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Resumen

El uso de cálculos de primeros principios se ha vuelto crucial entre
las diferentes disciplinas de la f́ısica de materia condensada. Permite
predicciones del comportamiento de los materiales usando aproximaciones
teóricas con bajo coste y sin necesidad de manipulación f́ısica. Una de
estas aproximaciones es la teoŕıa funcional de la densidad (DFT) la cual
puede ser aplicada para sistemas lo suficientemente grandes y comparables
con sistemas experimentales. Esta teoŕıa encuentra el estado de mı́nima
enerǵıa de un sistema electrónico al considerar todas las interacciones entre
electrones y aproximando las interacciones de intercambio y correlación.
En esta tesis, utilizamos DFT para estudiar las propiedades electrónicas
de diferentes materiales bidimensionales basados en carbono.

En experimentos, el grafeno de pocas capas muestra propiedades elec-
trónicas notables, pero para mantenerlas se requiere que se preserve el apil-
amiento durante todos los procesos. Sin embargo, los patrones de contac-
tos metálicos y estampado de grafeno de pocas capas sobre nitruro de boro
hexagonal (h-BN) puede llevar estiramientos anisotrópicos en las obleas de
grafeno, lo que puede cambiar el orden de apilamiento en materiales bidi-
mensionales tales como grafeno de tres capas. En la primera parte de esta
tesis, examinamos la estabilidad relativa entre los órdenes de apilamiento
romboédrico y Bernal en grafeno de tres capas ante diferentes deforma-
ciones. Las deformaciones realizadas fueron estiramiento en el plano, com-
presión, cizallamiento y desplazamiento de las subredes de grafeno. Estas
deformaciones nos permiten reproducir condiciones experimentales con el
fin de compararlas con nuestros resultados y determinar las que inducen
el cambio de apilamiento. Los resultados muestran que el apilamiento
romboédrico es mas estable que el Bernal. Cuando inducimos deforma-
ciones en el plano, notamos un cambio de apilamiento del romboédrico al
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Bernal. Bajo compresiones grandes, el apilamiento romboédrico sufre una
transición al Bernal. Compresiones pequeñas también pueden producir la
estabilidad del apilamiento Bernal cuando el cizallamiento y el desplaza-
miento de las subredes conducen a anisotroṕıas estructurales. Los resul-
tados de cizallamiento se alinean con resultados experimentales previos
en los cuales la deformación puede ser inducida por contactos metálicos,
por el encapsulamiento entre otras capas de grafeno en muestras de h-
BN, y al aplicar cizallamiento expĺıcitamente en las muestras. Además,
al desplazar subredes atómicas en grafeno de tres capas, la anisotroṕıa es-
tructural permite a estabilizar el apilamiento Bernal en ciertas direcciones.
Los mecanismos de deformación como el cizallamiento y desplazamiento
de subredes apuntan que la transición de apilamiento se puede lograr al
romper la simetŕıa de interacción entre capas en cada uno de ellos. Es-
tos resultados indican que son posibles diferentes realizaciones prácticas,
como el depósito de muestras en sustratos, y decoraciones con moléculas,
donde pueden tener lugar las transiciones de apilamiento.

En la segunda parte, investigamos un arreglo de ĺıneas de defecto en
grafeno de dos capas hechas de octágonos y pentágonos. Dado que es-
tas ĺıneas de defecto han sido observadas experimentalmente, hemos he-
cho un patrón de estos defectos entre las capas que induce un cambio
del apilamiento Bernal de AB a BA. La estructura electrónica muestra
una interacción entre bandas relacionadas con estados topológicos y es-
tados de las ĺıneas de defecto. De hecho, las ĺıneas de defecto mues-
tran fases magnéticas con bloqueo esṕın-momento cuando se hibridan
con estados topológicos. Observamos que los estados de defectos son
susceptibles a campos magnéticos y dopaje n. Bajo campo eléctrico,
el momento magnético con acople antiferromagnético tiende a ser fer-
romagnético. Luego, al aplicar dopaje tipo n al arreglo, las bandas de
defecto se fijan al nivel de Fermi y están parcialmente ocupadas. Estas
bandas muestran anidamiento para un dopaje igual a 1.0e. Los estados
anidados corresponden a ondas de densidad de carga conmensuradas que
se relacionan con inestabilidades de Peierls. Al aumentar el dopaje, los
estados del bloqueo de esṕın-momento se ocupan. Cuando combinamos
dopaje y valores grandes de campo, la estructura electrónica es dominada
por el dopaje y el campo causa que las bandas de defecto se separen. De
este modo, las ĺıneas de defecto pueden ser utilizadas como canales de
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conducción unidimensionales. Los resultados están a la espera de realiza-
ciones experimentales con patrones de ĺıneas de defecto, ya que nuestros
resultados demuestran que los estados electrónicos en el arreglo de ĺıneas
de defecto pueden manipularse fácilmente.

Doctoral thesis of Raúl Guerrero 5
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Abstract

The use of first-principles calculations has become crucial in various
fields of condensed matter physics. It allows for predictions of material be-
havior using theoretical approaches at a low cost and without the need for
physical manipulation. One of such approach is density functional theory
(DFT), which can be applied to systems large enough to be comparable
to experimental ones. This theory finds the minimum energy state of an
electronic system by considering all the interactions between electrons and
approximating their exchange-correlation energy. In this thesis, DFT is
used to study the electronic properties of two-dimensional carbon-based
materials.

Experimentally, few-layer graphene exhibits exceptional electronic prop-
erties, but maintaining these properties requires preservation of the stack-
ing throughout all processes. However, patterning of metal contacts and
stamping few-layer graphene onto hexagonal boron nitride might can lead
to anisotropic strains in graphene flakes, which can shift the stacking order
in two-dimensional materials such as trilayer graphene. In the first part of
this thesis, we examine the relative stability between rhombohedral and
Bernal stacking orders in trilayer graphene under different deformations
such as in-plane stretching, compression, shearing, and sublattice displace-
ment. These deformations allow us to reproduce experimental conditions
in order to compare them with our results and determine those that induce
the stacking change. The results show that the rhombohedral stacking is
more stable than the Bernal one. We induce in-plane deformations, we no-
tice a stacking shift from rhombohedral to Bernal one, which agrees with
experimental measurements. When large compressions are considered,
the rhombohedral stacking suffers a transition to the Bernal one. Smaller
compressions can also yield the Bernal stacking when shear and sublattice
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displacement drive to structural anisotropies. The shear results are in line
with previous experimental findings in which the deformation can be in-
duced by metal contacts, by other encapsulating layered graphene within
h-BN samples, and by explicitly putting shear on the samples. Further-
more, when shifting atomic sublattices in trilayer graphene, the structural
anisotropy helps to stabilize the Bernal stacking in certain directions. De-
formation mechanisms such as shear and sublattice displacement point
out that the stacking transition is achieved by breaking the sublattice
symmetries of the interlayer interactions involved in each stacking. These
findings indicate that different practical realizations are possible, such as
depositing samples in substrates, and molecule decoration, where stacking
transitions may take place.

In the second part of this thesis, we investigate an array of defect lines
in bilayer graphene made of pentagons and octagons. Because these de-
fect lines have been observed experimentally, we pattern the defect lines
between the layers inducing thus the change of the Bernal stacking from
AB to BA. The electronic structure reveals an interplay between bands re-
lated to topological and defect-line states. In fact, the defect lines display
magnetic phases with spin-momentum locking when they mix with topo-
logical states. We note that the defect states are affected by electric field
and n-doping. Under electric field, the magnetic moment in the antiferro-
magnetic coupling tends to be as in the ferromagnetic case. Next, when we
apply n-doping to the array, the defect bands are partially occupied and
pinned at the Fermi level. They also are nested for n-doping value equal
to 1.0e. The nested states correspond to a commensurate charge-density
wave which could be related with Peierls instabilities. For larger n-doping
values, the spin momentum locking states are filled. When we combine
doping under large field values, the electronic structure is dominated by
the n-doping and the field causes the defect bands to split. The defect
lines in the array can thus be used as one-dimensional conducting chan-
nels. We are looking forward to experimental realizations that show the
patterning of the defect lines, since our results show that the electronic
states in the defect line array can be easily manipulated.

8 Doctoral thesis of Raúl Guerrero



1 — Introduction

Material properties such as mechanical, thermal conductivity, and elec-
tronic ones have been, among others, a point to take into account by
the scientific community. The first descriptions of materials were gen-
erally based on observations of their physical evolution under different
external conditions. While most of those purely phenomenological con-
clusions were not clear from a fundamental point of view, these first con-
jectures paved the way for the development of modern science. In the
nineteenth century, Michael Faraday described the current-temperature
dependence of a thermo-resistant semiconductor like Ag2S. In this experi-
ment, Faraday used a simple lamp to heat Ag2S and, with a galvanometer,
realized that Ag2S conductivity was thermo-dependent [1]. Nevertheless,
Faraday’s descriptions were phenomenological. Eventually, to understand
these kinds of phenomena, the scientific community develop theories to
reproduce them; although, it was not until the beginning of the twentieth
century that Paul Drude developed the first classical theoretical model
for electron conduction [2, 3]. We know nowadays that a quantum me-
chanical framework was still needed to explain the materials electronic
behavior with better insight and accuracy. The first lights of quantum
mechanics start around 1838 with Faraday’s cathode ray experiments.
From those days up to the early twentieth century, the scientific com-
munity suggested different hypotheses for quantum mechanical theory.
In 1926 Erwin Schrödinger represented the atomic energy level quantiza-
tion as an eigenvalue problem [4], in which he used the nowadays called
Schrödinger’s equation, that successfully reproduces the energy levels of
hydrogen-like atoms. After Schrödinger contribution, the first quantum
mechanic unification comes with Paul Dirac (with the Dirac equation for
relativistic electrons [5]) and the John von Neumann mathematical for-
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mulation [6, 7]. Subsequently, Walter Heitler and Fritz London proposed
the first quantum mechanical approach for the covalent bond in hydrogen
molecules [8]. After some decades, more theoretical descriptions appear,
and in the 1960s Pierre Hohenberg and Walter Kohn formulated the two
well-known Hohenberg-Kohn theorems [9], and Walter Kohn and Lu Sham
articulated the Kohn-Sham ansatz [10, 11]. In those contributions, Kohn,
Hohenberg and Sham use the Thomas-Fermi model to describe a sim-
plified many-electron system with a Schrödinger-like equation. Thanks to
that, we can describe the behavior of systems in a very efficient way allow-
ing us to contrast theoretical and experimental results by working within
density functional theory (DFT). Density functional theory provides the
ground-state electron density, which considers the external interactions of
an electronic system. In turn, it allows to predict material properties such
as mechanical and electronic ones with enough precision. In addition, since
DFT uses the electron density as a fundamental quantity, the numerical
calculations require fewer computational resources when compared with
wave-function-based theories.

Among the wide range of materials examined in the scientific literature,
graphite is one of the most extensively studied by the scientific community,
even nowadays. John Desmond Bernal (1924) studied graphite to char-
acterize experimentally the stacking between the carbon layers [12, 13].
In those years, it was already known that graphite is composed of weakly
coupled carbon layers. In the 1990s, experimentalists performed chemical
deposition techniques to grow narrow graphite samples on metal surfaces
[14]. Eventually, these experiments realized renewed methods to get thin-
ner and thinner graphite samples until they finally obtained graphene.
Among the different families of experimental methods reported to syn-
thesize graphene there are the so-called top-down techniques, used in the
1970s [15]. One of those techniques is exfoliation by a scotch-tape, imple-
mented by Ohashi et al. [16], in which they obtained about 30 graphene
layers. At the beginning of the twenty-first century graphene was syn-
thesized and identified. To separate one graphene layer from graphite,
in 2004, Andre K. Geim and K. S. Novoselov also used the scotch-tape
technique; this experiment gave them the 2010 Nobel prize in physics [17].
Graphene is the first two-dimensional crystal with one atom thickness.
Its synthesis technique motivates several improvements in experimental

10 Doctoral thesis of Raúl Guerrero
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procedures like chemical vapor deposition (CVD) [18], plasma exfoliation
[19], or mechanical cleavage from natural graphite samples [20]. Graphene
unique electronic, mechanical and thermal properties make this material
relevant to be studied [21]. For instance, when graphene is deposited on
SiO2, it reaches a thermal conductivity of κ = 600 W/(m·K) [22], which
is even better than copper. Baradin et al. showed another remarkable
result in 2008 in which they found that the thermal conductivity of free-
standing graphene is about 4840− 5000 W/(m·K) [23]. Graphene has an
optical absorption of 2.3% [24], and its identification is almost impossi-
ble with microscopy techniques like AFM or SEM [25]. Fortunately its
light absorption makes it easy to be identified optically. Regarding the
graphene stiffness, Bunch and coworkers estimated that graphene’s Young
modulus is around 1 TPa [26]. For example, it can be extrapolated to an
elastic spring constant is around 39 N/m for a nm2 monolayer. Hence,
having graphene in small nanoscopic areas is quite stiff, while its stiffness
promptly decreases when having large areas at the microscale. Graphene
is a zero-gap semiconductor with high mobility carriers due to the linear
band dispersion. Its electronic structure can be theoretically described us-
ing a Dirac Hamiltonian for simple massless particles. This Hamiltonian
for π−electrons has two linear valence and conduction bands that accomo-
date to the so-called Dirac cones (or valleys). When graphene is isolated,
its density of states is zero at the Fermi level, showing that it is electri-
cally neutral and has minimum conductivity [27]. Nevertheless, graphene
electronic properties can be easily tuned by being in contact with other
materials, like substrates of SiO2 or other 2D materials, impurities or even
external conditions, which shift in energy the Dirac cones [28, 29, 30]. In
fact, Bolotin and coworkers have shown that its conductivity improves
in normal vacuum conditions and warming up graphene samples around
400 ◦C [31]. The Dirac cones host other remarkable properties such as
anomalous diamagnetic susceptibility [32, 33], and half-integer quantum
Hall effect [34, 35, 36]. Graphene properties can be hosted by graphene
systems with few-layers, in which the physics behind graphene Dirac cones
can be modified reaching effects like being semiconductor, van Hove sin-
gularities or even superconductivity.

