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We present a method to transport Bose–Einstein
condensates (BECs) in anharmonic traps and in the
presence of atom–atom interactions in short times
without residual excitation. Using a combination
of a variational approach and inverse engineering
methods, we derive a set of Ermakov-like equations
that take into account the coupling between the
centre of mass motion and the breathing mode. By
an appropriate inverse engineering strategy of those
equations, we then design the trap trajectory to
achieve the desired boundary conditions. Numerical
examples for cubic or quartic anharmonicities are
provided for fast and high-fidelity transport of BECs.
Potential applications are atom interferometry and
quantum information processing.

This article is part of the theme issue ‘Shortcuts
to adiabaticity: theoretical, experimental and
interdisciplinary perspectives’.

1. Introduction
The accurate manipulation of ultracold atoms is a
key prerequisite to implement quantum technologies
within atomic, molecular and optical science [1]. In
particular, the transport of individual atoms and
of thermal or Bose-condensed clouds using moving
traps has been demonstrated in many experiments
[2–12] for different goals in quantum information
processing and metrology. In all quantum technologies,

2022 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 J

an
ua

ry
 2

02
3 

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2021.0280&domain=pdf&date_stamp=2022-11-07
https://doi.org/10.1098/rsta/380/2239
mailto:jli@ucc.ie
http://orcid.org/0000-0002-7565-3933
http://orcid.org/0000-0003-4221-4288
http://orcid.org/0000-0002-6044-993X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210280

...............................................................

preserving quantum coherence and achieving high final fidelities in short times is of crucial
importance. One possibility is called shortcuts to adiabaticity (STA) [13,14] which provides a
toolbox to control both the internal and external degrees of freedom of a quantum system in
faster-than adiabatic times.

Various shortcuts to adiabatic transport have been proposed: Lewis–Riesenfeld invariant-
based inverse engineering [15–19], enhanced STA scheme [20–22], the Fourier optimization [23],
fast-forward scaling method [24,25] and the counter-diabatic driving [26] have been theoretically
put forward, and experimentally demonstrated for various systems [7,10,11,27]. The possibility to
operate with short times not only reduces the sensitivity to low-frequency noise, but also allows
for improved measurement statistics in the total time available for the experiment.

Different approaches for transporting particles have been implemented. Neutral atoms
have been transported as Bose–Einstein condensates (BECs) [2], thermal atomic clouds [28] or
individually [5], using magnetic or optical traps. The commonly used traps for ultracold atoms
based on electromagnetic fields are never perfectly harmonic. The weak cubic anharmonicity
plays a role when a BEC is transported perpendicular to the atom chip surface [29]. The
quartic anharmonicity is significant when approximating the potential of an optical tweezers for
transport [7,16]. Thus cancelling the anharmonic contributions of the trapping potential is vital
for useful control schemes and is already a difficult technical challenge for a static trap [30].

Anharmonicities can have an important impact on the dynamics as observed in atom cooling
[31], collective modes [32] or wave packet dynamics [33]. In most cases, the anharmonic traps
are considered as a perturbation of a harmonic one. Perturbation theory has been used to design
shortcut protocols for expansion/compression [34] and transport [35]. Of course, the results are
limited by the premises of perturbation theory, i.e. by small anharmonicities. Considering a non-
perturbative scenario is thus of much interest.

In this paper, we propose to inverse engineer rapid and robust transport of an interacting BEC
in anharmonic traps using a variational approach. The method relies on a variational formulation
of the dynamics to derive a set of coupled Ermakov-like and Newton-like equations, from which
the trap trajectory is inferred interpolating between the desired boundary conditions. In §2, we
explain the variational formalism. In §3, we work out the explicit solutions for quartic and cubic
anharmonicities of the confining potential, and illustrate the efficiency of the method with various
numerical examples. In §4, we will discuss the results.

