in Figure 1). In the same manner, it is

essential for UC3 specifying under which circumstances the captured environmental signals (smoke,

temperature, etc.) are related to a fire (Fire event in Figure 1). In UC4, the instant at which the patient

relaxes is relevant (Relaxed event in Figure 1). This is detected after processing several pulse rates,

between its maximum heart rate (HRmax) and its resting heart rate (HRrest).

On the other hand, specifying how to react against a relevant context change comprises the

actions to be performed after its detection (Action concept). There are several types of actions and

every one refers to an Application, the target of the action from now on. For instance, in UC2, after

detecting a risky situation, it is necessary to increase the acquisition frequency (Modify action).

Therefore, the target of the action is the monitoring itself. In Figure 1 this fact is represented by a

purpled line that starts on the OutOfRange event and which points to the monitoring itself.

However, as it is also depicted in Figure 1, once a patient is relaxed (i.e., the Relaxed event is

triggered) the actions are to finish pulse rate monitoring (Destroy action) and to start blood pressure

monitoring (Create action). Note that in these examples, after detecting a context change of a patient,

the actions performed are related to monitoring tasks of the same patient. But sometimes the actions

drawn from a context change goes beyond the patient itself, that is, context changes are propagated

(TxScnEvent concept). This is the case of the fire detection that requires the starting of a particular

emergency monitoring for all the patients at the nursing home, as it is illustrated in Figure 1

(Fire_Tx). Therefore, a scenario can propagate events and it can also receive events propagated by

other scenarios (RxScnEvent concept). The latter also has associated actions whose target application

belongs to the scenario itself.

4.2. Software View

The software view inherits the user view and extends it to define the tasks specified by the

medical professionals. In this context, an Application is defined as a set of components

(AppComponent concept) that cooperate to achieve application tasks (R1, R2). Therefore, at the

software view an application component represents a set of monitoring activities (service unit, from

now on), together with the application logic (which data has to be sent, when and to which

components) and the event-triggering logic (detection of relevant context changes and reaction),

previously defined at the user view. A service unit requires a set of input parameters to offer its

service and it provides a set of output parameters after its execution. From now on, component

parameters and service unit parameters are interchangeably used (Parameter concept). Figure 2

illustrates the CheckHRTrend component belonging to UC2. It detects if the heart rate evolves to

exceed the normal range of the “Patient 3” (isOut parameter). It requires a pulse value (Pulse

parameter) and the time instant (TimeStamp parameter).

Figure 2. Detailed representation of the CheckHRTrend component.

Service Unit

Pulse

TimeStamp

Pulse

TimeStamp

isOut

Inputs Outputs

Input Port Output Port

CheckHRTrend

Component

Data Connector Data Connector

Figure 2. Detailed representation of the CheckHRTrend component.

31946

Sensors 2015, 15, 31939–31964

Application components are also characterized by the timing properties and configuration
parameters (R3). For example, a periodic pulse rate monitoring means that the component in charge
of the sensor reading has to be periodically executed, but other components will be executed on
demand, i.e., after data reception. Additionally, it is also necessary to indicate if the service unit
requires additional initialization or finalization actions, and if its execution depends on the result of
previous executions (stateful component).

Application components cooperate by exchanging all the data necessary to provide their service,
i.e., by connecting the input parameters of a component with the output parameters of its predecessors.
With this purpose, components are provided with an input port (InputPort concept) and/or an output
port (OutputPort concept), linked through connectors that collect the exchanged data (DataConnector
concept). Thus, ports encapsulate the interactions with the service unit and with other components.

More precisely, the input port is in charge of receiving data from predecessors, providing the
service unit with the necessary input parameters. Similarly, the output port collects the output
parameters resulting from the service unit execution, delivering them to the follower components.
Every input parameter received by an input port through a data connector has a peer connection
with the corresponding output parameter sent by an output port through it. It is important to remark
that software developers have to check that both data-types are compatible in order to set these
connections (DataConnection concept). The CheckHRTrend component depicted in Figure 2 has an
input port to receive its inputs through the incoming data connector whose source is the Acquisition
component, as it is illustrated in Figure 3. Similarly, it has an output port to send part of the provided
output parameters to a subsequent component, through an outgoing data connector whose target
is the Warning component. Data connections are established between the output parameters of
the Acquisition component and the input parameters of the CheckHRTrend component, as well
as between the input parameters of the Warning component and the output parameters of the
CheckHRTrend component.

Sensors 2015, 15, page–page

9

Application components are also characterized by the timing properties and configuration

parameters (R3). For example, a periodic pulse rate monitoring means that the component in charge

of the sensor reading has to be periodically executed, but other components will be executed on

demand, i.e., after data reception. Additionally, it is also necessary to indicate if the service unit

requires additional initialization or finalization actions, and if its execution depends on the result of

previous executions (stateful component).

Application components cooperate by exchanging all the data necessary to provide their service, i.e.,

by connecting the input parameters of a component with the output parameters of its predecessors.

With this purpose, components are provided with an input port (InputPort concept) and/or an

output port (OutputPort concept), linked through connectors that collect the exchanged data

(DataConnector concept). Thus, ports encapsulate the interactions with the service unit and with

other components.

More precisely, the input port is in charge of receiving data from predecessors, providing the

service unit with the necessary input parameters. Similarly, the output port collects the output

parameters resulting from the service unit execution, delivering them to the follower components.

Every input parameter received by an input port through a data connector has a peer connection

with the corresponding output parameter sent by an output port through it. It is important to

remark that software developers have to check that both data-types are compatible in order to set

these connections (DataConnection concept). The CheckHRTrend component depicted in Figure 2 has

an input port to receive its inputs through the incoming data connector whose source is the

Acquisition component, as it is illustrated in Figure 3. Similarly, it has an output port to send part of

the provided output parameters to a subsequent component, through an outgoing data connector

whose target is the Warning component. Data connections are established between the output

parameters of the Acquisition component and the input parameters of the CheckHRTrend

component, as well as between the input parameters of the Warning component and the output

parameters of the CheckHRTrend component.

Figure 3. Definition of the application for heart rate monitoring.

Cooperation among components can be leaded by certain logic, which implies that interface

compatibility must be considered from a global point of view. In particular, two different output

logic types have been identified (logic property related to the OutputPort concept): Default and

Customized. The Default logic implies that the outputs of the service unit are always sent to all

Pulse

TimeStamp

Acquisition

Pulse

TimeStamp

Storage

CheckHRTrend

Pulse

TimeStamp

Pulse

TimeStamp

isOut

Warning

Pulse

TimeStamp

OutOfRange
Data Logic

CheckHRTrend

isOut

Warning

Event Logic

CheckHRTrend

isOut

OutOfRange

Figure 3. Definition of the application for heart rate monitoring.

Cooperation among components can be leaded by certain logic, which implies that interface
compatibility must be considered from a global point of view. In particular, two different output logic
types have been identified (logic property related to the OutputPort concept): Default and Customized.
The Default logic implies that the outputs of the service unit are always sent to all followers. In the

31947

Sensors 2015, 15, 31939–31964

example of Figure 3, the acquired pulse values are always sent to be stored (Storage component) and
to be analyzed (CheckHRTrend component).

In order to take into account other possible cases, for example when data are delivered under a
condition, the customized logic has been defined. This logic is represented by the DataLogic concept
that is expressed by means of a UML activity diagram associated to the output port. The ‘Initial Node’
corresponds to the current component. “Control flows” are based on expressions containing output
parameters of the component. And every “Activity Final Node” refers to a subsequent component.
In the example presented in Figure 3, when heart rate tendency is abnormal, medical staff is warned
through the Warning component. This logic is depicted in the “Data Logic” activity diagram attached
to the output port of the CheckHRTrend component.

All the concepts introduced up to now allow expressing the R1, R2 and R3 requirements. On the
one hand, they enable the definition of health monitoring customized to patients with the associated
timing properties. On the other hand, combining measurements and processing is met as applications
are decomposed in components that can be executed in different nodes.

In order to consider the adaptability needs derived from relevant context changes (R4 requirement),
the proposed software view extends the user view founded on the idea of the ECA rules. It provides
mechanisms for defining how to detect a relevant context change and how to react to it, following
the specifications of medical professionals. The detection of context changes is part of the processing
(service unit) a component performs, giving the result in any of its output parameters. Thus, the
component has an event port (EventPort concept) with an activity diagram associated, represented by
the EventLogic concept. This activity diagram is similar to the one for data logic, but in this case the
“Activity Final Node” represents the event to trigger when a context change is detected. In Figure 3,
there is an “Event Logic” diagram associated to the event port of the CheckHRTrend component. It
represents that a risky trend of the heart rate triggers the OutOfRange event.

The Action concept that represents the actions triggered by events has been also extended. In
the Create action, some of the new application components can be started with an initial execution
state which is obtained from the execution state of a component of the current application (stateInfo
property). In the Modifiy action the new timing properties of the application have to be indicated.
Note that some of these actions must be executed following a concrete order (sequence property)
whereas others can be executed as decided by the middleware.

4.3. Meta-Model

All the concepts described in the previous sections, as well as the relationships and restrictions
among, them are presented in Figure 4. Concepts are depicted by means of rectangles. Relationships
are classified into four groups: (1) composition (black diamond). For example, a scenario for a patient
is composed by a set of health monitoring applications; (2) extension (white arrow). For instance, the
Create action extends the abstract Action by adding new properties; and (3) dependency, to state that a
concept must be aware of another. For example, the logic for event triggering (EventLogic) is based on
the output parameters of the application component; and (4) association, to reference other concepts.
For instance, actions are associated to applications. Finally, restrictions are represented by means of
the multiplicity associated to the relationships among concepts.

31948

Sensors 2015, 15, 31939–31964
Sensors 2015, 15, page–page

11

Figure 4. Meta-model of the domain modeling approach for application specification.

5. MAS-RECON Middleware

This section presents the MAS-RECON middleware, a multi-agent based middleware in charge

of managing the execution of homecare applications for the elderly modeled in the previous section.

The domain modeling approach allows medical professionals to specify the functionality of these

applications and their adaptability needs to evolve to context changes. Therefore, the middleware

must provide mechanisms for implementing the functionality (meeting R1, R2, R3 requirements), by

managing the execution (synchronous and on demand) and communication of application

components. It must also provide flexibility mechanisms to enable the adaptation at runtime (R4

requirement). This is met through the event concept implementation, and to assure application

unaware availability in case of node failure (R5 requirement. In particular, the proposed availability

mechanism is based on a negotiation process among the nodes for finding the most suitable node to

hold a new instance of a failed component.

Taking all these demands into account, Figure 5 depicts the proposed middleware architecture

founded on the JADE framework. JADE is a software framework that facilitates the development of

interoperable intelligent multi-agent systems. The JADE framework has been extended with the new

modules depicted at the upper part of Figure 5 in order to meet the requirements identified in

User

View

Software

View

Concept

Composition

Extension

Dependency

Association

Figure 4. Meta-model of the domain modeling approach for application specification.

5. MAS-RECON Middleware

This section presents the MAS-RECON middleware, a multi-agent based middleware in charge
of managing the execution of homecare applications for the elderly modeled in the previous section.
The domain modeling approach allows medical professionals to specify the functionality of these
applications and their adaptability needs to evolve to context changes. Therefore, the middleware
must provide mechanisms for implementing the functionality (meeting R1, R2, R3 requirements), by
managing the execution (synchronous and on demand) and communication of application components.
It must also provide flexibility mechanisms to enable the adaptation at runtime (R4 requirement). This
is met through the event concept implementation, and to assure application unaware availability in
case of node failure (R5 requirement. In particular, the proposed availability mechanism is based on a
negotiation process among the nodes for finding the most suitable node to hold a new instance of a
failed component.

31949

Sensors 2015, 15, 31939–31964

Taking all these demands into account, Figure 5 depicts the proposed middleware architecture
founded on the JADE framework. JADE is a software framework that facilitates the development
of interoperable intelligent multi-agent systems. The JADE framework has been extended with the
new modules depicted at the upper part of Figure 5 in order to meet the requirements identified in
Section 3. (1) a Middleware Manager (MM) which is the main system orchestrator; (2) an Application
Manager (AM) module per application, in charge of managing the life-cycle of its components as well
as their execution state; (3) a Node Agent (NA) module per node that provides runtime information
about the node that is useful for availability support; (4) an Event Manager (EM) module per event
that manages all its related actions. Each middleware module is implemented by an agent running in
the multi-agent system.

Sensors 2015, 15, page–page

12

Section 3. (1) a Middleware Manager (MM) which is the main system orchestrator; (2) an Application

Manager (AM) module per application, in charge of managing the life-cycle of its components as

well as their execution state; (3) a Node Agent (NA) module per node that provides runtime

information about the node that is useful for availability support; (4) an Event Manager (EM)

module per event that manages all its related actions. Each middleware module is implemented by

an agent running in the multi-agent system.

Figure 5. Architecture of the multi-agent based middleware.

5.1. Functional and Timing Requirements (R1, R2 and R3)

The JADE framework is a FIPA compliant agent framework fully developed in the Java

programming language. The FIPA foundation promotes agent-based technology and the

interoperability of the FIPA standard with other technologies. A FIPA compliant infrastructure must

support agent management by means of the following modules (see bottom part of Figure 5): the

Directory Facilitator (DF), the Agent Management System (AMS), and the Agent Communication

Channel (ACC). According to the FIPA specification, there must be at least one DF agent in the

platform, which supplies the yellow pages where agents can register offered services or look for

required services. The AMS manages the agent creation, removal and migration. The ACC supports

interoperability within and across different platforms. Finally, the so-called Internal Platform

Message Transport (IPMT) provides a message routing service for agents on a particular platform.

The domain modeling approach allows distribution as applications are defined as sets of

interconnected components that comprise the provided service, the logic to connect them and the

logic for event triggering. In this context, the underlying JADE framework allows fulfilling the R2

requirement (distributed and heterogeneous environments) as every component instance is an agent

running on the system and agents are mobile in nature. Additionally, as Java is platform

independent and JADE can run even in embedded devices, the proposed middleware supports

different types of nodes with different capabilities, from embedded devices such as mobile phones

and sensors to those with high processing capacities.

Additionally, as these distributed agents cooperate by exchanging messages, three FIPA

compliant ontologies have been defined in order to support communications among agents: (1) Data

ontology for message exchange containing the data necessary to provide a medical service or

environment supervision, such as sensor values and processing results; (2) Command ontology for

control commands that allow agents or technicians interact with the middleware modules and vice

versa; (3) State ontology for updating the execution state of an agent (value of relevant variables).

The MM module manages information about the whole system which is collected in the so-called

System Repository. The hierarchical structure of this repository is presented in Figure 6. It contains

R4

Adaptability

Agent Communication Channel (ACC) local cache of

agent addresses

Directory Facilitator

(DF)

Agent Management

System (AMS)
R2

Middleware

Manager

System

Repository

AM EM NA

Event

Manager

Event runtime

information

Event

Manager

Event runtime

information

Event

Manager

Event runtime

information

Node Agent

Node runtime

information

Node Agent

Node runtime

information

Node Agent

Node runtime

information

Application

Manager

Application

runtime

information

Application

Manager

Application

runtime

information

Application

Manager

Application

runtime

information

Distributed and

Heterogeneous

Environments

R1

Personalized sensing

and processing

R5

Application

unaware availability

JADE

Extension

R3

Activation and

execution types

Figure 5. Architecture of the multi-agent based middleware.

5.1. Functional and Timing Requirements (R1, R2 and R3)

The JADE framework is a FIPA compliant agent framework fully developed in the Java
programming language. The FIPA foundation promotes agent-based technology and the
interoperability of the FIPA standard with other technologies. A FIPA compliant infrastructure
must support agent management by means of the following modules (see bottom part of Figure 5):
the Directory Facilitator (DF), the Agent Management System (AMS), and the Agent Communication
Channel (ACC). According to the FIPA specification, there must be at least one DF agent in the platform,
which supplies the yellow pages where agents can register offered services or look for required services.
The AMS manages the agent creation, removal and migration. The ACC supports interoperability
within and across different platforms. Finally, the so-called Internal Platform Message Transport
(IPMT) provides a message routing service for agents on a particular platform.

The domain modeling approach allows distribution as applications are defined as sets of
interconnected components that comprise the provided service, the logic to connect them and the
logic for event triggering. In this context, the underlying JADE framework allows fulfilling the R2
requirement (distributed and heterogeneous environments) as every component instance is an agent
running on the system and agents are mobile in nature. Additionally, as Java is platform independent
and JADE can run even in embedded devices, the proposed middleware supports different types of
nodes with different capabilities, from embedded devices such as mobile phones and sensors to those
with high processing capacities.

Additionally, as these distributed agents cooperate by exchanging messages, three FIPA compliant
ontologies have been defined in order to support communications among agents: (1) Data ontology
for message exchange containing the data necessary to provide a medical service or environment

31950

Sensors 2015, 15, 31939–31964

supervision, such as sensor values and processing results; (2) Command ontology for control
commands that allow agents or technicians interact with the middleware modules and vice versa;
(3) State ontology for updating the execution state of an agent (value of relevant variables).

The MM module manages information about the whole system which is collected in the so-called
System Repository. The hierarchical structure of this repository is presented in Figure 6. It contains
runtime information about the running applications, the triggered events and booted nodes. This part
of the repository is distributed throughout the corresponding middleware modules. It also contains
design information including the physical nodes and the data coming from the software view.

Physical nodes are the hardware devices where the instances of application components run. This
includes access to sensors, actuators and processing units. Every node contains an instance of the NA
module which provides physical information (core number, storage and memory capacity, network
speed, CPU score and platform) and runtime information (CPU usage, free memory) about the node.
A NA registers itself automatically at boot time, providing the MM with its resource capabilities
(highlighted in yellow at Figure 6). They also perform the negotiation process when it is required by
the AM.

Sensors 2015, 15, page–page

13

runtime information about the running applications, the triggered events and booted nodes. This part

of the repository is distributed throughout the corresponding middleware modules. It also contains

design information including the physical nodes and the data coming from the software view.

Physical nodes are the hardware devices where the instances of application components run.

This includes access to sensors, actuators and processing units. Every node contains an instance of

the NA module which provides physical information (core number, storage and memory capacity,

network speed, CPU score and platform) and runtime information (CPU usage, free memory) about

the node. A NA registers itself automatically at boot time, providing the MM with its resource

capabilities (highlighted in yellow at Figure 6). They also perform the negotiation process when it is

required by the AM.

Figure 6. Structure of the System Repository at the Middleware Manager (MM) module.

Software developers are the responsible for registering the information related to the

application itself: the system, the scenarios, the applications that belong to each scenario and their

components. Events and the actions to be performed have to be also registered. Two types of events

have been considered: internal events (InternalEvent) and propagated events (PropagatedEvent).

Internal events belong to a scenario, and their actions refer to applications of the same scenario:

Event concept in Figure 4 and the events received by the scenario and that have been propagated by

other ones (RxScnEvent concept in Figure 4). In the middleware, the events propagated among

scenarios (TxScnEvent concept in Figure 4) are composed by the set of internal events associated. For

example, in the nursing home system depicted by Figure 1, the FireTx event is a propagated event,

whereas OutOfRange, Relaxed, FireRx_P1, FireRx_P2 and FireRx_P3 are internal events.

Additionally, the structure of the System Repository takes into account that a component can be

implemented in several ways (CompImplementation). Note that it is also possible to restrict the

nodes where the instance of a component implementation, component instance or agent from now

on, can be executed (constraint). For instance, the software developer may use different platforms or

libraries, restricting the available nodes to execute them The need of a concrete sensor only

accessible from a node is another example of constraint. This way a task of the user view is linked to

a specific node, through a component of the software view. It is important to remark that when

adding a new node to the system new component constraints should be registered, if needed.

Moreover, the skeleton code of these component instances has been fixed in order to match the R1

(personalized sensing and processing) and R4 (application unaware availability) requirements.

More precisely, every component instance must implement the FSM represented in the left part of

Figure 7, having the following states:

System Repository

Runtime

Node

Design

System

Application

Component

CompImplementation

Scenario

Action

InternalEvent

PropagatedEvent

constraint target

• platform

• coreNumber

• memory

• network

• CPUScore

• storage

• platform

• classFile

Application Node Event

• negotiation

criteria

Figure 6. Structure of the System Repository at the Middleware Manager (MM) module.

Software developers are the responsible for registering the information related to the application
itself: the system, the scenarios, the applications that belong to each scenario and their components.
Events and the actions to be performed have to be also registered. Two types of events have been
considered: internal events (InternalEvent) and propagated events (PropagatedEvent). Internal
events belong to a scenario, and their actions refer to applications of the same scenario: Event
concept in Figure 4 and the events received by the scenario and that have been propagated by other
ones (RxScnEvent concept in Figure 4). In the middleware, the events propagated among scenarios
(TxScnEvent concept in Figure 4) are composed by the set of internal events associated. For example,
in the nursing home system depicted by Figure 1, the FireTx event is a propagated event, whereas
OutOfRange, Relaxed, FireRx_P1, FireRx_P2 and FireRx_P3 are internal events.

Additionally, the structure of the System Repository takes into account that a component can
be implemented in several ways (CompImplementation). Note that it is also possible to restrict the
nodes where the instance of a component implementation, component instance or agent from now
on, can be executed (constraint). For instance, the software developer may use different platforms or
libraries, restricting the available nodes to execute them The need of a concrete sensor only accessible
from a node is another example of constraint. This way a task of the user view is linked to a specific

31951

Sensors 2015, 15, 31939–31964

node, through a component of the software view. It is important to remark that when adding a new
node to the system new component constraints should be registered, if needed. Moreover, the skeleton
code of these component instances has been fixed in order to match the R1 (personalized sensing and
processing) and R4 (application unaware availability) requirements. More precisely, every component
instance must implement the FSM represented in the left part of Figure 7, having the following states:Sensors 2015, 15, page–page

14

Figure 7. Finite State Machine (FSM) and its Java implementation.

 Boot: during this FSM state, the agent waits until its start conditions are met. This allows

executing the required initialization actions and synchronized start of agents. When the start

conditions are met, the agent switches to the Running FSM state.

 Running: in this FSM state, the agent is offering its functionality related to a medical service.

Besides, every cycle the execution state is stored at the corresponding AM, for availability

purposes.

 Negotiation/Paused: when a component failure is detected, the AM forces the agent to this FSM

state .

 End: during this FSM state the agent finishes its execution which includes the required

finalization actions.

The skeleton code derived from this FSM and implemented in Java is also depicted in the right

part of Figure 7. Additionally, application components are provided with a control interface through

which they receive control commands. The software developer has to customize this skeleton code

for every application component founded on the software view of the modeling approach. In

particular, if the component requires initialization actions a new Java class that extends the Boot

FSM state by including all the needed actions has to be implemented. For example, the pulse

oximeter sensor used in the demonstrator must be initialized. Similarly, if the component requires

finalization actions a new Java class that extends the End FSM state with these actions has to be

implemented. The Running FSM state has to be always customized in order to include the medical

service offered, the data logic and the event triggering logic. Therefore, another Java class has to be

developed. With this purpose, two templates have been defined according to the activation mode of

the agents (R3 requirement):

(1) Periodic: this template is based on the TickerBehaviour class of JADE. It is used for components

that execute the service periodically. Therefore, every cycle they run their functionality, send

results, if any, update the execution state and delay until the next activation.

(2) On demand: this template is based on the CyclicBehaviour class of JADE. It is used for

components that execute the service after the reception of a data message. Therefore, they wait

for all incoming messages, run the functionality, send results, if any, and update the execution

state.

FSM

Negotiation

/ Paused

BootReg

End Running

Figure 7. Finite State Machine (FSM) and its Java implementation.

‚ Boot: during this FSM state, the agent waits until its start conditions are met. This allows executing
the required initialization actions and synchronized start of agents. When the start conditions are
met, the agent switches to the Running FSM state.

‚ Running: in this FSM state, the agent is offering its functionality related to a medical
service. Besides, every cycle the execution state is stored at the corresponding AM, for
availability purposes.

‚ Negotiation/Paused: when a component failure is detected, the AM forces the agent to this FSM state.
‚ End: during this FSM state the agent finishes its execution which includes the required

finalization actions.

The skeleton code derived from this FSM and implemented in Java is also depicted in the right
part of Figure 7. Additionally, application components are provided with a control interface through
which they receive control commands. The software developer has to customize this skeleton code for
every application component founded on the software view of the modeling approach. In particular,
if the component requires initialization actions a new Java class that extends the Boot FSM state by
including all the needed actions has to be implemented. For example, the pulse oximeter sensor used
in the demonstrator must be initialized. Similarly, if the component requires finalization actions a new
Java class that extends the End FSM state with these actions has to be implemented. The Running FSM
state has to be always customized in order to include the medical service offered, the data logic and
the event triggering logic. Therefore, another Java class has to be developed. With this purpose, two
templates have been defined according to the activation mode of the agents (R3 requirement):

(1) Periodic: this template is based on the TickerBehaviour class of JADE. It is used for components
that execute the service periodically. Therefore, every cycle they run their functionality, send
results, if any, update the execution state and delay until the next activation.

(2) On demand: this template is based on the CyclicBehaviour class of JADE. It is used for components
that execute the service after the reception of a data message. Therefore, they wait for all incoming
messages, run the functionality, send results, if any, and update the execution state.

31952

Sensors 2015, 15, 31939–31964

For example, in UC2 depicted in Figure 3, the component in charge of the pulse reading is
executed every 10 min (periodic), but the component in charge of warning the medical staff is executed
just after receiving input parameters (on demand).

Sensors 2015, 15, page–page

15

For example, in UC2 depicted in Figure 3, the component in charge of the pulse reading is

executed every 10 min (periodic), but the component in charge of warning the medical staff is

executed just after receiving input parameters (on demand).

Figure 8. Customization process of the Running FSM state for the CheckRelaxed component.

As an example, Figure 8 presents the customization of the Running FSM state related to the

CheckRelaxed component. This component belongs to the Check Relaxed application (UC4, see

Figure 1). It receives two input parameters, a pulse value (Pulse) and the measurement instant

(TimeStamp). It analyzes the new value together with several previous ones in order to determine if

the patient is relaxed or not. Therefore, it provides four output parameters: the average pulse

(avPulse), the last measurement instant (TimeStamp), a flag for patient relaxation (isRelaxed), and a

flag that indicates if the waiting time has been exceeded (isTimeOut). When the patient relaxes it

triggers the Relaxed event (event logic). When the waiting time is over, medical staff is warned (data

logic). In summary, the customization process of the Running FSM state comprises the

following steps:

(1) If the component has an Input Port, code for data reception has to be included. Every Data

Connector of the modeling approach that ends in the input port is related to a data message

received from a previous component. The required input parameters have to be extracted from

these messages according to the input logic type defined and the Data Connections established.

(2) The code for service unit execution is always added. It depends on how the software developer

has implemented this functionality.

(3) If the component has an Output Port, code for data transmission has to be inserted. Every Data

Connector of the modeling approach that starts in the output port is related to a data message

sent to a subsequent component. The output parameters obtained as a result of the service unit

execution have to be grouped according to the Data Connections established, composing all the

necessary output messages. Additionally, if the output part has a Data Logic attached, the

associated activity diagram has to be parsed in order to write the necessary conditional

statements for data delivery.

Figure 8. Customization process of the Running FSM state for the CheckRelaxed component.

As an example, Figure 8 presents the customization of the Running FSM state related to
the CheckRelaxed component. This component belongs to the Check Relaxed application (UC4,
see Figure 1). It receives two input parameters, a pulse value (Pulse) and the measurement instant
(TimeStamp). It analyzes the new value together with several previous ones in order to determine if the
patient is relaxed or not. Therefore, it provides four output parameters: the average pulse (avPulse),
the last measurement instant (TimeStamp), a flag for patient relaxation (isRelaxed), and a flag that
indicates if the waiting time has been exceeded (isTimeOut). When the patient relaxes it triggers
the Relaxed event (event logic). When the waiting time is over, medical staff is warned (data logic).
In summary, the customization process of the Running FSM state comprises the following steps:

(1) If the component has an Input Port, code for data reception has to be included. Every Data
Connector of the modeling approach that ends in the input port is related to a data message
received from a previous component. The required input parameters have to be extracted from
these messages according to the input logic type defined and the Data Connections established.

(2) The code for service unit execution is always added. It depends on how the software developer
has implemented this functionality.

(3) If the component has an Output Port, code for data transmission has to be inserted. Every Data
Connector of the modeling approach that starts in the output port is related to a data message
sent to a subsequent component. The output parameters obtained as a result of the service unit
execution have to be grouped according to the Data Connections established, composing all
the necessary output messages. Additionally, if the output part has a Data Logic attached, the

31953

Sensors 2015, 15, 31939–31964

associated activity diagram has to be parsed in order to write the necessary conditional statements
for data delivery.

(4) If the component has an Event Port, the code for event triggering has to be added. Similarly, the
associated activity diagram has to be parsed to include the conditions that have to be filled to
trigger every event. If the event is propagated through scenarios the event included in this code
is the corresponding TxScnEvent.

(5) If it is a stateful component, the code for updating its execution state at the corresponding AM
has to be included.

At runtime, the execution of the instances of these developed components is managed by the AM
module. The MM deploys as many AM instances as launched applications. Each AM is in charge
of supervising the execution of the components associated to an application (R3 requirement). This
includes several tasks:

‚ Components startup, which consists of selecting the appropriate node to hold the component
instance, by means of a negotiation process.

‚ Management of the execution state related to stateful components.
‚ Management of the component life-cycle. It is aware of the current FSM state of every component

instance, and it may force it to pass to a concrete FSM state, if necessary.
‚ Management of component failure detection, due to a node failure, for example.

5.2. Adaptability (R4)

In order to tackle the adaptability needs (R4 requirement), the events registered in the System
Repository are supervised by an EM module. The MM deploys an EM instance for each event. It
performs the actions established for the event and it supervises they follow the required order, if
necessary. Note that the interaction between a component instance and the EM is through method
invocations at the source code. For instance, Figure 9 presents how the EM related to the Relaxed event
(depicted in Figure 1) supervises its associated actions. When the checkRelaxed001 component instance
detects that the patient is relaxed, it triggers the Relaxed event. This event triggers two actions: one for
launching the blood pressure monitoring and the other one for stopping the pulse rate monitoring,
both through the corresponding AM. As an example, the figure shows how the AM of Blood Pressure
application (AM_BloodPressure) starts one of its component instances (bAcquisition002), and how the
AM of the Check Relaxed application stops one of its component instances (checkRelaxed005).

Sensors 2015, 15, page–page

16

(4) If the component has an Event Port, the code for event triggering has to be added. Similarly, the

associated activity diagram has to be parsed to include the conditions that have to be filled to

trigger every event. If the event is propagated through scenarios the event included in this code

is the corresponding TxScnEvent.

(5) If it is a stateful component, the code for updating its execution state at the corresponding AM

has to be included.

At runtime, the execution of the instances of these developed components is managed by the

AM module. The MM deploys as many AM instances as launched applications. Each AM is in

charge of supervising the execution of the components associated to an application (R3

requirement). This includes several tasks:

 Components startup, which consists of selecting the appropriate node to hold the component

instance, by means of a negotiation process.

 Management of the execution state related to stateful components.

 Management of the component life-cycle. It is aware of the current FSM state of every

component instance, and it may force it to pass to a concrete FSM state, if necessary.

 Management of component failure detection, due to a node failure, for example.

5.2. Adaptability (R4)

In order to tackle the adaptability needs (R4 requirement), the events registered in the System

Repository are supervised by an EM module. The MM deploys an EM instance for each event. It

performs the actions established for the event and it supervises they follow the required order, if

necessary. Note that the interaction between a component instance and the EM is through method

invocations at the source code. For instance, Figure 9 presents how the EM related to the Relaxed

event (depicted in Figure 1) supervises its associated actions. When the checkRelaxed001 component

instance detects that the patient is relaxed, it triggers the Relaxed event. This event triggers two

actions: one for launching the blood pressure monitoring and the other one for stopping the pulse

rate monitoring, both through the corresponding AM. As an example, the figure shows how the AM

of Blood Pressure application (AM_BloodPressure) starts one of its component instances

(bAcquisition002), and how the AM of the Check Relaxed application stops one of its component

instances (checkRelaxed005).

Figure 9. Sequence diagram related to the Relaxed internal event.

Similarly, Figure 10 describes how propagated events are attended. In this case, the

fireDetector001 component instance detects a fire and thus, it triggers the Fire event. This event is

generated in the Environment scenario and propagated to the other three scenarios. As a result,

three internal events are triggered, Fire_Rx_P1, Fire_Rx_P2 and Fire_Rx_P3 (see Figure 1), each

triggering a Create action for launching the emergency monitoring of the corresponding patient. As

it is illustrated in the figure, applications are started through the corresponding AM as in Figure 9.

checkRelaxed001 bpAcquisition002 checkRelaxed005EM_Relaxed AM_BloodPressure AM_CheckRelaxed

Figure 9. Sequence diagram related to the Relaxed internal event.