Graphene allotropes, like nanoribbons and few-layered graphene, can
inherit its incredible properties. The Bernal stacking in few-layered graphe

Doctoral thesis of Raúl Guerrero 11
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ne systems is currently known as the most common among other stack-
ings. This statement comes from the fact that Bernal graphite is the
most common in samples. Nevertheless, recent experiments undermine
this statement [37] and demonstrate that Bernal graphite stability should
not be extrapolated to few-layered graphene systems. Recent studies
have reported few-layered graphene samples hosting several stacking or-
ders [38, 39]. Transitions between these stacking orders might take place
when adding patterned metallic contacts [38] inducing mechanical defor-
mations, which change the electronic properties of the sample. In this
context, mechanical deformations in samples with multiple stackings are
interesting to be investigated because stacking transitions can occur and,
consequently, change their related electronic properties. This is the case of
trilayer graphene (TLG) samples in which domains with stacking order can
change from rhombohedral (ABC) to Bernal (ABA). The rhombohedral
trilayer graphene is a metastable phase [40] that differs from the Bernal
stacking in the third layer. It has nearly flat bands next to the Fermi
level associated to tunable conducting surface states, while in the Bernal
stacking the low energy bands show metallic behavior. Thus, transitions
between these two stacking orders are of crucial importance when design-
ing electronic devices. In the first project of this thesis, we examine the
relative energy difference between the Bernal and rhombohedral trilayer
graphene stackings under deformations. We deform the trilayer-graphene
lattices and consecutively perform density functional theory calculations.
During the calculations, we note different technical details which are re-
lated to relevant physics occurring at the graphene K (K′) points. We
find that mechanical stretching induces rhombohedral to Bernal stacking
transitions. Furthermore, we apply shear deformations and sublattice dis-
placements which break the interlayer symmetries in the ABA and ABC
stackings.

In the second collaboration, we focus on the electronic structure of
bilayer graphene (BLG) with an array of grain boundaries. Each do-
main wall separates Bernal regions with opposite AB and BA stacking
orders. We study an array of defect lines by using periodic boundary
conditions. The periodicity causes the bilayer graphene band structure to
open a gap that contains topologically protected states [41]. In fact, the
effect of periodical stacking changes is also shown in works about twisted

12 Doctoral thesis of Raúl Guerrero
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bilayer graphene [42], in which even superconductivity is observed [43]. In
addition, it has been recently shown that one-dimensional domain walls
dominate the transport effects and host charge modulations in twisted
bilayer graphene with small angles [44]. Our results study the electronic
structure with spin polarization that drives to spin-momentum locking
[45]. Furthermore, we consider the presence of charge modulations in the
defect lines made of pentagons and octagons.

The thesis is organized as follows. We describe the density functional
theory and a brief explanation of the most common exchange-correlation
functionals in chapter 2. Next, we explain the linear response function for
one-dimensional and quasi-one-dimensional systems. Because weak poten-
tials can affect the response function and may modify the Fermi surface, we
analyze the consequences of singularities and finite peaks in the response
function regarding the nesting of bands. We later show that nested bands
can be induced by charge modulation regimes so-called commensurate and
incommensurate. In chapter 3, we show the motivation of our study on
the relative stability of trilayer graphene phases, Bernal and rhombohe-
dral, under mechanical deformations. Here, we describe both stacking
phases and their electronic properties together with recent experimental
facts in which such deformations may occur. The applied deformation are
in-plane, out-of-plane, shear deformations and sublattice displacements,
which are properly detailed in the chapter. Our theoretical results help to
interpret experimental observations on trilayer and tetralayer graphene.
They can advise establishing strategies to avoid or induce stacking tran-
sitions when patterning metal contacts in few-layered graphene samples
with different stacking orders.

In chapter 4, we describe how extended grain boundaries affect the
electronic structure of the most common monolayer and bilayer graphene
allotropes. We focus on a specific grain boundary of pentagons and oc-
tagons (defect line), which has been experimentally obtained by Lahiri et
al. [46]. We use this grain boundary to model an array of defect lines in
bilayer graphene and then to study its electronic structure. We analyze
the effects of electric fields and n-doping on the defect line array electronic
structure. Note that by n-doping the defect line can show charge modula-
tions. Finally, this thesis ends with the main conclusions about the results
obtained. Supplementary information concerning Chaps. 3 and 4 can be

Doctoral thesis of Raúl Guerrero 13
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found in the Appendix.
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2 — Theoretical Framework

2.1 Density Functional Theory

The many-electron problem considers an enormous number of inter-
actions between electrons. As a consequence, there is a large number
of variables, which makes this problem impossible to handle analytically
and no exact solution can be obtained. Nevertheless, some numerical
approximations yield particularly satisfactory results but with expensive
computational costs. In contrast, density functional theory (DFT) is an
approach to solve many-electron systems with a reasonable computational
cost. This cost is reduced because it uses the electron density, n0, rather
than wavefunctions. The electron density is iterated in a self-consistent
process based on the so-called Hohenberg-Kohn theorems to obtain the
ground state electron density. On each self-consistent loop, DFT solves a
Schrödinger-like equation for the electronic density. In many-electron sys-
tems, each electron interacts with other electrons in pairs, while in DFT
each electron interacts with an effective density potential that comes from
other electrons so that the complexity of the problem decreases. In other
words, each electron interacts with a single potential derived from the
electron density, which mimics the real electron system. In the following
sections, we introduce the basic concepts and approaches that constitute
DFT formalism.

2.1.1 Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems formalize the formulation of systems
with multiple electron-electron interactions, like in the many-body prob-
lem. The Hamiltonian which represents the many-electron system is shown
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as follows:

Ĥ =
ℏ2

2me

∑
i

∇̂2
i +

∑
i

V̂ext(r⃗i) +
1

2

∑
i ̸=j

e2∣∣∣ri − r′j

∣∣∣ , (2.1)

where the first term is the kinetic energy (T̂ ), followed by the external po-
tential (V̂ext) and the Coulomb interaction between electrons. The V̂ext(r)
term includes the electron-nuclei interactions, and it can contain other
external contributions like external electric fields.

To determine those terms and solve the main problem, Hohenberg-
Kohn formulated two theorems1

Theorem 1 For any system of interacting particles in an external po-
tential V̂ext(r), the potential V̂ext(r) is determined uniquely, except for a
constant, by the ground state particle density n0(r).

Theorem 1 ensures that the potential V̂ext(r) can be determined, but the
ground-state density is still unknown. The second Hohenberg-Kohn theo-
rem establishes that:

Theorem 2 A universal functional for energy E[n] in terms of the den-
sity n(r) can be defined, valid for an external potential V̂ext(r). For any
particular V̂ext(r), the exact ground-state energy of the system is the global
minimum value of this functional, and the density n(r) that minimizes the
functional is the exact ground state density n0(r).

The second Hohenberg-Kohn theorem ensures that the energy functional
can be defined by the electronic density and the ground-state density, n0,
minimizes the functional for a specific external potential.

Hohenberg-Kohn theorems yield the following density functional:

ÊHK = F̂ [n] +

∫
d3rV̂ext(r)n(r) + ÊII [n], (2.2)

where the first term F̂ [n] the so-called universal functional contains all the
internal energies, such as kinetic and potential energies in the interacting
electron system. The ÊII [n] term is the repulsive ion-ion interaction,

1Taken from Reference [47].
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where each ion can contain nuclei and core electrons. Because electronic
systems are led by the valence electrons and not by cores nuclei, we usually
consider that the close-shell electrons together with the nucleus constitute
an effective core.

2.1.2 Hartree-Fock Approximation: Exchange Exact Solu-
tion

The wavefunction describing the many-electron system is antisymmet-
ric even when the positions of two electrons are permuted. The Hartree-
Fock method uses the variational principle to solve a Slater determinant as
ansatz of the electronic system, preserving thus the wavefunction antisym-
metry. This method ignores the effects of correlation between electrons
and includes the exchange energies between them. The Hamiltonian rep-
resenting the whole Hartree-fock system is ĤHF and each element of it
(ĥHF ) operates on the Slater determinant orbitals (ϕi(ri)), thus:

ĥHF |ϕi(ri)⟩ =

 N∑
i=1

hi +
1

2

N∑
i=1

N∑
i ̸=j

Jij −Kij

 |ϕi(ri)⟩ , (2.3)

where the first term, hi, includes the single-electron and electron-nuclei
energies. The Jij and Kij terms are the average Coulomb interaction
between electrons - the so-called Hartree term- and the electron exchange
energy, respectively. Considering orthonormal spin-orbitals and applying
the variational principle, the Hartree and exchange terms are:

Ĵij =

∫ |ϕj(rj)|2

|rj − r′i|
drj , (2.4)

and

K̂ij =

∫
ϕ∗j (r)P̂ijϕj(rj)

|rj − r′i|
drj , (2.5)

with P̂ij being the permutation operator between the i-th and j-th elec-
trons. Then, the i-th electron interacts with other electrons, following the
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expression

f̂i[{ϕj(rj)}] = ĥi +

N∑
j=1

Ĵi[{ϕj(rj)}]− K̂i[{ϕj(rj)}], (2.6)

which is a functional of orbitals, the so-called Fock operator. Therefore,
the Hartree-Fock Hamiltonian can be written as

ĤHF =
N∑
i=1

f̂i[{ϕj(r⃗j)}]. (2.7)

The form of the Fock operator ensures that the self-interaction cancels
exactly when i = j in Eq. 2.6. This Hamiltonian operates on the Slater
determinant, where the Fock operator provides an exact solution to the
electronic system. The orbitals obtained are eigenstates of the Hartree-
Fock Hamiltonian. The sum of the orbitals eigenvalues contributes di-
rectly to the total energy of the system. Because the exchange energy
is included, the Hartree-Fock approximation provides a solution to the
electronic system that ignores the correlation effects between electrons.
The Hartree-Fock approximation considers the exchange energy between
electrons, but unfortunately the total correlation energy is not included.

2.1.3 Kohn-Sham Method

Kohn and Sham formulate a self-consistent method that replaces the
many-electron problem by an auxiliary independent-electron problem. They
assume that the density of the many-electron system can be represented
as in the case of independent particles. The Kohn-Sham Hamiltonian is

Ĥσ = T̂s + V σ
eff (r), (2.8)

where σ is the spin polarization. In the Kohn-Sham method, the non-
interacting kinetic energy, T̂s, for N electron system is defined as:

T̂s =
1

2

∑
σ

Nσ∑
i=1

∫
dr |∇ψσ

i (r)|
2 .
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The effective potential, Veff , contains the Hartree interaction between
electrons,

EHartree[n] =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
, (2.9)

where the densities n(r) is defined as sum of squares of the orbitals for
each spin,

n(r) ≡
∑
σ

Nσ∑
i=1

|ψσ
i (r)|

2 . (2.10)

In addition the Veff term also contains external interactions Vext, i.e., the
ion-ion interactions and the well known exchange-correlation functional
Exc. The Kohn-Sham functional is written as,

EKS [n] = Ts[n]+

∫
drVext(r)n(r)+EHartree[n]+EII [n]+Exc[n]. (2.11)

This functional is minimized by the electron density, ∂EKS/∂n = 0, as
expressed in the Hohenberg-Kohn second theorem. The last term of Eq.
2.11 corresponds to the exchange-correlation functional. The exchange-
correlation functional it has no exact form and therefore it must be ap-
proximated. The LDA and GGA functionals are the early approximations
for the exchange-correlation functional.

2.1.4 Exchange and Correlation Energies

The exchange-correlation functional contains fundamental information
for predicting the electronic quantum interactions. Eventually, we can ex-
pand the exchange-correlation functional divided in exchange and corre-
lation terms

Exc[n] = Ex[n] + Ec[n].

Exchange. The exchange energy can be extracted from the Kohn-Sham
approximation, this is,

Ex[n] = ⟨Eee[n]⟩ − EHartree[n]. (2.12)
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The first term is the electron-electron repulsion evaluated on the Kohn-
Sham wavefunction. Note that by subtracting the Hartree term EHartree

from ⟨Eee[n]⟩, we keep the unknown electron-electron interactions except
the self-interaction ones. Therefore, if we consider a single electron system
like a hydrogen atom the Eq. 2.3 and Eq. 2.12 will bring us to Ex[n] =
-EHartree[n] [48], canceling exactly the spurious Hartree interaction.

Correlation. The correlation energy shows us how much the behaviour of
an electron is affected by the electronic distribution surrounding it. We
can define the correlation energy as.

Ec[n] = F [n]− Ts[n]− EHartree[n]− Ex[n]

= Tc[n] + Uc[n] (2.13)

where Tc[n] is the correlation term of the kinetic energy and Uc[n] includes
the non-kinetic ones. Thus the correlation energy for one-electron system
is Ec[n] = 0. Below we describe the most common approximations of
exchange-correlation functional to consider many electrons systems.

Local Density Approximation (LDA)

The local density approximation functional (LDA) is the basic ap-
proach for the exchange-correlation energy. It depends only of the electron
density at each point of the space as follows,

Exc[n] =

∫
n(r)ϵxc(n(r))dr, (2.14)

where ϵxc(n(r)) is the exchange-correlation energy density. The integral in
the exchange-correlation energy assumes that ϵxc(n(r)) evaluated at each
point have the same density as in the homogeneous electron gas.