2. Model, Hamiltonian and method
For a cigar-shaped trap with strong transverse confinement, e.g. ω⊥ >>ω, it is appropriate to
consider a one-dimensionless formula by freezing the transverse dynamics to the respective
ground state and integrating over the transverse variables [36]. The effective atomic interaction
is denoted by g = 2asω⊥N/ωaho, with as the interatomic scattering length and aho = √

h̄/(mω).
The resulting dimensionless form of Gross–Pitaevskii equation (GPE) [37] can be written as

i
∂ψ(x, t)
∂t

=
[
−1

2
∂2

∂x2 + V(x, t)+g|ψ(x, t)|2
]
ψ(x, t), (2.1)

where

V(x, t) = 1
2

[x − x0(t)]2 + κ

3!
[x − x0(t)]3 + λ

4!
[x − x0(t)]4, (2.2)

where ψ(x, t) is the axial wave function of the condensate with normalization condition∫+∞
−∞ |ψ(x, t)|2dx = N. The attractive and repulsive interactions are denoted by g< 0 and g> 0,

respectively. The axial harmonic trap frequency is ω. The potential centre x0(t) is time-dependent
for transport. Note that the potential in equation (2.2) consists two types of anharmonicities, one
is cubic (κ ≥ 0) and the other is quartic (λ≥ 0) anharmonicity, which is shown in figure 1.

To apply the variational approach, we first define an ansatz for the wave function with a few
free parameters and evaluate the Lagrangian density. The minimization of the total Lagrangian
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(a) (b)

Figure 1. Cubic (a) and quartic (b) anharmonic potentials (red solid lines) compared with the harmonic counterparts (blue
dashed lines). The ground states are plotted for different potentials. (Online version in colour.)

with respect to the free parameters provides equations of motion for the free parameters [38]. This
approach is equivalent to a moment method [39].

We assume a general Gaussian ansatz,

ψ(x, t) = A(t) exp

[
− (x − xc(t))2

2a(t)2

]
exp[ib(t)(x − xc(t))2 + ic(t)(x − xc(t)) + iφ(t)], (2.3)

where the time-dependent parameters A(t), a(t), b(t), c(t) and φ(t) represent, respectively, the
amplitude, width, chirp, velocity and global phase. The wave function centre of mass is xc(t). In
the following, we omit t in those variables for simplification. The normalization condition yields
A =

√
N/(a

√
π).

The Lagrangian density which corresponds to equation (2.1) reads [38]

L = i
2

(
∂ψ

∂t
ψ∗ − ∂ψ∗

∂t
ψ

)
− 1

2

∣∣∣∣∂ψ∂x

∣∣∣∣2 −g
2
|ψ |4 − V(x)|ψ |2. (2.4)

Inserting the ansatz (2.3) into equation (2.4), we find an effective Lagrangian [38] by integrating
the Lagrangian density over the whole coordinate space, L= ∫+∞

−∞ Ldx. The Euler–Lagrange
minimization is performed over L and with respect to the free parameters and the conditions
δL/δξ = 0 where ξ = a, b, c or xc. Four coupled equations result for (ȧ, ḃ, ẋc, ċ), are given by

ȧ = 2ab, (2.5)

ḃ = 1
2a4 − 1

2
[1 − 4κ(x0 − xc) + 18λ(x0 − xc)2] − 2b2+ gN

2
√

2πa3
, (2.6)

ċ = (1 + 18λa2)(x0 − xc) − 2κ(x0 − xc)2 + 12λ(x0 − xc)3 − κa2 (2.7)

and ẋc = c, (2.8)

which can be condensed into two second-order coupled equations for the width a and the
wavepacket centre xc,

ä = 1
a3 − a[1 − 4κq + 18λq2]+ gN√

2πa2
− 9λa3 (2.9)

and
ẍc = (1 + 18λa2)q − 2κq2 + 12λq3 − κa2, (2.10)

where q = x0 − xc is the displacement between the centre of the harmonic term and the
wavepacket. In equation (2.9), the centre of mass motion xc is strongly coupled with the width a
of the wave function through the anharmonic terms of the confining potential. When we consider
an adiabatic transport such as q = 0, one can see that the cubic anharmonicity κ is strongly
coupled with the width a in equation (2.10). Alternatively, the quartic anharmonicity λwill create
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breathing mode due to the strong coupling with the width a in the case of q = 0. The nonlinearities
introduced by atom–atom interactions do not generate any coupling with anharmonicities, as is
known for harmonic traps [16].