Similarly, Figure 10 describes how propagated events are attended. In this case, the fireDetector001
component instance detects a fire and thus, it triggers the Fire event. This event is generated in the
Environment scenario and propagated to the other three scenarios. As a result, three internal events

31954

Sensors 2015, 15, 31939–31964

are triggered, Fire_Rx_P1, Fire_Rx_P2 and Fire_Rx_P3 (see Figure 1), each triggering a Create action
for launching the emergency monitoring of the corresponding patient. As it is illustrated in the figure,
applications are started through the corresponding AM as in Figure 9.Sensors 2015, 15, page–page

17

Figure 10. Sequence diagram related to the Fire propagated event.

The benefits of the event manager module are twofold. On the one hand, it optimizes the use of

system resources, as upon an event triggering an invocation to the middleware is issued in order to

create/destroy/modify applications which in the end implies allocating/de-allocating the

corresponding resources. As a result, resources are allocated just when needed. On the other hand,

the domain modeling approach provides application independency within scenarios as they are

only related through events. Scenarios independence is also supported as they can be connected

through propagated and/or received events. At runtime, the EM module implements this

independence by executing the actions related to the triggered event. As a result, adding new

monitoring applications or adding a new scenario (a new patient) to an already running system does

not modify the implementation of the system. Instead, the system extension implies registering the

new applications/scenarios and the corresponding events, if necessary, as well as the

implementation of the new components.

5.3. Application Unaware Availability for Stateful Applications (R5)

AMs and NAs are the main participants of the middleware support for application unaware

availability (R5 requirement). As commented above, the proposed availability mechanism is based

on finding the most suitable node to hold a new instance of a failed component. Therefore, on the

one hand it is necessary to detect component failures, and on the other hand it is necessary to recover

it. As an example, Figure 11 illustrates the recovery of a stateful component. In particular, it is the

CheckRelaxed component of the Check Relaxed application (it monitors pulse rate, UC4), whose

previous component is the so-called CheckRange.

Figure 11. Application unaware availability: failure detection and stateful recovery.

Component failures can be detected in two ways: when the sender of a data message detects

that it has not been possible to deliver it, or when a periodic component exceeds the period to refresh

its execution state in the AM. In both cases the corresponding AM is notified and the failed

component instance is labeled as faulty. This avoids attending to the same failure more than once.

After, the AM starts the recovery process. In the example of Figure 11, the checkRange003

fireDetector001 EM_Fire EM_Fire_Rx_P2 EM_Fire_Rx_P3EM_Fire_Rx_P1 AM_EmergMon_P1 AM_EmergMon_P2 AM_EmergMon_P3

checkRange003 checkRelaxed001 checkRelaxed002AM_CheckRelaxed MM Nodes

Figure 10. Sequence diagram related to the Fire propagated event.

The benefits of the event manager module are twofold. On the one hand, it optimizes the
use of system resources, as upon an event triggering an invocation to the middleware is issued
in order to create/destroy/modify applications which in the end implies allocating/de-allocating
the corresponding resources. As a result, resources are allocated just when needed. On the
other hand, the domain modeling approach provides application independency within scenarios
as they are only related through events. Scenarios independence is also supported as they can be
connected through propagated and/or received events. At runtime, the EM module implements
this independence by executing the actions related to the triggered event. As a result, adding new
monitoring applications or adding a new scenario (a new patient) to an already running system does
not modify the implementation of the system. Instead, the system extension implies registering the
new applications/scenarios and the corresponding events, if necessary, as well as the implementation
of the new components.

5.3. Application Unaware Availability for Stateful Applications (R5)

AMs and NAs are the main participants of the middleware support for application unaware
availability (R5 requirement). As commented above, the proposed availability mechanism is based
on finding the most suitable node to hold a new instance of a failed component. Therefore, on the
one hand it is necessary to detect component failures, and on the other hand it is necessary to recover
it. As an example, Figure 11 illustrates the recovery of a stateful component. In particular, it is the
CheckRelaxed component of the Check Relaxed application (it monitors pulse rate, UC4), whose
previous component is the so-called CheckRange.

Sensors 2015, 15, page–page

17

Figure 10. Sequence diagram related to the Fire propagated event.

The benefits of the event manager module are twofold. On the one hand, it optimizes the use of

system resources, as upon an event triggering an invocation to the middleware is issued in order to

create/destroy/modify applications which in the end implies allocating/de-allocating the

corresponding resources. As a result, resources are allocated just when needed. On the other hand,

the domain modeling approach provides application independency within scenarios as they are

only related through events. Scenarios independence is also supported as they can be connected

through propagated and/or received events. At runtime, the EM module implements this

independence by executing the actions related to the triggered event. As a result, adding new

monitoring applications or adding a new scenario (a new patient) to an already running system does

not modify the implementation of the system. Instead, the system extension implies registering the

new applications/scenarios and the corresponding events, if necessary, as well as the

implementation of the new components.

5.3. Application Unaware Availability for Stateful Applications (R5)

AMs and NAs are the main participants of the middleware support for application unaware

availability (R5 requirement). As commented above, the proposed availability mechanism is based

on finding the most suitable node to hold a new instance of a failed component. Therefore, on the

one hand it is necessary to detect component failures, and on the other hand it is necessary to recover

it. As an example, Figure 11 illustrates the recovery of a stateful component. In particular, it is the

CheckRelaxed component of the Check Relaxed application (it monitors pulse rate, UC4), whose

previous component is the so-called CheckRange.

Figure 11. Application unaware availability: failure detection and stateful recovery.

Component failures can be detected in two ways: when the sender of a data message detects

that it has not been possible to deliver it, or when a periodic component exceeds the period to refresh

its execution state in the AM. In both cases the corresponding AM is notified and the failed

component instance is labeled as faulty. This avoids attending to the same failure more than once.

After, the AM starts the recovery process. In the example of Figure 11, the checkRange003

fireDetector001 EM_Fire EM_Fire_Rx_P2 EM_Fire_Rx_P3EM_Fire_Rx_P1 AM_EmergMon_P1 AM_EmergMon_P2 AM_EmergMon_P3

checkRange003 checkRelaxed001 checkRelaxed002AM_CheckRelaxed MM Nodes

Figure 11. Application unaware availability: failure detection and stateful recovery.

31955

Sensors 2015, 15, 31939–31964

Component failures can be detected in two ways: when the sender of a data message detects that
it has not been possible to deliver it, or when a periodic component exceeds the period to refresh its
execution state in the AM. In both cases the corresponding AM is notified and the failed component
instance is labeled as faulty. This avoids attending to the same failure more than once. After, the
AM starts the recovery process. In the example of Figure 11, the checkRange003 component instance
detects a component failure as the data message sent to the checkRelaxed001 component instance has
not been delivered.

A component recovery starts with a negotiation among all the NAs related to nodes that can hold
a new instance. These nodes are selected taking into account the node constraints and the available
implementations of the component, and they negotiate according to the negotiation criteria established
during the registration. The negotiation criteria can be, for example, the highest free memory or the
lowest processor usage. Once there is a winner NA, the AM finishes the negotiation process, and
deploys a new component instance on the winning node, initialized with the last execution state. In
the example, as a result of the negotiation process the checkRelaxed002 component instance is started
with the last execution state updated by the failed checRelaxed001 component instance.

6. Assessment

This section presents the feasibility of the proposed solution in order to cope with the demands
of homecare applications, through its feasibility to deal with the requirements identified. On the one
hand, the proposal design is validated by means of a homecare demonstrator. On the other hand,
its runtime performance is evaluated by means of a set of experimental tests. More precisely, these
tests aim at evaluating the adaptability and availability mechanisms offered by the MAS-RECON
middleware. Finally, the main benefits and limitations are highlighted.

6.1. Homecare Demonstrator

A homecare demonstrator that includes the proposed use cases has been implemented, namely,
the nursing home represented in Figure 1. Therefore, there are three residents: Patient 1 has no
serious health problems; Patient 2 suffers from high blood pressure, so s/he requires blood pressure
supervision four times a day; Patient 3 suffers from heart disease, so s/he is provided with continuous
heart rate monitoring (every 10 min). On the other hand, the building is equipped with a fire detection
system based on the temperature and CO2 concentration.

From the specification point of view, it is a system composed of four scenarios: three patients
and the environment. The Environment scenario consists of an application for fire detection that
triggers the Fire event, if detected. This event is propagated to the other three scenarios. Therefore,
all the patient scenarios receive a propagated event that launches a concrete application for health
monitoring in emergency situations (Emergency Monitoring). In the Patient 2 scenario, the Check
Relaxed application triggers the Relaxed event when the patient is relaxed, launching the blood
pressure monitoring (Blood Pressure application) and stopping itself. In the Patient 3 scenario, there is
an application for pulse rate monitoring.

The prototype demonstrator consists of biomedical and environmental sensors, and processing
units. For health monitoring purposes, the biometric shield for Arduino and Raspberry Pi, the so-called
e-Health Sensor Platform V2.0., was used [66] (see Figure 12). Every patient is provided with a health
sensor shield mounted over a Raspberry Pi. More precisely, it offers a body temperature sensor, a
pulsyoximeter (SPO2) for pulse rate, and a sphygmomanometer for blood pressure. The environment
supervision is performed through temperature and CO2 sensors mounted over a waspmote [67]. The
processing tasks can be executed in four PCs.

31956

Sensors 2015, 15, 31939–31964
Sensors 2015, 15, page–page

19

Figure 12. Infrastructure of the healthcare demonstrator: e-Health Sensor Platform V2.0., gas sensors

kit and processing units.

From the implementation and deployment point of view, all the application components have

been developed in Java programming language. There is a repository for recording information

about patients such as personal data (identifier, name, surname, age, sex…) and medical data

according to their health problems. For example, Patient 3 is characterized by her/his maximum

heart rate (HRmax), its resting heart rate (HRrest), and its normal range of body temperature.

Furthermore, it also stores the historic measures of patients. The patient repository has been

implemented by means of the native XML eXist database [68]. The MM, the AM instances and the

EM instances run in the same PC. Agents related to application components that manage biomedical

sensors are restricted to the corresponding Raspberry Pi. Finally, for availability purposes, agents

related to the other application components can be deployed in any of the four PCs.

Taking into account that the use cases illustrate all the requirements identified in Section 3, this

homecare demonstrator allows:

 Validation of the Domain Modeling Approach presented in Section 4 as every use case has been

designed and developed following it. Note that in this homecare demonstrator there are neither

real patients nor medical professionals involved.

 Assessing the middleware architecture design and the services it offers: adaptability to context

changes (event management), availability (failure detection and negotiation-based recovery),

stateful component management, and registration (system repository).

6.2. Runtime Performance

Runtime performance has been assessed regarding the two main goals of the paper:

adaptability and availability. In particular, adaptability is evaluated in terms of the reaction time to

adapt to a context change (a change on the health status or environment conditions) whereas

availability is assessed according to the recovery time under a failure.

Both parameters are tested by using similar experiments. The starting point is a very simple and

sequential application that captures a sensor value, processes it and shows the result. In both cases

the number of available nodes to hold component instances is incremented. For availability tests the

number of processing tasks is also increased, i.e., the number of components of the application.

However, for adaptability, the number of actions triggered by the event is increased. In order to

avoid that the different processing capacities of nodes interfere the analysis of the results, and taking

into account that in a real scenario there are many devices with limited resources, all the nodes in the

experiment are Raspberry Pi.

Regarding availability, Figure 13 shows the recovery time of the different tests. This time ranges

from a node failure to the recovery of all the affected component instances. As expected, the

Figure 12. Infrastructure of the healthcare demonstrator: e-Health Sensor Platform V2.0., gas sensors
kit and processing units.

From the implementation and deployment point of view, all the application components have
been developed in Java programming language. There is a repository for recording information about
patients such as personal data (identifier, name, surname, age, sex . . .) and medical data according to
their health problems. For example, Patient 3 is characterized by her/his maximum heart rate (HRmax),
its resting heart rate (HRrest), and its normal range of body temperature. Furthermore, it also stores the
historic measures of patients. The patient repository has been implemented by means of the native
XML eXist database [68]. The MM, the AM instances and the EM instances run in the same PC. Agents
related to application components that manage biomedical sensors are restricted to the corresponding
Raspberry Pi. Finally, for availability purposes, agents related to the other application components can
be deployed in any of the four PCs.

Taking into account that the use cases illustrate all the requirements identified in Section 3, this
homecare demonstrator allows:

‚ Validation of the Domain Modeling Approach presented in Section 4 as every use case has been
designed and developed following it. Note that in this homecare demonstrator there are neither
real patients nor medical professionals involved.

‚ Assessing the middleware architecture design and the services it offers: adaptability to context
changes (event management), availability (failure detection and negotiation-based recovery),
stateful component management, and registration (system repository).

6.2. Runtime Performance

Runtime performance has been assessed regarding the two main goals of the paper: adaptability
and availability. In particular, adaptability is evaluated in terms of the reaction time to adapt to a
context change (a change on the health status or environment conditions) whereas availability is
assessed according to the recovery time under a failure.

Both parameters are tested by using similar experiments. The starting point is a very simple
and sequential application that captures a sensor value, processes it and shows the result. In both
cases the number of available nodes to hold component instances is incremented. For availability tests
the number of processing tasks is also increased, i.e., the number of components of the application.
However, for adaptability, the number of actions triggered by the event is increased. In order to avoid
that the different processing capacities of nodes interfere the analysis of the results, and taking into

31957

Sensors 2015, 15, 31939–31964

account that in a real scenario there are many devices with limited resources, all the nodes in the
experiment are Raspberry Pi.

Regarding availability, Figure 13 shows the recovery time of the different tests. This time ranges
from a node failure to the recovery of all the affected component instances. As expected, the recovery
time increases with the number of nodes and components. In fact, the recovery time increases almost
proportionally to the number of nodes, as more nodes participate in the negotiation and due to the
low processing capacities of the Raspberry Pi, this handicaps the negotiation processes. Similarly,
recovery time also augments with the number of application components when more instances are
affected by the node failure. However, taking into account that the worst case is about 2 s and that the
most restrictive application evolves at 30 s (Check Relaxed application), the time delay is acceptable if
compared with the benefits achieved. Additionally, this worst case corresponds to applications whose
component instances can run in five different nodes, which is unusual as two available nodes are
commonly enough.

As far as adaptability is concerned, Figure 13 depicts the reaction time in milliseconds since
an event is triggered until all its associated actions have been performed. For simplicity, all the
actions triggered by the event are Create actions. Therefore, the resulting time includes the startup
of the applications. Again, as expected, the number of nodes and the number of actions increase the
reaction time.

Sensors 2015, 15, page–page

20

recovery time increases with the number of nodes and components. In fact, the recovery time

increases almost proportionally to the number of nodes, as more nodes participate in the negotiation

and due to the low processing capacities of the Raspberry Pi, this handicaps the negotiation

processes. Similarly, recovery time also augments with the number of application components when

more instances are affected by the node failure. However, taking into account that the worst case is

about 2 s and that the most restrictive application evolves at 30 s (Check Relaxed application), the

time delay is acceptable if compared with the benefits achieved. Additionally, this worst case

corresponds to applications whose component instances can run in five different nodes, which is

unusual as two available nodes are commonly enough.

As far as adaptability is concerned, Figure 13 depicts the reaction time in milliseconds since an

event is triggered until all its associated actions have been performed. For simplicity, all the actions

triggered by the event are Create actions. Therefore, the resulting time includes the startup of the

applications. Again, as expected, the number of nodes and the number of actions increase the

reaction time.

Figure 13. (a) Availability metrics: recovery time; (b) Adaptability metrics: reaction time.

In order to identify availability limitations another test has been performed in a PC. The same

application of eight components has been created twice: the first time under normal conditions of

CPU load, and the second time after significantly increment the CPU load (up to 80%). As a result,

the availability performance has been negatively affected. Figure 14 depicts the number of threads in

the node (every running agent is a thread). As it is observed, the start time for the same application

increases about a 28% because negotiations among nodes are slower. These metrics have been

captured by means of the VisualVM GPL software.

Figure 14. CPU load vs. application start time.

20

CPU load = 80%

14 seconds

18 seconds

Date (hh:mm:ss)

N
u

m
b

e
r
 o

f
th

r
e
a

d
s

10

0

30

40

50

60

70

20:46:00 20:46:15 20:46:30 20:46:45 20:47:00 20:47:15 20:47:30 20:47:45

Figure 13. (a) Availability metrics: recovery time; (b) Adaptability metrics: reaction time.

In order to identify availability limitations another test has been performed in a PC. The same
application of eight components has been created twice: the first time under normal conditions of
CPU load, and the second time after significantly increment the CPU load (up to 80%). As a result,
the availability performance has been negatively affected. Figure 14 depicts the number of threads in
the node (every running agent is a thread). As it is observed, the start time for the same application
increases about a 28% because negotiations among nodes are slower. These metrics have been captured
by means of the VisualVM GPL software.

Sensors 2015, 15, page–page

20

recovery time increases with the number of nodes and components. In fact, the recovery time

increases almost proportionally to the number of nodes, as more nodes participate in the negotiation

and due to the low processing capacities of the Raspberry Pi, this handicaps the negotiation

processes. Similarly, recovery time also augments with the number of application components when

more instances are affected by the node failure. However, taking into account that the worst case is

about 2 s and that the most restrictive application evolves at 30 s (Check Relaxed application), the

time delay is acceptable if compared with the benefits achieved. Additionally, this worst case

corresponds to applications whose component instances can run in five different nodes, which is

unusual as two available nodes are commonly enough.

As far as adaptability is concerned, Figure 13 depicts the reaction time in milliseconds since an

event is triggered until all its associated actions have been performed. For simplicity, all the actions

triggered by the event are Create actions. Therefore, the resulting time includes the startup of the

applications. Again, as expected, the number of nodes and the number of actions increase the

reaction time.

Figure 13. (a) Availability metrics: recovery time; (b) Adaptability metrics: reaction time.

In order to identify availability limitations another test has been performed in a PC. The same

application of eight components has been created twice: the first time under normal conditions of

CPU load, and the second time after significantly increment the CPU load (up to 80%). As a result,

the availability performance has been negatively affected. Figure 14 depicts the number of threads in

the node (every running agent is a thread). As it is observed, the start time for the same application

increases about a 28% because negotiations among nodes are slower. These metrics have been

captured by means of the VisualVM GPL software.

Figure 14. CPU load vs. application start time.

20

CPU load = 80%

14 seconds

18 seconds

Date (hh:mm:ss)

N
u

m
b

e
r
 o

f
th

r
e
a

d
s

10

0

30

40

50

60

70

20:46:00 20:46:15 20:46:30 20:46:45 20:47:00 20:47:15 20:47:30 20:47:45

Figure 14. CPU load vs. application start time.

31958

Sensors 2015, 15, 31939–31964Sensors 2015, 15, page–page

21

Figure 15. Resource usage in terms of memory usage. (a) without event management; (b) with event

management.

As it has been previously stated, resource optimization is one of the main benefits of the event

management. In this sense, resource consumption in terms of memory load has been analyzed by

means of an application (composed by 18 components) that, after detecting a relevant context

change, creates other five applications of 18 components. The component instances of these

applications are deployed in four nodes. Figure 15 compares two different tests (related to two of the

available nodes). In every graphic, the upper part represents the memory consumption, the orange

line refers to the Java Virtual Machine (JVM) heap whereas the blue line is related to the memory

used by the loaded objects (here, the JVM garbage collector activations to free memory are noticed).

The bottom part depicts the number of threads on the node:

(a) Without event management: The six applications are started from the beginning. When the first

application detects the context change, it sends a data message to the first component of the rest

applications in order to activate them. This implies that memory resources are allocated from

the start. As a result, in both nodes the amount of memory does not change after the start.

(b) With event management: the first application triggers an event that is managed by an EM module

that performs five Create actions. In this case, there is an initial amount of memory allocated, and

after the event triggering, the amount of allocated memory increases.

These metrics prove that events management improves resource usage, which is very useful

when resources are limited. However, it implies more reaction time as application components are

started after event triggering. More precisely, when there is no event management, reacting to an

a) Without Event Management

NODE 102

Date (hh:mm:ss)

M
e
m

o
r
y

 (
M

B
)

0

4

8

12

16

19:15:30 19:15:40 19:15:50 19:16:00 19:16:10

Date (hh:mm:ss)

N
u

m
b

e
r
 o

f
th

r
e
a

d
s

45

40

35

30

25

20

15

10

5

0
19:15:50 19:16:1019:16:0019:15:30 19:15:40

0

4

8

12

10

6

2

19:04:30 19:04:40 19:04:50 19:05:00 19:05:10 19:05:20 19:05:30 19:05:40

NODE 103

Date (hh:mm:ss)

M
e
m

o
r
y

 (
M

B
)

Date (hh:mm:ss)

N
u

m
b

e
r
 o

f
th

r
e
a

d
s

45

40

35

30

25

20

15

10

5

0

50

19:04:30 19:04:40 19:04:50 19:05:00 19:05:10 19:05:20 19:05:30 19:05:40
Date (hh:mm:ss)

b) With Event Management

Date (hh:mm:ss)

NODE 102

Date (hh:mm:ss)

M
e
m

o
r
y

 (
M

B
)

35

30

25

20

15

10

5

0
19:51:30 19:51:40 19:51:50 19:52:00 19:52:10 19:52:20 19:52:30 19:52:40

Date (hh:mm:ss)

N
u

m
b

e
r
 o

f
th

r
e
a

d
s

45

40

35

30

25

20

15

10

5

0
19:51:30 19:51:40 19:51:50 19:52:00 19:52:10 19:52:20 19:52:30 19:52:40

NODE 103

M
e
m

o
r
y

 (
M

B
)

25

20

15

10

5

0
19:51:30 19:51:40 19:51:50 19:52:00 19:52:10 19:52:20 19:52:30 19:52:40 19:51:20

N
u

m
b

e
r
 o

f
th

r
e
a

d
s

40

35

30

25

20

15

10

5

0

50

45

19:51:30 19:51:40 19:51:50 19:52:00 19:52:10 19:52:20 19:52:30 19:52:40 19:51:20

Figure 15. Resource usage in terms of memory usage. (a) without event management; (b) with
event management.

As it has been previously stated, resource optimization is one of the main benefits of the event
management. In this sense, resource consumption in terms of memory load has been analyzed by
means of an application (composed by 18 components) that, after detecting a relevant context change,
creates other five applications of 18 components. The component instances of these applications are
deployed in four nodes. Figure 15 compares two different tests (related to two of the available nodes).
In every graphic, the upper part represents the memory consumption, the orange line refers to the Java
Virtual Machine (JVM) heap whereas the blue line is related to the memory used by the loaded objects
(here, the JVM garbage collector activations to free memory are noticed). The bottom part depicts the
number of threads on the node:

(a) Without event management: The six applications are started from the beginning. When the first
application detects the context change, it sends a data message to the first component of the rest
applications in order to activate them. This implies that memory resources are allocated from the
start. As a result, in both nodes the amount of memory does not change after the start.

(b) With event management: the first application triggers an event that is managed by an EM module
that performs five Create actions. In this case, there is an initial amount of memory allocated, and
after the event triggering, the amount of allocated memory increases.

31959

Sensors 2015, 15, 31939–31964

These metrics prove that events management improves resource usage, which is very useful when
resources are limited. However, it implies more reaction time as application components are started
after event triggering. More precisely, when there is no event management, reacting to an event by
means of an application creation just involves the synchronized start of all the application components,
as all have already executed the needed initialization actions.

These tests also show the good performance of negotiation mechanisms. In fact, as the negotiation
criterion is the “highest free memory”, all the component instances are similarly distributed among
the available nodes. This is showed in the bottom part of the graphics in Figure 15.

7. Conclusions and Future Work

This paper presents a solution for the design, implementation and management of homecare
applications for elderly. The proposed system architecture consists of a domain modeling approach
and a multi-agent based middleware and it provides mechanisms to tackle their flexibility demands
to adapt their behavior according to changes on their context (patient health status or environment
conditions) and to avoid service disruption.

The use of domain modeling techniques allows defining applications from different points of
views, each gathering the information relevant to it. As a result, the proposed modeling approach
allows medical staff to design a personalized monitoring of the health status of patients and
environmental conditions. It takes into account adaptability needs from the design phase as it
is possible to identify relevant context changes, defining how to detect and how to react to them
(user view). Additionally, it guides software developers in the implementation of all the needed
software components which contain not only the medical service execution but also the logic for data
exchange and the logic for event triggering (software view).

At runtime, multi-agent technology has been adopted to convert components into intelligent
entities. In this context, the proposed MAS-RECON middleware has extended the JADE framework in
order to manage the execution of these applications, providing mechanisms that allow performing
adaptation and that assure availability even for stateful applications. More precisely, the Event
Manager module controls all the actions related to an event. As a result, an optimized resource usage
is achieved. Availability is assured by recovering the execution of the failed component instance in
the most suitable node. This is possible due to the failure detection, stateful recovery and negotiation
mechanisms provided by the Application Manager and the Node Agent modules.

The feasibility of the proposal has been proved by means of a healthcare demonstrator based on a
nursing home. Several representative use cases have been identified and implemented. Experimental
results show that recovery time (availability) and reaction time (adaptability) are affected when
the number of nodes that can hold component instances increase or when the number of actions
triggered by an event increases. Furthermore, supporting adaptability and availability implies an
extra time that is acceptable if compared with the benefits achieved: maintaining application state and
resource optimization.

However, the middleware architecture does not support fault tolerance. For example, if an
AM fails, the runtime data and execution state related to its application components are lost. The
middleware lacks of admission control mechanisms to assure that enough resources are available
as the system grows. Therefore, further work is aimed at exploring the distribution of the system
repository for improving fault tolerance of the middleware modules, and implementing the admission
control. Additionally, proactive mechanisms will be also added in order to match Quality of Service
(QoS) parameters. For example, load balancing mechanisms for achieving energy efficiency at node
level, or unbalancing mechanisms for energy efficiency at system level (using the least number of
nodes). Additionally, as it has been proved in the assessment section, limited resources decrease the
middleware performance due to slower negotiation actions. Thus, future work is also focused on
supporting flexible QoS for non-critical applications. Finally, Model Driven Engineering techniques
will be explored as they allow automating application design and the code generation process.

31960

Sensors 2015, 15, 31939–31964

Acknowledgments: This work was financed in part by the University of the Basque Country (UPV/EHU) under
project UFI 11/28, by the Regional Government of the Basque Country under Project IT719-13, and by the
MCYT&FEDER under project DPI 2012-37806-C02-01.

Author Contributions: Aintzane Armentia is in charge of the multi-domain modeling approach and the
application domain, designing and implementing the different use cases. Unai Gangoiti has designed and
implemented the MAS-RECON middleware. He has also taken part in the development of use cases and in
performing the assessment metrics. Rafael Priego has participated in the design, development and implementation
of the demonstrator. Marga Marcos supervises all the research work, whereas Elisabet Estévez is mainly focused
on supervising the application domain and modeling approach.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Health Organization. Global Health and Aging. Available online: http://www.who.int/
ageing/publications/global_health/en/ (accessed on 25 March 2015).

2. World Health Organization. Report of the first WHO Global Forum on Innovations for Ageing Populations.
Available online: http://www.who.int/kobe_centre/publications/GFIAP_report.pdf?ua=1 (accessed on
25 March 2015).

3. United Nations. World Population Ageing: 1950–2050. Available online: http://www.un.org/esa/
population/publications/worldageing19502050/ (accessed on 25 March 2015).

4. European Commission. Seventh Framework Programme. Available online: http://ec.europa.eu/research/
fp7/index_en.cfm (accessed on 9 April 2015).

5. European Commission. HORIZON 2020—WORK PROGRAMME 2014–2015—Health, Demographic
Change and Wellbeing. Available online: http://ec.europa.eu/programmes/horizon2020/en/
h2020-section/health-demographic-change-and-wellbeing (accessed on 11 April 2015).

6. AMBIENT ASSISTED LIVING JOINT PROGRAMME/ICT for Ageing Well. Available online:
http://www.aal-europe.eu (accessed on 22 September 2014).

7. U.S. Department of Health & Human Services. Administration on Aging. Available online:
http://www.aoa.gov/ (accessed on 30 April 2015).

8. World Health Organization. Active Ageing: A Policy Framework. Available online:
http://whqlibdoc.who.int/hq/2002/WHO_NMH_NPH_02.8.pdf?ua=1 (accessed on 25 March 2015).

9. Woodward, C.A.; Abelson, J.; Tedford, S.; Hutchison, B. What is important to continuity in home care?
Soc. Sci. Med. 2004, 58, 177–192. [CrossRef]

10. Varshney, U. Pervasive healthcare and wireless health monitoring. Mob. Netw. Appl. 2007, 12, 2–3, 113–127.
[CrossRef]

11. Memon, M.; Wagner, S.R.; Pedersen, C.F.; Aysha Beevi, F.H.; Hansen, F.O. Ambient Assisted Living healthcare
frameworks, platforms, standards, and quality attributes. Sensors 2014, 14, 4312–4341. [CrossRef] [PubMed]

12. Ni, Q.; García Hernando, A.B.; de la Cruz, I.P. The Elderly’s Independent Living in Smart Homes: A
Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development. Sensors
2015, 15, 11312–11362. [CrossRef] [PubMed]

13. De Silva, L.C.; Morikawa, C.; Petra, I.M. State of the art of smart homes. Eng. Appl. Artif. Intell. 2012, 25,
1313–1321. [CrossRef]

14. Chan, M.; Estève, D.; Escriba, C.; Campo, E. A review of smart homes- present state and future challenges.
Comput. Methods Progr. Biomed. 2008, 91, 55–81. [CrossRef] [PubMed]

15. Cook, D.J.; Augusto, J.C.; Jakkula, V.R. Ambient intelligence: Technologies, applications, and opportunities.
Pervasive Mob. Comput. 2009, 5, 277–298. [CrossRef]

16. Nasir, A.; Hussain, S.I.; Soong, B.; Qaraqe, K. Energy Efficient Cooperation in Underlay RFID Cognitive
Networks for a Water Smart Home. Sensors 2014, 14, 18353–18369. [CrossRef] [PubMed]

17. Blasco, R.; Marco, Á.; Casas, R.; Cirujano, D.; Picking, R. A Smart Kitchen for Ambient Assisted Living.
Sensors 2014, 14, 1629–1653. [CrossRef] [PubMed]

18. Nef, T.; Urwyler, P.; Büchler, M.; Tarnanas, I.; Stucki, R.; Cazzoli, D.; Müri, R.; Mosimann, U. Evaluation of
Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient
Data. Sensors 2015, 15, 11725–11740. [CrossRef] [PubMed]

31961

http://dx.doi.org/10.1016/S0277-9536(03)00161-8
http://dx.doi.org/10.1007/s11036-007-0017-1
http://dx.doi.org/10.3390/s140304312
http://www.ncbi.nlm.nih.gov/pubmed/24599192
http://dx.doi.org/10.3390/s150511312
http://www.ncbi.nlm.nih.gov/pubmed/26007717
http://dx.doi.org/10.1016/j.engappai.2012.05.002
http://dx.doi.org/10.1016/j.cmpb.2007.11.006
http://www.ncbi.nlm.nih.gov/pubmed/18164098
http://dx.doi.org/10.1016/j.pmcj.2009.04.001
http://dx.doi.org/10.3390/s141018353
http://www.ncbi.nlm.nih.gov/pubmed/25271565
http://dx.doi.org/10.3390/s140101629
http://www.ncbi.nlm.nih.gov/pubmed/24445412
http://dx.doi.org/10.3390/s150511725
http://www.ncbi.nlm.nih.gov/pubmed/26007727

Sensors 2015, 15, 31939–31964

19. Mozer, M.C. The neural network house: An environment that’s adapts to its inhabitants. In Proceedings
of the AAAI Spring Symposium on Intelligent Environments, Palo Alto, CA, USA, 23–25 March 1998;
pp. 110–114.

20. Helal, S.; Mann, W.; El-Zabadani, H.; King, J.; Kaddoura, Y.; Jansen, E. The Gator tech smart house: A
programmable pervasive space. Computer 2005, 38, 50–60. [CrossRef]

21. Tapia, E.M.; Intille, S.S.; Larson, K. Activity Recognition in the Home Using Simple and Ubiquitous Sensors.
In Proceedings of the Second IEEE International Conference on Pervasive Computing and Communications,
Orlando, FL, USA, 14–17 March 2004; pp. 158–175.

22. Kidd, C.D.; Orr, R.; Abowd, G.D.; Atkeson, C.G.; Essa, I.A.; MacIntyre, B.; Mynatt, E.; Starner, T.E.;
Newstetter, W. The aware home: A living laboratory for ubiquitous computing research. In Proceedings of
the Second International Workshop CoBuild, Pittsburgh, PA, USA, 1–2 October 1999; pp. 191–198.

23. Rashidi, P.; Mihailidis, A. A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Heal. Inf.
2013, 17, 579–590. [CrossRef]

24. Nehmer, J.; Becker, M.; Karshmer, A.; Lamm, R. Living Assistance Systems—An Ambient Intelligence
Approach. In Proceeding of the 28th International Conference on Software Engineering, Shanghai, China,
20–28 May 2006; pp. 43–50.