Although the LDA functional seems a preliminary approach to include
the exchange-correlation energy, it has been used extensively. However,
empirical (semi-empirical) corrections should be considered to reproduce
the non-local electron behavior such as dispersion forces. For example,
in the He2 molecule, the LDA functional overestimates the binding en-
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ergy and underestimates the interatomic distances [49]. These trends are
systematic for all systems calculated within LDA functional.

General Gradient Approximation (GGA)

The general gradient approximation (GGA) is improving the predic-
tions obtained by the LDA functional. Since real materials having inho-
mogeneous densities, more terms regarding the spatial density variation
are considered. The GGA functional formulation also takes expansions of
density gradients |∇n(r )| to take into account the non-homogeneity of the
true electron density. Unfortunately, such expansions truncate extensions
and softness of the electron density when compared with the real density
in materials [50]. The expression for GGA functionals is

EGGA
xc =

∫
n(r)ϵHEG

x Fxc(n, |∇n|)dr, (2.15)

where ϵx is the exchange density for an independent-particle approxima-
tion. Fxc is a dimensionless term that is expanded in terms of n(r) and
its gradients, and its accuracy is still under improvement.

Nowadays, GGA functionals are between the most used by the DFT
community, but they have some strengths and limitations. The limitations
of the GGA results are no systematic trends and the underestimation of the
gap in semiconductors. GGA functionals improves the lattice constant and
bulk modulus predictions when compared to LDA, which are the reasons
why it is being extensively used in the scientific community.

2.1.5 Dispersion Forces - Van der Waals Functionals

The dispersion forces are interactions between molecules or atoms that
depend on much larger distances than the ones in covalent bonds. They are
much weaker than covalent or ionic bonds, and govern systems based on
dipole-dipole interactions. In the context of DFT, dispersion interactions
are highly dependent on the electron correlation at a long range. In fact,
they keep gaseous systems together like in the case of He dimer. Since He
atoms are electrostatically neutral, the electron correlation is behind the
bonding between He atoms. Because of the non-local characteristic of the
dispersion forces, LDA and GGA functionals are not fully including those
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forces in their formulations. In this sense, since LDA is a local functional
and GGA truncates the densities with large ranges, non-local interactions
must be explicitly included.

There are several ways in which the dispersion interactions can be
included in the energy [51]. The London-like correction is the simplest
one to include such interactions. This correction takes the form

ELondon
disp = − C6

RAB
fdamp(RAB),

where C6 is an empirical coefficient, RAB is the distance between charge
distribution, and fdamp is a damping function that avoids the short-range
interactions [52, 53]. Unfortunately, because the empirical nature of this
correction, it fails for systems when empirical coefficients are unknown.

Because different geometries and electron densities give different dis-
persion forces the development of these functionals is vast. Hence, there
are several functionals improving the simulation of dispersion interactions.
Examples are the vdw-DF2 (used in this thesis) and rev-vdw-DF2 func-
tionals which are used for organic systems [54, 55]. These two functionals
come from a method developed by Dion et al. that combines GGA and
intra- and inter-molecular dispersion interactions [56]. The vdw-DF2 func-
tional is applied to systems in which the electron density shows slow spatial
variations like in solids. In this context, there is another functional devel-
oped by Hamada [55], the so-called rev-vdw-DF2, which is an extended
version of vdw-DF2 to be applied to solids and molecular systems [57, 58].

2.2 Linear Response

The response function is related to how a system reacts to external
influences such as electromagnetic fields, pressures or even geometrical
deformations. In this section, we examine the case of a homogeneous elec-
tron gas under a weak and time-independent (static) external potential.
The changes in the electron density, δn(q), are related to the small changes
of an external potential, δv(q), following the expression

δn(q) = χ(q)δv(q), (2.16)
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where χ(q) is the response function. The density change in Eq. 2.16 can
be specifically rewritten as follows

δn(q) = χs(q)δvs(q). (2.17)

This expression – also called the Kohn-Sham theorem - contains the Kohn-
Sham effective potential δvs(q) and the response function χs(q). Note
that the vs(q) potential includes external contributions and exchange-
correlation parts. The χs(q) term is the response function following the
relation:

χs(q) = −kF
π2
F (q/2kF ), (2.18)

with F (x) the Lindhard function, given as

F (x) =
1

2
+

1− x2

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ . (2.19)

The term δvs(q) in Eq. 2.17 has the following expression

δvs(q) =
δv(q)

ϵs(q)
, (2.20)

where

ϵs(q) = 1− 4π

q2

[
1− γxc(q)

(
q

2kF

)2
]
χs(q). (2.21)

The term in the square bracket is the so-called local-field factor, and it
is obtained from the linear response of a local field to an external one.
We note that the slowly varying external potential δv is screened by the
homogeneous electron gas in Eq. 2.20. In the long-wavelength regime
(q → 0), Eq. 2.21 can be written as follows,

ϵs(q → 0) =
k2s
q2

(q → 0) + const., (2.22)

where ks ≈ 1

r
1/2
s

is the Thomas-Fermi screening length.

Using Eq. 2.16 and the Kohn-Sham theorem (Eq. 2.17) we now get
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that

χ(q) =
χs(q)

ϵs(q)
= −kF

π2
F (q/kF )

ϵs(q)
. (2.23)

We have obtained an expression for the linear response function that de-
pends on the eigenvalues and the Lindhard function. Because of screening,
the resulting response function χ(q) is weaker than χs(q) by a factor de-
pending on q2/k2s .

2.2.1 One-Dimensional Response Function

The response function depends on the dimensionality through the in-
tegration in the Brillouin zone. Nevertheless, it can be reduced to the
Lindhard function shown in Eq. 2.19. Figure 2.1 shows a single-electron
band. The red lines denote the linear electronic dispersion around the
Fermi level, ϵ(k)− ϵ(k+ q) = ℏvF (k−kF ). When two states are separated

Figure 2.1: (a) Single electron band structure (blue curve). Red lines repre-
sent segments of the single electron band with linear character. (b) Response
function corresponding to systems being one-dimensional (in gray) and quasi-
one-dimensional (in blue).

by q = 2kF and have the same energy, we say that the band structure
is nested in those states. When we introduce this vector in Eq. 2.19 a
singularity appears at q = 2kF as shown in the gray curve Figure 2.1. In
fact, this peak is an effect of perfect nesting in the electronic structure of
one-dimensional systems.
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2.2.2 Quasi-One-Dimensional Case

Materials are not perfectly one-dimensional, for instance, material like
carbon-nanotubes and graphene-nanoribbons are structures in which the
electronic dispersions are quasi-one-dimensional. Other materials, like
NbSe3 or TaS3, instead contain atomic “chains” extended in certain di-
rection which interact between them. Depending on the strength of the
interchain interaction, a quasi-one-dimensional behavior is induced in the
Fermi surface of these materials. Their electronic dispersion is generally
modeled by:

ϵ(k) = ϵ0 + ϵx + ϵy (2.24)

= ϵ0 + 2tx cos(kxax) + 2ty cos(kyay), (2.25)

with ax being the lattice constant along the one-dimensional chain and ay
being the lattice constant perpendicular. The coupling between chains is
ty, and the intrachain one is tx. In Fig. 2.2, we show the 2D electronic
dispersion of Eq. 2.25 and how its Fermi surface changes due to the ratio
between tx and ty. Panel (a) shows the case of tx = ty in which the Fermi
surface is nearly circular. Decreasing the interchain coupling ty causes
that the Fermi surface starts to deform [Figure 2.2(b)]. When we take the
quasi-one-dimensional regime (tx ≫ ty) and the same linear limit for the
ϵx = vFk term along the chain, Eq. 2.25 can be rewritten as follows

ϵ(k) = ϵ0 + vF (kx − kF ) + 2ty cos(kyay). (2.26)

The corresponding Fermi surface is displayed in Figure 2.2(c). This surface
opens in two sinusoidal curves, a trend which is typical for quasi-one-
dimensional systems. Note that we intentionally increase the periodicity of
the model to show that the condition determining the Fermi surface shape
of this system is due to the following expression, kx = kF +

2ky
vF

cos(kyay)+
O(2)+ ..., so that the Fermi surface has a sinusoidal shape. Finally, when
the chains are fully uncoupled (ty = 0), the Fermi surface has two straight
lines, see Figure 2.2(d), just as described in the previous section.

Charge density waves. The Fermi nesting may drive to charge density
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Figure 2.2: Fermi surface evolution of the single electron dispersion in Eq. 2.25
using different hopping ratios tx/ty. Panel (a) displays the case of tx = ty, which
is a purely two dimensional system. Panel (b) shows the case of tx > ty in which
few sections have nested vectors. Panel (c) shows the quasi-one-dimensional
case tx ≫ ty; panel (d), the purely one-dimensional case, Arrows in cyan color
represent the nesting vector, q and dots correspond to regions with the same
nesting vector.
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modulations, the so-called charge density waves (CDW). From Figure 2.2
it is easy to note the contribution at the nested regions of the Fermi
surface. When eigenvalues are degenerated or nearly degenerated and
separated by q ≃ 2kF , the Lindhard function and therefore the response
function in Eq. 2.19 show an abrupt peak. In addition, because the system
is two dimensional, the Fermi surface nesting may also occur between
systems in which chains have a larger coupling factor, but with negligible
consequences on the response function.

For these regimes, the CDW commensurability is given by

λ0 =
π

kF
=

2π

q
=
N

M
a0, (2.27)

where the N/M is the ratio of two integer values, and a0 is the under-
lying lattice constant. When this ratio is a rational number the density
modulation is commensurate with the underlying lattice, and it is incom-
mensurate in the case of an irrational ratio. The CDW commensurability
is a physical phenomenon in which the lattice periodicity changes, e.g.,
by atomic dimerization or trimerization. These distortions in the lattice
cause Peierls instabilities which are related to metal-insulator transitions.

The study of the linear response function in a one-dimensio-
nal regime can be extrapolated to the quasi-one-dimensional case because
both cases show an abrupt increase of the response function at q = 2kF .
Regarding the nesting vector value, we expect a Peierls instability when
q = 2kF . When having CDWs, the electron-phonon coupling could play
an important role in low-dimensional metals. The nesting vector will de-
fine the periodicity of the CDWs, distortions of the underlying lattice and
metal-insulator transitions, which define new phases to be experimentally
observed when having finite temperatures.
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3 — On the Relative Stability
Between Trilayer Graphene
Stackings

3.1 State of the Art

The stackings in graphite have been characterized since the first quar-
ter of the last century [12]. In Figure 3.1 we show the Bernal stacking of
graphite piling carbon layers, that graphene honeycomb lattices composed
of the A (red) and B (blue) sublattices in its unitcell. Graphite layers are
coupled due to van der Waals interactions. Multi and few-layered graphene

Figure 3.1: Graphite representation in Bernal staking order: (a) top view, and
(b) side view. Blue and red colors represent the A and B sublattice atomic index.

stacking following the order in Fig. 3.1 is called Bernal. The stability of
this stacking in graphite is usually extrapolated to multilayer graphene
[59, 60]. Nevertheless, recent experimental results have shown that the
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stability of Bernal stacking has to be revisited. For instance, trilayer
graphene shows two stable stackings which can coexist in one sample as
neighboring domains. The boundary between the domains can be in the
form of corrugations or other defects, like being in strained samples due
to other substructures [61, 38]. Experimental studies have shown that do-
mains other than Bernal can be modified to end up in the Bernal stacking
[62, 63]. Specifically, the transition from rhombohedral (ABC) to Bernal

Figure 3.2: Unit cells of Bernal and rhombohedral stacked trilayer graphene.

(AB) stackings is found at temperatures above 1000 C◦[64]. Other studies
have shown that rhombohedral stacking can change to Bernal by evapora-
tion of triazine molecules [65]. The transitions between the rhombohedral
and Bernal domains start at the boundary formed by wrinkles or corruga-
tions that slide when a driving force is applied. This displacement already
suggests that mechanical deformations are crucial to study the stacking
transitions between rhombohedral and Bernal domains.

The special interest in the stability of Bernal and rhombohedral tri-
layer graphene is related to their different electronic properties. Bernal
trilayer-graphene have been extensively studied - as the one perceived as
more stable and thus dominating in experimental samples showing metal-
lic behavior [66]. The low-energy bands in this stacking are roughly a
superposition of linear bands typical of graphene and bilayer graphene
like-parabolic bands [67]. This band character stems from the mirror
symmetry in this stacking. Unfortunately, when gating Bernal trilayer
graphene, no gap is open because of the graphene-like linear band. The
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parabolic bands are related to a “novel” quantum Hall effect due to chi-
rality [68, 69], different than the one in monolayer graphene. The opti-
cal properties of AB-stacked graphene depend on the layer number and
strength of the electric field applied [70, 71]. In the case of rhombohedral
trilayer graphene, the low-energy bands follow a cubic behavior at the K
point [72], where the bands become flat inducing Van Hove singularities
in the density of states. Because of these flat regions, and therefore small
electron velocities, electron-electron effects are expected to be important,
with phenomena such as superconductivity [73, 74, 75] and magnetism
[76].

Since the Bernal stacking has been considered more stable than the
rhombohedral one and these stackings can coexist in the same experi-
mental sample, we perform calculations for both stackings and show that
the rhombohedral one has lower energy than its counterpart. We ap-
ply anisotropic and isotropic in-plane deformations as well as out-plane
compression to determine the external conditions that cause Bernal stack-
ing to be more stable. We also study lattice deformations like shear and
sublattice displacements; these deformations can mimic experimental con-
ditions that stacking transitions in experimental samples. For all studied
deformations, we notice that the relative energy between the stackings
depends on the deformation direction, and shows that external conditions
are responsible for the stability of the Bernal stacking.