This system generalizes the structure found for harmonic traps via invariant-based inverse
engineering [16]. In the absence of anharmonicities (κ = 0 and λ= 0), the two coupled equations
(2.9) and (2.10) reduce to an Ermakov equation [40] and a Newton equation [16] for a single atom
(or ion) or a BEC. By contrast, equation (2.10) for the trajectory of the centre of mass xc can be
generically recovered from the Ehrenfest theorem, and is therefore immune to the precise shape of
the ansatz. In what follows, we shall exploit these coupled equations to inverse engineer shortcut
to adiabatic transport of BECs.

3. Inverse engineering
In this section, we focus on the fast and high fidelity transport of a BEC from a stationary state at
initial position x0(0) = 0 to a target state with x0(tf ) = d in a finite time tf . The desired distance of
potential is d. We will consider the cases of cubic (see §3a) and quartic (see §3b) anharmonicities
individually. In particular, the trajectory x0(t) of the potential centre can be designed by using
inverse engineering methods applied to the set of equations (2.9) and (2.10). Furthermore, we will
provide numerical examples that confirm the effectiveness of the method.

(a) Cubic anharmonicity
Let us consider a potential with cubic anharmonicity [18],

V(x, t) = 1
2

(x − x0)2 + 1
3!
κ(x − x0)3. (3.1)

When κ �= 0 and λ= 0, we substitute the condition ẍc = ẍ0 − q̈ into the coupled differential
equations (2.9) and (2.10), which can be simplified into

ä = 1
a3 − a+ gN√

2πa2
+ 4κaq (3.2)

and

q̈ = ẍ0 − q + κa2 + 2κq2. (3.3)

The second equation may be regarded as a second-order differential equation for q. We require
that both initial and final states are stationary states. First, we can calculate the initial and final
conditions for the function q which are q(0) = q(tf ) = Q. By imposing ẍ0 − q̈ = 0 in equation (3.3),
one obtains

Q =
1 −

√
1 − 8a2

0κ
2

4κ
, (3.4)

where a0 denotes the initial and final widths, which are equal. Note that the difference Q is caused
by the asymmetricity of the cubic anharmonic potential. Substituting equation (3.4) into equation
(3.2), we can obtain the initial width a0 as well as the final width by imposing ä = 0,

1

a3
0

− a0+ gN√
2πa2

0

+ 2κa0Q = 0. (3.5)

The value of a0 is numerically obtained by solving equation (3.5), which is dependent on the
values of the nonlinearity g and anharmonicity strength κ . The width a0 increases when the
system has either repulsive interaction or cubic anharmonicity.

Now we use inverse engineering according to the following steps. We may recall that the initial
and final states are stationary states with width a0 without excitations at the final time. Then we
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can set up the boundary conditions for width a according to equation (3.2)

a(0) = a0, a(tf ) = a0 (3.6)

and
ä(0) = 0, ä(tf ) = 0. (3.7)

Since that the chirp and velocity terms satisfy b(0) = b(tf ) = 0 and c(0) = c(tf ) = 0 in equations (2.5)
and (2.8), respectively, one can find the conditions from equations (2.6) and (2.7) that

ȧ(0) = 0, ȧ(tf ) = 0 (3.8)

and
q̇(0) = 0, q̇(tf ) = 0, (3.9)

In addition, the boundary conditions for x0 in equation (3.3) are imposed by

x0(tf ) = d, ẋ0(tf ) = 0. (3.10)

Then we set a ninth-order polynomial for a(t) = ∑9
n=0 antn and fix the parameters by satisfying

all the boundary conditions of equations (3.6)–(3.10). An example of the designed function a is
shown in figure 2a. Once we obtain the function a, one can easily get the function q in equation
(3.2). Finally, x0 and xc can be expressed easily in terms of the width a and q which is shown in
figure 2b. Note that we fix values of g, κ and final time tf in the example. Figure 2a shows the
wavepacket undergoes a slight breathing and finally returns to the initial width during the non-
adiabatic process. This breathing phenomena is due to the coupling term between anharmonicity
κ and width a in equation (3.2): with κ = 0, the solution of equation (3.2) will be a constant width a.
Figure 2b illustrates that the trap trajectory oscillates from the initial position and then returns to
the desired position at x0 = d. The corresponding time-evolution |ψSTA(x, t)|2 is shown in figure 2c.