25. Becker, M. Software Architecture Trends and Promising Technology for Ambient Assisted Living Systems.
In Proceedings of Dagstuhl Seminar, Dagstuhl, Germany, 1–6 June 2008; pp. 1–18.

26. Corchado, J.M.; Bajo, J.; Abraham, A. GerAmi: Improving Healthcare Delivery in Geriatric Residences.
IEEE Intell. Syst. 2008, 23, 19–25. [CrossRef]

27. Bajo, J.; Fraile, J.A.; Pérez-Lancho, B.; Corchado, J.M. The THOMAS architecture in Home Care scenarios: A
case study. Expert Syst. Appl. 2010, 37, 3986–3999. [CrossRef]

28. Stav, E.; Walderhaug, S.; Mikalsen, M.; Hanke, S.; Benc, I. Development and evaluation of SOA-based AAL
services in real-life environments: A case study and lessons learned. Int. J. Med. Inform. 2013, 82, e269–e293.
[CrossRef] [PubMed]

29. Su, C.J.; Wu, C.Y. JADE implemented mobile multi-agent based, distributed information platform for
pervasive health care monitoring. Appl. Soft Comput. 2011, 11, 315–325. [CrossRef]

30. Vitabile, S.; Conti, V.; Militello, C.; Sorbello, F. An extended JADE-S based framework for developing secure
Multi-Agent Systems. Comput. Stand. Interfaces 2009, 31, 913–930. [CrossRef]

31. Agirre, A.; Parra, J.; Armentia, A.; Ghoneim, A.; Estévez, E.; Marcos, M. QoS management for dependable
sensory environments. Multimed. Tools Appl. 2015. [CrossRef]

32. OSGiTM Alliance. The OSGi Architecture. Available online: http://www.osgi.org/Technology/WhatIsOSGi
(accessed on 22 October 2015).

33. Bloomer, J. Power Programming with RPC; O’Reilly Media: Sebastopol, CA, USA, 1992.
34. Object Management Group. Object Request Broker (ORB). Available online: http://www.omg.org/

gettingstarted/orb_basics.htm (accessed on 22 October 2015).
35. Capra, L.; Emmerich, W.; Mascolo, C. CARISMA: Context-Aware Reflective middleware System for Mobile

Applications. IEEE Trans. Softw. Eng. 2003, 29, 929–945. [CrossRef]
36. Foundation for Intelligent Physical Agents. Standard FIPA Specifications. Available online:

http://www.fipa.org/repository/standardspecs.html (accessed on 7 September 2015).
37. Krupitzer, C.; Roth, F.M.; VanSyckel, S.; Schiele, G.; Becker, C. A survey on engineering approaches for

self-adaptive systems. Pervasive Mob. Comput. 2014, 17, 184–206. [CrossRef]
38. Armentia, A.; Agirre, A.; Estévez, E.; Pérez, J.; Marcos, M. Model Driven Design Support for Mixed-Criticality

Distributed Systems. In Proceedings of the 19th World Congress of the International Federation of Automatic
Control, Cape Town, South Africa, 24–29 August 2014; pp. 4441–4446.

39. Armentia, A.; Sarachaga, I.; de Albeniz, O.G.; Estevez, E.; Aguirre, A.; Marcos, M. Achieving Reconfigurable
Service Oriented Applications Using Model Driven Engineering. In Proceedings of the 16th IEEE Conference
on Emerging Technologies & Factory Automation, Toulouse, France, 5–9 September 2011; pp. 1–4.

40. Armentia, A.; Gangoiti, U.; Priego, R.; Marcos, M. A Multi-Agent Based Approach to Support Adaptability
in Home Care Applications. In Proceedings of the 2nd Conference on Embedded Systems, Computational
Intelligence and Telematics in Control, Maribor, Slovenia, 22–24 June 2015; pp. 1–6.

41. Farella, E.; Falavigna, M.; Ricc, B. Aware and smart environments: The Casattenta project. Microelectron. J.
2010, 41, 697–702. [CrossRef]

31962

http://dx.doi.org/10.1109/MC.2005.107
http://dx.doi.org/10.1109/JBHI.2012.2234129
http://dx.doi.org/10.1109/MIS.2008.27
http://dx.doi.org/10.1016/j.eswa.2009.11.017
http://dx.doi.org/10.1016/j.ijmedinf.2011.03.007
http://www.ncbi.nlm.nih.gov/pubmed/21481634
http://dx.doi.org/10.1016/j.asoc.2009.11.022
http://dx.doi.org/10.1016/j.csi.2008.03.017
http://dx.doi.org/10.1007/s11042-015-2781-4
http://dx.doi.org/10.1109/TSE.2003.1237173
http://dx.doi.org/10.1016/j.pmcj.2014.09.009
http://dx.doi.org/10.1016/j.mejo.2010.01.008

Sensors 2015, 15, 31939–31964

42. Søberg, J.; Goebel, V.; Plagemann, T. CommonSens: Personalisation of Complex Event Processing in
Automated Homecare. In Proceedings of the 6th International Conference on Intelligent Sensors, Sensor
Networks and Information Processing, Brisbane, Australia, 7–10 December 2010; pp. 275–280.

43. Botia, J.A.; Villa, A.; Palma, J. Ambient Assisted Living system for in-home monitoring of healthy
independent elders. Expert Syst. Appl. 2012, 39, 8136–8148. [CrossRef]

44. Benghazi, K.; Hurtado, M.V.; Hornos, M.J.; Rodríguez, M.L.; Rodríguez-Domínguez, C.; Pelegrina, A.B.;
Rodríguez-Fórtiz, M.J. Enabling correct design and formal analysis of Ambient Assisted Living systems.
J. Syst. Softw. 2012, 85, 498–510. [CrossRef]

45. Rabbi, F.; Lamo, Y.; Maccaull, W. A Flexible Metamodelling Approach for Healthcare Systems. In Proceedings
of the 2nd European Workshop on Practical Aspects of Health Informatics, Trondheim, Norway, 19–20 May
2014; pp. 115–128.

46. Rocha, A.; Martins, A.; Freire, J.C.; Kamel Boulos, M.N.; Vicente, M.E.; Feld, R.; van de Ven, P.; Nelson, J.;
Bourke, A.; ÓLaighin, G.; et al. Innovations in health care services: The CAALYX system. Int. J. Med. Inf.
2013, 82, e307–e320. [CrossRef] [PubMed]

47. Perry, M.; Dowdall, A.; Lines, L.; Hone, K. Multimodal and ubiquitous computing systems: Supporting
independent-living older users. IEEE Trans. Inf. Technol. Biomed. 2004, 8, 258–270. [CrossRef] [PubMed]

48. Ballagny, C.; Hameurlain, N.; Barbier, F. MOCAS: A State-Based Component Model for Self-Adaptation.
In Proceedings of the 3rd IEEE International Conference on Self-Adaptive and Self-Organizing Systems,
San Francisco, CA, USA, 14–18 September 2009; pp. 206–215.

49. Sadri, F. Ambient intelligence. ACM Comput. Surv. 2011, 43, 1–66. [CrossRef]
50. Selic, B. The pragmatics of model-driven development. IEEE Softw. 2003, 20, 19–25. [CrossRef]
51. Duran-Limon, H.A.; Blair, G.S.; Friday, A.; Grace, P.; Samartzidis, G.; Sirvaharan, T.; Wu, M. Context-Aware

Middleware for Pervasive and Ad Hoc Environments; Technical Report; Computing Department, Lancaster
University: Lancaster, UK, 2003.

52. Khan, M.U.; Reichle, R.; Geihs, K. Architectural constraints in the model-driven development of self-adaptive
applications. IEEE Distrib. Syst. 2008, 9, 1–10. [CrossRef]

53. Morin, B.; Barais, O.; Jezequel, J.M.; Fleurey, F.; Solberg, A. Models@ Run.time to Support Dynamic
Adaptation. Computer 2009, 42, 44–51. [CrossRef]

54. Anthony, R.; Rettberg, A.; Chen, D.; Jahnich, I.; de Boer, G.; Ekelin, C. Towards a Dynamically Reconfigurable
Automotive Control System Architecture. In Proceedings of the Working Conference: International
Embedded Systems Symposium, Irvine, CA, USA, 30 May–1 June 2007; pp. 71–84.

55. García-Valls, M.; Rodríguez López, I.; Fernández Villar, L. iLAND: An Enhanced Middleware for Real—Time
Reconfiguration of Service Oriented Distributed Real-Time Systems. IEEE Trans. Ind. Informatics 2011, 9,
228–236. [CrossRef]

56. Kumar, M.; Shirazi, B.A.; Das, S.K.; Sung, B.Y.; Levine, D. PICO: A Middleware Framework for Pervasive
Computing. IEEE Pervasive Comput. 2003, 2, 72–79. [CrossRef]

57. Gharzouli, M.; Boufaida, M. A generic P2P Collaborative Strategy for Discovering and Composing Semantic
Web Services. In Proceedings of the 4th International Conference on Internet Web Applications and Services,
Venice/Mestre, Italy, 24–28 May 2009; pp. 449–454.

58. Eichelberg, M.; Rein, A.; Blisching, F.; Wolf, L. The GAL Middleware Platform for AAL: A Case Study. In
Proceedings of the first International Workshop on AAL Service Platforms, Lyon, France, 2 July 2010; pp. 1–6.

59. Chen, C.M. Web-based remote human pulse monitoring system with intelligent data analysis for home
health care. Expert Syst. Appl. 2011, 38, 2011–2019. [CrossRef]

60. Witting, M.D.; Lueck, C.H. The ability of pulse oximetry to screen for hypoxemia and hypercapnia in patients
breathing room air. J. Emerg. Med. 2001, 20, 341–348. [CrossRef]

61. Holborn, P.; Nolan, P.; Golt, J. An analysis of fatal unintentional dwelling fires investigated by London Fire
Brigade between 1996 and 2000. Fire Saf. J. 2003, 38, 1–42. [CrossRef]

62. Jobbágy, Á.; Csordás, P.; Mersich, A. Blood Pressure Measurement at Home. In Proceedings of the 2006
World Congress on Medical Physics and Biomedical Engineering, Seoul, Korea, 27 August–1 September
2006; pp. 3453–3456.

31963

http://dx.doi.org/10.1016/j.eswa.2012.01.153
http://dx.doi.org/10.1016/j.jss.2011.05.022
http://dx.doi.org/10.1016/j.ijmedinf.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/21481633
http://dx.doi.org/10.1109/TITB.2004.835533
http://www.ncbi.nlm.nih.gov/pubmed/15484431
http://dx.doi.org/10.1145/1978802.1978815
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1109/MDSO.2008.19
http://dx.doi.org/10.1109/MC.2009.327
http://dx.doi.org/10.1109/TII.2012.2198662
http://dx.doi.org/10.1109/MPRV.2003.1228529
http://dx.doi.org/10.1016/j.eswa.2010.07.136
http://dx.doi.org/10.1016/S0736-4679(01)00309-2
http://dx.doi.org/10.1016/S0379-7112(02)00049-8

Sensors 2015, 15, 31939–31964

63. Hervás, R.; Fontecha, J.; Ausín, D.; Castanedo, F.; Bravo, J.; López-de-Ipiña, D. Mobile monitoring and
reasoning methods to prevent cardiovascular diseases. Sensors 2013, 13, 6524–6541. [CrossRef] [PubMed]

64. Bellifemine, F.; Caire, G.; Poggi, A.; Rimassa, G. JADE: A software framework for developing multi-agent
applications. Lessons learned. Inf. Softw. Technol. 2008, 50, 10–21. [CrossRef]

65. Baldauf, M.; Dustdar, S.; Rosenberg, F. A survey on context-aware systems. Int. J. Ad Hoc Ubiquitous Comput.
2007, 2, 263–277. [CrossRef]

66. Cooking hacks. e-Health Sensor Platform V2.0 for Arduino and Raspberry Pi [Biometric /
Medical Applications. Available online: https://www.cooking-hacks.com/documentation/tutorials/
ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical (accessed on 13 October 2015).

67. Cooking hacks. Waspmote Gas Sensors Kit. Available online: https://www.cooking-hacks.com/shop/
waspmote/kits/waspmote-gas-sensors-kit (accessed on 13 October 2015).

68. Siegel, E.; Retter, A. eXist: A NoSQL Document Database and Application Platform; O’Reilly Media: Sebastopol,
CA, USA, 2014.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

31964

http://dx.doi.org/10.3390/s130506524
http://www.ncbi.nlm.nih.gov/pubmed/23681093
http://dx.doi.org/10.1016/j.infsof.2007.10.008
http://dx.doi.org/10.1504/IJAHUC.2007.014070

Anexo: Publicaciones

3-29

3.2 Model-Driven Design and Development of

Flexible Automated Production Control

Configurations for Industry 4.0

Gangoiti, U., López, A., Armentia, A., Estévez, E., y Marcos, M. (2021). Model-Driven

Design and Development of Flexible Automated Production Control Configurations for

Industry 4.0. Applied Sciences, 11 (5), 2319, pp. 1–27.

DOI: https://doi.org/10.3390/app11052319.

JCR©2021: 2,838

Categoría: Engineering, Multidisciplinary

Cuartil: Q2 (39/92)

Anexo: Publicaciones

3-30

applied
sciences

Article

Model-Driven Design and Development of Flexible Automated
Production Control Configurations for Industry 4.0

Unai Gangoiti 1, Alejandro López 1 , Aintzane Armentia 1 , Elisabet Estévez 2,* and Marga Marcos 1

����������
�������

Citation: Gangoiti, U.; López, A.;

Armentia, A.; Estévez, E.; Marcos, M.

Model-Driven Design and

Development of Flexible Automated

Production Control Configurations

for Industry 4.0. Appl. Sci. 2021, 11,

2319. https://doi.org/10.3390/

app11052319

Academic Editor: Yaniv Mordecai

Received: 13 January 2021

Accepted: 2 March 2021

Published: 5 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Automatic Control and Systems Engineering Department, University of the Basque Country,
48013 Bilbao, Spain; unai.gangoiti@ehu.eus (U.G.); alejandro.lopez@ehu.eus (A.L.);
aintzane.armentia@ehu.eus (A.A.); marga.marcos@ehu.eus (M.M.)

2 Electronic and Automation Engineering Department, University of Jaén, 23071 Jaén, Spain
* Correspondence: eestevez@ujaen.es; Tel.: +34-95-321-2167

Abstract: The continuous changes of the market and customer demands have forced modern au-
tomation systems to provide stricter Quality of service (QoS) requirements. This work is centered
in automation production system flexibility, understood as the ability to shift from one controller
configuration to a different one, in the most quick and cost-effective way, without disrupting its
normal operation. In the manufacturing field, this allows to deal with non-functional requirements
such as assuring control system availability or workload balancing, even in the case of failure of a
machine, components, network or controllers. Concretely, this work focuses on flexible applications
at production level, using Programmable Logic Controllers (PLCs) as primary controllers. The
reconfiguration of the control system is not always possible as it depends on the process state. Thus,
an analysis of the system state is necessary to make a decision. In this sense, architectures based on
industrial Multi Agent Systems (MAS) have been used to provide this support at runtime. Addition-
ally, the introduction of these mechanisms makes the design and the implementation of the control
system more complex. This work aims at supporting the design and development of such flexible
automation production systems, through the proposed model-based framework. The framework
consists of a set of tools that, based on models, automate the generation of control code extensions
that add flexibility to the automation production system, according to industry 4.0 paradigm.

Keywords: flexible automation production systems; model driven engineering; multi agent system;
I4.0 components

1. Introduction

In the last years, there is an increasing interest in making manufacturing systems
more competitive. Some countries use different terms to refer to this phenomenon, for
example it is known as Advanced Manufacturing in U.S., Industrie 4.0 in Germany and
Factory of the Future in other European Countries [1–3]. Basically, this evolution consists
in integrating all production systems to pass from long batches, which seek costs reduction
through scale economies, to a flexible and personalized production [4]. In other words,
all these initiatives have a common goal: achieving high quality production with zero
defects [5,6]. For this, they base on the so-called smart factory, composed by adaptive and
smart manufacturing equipment and systems, which enables the automation, control and
optimization of high-tech manufacturing processes while assuring the availability of the
plant. The smart factories control all their processes, but at the same time, they should also
be connected to the market, the supply, and the demand. This paradigm, generally referred
as Industry 4.0, has countless applications both in academia and in Industry [7–9] since the
birth of the term in 2011 [10,11].

Dynamic reconfiguration is being adopted by current automation systems in order to
ensure Quality of Service (QoS) requirements. In a production system the QoS requirements
(also called non-functional requirements) can be regarded as those properties that improve

Appl. Sci. 2021, 11, 2319. https://doi.org/10.3390/app11052319 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3262-0605
https://orcid.org/0000-0002-6612-241X
https://orcid.org/0000-0002-1721-3059
https://orcid.org/0000-0001-5570-1072
https://doi.org/10.3390/app11052319
https://doi.org/10.3390/app11052319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11052319
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/5/2319?type=check_update&version=2

Appl. Sci. 2021, 11, 2319 2 of 27

product attractiveness, usability, accuracy, safety or reliability without modifying product
functionality. Non-functional requirements demand specific behavior to the manufacturing
system such as, for instance, reliability, availability, power consumption or response time
optimization. In particular, the experience of large industrial companies has shown that
two of the main qualities of advanced manufacturing systems are: flexibility and adaptability,
which characterize systems with the ability to quickly adapt to environment [12]. In general,
all these reconfiguration mechanisms enable to switch in the most quick and cost-effective
way from one configuration to another at runtime. As a result, the system response to
sudden changes on customer demands or even to unpredictable events (e.g., failures or
disruptions) is improved. This work is centered in automation production system flexibility,
understood as the way to deal with non-functional requirements such as assuring control
system availability under failure of a machine, components, network or controllers.

According to different reviews and surveys [13–15] the term ‘reconfiguration’ may
make reference to: (1) product reconfiguration, as the flexibility to change or modify
the final product. (2) Schedule reconfiguration, which is commonly understood as the
capability to modify the execution order of plant operation, for enhancing efficiency or
productivity [16,17] or overcoming machine failures [18]. (3) Sometimes it also refers to
machine operation reconfiguration. That is, modifying the functionality of a machine to
enable it to perform other operations [12,19,20]. Finally, (4) control system reconfiguration
refers to the relocation of the different functionalities within a distributed control system, for
improving the controller performance [21] or battery consumption [22], or even avoiding
service disruption in case of failures at controller or network [23–25].

These works provide a custom solution as they are focused on assuring a specific
QoS (e.g., optimization of the production, fault tolerance at process or controller level and
workload balance). Additionally, the majority make use of programming languages, like
C/C++ or Java, which are not widely used in the factory automation area. Therefore, they
are ad hoc solutions and/or they are not easily adopted in industrial environments.

The goal of this work is twofold. On the one hand, it proposes a generic implemen-
tation of reconfigurable automation applications to be executed under the control of the
so-called Flexible Automation Middleware (FAM) presented in [26]. This is a generic
Multi-Agent System (MAS) that can be particularized for the supervision of a concrete
set of system QoS, launching a system reconfiguration in case of QoS loss. On the other
hand, it presents a flexible model-based framework, which, based on well-spread and ac-
cepted standards, helps the designer to define the information needed to achieve dynamic
reconfiguration of the automation system.

Hence, this paper contributes: (1) A modeling approach that collects information about
the production process and the distributed automation system, which is relevant for the
management platform that makes use of it. (2) Application templates for the runtime agent-
based platform. (3) A tool suite that implements the approach, aimed at adding flexibility
to the original distributed automation system, supporting dynamic reconfiguration of the
control system due to controller’s fault or work balance.

The remainder of the paper is as follows: Section 2 details the meaning of Flexible Au-
tomation Production Systems and a brief description of the FAM agent-based architecture.
This section also justifies why Model Driven Engineering (MDE) is useful for designing and
developing complex automation systems. Section 3 presents a framework that has as main
goal the automatic generation of the so-called flexible automation projects. Additionally,
this framework also gives support to the automatic generation of the sets of agents that are
application. Section 4 is devoted to assessing the system flexibility through a case study.
Finally, Section 5 outlines the most important conclusions and future works.

2. Materials and Methods

The Industry 4.0 paradigm frames the technologies and conventions required to
achieve the reconfiguration of the control systems. Based on Industry 4.0 principles,
specifically in the Reference Architecture Model for Industry 4.0 (RAMI 4.0) [27], first

Appl. Sci. 2021, 11, 2319 3 of 27

subsection characterizes the Flexible Automation Production System (FAPS) in which
reconfiguration can take place, switching from one controller configuration to a different
one, in the quickest and cost-effective way, without disrupting its normal operation.

The implementation of FAPS is a complex task, and requires analysis, decision-
making and negotiation abilities, which can be achieved by means of agent-based
solutions. In this sense, an architecture based on industrial Multi Agent Systems can
provide this support at runtime. In the literature, there are some MA-based approaches
for manufacturing, e.g., [25,28,29] which agents can be deployed in some very different
devices, providing support to a certain QoS parameters. Nevertheless, as far as authors
know, only the agent-based architecture proposed in [26] supports the controller fault,
launching a reconfiguration of the control system when this QoS loss is detected. The main
ideas of this Flexible Automation Middleware (FAM) are presented in Section 2.2.

Furthermore, in order to enable reconfiguration of the control systems assuring normal
operation to continue, it is required to model the possible states of the manufacturing
process. Thus, Section 2.3 discusses how MDE can be a helpful alternative for modeling
the industrial agents of the FAPS in such way.

2.1. Modeling of Flexible Automation Production Systems

Reference Architecture Model for Industry 4.0 (RAMI 4.0) [27] offers a structured
description of the fundamental requirements of I4.0-compliant systems, exploring: (1) hi-
erarchical levels of a manufacturing system networked via the Internet; (2) the lifecycle
of systems and products; and (3) the Information Technology management layers of I4.0
project implementation. In RAMI 4.0, any technical asset of the factory has a digital rep-
resentation as an I4.0 component, which are provided with digital interfaces to interact
with other I4.0 components. Hence, the I4.0 component is the combination of objects from
both the physical world and the information world, offering dedicated functionalities and
flexible services to other I4.0 Components [30]. As stated in [27], I4.0 components have two
main features:

1. The Asset is a physical or a logical object owned by or under the custodial duties of
an organization, having either a perceived or actual value to the organization.

2. The Asset Administration Shell (AAS) is the digitalization of an asset. In other words,
and AAS is the interface that connects the physical asset through I4.0 communications
such as OPC Unified Architecture (OPC UA) [31]. It is also in charge of offering
the I4.0 component’s services to the Industry 4.0 (e.g., [32] presents an AAS model
able to represent International Electrotechnical Commission (IEC) 61131-3 standard
compliant programs and the relevant relationships with Programmable Logic Con-
trollers and each device of the controlled plant). According to the glossary of Platform
Industrie 4.0 [33], the AAS concept can be directly related to the concept of Digital
Twin (DT). However, several works in the literature apply the DT concept to refer
exclusively to highly accurate simulation models. In the authors’ understanding, both
meanings are correct as both, in different ways, are related to the Asset behavior. In
this work, the first one applies.

Following this concept, Automation Production Systems (APSs) could be viewed as a
set of two types of I4.0 connected Components: (1) Controller and (2) Plant, which offer
production services. Their main features are the following:

• Controller I4.0 Component:

Asset (ControllerAsset): The Programmable Logic Controller (PLC), the primary
controller for such type of systems, and the I/O boards;

AAS (AAS_Controller): automatizes the production by means of its I/Os.

• Plant I4.0 Component:

Asset (PlantAsset): physical station and the sensors and actuators connected to
controller’s I/Os;

Appl. Sci. 2021, 11, 2319 4 of 27

AAS (AAS_Plant): offers a production service (which contains the control logic
and data).

This work goes a step further, and it defines Flexible Automation Production Systems
(FAPSs) as those APSs that support flexibility through reconfiguration according to QoS
parameters, such as control system availability in the event of controller failure or workload
balancing. Hence, this work provides support for developing flexible applications at
production level, using PLCs as primary controllers. To achieve this, during the design of
the FAPSs it must be stated which controllers can potentially automate the production of
every PlantAsset in order to download the corresponding Control Logic Software Module
(a Program Organization Unit—POU- if IEC 61131-3 standard [34] is used). The runtime
platform manages the execution of every control software module (henceforth Production
Service-PS-), ensuring that it is only running in a unique controller of the system (active
controller), and the others acting as tracking controllers. Besides, applying dynamic
reconfiguration to assure specific QoS (e.g., availability of the control system, efficient use
of resources or any other QoS), implies both QoS supervision (by means of mechanisms like
heartbeat or workload, respectively, in all controllers) and guaranteeing reconfiguration
feasibility, avoiding unpredictable effects in the manufacturing process. Therefore, during
the design phase, it is also necessary to define those critical situations in which the state of
the PlantAsset is not known and thus, the reconfiguration is not possible.

Figure 1 depicts the general scenario of a FAPS in terms of I4.0 Components. This
seeks to prove the capability to assure work balance among the distributed controllers
(AAS_Controller1 . . . AAS_Controller3) comprising the automation system for a flexible
manufacturing cell which is composed by three stations (PlantAsset_S1 . . . PlantAsset_S3).
As observed, AAS_Controllers, as composed AASs, contain a set of AAS_Plants. In this
example, the software control code of S1 (AASPlant_S1) can be run in either controller 1 or
controller 2, but it is only active in controller 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 27

o AAS (AAS_Controller): automatizes the production by means of its I/Os.
• Plant I4.0 Component:

o Asset (PlantAsset): physical station and the sensors and actuators connected to
controller’s I/Os;

o AAS (AAS_Plant): offers a production service (which contains the control logic
and data).

This work goes a step further, and it defines Flexible Automation Production Systems
(FAPSs) as those APSs that support flexibility through reconfiguration according to QoS
parameters, such as control system availability in the event of controller failure or
workload balancing. Hence, this work provides support for developing flexible
applications at production level, using PLCs as primary controllers. To achieve this,
during the design of the FAPSs it must be stated which controllers can potentially
automate the production of every PlantAsset in order to download the corresponding
Control Logic Software Module (a Program Organization Unit—POU- if IEC 61131-3
standard [34] is used). The runtime platform manages the execution of every control
software module (henceforth Production Service-PS-), ensuring that it is only running in
a unique controller of the system (active controller), and the others acting as tracking
controllers. Besides, applying dynamic reconfiguration to assure specific QoS (e.g.,
availability of the control system, efficient use of resources or any other QoS), implies both
QoS supervision (by means of mechanisms like heartbeat or workload, respectively, in all
controllers) and guaranteeing reconfiguration feasibility, avoiding unpredictable effects
in the manufacturing process. Therefore, during the design phase, it is also necessary to
define those critical situations in which the state of the PlantAsset is not known and thus,
the reconfiguration is not possible.

Figure 1 depicts the general scenario of a FAPS in terms of I4.0 Components. This
seeks to prove the capability to assure work balance among the distributed controllers
(AAS_Controller1...AAS_Controller3) comprising the automation system for a flexible
manufacturing cell which is composed by three stations (PlantAsset_S1...PlantAsset_S3).
As observed, AAS_Controllers, as composed AASs, contain a set of AAS_Plants. In this
example, the software control code of S1 (AASPlant_S1) can be run in either controller 1
or controller 2, but it is only active in controller 1.

Figure 1. A Flexible Automation Production System with the following I4.0 Components: multiple Asset Administration
Shell (AAS) of different assets (Controllers and Plant) are interconnected via a message exchange middleware, depicted
as a message bus.

Figure 1. A Flexible Automation Production System with the following I4.0 Components: multiple Asset Administration
Shell (AAS) of different assets (Controllers and Plant) are interconnected via a message exchange middleware, depicted as a
message bus.

The structure of AASs is defined in [35]. Following this recommendation, Figure 2. il-
lustrates the general structure proposed for the AAS_Controller, which has two main parts:
Header and Body. The Body has two submodels per AAS_Plant contained (Production-
Service and ProductionService Availability) and the ActiveProductionServices submodel

Appl. Sci. 2021, 11, 2319 5 of 27

that collects the list of ProductionServices which are being executed in the corresponding
ControllerAsset.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 27

The structure of AASs is defined in [35]. Following this recommendation, Figure 2.
illustrates the general structure proposed for the AAS_Controller, which has two main
parts: Header and Body. The Body has two submodels per AAS_Plant contained
(ProductionService and ProductionService Availability) and the
ActiveProductionServices submodel that collects the list of ProductionServices which are
being executed in the corresponding ControllerAsset.

Figure 2. Structure of a generic AAS_Controller: the figure follows the concept of an AAS from
Platform Industrie 4.0 [35] to define the AAS of a controller implemented as a Markup Language.
Three Sub-Models are defined, the first two related to the set of Plant Assets it can control
(AAS_Plant) and the third that informs about the Plant Assets it actually controls. Every sub-model
has properties that specify the actions and/or information it provides. This graphic was generated
using Altova XMLSpy Version 2020.sp1.

Production Service submodels are characterized by four properties: The service
offered by the corresponding AAS_Plant (ProductionService); a set of variables that
characterize the state of such production service (Service State); and two functions to send
or receive the values of the variables that collect the execution state. Active controllers
send at the end of the execution cycle the current execution state (SendStateService) and
those controllers which are tracking receive this state (ReceiveStateService). Hence, if an
active controller fails all tracking controllers have the last known state.

Production Service Availability submodels have a unique property for runtime
diagnosis. Thus, this function indicates if the current state of the PlantAsset can be derived
from the current values of the controller variables or not. To perform such diagnosis this
function processes the set of critical situations detailed during the design phase. At
runtime, a PlantAsset could be in the following states or situations:
• non-critical situations: the automation system is aware of the current process state.

Therefore, it is possible to activate ProductionServices in another PLC (after de-
activation in the current controller or after a controller failure), using as their initial
state the last known state of the interrupted ProductionService;

• critical situations: the automation system does not know exactly the current state of
the ProductionServices. Therefore, as it can lead to unpredictable process behavior,
the activation/de-activation of ProductionServices is inhibited in critical situations.
For example, when a controller fails, it has to be analyzed if all its active
ProductionServices can be recovered, on a tracking controller, in a previous known
state (checkpoint). In the case of a non-recoverable situation, it is analyzed if the
ProductionService must be safely stopped and the operator warned. Figure 3 depicts
a simple but illustrative example of a ProductionService for the movement of a piece
by a crane. While the crane is lifting, transporting or placing the piece, the
ProductionService cannot be de-activated as the piece may be released which
prevents the production from continuing. Therefore, the state of the
ProductionService during these operations is denoted as critical and in such case,
reconfiguration cannot be performed. The rest of the states are denoted as non-critical.

Figure 2. Structure of a generic AAS_Controller: the figure follows the concept of an AAS from Platform Industrie 4.0 [35]
to define the AAS of a controller implemented as a Markup Language. Three Sub-Models are defined, the first two related
to the set of Plant Assets it can control (AAS_Plant) and the third that informs about the Plant Assets it actually controls.
Every sub-model has properties that specify the actions and/or information it provides. This graphic was generated using
Altova XMLSpy Version 2020.sp1.

Production Service submodels are characterized by four properties: The service offered
by the corresponding AAS_Plant (ProductionService); a set of variables that characterize
the state of such production service (Service State); and two functions to send or receive the
values of the variables that collect the execution state. Active controllers send at the end
of the execution cycle the current execution state (SendStateService) and those controllers
which are tracking receive this state (ReceiveStateService). Hence, if an active controller
fails all tracking controllers have the last known state.

Production Service Availability submodels have a unique property for runtime di-
agnosis. Thus, this function indicates if the current state of the PlantAsset can be derived
from the current values of the controller variables or not. To perform such diagnosis this
function processes the set of critical situations detailed during the design phase. At runtime,
a PlantAsset could be in the following states or situations:

• non-critical situations: the automation system is aware of the current process state.
Therefore, it is possible to activate ProductionServices in another PLC (after de-
activation in the current controller or after a controller failure), using as their initial
state the last known state of the interrupted ProductionService;

• critical situations: the automation system does not know exactly the current state of
the ProductionServices. Therefore, as it can lead to unpredictable process behavior, the
activation/de-activation of ProductionServices is inhibited in critical situations. For
example, when a controller fails, it has to be analyzed if all its active ProductionSer-
vices can be recovered, on a tracking controller, in a previous known state (checkpoint).
In the case of a non-recoverable situation, it is analyzed if the ProductionService must
be safely stopped and the operator warned. Figure 3 depicts a simple but illustrative
example of a ProductionService for the movement of a piece by a crane. While the
crane is lifting, transporting or placing the piece, the ProductionService cannot be de-
activated as the piece may be released which prevents the production from continuing.
Therefore, the state of the ProductionService during these operations is denoted as
critical and in such case, reconfiguration cannot be performed. The rest of the states
are denoted as non-critical.