3.2 Computational Details

We perform density functional theory (DFT) calculations using the
Viena ab-initio simulation package VASP [77, 78, 79]. This method based
on plane waves is applied using a well converged kinetic energy cut-off of
700 eV. To represent accurately the relative energy difference between the
Bernal and rhombohedral stacking, the cell volume is maintained equal in
both cases. Because the energy difference between the Bernal and rhom-
bohedral trilayer graphene stackings is well known to be small, the value
of the electronic self-consistent tolerance is crucial to study such differ-
ences, which is set to 10−7 eV. For including dispersive interactions be-
tween layers, we use vdW-DF2 functional that improves the over-binding
found LDA functional, when they are compared with non-routine Monte-
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Carlo calculations for bilayer graphene [54, 80, 81]. Rigorous convergence
tests in k-points, electronic relaxation, and comparison with other van der
Waals functionals are included in Appendix A. To reproduce the trilayer
graphene lattices we relax the cell shape keeping the unit cell volume con-
stant, and fix the ions position in the xy plane while allowing them to
move in the z direction. To describe the behavior of electrons near the
Fermi level, we firstly perform our calculations using an smearing of 0.1 eV
and a regular k-mesh grid of 30×30×1 being centered at Γ point. Because
the relative stability between stacking orders seems to be a delicate issue,
we improve the accuracy of our calculations by decreasing the smearing to
0.01 eV. The smearing is related to the k-mesh grid, and we set the mesh
to 288×288×1 after performing the convergence tests. The k-mesh grids
with values being multiple of three show a consistent trend in which the
rhombohedral stacking is more stable. This difference between the two
used k point samplings is required to reach energy differences in the order
of 10−3meV/nm2 and to include the nearly flat regions around K and K′

valleys when the lattices are deformed. These regions contain the relevant
energy contributions where the low energy physics of multilayer graphene
occurs.

3.3 Results

3.3.1 First Analysis and Experimental Approach

This section introduces the results of theoretical simulations on the dif-
ferent types of lattice deformations in the Bernal/rhombohedral trilayer
graphene stackings. Experimental observations on few-layered graphene
flakes have shown that different domains change their stacking order sug-
gesting that mechanical deformations occur. We collaborate with the ex-
perimental group of Prof. Thomas Weitz from the Georg-August-Univer-
sität in Göttingen.

We published together a theoretical/experimental article that describes
different deformations destabilizing the trilayer graphene phases and how
to favor one stacking against the other. They exfoliate few-layer graphene
samples in the order of 3 to 6 layers over different substrates to be pat-
terned with metal contacts. Our theoretical results are focused on the
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particular case of trilayer graphene because it is the minimal case having
Bernal and rhombohedral stacking orders and shows the same behavior on
samples containing more layers. We calculate the relative energy between
the deformed lattices and compare our theoretical results with experimen-
tal observations. In this context, we show which stacking is more stable
under deformations, and we help to understand why stacking changes
occur in few-layered graphene samples. We define the relative energy dif-
ference as

∆E = (Eaba − Eabc) /S, (3.1)

where S is the in-plane area of the unitcell. Note that the area varies
concerning the deformation applied to the lattice.

Our first theoretical calculations show that the relative energy favors
the rhombohedral stacking against its counterpart for undistorted lattices
by 0.079 meV/atom. From this result, we begin our study by focusing on
isotropic and anisotropic deformations. These deformations help us to un-
derstand whether the relative stability is direction dependent by applying
strains in the armchair or zigzag direction of the graphene lattice. The
isotropic deformation suggests that the homogeneous expansions main-
tain the rhombohedral stacking being more stable than the Bernal one,
see Fig. 3.3. Therefore, we do not expect any change in the stackings
from the experimental point of view. The experimental observation agrees
with our calculations when the multilayer graphene sample is covered ho-
mogeneously with PMMA (Figure 3.3(b)), and when they exposed the
sample to heating and subsequent cooling homogeneously inducing ten-
sion/compression of less than 1.6%.

For the anisotropic deformations of Fig. 3.3(a), we see that the energy
of the rhombohedral stacking rises faster than in the case of the Bernal
one. Then, the rhombohedral stacking can be destabilized more easily
than the Bernal one, being the latter more stable under these deforma-
tions. When interpreting the experimental observations in Fig. 3.3(c),
our collaborators note that the anisotropic deformations can occur while
processing metal contacts on few-layered graphene flakes, which is also
reported by Sanctis et al. [82]. During the process, the flake is heated up
inducing its expansion and, after this, the metal contacts are deposited on
the top of flake. This procedure clamps the regions of the flake below the
contacts. Once the contacts are performed, the sample is cooled down, and
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Figure 3.3: (a) Relative energy difference per unit area between Bernal and rhom-
bohedral trilayer graphene for homogeneous and anisotropic deformations. (b)
Schematic illustration of heating and cooling the sample covered with unpat-
terned resist leading to homogeneous deformation. (c) Proposed mechanism of
how the combination of heating, local pinning during processing and subsequent
cooling leads to anisotropic strain causing the preference of Bernal stacking. Left:
the patterned resist heats up during evaporation and expands thermally, strech-
ing the flake. Middle: The metal is forming a closed layer, locally pinning the
flake in the hot state. Right: The resist cools down, contracting the flake in the
nonpinned part of the flake thus inducing anisotropic strain in the flake. Panel
(a) and (b) are extracted and modified from Ref. [38].
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the non clamped regions shrink causing thus anisotropic strain, see right
inset diagram in Fig. 3.3(c). The presence of shrunken and expanded
regions whithin the sample and the presence of metallic contacts favor
Bernal stacking, which agrees with our theoretical conclusions. Further
experimental observations yield similar results when trilayer graphene is
stamped on the h-BN substrate. After the stamping process, atomic force
microscope experiments show that a contaminant layer between TLG lay-
ers is causing the appearance of several wrinkles and bumps in the flake,
see Fig. 3.4(a, d). The experimental group then performed a cleaning pro-

Figure 3.4: Soliton movement once the multilayer graphene is transferred in
boron nitride h-BN substrate. Before the cleaning process: (a) atomic force
microscope (AFM) image of the polymer stamping of graphene onto h-BN, (b)
scanning Raman map of the 2D mode of the sample showing regions with Bernal
(in blue) and rhombohedral (in red) trilayer graphene regions, and (c) 2D Raman
peak showing both trilayer graphene stacking orders. After cleaning process: (d)
AFM image showing loss of corrugations, (e) scanning Raman map of the 2D
mode of the sample showing only Bernal stacking order, and (f) 2D Raman peak
showing Bernal trilayer graphene. Panel (g) displays the green and red linecuts
of the AFM images shown in (a) and (d) before and after the cleaning process,
respectively. All the panels are from our Reference [38].

cess of the shown contaminant layer [83], that leads to the disappearance
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of bumps and wrinkles, as shown in Fig. 3.4. The 2D Raman mode map
shows that after the cleaning process, large areas of the rhombohedral
stacking change to have the Bernal stacking, as shown by comparing pan-
els (b) and (f). This observation is confirmed by looking at the 2D Raman
mode peak of the Fig. 3.4(f) and (g). The transitions take place because
the TLG regions are not simultaneously in close contact to the h-BN sub-
strate during the cleaning process, inducing thus anisotropic strains that
causes the resulting Bernal stacking.

3.3.2 Detailed Examination on Lattice Deformations

Since the stacking stabilities in trilayer graphene was found to be such
delicate issue, we continued our simulations by improving the accuracy on
our calculations, as detailed in Sec. 3.2, and expanding our analysis to
study new deformations. After the computational parameters are set, we
compare different functionals used for the Van-der-Waals-like dispersion
energies. These functionals are key to reproduce the interactions between
layers on graphene-like systems, and depending on the area of those layers
the stacking order is found to be more stable as in experiments. It is
interesting to see that for undistorted lattices, all tested van der Waals
functional show that the rhombohedral trilayer graphene is more stable
than the Bernal one.

Undistorted Stackings

We performed DFT simulations in order to calculate the relative en-
ergy between the stackings, as defined in Eq. 3.1. After setting the DFT
parameters of Sec. 3.2, we relax the unitcell keeping their volumes equal
for both stackings to ensure that the same plane-wave is used. The re-
laxation process shows that the carbon-carbon distance is ac−c = 1.43
Å and the interlayer distance is d = 3.55 Å. Then, we used the relaxed
geometries to display the band structure shown in Fig. 3.5 by perform-
ing single-point calculations along ΓKM path. The Bernal stacking band
structure shows, as expected, a superposition of two parabolic-like bands
confronting each other like in bilayer graphene, and two linear bands like
in monolayer graphene. In fact, the low energy bands of the rhombohe-
dral trilayer graphene electronic structure show a cubic behavior with a
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small gap near the Fermi level which closes going along the KM path.
We obtain a relative energy difference of 0.60 meV/nm2 showing that the
rhombohedral stacking is more stable than the Bernal one.

Figure 3.5: Electronic band structures for the Bernal (left) and rhombohedral
(right) stacking of trilayer graphene.

In-plane Deformations

We study different in-plane lattice deformation by scaling its lattice
vectors. First, we implement the homogeneous isotropic deformation de-
scribed by a⃗1,2 = λ(axî + ay ĵ), where ai,j are the lattice vectors. This
deformation causes a proportional lattice scaling with a constant inter-
layer distance. In this sense, when λ = 1.0 there is no strain and δ = 0%.
We go up with strain to λ = 1.05; therefore, the δ strains are equal to 5%.
Similarly, the compressions of λ = 0.95 are for δ = −5%. Figure 3.6(a)
displays the total energy difference between the Bernal and rhombohedral
stackings under homogeneous strains. The positive energy difference val-
ues (colored in red) are when the rhombohedral stacking is more stable
than the Bernal one. Our results show that the Bernal stacking is rela-
tively more stable than the rhombohedral one for strecking values around
δ > 1.0%. Second, we consider the three anisotropic deformations: di-
rectional in zig-zag and armchair direction as well as area preserving de-
formations, as shown in Fig. 3.6(b). The armchair direction deformation
follows the relation a⃗1,2 = λaxî+ay ĵ, while the deformations along zig-zag
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Figure 3.6: (a) Energy differences between Bernal and rhombohedral TLG versus
in-plane homogeneous strains δ with compression (δ <0) and stretching (δ >0) in
lattice parameters. (b) Energy differences for uniaxial deformations along zigzag
and armchair directions. Blue-cyan and red-orange colors refer to the strain val-
ues when the Bernal and rhombohedral stackings are more stable, respectively.
Energy differences are also given with strains assuming a constant area per nm2

area, shown in light red. The insets in panels (a) and (b) indicate the homoge-
neous and uniaxial deformations in-plane, respectively. The TLG rhombohedral
stacking is more stable even for small values of stretching, and a transition to the
Bernal stacking is shown under expansions with δ ≥ 1.0% for homogeneous defor-
mation. For anisotropic armchair deformations the transition is under δ ≥ 2.0%.
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direction follow a⃗1,2 = axî + λay ĵ. The constant area deformations have
the relation a⃗1,2 = λaxî + ay ĵ/λ. In our results, the constant area defor-
mation (Fig. 3.6(b)) shows that the rhombohedral stacking is more stable
against the Bernal one for the whole range of δ values. Regarding the
zig-zag and armchair deformations, we note that the energy differences
are nearly overlaping. Both deformations show that the rhombohedral
stacking is being more stable than the Bernal one until δ = 2.2%.

Figure 3.7 summarizes all the previous results. We note an asymme-
try between transitions of the different deformations. These asymmetries
occur within the experimental range; regarding the reversible strain at-
tained for trilayer graphene samples in typical substrates [84]. Further-
more, strains beyond 1.0% could be artificially applied to graphene het-
erostructures [85], and strains till 0.3% have been seen in graphene layers
encapsulated in h-BN [86].

Figure 3.7: Summary of energy differences with respect to in-plane deformations
δx and δy. Note the anisotropy of the rhombohedral-Bernal stability versus in-
plane deformations.

Out-Plane Deformations

Next, we investigate out-plane deformations. The scaling factor ϵ
changes the interlayer distance from its pristine value with d = 3.55 Å.
With expansion, the rhombohedral stacking is being more favorable than
the Bernal one even for interlayer distances up to d = 4.26 Å (ϵ = 20%)
This compression shows that the Bernal stacking has lower energy than
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3.3. Results

;A<

the rhombohedral one for interlayer distances below 3.11 Å (ϵ < −2.5%).
This result is in agreement with current calculations using vdW Grimme
functional [87]. Transferring layers with the addition of protective layers

Figure 3.8: Out of plane deformations: total energy differences versus out of-
plane strain ϵ related to the interlayer distance.

can induce compression on the few-layered graphene flakes causing Bernal
stacking to be more stable. Since no stacking changes have been reported
in procedures such as graphene encapsulation on h-BN [88], we can an-
ticipate that TLG compressions can take place during these procedures.
Furthermore, they can occur due to in-plane expansions of the sample. It
is noteworthy that under constant volume, the compression of ϵ = −3.5%
corresponds to δ = 1.88% of isotropic lattice expansion. In fact, the critical
δ values for in-plane deformations reinforce that the transition to Bernal
stacking happend when the samples are under compression.

Shear Strain Deformations

In the previous sections, the deformations preserve the interlayer sym-
metry; therefore, we analyze in this section the shear strain deformations
to break it. The z -axis vector (a3 lattice vector) drives the shearing pro-
cess by azimuthal (ϕ) and polar (θ) angles, as shown in the top panels of
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Fig. 3.9. The selection of the polar angle θ must maintains the interlayer
nearest neighbors to preserve the Bernal and rhombohedral stackings that
is true for angles below 15◦, as shown in Fig. A.5 of Appendix A.

The lower panel of Figure 3.9 shows the energy differences per area
between Bernal and rhombohedral stackings for the θ values of 10 and 5
degrees changing the ϕ angles up to 60◦. The shear of θ = 10◦ induces
an out-plane compression of ϵ = -1.5% while θ = 5◦ is compressing the
interlayer distance to ϵ ∼ −0.3 %. These ϵ values are still well below the
perpendicular strain distance to obtain the Bernal stacking, as shown in
the previous section. Hence, the rhombohedral to Bernal stacking transi-
tion seems to be beyond the effects of the interlayer distance, but instead,
it is a direct effect of applying shear deformations.