To check the performance of the STA trajectories, we define the fidelity at the final time tf as

F = |〈ψSTA(tf )|Φf 〉|2, (3.11)

where ψSTA(tf ) is obtained from the direct numerical simulation (split-operator method) of
equation (2.1) using the STA trajectory of x0(t). The desired ground state Φ is obtained by the
imaginary time-evolution technique. Φ0,f denotes the initial and final ground states, respectively.
Noting that we take the ground state Φ0 as an initial state when we do the time-evolution to get
the final state ψSTA(tf ). The fidelity of the example in figure 2c at the final time is F> 0.999. The
high performance of fidelity in short time with both attractive and repulsive interactions is plotted
in figure 3. The oscillations are due to the fact that the Gaussian ansatz (2.3) is not the solution of
BECs with atomic interactions. It is reported that fidelity is improved by using a soliton ansatz in
the attractive nonlinear system [17]. Thus in this case, the strong attractive interaction will lead
to the period oscillations (see dotted-green line g = −2) due to the Gaussian ansatz we applied in
variational approach. For the case of repulsive interaction, the period is greater than the attractive
one.

(b) Quartic anharmonicity
In this section, we shall concentrate on the fast transport of BEC in quartic anharmonicity.
The potential reads

V(x) = 1
2

(x − x0)2 + 1
4!
λ(x − x0)4. (3.12)

Since λ �= 0 and κ = 0, the coupled Ermakov-like and Newton-like equations (2.9) become

ä = 1
a3 − a(1 + 18λq2)+ gN√

2πa2
− 9λa3 (3.13)

and
q̈ = ẍ0 − (1 + 18λa2)q − 12λq3. (3.14)
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Figure 2. Cubic anharmonicity. (a) Width a(t) with respect to time. (b) Designed trajectories for trap centre x0 (red solid) and
centre of mass xc (dot-dashed blue). The rest of parameters are Q= 4.5 × 10−3, a0 = 0.95, g= 0.5, κ = 0.02, tf = 4, and
the distance d = 5 of transport. (c) The corresponding time evolution |ψSTA(x, t)|2. (Online version in colour.)
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F

Figure 3. Cubic anharmonicity: fidelity with respect to the final time tf for attractive atomic interactions g= −0.1 (red
solid), g= −0.5 (dash-dotted blue), g= −2 (dotted green), repulsive interaction g= 0.5 (dashed purple), the anharmonic
strength κ = 0.02. (Online version in colour.)

The first equation (3.13) predicts the breathing mode and the oscillations in the width of the wave
packet during the transport.

Our inversion strategy will be different from the one followed previously for cubic
anharmonicity because the displacement q appears quadratically in equation (3.13). We shall
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Figure 4. Quartic anharmonicity. (a) The width a with respect to time. (b) Shortcut for the designed trajectory for centre of
mass xc (dash-dotted blue) and trap centre x0 (red solid). Parameters: a0 = 0.995329, g= 0.01,λ= 0.06, tf = 4 and d = 5.
(Online version in colour.)

design q(t) with a polynomial as q(t) = ∑M
n=0 qntn. The boundary conditions for function q in

equation (3.14)

q(0) = 0, q(tf ) = 0

and q̇(0) = 0, q̇(tf ) = 0.