Appl. Sci. 2021, 11, 2319 6 of 27Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 27

Figure 3. Example of ProductionService to illustrate the concept of critical situation: the figure
depicts the manufacturing sequence of a crane. The steps 42 to 44 are critical situations because the
state of the system is uncertain during their execution (in case of failure there is no information
about the exact position of the piece). Therefore, reconfiguration cannot be performed during such
steps.

2.2. Flexible Automation Middleware (FAM)
This subsection summarizes the agent-based middleware architecture for flexible

automation production systems proposed by the authors in [26]. The general scenario is
illustrated in Figure 4.

Figure 4. General Scenario of the FAM (customization of [26]): the Middleware Manager and the QoS Manager
(comprising the QoS Monitor Agent and the Diagnosis & Decision Agent) constitute the core of the middleware. The
former is in charge of managing the execution and maintaining the state of Controllers and Plant AAS Agents. The latter
is in charge of supervising the availability of the overall control system, detecting controller faults and, if possible,
recovering the Plant AASs of the failed controller.

FAM includes four agent types: two are part of the generic and basic architecture,
whereas the other two are application dependent. Generic agents are able of managing
different QoS:
1. The Middleware Manager (MM) is the main orchestrator. It is a unique agent in charge

of managing the System Repository (SR): a dynamic model that contains information
about the current state of the automation application, which changes over time.

2. The QoS Manager comprises a set of agents responsible for QoS fulfilment.

Figure 3. Example of ProductionService to illustrate the concept of critical situation: the figure
depicts the manufacturing sequence of a crane. The steps 42 to 44 are critical situations because the
state of the system is uncertain during their execution (in case of failure there is no information about
the exact position of the piece). Therefore, reconfiguration cannot be performed during such steps.

2.2. Flexible Automation Middleware (FAM)

This subsection summarizes the agent-based middleware architecture for flexible
automation production systems proposed by the authors in [26]. The general scenario is
illustrated in Figure 4.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 27

Figure 3. Example of ProductionService to illustrate the concept of critical situation: the figure
depicts the manufacturing sequence of a crane. The steps 42 to 44 are critical situations because the
state of the system is uncertain during their execution (in case of failure there is no information
about the exact position of the piece). Therefore, reconfiguration cannot be performed during such
steps.

2.2. Flexible Automation Middleware (FAM)
This subsection summarizes the agent-based middleware architecture for flexible

automation production systems proposed by the authors in [26]. The general scenario is
illustrated in Figure 4.

Figure 4. General Scenario of the FAM (customization of [26]): the Middleware Manager and the QoS Manager
(comprising the QoS Monitor Agent and the Diagnosis & Decision Agent) constitute the core of the middleware. The
former is in charge of managing the execution and maintaining the state of Controllers and Plant AAS Agents. The latter
is in charge of supervising the availability of the overall control system, detecting controller faults and, if possible,
recovering the Plant AASs of the failed controller.

FAM includes four agent types: two are part of the generic and basic architecture,
whereas the other two are application dependent. Generic agents are able of managing
different QoS:
1. The Middleware Manager (MM) is the main orchestrator. It is a unique agent in charge

of managing the System Repository (SR): a dynamic model that contains information
about the current state of the automation application, which changes over time.

2. The QoS Manager comprises a set of agents responsible for QoS fulfilment.

Figure 4. General Scenario of the FAM (customization of [26]): the Middleware Manager and the QoS Manager (comprising
the QoS Monitor Agent and the Diagnosis & Decision Agent) constitute the core of the middleware. The former is in
charge of managing the execution and maintaining the state of Controllers and Plant AAS Agents. The latter is in charge of
supervising the availability of the overall control system, detecting controller faults and, if possible, recovering the Plant
AASs of the failed controller.

FAM includes four agent types: two are part of the generic and basic architecture,
whereas the other two are application dependent. Generic agents are able of managing
different QoS:

1. The Middleware Manager (MM) is the main orchestrator. It is a unique agent in charge
of managing the System Repository (SR): a dynamic model that contains information
about the current state of the automation application, which changes over time.

2. The QoS Manager comprises a set of agents responsible for QoS fulfilment.

Appl. Sci. 2021, 11, 2319 7 of 27

a. QoS Monitor (QM) agents are responsible for monitoring the specific QoS to be
handled, generating triggers if they detect QoS losses. Hence, there are as many
QMs as QoS to be met.

b. The Diagnosis & Decision (D&D) agent is unique in the system and it is respon-
sible for launching diagnosis and decision algorithms as well as reconfigura-
tion events.

As commented above, the rest of agents in the system depend on the automation
application. Applied to this work they implement both Plant_AAS and Controller_AAS
assuring the availability. These agents guarantee the distributed intelligence, as their role is
to collect information from the current state of the automation system as well as performing
reconfiguration decided by the D&D:

3. The Plant_AAS Agent (APlant_AAS) manages the execution of the corresponding
ProductionService’s actions as well as collects, transmits, stores and makes diagnosis
on the current state of this. The Component Manager of a APlant_AAS is implemented
by a Finite State Machine that represents the possible states of the ProductionService
lifecycle (detailed description can be found in [26]). Although each ProductionService
can be replicated in a number of controllers, at runtime only one controller will be
executing the ProductionService and its corresponding APlant_AAS will be in active
state. For the rest of the controllers, the ProductionService is not executing and their
corresponding APlant_AASs will be in tracking state.

4. The Controller_AAS Agent (AController_AAS) registers its corresponding controller
and the associated resources in the System Repository when the controller joins the
system. It also registers itself in the Directory Facilitator of JADE offering as services
the set of ProductionServices that can run in the controller. Finally, it launches its
corresponding APlant_AASs. There are as many AController_AAS as controllers in
the system.

2.3. Model Driven Engineering for Modeling Flexible Automation Production Systems

This subsection illustrates how Model Driven Design has been adopted for designing
and developing automation systems. In fact, it has been used for both characterization
purposes (from the definition of system parts, such as QoS requirements, to the overall
system description) and implementation purposes. In the concrete case of industrial
automation field, model-based techniques are integrated into the development process.
Several works base on the use of the Unified Modeling Language (UML [36]) to describe
control systems based on the IEC 61131 [37,38] and the IEC 61499 [39,40] standards. The
Systems Modeling Language (SysML [41]) has been also applied [39,42], whereas other
works also use modeling techniques and design patterns [43] or aspects [44]. Furthermore,
the worldwide PLCopen association, which is vendor and product-independent, has
specified a common representation format for the software model of the IEC 61131-3
standard [45,46]. The objective is twofold. On the one hand, it is aimed at achieving
programming tools interoperability. On the other hand, it also supports a model-based
definition of the application software of automation systems.

Other authors go a step further and make use of modeling techniques for supporting
the development of the overall automation system. The “3 + 1” architecture proposed by
Thramboulidis [47] allows the system design based on three models (software engineering,
mechanical engineering and electrical engineering) linked through the “+1” model, which
in the end conforms the whole system. Another example is the MDD approach proposed
in [37,48], which uses the UML profile technique to define domain languages. Additionally,
it also allows the automatic generation of the software architecture in PLCopen XML
format, using functional code imported from PLC libraries. Similarly, authors in [49]
define the so-called SysML-AT, a specialized profile that is integrated into the German
commercial tool CoDeSys, and that allows the definition of the hardware and software of
the automation and control systems.

Appl. Sci. 2021, 11, 2319 8 of 27

Models have been also used to consider system reconfiguration as an extension of
the definition of system elements, such as Function Blocks (FB), machines, controllers
or components. This is the case of the Functional Application Design for Distributed
Automation Systems (FAVA) research project [43,50], which proposes including resource
demands within the software view (amount of memory and number of bytes exchanged
with other FBs) with the aim to be used at the deployment of the FBs.

The model-based approach presented in [51] considers both functional and non-
functional requirements in terms of constraints related to the different views of the produc-
tion automation system. It covers from sensors or actuators to the whole plant, including
a tolerance model with traceability purposes. In fact, the information contained in this
model is used by an agent system for analyzing if reliability demands can be maintained,
and whether the needed probability of a concrete quality will be reached. Non-functional
requirements are also tackled at the AMoDE-RT approach [44], but as an aspect-based
characterization related to the functional components. As a result, non-functional demands
can be supervised at runtime, being possible to reconfigure the system in the event of
non-fulfillment. The approach is applied in [42] to embedded control systems.

The holonic architecture at the SOCRADES project [52] performs runtime distribution
of machine job, through a model-based definition of the functionalities of a machine. The
modeling approach described in [53] allows the specification of the operations performed by
the machines within a plant as well as the operations required for a product manufacturing.
This information is used to automatically derive an optimal operation sequence.

All research works commented above demonstrate the usefulness of MDE in automa-
tion field for different purposes, as all of them have in common that the use of models
helps managing the complex automation systems [54,55]. This work uses MDE in order to
design and develop Flexible Automation Production Systems, which are complex systems
due to their size, functionality and distribution. In fact, MDE relies on models and model
transformations for automating the software development process. More precisely, there
are Model to Model (M2M) transformations as well as Model to Text (M2T) transforma-
tions. In both cases, the input refers to a model that conforms to a meta-model whereas the
generated output is related to a new model conforming to another meta-model or source
code, respectively.

The authors propose the Meta-Model illustrated in Figure 5, which collects all the
information for defining FAPSs. The framework proposed by the authors implements
this Meta-Model in a Markup Language file. This model is the input of the: (1) M2M
transformation rules to generate as many flexible automation projects as controllers in the
system, in PLCopen XML format; (2) M2T transformation rules to generate the code of
APlant_AASs and AController_AASs in PLCopen XML format. The Technical Committee
six of PLCopen defines a meta-model in a ML notation (XML Schema) for the IEC 61131-3
standard software model. This ensures that the M2M transformation produces models
following the PLCopen meta-model.

Appl. Sci. 2021, 11, 2319 9 of 27
Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 27

Figure 5. Flexible Automation Production System Meta-Model: this Meta-Model represents both,
the formal expression of the software in charge of controlling a Plant Asset (on the left side) as well
as the information needed in order to analyze if the control of a Plant Asset might be recoverable
under a controller fault/workload balancing (on the right side). The corresponding code resides in
every controller which potentially can control the Plant Asset.

3. Results
This section presents a MDE based framework that generates: (1) a flexible

automation project per PLC of the FAPS; and (2) a set of application dependent agents
(APlant_AASs and AController_AASs). Additionally, in order to make FAM generic and
customizable, this work defines the templates for these types of agents which are
customized with application dependent information. As commented above, these results
are achieved applying a set of M2M and M2T transformation rules to a Model that must
be specified since the design phase following the meta-model depicted in Figure 5.

The general scenario of the proposed framework is illustrated in Figure 6. It is based
on two automation standards: PLCopen [46] and AutomationML [56,57]. FAM is
composed of two core elements: (1) The FAPS Model Editor, and (2) the code generator.
As previously commented, two different outcomes are obtained from code generation: on
the one hand, the Flexible Automation Projects, which are composed by the set of
ProductionServices the PLC can run, as well as the activation/de-activation code and the
recovery actions; on the other hand, the code corresponding to the application agents.

The following subsections detail the FAPS Model Editor as well as the code
generators, which are based upon M2M and M2T transformations, respectively. As the
input for these transformations (i.e., the outcome from the FAPS Model Editor) is in XML,

Figure 5. Flexible Automation Production System Meta-Model: this Meta-Model represents both, the formal expression of
the software in charge of controlling a Plant Asset (on the left side) as well as the information needed in order to analyze
if the control of a Plant Asset might be recoverable under a controller fault/workload balancing (on the right side). The
corresponding code resides in every controller which potentially can control the Plant Asset.

3. Results

This section presents a MDE based framework that generates: (1) a flexible automation
project per PLC of the FAPS; and (2) a set of application dependent agents (APlant_AASs
and AController_AASs). Additionally, in order to make FAM generic and customizable, this
work defines the templates for these types of agents which are customized with application
dependent information. As commented above, these results are achieved applying a set
of M2M and M2T transformation rules to a Model that must be specified since the design
phase following the meta-model depicted in Figure 5.

The general scenario of the proposed framework is illustrated in Figure 6. It is based
on two automation standards: PLCopen [46] and AutomationML [56,57]. FAM is composed
of two core elements: (1) The FAPS Model Editor, and (2) the code generator. As previously
commented, two different outcomes are obtained from code generation: on the one hand,
the Flexible Automation Projects, which are composed by the set of ProductionServices the
PLC can run, as well as the activation/de-activation code and the recovery actions; on the
other hand, the code corresponding to the application agents.

The following subsections detail the FAPS Model Editor as well as the code generators,
which are based upon M2M and M2T transformations, respectively. As the input for these
transformations (i.e., the outcome from the FAPS Model Editor) is in XML, the identified
transformation rules will be implemented by using XML stylesheet technology [58].

Appl. Sci. 2021, 11, 2319 10 of 27

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 27

the identified transformation rules will be implemented by using XML stylesheet
technology [58].

Figure 6. General Scenario of Flexible Automation Framework.

3.1. FAPS Model Editor
The design and development of the automation system must be structured in

Production Services, which, by means of I/Os and their control logic as a set of POUs and
variables, control different stages of the process. The POUs of the control logic can be
generated directly in a PLC programming tool or following the guidelines provided in
[48] or [49]. ProductionServices are duplicated in different controllers (replicatedIn in
Figure 5). Moreover, each AAS_Plant is characterized by a set of critical situations that
refer to situations at which ProductionService cannot be reconfigured. Critical situations
are defined by a condition to be met, which is defined as logical expressions of
ProductionService variables. For instance, in the event of a controller failure, the
continuity of the automation system execution must be analyzed, resulting in two
alternative outcomes: (1) the normal execution can be restored by means of recovery
actions, taking the system to a known previous state (checkpoint); (2) the failure is not
recoverable, and thus a safe stop action is required.

The FAPS Model Editor provides support to developers for designing automation
systems. This tool follows the guidelines of [59] to implement the meta-model of Figure 5
using the Computer Aided Engineering eXchange (CAEX) [60] libraries of
AutomationML:
• The System Unit Class Library indicates the concepts required to define a flexible

automation system. It comprises the so-called System Unit Classes (SUC), which
represent the elements of the meta-model. The SUCs are characterized by their
attributes. As the elements in the system can be simple or complex (i.e., composed of
internal elements), the SUCs representing them can be either simple or complex. The
complex SUCs comprise instances of other previously defined SUCs.

• The Interface Class Library offers interfaces that enable the association of a SUC
(simple or complex) to an element on an external file. This library provides a
PLCopen interface included in AML which grants access to the POUs and variables
within a PLCopen automation project. It also includes the hardware interface, a new

Figure 6. General Scenario of Flexible Automation Framework.

3.1. FAPS Model Editor

The design and development of the automation system must be structured in Pro-
duction Services, which, by means of I/Os and their control logic as a set of POUs and
variables, control different stages of the process. The POUs of the control logic can be
generated directly in a PLC programming tool or following the guidelines provided in [48]
or [49]. ProductionServices are duplicated in different controllers (replicatedIn in Figure 5).
Moreover, each AAS_Plant is characterized by a set of critical situations that refer to situa-
tions at which ProductionService cannot be reconfigured. Critical situations are defined
by a condition to be met, which is defined as logical expressions of ProductionService
variables. For instance, in the event of a controller failure, the continuity of the automation
system execution must be analyzed, resulting in two alternative outcomes: (1) the normal
execution can be restored by means of recovery actions, taking the system to a known
previous state (checkpoint); (2) the failure is not recoverable, and thus a safe stop action
is required.

The FAPS Model Editor provides support to developers for designing automation
systems. This tool follows the guidelines of [59] to implement the meta-model of Figure 5
using the Computer Aided Engineering eXchange (CAEX) [60] libraries of AutomationML:

• The System Unit Class Library indicates the concepts required to define a flexible
automation system. It comprises the so-called System Unit Classes (SUC), which
represent the elements of the meta-model. The SUCs are characterized by their
attributes. As the elements in the system can be simple or complex (i.e., composed of
internal elements), the SUCs representing them can be either simple or complex. The
complex SUCs comprise instances of other previously defined SUCs.

• The Interface Class Library offers interfaces that enable the association of a SUC
(simple or complex) to an element on an external file. This library provides a PLCopen
interface included in AML which grants access to the POUs and variables within a
PLCopen automation project. It also includes the hardware interface, a new interface
added to allow the definition of the controllers and automation projects in PLCopen.

• The Role Class Library provides the different roles by which the elements can be
organized in the model (choice, sequence, each and every role). The ramifications of

Appl. Sci. 2021, 11, 2319 11 of 27

the structures based on these roles is settled by means of their attributes minOccurs
and maxOccurs.

Further details regarding these libraries and their specifications can be checked in [59].
These libraries are integrated into the AML editor (see FlexibleAutomationSystem SUC

library in Figure 7). This allows to use this tool to define FAPS models. Every Internal
Element (IE in Figure 7) is an object whose Class corresponds to another SUC of the
library. The basic attributes of the AAS_Plant are its id, asset_id and the reference to the
controller in which the control logic is active (activeIn) as well as the latent controllers
(replicatedIn). This definition is completed with links to POUs and global variables. This
latter is a sequence of critical situations which are defined making use of expressions
involving variables.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 27

interface added to allow the definition of the controllers and automation projects in
PLCopen.

• The Role Class Library provides the different roles by which the elements can be
organized in the model (choice, sequence, each and every role). The ramifications of
the structures based on these roles is settled by means of their attributes minOccurs
and maxOccurs.
Further details regarding these libraries and their specifications can be checked in

[59].
These libraries are integrated into the AML editor (see FlexibleAutomationSystem SUC

library in Figure 7). This allows to use this tool to define FAPS models. Every Internal
Element (IE in Figure 7) is an object whose Class corresponds to another SUC of the
library. The basic attributes of the AAS_Plant are its id, asset_id and the reference to the
controller in which the control logic is active (activeIn) as well as the latent controllers
(replicatedIn). This definition is completed with links to POUs and global variables. This
latter is a sequence of critical situations which are defined making use of expressions
involving variables.

Figure 7. CAEX libraries for Flexible Automation Systems: excerpt of a SystemUnitClassLib with
AutomationML Editor. It comprises multiple System Unit Class (SUC) to define the lexicon
participating in the definition of a Flexible Automation System (FAPS, AAS_Controllers,
Hardware...).

As an example, the definition of the AAS_Plant named ST1 is depicted in Figure 8.

Figure 7. CAEX libraries for Flexible Automation Systems: excerpt of a SystemUnitClassLib with AutomationML Editor. It
comprises multiple System Unit Class (SUC) to define the lexicon participating in the definition of a Flexible Automation
System (FAPS, AAS_Controllers, Hardware . . .).

As an example, the definition of the AAS_Plant named ST1 is depicted in Figure 8.
Besides, the FAPS Model Editor allows the characterization of the critical situations

of PSs. To that end, the developers must conform boolean expressions to evaluate check-
point or unrecoverable critical situations from arithmetic and logical operations with
the available variables. In the same way, the recovery actions to be performed at each
checkpoint state (i.e., the values of the variables that define the checkpoint state), can
be declared at this point, if needed. Figure 8 presents the definition of the expression:
“(Control_ST1.Sequence1_1.E23.Q1 = 1 AND Control_ST1.Insert_P1.E73.Q1 = 1)” using the
AML editor.

Appl. Sci. 2021, 11, 2319 12 of 27Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 27

Figure 8. Flexible Automation control system design example with AutomationML Editor: (a) General Structure composed
by three stations (ST1...ST3) controlled by two Controllers; (b) Characterization of the CheckPointState of the first critical
situation identfied in ST1; (c) Characterization of an atomic Expression: Control_ST1.Sequence1_1.E23.Q1 = 1 AND
Control_ST1.Insert_P1.E73.Q1 = 1; and (d) Characterization of an Action.

Besides, the FAPS Model Editor allows the characterization of the critical situations
of PSs. To that end, the developers must conform boolean expressions to evaluate
checkpoint or unrecoverable critical situations from arithmetic and logical operations with
the available variables. In the same way, the recovery actions to be performed at each
checkpoint state (i.e., the values of the variables that define the checkpoint state), can be
declared at this point, if needed. Figure 8 presents the definition of the expression:
“(Control_ST1.Sequence1_1.E23.Q1 = 1 AND Control_ST1.Insert_P1.E73.Q1 = 1)” using
the AML editor.

3.2. Flexible Automation Projects Code Generator
The code generation of Flexible Automation Project covers normal operation as well

as reconfiguration needs. As current IEC 61131-3 standard execution environments do not
support dynamic code deployment, the reconfiguration requires the de-activation of a
Production Service in a controller and its activation in another one. Therefore, the
generated automation projects not only contain all the Production Service POUs that the
controller can run, but they are enhanced with a wrapper that allows the APlant_AASs to
activate/deactivate their execution. In addition, these projects also include the code to
read/write the state of the Production Service of each APlant_AAS.

The APlant_AAS interacts with its associated Production Service through a
predefined area of the controller memory. To that end, specific libraries are required
depending on the manufacturer (e.g., S7-300 controllers from the German manufacturer
Siemens require from libnodave and s7netplus libraries to enable an external access
[61,62], whereas the Automation Device Specification, or ADS, is required in Beckhoff
controllers for that purpose [63]).

To sum up, the Flexible Automation Projects include both the code endorsing the
Production Services and the control code that supports their flexibility (see
ProductionService submodel in Figure 2. Hence, each Production Service (PS) module is
composed of three different POUs:
• ProductionService_id: a program to control the execution of the Production Service

(PS_id);

Figure 8. Flexible Automation control system design example with AutomationML Editor: (a) General Structure composed
by three stations (ST1 . . . ST3) controlled by two Controllers; (b) Characterization of the CheckPointState of the first
critical situation identfied in ST1; (c) Characterization of an atomic Expression: Control_ST1.Sequence1_1.E23.Q1 = 1 AND
Control_ST1.Insert_P1.E73.Q1 = 1; and (d) Characterization of an Action.

3.2. Flexible Automation Projects Code Generator

The code generation of Flexible Automation Project covers normal operation as well
as reconfiguration needs. As current IEC 61131-3 standard execution environments do
not support dynamic code deployment, the reconfiguration requires the de-activation
of a Production Service in a controller and its activation in another one. Therefore, the
generated automation projects not only contain all the Production Service POUs that the
controller can run, but they are enhanced with a wrapper that allows the APlant_AASs
to activate/deactivate their execution. In addition, these projects also include the code to
read/write the state of the Production Service of each APlant_AAS.

The APlant_AAS interacts with its associated Production Service through a predefined
area of the controller memory. To that end, specific libraries are required depending on
the manufacturer (e.g., S7-300 controllers from the German manufacturer Siemens require
from libnodave and s7netplus libraries to enable an external access [61,62], whereas the
Automation Device Specification, or ADS, is required in Beckhoff controllers for that
purpose [63]).

To sum up, the Flexible Automation Projects include both the code endorsing the Pro-
duction Services and the control code that supports their flexibility (see ProductionService
submodel in Figure 2. Hence, each Production Service (PS) module is composed of three
different POUs:

• ProductionService_id: a program to control the execution of the Production Service (PS_id);
• SendStateService_id: a program that reads and serializes the state variables of the

production service;
• ReceiveStateService_id: a program that de-serializes the received information and

updates de state variables of the production service with new initialization values in
case it changes from tracking to active in a controller.

3.2.1. Production Service Program

Thanks to this program, the APlant_AAS can manage its corresponding PS, as it
provides the external access required to activate/deactivate the execution of the logic and
recovery/stop actions.

Appl. Sci. 2021, 11, 2319 13 of 27

The program structure and the templates to be fulfilled by the generator are depicted
in Figure 9. The program interface is a set of application dependent variables and other
local static variables that allow APlant_AAS to manage it. These local variables are:

• isActive and wasActive: these boolean variables determine the activation/deactivation
of the logic.

Two further local variables are included to support the availability:

• recoveryAction: it is related to the coded actions required to manage a concrete critical
situation if necessary.

• Action_CriticalSituationID: it identifies a specific recovery code (POU instance).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 27

• SendStateService_id: a program that reads and serializes the state variables of the
production service;

• ReceiveStateService_id: a program that de-serializes the received information and
updates de state variables of the production service with new initialization values in
case it changes from tracking to active in a controller.

3.2.1. Production Service Program
Thanks to this program, the APlant_AAS can manage its corresponding PS, as it

provides the external access required to activate/deactivate the execution of the logic and
recovery/stop actions.

The program structure and the templates to be fulfilled by the generator are depicted
in Figure 9. The program interface is a set of application dependent variables and other
local static variables that allow APlant_AAS to manage it. These local variables are:
• isActive and wasActive: these boolean variables determine the activation/deactivation

of the logic.
Two further local variables are included to support the availability:

• recoveryAction: it is related to the coded actions required to manage a concrete critical
situation if necessary.

• Action_CriticalSituationID: it identifies a specific recovery code (POU instance).

Figure 9. General structure of a ProductionService_id program: the interface collects the parameters
to configure the program. The body illustrates the skeleton of the program in ST programming
language of the IEC 61131-3 standard and different sequences of actions to perform depending on
the type of critical situation.

Figure 9. General structure of a ProductionService_id program: the interface collects the parameters
to configure the program. The body illustrates the skeleton of the program in ST programming
language of the IEC 61131-3 standard and different sequences of actions to perform depending on
the type of critical situation.

This program is automatically generated from FAPS model by M2M transformation
rules. Three transformation rules have been developed: one for generating the Interface of
such POU; other for its functionality (Body) and the third for the recovery actions:

• Rule 1—Interface definition: It is applied to every InternalElement having RefBaseSys-
temUnitPath property with AAS_Plant value. The rule starts adding the common
part with the fixed local variables at their initial values. After, it adds as many POU
instance variables as actions defined in the CriticalSituation elements. For this, it
searches those inherited InternalElements that have RefBaseSystemUnitPath property
with Action, getting the value of its ExternalInterface. This will be the type of the new
added variable. The name will be the same as the InternalElement’s name.

Appl. Sci. 2021, 11, 2319 14 of 27

• Rule 2—Body: It is applied to every InternalElement having RefBaseSystemUnitPath
property with AAS_Plant value. The common minimal structure is initially added
(See Figure 9), changing PS_id() by the name of the ExternalElement in a POUInstance.
Furthermore, this template applies Rule 3 to complete the list of the possible causes
related to the activation of a Production Service.

• Rule 3—Recovery Actions: It is applied to InternalElements that have RefBaseSystemU-
nitPath property with CriticalSituation value. The code to add depends on the value
of the recoveryType property (see Figure 9). The PS_id() is customized following the
procedure commented above.

Figure 10 exemplifies the generation process for the control program corresponding
of a Production Service (CL1_ST_Control). The left side of the figure presents the flexible
model through which the developer defines the flexible manufacturing system, while the
right one shows the resultant program, ProductionService_id, in PLCopen XML format.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 27

This program is automatically generated from FAPS model by M2M transformation
rules. Three transformation rules have been developed: one for generating the Interface
of such POU; other for its functionality (Body) and the third for the recovery actions:
• Rule 1—Interface definition: It is applied to every InternalElement having

RefBaseSystemUnitPath property with AAS_Plant value. The rule starts adding the
common part with the fixed local variables at their initial values. After, it adds as
many POU instance variables as actions defined in the CriticalSituation elements. For
this, it searches those inherited InternalElements that have RefBaseSystemUnitPath
property with Action, getting the value of its ExternalInterface. This will be the type of
the new added variable. The name will be the same as the InternalElement’s name.

• Rule 2—Body: It is applied to every InternalElement having RefBaseSystemUnitPath
property with AAS_Plant value. The common minimal structure is initially added
(See Figure 9), changing PS_id() by the name of the ExternalElement in a
POUInstance. Furthermore, this template applies Rule 3 to complete the list of the
possible causes related to the activation of a Production Service.

• Rule 3—Recovery Actions: It is applied to InternalElements that have
RefBaseSystemUnitPath property with CriticalSituation value. The code to add
depends on the value of the recoveryType property (see Figure 9). The PS_id() is
customized following the procedure commented above.
Figure 10 exemplifies the generation process for the control program corresponding

of a Production Service (CL1_ST_Control). The left side of the figure presents the flexible
model through which the developer defines the flexible manufacturing system, while the
right one shows the resultant program, ProductionService_id, in PLCopen XML format.

Figure 10. Example of the execution control program generation: the upper-right part of the figure
shows the interface of the program. The lower-right part of the figure shows the body of the
program in ST programming language of the IEC 61131-3 standard. The statements 1 and 2 of the
case structure use the designated code sections for the recoveryType of actions 1 and 2.

Figure 10. Example of the execution control program generation: the upper-right part of the figure shows the interface of
the program. The lower-right part of the figure shows the body of the program in ST programming language of the IEC
61131-3 standard. The statements 1 and 2 of the case structure use the designated code sections for the recoveryType of
actions 1 and 2.

3.2.2. Serialization Programs

The serialization program (SendStateService_id) collects the values of the state vari-
ables into a byte array, which is accessible by the APlant_AAS. Byte array is selected due to
most IEC 61131-3 environments endorse transformation functions to cast any data type to
byte (e.g., INT_TO_BYTE, BOOL_TO_BYTE, etc.).

On the contrary, the de-serialization program (ReceiveStateService_id) process the
array sent by the APlant_AAS and updates the state of the production service.

The structure and the templates to be fulfilled by the generator are depicted in order
to generate SendStateService_id and ReceiveStateService_id programs are depicted in
Figure 11.

Appl. Sci. 2021, 11, 2319 15 of 27

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 27

3.2.2. Serialization Programs
The serialization program (SendStateService_id) collects the values of the state

variables into a byte array, which is accessible by the APlant_AAS. Byte array is selected
due to most IEC 61131-3 environments endorse transformation functions to cast any data
type to byte (e.g., INT_TO_BYTE, BOOL_TO_BYTE, etc.).

On the contrary, the de-serialization program (ReceiveStateService_id) process the
array sent by the APlant_AAS and updates the state of the production service.

The structure and the templates to be fulfilled by the generator are depicted in order
to generate SendStateService_id and ReceiveStateService_id programs are depicted in
Figure 11.

Figure 11. General structure of SendStateService_id and ReceiveStateService_id programs: the
interface box shows the parameters to configure the program (in this case, the number of bytes of
the array). The body box presents the code of the serialization and deserialization programs in ST
programming language of the IEC 61131-3 standard.

These programs are automatically generated from FAPS model by M2M
transformation rules. Three transformation rules have been developed: one for generating
the Interface of such POUs; other for serialization functionality (Body) and the third for
the de-serialization body:
• Rule1—Interface Definition: It is applied to every InternalElement having

RefBaseSystemUnitPath property with POUInstance. It initially calculates the number
of bytes needed for defining the state (NumberOfBytes of Figure 11). For this, local
and global variables as well as input and output parameters of the POU that
implements the control logic of Production Service are identified. This POU is located
in the name of the ExternalElement. Then, Rule 2 and Rule 3 are applied in order to
generate the body of serialize or deserialize, respectively.

• Rule 2—Serialize Body. It requires the Production Service’s state and its
corresponding variables (see Figure 11).

• Rule 3—De-Serialize Body: It also requires the state and the related variables,
resulting in the writing of the new state (see Figure 11).
An example of FAP generation containing the POUs, data types, global variables and

tasks associated to three Production Services (ST1–ST3) is presented in Figure 12.

Figure 11. General structure of SendStateService_id and ReceiveStateService_id programs: the
interface box shows the parameters to configure the program (in this case, the number of bytes of
the array). The body box presents the code of the serialization and deserialization programs in ST
programming language of the IEC 61131-3 standard.

These programs are automatically generated from FAPS model by M2M transfor-
mation rules. Three transformation rules have been developed: one for generating the
Interface of such POUs; other for serialization functionality (Body) and the third for the
de-serialization body:

• Rule1—Interface Definition: It is applied to every InternalElement having RefBaseSys-
temUnitPath property with POUInstance. It initially calculates the number of bytes
needed for defining the state (NumberOfBytes of Figure 11). For this, local and global
variables as well as input and output parameters of the POU that implements the
control logic of Production Service are identified. This POU is located in the name
of the ExternalElement. Then, Rule 2 and Rule 3 are applied in order to generate the
body of serialize or deserialize, respectively.

• Rule 2—Serialize Body. It requires the Production Service’s state and its corresponding
variables (see Figure 11).

• Rule 3—De-Serialize Body: It also requires the state and the related variables, resulting
in the writing of the new state (see Figure 11).

An example of FAP generation containing the POUs, data types, global variables and
tasks associated to three Production Services (ST1–ST3) is presented in Figure 12.

3.3. Application Dependant Agents Code Generator

In order to make FAM generic and customizable, this paper proposes templates
for the application agents, that can be customized for specific processes. The following
subsections detail such templates and the automatic generation of APlant_AASs and
AController_AASs.

Appl. Sci. 2021, 11, 2319 16 of 27
Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 27

Figure 12. Example of a Flexible Automation Project containing the POUs, data types, global variables and tasks associated
to three Production Services (ST1–ST3).