Note that using θ ̸= 0◦, the shear displaces the layers in-plane, and
with ϕ > 0◦ the top and bottom layers will describe cones relative to
the middle layer. The displacement compels the pz orbitals to change
not only in the interlayer distance but also in angles, as shown in Fig.
3.9 top panels. On the one hand, the Bernal stacking energies present a
60◦ periodicity in ϕ while θ increases the amplitude of the relative energy
difference. Therefore, the Bernal stacking is minimally affected up to ϕ =
30◦. On the other hand, the energies for the rhombohedral stacking show
twice the Bernal stacking periodicity with 120◦ periodicity in ϕ. Thus,
we find angles where the rhombohedral stacking is more destabilized than
the Bernal. For the polar angles of θ = 5◦, the energy difference curve
decreases within ∼ ±10.17 meV/nm2 as ϕ values increase. For the case of
θ = 10◦, this energy range is ∼ ±75 meV/nm2, which is much larger than
found in previously studied deformations. In fact, the energy differences
are becoming an order of magnitude larger. For values of ϕ < 30◦, the
rhombohedral stacking remains more favorable, while for values of ϕ > 30◦

we find that the Bernal stacking is stabilized more than the rhombohedral
one. Comparing their symmetries, the Bernal stacking becomes more
favorable for threefold directions ϕ = 60◦, see inset panel in Fig. 3.9.
Interestingly, we observe a similar trend for θ = 5◦. The interlayer distance
decreases for θ ̸= 0, which can play an important role in the relative energy
difference, as shown in the previous section.

We set the interlayer distance like in the pristine case (ϵ = 0%) for
θ = 10◦ to determine whether our results are depending on the polar angle
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Figure 3.9: Stability energy difference between Bernal and rhombohedral stack-
ings versus shear deformation, which is defined by angles θ and ϕ shown in the
upper panel. The inset shows the shear ϕ for which the ABA and ABC stackings
are more stable.
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or the interlayer distance. The results confirm that the relative energy
difference is mainly due to the shearing angle rather than the distance
between layers. Although the energy differences decrease slightly, they
remain in the order of tenths of meV/nm2.

In general, the results for shear deformation depend on the ϕ angle to
promote the Bernal or rhombohedral stacking. The shear deformation is
crucial and can be used to control better the stability in electronic devices
where the angle between layers is engineered [42].

Perpendicular Sublattice Displacements

In previous sections, the deformations change the layers in the same
way without altering the sublattice positions in the cell. For complete-
ness, we assess the role of out-plane sublattices anisotropy by displacing
up and down the sublattices for each stacking. We now characterize how
much the perpendicular shifting of the A or B sublattices affects the rel-
ative stability between Bernal and rhombohedral stackings. In this sense,
we break the sublattice layer symmetry. First, when shifting up or down
the middle layer on both stacking orders, their energy response does not
exceed 0.01 meV, because both have the same number of interlayer neigh-
bors. Therefore, we focus on its sublattices by analyzing the coordination
number of carbon atoms between layers, i. e., the number of the first and
second neighbors of each sublattice with the next layers.

Figure 3.10(a) shows the Bernal and rhombohedral stacking schemes
indicating the second nearest neighbors in the next layers. The vertical
lines from the middle layer sublattices indicate the first interlayer neigh-
bors. The A and B type nodes have two first and 18 second neighbors
belonging to the side layers in both stackings. However, the neighbor
counting is different when looking to the top and bottom layers. In the
case of Bernal stacking the middle sublattices neighbors are the same for
the top and bottom layers because of its mirror symmetry. Thus, the shift
yields the same energy because of Bernal stacking symmetry, i. e., which
is independent of the shift direction. In the rhombohedral stacking, the
middle layer neighbors for each sublattice site are “antisymmetric,” i. e.,
shifting the A middle layer sublattice is equivalent to shifting down the B
one – and in the opposite direction. For the rhombohedral geometry, the
number of cases to discuss are two: (i) A↑

2 (or to B↓
2) and (ii) A↓

2 (or B↑
2),
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Figure 3.10: (a) Models for the Bernal and rhombohedral stacking including the
number of interlayer nearest neighbors of the middle layer atoms, to be discussed
in text. (b) Comparison of relative energies concerning the ground state of the

perpendicular displacements of the A↑
2 and B↑

2 graphene sublattices in the mid-
dle layer. The subscript denotes the layer number, and the superscript arrow
indicates the corresponding up and down shift of the sublattice atom.
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where subscripts and arrows refer to the layer number and the direction
of the out-plane displacement.

Figure 3.10 (b) compares the energy response difference, given as Etot-
E0, where Etot is the total energy when shifting the atoms and E0 is the
pristine ground state energy for each stacking. Shifting the atoms, by
1.0% of the pristine interlayer distance, about 0.034 Å, the total energy
increases by ≈ 0.5 meV in all the considered cases. The energy response
is nearly the same for the shifting cases of Bernal stacking. Contrary,
the rhombohedral one shows a longer energy response; thus, moving the
A sublattice up, A↑

2, yields a different energy response than moving it

downwards. As a result, moving A↑
2 shows that the Bernal stacking is

more stable than the rhombohedral one by 8.12 meV/nm2. By moving

B↑
2 (same as A↓

2), the situation is just opposite, and the change of relative
energy is about 8.1 meV/nm2 – in this case, the Bernal stacking is more
destabilized. These findings point out that the breaking between sublattice
symmetries is another way to destabilize the stacking in the rhombohedral
trilayer graphene.

Furthermore, these results might be explained by interpreting TLG
stackings as trimers and dimers in the perpendicular direction. Here,
the total energy can be written as a sum of eigenvalues and interatomic
potentials with next-layer sublattices. Looking at the total contribution
of interatomic potentials, the second interlayer neighbors cause the energy
differences. This energy contribution adds to the difference in the sum of
eigenvalues, already commented, in which the levels for the Bernal stacking
split from the zero energy when the atoms are shifted up or down.

3.4 Conclusions

In this chapter, we determine when the Bernal stacking in trilayer-
graphene becomes more stable than the rhombohedral one due to small
lattice deformations. We compare the theoretical DFT calculations with
experimental observations done by the group of Prof. Weitz. The exper-
imental group observes that patterning of metal contacts and stamping
few-layer graphene a onto h-BN substrate might cause anisotropic strains
in the flakes. The strains induce the movement of stacking solitons in the
rhombohedral Bernal boundaries that change the stacking order. Our re-
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sults are surprising because a number of literature reports have contacted
rhombohedral stacked multilayer graphene without reporting such tran-
sitions [89, 90, 91, 92, 93]. Metal contact fabrication can lead to lateral
movements of Van-der Waals multilayers, which will also be potentially
interesting for Van-der-Waals heterostructure design, when either lateral
precision or twist angles are required [42].

In the second study of this chapter, we improve the accuracy of our
calculations and study different lattice deformations, such as compression,
shear and sublattice displacement. The rhombohedral stacking suffers a
transition to the Bernal one when it is compressed below -2.5%. Smaller
compressions can also yield the Bernal stacking when shear and sublat-
tice displacement drive to structural anisotropies. These findings provide
insights into the role of substrate-associated strains when graphene layers
are integrated into devices. Thus, changing the stacking order modifies the
electronic properties of few-layered graphene. Nowadays, experimentalists
obtain the rhombohedral stacking by twisting and sliding the solitons be-
tween domain boundaries. Furthermore, by considering the anisotropic
deformations, we claim that such deformations can cause a change of
stacking, specifically by the stretching ones. Moreover, the shear results
are in line with previous experimental findings in which the deformation
can be induced by contacts [38], by other encapsulating layered graphenes
within h-BN samples [37], and by explicitly putting shear on the samples
[94]. These calculations raise further intriguing experiments regarding how
substrates, molecules or nanoparticles, broke the sublattice symmetry on
few-layered graphene heterostructures [95, 96]. In addition, the results in
this chapter suggest that care must be taken when depositing exfoliated
graphene on substrates and when top or edge contacts are patterned be-
cause of the strain forces in samples [82]. Trilayer graphene samples have
to be analyzed once they are covered and isolated in operating devices
to crosscheck whether regions with the rhombohedral stacking remain in
the sample. Thus, this work would be interested in relevant technological
areas such as patterning contacts and encapsulating graphene flakes in
other materials.
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Boundaries in Bilayer
Graphene

In this chapter, we study the electronic structure in an array of
pentagons-octagons (8-55) defect lines patterned in bilayer graphene (BLG).
Firstly we review how the electronic structure of graphene changes when
having grain boundaries, such as octagonal and 8-55 defect lines. Then we
analyse the occurrence of topological states in its gap because gated bi-
layer graphene shows an energy gap in its band structure. These states can
be induced from domain walls like electric field walls or stacking-domain
walls separating the regions with AB-BA stacking domains. In this sense,
8-55 defect line and the topological boundary are the main ingredients to
understand the physics behind the array of defect lines in bilayer graphene.
We analyze the electronic structure of this array in detail by using simple-
model, tight-binding and density functional theory simulations. We focus
on the hybridization between the defect and topological states near the
Fermi level. Because the electron-electron interaction seems to be crucial
for their mixing, we perform DFT calculations to include magnetism and
to study the different magnetic orders between the defect states in the
array. Furthermore, we consider the array under external electric fields
and n-doping also using DFT.

4.1 State of the Art

Many studies have reported domain walls separating the AB from BA
domains in BLG [64, 97]. The domain walls can be corrugations or even
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carbon substructures. In the minimal case of twisted bilayer graphene at
very low angles, moire patterns have AB and BA domains separated by
transition stacking domain walls. In this latter case, topologically pro-
tected states have been shown theoretically [98, 99] and experimentally
[100]. Chou et al. also performed calculations to describe the presence of
charge density waves along the domain wall of this system [44]. Addition-
ally, it has been observed that twisted BLG host phenomena as uncon-
ventional superconductivity [42] which enhanced the efforts to investigate
electron-electron correlated phenomena in other 2D materials. All these
studies made an array of domain walls a good candidate for electronic
devices design.

Octagonal/Pentagonal Grain Boundaries in Graphene

Synthesized graphene samples usually have grain boundaries in expe
riments. Huang et al. grew monolayer graphene using chemical carbon
deposition (CVD) techniques and found irregular grain boundaries (see
Fig. 4.1(a)) [101]. A grain boundary in a hexagonal structure of graphene
can be constituted of polygons, like pentagons, heptagons or octagons
that separate two graphene domains rotated with respect to each other.
Although they are found in irregular shapes, they can have nearly linear
[102] or even linear configurations (Fig. 4.1(b)). For instance, Lahiri et al.
performed scanning tunnelling microscope measurements and reported an
8-55 defect line, as shown in Fig. 4.2(a). They claim that this defect line
can be used as quasi-one-dimensional metallic “wire” once its surrounding
is doped. In this sense, these grain boundaries can be used as conducting
channels interconnecting elements in device structures.
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Figure 4.1: Schematic representation of an (a) irregular and (b) highly ordered
grain boundary separating graphene domains.

Figure 4.2: (a) Scanning tunneling microscope (STM) image of the defect line
and profile perpendicular (inset). The brighter area corresponds to higher lo-
cal density of states surrounding the defect. It originates from the states with
wavefunctions localized in the line that decay exponentially inside the graphene
regions. Experimental image obtained from Ref. [46]. (b) Schematic representa-
tion of the measured grain boundary composed of pentagons-octagons.
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Grain boundaries in a zigzag graphene nanoribbon (ZGNR) like 8-55
defect lines can be used as conducting channel controlled by a gate volt-
age [103]. Because ZGNRs have an antiferromagnetic phase between its
edges, the 8-55 defect line allows to manipulate the ZGNR polarization
by stretching [104, 105]. Tight-binding calculations have been performed
looking at an octagonal defect line embedded in a zigzag graphene nanorib-
bon [106]. The results (Fig. 4.3(b)) show that the curved bulk bands have
a gap, which is typical of ZGNR [107]. In the gap, flat bands appear
having different origins. At the Γ point (k = 0), two of these bands are lo-
cated in the outer edges (Ze) of the ZNGR, as shown in Fig. 4.3(c). When
approaching the K point, these bands gain dispersion. At the Fermi level,
there are also two degenerated flat bands. They are localized along the
grain boundary when looking at the Γ point; see the K and Zi wave-
functions. A state is located along the zigzag “edges” (Zi) of the grain
boundary; another mainly locates at the Klein node (K) and spreads into
the graphene-like region. The Klein nodes of the octagonal defects can
be next connected in pairs to get a pentagon-octagon defect line (Fig.
4.2(b)), and the states shift down in energy around -1.5 eV at the Γ point
(Fig. 4.3(d)). There are left few flat bands at the zero-energy level, which
get a dispersion near the K point. They are triple-degenerated, as ex-
pected, with two bands from the ZGNR outer edges. The remaining flat
band state locates in the zigzag edges of the defect line when looking at its
wavefunction at the Γ point (Zi). We note that the defect-line state Zi is
robust and persists in the gap even when the Klein nodes are connected.

Then an armchair carbon nanotube with an 8-55 defect line is modeled
(Figure 4.4). The previously shown 8-55 defected ZGNR along the arm-
chair direction is rolled up, so that the coupling of the carbon outer edges
results in their states to shift away from the Fermi level, as shown in Fig.
4.4(a). The Klein band thus changes its character connecting valence and
conduction regions. When looking at the Γ point, the states at the Fermi
level are still located at the zigzag edges of the defect line (Fig.4.4(a)), as
in the case of ZGNR with 8-55 defects.