⎫⎬
⎭ (3.15)

Then we insert the polynomial function q into the coupled equations (3.13) and (3.14) to
parametrically solve the functions of width a and xc with the conditions a(0) = a0, ȧ(0) = 0 and
xc(0) = 0, ẋc(0) = 0. However, we need additional boundary conditions to achieve the final state at
final time tf , with

a(tf ) = a0, ȧ(tf ) = 0

and x0(tf ) = d, ẋ0(tf ) = 0,

⎫⎬
⎭ (3.16)

where a0 is the initial and final width calculated by equation (3.13) by imposing ä = 0. The number
of the boundary conditions above is eight, therefore one can choose M = 7. However, we want to
demand the following conditions,

q
( tf

4

)
= 0 and q

(3tf

4

)
= 0, (3.17)

to make the distance difference q between the centre of potential and the centre of wavepacket
coincide at these two times. Alternative boundary conditions would be also possible. According
to the above boundary conditions (3.15)–(3.17), we obtain the functions q, a, xc and x0. An example
of the resulting trap trajectory and dynamics is shown in figure 4. Note that this stationary
value makes it different from the transport of cold atoms in purely harmonic traps, since the
nonlinearity and anharmonic term are involved. On the other hand, we shall also emphasize
that the width a oscillates (figure 4a) during the transport, calculated from equation (3.13): this
oscillation is again due to the coupling term between quartic anharmonicity λ and width a in
the sense that with λ= 0, the solution of equation (3.13) will be again a constant width a. We
are now in a position to design the shortcuts to adiabatic transport protocol. Figure 4b shows
the trajectories of the centre of mass of wave packet and trap centre, by using inverse engineering
and boundary conditions, mentioned before. At the initial and final times, the trajectories coincide
with each other, which means there is no displacement deviation, guaranteeing the high fidelity
(F = 0.9999) of the transport.
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Figure 5. Fidelity for quartic λ= 0.06 (blue-dotted line), and cubic κ = 0.02 (red line) with respect to g. Other parameters
are tf = 3π , N = 1 and d = 5. (Online version in colour.)

4. Effect of nonlinearity
In this section, we shall check the fidelity of our results by solving the GPE numerically (without
approximation) with the designed shortcuts. Figure 5 demonstrates that the fast transport of
BECs is perfect with various anharmonic traps taking into account the attractive and repulsive
interactions. The Gaussian ansatz is also valid for the variational approximation in our model in
the presence of an atomic interaction g �= 0. In figure 5, the fidelity for cubic anharmonicity κ = 0.02
is plotted for different atomic interactions g. The fidelity is above 0.99 for atomic interaction
|g|< 1.2, i.e. fast transport of BEC in cubic anharmonic traps can be achieved for both attractive
and repulsive interactions. The fidelity drops with interactions |g| ≥ 1.2. This is not surprising as
one would expect that the Gaussian variational approach (2.3) works better for small interaction g.
For example, the nonlinearity g = 2 is in the range where we would not expect the ansatz to work.
For g = −2, the fidelity will oscillate with respect to the final time which is shown in figure 3. In
figure 5, the fidelity for quartic anharmonicity λ= 0.06 is plotted for different atomic interactions
g. The fidelity is always greater than 0.99, i.e. fast transport of BEC in quartic anharmonic traps
can be achieved for both attractive and repulsive interactions.

5. Conclusion
In summary, we present an efficient way to design high-fidelity and fast transport of BEC in
anharmonic traps by combining the variational approach and inverse engineering methods. The
shortcuts to adiabatic transport of the BEC are demonstrated with numerical examples in quartic
and cubic anharmonicity traps. It is concluded that perfect transport can be achieved in cubic
anharmonic traps in the presence of both attractive and repulsive interactions. Our method
presented here is different from the previous ones [18], in which the anharmonic potential is
considered as a perturbation. The shortcut trajectory can be further optimized by using optimal
control theory, for instance, by taking into account noise and error in traps position and frequency
[41]. The technique may be extended to three-dimensional Gaussian-beam optical traps [42],
the spin-orbit coupled BECs [43], strongly interacting bosons (Tonks–Girardeau gas) [44] and
superfluid Fermi gas [45]. The transport of soliton matter waves will also be reported in future
work. We expect our shortcut design for fast transport to have potential applications not only in
atom interferometry [46] but also in quantum information processing.
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