3.3. Application Dependant Agents Code Generator
In order to make FAM generic and customizable, this paper proposes templates for

the application agents, that can be customized for specific processes. The following
subsections detail such templates and the automatic generation of APlant_AASs and
AController_AASs.

3.3.1. APlant_AAS Template
Each APlant_AAS is associated to several Production Services hosted in different

PLCs and it performs state diagnosis, when required, for determining if the current state
indicates a critical situation. The APlant_AAS template (AAS_PTemplate) proposed by
the authors, presented in Figure 13.

Figure 13. (a) Template of an AASPlant (AAS_PTemplate) in UML Class Diagram with detail of its methods and the states
defined in its FSM and (b) Example of use of the AAS_PTemplate in Java. The characterization method of the AASPlant
element allows the customization of the parameters PS_ID and recoveryInfo for different AASPlant instances.

Figure 12. Example of a Flexible Automation Project containing the POUs, data types, global variables and tasks associated
to three Production Services (ST1–ST3).

3.3.1. APlant_AAS Template

Each APlant_AAS is associated to several Production Services hosted in different PLCs
and it performs state diagnosis, when required, for determining if the current state indicates
a critical situation. The APlant_AAS template (AAS_PTemplate) proposed by the authors,
presented in Figure 13, addresses this issue offering a generic and customizable solution.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 27

Figure 12. Example of a Flexible Automation Project containing the POUs, data types, global variables and tasks associated
to three Production Services (ST1–ST3).

3.3. Application Dependant Agents Code Generator
In order to make FAM generic and customizable, this paper proposes templates for

the application agents, that can be customized for specific processes. The following
subsections detail such templates and the automatic generation of APlant_AASs and
AController_AASs.

3.3.1. APlant_AAS Template
Each APlant_AAS is associated to several Production Services hosted in different

PLCs and it performs state diagnosis, when required, for determining if the current state
indicates a critical situation. The APlant_AAS template (AAS_PTemplate) proposed by
the authors, presented in Figure 13.

Figure 13. (a) Template of an AASPlant (AAS_PTemplate) in UML Class Diagram with detail of its methods and the states
defined in its FSM and (b) Example of use of the AAS_PTemplate in Java. The characterization method of the AASPlant
element allows the customization of the parameters PS_ID and recoveryInfo for different AASPlant instances.

Figure 13. (a) Template of an AASPlant (AAS_PTemplate) in UML Class Diagram with detail of its methods and the states
defined in its FSM and (b) Example of use of the AAS_PTemplate in Java. The characterization method of the AASPlant
element allows the customization of the parameters PS_ID and recoveryInfo for different AASPlant instances.

The template can be customized by means of two parameters:

• PS_ID: this parameter contains an identifier that can match the identifier of the au-
tomation project, and that identifies each Program Organization Unit.

• recoveryInfo: it contains the set of masks to be applied to each component to deter-
mine which type of operation must be applied at any moment. These masks, defined

Appl. Sci. 2021, 11, 2319 17 of 27

following the meta-model presented in Figure 14, allow to identify the critical situa-
tions of the Production System (e.g., the manufacturing steps 42–44 from Figure 3 are
identified as critical situations based on the information in the recoveryInfo parame-
ter). The Diagnosis XML file has been conceived to ease the generation and storage
of such information with a predefined structure. This file stores information about
the state variables (name and type), and the masks to perform both the diagnosis and
the checkpoint. Note, that the diagnosis masks determine if it is a critical state type
(checkpoint or unrecoverable) by filtering the state variables related to the condition
to be diagnosed.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 27

, addresses this issue offering a generic and customizable solution.
The template can be customized by means of two parameters:

• PS_ID: this parameter contains an identifier that can match the identifier of the
automation project, and that identifies each Program Organization Unit.

• recoveryInfo: it contains the set of masks to be applied to each component to
determine which type of operation must be applied at any moment. These masks,
defined following the meta-model presented in Figure 14, allow to identify the
critical situations of the Production System (e.g., the manufacturing steps 42–44 from
Figure 3 are identified as critical situations based on the information in the
recoveryInfo parameter). The Diagnosis XML file has been conceived to ease the
generation and storage of such information with a predefined structure. This file
stores information about the state variables (name and type), and the masks to
perform both the diagnosis and the checkpoint. Note, that the diagnosis masks
determine if it is a critical state type (checkpoint or unrecoverable) by filtering the
state variables related to the condition to be diagnosed.

Figure 14. General Structure of the Diagnosis.xml file: Recovery information comprises the set of state variables to be
analyzed as well as the set of critical situation masks. These masks allow to diagnose either recovery or non-recovery
situations under controller failures/workloads balancing. This is performed by filtering a concrete set of state variables
related to the condition to be diagnosed. This graphic was generated using Altova XMLSpy Version 2020.sp1.

The Component Manager of APlant_AAS has been implemented in a FSM as
established in [26], which consists of the Boot, Active, Tracking, Wait decision and End
states. This FSM is implemented as a JADE FSM. There are two JADE behaviors (Simple
Behaviour) associated to each FSM state: one that manages the message exchange with the
middleware agents (Message_Queue), and another one to implement the specific
functionality of each state (Boot, Active, Tracking, WaitDecision and End). Meanwhile, access
provides access to the PS’s code in the PLC.

3.3.2. APlant_AAS Generation
The transformation of critical situations related information into a set of masks to

diagnose the Production Service is a major issue in APlant_AAS generation.
To generate PSid_Diagnosis.xml file from FAPS model the following transformation

rules are required:
• Rule 1—State characterization: It generates the set of variables conforming the state.

To do this, every InternalElement having RefBaseSystemUnitPath property with
RefVariable and the InternalElement having RefBaseSystemUnitPath property with
POUinstance in AAS_Plant are processed.

• Rule 2—Critical Situation: It applies to the InternalElements that have
RefBaseSystemUnitPath property with CriticalSituation in an AAS_Plant. As a result,
the Critical Situation information stored in diagnosis XML file is generated.

• Rule 3—Diagnosis: It processes the Condition to identify which the state variables
are required to determine the type of critical state at that situation. This rule applies

Figure 14. General Structure of the Diagnosis.xml file: Recovery information comprises the set of state variables to be
analyzed as well as the set of critical situation masks. These masks allow to diagnose either recovery or non-recovery
situations under controller failures/workloads balancing. This is performed by filtering a concrete set of state variables
related to the condition to be diagnosed. This graphic was generated using Altova XMLSpy Version 2020.sp1.

The Component Manager of APlant_AAS has been implemented in a FSM as es-
tablished in [26], which consists of the Boot, Active, Tracking, Wait decision and End
states. This FSM is implemented as a JADE FSM. There are two JADE behaviors (Simple
Behaviour) associated to each FSM state: one that manages the message exchange with the
middleware agents (Message_Queue), and another one to implement the specific functional-
ity of each state (Boot, Active, Tracking, WaitDecision and End). Meanwhile, access provides
access to the PS’s code in the PLC.

3.3.2. APlant_AAS Generation

The transformation of critical situations related information into a set of masks to
diagnose the Production Service is a major issue in APlant_AAS generation.

To generate PSid_Diagnosis.xml file from FAPS model the following transformation
rules are required:

• Rule 1—State characterization: It generates the set of variables conforming the state. To
do this, every InternalElement having RefBaseSystemUnitPath property with RefVariable
and the InternalElement having RefBaseSystemUnitPath property with POUinstance in
AAS_Plant are processed.

• Rule 2—Critical Situation: It applies to the InternalElements that have RefBaseSyste-
mUnitPath property with CriticalSituation in an AAS_Plant. As a result, the Critical
Situation information stored in diagnosis XML file is generated.

• Rule 3—Diagnosis: It processes the Condition to identify which the state variables are
required to determine the type of critical state at that situation. This rule applies to
every InternalElement with RefBaseSystemUnitPath property having an Expression in
a CriticalSituation.

• Rule 4—Checkpoint: It processes the CheckpointState to determine at which condition
the AAS_Plant must be restarted. This rule applies to each InternalElement that have
RefBaseSystemUnitPath property with CheckPointVariable in a Critical Interval.

3.3.3. AController_AAS Template

The AController_AAS updates the information related to the state of the controller
resources required by QoS Monitor agents. They can participate in negotiation processes

Appl. Sci. 2021, 11, 2319 18 of 27

when needed. Negotiation criterion depends on the specific QoS. For instance, in Availabil-
ity and after a controller failure, the D&D agent will require a negotiation process among
controllers able to run the affected Production Services, being the specific criterion, for
example, the minimum execution cycle.

In order to offer a generic and customizable solution, the AController_AAS tem-
plate (AAS_CTemplate) illustrated in Figure 15 is proposed. The template has a set of
customizable parameters:

• ID, which identifies the agent in the system;
• A textual Description;
• CPUfactor, with respect to a reference controller;
• Memory resources;
• IP address;
• AssignedPS: a list of Production Services, whose control logic is executed in the controller.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 27

to every InternalElement with RefBaseSystemUnitPath property having an Expression
in a CriticalSituation.

• Rule 4—Checkpoint: It processes the CheckpointState to determine at which condition
the AAS_Plant must be restarted. This rule applies to each InternalElement that have
RefBaseSystemUnitPath property with CheckPointVariable in a Critical Interval.

3.3.3. AController_AAS Template
The AController_AAS updates the information related to the state of the controller

resources required by QoS Monitor agents. They can participate in negotiation processes
when needed. Negotiation criterion depends on the specific QoS. For instance, in
Availability and after a controller failure, the D&D agent will require a negotiation process
among controllers able to run the affected Production Services, being the specific criterion,
for example, the minimum execution cycle.

In order to offer a generic and customizable solution, the AController_AAS template
(AAS_CTemplate) illustrated in Figure 15 is proposed. The template has a set of
customizable parameters:

• ID, which identifies the agent in the system;
• A textual Description;
• CPUfactor, with respect to a reference controller;
• Memory resources;
• IP address;
• AssignedPS: a list of Production Services, whose control logic is executed in the

controller.

Figure 15. (a) Template of an AAS_Controller (AAS_CTemplate) in UML Class Diagram with detail
of its methods and the states defined in its FSM and (b) Example of the use of the AAS_CTemplate
in Java. The characterization method of the AAS_Controller element allows the customization of the
parameters ID, description, IP, CPUfactor, memory and assignedPS for different AAS_Controller
instances.

The Class Diagram presented in Figure 15 defines the template for the design and
parameterization of every AController_AAS of the system. The basic functionality of the
AController_AAS, which manages the messages from the middleware agents, is
implemented in a cyclic behavior (functionality). These messages can be either negotiation
messages or queries about the controller resources. Each time a negotiation message is
received, a new negotiation behavior is instantiated. This behavior is deleted once the
negotiation process, it was related to, is concluded. Furthermore, the AController_AAS
can also implement resource monitoring behaviors. These behaviors allow monitoring a
specific resource of the controller as part of the QoS monitoring process.

Figure 15. (a) Template of an AAS_Controller (AAS_CTemplate) in UML Class Diagram with detail of its methods and the
states defined in its FSM and (b) Example of the use of the AAS_CTemplate in Java. The characterization method of the
AAS_Controller element allows the customization of the parameters ID, description, IP, CPUfactor, memory and assignedPS
for different AAS_Controller instances.

The Class Diagram presented in Figure 15 defines the template for the design and
parameterization of every AController_AAS of the system. The basic functionality of
the AController_AAS, which manages the messages from the middleware agents, is im-
plemented in a cyclic behavior (functionality). These messages can be either negotiation
messages or queries about the controller resources. Each time a negotiation message is
received, a new negotiation behavior is instantiated. This behavior is deleted once the
negotiation process, it was related to, is concluded. Furthermore, the AController_AAS
can also implement resource monitoring behaviors. These behaviors allow monitoring a
specific resource of the controller as part of the QoS monitoring process.

The registration of the AController_AAS and the creation of resource monitoring and
functionality behaviors are performed during the setup method of the AController_AAS.

4. Assessment

The modeling approach and the application agents presented in the previous section
have been implemented in a demonstrator located at the Department of Automatic Control
and Systems Engineering of the University of the Basque Country, Bilbao, Spain. This
case study seeks to prove the capability to assure work balance among the distributed
controllers comprising the automation system for the flexible manufacturing cell FMS-200.

The manufacturing cell comprises four stations, connected by a conveyor system, that
assemble a product from a set of four parts: base, bearing, shaft and lid. The first station
validates the orientation of the base, which is provided from a buffer. If the position is
wrong, the base is discarded, and a new one is provided. Otherwise, the base is transferred

Appl. Sci. 2021, 11, 2319 19 of 27

to the conveyor system. In the second one, a robotic arm inserts the bearing and shaft in the
base, whereas the lid is placed in the third station. The fourth station acts as a warehouse,
where the assembled products fed by the conveyor system are stored.

The cell is organized in five PlantAssets, corresponding to the four stations and the
transfer system, respectively. Nevertheless, for simplicity, this assessment only considers
the PlantAssets associated to the first three stations. Besides the manufacturing cell, the
demonstrator includes two CX1020 Soft PLCs from the German manufacturer Beckhoff.
These devices are characterized for their ability to run a Windows Embedded CE operating
system in parallel with the Beckhoff PLC runtime. The demonstrator also contains a
supervisor PC hosting the Middleware Manager and the QoS Manager.

In the first station, once the orientation of the base has been checked, a pneumatic
suction gripper is responsible of picking the base and placing it in the conveyor system.
Any interruption during the execution of this task implies a loss of reference of the current
state, and therefore, it is considered a critical operation. The reconfiguration actions to be
considered will differ depending on the position of the gripper when the incident occurs.
Thus, two different critical situations have been defined. In case the base falls during the
initial lifting (i.e., before the gripper starts moving towards the conveyor system), it is
retired from the station and a new base is supplied. On the other hand, if the gripper is
already moving towards the conveyor system when the failure arises, the system cannot
assure the return to a previous known state by itself. Thus, the system goes to a safe stop
state, triggering an alarm to warn the operator of the problem.

The second station uses a robot arm to place the bearing and shaft on the base. The
communication with the robot arm generates six critical situations, in which the PLC that
holds the corresponding production service, does not know the position of the robot. These
situations are defined as checkpoint situations in which the connection to the robot needs
to be recovered and the execution of the code resumed.

The third station completes the assembly of the product by placing the lid. The com-
position of the lids can vary in terms of color, material, and height. Hence, this station
has different actuators to introduce lids in the station, to place them in the product, or
to remove them in case they do not match the product to be assembled. These actuators
can perform their operations in parallel, as they are allocated around a rotary table, and
they are considered critical operations. Up to five critical situations have been identi-
fied, with their subsequent actions to resume a normal execution. It must be noted that
each critical situation must consider the execution states of all the actuators performing
parallel operations.

The minimal POUs of the control code, generated following the methodology pre-
sented in [48], are stored in a model-oriented database (see Figure 6). On the other hand,
developers with AML-based editor design Flexible Automation Production System as a
set of Production Services. They also specify the identified critical situations. Part of the
complete model is presented in Figure 8.

The application of the transformation rules generates the flexible automation project of
each PLC in the system containing the POUs, data types and global variables related to the
production services it can offer. The code includes the POU that manages the activation/de-
activation of the Control Logic (CL), as wells as state serialization FBs. The different parts
of the Production Services contained in the flexible automation project for controller 1 are
presented in Figures 10 and 12.

Concerning the application agents, the Flexible Automation Framework generates the
corresponding AController_AASs (see example in Figure 15), APlant_AASs (see example
in Figure 13) and their corresponding diagnosis files.

As a result of the automatic code generation, the Flexible Automation Projects, as well
as the AController_AAs, APlant_AASs and the diagnosis information files, are deployed
into the controllers.

Appl. Sci. 2021, 11, 2319 20 of 27

The assessment process comprises the analysis of two different features: evaluation
of the reconfiguration capabilities using a concrete example, and the scalability of the
proposed approach.

The assessment of reconfiguration capabilities consisted of the following: initially,
there was a unique control system (controller 1) in charge of the execution of the automa-
tion control software of the three APlant_Assets. At a certain point, a second controller
(controller 2) joined the system.

Figure 16 illustrates the sequence of interactions between agents in the assessed
scenario. The reconfiguration process is divided in three steps:

• Step 1—QoS Loss Detection: Registration of controller 2 unbalances the system
as its current workload is too low. When the workload monitoring of controller
2 detects it, the AController_AAS2 (CA2 in Figure 16) triggers an event to notify
the QM (“QoS_Loss_Event(lowerLimit_reach;CA2)” in Figure 16), that eventually
leads to Production System reconfiguration (“QoS_Reconfiguration_Event (system-
Load;lowerLimit_recovery;CA2)” in Figure 16).

• Step 2—Diagnosis and Decision: The D&D receives the reconfiguration event and
proceeds to initiate a negotiation among controllers to decide the new distribution.
For simplicity, this negotiation process is encapsulated in the “Workload Optimization
Process” block in Figure 16. The new distribution depends on the CPU factors of the
AController_AASs (CA1 and CA2 in Figure 16), current distribution of the Production
Services, and the CPU workload limits introduced by the Production Service software
modules. When the negotiation concludes, the D&D launches the relocation of the
Production Services).

• Step 3—Reconfiguration: Relocation is represented by the “for loop: PSs to be relo-
cated” in Figure 16, which consists of the following steps. Firstly, the D&D forces the
APlant_AASs (PSAi.j in Figure 16) of the affected production service software modules
to move to wait decision state (wait in Figure 13). Similarly, the D&D also forces the
former active APlant_AAS to stop in the next non-critical situation of the control code
(“change_State(waitDecision;nonCriticalStop)” in Figure 16). At this point, the D&D
commands the execution of the production service software modules from the last
known state in their new locations (“change_State(active;direct)” in Figure 16).

After the reconfiguration process, the control software of station 1 and station 2
PlantAssets are running in controller 1 and the control software of station 3 is running in
controller 2. Figure 17 presents a graphic depicting the workload of the different controllers
before and after the introduction of controller 2.

Appl. Sci. 2021, 11, 2319 21 of 27Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 27

Figure 16. Sequence diagram detailing the triggering of the Workload Optimization process and
the redistribution of active PSs among the controllers: when Controller 2 joins the system, CA2
informs the QoS monitor that its workload is too low, and after confirmation, the QoS Monitor
sends a reconfiguration event to the D&D (Step 1). The D&D requests information to the MM and
after receiving it, it triggers the Workload Optimization Process (Step 2). As a result of this
optimization, the D&D stops PSA3.1 at the first non-critical situation, changes the state of PSA3.1
and PSA3.2 to “wait”, and later changes the state of PSA3.2 to “active” and the state of PSA3.1 to
“tracking” (Step 3).

After the reconfiguration process, the control software of station 1 and station 2
PlantAssets are running in controller 1 and the control software of station 3 is running in
controller 2. Figure 17 presents a graphic depicting the workload of the different
controllers before and after the introduction of controller 2.

Figure 17. Workload of controller 1 and controller 2 before and after the reconfiguration: the
orange box (reconfiguration process) corresponds to the for loop shadowed in blue in Figure 16.
As a result of the reconfiguration process, the workload of Controller 1 decreases (now it has two
active Production Services), and the workload of Controller 2 increases (it has one active
Production Service).

The scalability assessment evaluates the time the D&D takes to decide the new
distribution (Step 2) and the time needed by the architecture to reconfigure the system
(Step 3). This depends on the number of automation software modules to be reconfigured
as well as on the number of PLCs that may run the involved software modules. For this

Figure 16. Sequence diagram detailing the triggering of the Workload Optimization process and
the redistribution of active PSs among the controllers: when Controller 2 joins the system, CA2
informs the QoS monitor that its workload is too low, and after confirmation, the QoS Monitor sends
a reconfiguration event to the D&D (Step 1). The D&D requests information to the MM and after
receiving it, it triggers the Workload Optimization Process (Step 2). As a result of this optimization,
the D&D stops PSA3.1 at the first non-critical situation, changes the state of PSA3.1 and PSA3.2 to
“wait”, and later changes the state of PSA3.2 to “active” and the state of PSA3.1 to “tracking” (Step 3).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 27

Figure 16. Sequence diagram detailing the triggering of the Workload Optimization process and
the redistribution of active PSs among the controllers: when Controller 2 joins the system, CA2
informs the QoS monitor that its workload is too low, and after confirmation, the QoS Monitor
sends a reconfiguration event to the D&D (Step 1). The D&D requests information to the MM and
after receiving it, it triggers the Workload Optimization Process (Step 2). As a result of this
optimization, the D&D stops PSA3.1 at the first non-critical situation, changes the state of PSA3.1
and PSA3.2 to “wait”, and later changes the state of PSA3.2 to “active” and the state of PSA3.1 to
“tracking” (Step 3).

After the reconfiguration process, the control software of station 1 and station 2
PlantAssets are running in controller 1 and the control software of station 3 is running in
controller 2. Figure 17 presents a graphic depicting the workload of the different
controllers before and after the introduction of controller 2.

Figure 17. Workload of controller 1 and controller 2 before and after the reconfiguration: the
orange box (reconfiguration process) corresponds to the for loop shadowed in blue in Figure 16.
As a result of the reconfiguration process, the workload of Controller 1 decreases (now it has two
active Production Services), and the workload of Controller 2 increases (it has one active
Production Service).

The scalability assessment evaluates the time the D&D takes to decide the new
distribution (Step 2) and the time needed by the architecture to reconfigure the system
(Step 3). This depends on the number of automation software modules to be reconfigured
as well as on the number of PLCs that may run the involved software modules. For this

Figure 17. Workload of controller 1 and controller 2 before and after the reconfiguration: the orange
box (reconfiguration process) corresponds to the for loop shadowed in blue in Figure 16. As a result of
the reconfiguration process, the workload of Controller 1 decreases (now it has two active Production
Services), and the workload of Controller 2 increases (it has one active Production Service).

The scalability assessment evaluates the time the D&D takes to decide the new distri-
bution (Step 2) and the time needed by the architecture to reconfigure the system (Step 3).
This depends on the number of automation software modules to be reconfigured as well as
on the number of PLCs that may run the involved software modules. For this test, all need
to be relocated and the reconfiguration is launched when the control software modules
operate in a non-critical state. Table 1 presents the results of this test. The first column
represents the time in milliseconds the D&D takes to calculate the new distribution of
the PlantAsset software module; while the following columns present the time it takes to
reconfigure each.

Appl. Sci. 2021, 11, 2319 22 of 27

Table 1. Distribution algorithm and reconfiguration times.

PSAs Dist.
Alg.

1st
Reconf

2nd
Reconf

3rd
Reconf

4th
Reconf

5th
Reconf

6th
Reconf

7th
Reconf

8th
Reconf

2 5.29 610.04 1214.79

3 6.14 610.66 1216.09 1822.70

4 8.36 612.20 1221.51 1830.35 2437.00

5 11.67 616.58 1236.59 1843.65 2450.43 3056.97

6 12.72 617.41 1222.53 1827.60 2432.38 3065.81 3687.38

7 16.98 625.51 1230.31 1837.61 2444.37 3050.74 3657.21 4262.64

8 17.49 622.99 1242.58 1851.25 2456.50 3062.99 3667.54 4275.75 4880.56

The following figures illustrate how the execution time of the re-distribution algorithm
(Figure 18) and the overall reconfiguration time (Figure 19) increase with the number of
software modules to be reconfigured. However, the time to make a decision is negligible in
comparison with the overall reconfiguration time, as it is computed within the D&D and
it does not include negotiation. It is also remarkable that the time for reconfiguring each
software module is approximately the same, around 615 ms.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 27

test, all need to be relocated and the reconfiguration is launched when the control software
modules operate in a non-critical state. Table 1 presents the results of this test. The first
column represents the time in milliseconds the D&D takes to calculate the new
distribution of the PlantAsset software module; while the following columns present the
time it takes to reconfigure each.

Table 1. Distribution algorithm and reconfiguration times.

PSAs
Dist.
Alg.

1st
Reconf

2nd
Reconf

3rd
Reconf

4th
Reconf

5th
Reconf

6th
Reconf

7th
Reconf

8th
Reconf

2 5.29 610.04 1214.79
3 6.14 610.66 1216.09 1822.70
4 8.36 612.20 1221.51 1830.35 2437.00
5 11.67 616.58 1236.59 1843.65 2450.43 3056.97
6 12.72 617.41 1222.53 1827.60 2432.38 3065.81 3687.38
7 16.98 625.51 1230.31 1837.61 2444.37 3050.74 3657.21 4262.64
8 17.49 622.99 1242.58 1851.25 2456.50 3062.99 3667.54 4275.75 4880.56

The following figures illustrate how the execution time of the re-distribution
algorithm (Figure 18) and the overall reconfiguration time (Figure 19) increase with the
number of software modules to be reconfigured. However, the time to make a decision is
negligible in comparison with the overall reconfiguration time, as it is computed within
the D&D and it does not include negotiation. It is also remarkable that the time for
reconfiguring each software module is approximately the same, around 615 ms.

Figure 18. Distribution Algorithm Time vs. Number of control software modules.

Figure 19. Reconfiguration Time vs. Number of control software modules.

Figure 18. Distribution Algorithm Time vs. Number of control software modules.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 27

test, all need to be relocated and the reconfiguration is launched when the control software
modules operate in a non-critical state. Table 1 presents the results of this test. The first
column represents the time in milliseconds the D&D takes to calculate the new
distribution of the PlantAsset software module; while the following columns present the
time it takes to reconfigure each.

Table 1. Distribution algorithm and reconfiguration times.

PSAs
Dist.
Alg.

1st
Reconf

2nd
Reconf

3rd
Reconf

4th
Reconf

5th
Reconf

6th
Reconf

7th
Reconf

8th
Reconf

2 5.29 610.04 1214.79
3 6.14 610.66 1216.09 1822.70
4 8.36 612.20 1221.51 1830.35 2437.00
5 11.67 616.58 1236.59 1843.65 2450.43 3056.97
6 12.72 617.41 1222.53 1827.60 2432.38 3065.81 3687.38
7 16.98 625.51 1230.31 1837.61 2444.37 3050.74 3657.21 4262.64
8 17.49 622.99 1242.58 1851.25 2456.50 3062.99 3667.54 4275.75 4880.56

The following figures illustrate how the execution time of the re-distribution
algorithm (Figure 18) and the overall reconfiguration time (Figure 19) increase with the
number of software modules to be reconfigured. However, the time to make a decision is
negligible in comparison with the overall reconfiguration time, as it is computed within
the D&D and it does not include negotiation. It is also remarkable that the time for
reconfiguring each software module is approximately the same, around 615 ms.

Figure 18. Distribution Algorithm Time vs. Number of control software modules.

Figure 19. Reconfiguration Time vs. Number of control software modules. Figure 19. Reconfiguration Time vs. Number of control software modules.

5. Conclusions

This paper presents an approach aiming at adding flexibility to automation production
systems following Industry 4.0 issues. It adds this flexibility by reconfiguring the control

Appl. Sci. 2021, 11, 2319 23 of 27

system, i.e., relocating the different functionalities over the distributed control system,
assuring the execution despite controller failure.

The proposed approach defines FAPS as a set of Controller and Plant I4.0 inter-
connected components, which support reconfiguration according to QoS parameters. It
assumes that a MAS-based middleware provides QoS management at runtime but it offers
model-based support to specify flexibility needs of target systems and automatically gener-
ate: (1) the flexible automation project for each controller in the system, as well as; (2) the
code of application dependent agents, being the AAS’s component manager implemen-
tation for the system’s components. Furthermore, a template for application dependent
agents (controller and plant) has been defined to make FAM generic and customizable.
These templates can be customized for specific processes.

The core of the framework proposed by the authors is based on MDE that allows
managing complex systems. In fact, a Model Editor guides designers along the design of
automation production systems, offering means for characterizing the critical situations
of the production services, and collecting this information in a Model. The automatic
generation has been performed via M2M and M2T transformation rules having as input
the model generated by the Editor. This avoids manual programming errors, very common
in these such complex situations.

The execution of the assessment has allowed to put in practice the proposed approach.
As a result, several conclusions have been obtained:

• The definition of the critical intervals in the manufacturing process, which is essential
to manage flexibility properly, has proved to be a difficult task. To that end, it is
necessary to rely on someone with a great knowledge of the manufacturing process,
who has also taken part in the design process of the code for the controllers. As far as
authors know, other approaches do not contemplate this task, as they consider that
the state represents the whole process, and thus any situation should be recoverable.
Nevertheless, the reality is very different.

• The advantages of AutomationML for modeling and processing different types of data
have been demonstrated. Interoperability is ensured with AutomationML as long as
the integrators use PLCOpen, which is widely known and used by an increasing num-
ber of engineers and suppliers (e.g., Siemens allows to export hardware configuration
to AutomationML). Despite it is a relatively new standard, it is receiving an increasing
attention as exportation format for different types of data (information, code, etc.).

• The proposed approach eases the reconfiguration and scalability of the system, al-
lowing the reconfiguration of the control system (by adding or removing controllers)
without changing the configuration of the assets. In the same way, changes in the
control of the process can be easily implemented thanks to automated code generation.

However, in case the target PLC is not PLCopen compliant, the proposed approach
could not be applied. That supposes a limitation in terms of scalability of the solution at
design time. Regarding future work, the use of accurate simulation models as a resource
to identify critical situations of the manufacturing process in a safe and controlled envi-
ronment, could allow to perform cost-opportunity analyses in order to decide whether
additional sensors should be included.

Author Contributions: Conceptualization, software, validation, writing—original draft prepara-
tion, U.G.; software, validation, writing—original draft preparation, A.L.; methodology, validation,
writing—review and editing, A.A.; methodology, software, writing—review and editing, E.E.; con-
ceptualization, supervision and writing—review and editing, M.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was financed by MCIU/AEI/FEDER, UE (grant number RTI2018-096116-B-I00)
and by GV/EJ (grant number IT1324-19).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2021, 11, 2319 24 of 27

Data Availability Statement: The functionality of the flexible assembly cell FMS-200, located in the
Department of Automatic Control and System Engineering of the University of the Basque Country is
online available: https://youtu.be/7Ifp5jD3-4U (accessed on 11 January 2021). The availability of the
Control System is online available: https://youtu.be/uIK1w5p3_RQ (accessed on 11 January 2021).

Acknowledgments: The authors would like to express gratitude to the Government of Spain for its
support to the research project in which this work is framed (grant number RTI2018-096116-B-I00), as
well as to the Government of the Basque Country Region (grant number IT1324-19). We would also
like to thank to the referees which provided us their feedback for the improvement of this manuscript.
A very special thank to Rafael Priego and Birgit Vogel for their collaboration in the work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following tablecollects the acronyms and abbreviations used throughout the paper.

AAS Asset Administration Shell
AML Automation ML
APS Automation Production Systems
CAEX Computer Aided Engineering eXchange
CL Control Logic
D&D Diagnosis & Decision
DT Digital Twin
FAM Flexible Automation Middleware
FAPS Flexible Automation Production System
FAVA Functional Application Design for Distributed Automation Systems
FB Function Blocks
FSM Finite State Machine
IE Internal Element
JADE Java Agent Development Framework
MM Middleware Manager
MDD Model Driven Design
MDE Model Driven Engineering
M2M Model to Model
M2T Model to Text
MAS Multi Agent Systems
PS Production Service
PLCs Programmable Logic Controllers
POU Program Organization Unit
QoS Quality of service
QM QoS Monitor
RAMI 4.0 Reference Architecture Model for Industry 4.0
SysML System Modeling Language
SR System Repository
SUC System Unit Classes
UML Unified Modeling Language
XML eXtensible Markup Language

References
1. European Commission. Research and Innovation. Factories of the Future PPP: Towards Competitive EU Manufacturing. Available

online: https://ec.europa.eu/research/press/2013/pdf/ppp/fof_factsheet.pdf (accessed on 1 February 2021).
2. Blanchet, M.; Rinn, T.; Von Thaden, G.; de Thieulloy, G. Industry 4.0 The New Industrial Revolution How Europe Will Succeed.

Available online: http://www.iberglobal.com/files/Roland_Berger_Industry.pdf (accessed on 1 February 2021).
3. National Science and Technology Council. ADVANCED MANUFACTURING: A Snapshot of Priority Technology Areas Across

the Federal Government. Available online: https://www.mrs.org/docs/default-source/advocacy-policy/resources/advanced-
manufacturing---A-snapshot-of-priority-technology-areas.pdf?sfvrsn=fb15e811_6 (accessed on 1 February 2021).

4. Liao, Y.; Deschamps, F.; Loures, E.F.R.; Ramos, L.F.P. Past, present and future of Industry 4.0—A systematic literature review and
research agenda proposal. Int. J. Prod. Res. 2017, 55, 3609–3629. [CrossRef]

https://youtu.be/7Ifp5jD3-4U
https://youtu.be/uIK1w5p3_RQ
https://ec.europa.eu/research/press/2013/pdf/ppp/fof_factsheet.pdf
http://www.iberglobal.com/files/Roland_Berger_Industry.pdf
https://www.mrs.org/docs/default-source/advocacy-policy/resources/advanced-manufacturing---A-snapshot-of-priority-technology-areas.pdf?sfvrsn=fb15e811_6
https://www.mrs.org/docs/default-source/advocacy-policy/resources/advanced-manufacturing---A-snapshot-of-priority-technology-areas.pdf?sfvrsn=fb15e811_6
http://doi.org/10.1080/00207543.2017.1308576

Appl. Sci. 2021, 11, 2319 25 of 27

5. European Commission; European Factories of the Future Research Association (EFFRA). Factories of the Future. Multi-Annual
Roadmap for the Contractual PPP under Horizon 2020. Available online: https://www.effra.eu/sites/default/files/factories_of_
the_future_2020_roadmap.pdf (accessed on 1 February 2021).