It is interesting to compare the cases of the 8-55 defect line in the
armchair-CNT and the ZGNR under periodic boundary conditions. We
show the tight-binding band structure of this latter case in Fig. B.2 of
Appendix B. The defect-line bands behave similarly, and the differences
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Figure 4.3: (a) Octagonal grain boundary in a ZGNR ribbon. Represented by
red color are the Klein nodes which connect the two nanoribbon regions. (b)
Electronic band structure using tight-binding calculation for two 8-ZGNR do-
mains joined by the extra row of Klein-like atoms as in (a). The wavevector k
is given in units of 1/T, where T is the length of the double unit cell along the
grain boundary direction. The degeneracy in E = 0 bands at k = 0 and k = π
are indicated in the figure. (c) Tight-binding wavefunctions corresponding to the
four zero-energy bands of (b) at k = 0. Blue and white colors denote positive
and negative signs of the wavefunction, respectively. (d) Electronic structure of
the ZGNR with a reconstructed 8-55 defect line calculated with tight-binding.
(e) Wave-functions at k = 0 for the triple degenerated zero-energy bands of (d)
at the Γ point. Taken from Ref. [106].
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Figure 4.4: (a) Tight-binding wavefunction (left) at k = 0 for the band near the
Fermi level and band structure (right) of an (8,8) armchair nanotube (rolling-up
ZGNR) with a pentagons-octagons defect line. Taken from Ref. [106]. (b) Den-
sity functional theory band structure of the (10,10) nanotube with the pentagon-
octagon defect-line using LDA and including spin. Squares and circles denote the
energy band for the minority (β) and majority (α) spins, respectively. The DFT
band structure figure is taken from Ref. [108].
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rely on the number of unit cells used along the armchair directions. In our
calculation, we use 20 rectangular graphene cells more than in the CNT
model, so that the gap at the K point is reduced.

Density functional theory calculations have been performed on the ar-
ray of 8-55 defected ZGNR [46]. The defect bands gain curvature along
the ΓK path so thus that the electron-electron interactions play an impor-
tant role in these systems. Similar results in CNT with an 8-55 defect line
have been reported by Okada et al. [108] performing DFT calculation with
spin-LDA functional, see Fig. 4.4(b). The bulk bands have a parabolic
behavior and open a gap of ∼ 1.0 eV at the K point. The defect states gain
dispersion along the ΓK path near the Fermi level showing ferromagnetic
coupling, which disappears near the K point. Thus, the 8-55 defect line
hosts already interesting physics in single layer graphene systems, which
deserves to be investigated with a larger number of layers. When a domain
wall is included in gated bilayer graphene, topologically protected states
appear in the gap around the K point (as detailed below), and are in the
same region in which the 8-55 defect and bulk states mix each other in
monolayer graphene. In this context, the topological and defect states can
hybridize to create new physics in bilayer graphene systems.

Topological States in Gated Bilayer Graphene

We here review how gated bilayer graphene shows topological protected
states when having AB-BA stacking changes. A graphene sheet is a bipar-
tite lattice separated by A and B sublattices. These sublattices in bilayer
graphene determine the stacking order between layers, the so-called AB
stacking. The bilayer graphene band structure is gapless; nevertheless,
applying a gate voltage induces a layer imbalance that causes a gap open-
ing. Stacking domain walls can be created in BLG when separating AB
from BA domains (Fig. 4.5(a)). For gated bilayer graphene the stacking
change causes topologically protected states to appear in the gap [110].
In Figure 4.5(b), we display a scheme of the gated bilayer graphene band
structure with a stacking domain wall.

The topological states are located at the K, K′ valleys and connect
valence and conducting regions in pairs. The studies on gated BLG with
a different kind of domain walls, such as strains and layer stacking walls,
show this pair of topological states in the BLG bulk gap [111, 98]. Ex-

Doctoral thesis of Raúl Guerrero 53
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Figure 4.5: (a) Stacking domain-wall in bilayer graphene stacking. (b) Schematic
band structure of gated bilayer graphene with a stacking domain wall considering
no periodic boundary condition along the defect line. Topologically protected
gapless states in blue (red) connect valence and conduction bands in K (K′)
valleys. (c) Illustration of valley polarized electrical current in BLG domain wall.
Blue and red states propagate in opposite directions addressed by the chirality of
the K and K′ valleys. (d) SEM representation of an array of gate-voltage device
where BLG region is shown in purple and gates in gold color. Taken from Ref.
[109].
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perimental studies on BLG have reported the presence of stacking domain
walls [112]. These measurements show one-dimensional conducting chan-
nels corresponding to topological states along its edges. The conducting
electrons propagate with opposite velocities in different valleys. In this
sense, the valley chirality determines the electron propagation. Similar
topological states can be shown in other ways to get stacking changes such
as electric-field walls [113, 98]. Experiments also report on electric-field
walls as shown in Fig. 4.5(c)(d) [109, 114]. Nevertheless, these systems
prove to be challenging to be processed [109].

Figure 4.6: (a) Electronic structure of topological states on an array of domain
walls in BLG. (b) Momentum propagation for topological states in (a) along the
domain wall edge. Modified from Ref. [111].

Arrays of domain walls can be studied including periodic boundary
conditions along xy directions. The array causes the appearance of an
extra pair of topological states on each K and K′ valley [111]. In this
context, two counter propagating pairs of topological states locate on each
valley, as shown in Fig. 4.6(a). Thus the domain wall edge has two
topological states per spin for each K, K′ point, see Fig. 4.6(b).

Non-trivial topologically protected states survive when a single 8-55
grain boundary is embedded in BLG (Fig. 4.7(a)) [115]. Its electronic
structure using tight-binding calculation is shown in Fig. 4.7(b). 1 Be-
cause there is a 8-55 defect line between leads, the electronic structure
shows a nearly negligible gap in the bilayer bands (Fig. 4.7(b)) as ex-
pected. The zero-energy band related to the defect line D disperses at

1The hopping factors used are γ0 = −2.66 eV for the interatomic and γ1 =
0.1γ0 for interlayer.
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Figure 4.7: (a) Scheme of a defect-line in bilayer graphene. Cyan and blue colors
show A and B sublattices, respectively. The Klein nodes, shown in gray color,
mix the A and B sublattices. Defect-line nodes are shown with arrows; the zigzag
nodes (Z) are in the top part. (b) Electronic band structure of a quasi-infinite
BLG with a single 8-55 domain wall. (c), (d) Defect line region resolved local
density-of-states LDOS(E,k) for the BLG with a 8-55 domain wall under positive
and negative voltages. Panels (a), (c) and (d) from Ref [115].
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the K point. Applying a gate voltage perpendicular to the surface makes
that the bilayer graphene bands open a gap having topologically protected
states. For positive gate voltages (Fig. 4.7(c)), the bands shift up in en-
ergy, and two topological states connect the valence and conduction re-
gions that hybridize and mix with the defect band. For negative voltages
(Fig. 4.7(d)), the bulk bands shift down in energies. However, contrary
to the previous case, the gap hosts two bands connecting conduction and
valence regions, and the defect band hybridized with one of the topological
bands (D-S3). Thus, the total number of states in the gap depends on the
gate voltage orientation. Furthermore, the gapless states are layered re-
solved depending on the gate voltage polarization [115]. In summary, this
study shows that topological and defect states hybridize, and the number
of gapless states depends on the voltage polarization. How such hybridiza-
tion occurs is the key to understand the physics behind the BLG with a
8-55 defect line. Because the usual tight-binding method ignores interac-
tions between electrons, detailed calculations are required including these
interactions. The electron-electron interactions would add different effects
such as band dispersion and magnetism phases due to the defect line [105].

Based in the articles reviewed, we study an array of 8-55 defect lines
to create a pattern of AB and BA domains. By including periodic bound-
ary conditions along xy directions, we create an array of defect lines. We
study the electronic properties of defect-line array using simple model,
tight-binding, and density functional theory calculations including spin
polarization. The simple model and tight-binding results let us to un-
derstand how the defect-line array and topological states are hybridizing.
Density functional theory allows us to determine the effect of electron-
electron interactions. Here we find that the defect-line states have ferro-
magnetic behavior in which spin-momentum locking occurs. To study the
potential defect-line applicability on electronic devices, we perform further
calculations involving not only external electric fields but also n-doping.

4.2 Structure and Basic Theory Models

Geometry of the system. The structure of an array of defect lines in
Bernal stacked bilayer graphene is presented in Fig. 4.8(a). The supercell
includes two stacking domain walls due to two topological defect lines in
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each layer, which alternate an octagon and a pair of pentagons to form
the grain boundaries between the AB and BA stacked regions of bilayer
graphene. The supercell is composed of L = 24 primitive cells of an arm-
chair nanoribbon in the x-direction. The defect line can be seen as joining
two graphene edges, a pristine zigzag with a Klein-terminated edge [116].
For that reason, the defect nodes are labeled as zigzag and Klein, as shown
in Fig. 4.8(c). In practice, every second pair of Klein nodes are dimerized
and linked together, as observed experimentally [46].

Figure 4.8: Unitcell of an array of defect lines in bilayer graphene that separate
AB and BA domains. The region around defects is zoomed in the lower panels.
The defect lines are separated by 12 primitive graphene unit cells, i.e. 5.24 nm.

Basic ingredients in a simple model. We first develop a simple model
to understand how hybridization between the defect and topological states
occurs. The effective model Hamiltonian that describes the interplay be-
tween gapless and defect states is written as follows,

H(k) =



k + V 0 γ1 0 0 0
0 −k + V 0 −γ1 γ2 0
γ1 0 k 0 0 γ2
0 −γ1 0 −k 0 0
0 γ2 0 0 H(k)k 0
0 0 γ2 0 0 H(k)k

 , (4.1)

where k corresponds to the y direction in reciprocal space. The upper
4×4 box is the two-layer graphene Hamiltonian for the topological states,
and the lower 2×2 box includes the defect line states. Following reference
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[117], the bilayer graphene Hamiltonian can be described by two graphene
Dirac cones in each layer given as the diagonal ±k states, which interact
through the coupling γ1 between the layers; V is the gate voltage between
the layers. As the hopping γ1 does not mix states with +k and −k, the
gate voltage V does not open a gap, where the gapless topological states
are remaining. We obtain that for bilayer graphene the Hamiltonian in
Eq. 4.1 is taken with a small non-zero γ1 value, set to 0.01 γ0 (γ0=-
2.66 eV) to describe the interaction between layers. The defect states are
included in the lower 2× 2 box as two diagonal terms H(k)k, where H(k)
is the Heaviside function that includes dispersion when reaching the K, K′

valleys; they mix with opposite momentum and valleys in each layer. The
coupling γ2 in the Hamiltonian describes the interaction of the defect-line
states with the ±k states ones.

Figure 4.9: (a) Simple model bands for zero and non-zero γ2 value. (b) Scheme
of hybridization between gapless states in both valleys. (c) Tight-binding band
structure of the array of defect lines shown in Fig. 4.8.
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The left panel of Fig. 4.9(a) shows the electronic dispersion obtained
from the Hamiltonian in Eq. 4.1 for γ2 = 0 eV. The interlayer coupling (γ1)
leads to the topological gapless states behavior characteristic of systems
where the bilayer stacking changes from AB to BA [41, 110]. These states
connect the valence and conduction bulk bands with two pairs of bands
with opposite velocities, each associated with one of the K, K′ valleys. We
note that both Dirac cones split in energy showing the topological states
in the middle.

For the non-zero γ2 (≃ 0.10γ0), we obtain the electronic dispersion
that is shown in the right panel of Fig. 4.9(a). Two of the topological
states with +k mentioned above remain even after coupling to the defect.
The defect states split symmetrically away from the Fermi level and get
opposite dispersions because they couple to topological states with dif-
ferent k velocities. The different behavior of the defect bands is due to
the stacking change associated with the two opposite valleys, which corre-
spond locally to each stacking change, i.e., each stacking change in bilayer
graphene is a mirror reflection of the other by changing its relative chiral-
ity, as shown schematically in Fig. 4.9(b). Therefore, because the defect
lines are located in different layers, their bands mix with opposite valleys
having the two K and K′ values, which have opposite momenta due to the
reflection symmetry.

Band structure within tight-binding approximation. In Figure 4.9(c)
we display the tight-binding electronic dispersion for the structure given
in Fig. 4.8 using the hopping value between the nearest carbon atoms.
The bulk bands at the K point shown in grey have a gap due to the
periodical stacking change induced by the defect lines. The width of the
gap depends on domain size. In fact, the bulk band splitting is present
when the system has gapless domain walls that also change locally the
stacking between layers [110]. Within the gap, there are flat localized
bands at the Fermi level along the Γ - K path. Specifically, the states at
the Γ point are located at the defect line, and when they approach the
K valley the bands become dispersive spreading from the defect states.
In more detail, the dispersion near the Fermi energy is a result of the
hybridization with the topological states, as already commented above.
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4.3 Results and Discussion

4.3.1 Momentum-Locked Spin-Crossing

In this section, we present the results of DFT simulations performed for
the array shown in Fig. 4.8 using the SIESTA package [118] and including
a Van der Waals functional VdW-DF2 [54, 119]. We use a mesh cut-off of
600 Ry for the 3D grid of density and exchange-correlation potentials. We
perform simulations relaxing the input structures in two dimensions and
calculate their electronic properties. To adequately describe the electron
distribution near the Fermi level, especially at the Γ point, the electron
smearing is chosen to be small, about 0.1 meV. The corresponding con-
verged mesh grid in the reciprocal space is thus large with 101×15 k-points
grid for relaxed geometries. The relaxed geometry has in-plane carbon-
carbon distances of about 1.44 Å and slightly different distances near the
defect line. The most deformed hexagons are those that share edges with
octagons and pentagons with lengths of 1.48 and 1.41 Å respectively. The
detailed structure with the corresponding C-C distances is included in
Appendix B.