6. Lindstrom, J.; Kyosti, P.; Birk, W.; Lejon, E. An initial model for zero defect manufacturing. Appl. Sci. 2020, 10, 4570. [CrossRef]
7. Mourtzis, D. Simulation in the design and operation of manufacturing systems: State of the art and new trends. Int. J. Prod. Res.

2020, 58, 1927–1949. [CrossRef]
8. Mourtzis, D.; Vlachou, E. A cloud-based cyber-physical system for adaptive shop-floor scheduling and condition-based mainte-

nance. J. Manuf. Syst. 2018, 47, 179–198. [CrossRef]
9. Lu, Y.; Xu, X.; Wang, L. Smart manufacturing process and system automation—A critical review of the standards and envisioned

scenarios. J. Manuf. Syst. 2020, 56, 312–325. [CrossRef]
10. Cotrino, A.; Sebastián, M.A.; González-Gaya, C. Industry 4.0 roadmap: Implementation for small and medium-sized enterprises.

Appl. Sci. 2020, 10, 8566. [CrossRef]
11. Tay, S.I.; Malaysia, T.H.O.; Raja, P.; Pahat, B.; Hamid, N.A.A.; Ahmad, A.N.A. An overview of industry 4.0: Definition, components,

and government initiatives. J. Adv. Res. Dyn. Control. Syst. 2018, 10, 1379–1387.
12. Florescu, A.; Barabas, S.A. Modeling and simulation of a flexible manufacturing system—A basic component of industry 4.0.

Appl. Sci. 2020, 10, 8300. [CrossRef]
13. Shen, W.; Wang, L.; Hao, Q. Agent-based distributed manufacturing process planning and scheduling: A state-of-the-art survey.

IEEE Trans. Syst. Part. C 2006, 36, 563–577. [CrossRef]
14. Krupitzer, C.; Roth, F.M.; VanSyckel, S.; Schiele, G.; Becker, C. A survey on engineering approaches for self-adaptive systems.

Pervasive Mob. Comput. 2015, 17, 184–206. [CrossRef]
15. Wang, L.; Adamson, G.; Holm, M.; Moore, P. A review of function blocks for process planning and control of manufacturing

equipment. J. Manuf. Syst. 2012, 31, 269–279. [CrossRef]
16. Nouri, H. Development of a comprehensive model and BFO algorithm for a dynamic cellular manufacturing system. Appl. Math.

Model. 2016, 40, 1514–1531. [CrossRef]
17. Urban, T.L.; Chiang, W.-C. Designing energy-efficient serial production lines: The unpaced synchronous line-balancing problem.

Eur. J. Oper. Res. 2016, 248, 789–801. [CrossRef]
18. Legat, C.; Vogel-Heuser, B. A Multi-agent architecture for compensating unforeseen failures on field control level. In Service

Orientation in Holonic and Multi-Agent Manufacturing and Robotics. Studies in Computational Intelligence; Borangiu, T., Trentesaux, D.,
Thomas, A., Eds.; Springer: Cham, Switzerland, 2014; Volume 544, pp. 195–208. [CrossRef]

19. Ribeiro, L.; Barata, J.; Onori, M.; Hoos, J. Industrial agents for the fast deployment of evolvable assembly systems. In Industrial
Agents; Leitão, P., Karnouskos, S., Eds.; Morgan Kaufmann: Boston, MA, USA, 2015; pp. 301–322, ISBN 9780128003411. [CrossRef]

20. Rocha, A.; Di Orio, G.; Barata, J.; Antzoulatos, N.; Castro, E.; Scrimieri, D.; Ratchev, S. An agent based framework to support
plug and produce. In Proceedings of the 2014 12th IEEE International Conference on Industrial Informatics (INDIN 2014), Porto
Alegre, Brazil, 27–30 July 2014; pp. 504–510. [CrossRef]

21. Botygin, I.A.; Tartakovsky, V.A. The development and simulation research of load balancing algorithm in network infra-structures.
In Proceedings of the 2014 International Conference on Mechanical Engineering, Automation and Control Systems (MEACS
2014), Tomsk, Russia, 16–18 October 2014; pp. 1–5. [CrossRef]

22. Guo, L.; Wang, B.; Wang, W. Research of energy-efficiency algorithm based on on-demand load balancing for wireless sensor
networks. In Proceedings of the 2009 International Conference on Test and Measurement, Hong Kong, China, 5–6 December 2009;
pp. 22–26. [CrossRef]

23. Merz, M.; Frank, T.; Vogel-Heuser, B. Dynamic redeployment of control software in distributed industrial automation systems
during runtime. In Proceedings of the 2012 IEEE International Conference on Automation Science and Engineering (CASE 2012),
Seoul, Korea, 20–24 August 2012; pp. 863–868. [CrossRef]

24. Streit, A.; Rösch, S.; Vogel-Heuser, B. Redeployment of control software during runtime for modular automation systems taking
real-time and distributed I/O into consideration. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation
(ETFA 2014), Barcelona, Spain, 16–19 September 2014; pp. 1–4. [CrossRef]

25. Salazar, L.A.C.; Mayer, F.; Schütz, D.; Vogel-Heuser, B. Platform independent multi-agent system for robust networks of
production systems. IFAC PapersOnLine 2018, 51, 1261–1268. [CrossRef]

26. Priego, R.; Iriondo, N.; Gangoiti, U.; Marcos, M. Agent Based Middleware Architecture for Reconfigurable Manufacturing
Systems. Int. J. Adv. Manuf. Technol. 2017, 92, 1579–1590. [CrossRef]

27. International Electrotechnical Commission. Smart Manufacturing—Reference Architecture Model Industry 4.0 (RAMI4.0). IEC
Standard PAS 63088: 2017(E). Available online: https://webstore.iec.ch/publication/30082 (accessed on 3 February 2021).

28. Wang, H. Dynamic Fault Handling and Reconfiguration for Industrial Automation Systems. Available online: https://
www.ias.uni-stuttgart.de/dokumente/publikationen/2019_Dynamic_Fault_Handling_and_Reconfiguration_for_Industrial_
Automation_Systems.pdf (accessed on 3 February 2021).

29. Lyu, G.; Fazlirad, A.; Brennan, R.W. Multi-agent modeling of cyber-physical systems for IEC 61499 based distributed automation.
Procedia Manuf. 2020, 51, 1200–1206. [CrossRef]

30. Fraile, F.; Sanchis, R.; Poler, R.; Ortiz, A. Reference models for digital manufacturing platforms. Appl. Sci. 2019, 9, 4433. [CrossRef]

https://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf
https://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf
http://doi.org/10.3390/app10134570
http://doi.org/10.1080/00207543.2019.1636321
http://doi.org/10.1016/j.jmsy.2018.05.008
http://doi.org/10.1016/j.jmsy.2020.06.010
http://doi.org/10.3390/app10238566
http://doi.org/10.3390/app10228300
http://doi.org/10.1109/TSMCC.2006.874022
http://doi.org/10.1016/j.pmcj.2014.09.009
http://doi.org/10.1016/j.jmsy.2012.02.004
http://doi.org/10.1016/j.apm.2015.09.004
http://doi.org/10.1016/j.ejor.2015.07.015
http://doi.org/10.1007/978-3-319-04735-5_13
http://doi.org/10.1016/B978-0-12-800341-1.00017-6
http://doi.org/10.1109/INDIN.2014.6945565
http://doi.org/10.1109/MEACS.2014.6986904
http://doi.org/10.1109/ICTM.2009.5413071
http://doi.org/10.1109/CoASE.2012.6386445
http://doi.org/10.1109/ETFA.2014.7005263
http://doi.org/10.1016/j.ifacol.2018.08.359
http://doi.org/10.1007/s00170-017-0154-z
https://webstore.iec.ch/publication/30082
https://www.ias.uni-stuttgart.de/dokumente/publikationen/2019_Dynamic_Fault_Handling_and_Reconfiguration_for_Industrial_Automation_Systems.pdf
https://www.ias.uni-stuttgart.de/dokumente/publikationen/2019_Dynamic_Fault_Handling_and_Reconfiguration_for_Industrial_Automation_Systems.pdf
https://www.ias.uni-stuttgart.de/dokumente/publikationen/2019_Dynamic_Fault_Handling_and_Reconfiguration_for_Industrial_Automation_Systems.pdf
http://doi.org/10.1016/j.promfg.2020.10.168
http://doi.org/10.3390/app9204433

Appl. Sci. 2021, 11, 2319 26 of 27

31. Cavalieri, S.; Salafia, M.G. Insights into mapping solutions based on OPC UA information model applied to the industry 4.0 asset
administration shell. Computers 2020, 9, 28. [CrossRef]

32. Cavalieri, S.; Giuseppe, M.G. Asset administration shell for PLC representation based on IEC 61131-3. IEEE Access 2020, 8,
142606–142621. [CrossRef]

33. Glossary. Available online: https://www.plattform-i40.de/SiteGlobals/PI40/Forms/Listen/Glossar/EN/Glossary_Formular.
html?queryResultId=null&pageNo=0&resourceId=1081500&pageLocale=en&input_=1081494&titlePrefix=Alle (accessed on 13
February 2021).

34. International Electrotechnical Commission. IEC 61131–3:2013 Programmable Controllers—Part 3: Programming Languages.
Available online: https://webstore.iec.ch/publication/4552 (accessed on 3 February 2021).

35. The Structure of the Administration Shell: Trilateral Perspectives from France, Italy and Germany. Available online: https://www.
plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.pdf?__blob=publicationFile&v=4 (ac-
cessed on 25 February 2021).

36. Booch, G.; Rumbaugh, J.; Jacobson, I. The Unified Modeling Language User Guide, 2nd ed.; Addison-Wesley Professional: Boston,
MA, USA, 2015; ISBN 0321267974.

37. Estevez, E.; Marcos, M.; Gangoiti, U.; Orive, D. A Tool Integration Framework for Industrial Distributed Control Systems. In
Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 12–15 December 2005; pp. 8373–8378. [CrossRef]

38. Hästbacka, D.; Vepsäläinen, T.; Kuikka, S. Model-driven development of industrial process control applications. J. Syst. Softw.
2011, 84, 1100–1113. [CrossRef]

39. Thramboulidis, K.; Frey, G. Towards a model-driven IEC 61131-based development process in industrial automation. J. Softw.
Eng. Appl. 2011, 4, 217–226. [CrossRef]

40. Vyatkin, V.; Hanisch, H.-M.; Pang, C.; Yang, C.-H. Closed-loop modeling in future automation system engineering and validation.
IEEE Trans. Syst. Part. C 2009, 39, 17–28. [CrossRef]

41. SysML. The SysML Specification. Available online: http://www.sysml.org (accessed on 3 February 2021).
42. Schütz, D.; Obermeier, M.; Vogel-heuser, B. SysML-based approach for automation software development—Explorative usability

evaluation of the provided notation. In Design, User Experience, and Usability. Web, Mobile, and Product Design. DUXU 2013; Lecture
Notes in Computer Science; Marcus, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8015, pp. 568–574. [CrossRef]

43. Fay, A.; Vogel-Heuser, B.; Frank, T.; Eckert, K.; Hadlich, T.; Diedrich, C. Enhancing a model-based engineering approach for
distributed manufacturing automation systems with characteristics and design patterns. J. Syst. Softw. 2015, 101, 221–235.
[CrossRef]

44. Wehrmeister, M.A.; de Freitas, E.P.; Binotto, A.P.D.; Pereira, C.E. Combining aspects and object-orientation in model-driven
engineering for distributed industrial mechatronics systems. Mechatronics 2014, 24, 844–865. [CrossRef]

45. Marcos, M.; Estevez, E.; Perez, F.; Van der Wal, E. XML exchange of control programs. IEEE Ind. Electron. Mag. 2009, 3, 32–35.
[CrossRef]

46. Van der Wal, E. PLCopen. IEEE Ind. Electron. Mag. 2009, 3, 25. [CrossRef]
47. Thramboulidis, K. The 3+1 SysML view-model in model integrated mechatronics. J. Softw. Eng. Appl. 2010, 3, 109–118. [CrossRef]
48. Priego, R.; Armentia, A.; Estévez, E.; Marcos, M. Modeling techniques as applied to generating tool-independent automation

projects. Automatisierungstechnik 2016, 64, 325–340. [CrossRef]
49. Vogel-Heuser, B.; Schütz, D.; Frank, T.; Legat, C. Model-driven engineering of Manufacturing Automation Software Projects—A

SysML-based approach. Mechatronics 2014, 24, 883–897. [CrossRef]
50. Institute of Automation and Information Systems. Functional Application Design for Distributed Automation Systems (FAVA).

Available online: https://www.ais.mw.tum.de/en/research/ (accessed on 3 February 2021).
51. Vogel-Heuser, B.; Rösch, S. Integrated modeling of complex production automation systems to increase dependability. In Risk—A

Multidisciplinary Introduction; Klüppelberg, C., Straub, D., Welpe, I., Eds.; Springer: Cham, Switzerland, 2014; pp. 363–385.
[CrossRef]

52. Cândido, G.; Colombo, A.W.; Barata, J.; Jammes, F. Service-oriented infrastructure to support the deployment of evolvable
production systems. IEEE T. Ind. Inform. 2011, 7, 759–767. [CrossRef]

53. Legat, C.; Schütz, D.; Vogel-Heuser, B. Automatic generation of field control strategies for supporting (re-)engineering of
manufacturing systems. J. Intell. Manuf. 2014, 25, 1101–1111. [CrossRef]

54. Selic, B. The pragmatics of model-driven development. IEEE Softw. 2003, 20, 19–25. [CrossRef]
55. Binder, C.; Neureiter, C.; Lastro, G. Towards a MDA process for developing industry 4.0 applications. Int. J. Model. Opt. 2019, 9,

1–6. [CrossRef]
56. Lüder, A.; Estévez, E.; Hundt, L.; Marcos, M. Automatic transformation of logic models within engineering of embedded

mechatronical units. Int. J. Adv. Manuf. Technol. 2011, 54, 1077–1089. [CrossRef]
57. AutomationML. Available online: http://www.automationml.org/ (accessed on 3 February 2021).
58. Schmidt, D.C. Guest editor’s introduction: Model-driven engineering. Computer 2006, 39, 25–31. [CrossRef]
59. Estévez, E.; Marcos, M. Model-based validation of industrial control systems. IEEE Trans. Ind. Inform. 2012, 8, 302–310. [CrossRef]
60. Fedai, M.; Drath, R. CAEX—A neutral data exchange format for engineering data. ATP Int. Autom. Technol. 2005, 1, 43–51.
61. Hergenhahn, T. LIBNODAVE—Exchange Data with Siemens PLCs. Available online: http://libnodave.sourceforge.net/ (accessed

on 3 February 2021).

http://doi.org/10.3390/computers9020028
http://doi.org/10.1109/ACCESS.2020.3013890
https://www.plattform-i40.de/SiteGlobals/PI40/Forms/Listen/Glossar/EN/Glossary_Formular.html?queryResultId=null&pageNo=0&resourceId=1081500&pageLocale=en&input_=1081494&titlePrefix=Alle
https://www.plattform-i40.de/SiteGlobals/PI40/Forms/Listen/Glossar/EN/Glossary_Formular.html?queryResultId=null&pageNo=0&resourceId=1081500&pageLocale=en&input_=1081494&titlePrefix=Alle
https://webstore.iec.ch/publication/4552
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.pdf?__blob=publicationFile&v=4
https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/hm-2018-trilaterale-coop.pdf?__blob=publicationFile&v=4
http://doi.org/10.1109/CDC.2005.1583518
http://doi.org/10.1016/j.jss.2011.01.063
http://doi.org/10.4236/jsea.2011.44024
http://doi.org/10.1109/TSMCC.2008.2005785
http://www.sysml.org
http://doi.org/10.1007/978-3-642-39253-5_63
http://doi.org/10.1016/j.jss.2014.12.028
http://doi.org/10.1016/j.mechatronics.2013.12.008
http://doi.org/10.1109/MIE.2009.934794
http://doi.org/10.1109/MIE.2009.934799
http://doi.org/10.4236/jsea.2010.32014
http://doi.org/10.1515/auto-2015-0072
http://doi.org/10.1016/j.mechatronics.2014.05.003
https://www.ais.mw.tum.de/en/research/
http://doi.org/10.1007/978-3-319-04486-6
http://doi.org/10.1109/TII.2011.2166779
http://doi.org/10.1007/s10845-013-0744-z
http://doi.org/10.1109/MS.2003.1231146
http://doi.org/10.7763/IJMO.2019.V9.674
http://doi.org/10.1007/s00170-010-3010-y
http://www.automationml.org/
http://doi.org/10.1109/MC.2006.58
http://doi.org/10.1109/TII.2011.2174248
http://libnodave.sourceforge.net/

Appl. Sci. 2021, 11, 2319 27 of 27

62. Heiser, D.; Croes, M.; Schlameuß, R. S7netplus. Available online: https://github.com/S7NetPlus/s7netplus (accessed on 11
January 2021).

63. Beckhoff. Automation Device Specification (ADS). Available online: https://infosys.beckhoff.com/english.php?content=..
/content/1033/tcadscommon/html/tcadscommon_intro.htm&id= (accessed on 3 February 2021).

https://github.com/S7NetPlus/s7netplus
https://infosys.beckhoff.com/english.php?content=../content/1033/tcadscommon/html/tcadscommon_intro.htm&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tcadscommon/html/tcadscommon_intro.htm&id=

Anexo: Publicaciones

3-58

Anexo: Publicaciones

3-59

3.3 A customizable architecture for application-

centric management of context-aware

applications

Gangoiti, U., López, A., Armentia, A., Estévez, E., Casquero, O., y Marcos, M. (2022). A

customizable architecture for application-centric management of context-aware

applications. IEEE Access, 10, pp. 1603-1625.

DOI: https://doi.org/10.1109/ACCESS.2021.3138586.

JCR©2021: 3,476

Categoría: Engineering, Electrical & Electronic

Cuartil: Q2 (105/276)

Anexo: Publicaciones

3-60

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

A customizable architecture for application-
centric management of context-aware
applications

Unai Gangoiti1, Alejandro López1, Aintzane Armentia1, Elisabet Estévez2, Oskar Casquero1

and Marga Marcos1, Senior Member, IEEE
1Systems Engineering and Automatic Control Department, University of the Basque Country (UPV/EHU), Bilbao 48013, Spain
2Electronics and Automation Engineering Department, University of Jaén, Jaén 23071, Spain

Corresponding author: A. Armentia (e-mail: aintzane.armentia@ehu.eus).

This work was financed in part by MCIU/AEI/FEDER, UE under Grant RTI2018-096116-B-I00 and in part by GV/EJ under Grant IT1324-19

ABSTRACT Context-aware applications present common requirements (e.g., heterogeneity, scalability,

adaptability, availability) in a variety of domains (e.g., healthcare, natural disaster prevention, smart

factories). Besides, they do also present domain specific requirements, among which the application concept

itself is included. Therefore, a platform in charge of managing their execution must be generic enough to

cover common requirements, but it must also be adaptable enough to consider the domain aspects to meet the

demands at application-level. Several approaches in the literature tackle some of these demands, but not all

of them, and without considering the applications concept and the customization demands in different

domains. This work proposes a generic and customizable management architecture that covers both types of

requirements based on multi-agent technology and model-driven development. Multi-agent technology is

used to enable the distributed intelligence needed to address many common requirements, whereas model-

driven development allows to address domain specific particularities. On top of that, a customization

methodology to develop specific platforms from this generic architecture is also presented. This methodology

is assessed by means of a case study in the domain of eHealthCare. Finally, the performance of MAS-RECON

is compared with the most popular tool for the orchestration of containerized applications.

INDEX TERMS Application-centric management, application-driven adaptability, context-aware

applications, customizable management architecture, multi-agent systems, stateful availability

I. INTRODUCTION

Current advances on information and communication

technologies have allowed the expansion of the Internet of

Things (IoT) [1], [2] as well as of its industrial variation,

Industrial IoT (IIoT) [3], [4]. These paradigms are based on

the universal interconnection of “objects” or “things”

endowed with digital entities with the ability to measure or to

process data, which allows the development of context-aware

applications. Context-aware applications monitor their context

to capture data that can be used just for supervisory purposes

or for detecting abnormal situations with the aim of preventing

or reacting to them. All this without human intervention.

These context-aware applications belong to very different

application domains, ranging from remote monitoring for

natural disaster prevention [5], [6] or medical supervision [7],

[8], to smart agriculture [9], [10] or flexible manufacturing

systems (FMS) [11], [12].

Such different applications have some common

requirements, as illustrated in Table I. Context data are usually

captured by embedded devices close to the physical

environment, whereas processing tasks may require high

performance equipment that is usually located far away

(distribution and node heterogeneity). Therefore, these

applications consist of different pervasive components that

must communicate with each other, sometimes with time

constraints (timing requirements). These applications might

need to evolve with context changes (adaptability).

Furthermore, sometimes co-operation among different

applications is necessary to monitor the environment and/or to

react to changes in it. As a result, applications and resources

mailto:aintzane.armentia@ehu.eus

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

may join or leave over time (scalability), changing resource

demand and/or availability accordingly. Finally, due to the

sensitive nature of the captured and processed information,

apart from securing data (security and privacy), it is also

essential to minimize service interruption and recovering

application execution from the stop point, even in case of node

failure (service availability).

Context-aware applications also present particularities of

their own application domain, starting from the application

concept itself. In eHealthCare (eHC) systems, an application

can be understood as all the medical monitoring tasks needed

to supervise the health of a person. However, an application in

FMS can be understood as tracking the manufacturing of a set

of products. In both domains, it might be necessary to resolve

unexpected events, such as detecting health deterioration or a

malfunction of a manufacturing station. Application structure

is also domain dependent, as applications are composed of a

set of domain entities that collaborate to achieve the

application functional goals. Additionally, applications can

have non-functional requirements which apply to all

application entities (e.g., in a wildfire detection system, the

number of sensors and the reading frequency may vary if

temperature readings in an area increase).

TABLE I

EXAMPLES OF COMMON REQUIREMENTS OF CONTEXT-AWARE APPLICATIONS

DISTRIBUTION AND NODE HETEROGENEITY

 Prediction of volcanic eruptions: Sensors placed in the crater. Machine learning algorithms for data analysis.

 Smart irrigation systems: Sensors for soil and air moisture monitoring. Drones with cameras. Processing within the farm.

TIMING REQUIREMENTS

 Healthcare monitoring systems: Biomedical signals with different measurement rates.

 Fire detection systems: Temperature and humidity sensors with different dynamic properties must be jointly processed.

ADAPTABILITY

 Early warning systems: Temporal, spatial and numerical resolution of active sensors according to the current criticality level.

 Nursing homes: Activation of remote monitoring of vital signs to provide emergency teams with useful information.

SCALABILITY

 Nursing homes: Admission or discharge of the elderly. Variations in the health status of residents.

 Early warning systems: Variations in the number of sensors according to the criticality level.

SECURITY AND PRIVACY

 Healthcare monitoring systems: Private access to medical data.

 Smart factories: Management of confidential data. Injuries, deaths and money loss due to security lacks.

SERVICE AVAILABILITY

 Smart factories: Rescheduling of manufacturing plan in case of machine failure.

 Healthcare monitoring systems: Avoiding dangerous situations for the patient.

Resources in which services are performed may also

depend on the domain. Healthcare monitoring usually

demands variable processing capabilities, connection to

biophysical sensors or more complex sensors such as cameras.

However, in FMS, specific manufacturing assets are required,

such as assembling robots, milling/drilling machines, or

automated guided vehicles (AGVs).

From an implementation point of view, different distributed

software architectures have been used to develop context-

aware applications, such as component-based systems [13],

multi-agent systems (MAS) [14], service-oriented

architectures [15] or microservices [16]. Any implementation

of a distributed software architecture meets distribution,

heterogeneity, scalability and timing requirements, and can be

extended with security features. They also support starting and

stopping of applications, and communication among their

distributed modules. Platforms built on these software

architectures also offer dynamic reconfiguration mechanisms

to cope with adaptability and availability requirements [17]–

[26]. However, what is not so common in these platforms is

the consideration of the application concept, although it is

necessary when requirements affect a set of application

entities. In this case, typical requirements are temporal (e.g.,

end to end deadline) or context-related when it is necessary to

make decisions on other applications. For instance, when a

patient is being remotely monitored and some biophysical

measurements exceed the established thresholds, new

applications must be started to measure new biophysical

variables. There are several proposals in the literature that

attempt to undertake domain dependent demands but, in

general, they are ad-hoc solutions and can hardly be applied in

other domains. As far as the authors know, no platform covers

all the requirements identified for context-aware applications.

Previous works of the authors proposed ad-hoc

management platforms for context-aware applications,

initially in the eHC field [27] and subsequently in the FMS

domain [28]. The first platform had to be mostly redesigned to

achieve the second one, as the application structure, resources

and application management were completely different.

This work goes a step further, proposing an architecture for

managing the execution of context-aware applications. It is

based on a generic core that can be customized to concrete

domains based on modeling artifacts. Specifically, the

architecture contributes:

 The management of the execution of the application

modules is driven by the key concept of application,

understood as a set of interrelated domain modules.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

 The logic of adaptation to relevant context changes is

independent of the application functionality, being

possible to act on applications.

The use of multi-agent technology allows decentralized

decision-making by introducing intelligence within the

domain application modules Thus, the architecture supports

decentralized deployment, and fast service recovery for

stateful applications through negotiation mechanisms. The

latter is based on multiple replica management and supports

even node failure. A customization methodology is presented

to cope with domain specific particularities. It bases on the use

of model-driven development for application definition and on

a set of provided agent templates for agent development.

The remainder of this paper is organized as follows. Section

II presents the main requirements that a management platform

for context-aware applications must meet as well as how they

have been addressed in the literature. Section III is devoted to

the core architecture, whose design is mainly focused on

fulfilling flexibility requirements from an application-centric

point of view. Section IV describes the methodology for

adapting this core architecture to a specific domain, which is

illustrated through a case study in the eHC field in Section V.

Section VI assesses the performance of the proposal in

comparison with the most popular tool for the orchestration of

containerized applications and, finally, Section VII highlights

some concluding remarks and future work.

II. RELATED WORK

The main objective of an application management platform is

to ensure that applications execute as specified. As

commented above, context-aware applications present

common and domain specific demands from which the main

requirements that a platform must meet can be derived. Table

II collects these platform requirements which can be divided

into two groups: operational (R1-R3), which tackle

application execution; and non-operational, dealing with

security (R4) and flexibility (R5-R8).
TABLE II

PLATFORM REQUIREMENTS

OPERATIONAL

R1 Distributed execution and communication.

R2 Efficient application deployment.

R3 Life-cycle management.

SECURITY (NON-OPERATIONAL)

R4 Security.

FLEXIBILITY (NON-OPERATIONAL)

R5 Self-adaptability.

R6 Traceability/Self-awareness.

R7 Self-healing.

R8 Domain variability

From an operational point of view, the applications,

deployed in heterogeneous devices, perform acquisition,

processing and actuation tasks. The platform must enable the

distributed execution of these tasks as well as the

communication among them (R1: Distributed execution and

communication). Besides, support for efficient deployment is

necessary, taking into account resource availability and

application demands (R2: Efficient application deployment).

Added to this, context-aware systems consist of a set of

applications that are dynamic in number and size, each with its

own timing requirements, whose startup, stop and normal

operation must be controlled (R3: Life-cycle management).

Concerning non-operational requirements, system security

requires mechanisms to assure the privacy, confidentiality,

authentication and integrity of data (R4: Security). It is

important to remark that context-aware applications are

included within the so-called self-adaptive systems, so they

also require “self-capabilities” to autonomously adapt to

changes in their environment. This implies not only context-

awareness but also self-awareness [29]. To achieve context-

awareness, the platform must be endowed with mechanisms

for application-driven dynamic reconfiguration that allow

applications to react to relevant situations by changing their

behavior (R5: Self-adaptability). Self-awareness implies being

aware of dynamic resource availability. To that end, the

platform must track both the state of the infrastructure

resources and the state of applications (R6: Traceability/Self-

awareness).

Regarding resource availability, the platform must

minimize service interruptions, including failure detection and

automatic service recovery, while maintaining the application

state (R7: Self-healing).

Finally, every application domain has its particularities in

terms of application specification (concepts that define

applications and their relationships) and execution

management, or even in terms of resource types. To draw on

the great effort involved in the design and development of a

management platform, it would be beneficial to have a

platform customizable to different domains (R8: Domain

variability).

The next subsections analyze the related work that

addresses the requirements identified. Table III collects the

analysis of the main management platforms related to the

particular case of flexibility requirements identified in Table

II.

A. OPERATIONAL REQUIREMENTS

Distributed software architectures consider applications as a

set of modules (computational units) that run on different

nodes and interact to achieve application functionality.

However, module definition and module composition differ

from one architecture to another. For example, in Component-

Based Software Engineering (CBSE) [13], components are

developed as black boxes that offer services in an application

independent way. Applications are compositions of

components based on their interface or following a component

model. Applications based on MAS consist of intelligent and

loosely-coupled software components, named agents, which

are autonomous (they make decisions without direct human

intervention), proactive (they have goal-directed behavior),

reactive (they react to context changes) and social (they

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

VOLUME XX, 2017 9

interact among them, by co-operating or competing with each

other) [14]. In Service Oriented Computing (SOC) [15],

computational units are called services. Services are published

by providers at repositories such as black boxes which

consumers can discover and use, or even compose, creating

new services. In the last years, the advent of microservice

architectural style has allowed small and loosely-coupled

services communicating through light-weight protocols, to be

developed and deployed independently to compose highly

scalable distributed applications [16]. The use of

containerization technologies that enable lightweight

virtualization has become de facto standard for packaging

microservices in the cloud [30].

There are approaches aimed at easing the development

and/or management of applications based on distributed

architectural styles. They usually provide mechanisms for

deploying, communicating and managing the life-cycle of

application modules. For example, this is the case of the Java

Agent Development (JADE) [31], the most used

implementation of the Foundation for Intelligent Physical

Agents (FIPA) [32] standard for MAS; and Kubernetes [33],

the most popular tool for the orchestration of containerized

microservice-based applications. Kubernetes is usually

combined with frameworks such as the Robot Operating

System (ROS), which supports communications and allows

orchestrating services among distributed nodes, mainly in the

field of robotic applications [34], [35].

A management platform built over any of these approaches

or built directly over a distributed software architecture, as

those illustrated in Table III, directly meet R1 requirement

(Distributed execution and communication) and, at least, a

basic version of R2 (Efficient application deployment) and R3

(Life-cycle management).

TABLE III

COMPLIANCE WITH FLEXIBILITY (NON-OPERATIONAL) REQUIREMENTS BY EXECUTION MANAGEMENT PLATFORMS

PLATFORM

R5: SELF-

ADAPTABILITY

R6: TRACEABILITY

/SELF-AWARENESS
 R7: SELF-HEALING

R8: DOMAIN

VARIABILITY

App.

driven

App. as

target
 Focus

Dynamic

Model

App.

unaware

State

integrity

Node

failure

App.

concept
Generic

[25] No No CC No --- --- --- No Yes

ACCADA

[17]

No No CC No --- --- --- No Yes

MUSIC

[18]

No No CC No No Yes No No Yes

DARE

[19]

No No CC Yes Yes Yes No No Yes

[20] No No CC Yes --- --- --- No Yes

THOMAS/PA

NGEA

[21]/[22]

Restricted Yes OC Yes Yes No No No Yes

iLAND

[23]

No No CC Yes Yes No Yes Yes No

DAMP

[24]

Yes Yes AC Yes Yes Yes Yes Yes No

EI4MS [26] No No UQC Yes Yes Yes No No Yes

MAS-RECON Yes Yes AC Yes Yes Yes Yes Yes Yes

CC = Component-Cenric, OC = Organization-Centric, AC = Application-Centric, UQC = User-percerived QoS-centric

B. NON-OPERATIONAL REQUIREMENTS

Distributed platforms can be extended by mechanisms which

allow non-operational requirements to be met. The following

subsections discuss research done in this direction.

1) SECURITY (R4)

A complete survey on mechanisms for ensuring secure access,

storage, processing and transmission of data is presented in

[36]. The most common solutions are Public Key

Infrastructures (PKI), encryption, Secure Socket Layer (SSL),

authentication and authorization mechanisms, and blockchain.

As all these can be included in a platform without affecting the

application management, it has been considered out of the

scope of this work.

2) SELF-ADAPTABILITY (R5)

Self-adaptation is usually based on the implementation of

MAPE-K loop models (i.e., to apply feedback loops from

control theory to autonomic computing) [37]. Self-adaptability

is a complex task that can be divided into four phases: (1)

monitoring/collection of context parameters; (2) detection of

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

relevant changes by means of the analysis of the collected

data; (3) planning of appropriate adaptation actions to respond

to the changes; (4) execution of the planned actions.

The first two phases are highly dependent on the specific

context, which varies from one field to another [38]. Some

research efforts focus on context specification [20], [39], while

others, such as the one selected in this work, consider context

monitoring as part of the application functionality.

Several techniques have been proposed to select adaptation

actions in phase 3. Self-adaptability can be expressed through

application variability [40], defined in terms of variation

points (where a planned change can occur) and variants

(options that can be selected). In [25] every component is

considered as a variation point, and implementations as the

corresponding variants, each related to a specific situation in

the context. Other works apply rules, one of the most used

solutions, since they provide an easy and automatable

classification method. For example, [20] and [41] use rules to

detect and classify relevant situations, reasoning the best

response.

The actions to be executed at phase 4 range from fixed and

ad-hoc proposals, such as simple warnings [41] or alarms

triggering [42], to more flexible ones, based on dynamic

reconfiguration. In the case of dynamic reconfiguration, an

external entity automates and manages adaptation execution,

separating adaptation logic from application logic. Dynamic

reconfiguration has been applied at two levels: component and

application. Most approaches work at component level, it

being possible to add, remove, replace, and/or reconnect

application modules. Sometimes, adaptation is restricted to

external requests, as in the DARE framework [19], which

limits the autonomy of applications. Other times, the platform

itself is responsible for detecting context changes and selecting

the component implementations that best fit a new context

state, as in the MUSIC project [18], the platform in [25] and

the ACCADA framework [17]. Similarly, the evolution-

oriented EI4MS architecture [26] detects degradation on the

user-perceived QoS and calculates an optimal evolution plan

which is executed by the microservices themselves. To that

end, the platform must be aware of the concrete context view.

As adaptation at component-level does not cover the

application concept, there have been attempts to extend

dynamic reconfiguration to the application level. The

THOMAS platform [21] and its successor PANGEA [22]

combine agent and service oriented technologies and allow

structural organizations of agents. In this case, dynamic

reconfiguration involves either the incorporation of new

organizational structures, or the addition or removal of

members. However, these capabilities are restricted to certain

agent roles. In the iLAND middleware [23], dynamic

reconfiguration consists of time-bounded re-composition of

running service-based applications, and it is initiated by the

middleware when applications are started or stopped. Previous

works of the authors [27] and [24] go a step further, allowing

components to ask for adaptation actions targeted to the whole

application. In [27], it is possible to start and stop already

deployed applications. In [24], an ad-hoc solution for the eHC

field deploys applications only when needed and allows

modifying application configuration.

3) TRACEABILITY/SELF-AWARENESS (R6)

Some of the analyzed management platforms trace the system

state to make the most suitable decisions at runtime. Most use

a kind of repository, which varies from one platform to

another. For instance, the DARE framework [19] maintains

only the configuration map (i.e., the mapping of the

components in execution to nodes), which is automatically

discovered by means of gossiping techniques. Platforms in

[25], [17] and [18] make runtime decisions based on

adaptation models provided at design time. These models

contain implementation alternatives according to different

context values. The composition algorithms of the iLAND

middleware [23] handle an application model annotated with

QoS parameters that refer to data processing and resource

needs of the application services. The system model used in

EI4MS to elaborate evolution plans describes current

deployment state of the system through information about the

existing logical services, available cloud/edge nodes, user

demands, and so on [26]. In [20], the context model is

separated from the system model, but both include dynamic

aspects that relate them at runtime. It is worth mentioning that

all these works consider an application as a simple graph of

interacting components with several realizations or

implementations, except the latter work which allows a

hierarchical component definition. In addition, they are all

component-centric proposals that do not consider the

application concept as a set of interrelated components

managed as a whole. As a result, they cannot manage

application-centric management to cope with application level

demands.

There are approaches that attempt to define more complex

application structures. In the context of MAS, agent-oriented

engineering methodologies that take into account social

concepts have been proposed for the so-called open MAS

[43]: a dynamic set of agents, which may be provided by

different developers, with self-interested behaviors.

Specifically, these methodologies allow specifying agent-

societies or agent-organizations composed of several agents,

playing different roles, whose interactions are led through a set

of rules, norms and constraints [44]. Based on the idea of

agent-societies, the authors in [21] and [22] propose platforms

for the runtime management of dynamic virtual organizations

in open MAS. They provide facilities for agents to voluntarily

enter or leave a virtual organization as well as for on-demand

creation, deletion and modification of virtual organizations.

However, it is precisely the self-interested nature of this type

of agent which makes application-centric management

impossible. The DAMP platform [24] considers an application

as a unique entity in order to achieve application QoS

enforcement. It provides a middleware service that allows

application registration before its execution. This information,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

together with monitoring of resource availability, is used at

runtime to reconfigure applications when needed. Previous

works of the authors also go beyond simple application graphs

and consider applications as whole entities: [27] intended for

reconfiguration driven by the application in the eHC domain,

and [28], [45] aimed at fault tolerance in flexible

manufacturing. However, the proposed application structures

and, therefore, the corresponding system models, are fixed,

which makes them non-customizable to domains with a

different application concept.

4) SELF-HEALING (R7)

Self-healing is understood as the system’s capacity to detect

when a service becomes unavailable and to restore it. It can be

proactive or reactive [46]. Proactive self-healing implies

prevention, i.e., to detect service degradation before failure.

Prevention tasks can be considered from the design phase, as

a particular case of self-adaptability, and it is even possible to

decide the optimal time to react. In contrast, reactive self-

healing is a more challenging issue as it intervenes when the

failure has already occurred, and allows recovery from sudden

component or node failures that cannot be foreseen.

Sometimes, it is even necessary to maintain the consistency of

the application state.

The works in [18] and [47] support reactive self-healing by

means of programming. However, although including specific

code in application modules allows fast failure detection and

recovery, the application logic must ensure its own

availability. To avoid this dependency, replication strategies

provided by the platform (transparent to the application) have

been extensively applied [48].

Failure detection mechanisms are usually based on

heartbeat messages. Two approaches are distinguished: 1)

gossip: a component or a node informs of its liveliness; 2)

probe: an entity requires components or nodes to confirm they

are still alive [49]. Some works propose a centralized

management of heartbeat messages through a platform

module in charge of detecting node failures. For example, the

DAMP platform [24] and the iLAND middleware [23] use

gossip techniques, whereas [50] is based on probe

mechanisms. Another centralized proposal is presented in [51]

which makes use of the application programming interface

(API) of Kubernetes to monitor server events that indicate pod

failures. There are also decentralized proposals that improve

systems’ autonomy and detection capacity. In the DARE

framework [19], every node hosts a module in charge of

gossiping to report possible node failures, whereas in [49] all

nodes probe others’ failures on their own.

Regarding failure recovery, some works propose a central

entity with a global view of the whole system. This approach

enables the separation of recovery logic from application logic

and the most suitable decisions can be made. For instance, [24]

and [23] make use of re-composition algorithms to select the

best replica, whereas the architectures in [50] and [19] have a

specific module to determine whether a failure can be

recovered or not. The consistency of the application state is a

relevant point when recovering a failure, as it assures full-

service continuity. Two main approaches can be found. On the

one hand, check-pointing-based-recovery allows the rollback

of the system to its most recent coherent state [49]. For this

purpose, not only is it necessary to store the system state, but

also the messages received between checkpoints. On the other

hand, an easier and more flexible solution is to provide means

to transfer and restore the application state. In [24]

components periodically send their state to the platform,

which stores it for its restoration in the new selected

implementations. However, this causes an overhead on the

platform and it is only possible for periodic components. In

[51] the so-called State Controller component is integrated

with Kubernetes to allow stateful service recovery of pods.

Although it considers elasticity (i.e., multiple active pods offer

the same service), state transfer is limited to concrete pairs of

pods.

C. LITERATURE ANALYSIS CONCLUSIONS

In conclusion, to meet non-operational requirements,

management platforms extend the implementation of a

distributed software architecture. Dynamic reconfiguration is

the best mechanism to accomplish self-adaptability and self-

healing. In both cases, decentralized approaches improve

system autonomy, decreasing platform overhead. However, a

global vision of the whole system is needed to make decisions

that best fit the needs of all running applications. As far as the

authors know, management platforms usually focus on some,

but not all, of the identified requirements. Additionally, there

is a lack of application-centric management, as most proposals

do not consider applications as an entity. And if they do, it is

considering an ad-hoc and/or fixed structure. Achieving

application-centric management requires the platform to be

aware of the application concept of a specific domain. An ad-

hoc definition of applications makes the corresponding

management platform also an ad-hoc solution [24], [27], [28].

Adapting these platforms to other domains involves

redesigning and/or re-implementing them, as in the case of the

previous works of the authors [27], [28] or in the MASHA

architecture (which was initially developed for web sites [52]

and later adapted to eLearning systems [53]). Therefore,

having a generic and customizable architecture would reduce

or even avert the necessity for this hard work (R8: Domain

variability). For this, it is essential to be able to define

application structure in an abstract way.

III. MAS-RECON: A CUSTOMIZABLE AND
APPLICATION-CENTRIC ARCHITECTURE

This section presents the MAS-RECON architecture (see Fig.

1): a generic and application-centric proposal which can be

customized to specific domains.

In order to meet the operational requirements (R1-R3), the

architecture is based on multi-agent technology, which has

been widely used for the development of complex systems and

allows the distribution of decision-making [14]. As depicted

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

in Fig. 1, without loss of generality, it has been built upon the

JADE framework [31], but any other implementation of the

FIPA specification [32] could be adopted. MAS-RECON

allows decentralized decision-making by introducing

intelligence within the domain entities (Resource Agents and

Application Agents in Fig. 1). At the same time, all these

entities are supervised at system level (System Supervisory

Agents in Fig. 1). The information needed to achieve system-

level supervision is stored in the System Repository (SR),

which is managed by the System Repository Agent (SRA)

alone. These two entities are the basis for the application-

centric management, contributing to meet R6 and R8. The

Event Agent (EvA) focuses on R5, supporting application-

driven reconfiguration. Finally, R7 is achieved through the

Health Monitor Agent (HMA) and the Recovery Agent (ReA),

which supervise resources and application agents for failure

detection and recovery, including the case of stateful

applications (those whose current execution state depends on

previous ones). Finally, to tackle specific domain dependent

requirements, such as elaborated mechanisms for admission

control, new System Supervisory Agents might be included

(Other Agents in Fig. 1).

FIGURE 1. MAS-RECON architecture. It is based on an implementation of the FIPA specification to meet R1-R3 requirements. Decentralized decision-
making is performed by domain entities: resources and applications, running as Resource Agents and Application Agents, respectively. System
Supervisory Agents provide system-level supervision to meet different requirements: System Repository Agent focuses on R6 and R8, Event Agent on
R5, and Health Monitor Agent jointly with Recovery Agent on R7. The System Repository Agent is the core of the architecture, common to all domains,
whereas the other System Supervisory Agents can be customized to address domain particularities.

The following subsections describe the MAS-RECON

architecture as well as the mechanisms used to meet the

requirements.

A. ARCHITECTURE CORE (R6 and R8)

One of the contributions of this work is the architecture core

common to all domains, which consists of the SR and the

SRA, which are responsible for maintaining the state of the

complete system, understood as the relevant information to

tackle traceability/self-awareness (R6) and domain variability

(R8).

The SR is a model that represents the system state from an

application-centric management point of view. The meta-

model of the SR is depicted in Fig. 2. It is closely related to

the core architecture presented in Fig. 1. It contains

information related to the domain entities depicted in Fig. 1

(Resource and Application Agents). This information

comprises properties needed for application management,

common to all domains (e.g., id and agentState), and domain

dependent properties (marked as domainProperties in Fig. 2).

These latter are determined when application concept is

defined, as it is detailed in Section IV for the particular case of

eHC.

The SR collects the set of Resource Agents (Resource

Agents in Fig. 1 and ResourceAgent in Fig. 2), which represent

available resources, and which are characterized by the

services they offer to applications (Service in Fig. 2). Resource

entity types are enumerated in the SR (TResource in Fig. 2):

the processing node, which is the unique resource entity

common to all domains as it hosts Application Agents and

System Supervisory Agents (ProcNode in Fig. 2 and

ProcNode Agent in Fig. 1), as well as those related to concrete

domains (for instance, ResEntity_1 and ResEntity_2 in Fig. 2,

and ResEntity_1 Agent and ResEntity_2 Agent in Fig. 1).

The SR also collects the set of applications that can be

executed (domainApplications in Fig. 2). Applications are

defined as a set of entities (AppEntity in Fig. 2) that are

interrelated according to the application structure defined for

the specific domain. Hierarchical and/or dependency

relationships might exist among them. Applications must be

registered before requesting their execution. At runtime, every

registered application entity has at least one associated agent

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

(AppAgent in Fig. 2 that corresponds to an Application Agent

in Fig. 1). This will be explained in Section III.D, when

discussing how MAS-RECON manages application

availability. Thus, the state of the application is defined by the

state of its corresponding Application Agents.

FIGURE 2. Generic structure of the System Repository. The meta-model
identifies the domain entities that compose the SR (resources and
applications), the relations among them, and their characterization.
Hierarchical relationships among application entities are represented by
the AppEntity composition links. All elements have a unique identifier
assigned by the platform (id). In the case of the services offered by
resource entities, their semantics are known only to domain entities,
being transparent to the platform.

The SRA provides a unique access point to the SR through

the generic API shown in Fig. 3.a. It allows the registration of

resources and applications (iRegAgent and iRegApplication

interfaces, respectively), the starting and stopping of

applications (iExecManagement interface), and application

information management (iSystemInfo interface).

B. OPERATIONAL REQUIREMENTS (R1-R3)

Meeting operational requirements covers the starting, stopping

and normal operation of applications, taking into account that

MAS-RECON relies on multi-agent technology and that the

system state is stored at the SR.

Applications must be registered before being started

(Application Registration in Fig. 3.b). The use of meta-

modeling techniques to define the SR allows the SRA to

handle a generic registration process that assures that

applications conform to the application structure defined for

the domain (IRegApplication interface in Fig. 3.a).

Application registration is carried out in two phases. The

initial phase consists of the iterative and unitary registration of

all the entities that compose the application (RegAppEntity

method in Fig. 3.a), one by one following a top-down order,

according to the application hierarchy. The second phase

involves the validation of the fully registered application

(AppValidation method in Fig. 3.a). The so-called Launcher

Agent in Fig. 3.b represents a domain-specific System

Supervisory Agent that provides external users with access to

application management (it belongs to the Other Agents group

of Fig. 1).

Resource entities register their corresponding Resource

Agents when they are booted (Resources Startup in Fig. 3.b)

by means of the RegResAgent method of the IRegAgent

interface. Fig. 4.a presents the state diagram of the finite state

machine (FSM) that describes the generic behavior of

Resource Agents. The architecture provides the Resource

Agent code-skeleton that implements this FSM. Once started,

Resource Agents perform two tasks. On the one hand, they

supervise the related physical resources (e.g., processing

nodes can monitor available free memory). On the other hand,

they are provided with negotiation mechanisms to decide, in a

distributed way, the most suitable resource to perform a task

according to specific criteria.

The IExecManagement interface offered by the SRA (see

Fig. 3.a) allows starting and stopping applications. Starting an

application implies the registration, instantiation and

deployment of all the Application Agents related to its

registered entities. A top-down process is proposed, divided

into two phases:

 Phase 1 (Application Startup in Fig. 3.b): the generic

startup of first-level application entities. It is initiated

upon the invocation of the StartApp method in Fig. 3.a.

The SRA looks for the processing nodes offering the

required services and launches a negotiation process

among their corresponding Resource Agents

(Negotiation Process in Fig. 3.b), including: agent

data, negotiation criteria, and actions to be executed by

the winner. In the example of Fig. 3.b: the memory

required by the new agent and the class that

implements it as agent data, the maximum free

memory as negotiation criterion, and as winner actions:

to register (RegAppAgent method), create and deploy

the corresponding Application Agent (createAgent in

Fig. 3.b).

 Phase 2 (Domain dependent actions in Fig. 3.b): the

subsequent startup of lower-level entities in a

decentralized way. Each Application Agent performs

the startup of those at the next lower level. Being

dependent on the concrete structure of the application,

it is a domain-specific phase (see Section IV).

The FSM depicted in Fig. 4.b presents the generic behavior

of Application Agents, implemented on the Application Agent

code-skeleton, also provided by the architecture. At booting,

they update the SR with the processing node in which they

have been deployed (refProcNode property of the AppAgent

element in Fig. 2) and start lower-level entities. Once booted,

they execute their piece of application functionality until

stopped.

Application stopping is requested through the StopApp

method of the IExecManagement interface and follows the

reverse process. Lower-level Application Agents deregister

themselves (DeRegAgent method in Fig. 3.a) and stop in a

down-top sequence.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

FIGURE 3. Definition and use of the generic API of the System Repository Agent (color palette: core agent in white; customizable System Supervisory
Agents in blue; Resource and Application Agents in green). The figure at the top presents the interfaces defined for registering application entities and
Domain Agents, starting and stopping applications, and getting or updating the information collected at the SR. The figure at the bottom describes the
startup process of resource and application entities, through the use of this API (highlighted in yellow).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

FIGURE 4. State diagram for the generic behavior of Domain Agents, implemented as the agent code-skeletons provided by the architecture: a)
Resource Agents; b) Application Agents.

C. SELF-ADAPTABILITY (R5)

MAS-RECON contributes an application-driven

reconfiguration approach, which is based on the notion of

MAPE-K loop models [37] and handles two concepts: (1)

Event: it identifies a relevant context change; and (2) Action:

the reaction to an event consists of executing a set of actions,

each one targeted to an application (itself or another one),

which might even follow a concrete execution order. To make

application logic independent of adaptation logic, events and

actions must be declared during application registration, so

that the EvA (see Fig. 1) performs a centralized supervision of

the adaptation process. For this, the IEvent and IAction

interfaces depicted in Fig. 5 have been defined.

As events and actions are domain-specific, they are

specified in the domain application meta-model. Section IV

describes how to adapt the characterization of these elements

to a specific domain.

MAS-RECON assumes that the first two phases of self-

adaptation are part of the application functionality.

Specifically, they are performed by the Application Agents in

charge of acquiring and processing context data (Event

Trigger Application Agent in Fig. 5). Therefore, context

particularities are unknown by the platform. The EvA is

provided with the IEvent interface, which allows these

Application Agents to report on detected events.

Then, the EvA searches the SR for the corresponding

actions, and is responsible for launching and supervising their

execution, through the IAction interface implemented by other

Application Agents (Action Performer Application Agents in

Fig. 5).

FIGURE 5. Interface definition for interactions among System
Supervisory Agents and Resource and Application Agents, related to
flexibility requirements: self-adaptability (R5) and self-healing (R7) (color
palette: customizable System Supervisory Agents in blue; Resource and
Application Agents in green).

D. REACTIVE SELF-HEALING (R7)

Following the idea of decentralized decision-making and

system-level supervision, MAS-RECON supports reactive

self-healing by distributed failure detection (Resource and

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

Application Agents) with centralized verification and

recovery supervision (HMA and ReA). For this, the INotify,

IResolve, IConfirm and IRecovery interfaces depicted in Fig.

5 have been defined. It abstracts the design of application

functionality from self-healing mechanisms. Besides, it covers

isolated agent failures and crashes at processing resources

which affect several application entities belonging to different

applications. However, failures at domain specific resources

are not covered by the architecture. MAS-RECON defines the

sequence of messages from failure detection to recovery

(summarized in Fig. 6), which determines the interactions

among agents through the interfaces depicted in Fig. 5.

FIGURE 6. Reactive self-healing in MAS-RECON (color palette: core agent in white; customizable System Supervisory Agents in blue; Resource and
Application Agents in green). The sequence diagram starts with the detection of the failure of an Application Agent (Failed Agent). It also describes the
message sequence managed by the HMA to resolve and confirm the possible failure. Finally, the recovery process of confirmed failures is supervised
by the ReA. The use of the API provided by the SRA is highlighted in yellow.

Failure detection relies on the potential of underlying MAS

framework (e.g., JADE) to report on the non-delivery of a

message (Detect in Fig. 6). It is undertaken by Resource and

Applications Agents (identified as Detector Agent in Fig. 5

and Fig. 6), in the same way for all domains, through the

INotify interface of HMA (see Fig. 5). As it is generic, the code

for failure detection is included as part of the agent code-

skeleton provided by MAS-RECON.

Considering that several domain agents can detect the same

failure, the HMA is the sole receptor of all the notifications,

and it performs a centralized verification of the failure

(Resolve & Confirm in Fig. 6). This includes resolving

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

whether the notification relates to a new failure

(CheckLiveliness method of the IResolve interface in Fig. 5).

Previously reported failures are ignored, whereas new ones are

confirmed to the ReA (AgentFail method of the IConfirm

interface in Fig. 5). The global state of the system contained in

the SR allows the HMA to decide which Application Agents

have to be recovered.

MAS-RECON proposes replica-based management of the

application execution state to assure its consistency, essential

in the case of unforeseen failures. Thus, as shown in Fig. 2, an

application entity (AppEntity in Fig. 2) can have n+1

associated Application Agents (AppAgent in Fig. 2). One of

them is the active instance that performs the piece of

application functionality. The others are the replicas that just

keep track of the execution state of the active. For this,

Application Agents are provided with mechanisms that allow

an indirect state transfer (i.e., the agent itself exports its

execution state and restores it, when necessary), which is also

implemented in the provided application agent code-skeleton.

The ReA supervises the failure recovery process (Recover

in Fig. 6), which focuses on minimizing the unavailability of

an active instance and maintaining the replication factor. It

depends on whether the failed agent is the active or a replica:

a) Active agent failed: the ReA looks the SR for the failed

agent’s parent agent (Parent Agent in Fig. 6),

according to the application hierarchy registered, and

orders it to select the most suitable replica to be the next

active agent, and to create a new replica agent

(IRecovery interface of the Parent Application Agent

in Fig. 5). The former implies launching a negotiation

process among the processing nodes that hold the

replicas (INegotiation interface in Fig. 5). During this

negotiation, the replica agents wait at the

WaitingForDecision FSM state (see Fig. 4). The

replica located at the winner node will be the new

active one. The latter is similar to the startup process.

This contributes a straight stateful recovery of

application execution, as the new active agent

continues executing its piece of application

functionality from the last known state just after

negotiation process is finished.

b) Replica agent failed: the ReA looks the SR for for the

failed agent’s parent agent (Parent Agent in Fig. 6),

according to the application hierarchy registered, and

orders it to start a new replica agent (IRecovery

interface of the Parent Application Agent in Fig. 5).

IV. METHODOLOGY FOR DOMAIN-SPECIFIC
PLATFORM DEVELOPMENT

This section presents a methodology to customize MAS-

RECON to obtain a domain platform, which is divided into

three steps:

1) Specification of the target domain, including the

application concept. A domain meta-model is

defined to identify, characterize and relate resource

and application entities. The SR implements this

domain meta-model, which allows a generic

application registration that assures application

correctness.

2) Definition of the templates to develop the domain

agents that represent registered entities at runtime,

based on the agent code-skeleton provided by MAS-

RECON.

3) If needed, extension of customizable System

Supervisory Agents to include domain particularities

related to application-centric management.

The following subsections describe these steps, illustrated

through the case study depicted in Fig. 7, which is targeted at

the eHC field. The use of compact and portable health sensing

components has allowed the development of distributed and

person-centric eHC applications. They are context-aware

applications which monitor their environment (the patient) and

must react when an abnormal situation is detected. An in-

depth description of the case study can be found in [27].

FIGURE 7. General scenario for the eHC case study that illustrates the
lexicon of the domain. It depicts: 1) the concepts related to person-centric
eHC applications (Patient, eHC Activity and Task); 2) the relationships
among them (hierarchical relations as eHC Activities composed by
Tasks, and dependency relationships as in the case of Actions targeted
to eHC Activities); and 3) their technical characterization (e.g., required
memory or period).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

A. STEP 1: DOMAIN SPECIFICATION

The use of a model-based approach for domain specification

allows the SRA to provide a generic registration process and a

generic management of the SR. The proposed approach

involves the definition of the domain meta-model that

determines the structure, rules and restrictions that the SR

must follow [54]. Specifically, the meta-model of the SR (see

Fig. 2) is implemented as an eXtensible Markup Language

(XML) Schema (XSD) [55] (SR.xsd), which is composed by

two other schemas:

 The Concepts schema defines the domain concepts. It

identifies the domain entity-types: resource entities

(TResource enumeration in Fig. 2) and application

entities (AppEntity in Fig. 2). It also identifies their

relevant characteristics, from their management point

of view (domainProperties of ResourceAgent and

AppEntity in Fig. 2). For this, XML elements and

attributes are used, respectively. As adaptation actions

are domain dependent, this schema also includes Event

and Action concepts.

 The Hierarchy schema states the allowed relationships

among concepts (relations between AppEntity

elements in Fig. 2). Application hierarchy is defined

through “parent-child” elements (composition of

AppEntity elements in Fig. 2), whereas “Key/Keyref”

constructs are used for dependency constraints.

The schema for SR (SR.xsd) extends the Hierarchy schema

with properties common to all domains and used by MAS-

RECON to fulfill all the requirements previously identified.

These schemas are used during the registration process of

applications (Application Registration in Fig. 3.b). At the

initial phase, every application entity is validated against the

Concepts schema to assure its correctness, by means of the

RegAppEntity method of Fig. 3.b. Then, the completely

registered application is validated against the Hierarchy

schema to ensure that it is well-formed, by means of the

AppValidation method of Fig. 3.b. A detailed description of

the registration process and its validation algorithm is found in

[56].

Fig. 8 depicts the Concepts and Hierarchy schemas related

to the person-centric eHC applications illustrated in Fig. 7.

The Patient is considered the first-level application entity-type

of the domain, which groups together a set of eHC Activities

for medical supervision and actuation, according to its health

status. The eHC Activities may be divided into several Tasks,

which cooperate among themselves through data exchange.

Most Tasks are related to acquisition, processing and warning

or storing assignments, as in the case of the Continuous

Glucose Monitoring eHC Activity. Although very simple

Tasks have been represented in the case study, they can refer

to complex ones, such as interpreting medical images. Apart

from these hierarchical relationships, dependency

relationships also exist (highlighted in orange in Fig. 7), which

represent the actions to perform because of an event trigger.

Three action types are distinguished, all targeted to eHC

Activities:

 Create: to initiate the execution of a new eHC Activity.

 Destroy: to finish the execution of an already running

eHC Activity.

 Update: to change the properties of an eHC Activity

(e.g., period or risk of level).

FIGURE 8. Concepts and Hierarchy XML schemas related to the person-
centric applications of the eHC case study. Concepts.xsd identifies and
characterizes application entities, in terms of XML elements and
attributes, respectively. Hierarchy.xsd states their relationships,
hierarchy (composition) and dependency (key-keyref construct).

Regarding the characterization of application entities, all

are described by the memory needed by their corresponding

agent, as Application Agents are deployed according to the

“maximum free memory” criterion (reqMem in Fig. 7 and Fig.

8). Some eHC Activities are periodic (e.g., checking if P2

Patient has relaxed before measuring their blood pressure,

carried out every six hours), whereas others can execute on

different risk levels (e.g., when monitoring the heart rate of P3

Patient two risk levels can be distinguished: low (L) if

acquired rate is inside its normal boundaries, or high (H) if it

is out of range). Similarly, some Tasks run periodically. In this

case, this period is different from that of eHC Activity. For

instance, once Check Relaxed eHC Activity is activated, heart

rate is acquired every 10 seconds.

Domain resource entities must also be considered. In this

eHC system only processing resources, whose type is already

defined in the core architecture, namely ProcNode type (see

Fig. 2), are needed. Services offered represent the accessibility

to a concrete biomedical sensor (e.g., pulsioximeter,

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

glucometer…). Services may be required by Task entities

(e.g., Heart Rate Acq or Glucose Acq in Fig. 7).

B. STEP 2: DOMAIN AGENT TEMPLATES

Resource or Application Agents related to the same domain

entity-type share the same management particularities.

Therefore, an agent template can be developed for each

domain entity-type (application and resource) that has a

runtime representation, from which concrete Resource and

Application Agents are derived.

The starting point is the agent skeleton-codes provided by

MAS-RECON, which implements the FSMs of Fig. 4.

Template development implies extending every FSM state

according to the interactions defined among domain agents

and System Supervisory Agents. The interactions established

by the architecture must at least be considered (those

interfaces depicted in Fig. 5 that domain agents use and/or

provide). To that end, MAS-RECON also provides the code

of those mechanisms for which the message sequence is fixed,

namely:

 Failure detection and failure notification of non-

delivered messages.

 Recovery of active instance or replicas.

 Negotiation process, including both launching a new

negotiation process (CFP in Fig. 3), and sending and

evaluating bids.

In the case of Resource Agents (see Fig. 4.a), required

initialization and finalization actions will be considered at

Booting and Stopping FSM states, respectively.

Running/Negotiation state comprises the supervision of the

concrete physical resource (e.g., the amount of free memory at

processing nodes or the amount of remaining battery charge in

AGVs). It is also the place to implement concrete negotiation

mechanisms (e.g., the largest available memory in processing

nodes or the time needed to cover a distance in AGVs).

Regarding Application Agents (see Fig. 4.b), Booting and

Stopping FSM states are related to the application startup and

stop, respectively. As MAS-RECON itself covers the startup

of the first-level application entities (Application Startup in

Fig. 3.b), application agent templates focus on the subsequent

booting of the entities at lower levels, level by level until the

last one is reached, according to the concrete application

concept. This includes:

1) Looking for next-level entities (child), by means of

queries to the SR through the SRA.

2) Launching a negotiation process among processing

resources for every child, considering the required

services.

3) Waiting for child agents to be started, except in the case

of last-level entities.

4) Informing upper-level entity (parent) that booting has

finished.

The implementation of the Running and Tracking FSM

states focuses on the normal execution and on flexibility

needs. For self-adaptability, it is necessary to identify, at least,

which entities are in charge of detecting relevant context

changes (Event Trigger Application Agents in Fig. 5), and

which are responsible for executing adaptation actions (Action

Performer Application Agents in Fig. 5). The former make use

of the IEvent interface, whereas the latter implement the

IAction interface. Similarly, for self-healing, at least, the

following agents have to be identified: those in charge of

failure detection (Detector Resource and Application Agents

in Fig. 5), and those which execute recovery actions (Parent

Application Agents in Fig. 5).

In the eHC case study, no resource templates are needed,

since there are no domain specific resources (note that the

ProcNode agent template is part of MAS-RECON). However,

three templates are necessary for Patient, eHC Activity and

Task agents. As an example, Fig. 9 represents the functions

tackled by Task Agents at each FSM state, and which have to

be implemented in the corresponding template. The code

provided by MAS-RECON is marked in black whereas

domain dependent code is highlighted in blue. According to

the application structure depicted in Fig. 8, during application

startup (Booting FSM state), Patient Agents supervise the

creation of eHC Activity Agents and these latter do the same

with Task Agents. As Task Agents exchange data messages

among them, it is necessary to synchronize their start-up.

Regarding self-adaptability, Task Agents are Trigger

Application Agents because they process context data, being

able to detect context changes. As all actions are targeted at

eHC Activities, Patient Agents are the Action Performer

Application Agents in charge of creating, destroying or

updating eHC Activities. Finally, as far as self-healing is

concerned, all Application Agents act as Detector Application

and Resource Agents as they communicate through messages.

Parent Application Agents are determined according to the

specified application hierarchy.

C. STEP 3: EXTENSION OF SYSTEM SUPERVISORY
AGENTS

MAS-RECON implements the interfaces provided by the

System Supervisory Agents that represent application

management needs common to all domains (see Fig. 5).

Domain specific needs can be tackled in two ways. On the one

hand, it is possible to extend these common interfaces to

consider concrete adaptability actions or new ways of failure

detection and/or recovery. On the other hand, new System

Supervisory Agents could be included in the architecture.

Their interfaces and the corresponding implementation derive

from the analysis of interactions with other agents, which

should also be included in the domain agent templates. In the

eHC case study, a new System Supervisory Agent called

Launcher Agent has been added to handle the external requests

for application registration, start and stop.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

FIGURE 9. Customization needs for the development of the template of Task Agents in eHC. Functionalities tackled by Task Agents at every FSM state
are depicted. Those implemented by the code provided by MAS-RECON are marked in black (e.g., notify agent failure). Those implemented in domain
dependent code are highlighted in blue (e.g., implementation of the logic for triggering events related to relevant context changes, through the IEvent
interface): Note that Tracking and Waiting for Decision FSM sates do not have domain dependent functionality.