We first analyze the band structure and then comment on the local-
ization of defect states. Figure 4.10 shows the band structure of the array.
Note that the array of defect lines induces a gap between the bilayer bands
even though the system is not externally gated. The gap opening is typ-
ical of superlattices due to the finite-size effects. Furthermore, the array
patterning reduces the periodicity of the bands dividing them into a series
of subbands in the upper and lower bilayer valleys shown in the grey area.

Within the gap around K, we observe several gapless states. There are
four intersecting bands that are divided into two pairs, and each of the
pairs is related to one of the stacking changes. These four bands originate
from the topologically protected states arising of defectless stacking do-
main walls [97]. Away from K, however, they hybridize with the localized
states due to defect lines. This hybridization depends on the exact local-
ization of the two types of states, namely, they interact if they are located
in the same layer and sublattice [115].

There are states mostly localized on the defect lines. They are spin
degenerate except for the two bands near the Fermi level, spanning from
Γ to K. These two bands are nearly flat and their dispersion is related
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Figure 4.10: (color online) (a) Band structure of the array of defect lines. The
gray-shaded regions are the bilayer bulk bands, showing a gap due to quantum size
effects. The nearly flat states at the Fermi level are spin-split. The inset displays
the wavefunction at the Γ point for an upper band state, which is localized at a
defect line in the upper layer and degenerated with another similar state localized
at the neighbor defect line in the bottom layer. Note that in the zoomed-in plot
of the right panel (b), there is a spin crossing point near the K valley, marked by
a cyan dot.

to electron-electron interaction: the bands are flat and partially occupied
in calculations within the tight-binding approximation (compare with Fig.
4.9). There is a defect band associated with each of the defect lines in both
layers. An example of the wavefunctions at the Γ point of the upper layer
is shown in the inset of Fig. 4.10(a). We refer to them as defect bands due
to the strong localization of those bands at zigzag nodes on both sides of
a defect, being in this respect different from the edge states of terminated
zigzag nanoribbons that are only localized on one edge [103, 106]. These
defect bands hybridize with a pair of topological states related to the
stacking change near the valleys.

The hybridized defect and stacking-change topological states show a
spin-crossing point, marked in Fig. 4.10(b) with a cyan dot. The car-
rier momenta related to these two bands have opposite signs, which im-
plies spin-momentum locking. Importantly, the wavefunctions of the two
crossing bands are localized in different layers. Thus, currents related to
spin-up and spin-down channels flow in opposite directions and are also
spatially separated. The layer-resolved spin transport makes this array a
possible candidate for engineering based on the spatial separation of the

62 Doctoral thesis of Raúl Guerrero
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spin currents 2.

4.3.2 Parallel Spin Couplings of Defect Lines under Gates

In the above simulations, the coupling spin configuration between lines
is taken as ferromagnetic (FM) because it has the lowest energy. We
now consider antiferromagnetic spin couplings (AFM) calculations and
compare both results in Fig. 4.11. Then the initial spin configurations are
set for the zigzag nodes as displayed in the schemes. The band structures
of the FM and AFM phases are compared in the upper panels. They are
almost the same except for the zigzag bands that are spin-degenerated
in the AFM case, with spin polarization of opposite signs in each layer.
We consider the effect of an external electric field Eext on the two spin
polarizations. We apply the field perpendicular to the surface with the
values of 25.0, 50.0, and 107.5 mV/Å between the layers. Due to inversion
symmetry, the same results are obtained for fields with opposite directions.

Figure 4.11(a) compares the evolution of the band structures of both
magnetic phases under Eext. While the bulk bands remain nearly spin
degenerated, the effect of the electric field is clearly seen on the defect flat
bands. In the FM case, it splits the two spin-down bands shifting down
one of them in energy. The spin-up bands remain pinned at the Fermi
level with a nearly constant value of spin polarization. The band splitting
is also shown for the AFM coupling, that is degenerated for up and down
polarizations. In the AFM case, a pair of spin-down bands split and one
shift down in energy approaching the pair of pinned spin-up bands. The
splittings increase and saturate for the value of Eext > 100 mV/Å, for
which the band structures for the FM and AFM couplings become similar.
Although the order of the bands is different, the two middle bands are
almost overlapping. In the FM coupling, they are localized at one defect,
while the other pair of bands is located at the other one. The same pair of
bands is located at the different defects in the AFM coupling. Thus, under
an electric field the electronic behavior becomes the same, independently
of the initial spin coupling. Furthermore, the magnetization for the FM
case remains nearly constant with the field, while for the AFM case, it

2Although the crossing point is unoccupied, staying at E ≈ 0.1 eV, negative doping
is a way to reach the energy of the crossing bands, as discussed below.
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Figure 4.11: (a) Evolution of the band structure under electric field for the FM
and AFM magnetic couplings between the defect lines. In both cases the bands
seem saturated for a value of the field Eext > 100 mV/Å. (b) Total magneti-
zation versus field for the input FM and AFM couplings. The colors - red and
blue - reflect the FM and AFM character, respectively. The line spins become
ferromagnetically coupled with increasing.
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increases towards the FM case, as shown in Fig. 4.11(b). It is worth to
emphasize that using gates, the spins on defect lines in the array are easily
aligned to be parallel between them.

4.3.3 Spin-Polarization of Valley States Induced by n-
Doping

We next consider the influence of n-doping because we want to amplify
and engineer the interesting electron-electron effects like spin polarization
and magnetization. We look at the band structures of the array under
different n-doping values from 0.3e to 1.3e. The bands are shown for some
example values in Fig. 4.12. Previously studied degenerated bands, such
as defect and bulk ones studied above, are now spin split, and the splitting
is proportional to the doping value. The defect-located bands remain at
the Fermi level, but the splitting between bands with the opposite spins
increases; the spin-down bands shift up while the spin-up bands are bend
down, becoming partially occupied at the Γ point. Because the BLG valley
cone is shifted down in energy, the spin-crossing point between the defect
bands becomes occupied for n-doping values larger than 0.6e, being here
partially locked as one of the bands becomes nearly flat. We find that the
valley bands shift down in energy while the defect bands stay pinned at
their energies. The valley going down also induces that the corresponding
topological and valley states become spin-polarized.

We study the impact of the electric field with n-doping structure. The
band structures calculated when going from 0.3e to 1.30e are shown for
two different n-doping values in Fig. 4.12 applying an electric field of
150.00 mV/Å, which is the regime of the band structure being almost
saturated, i.e. when the gap width is large. Without doping, the defect
bands are split with the middle pair of spin-up and spin-down being nearly
degenerated. Under doping, the valley bands are shifted down in energy,
but now the spin-degeneracy of all the bands have been lifted.
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Figure 4.12: Band structure in the case of n-doping with values varying from
0.3e to 1.3e. Right panels correspond to have a field Eext = 150 mV/Å. In the
middle panels, we schematically illustrate that n-doping not only fills the defect
bands, but also is pinning them. The topological and valley states are becoming
occupied and spin-polarized.

66 Doctoral thesis of Raúl Guerrero
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Fermi Nesting and Charge Modulation

The n-doping causes not only the spin-up defect bands to shift down
in energy and become occupied, but also the valley states to be partially
occupied, as discused above. We next study the electron response function
using the Lindhard theory. The band structure for an n-doping value of
1.0e is going through the high symmetry points in the whole 2D Brillouin
zone in Fig. 4.13(a). We note that along the two-dimensional path the
up bands are crossing the Fermi level several times. There are electron
and hole pockets that suggest possible nesting on the Fermi surface. The
spin-resolved density-of-states in the right panel indeed confirms that the
spin-up bands are dominant around the Fermi level. The high density-of-
states originates mainly from the two spin-up defect bands, here labeled
A and B, which are intertwined with the valleys and topological states
near the K point.

We then investigate the Fermi nestings by calculating the static re-
sponse function. The unit cell of the superlattice has a large disproportion
between the periodicity in the directions x and y. The 2D Fermi surface
plot in the case of the B band is shown in inset of Fig. 4.13(b). They
confirm the quasi-1D character showing nearly parallel lines along kx that
give rise to the maxima in the static response function. Figure 4.13(b)
shows the response function χ(qy) calculated for the spin-up bands A and
B. It reveals strong peaks at qAy = 0.29 and qBy = 0.32 in 2π/ay units for
the A and B bands, respectively.

Large values of χ(qy) suggest the possibility of charge density waves
(CDW). We find especially interesting the case when the CDW is com-
mensurate with the lattice, which means that the wavelength of the CDW
is related to an integer number of repeating times the unit lattice constant.
We establish that λCDW

0 = 2π
qy

= N
M a0, where

N
M is a rational fraction, i.e.,

N andM can be found as integers. In that case, a Peierls instability takes
place, and the distortions can induce further transitions from the ground
state to a metastable state with lower periodicity [120]. The λ values cor-
responding to qAy is N

M = 4.36, which is a ratio far from being an integer.
This wavelength can be ascribed to the defect line interacting with the
topological states. This paves the way to understand the interaction of
defects through topological states in general.

The qBy value, however, corresponds to an N
M = 3.95 ≈ 4, being nearly
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Figure 4.13: (a) Full band structure of the superlattice with n-doping along the
two-dimensional Brillouin zone path. Red and blue colors correspond to spin-
up and spin-down bands, respectively. The right panel shows the spin-resolved
density-of-states. Note that the spin-up bands become crutial around the Fermi
level. The labels A and B denotes the two spin-up bands near the Fermi energy.
(b) Static response function of the A and B spin-up bands. The peak in the B
band corresponds to commensurate charge density wave (see details in text).
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integer. It is related with the electron-electron interaction between the
defect line and the valley states. On the one hand, going beyond this the-
oretical results, it could result in a Peierls instability and form a ground
state with a distorted lattice by allowing a lower periodicity in charge
densities using larger supercells of the order of four times along the de-
fect line which is beyond calculations in this study. On the other hand,
possible experiments such as using scanning tunneling microscopy (STM)
seems a common way to study the appearance of charge densities oscilla-
tions in carbon nanostructures along line defects, similar to our results for
quantum dots of carbon nanotubes [121]. 3

4.4 Conclusions

In this study we investigate an array of defect lines in bilayer graphene
that introduce stacking change, creating a superlattice of alternate AB
and BA stacking domains. In the electronic structure we observe the
interplay between bands which are related to topological and defect line
states. We focus on defect bands that show spin-momentum locking under
a ferromagnetic phase between the defect lines. Under electric field, the
magnetic moment in the antiferromagnetic coupling also tends to be as
in the ferromagnetic case. We next apply n-doping to the array. The
bulk bands shift down in energy, and the spin-up defect bands become
partially occupied so that the defect bands get pinned at the Fermi level.
Furthermore, the pinned bands are nested under n-doping. We find that
they correspond to a commensurate charge-density-wave which could be
related to Peierls instabilities. The spin momentum locking states are
filled for n-doping values larger than 1.0e. When we combine doping and
large values of field, the electronic structure is dominated by the n-doping,
but the defect bands split as in the field case. The array of defect lines
can play a role as one-dimensional conducting channels. Because arrays
of stacking grain boundaries such as 8-55 defect line are drawing much
attention of the experimental community [122], we are looking forward
to measurements that confirm the electronic phenomena predicted in this

3In fact, the two wavelengths could show an interference pattern with beatings that
could translate into commensurate and incommensurate regions being measured along
the line defects.

Doctoral thesis of Raúl Guerrero 69
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work.
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5 — General Conclusions and

Outlook

In this thesis we use density functional theory to study few-layered
graphene systems. We note that the stacking between graphene sheets
plays an important role when looking at its electronic properties and
therefore in the design of electronic devices. We determine which deforma-
tions destabilize the rhombohedral stacking in trilayer graphene against
the Bernal one. In addition, we examine an array of 8-55 defect lines
that induces periodic stacking changes in bilayer graphene; its electronic
structure shows a mixing between topological and defect states.

Firstly, we note in chapter 3 that rhombohedral trilayer graphene is
more stable than its Bernal counterpart. We perform structural defor-
mations of both stackings to determine the ones that induce the Bernal
order being more stable than the rhombohedral one. We have seen that
the Bernal stacking is more stable by a few meV/nm2 when doing in-plane
stretching. Out-of-plane deformations induce that the Bernal stacking is
more stable when decreasing interlayer distances. We perform shear defor-
mations and analyze the relative energy; we notice that the relative energy
difference goes up to tenths of meV/nm2. The rhombohedral stacking is
more stable for values of ϕ < 30◦, and for larger values the Bernal stack-
ing shows lower energies with 60◦ periodicity. In addition, we perform cal-
culations with sublattice displacements that break the symmetry between
layers. We find that the stability of the two trilayer stackings is exchanged
depending on which sublattice is shifted. The sublattice displacement can
occur when contaminants appear between trilayer graphene layers. In gen-
eral, we believe that these deformations occur during experimental steps
such as heating, cooling cycles to pattern contacts on few-layer graphene
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samples.

In chapter 4 we investigate an array of 8-55 defect lines in bilayer
graphene. Using tight-binding calculations, we find that periodic stacking
change induces a gap in the bulk bands. The gap reveals topological states
typical of bilayer graphene under periodic stacking changes. Furthermore,
the 8-55 defect lines provide flat bands at zero energy, which are strongly
localized on the edges of the defects. The defect states locate on each
layer and hybridize with topological states related to different valleys of
the Bernal stacking.