V. CASE STUDY: A PLATFORM FOR THE eHC
DOMAIN

This section validates that the management platform built

for the eHC domain, based on the MAS-RECON architecture

and following the proposed customization methodology

covers the requirements in Table II.

Two main tests have been carried out. The first one focuses

on testing the fulfillment of operational requirements (R1-R3)

and self-adaptability (R5) for a specific domain (R8). The

second one evaluates self-healing on node failure (R7) and

self-awareness mechanisms (R6).

From an infrastructure point of view, the test bed consists

of the following resources:

 2 Raspberry Pi (Node_2 and Node_3), with access to

biomedical sensors through the so-called “e-Health

Sensor Platform V2.0.” shield [57]. They measure the

blood glucose level of P1 Patient (Gluc_P1 service of

Node_2) and the heart rate and blood pressure of P2

Patient (Pulsioxy_P2 and Sphyg_P2 services of

Node_3), respectively.

 4 PC (Node_1, Node_4-Node_6), only to host agents.

From a software point of view, the functionality related to

Tasks has been implemented as a Java library whose methods

are invoked at the Running and Tracking FSM states of Task

Agents.

Once the platform is launched on Node_1 (i.e., when all

System Supervisory Agents are initiated), the SRA creates the

SR, which is initially empty. Then, the other processing nodes

are also booted, registering themselves at the SR as described

in Section III.B.

A. APPLICATION REGISTRATION AND START-UP

The first test starts with the registration of the P2 Patient

application. All application entities are registered one by one,

following the application hierarchy depicted in Fig. 8: 1)

Patients; 2) eHC Activities; 3) Tasks; 4) Events; 5) Actions.

The SRA assigns a unique identifier to every registered entity

(id attribute in Fig. 2). Finally, the correctness of the whole

application is validated. This model-based registration process

can prevent errors such as incorrect properties for application

entities (e.g., registering a Patient entity without reqMem

property, which does not match the Concepts schema in Fig.

8) or incorrect parent-child relationships (e.g., registering a

Task entity as a Patient’s child, which does not match the

Hierarchy schema in Fig. 8).

The SRA initiates the startup of the P2 Patient application

as in Fig. 3.b. An excerpt of the negotiation process carried out

to deploy the active instance of P2 Patient Agent is presented

in Fig. 10. The ProcNode Agent related to Node_4 is the

negotiation winner, as its bid is the best one. On the contrary,

when the ProcNode Agent related to Node_5 receives a

proposal better than its bid, it considers itself a loser, and

leaves the negotiation process. Then, as represented in Fig. 11,

the active instance of the P2 Patient Agent is responsible for

the subsequent startup of its lower-level entities. Within its

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

Boot FSM state, it reads, from the SR, the eHC Activities to

create and start two agent instances for every one (replication

factor is 1 in this case): one is the active instance and the other

the replica. This process is repeated level by level, until Task

Agents are created.

The start-up results in the deployment presented in Fig. 12,

where containers, depicted by green directories, represent

processing nodes. Each container hosts the corresponding

Resource Agent and those Application Agent instances whose

negotiation has won. For example, Node_4 contains its

Resource Agent (procno103 id in Fig. 12), a Patient Agent

instance (patien102 id in Fig. 12) and two Task Agent

instances (task102 and task106 ids in Fig. 12).

Note that the container of Node_3 hosts only a Task Agent

instance. The reason is twofold. On the one hand, Heart Rate

Acq Task is the only application entity that requires the

Pulsioxy_P2 service. Thus, it must be allocated on Node_3.

On the other hand, Node_3 does not win negotiations for other

instances (Patient Agents, eHC Activity Agents or other Task

Agents) as its memory availability is less than that of PCs. This

latter is also the reason why Node_2 does not host an

application agent instance.

FIGURE 10. Example of a negotiation process carri0ed out during the start-up of P2 Patient application. It corresponds to the deployment of the active
instance of P2 Patient entity. As it does not require any concrete service all available ProcNode Agents negotiate (‘procno104’ id is Node_5; ‘procno101’
id is Node_3; ‘procno105’ id is Node_6; ‘procno102’ id is Node_2; and ‘procno103’ id is Node_4). Node_4 is the winner as its bid is the best one. When
a ProcNode Agent receives a better bid, it assumes that it cannot win and leaves the negotiation. This is the case of Node_5.

B. EVENT MANAGEMENT

Once started, P2 patient application is executed as illustrated

in Fig. 13. The main objective of the application is to monitor

the blood pressure of P2 patient. However, to avoid so-called

“white coat syndrome”, it is not measured until the patient is

relaxed [58]. To that end, the P2 Patient application has been

defined as two eHC Activities (Check Relaxed and Blood

Pressure Measuring) which are related through an event that

represents patient relaxation.

Patient relaxation is monitored by periodically acquiring

heart rate values of P2 patient. (Step 1 and Step 2 in Fig. 13).

These measurements are also stored for further processing

(Step 3 in Fig. 13). These steps are implemented by the Task

entities that compose the Check Relaxed eHC Activity. When

relaxation is detected (Step 4 in Fig. 13), the Relaxed Event is

triggered, leading to the interactions and message sequence

depicted in Step 5. Each event triggers actions that may affect

any registered application entity. In this case, one application

entity (Check Relaxed eHC Activity) is stopped whereas

another application entity (the Blood Pressure Measuring eHC

Activity) is initiated. This latter captures systolic and diastolic

blood pressure (Step 6 in Fig. 13), which are also stored for

further processing (Step 7 in Fig. 13).

C. FAILURE RECOVERY

The second test assesses the ability of MAS-RECON to

recover from node failures. In this test, 20 Patient applications

similar to P1 Patient are registered and started, with replication

factor stated as 1. When all the applications are running, the

fail of Node_5 is forced (a PC that hosts Application Agents

without required services). Fig. 14 depicts the evolution of

memory use of the processing nodes described above, from the

start-up of the applications to failure recovery.

As observed, initially (Instant 1 in Fig. 14), those Task

Agents that require the Glucometer_P1 service are deployed

to Node_2. Node_3 does not hold an agent instance, since no

application entity requires its services and has less memory

than PCs. The rest of Application Agents are distributed in a

balanced way, according to their memory needs.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

FIGURE 11. Startup sequence for P2 Patient application (color palette: core agent in white; Resource and Application Agents in green). For simplicity,
redundancy level has not been considered and Heart Rate has been abbreviated as HR. Although P2 Patient consists of two eHC Activities, Blood
Pressure Measuring is not initially deployed because it is event-triggered. To achieve synchronization among Task Agents, when their booting is
finished, they warn the corresponding eHC Activity Agent and other Task Agents with which they communicate. The use of the API provided by the SRA
is highlighted in yellow.

When the HMA receives the notification of the failure of

Node_5 (Instant 2 in Fig. 14), it verifies it and identifies the

affected agents. Finally, it reports the ReA that supervises the

failure recovery as follows (by looking up the information

stored at the SR):

 Firstly, instances of Patient Agents are re-instantiated

by the ReA itself, also supervising the necessary

negotiation processes for failed active instances.

 Secondly, the ReA asks the active instance of Patient

Agents to tackle the recovery of failed eHC Activity

Agents, including the supervision of negotiation

processes for failed active instances.

 Finally, the ReA asks the active instance of eHC

Activity Agents to deal with the recovery of failed Task

Agents, including the supervision of negotiation

processes for failed active instances

After the recovery (Instant 3 in Fig. 14), the memory use of

Node_4 and Node_6 increases in a balanced way. However,

Node_2 and Node_3 are not affected (their memory use does

not change), because they have limited resources and do not

win any negotiation processes.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

FIGURE 12. Initial deployment of P2 Patient application. Processing
nodes are represented by containers. Each container hosts its
corresponding Resource Agent and several Application Agents,
according to the result of the negotiation processes carried out during
the start-up.

VI. PERFORMANCE ANALYSIS

This section analyzes the performance of MAS-RECON, so

that developers working with industry standard platforms for

microservices can appreciate its benefits. The objective of this

analysis is twofold: to benchmark deployment times of MAS-

RECON against other application management architectures

available on the market, and to extend the failure recovery

analysis of Section V.C with response time measurements.

From an infrastructure point of view, the test bed for both

performance analysis consists of 1 PC (Dell Precision 3551

with Intel Core i9-10885H and 64GB of RAM) that hosted a

cluster of virtual machines (3 CPU and 3.5GB of RAM)

created with multipass. Both the host and the virtual machines

use Ubuntu 20.04 operative system.

A. BENCHMARK OF DEPLOYMENT TIMES: MAS-
RECON VS. KUBERNETES

Kubernetes was selected as the industry standard

implementation of microservices management platform

against which to compare MAS-RECON. K3s, a lightweight

and easy to install Kubernetes distribution, was selected to

build the Kubernetes cluster.

Deployed applications were composed of three modules: a

Generator that produces a pair of random numbers that are sent

to a Processor that adds them up and sends the result to a

Consumer that prints it in the standard output. The

functionality of each module was programmed in Java and

encapsulated in a Docker container in the case of Kubernetes,

and in an agent in the case of MAS-RECON. In Kubernetes,

each container was deployed using one-container-per-pod

model, the three containers were related one to each other to

form the application through a docker-compose file. In order

for the comparison to be made on the same term, in MAS-

RECON a very simple application structure was defined,

consisting only of a first-level application entity-type called

Component. Replication factor was stated to 0.

Two main tests were carried out. The first one focused on

testing deployment times in MAS-RECON and Kubernetes

for different workloads in a cluster made up of a fixed number

of N=20 nodes and over a maximum workload of 30*N=600

modules (components from now on). In the second test, the

same measurements were taken for a 100% workload (30*N

components) in different cluster sizes. System Supervisory

Agents of MAS-RECON and the control-plane of Kubernetes

were deployed on the host machine, whereas processing nodes

were installed on the virtual machines.

Measures were taken with a gateway agent that collected

the timestamps of agent events in the case of MAS-RECON,

and with a watcher used to listen to pod events in the case of

Kubernetes. The initial timestamp in each test is the

deployment request time.

Fig. 15 shows the mean scheduling, creation and startup

times of both platforms for 10% (60 components), 25% (150

components), 50% (300 components), 75% (450 components)

and 100% (600 components) workloads in a cluster made up

of N=20 nodes. The results show that: 1) Kubernetes

schedules components ~1.5 times faster than MAS-RECON;

2) MAS-RECON creates components ~8.3 times faster than

Kubernetes; and 3) Kubernetes starts components faster that

MAS-RECON on low workloads, but startup times converge

at 100% workload and the trendlines suggest that MAS-

RECON starts components faster than Kubernetes on higher

workloads.

Fig. 16 depicts the mean scheduling, creation and startup

times of both platforms for N=1, N=5, N=10, N=15, N=20

cluster sizes for a 100% workload (30*N components). The

results related to scheduling and creation times resemble those

obtained in the previous test. Regarding startup times,

Kubernetes starts components faster that MAS-RECON at

small cluster sizes, but startup times converge at N=20 nodes

and the trendlines suggest that MAS-RECON starts

components faster than Kubernetes on bigger clusters.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

FIGURE 13. Execution steps of P2 Patient application. Initially, Check Relaxed eHC Activity is executed. When the relaxation of P2 Patient is detected
by the TrendCheck Task Agent, the corresponding Relaxed Event is triggered, resulting in the measurement of its blood pressure (initialization of
Blood Pressure Measuring eHC Activity) and finishing its heart rate supervision (stopping Check Relaxed eHC Activity).

The observed differences in planning times can be

attributed to two reasons. On the one hand, the negotiation

mechanism used in MAS-RECON to distribute the scheduling

decision among the processing nodes is based on an adaptation

of the Contract-Net protocol, which is not optimized for this

task. On the other hand, in MAS-RECON the scheduling of

Component agents was synchronized, as they exchange

message data as in the case of Task Agents in eHC: first, the

Generator is planned and, when it is created, the Processor is

planned; then, when the latter is created, the Consumer is

planned. Since the initial timestamp is the same for all the

components of the deployment, this synchronized startup

leads to higher scheduling times. It should be remarked that

this synchronization cannot be achieved in Kubernetes

without customizing it.

Regarding differences in creation times, the creation of an

agent is faster than starting a container, since the former

involves instantiation of a Java class, whereas the latter

involves the instantiation of a virtual machine image.

B. RESPONSE TIME FOR FAILURE RECOVERY

This probe focused on testing agent recovery times in MAS-

RECON for applications of different size in a case of a node

failure. The test was performed in a cluster made up of 8 nodes

where the same application structure described in the previous

section was maintained. But in this case a Generator

component, that produces a pair of random numbers, was

connected to N Processor components in serial that increase

their input in one unit. The last Processor component was

connected with a Consumer component that prints the result

in the standard output. Again, connection among components

was based on message exchange, and replication factor was

stated to 0. Processor components were restricted to be

deployed on nodes 2-7 (six nodes), whereas Generator and

Consumer components were deployed on nodes 1 and 8. The

failure involves the disconnection of one of the nodes and the

recovery of all the failed components.

To reflect the different aspects to be considered in the

recovery process, the following measurements were collected:

reaction time, repair time and recovery time [51]. The reaction

time measures the time elapsed from the failure until the

platform starts to respond (i.e., until the HMA receives

notification of the failure). The repair time measures the time

elapsed from the detection of the failure until the first failed

component is recovered. Finally, the recovery time measures

the time elapsed from the detection of the failure until the

application is restored (i.e., all failed components are

recovered and the Consumer component prints a valid result

again).

Table IV shows the reaction, repair and recovery times for

applications made up of N=60 (recovery of 10 components),

N=150 (recovery of 25 components), N=300 (recovery of 50

components), N=450 (recovery of 75 components) and N=600

(recovery of 100 components) Processor components.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

FIGURE 14. Recovery process of Node_5. The figure represents the
evolution of memory use during the failure detection and recovery.
Instant 1 represents the initial memory distribution after start-up. Instant
2 refers to the failure of Node_5. Finally, Instant 3 indicates the result of
the recovery process.

The results show that the reaction and repair times remain

approximately constant in order of magnitude (they suffer an

increase of less than 0.70s between the lightest and the

heaviest load). These results were expected, since the reaction

time is a load-independent capability of the platform; in turn,

the repair time is measured for the first component recovered,

which makes it also independent of the number of components

to be recovered. Finally, the recovery time increases, as

expected, with the number of components to be recovered, but

the ratio between the recovery time and the number of

recovered components is ~1 (i.e., it takes approximately ~1s

to recover a component).

TABLE IV

RESULTS OF RESPONSE TIMES FOR FAILURE RECOVERY WITH APPLICATIONS

OF DIFFERENT SIZE (N). FAILURE RECOVERY IS BASED ON THE FAILURE OF

ONE NODE (I.E., N/6 COMPONENTS ARE LOST)

 N=60 N=150 N=300 N=450 N=600

Reaction 3,14s 3,14s 3,14s 3,54s 3,81s

Repair 5,28s 5,56s 5,33s 4,35s 5,97s

Recovery 8,38s 18,62s 52,87s 85,81s 96,16s

VI. CONCLUSIONS

This paper has proposed MAS-RECON, a generic and

customizable architecture for the management of context-

aware applications. It is mainly focused on considering the

domain application concept from its initial design, also

fulfilling the operational and flexibility requirements of target

applications from an application-centric point of view.

The formalization of the domain based on models facilitates

platform customization, allowing a generic management of the

system state. It has also been proven that distributed

intelligence, (achieved through multi-agent technology)

jointly with system-level supervision, makes it possible to face

unexpected events: namely, relevant context changes or agent

failures. The MAS-RECON architecture, together with the

proposed customization methodology, allows domain specific

platforms to be developed, which meet common and domain

dependent requirements of context-aware applications.

From the analysis of deployment times of MAS-RECON

against Kubernetes, it can be concluded that scheduling time

in Kubernetes is better than in MAS-RECON. This is mainly

due to the personalization facilities that MAS-RECON offers,

which, among others, allow startup or deployment of agents

customized to concrete domains. In fact, it can be said that

MAS-RECON goes beyond other management platforms,

being a kind of development framework that eases agent

implementation through the definition of templates.

However, the approach still has limitations. Currently,

MAS-RECON lacks an admission control, which assures that

applications are accepted only if there are enough resources.

Additionally, given the dynamism of resource availability,

flexible QoS management is needed to adjust the QoS level of

running applications to the available resources at any moment.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

Another serious drawback is the effort to develop a particular

platform, as it requires an in-depth knowledge of the MAS-

RECON architecture to integrate a new code. In this sense,

future work is aimed at extending MAS-RECON architecture

to facilitate the development of new domain platforms. Thus,

by making the most of model-driven engineering in terms of

model transformations, it will be possible to customize the

architecture to different domains.

FIGURE 15. Component deployment times in MAS-RECON (blue color) and Kubernetes (orange color), for different workloads in a cluster made up of
a fixed number of N=20 nodes and over a maximum workload of 30*N (600) components: a) mean scheduling time; b) mean creation time; c) mean
startup time.

FIGURE 16. Component deployment times in MAS-RECON (blue color) and Kubernetes (orange color), for a 100% workload (30*N components) in
different cluster sizes: a) mean scheduling time; b) mean creation time; c) mean startup time.

REFERENCES
[1] A. Čolaković and M. Hadžialić, “Internet of Things (IoT): A review

of enabling technologies, challenges, and open research issues,”

Comput. Netw., vol. 144, pp. 17–39, 2018, doi:
10.1016/j.comnet.2018.07.017.

[2] C. Perera, C. H. Liu, S. Jayawardena, and M. Chen, “A Survey on

Internet of Things From Industrial Market Perspective,” vol. 2, pp.
1660–1679, 2014, doi: 10.1109/ACCESS.2015.2389854.

[3] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial

internet of things (IIoT): An analysis framework,” Comput. Ind., vol.
101, pp. 1–12, 2018, doi: 10.1016/j.compind.2018.04.015.

[4] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A Survey on Industrial

Internet of Things: A Cyber-Physical Systems Perspective,” IEEE

Access, vol. 6, pp. 78238–78259, 2018, doi:

10.1109/ACCESS.2018.2884906.
[5] P. P. Ray, M. Mukherjee, and L. Shu, “Internet of Things for Disaster

Management: State-of-the-Art and Prospects,” IEEE Access, vol. 5,

pp. 18818–18835, 2017, doi: 10.1109/ACCESS.2017.2752174.
[6] S. A. Shah, D. Z. Seker, M. M. Rathore, S. Hameed, S. Ben Yahia,

and D. Draheim, “Towards Disaster Resilient Smart Cities: Can

Internet of Things and Big Data Analytics Be the Game Changers?,”
IEEE Access, vol. 7, pp. 91885–91903, 2019, doi:

10.1109/ACCESS.2019.2928233.

[7] S. B. Baker, W. Xiang, and I. Atkinson, “Internet of Things for Smart
Healthcare: Technologies, Challenges, and Opportunities,” IEEE

Access, vol. 5, pp. 26521–26544, 2017, doi:

10.1109/ACCESS.2017.2775180.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

[8] S. M. R. Islam, D. Kwak, M. H. Kabir, M. Hossain, and K.-S. Kwak,

“The Internet of Things for Health Care: A Comprehensive Survey,”

IEEE Access, vol. 3, pp. 678–708, 2015, doi:
10.1109/ACCESS.2015.2437951.

[9] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E.-H. M.

Aggoune, “Internet-of-Things (IoT)-Based Smart Agriculture:
Toward Making the Fields Talk,” IEEE Access, vol. 7, pp. 129551–

129583, 2019, doi: 10.1109/ACCESS.2019.2932609.

[10] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, “A Survey
on the Role of IoT in Agriculture for the Implementation of Smart

Farming,” IEEE Access, vol. 7, pp. 156237–156271, 2019, doi:

10.1109/ACCESS.2019.2949703.
[11] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart

Factory of Industry 4.0: Key Technologies, Application Case, and

Challenges,” IEEE Access, vol. 6, pp. 6505–6519, 2018, doi:
10.1109/ACCESS.2017.2783682.

[12] Q. Qi and F. Tao, “A Smart Manufacturing Service System Based on

Edge Computing, Fog Computing, and Cloud Computing,” IEEE
Access, vol. 7, pp. 86769–86777, 2019, doi:

10.1109/ACCESS.2019.2923610.

[13] T. Vale, I. Crnkovic, E. S. de Almeida, P. A. da M. Silveira Neto, Y.
C. Cavalcanti, and S. R. de L. Meira, “Twenty-eight years of

component-based software engineering,” J. Syst. Softw., vol. 111, pp.

128–148, 2016, doi: 10.1016/j.jss.2015.09.019.
[14] Michael Wooldridge, An Introduction to MultiAgent Systems, 2nd ed.

Hoboken, NJ, USA: Wiley Publishing, 2009.
[15] J. Al-Jaroodi and N. Mohamed, “Service-oriented middleware: A

survey,” J. Netw. Comput. Appl., vol. 35, no. 1, pp. 211–220, Jan.

2012, doi: 10.1016/j.jnca.2011.07.013.
[16] James Lewis and Martin Fowler, “Microservices.” 2014. Accessed:

Jul. 20, 2021. [Online]. Available:

https://martinfowler.com/articles/microservices.html
[17] N. Gui, V. De Florio, H. Sun, and C. Blondia, “Toward architecture-

based context-aware deployment and adaptation,” J. Syst. Softw., vol.

84, no. 2, pp. 185–197, 2011, doi: 10.1016/j.jss.2010.09.017.
[18] S. Hallsteinsen et al., “A development framework and methodology

for self-adapting applications in ubiquitous computing environments,”

J. Syst. Softw., vol. 85, no. 12, pp. 2840–2859, 2012, doi:
10.1016/j.jss.2012.07.052.

[19] E. Albassam, J. Porter, H. Gomaa, and D. A. Menasce, “DARE: A

Distributed Adaptation and Failure Recovery Framework for Software
Systems,” in 2017 IEEE International Conference on Autonomic

Computing (ICAC), Columbus, OH, USA, 2017, pp. 203–208. doi:

10.1109/ICAC.2017.12.
[20] M. Hussein, J. Han, and A. Colman, “An Approach to Model-Based

Development of Context-Aware Adaptive Systems,” in 2011 35th

IEEE Annual Computer Software and Applications Conference,
Munich, Germany, 2011, pp. 205–214. doi:

10.1109/COMPSAC.2011.34.

[21] E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, and M.
Rebollo, “An abstract architecture for virtual organizations: The

THOMAS approach,” Knowl. Inf. Syst., vol. 29, no. 2, pp. 379–403,

2011, doi: 10.1007/s10115-010-0349-1.
[22] G. Villarrubia, D. Hernández, J. F. De Paz, and J. Bajo, “Combination

of multi-agent systems and embedded hardware for the monitoring and

analysis of diuresis,” Int. J. Distrib. Sens. Netw., vol. 13, no. 7, pp. 1–
17, 2017, doi: 10.1177/1550147717722154.

[23] M. Garcia Valls, I. R. Lopez, and L. F. Villar, “iLAND: An Enhanced

Middleware for Real-Time Reconfiguration of Service Oriented
Distributed Real-Time Systems,” IEEE Trans. Ind. Inform., vol. 9, no.

1, pp. 228–236, 2013, doi: 10.1109/TII.2012.2198662.

[24] A. Agirre, J. Parra, A. Armentia, E. Estévez, and M. Marcos, “QoS
Aware Middleware Support for Dynamically Reconfigurable

Component Based IoT Applications,” Int. J. Distrib. Sens. Netw., vol.

2016, no. Article ID 2702789, pp. 1–17, 2016, doi:

10.1155/2016/2702789.

[25] M. U. Khan, R. Reichle, and K. Geihs, “Architectural Constraints in

the Model-Driven Development of Self-Adaptive Applications,” IEEE
Distrib. Syst. Online, vol. 9, no. 7, pp. 1–10, 2008, doi:

10.1109/MDSO.2008.19.

[26] X. He, Z. Tu, X. Xu, and Z. Wang, “Programming framework and
infrastructure for self-adaptation and optimized evolution method for

microservice systems in cloud–edge environments,” Future Gener.

Comput. Syst., vol. 118, pp. 263–281, May 2021, doi:

10.1016/j.future.2021.01.008.
[27] A. Armentia, U. Gangoiti, R. Priego, E. Estévez, and M. Marcos,

“Flexibility Support for Homecare Applications Based on Models and

Multi-Agent Technology,” Sensors, vol. 15, no. 12, pp. 31939–31964,
2015, doi: 10.3390/s151229899.

[28] M. López, J. Martín, U. Gangoiti, A. Armentia, E. Estévez, and M.

Marcos, “Tolerancia a fallos en Sistema de Fabricación Flexible
basado en MAS,” in XXXIX Jornadas de Automática, Badajoz, Spain,

2018, pp. 799–805. doi:

https://doi.org/10.17979/spudc.9788497497565.
[29] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A

survey on engineering approaches for self-adaptive systems,”

Pervasive Mob. Comput., vol. 17, pp. 184–206, 2015, doi:
10.1016/j.pmcj.2014.09.009.

[30] Y. Wang, H. Kadiyala, and J. Rubin, “Promises and challenges of

microservices: an exploratory study,” Empir. Softw. Eng., vol. 26, no.
4, p. 63, Jul. 2021, doi: 10.1007/s10664-020-09910-y.

[31] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, “JADE: A

software framework for developing multi-agent applications. Lessons
learned,” Inf. Softw. Technol., vol. 50, no. 1–2, pp. 10–21, 2008, doi:

10.1016/j.infsof.2007.10.008.

[32] Foundation for Intelligent Physical Agents, “Standard FIPA
specifications.” 2002.

[33] “Kubernetes.” 2020. Accessed: Jul. 22, 2021. [Online]. Available:
https://kubernetes.io/docs/home/

[34] P. González-Nalda, I. Etxeberria-Agiriano, I. Calvo, and M. C. Otero,

“A modular CPS architecture design based on ROS and Docker,” Int.
J. Interact. Des. Manuf. IJIDeM, vol. 11, no. 4, pp. 949–955, Nov.

2017, doi: 10.1007/s12008-016-0313-8.

[35] G. Toffetti, T. Lötscher, S. Kenzhegulov, J. Spillner, and T. M.
Bohnert, “Cloud Robotics: SLAM and Autonomous Exploration on

PaaS,” in Companion Proceedings of the10th International

Conference on Utility and Cloud Computing, Austin Texas USA, Dec.
2017, pp. 65–70. doi: 10.1145/3147234.3148100.

[36] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar,

“A Survey on IoT Security: Application Areas, Security Threats, and
Solution Architectures,” IEEE Access, vol. 7, pp. 82721–82743, 2019,

doi: 10.1109/ACCESS.2019.2924045.

[37] P. Arcaini, E. Riccobene, and P. Scandurra, “Modeling and Analyzing
MAPE-K Feedback Loops for Self-Adaptation,” in 2015 IEEE/ACM

10th International Symposium on Software Engineering for Adaptive

and Self-Managing Systems, Florence, Italy, 2015, pp. 13–23. doi:
10.1109/SEAMS.2015.10.

[38] X. Li, M. Eckert, J.-F. Martinez, and G. Rubio, “Context Aware

Middleware Architectures: Survey and Challenges,” Sensors, vol. 15,
no. 8, pp. 20570–20607, Aug. 2015, doi: 10.3390/s150820570.

[39] J. R. Hoyos, J. García-Molina, and J. A. Botía, “A domain-specific

language for context modeling in context-aware systems,” J. Syst.
Softw., vol. 86, no. 11, pp. 2890–2905, 2013, doi:

10.1016/j.jss.2013.07.008.

[40] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou,
“Variability in Software Systems—A Systematic Literature Review,”

IEEE Trans. Softw. Eng., vol. 40, no. 3, pp. 282–306, 2014, doi:

10.1109/TSE.2013.56.
[41] A. Rocha et al., “Innovations in health care services: The CAALYX

system,” Int. J. Med. Inf., vol. 82, no. 11, pp. e307–e320, 2013, doi:

10.1016/j.ijmedinf.2011.03.003.
[42] T. Wu, F. Wu, J.-M. Redoute, and M. R. Yuce, “An Autonomous

Wireless Body Area Network Implementation Towards IoT

Connected Healthcare Applications,” IEEE Access, vol. 5, pp. 11413–
11422, 2017, doi: 10.1109/ACCESS.2017.2716344.

[43] L. R. Coutinho, A. A. F. Brandão, O. Boissier, and J. S. Sichman,

“Towards Agent Organizations Interoperability: A Model Driven

Engineering Approach,” Appl. Sci., vol. 9, no. 12, pp. 1–38, 2019, doi:

10.3390/app9122420.

[44] J. J. Gómez-Sanz and R. Fuentes-Fernández, “Understanding Agent-
Oriented Software Engineering methodologies,” Knowl. Eng. Rev.,

vol. 30, no. 4, pp. 375–393, 2015, doi: 10.1017/S0269888915000053.

[45] U. Gangoiti, A. López, A. Armentia, E. Estévez, and M. Marcos,
“Model-Driven Design and Development of Flexible Automated

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3138586, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017)

2 VOLUME XX, 2017

Production Control Configurations for Industry 4.0,” Appl. Sci., vol.

11, no. 5, pp. 1–27, Mar. 2021, doi: 10.3390/app11052319.

[46] H. Psaier and S. Dustdar, “A survey on self-healing systems:
approaches and systems,” Computing, vol. 91, pp. 43–73, Jan. 2011,

doi: 10.1007/s00607-010-0107-y.

[47] I. García-Magariño and C. Gutiérrez, “Agent-oriented modeling and
development of a system for crisis management,” Expert Syst. Appl.,

vol. 40, no. 16, pp. 6580–6592, 2013, doi:

10.1016/j.eswa.2013.06.012.
[48] R. Guerraoui and A. Schiper, “Software-Based Replication for Fault

Tolerance,” Computer, vol. 30, no. 4, pp. 68–74, 1997, doi:

10.1109/2.585156.
[49] W. Huan and N. Hidenori, “Failure Detection in P2P-Grid

Environments,” in 32nd International Conference on Distributed

Computing Systems Workshops, Macau, China, 2012, pp. 369–374.
doi: 10.1109/ICDCSW.2012.18.

[50] A. Ruiz, G. Juez, P. Schleiss, and G. Weiss, “A safe generic adaptation

mechanism for smart cars,” in 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE),

Gaithersbury, MD, USA, 2015, pp. 161–171. doi:

10.1109/ISSRE.2015.7381810.
[51] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “A

Kubernetes controller for managing the availability of elastic

microservice based stateful applications,” J. Syst. Softw., vol. 175, p.
110924, May 2021, doi: 10.1016/j.jss.2021.110924.

[52] D. Rosaci and G. M. L. Sarné, “MASHA: A multi-agent system
handling user and device adaptivity of Web sites,” User Model. User-

Adapt. Interact., vol. 16, no. 5, pp. 435–462, 2006, doi:

10.1007/s11257-006-9015-4.
[53] S. Garruzzo, D. Rosaci, and G. M. L. Sarne, “MASHA-EL: A Multi-

Agent System for Supporting Adaptive E-Learning,” in 19th IEEE

International Conference on Tools with Artificial Intelligence(ICTAI
2007), Patras, Greece, 2007, pp. 103–110. doi:

10.1109/ICTAI.2007.83.

[54] B. Selic, “The pragmatics of model-driven development,” IEEE
Softw., vol. 20, no. 5, pp. 19–25, 2003, doi:

10.1109/MS.2003.1231146.

[55] W3C, “XML Schema Part 0: Primer (Second Edition), W3C REC-
xmlschema-0-20041028.” 2004. [Online]. Available:

https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

[56] Casquero, O, Armentia, A, Estevez, E, López, A, and M. Marcos,
“Customization of agent-based manufacturing applications based on

domain modelling,” presented at the 21st IFAC World Congress,

Berlin, Germany, 2020. Accessed: Nov. 18, 2020. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0952197608001437

[57] cooking hacks, “e-Health Sensor Platform V1.0 for Arduino and

Raspberry Pi [Biometric / Medical Applications].” 2013. [Online].
Available: https://www.cooking-

hacks.com/documentation/tutorials/ehealth-v1-biometric-sensor-

platform-arduino-raspberry-pi-medical.html
[58] Á. Jobbágy, P. Csordás, and A. Mersich, “Blood Pressure

Measurement at Home,” Seoul, Korea, 2006, vol. 14, pp. 3453–3456.

doi: https://doi.org/10.1007/978-3-540-36841-0_873.

	0_tesis_portada1
	1_art1
	Introduction
	Related Work
	Flexibility Requirements for Home Care AAL Systems
	Domain Modeling Approach for Application Specification
	User View
	Functional Requirements (R1, R2)
	Timing Requirements (R3)
	Adaptability (R4)

	Software View
	Meta-Model

	MAS-RECON Middleware
	Functional and Timing Requirements (R1, R2 and R3)
	Adaptability (R4)
	Application Unaware Availability for Stateful Applications (R5)

	Assessment
	Homecare Demonstrator
	Runtime Performance

	Conclusions and Future Work

	2_port2
	3_art2
	4_port3
	5_art3
	Sin título