Next, we perform DFT calculations to consider electron-electron in-
teractions for the array. The defect bands gain dispersion and are spin
polarized. They show spin-momentum locking for the ferromagnetic phase
between moments induced by defect lines. We then compare ferromagnetic
and antiferromagnetic spin polarizations under several values of the elec-
tric field. When we increase the electric field, the band structure in the
FM and AFM phases shows nearly similar behavior. In fact, the magnetic
moment in the AFM phase becomes as in the FM case. Further, we include
n-doping in the array of defect line because the bulk bands shift down in
energy and spin polarization would increase. Indeed, the defect bands get
partially occupied, pinned to the Fermi level, and increase their spin polar-
ization. The shifting of the bulk bands and the pinning of the defect ones
cause that the states involved in the spin-momentum locking are occupied
for the n-doping values larger than 1.0e. The field in addition to n-doping
induces spin splitting of the defect bands with the same spin polarization.
With n-doping, the spin-up defect bands pinned around the Fermi level
can also be nested. We study this nesting and find commensurable charge
density waves, which could be related to Peierls instabilities. This result
asks for experimental confirmation like STM measurement which already
is a common procedure to observe charge modulations in carbon nanos-
tructures. The array of defect lines can be interpreted as one-dimensional
conducting channels that preserve its spin polarization even in the pres-
ence of an electric field and n-doping. Furthermore, because the 8-55 grain
boundaries have been observed in graphene [46], we are looking forward
to experimental measurements that confirm our results considering arrays
of stacking domain walls [122].

72 Doctoral thesis of Raúl Guerrero
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Outlook. In summary, the studies of this thesis show that stacking plays
an essential role in the electronic properties of graphene-like systems. We
note that graphene stacking is crucial in the design of electronic devices
to accomplish specific tasks. Because these devices are getting smaller
and smaller - and thus their areas - the stacking can be engineered. We
expect that the deformations studied in this thesis could help to develop
strategies to avoid stacking changes of the interesting rhombohedral phase.
It is usual in few-layer graphene samples to find grain boundaries that
cause the stacking change. The electronic properties predicted, such as
spin-momentum locking and charge density waves, should be checked with
experimental observations to ensure that they are sufficiently robust in real
systems.
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A — On the Relative Stability
Between Trilayer Graphene
Stackings

A.1 Convergence Tests

In Chapter 3, we examine the relative stability between Bernal and
rhombohedral stacking. The energy differences between both stacking or-
ders are below meV/nm2 which are in the same order of van der Waals
(vdW) interactions. The vdW interaction in an experimental sample de-
pends on the surface area; in this context, experimental samples are going
to be stabilized when they reach a critical area, so that their layers are
locked in a stacking order and sliding is avoided. Otherwise, the layers
would be switching between different stackings at room temperature. We
need to assess convergence tests in more detail than for other materials.
These tests look at cut-offs, broadening energies values and k-meshes. Our
strict energy difference criterion goes down to 10−3 meV per nm2, and the
self-consistent electronic energy tolerance should be well below this thresh-
old. The energy for each stacking in our calculations should be stable. We
then choose the electronic self-consistency tolerance about 10−8 eV. We
use the forces criterion of µeV/Å for geometry relaxations. These two cri-
teria causes that the stacking energy differences are in the order of tenths
or hundreds of meVs.
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Cut-off Energy Test

We present an energy cut-off convergence test for the plane-waves ba-
sis set. We firstly use a k-mesh of 30×30×1 k-points. The electronic
smearing broadening value is σ = 0.05 eV. Figure A.1 displays the Bernal
and rhombohedral stacking energy difference versus cut-off. The blue line
marks the cut-off value of 700 eV considered in our study. The energy dif-
ference value obtained for this test is within our criterion (µeV per nm2)
much below the value of the energy differences discussed in Chapter 3.

Figure A.1: Convergence test for energy differences between the Bernal and rhom-
bohedral stacking against kinetic cut-off energies.

Broadening Energy Test

Next test is to converge the broadening value σ in the discrete inte-
gration points of the Brillouin zone. The broadening is crucial, especially
to describe the electronic band states near the Fermi level and, thus, the
occupation of ground states. When the σ value is too large in the smear-
ing function, some conduction band states are fully or partially occupied.
When having large σ values, the split states near the Fermi level can be
also overlooked by averaging. When the σ value is too small the energy
levels behave like as being a discrete set. In order to optimize the smearing
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value, we consider a gaussian smearing using an energy cut-off of 700 eV
and a k-mesh of 30×30×1. Figure A.2 shows the stacking energy difference
as a function of the σ values. We mark the selected sigma value to be used
in the following with a blue line at 10−2 eV, which shows the minimum
stacking energy difference. This energy difference is 9.87 meV/nm2. It is
also noteworthy that the chosen σ value can discriminate the splitting be-
tween the flat valence and conduction bands around the K and K’ points
for rhombohedral stacking.

Figure A.2: Convergence test for the stacking energy difference against the broad-
ening energy (σ) using gaussian smearing.

K-mesh Energy Test

The relevant physics of trilayer graphene occurs mainly around the
low-energy bands. We focus our attention on the K and K′ points because
the states around that points are behind the stacking order stability. The
anisotropic deformations of the hexagonal lattices in graphene systems
induce displacement of high-symmetry points on its irreducible Brillouin
zone; specifically, the K and K′ points are not included when using a
30×30×1 k-mesh grid. Therefore, we perform the k-mesh energy tests tak-
ing into account the relative energy difference detailed in the main text.
We generate a regular Monkhorst-pack grid centered at the Γ point as
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required by hexagonal lattices. Figure A.3 presents the energy difference
between the ABA and ABC stackings versus the number of k-points in the
k×k mesh. We note a pattern not so common during the k-test. The red
curve corresponds to energy differences for kx×ky×kz meshes with the kx
and ky numbers being a multiple of 3, while the broad gray curve collects
the points obtained with other k-meshes. Both curves show qualitative dif-
ferences: the gray points show negative energies for k-mesh values below
100×100×1, implying that Bernal stacking is more stable than the rhom-
bohedral one. Note that these energy differences show a non-monotonous
trend when compared to the red curve. Contrary to these results, the red
curve following the multiples of 3 k-meshes shows stability for the rhombo-
hedral case. For our energy tolerance criteria (10−3 meV/nm2) the energy
differences are stabilized for k-meshes larger than 174×174×1. As pointed
out before, the K and K′ points in graphene contain the relevant physics
under the Fermi energy; therefore, omitting these points could also yield
incorrect qualitative energy trends when calculating the relative energy
difference.

Figure A.3: Differences in stacking energies versus the number of k-points in
the reciprocal mesh. The red curve corresponds to a reciprocal-mesh grid being
kx×ky×1 with the k values multiple of 3 in the plane and including the K and
K′ points; the thick gray curve collects all other cases. For the k-values larger
than 174, the energy differences are converged to the required accuracy limit.
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When we investigate the anisotropic lattice deformations, regular Bril-
louin zone samplings may not include the high symmetry graphene points.
Thus, a very fine k point sampling is required unless the k-points are com-
mensurate with the two orthogonal directions in the plane. Our k-mesh
is taken as 288×288×1, marked in blue in Fig. A.3, which produces well-
converged energies even for the anisotropic deformed lattices. Here, the
relative energy difference is 0.60 meV/nm2. Furthermore, we test the
k-mesh sampling by adding or not by hand the missed high symmetry
points and modifying the corresponding weights to show their relevance.
The stacking energy differences of k-meshes larger than 174 agree using
the two types of k-meshes within µeV per nm2, indicating that the band
structure for deformed layers is well described by the regular k-mesh sam-
pling considered above.

A.2 Comparison of Different VdW Functionals

We study the stacking energy difference by using several density func-
tionals for the van der Waals interaction between layers. We are using the
following parameters: a cut-off energy of 700 eV, a smearing factor of 0.01
eV, an electronic self-consistent energy tolerance of 10−8 eV, a k-mesh
of 30×30×1, and a force tolerance for the relaxations of atoms and cells
of µeV/Å. Figure A.4 collects the energy differences between the Bernal
and rhombohedral stacking. Here we use the most common functionals
used for dispersive interactions. For all the tested functionals the energy
differences between stacking orders is small - few meV/nm2- and shows
that the rhombohedral stacking is favorable against the Bernal one.

The local density approximation (LDA) gives us a good approach
to the structural stability and the study of vibrations in multilayered
graphene systems. The energy difference is 9.44 meV/nm2 showing that
the rhombohedral stacking has lower energy than the Bernal one. Nev-
ertheless, because it is a local approximation, corrections to reproduce
long-range interactions for sparse matter must be included in the form of
non-local interactions.

Therefore, we use the Grimme correction which within a general gradi-
ent approximation (GGA) to the exchange-correlation energy term [123] is
a semi-empirical adjustment to the non-local and long-range interactions.
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We test two generally used Grimme flavors: the vdw-D2 and the damped
one vdw-D3 [124, 125]. These functionals yield similar energy differences
of 8.57 and 10.49 meV/nm2, respectively.

Figure A.4: Stacking energy differences (∆E = Eaba - Eabc) using several func-
tionals to deal with non-local disperse interactions.

Next, we study the vdw-DF functional, which is one of the latest func-
tionals to study vdW-like systems [56]. The non-local exchange-correlation
energy follows the expression Exc=EGGA

x +ELDA
c +Enl

c , where the sub-
script nl indicates the non-local contribution. Using this functional the
rhombohedral stacking order is more stable with a relative energy of 9.02
meV/nm2. Following the same family of functionals we test the vdw-DF2
one. This functional is designed to describe sparse systems in biological
matter applications and organic elements involved in carbonaceous sys-
tems [54, 126, 80]. The vdw-DF2 functional improves the non-local corre-
lation term. It replaces the revPBE exchange term in vdw-DF functional
with a PW86 term [127], where the former is more repulsive [128]. The
relative energy difference calculated by vdw-DF2 is 9.74 meV/nm2, which
is nearly the same result obtained before. Finally, we consider the rev-
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vdw-DF2 functional, which is one of the modern versions of the vdw-DF
family designed for inhomogeneous systems [55]. The energy difference is
given as 9.64 meV/nm2, which agrees with all previous calculated VdW
functionals. We consider the vdw-DF2 functional to perform best for our
calculations. This functional describes better the interlayer interaction
of graphene, where functionals of this family seem to overestimate the
interlayer distance and the binding energy [129].

A bibliographic search shows no clear agreement on which functional
have to be considered, specially in systems like layered graphene because
the performance each functional is still under discussion. We found that
functionals correctly reproduce the interlayer distance, but they fail when
estimating the binding energies including pure graphite. Although many
functionals have shown acceptable performance in clusters and molecules,
functional transferability is now under discussion. These discussions are
important because few-layered-like systems show today emergent proper-
ties. For example, systems like TLG do not behave exactly like graphite
concerning the interlayer distances and, more importantly, their electronic
properties are different [129, 130, 131].

A.3 Limits of Shear Lattice Deformations

The simulations of the shear deformations on trilayer graphene struc-
ture were performed for different azimuthal (ϕ) and polar (θ) angles. We
display the valid ϕ or θ angles values in Fig. A.5, when the Bernal and
rhombohedral interlayer nearest neighbors are preserved. The gray data
correspond to the ϕ and θ angles that cause a change in the interlayer
nearest neighbors. Thus, we can no longer treat such structures as being
purely Bernal or rhombohedral. The blue and red dots correspond when
the Bernal and rhombohedral stacking nearest neighbors are preserved,
respectively.

We note that the periodicity of the Bernal and rhombohedral stackings
are different. The former have a periodicity of 60 degrees, while the latter
have 120 degrees. Therefore, the relative stability between stackings fol-
lows the lower periodicity as shown in the inset panel of Fig. 3.9 described
in Chap. 3.
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Figure A.5: Close stackings to the Bernal and rhombohedral geometry under
shear deformation. Dots refer to the values of the θ and ϕ angles for which the
stacking geometry is nearly preserved, crosses when we no longer can call these
structures as being Bernal and rhombohedral.

Electronic Bands of Rhombohedral Trilayer Graphene under
Shear

The shear on the Bernal and rhombohedral stackings modifies the in-
terlayer coupling and changes thus their electronic structure. Here, we ex-
amine the changes in the electronic structure of the rhombohedral stacking
because the changes in its low-energy bands seems relevant. This study is
related to how shear deformations affect van Hove singularities near the
Fermi energy. In figure A.6, we present the rhombohedral stacking band
structure for a shear of θ = 5◦ and ϕ = 0◦. In grey, we display the case
without shear showing almost electron-hole symmetry next to the Fermi
level around the K and K′ points, those bands are labeled as primary
bands, and the following bands around ±0.25 eV are called as secondary
bands. When analyzing the shear case, the electron-hole symmetry is
lost. The bands move down in energy along the ΓK path, while those
along KM path move to the left with a crossing of bands at the K point.
The secondary bands come from interlayer nearest neighbors interaction
[132]. The primary bands stem from uncoupled outer layer sublattices,
also called hollow sites. These bands take part of the flat regions around
the K and K’ points and are related to the van Hove singularities near the
Fermi energy. Under distortions, shear makes that the interlayer coupling
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Figure A.6: Electronic band structure for pristine (gray) and shear rhombohedral
(blue) trilayer graphene.
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is enhanced by tilting. For θ > 0, the shear causes a shifting between
layers and tilting of the stacking layers. Consequently, we note redistri-
bution in the band structure with respect to the undistorted case next to
the Fermi level, and the van Hove singularities are expected to split. The
charge redistribution comes from states located in hollow sites at the top
and bottom layers. Then, the van Hove singularities are moved away from
the Fermi level. Additionally, the charge redistribution matches with the
band behavior along the KM path line. Here, the shift and translation in
energy can be explained by the “trimerization” of carbon atoms between
layers in a way that one-dimensional patterns are formed, an assumption
which is reasonable regarding how shearing breaks the symmetry.
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in the Defect Line Array

B.1 Structural Optimization

We perform a geometry relaxation to optimize the supercell presented
in Sec. 4.2. Within density functional theory, we use SIESTA together
with a vdw-DF2 functional to reproduce the non-local dispersion energies
[54]. The relaxations considers the following list of parameters: an energy
cut-off 600 Ry, a tolerance for ion forces of 1.9 meV/Å, a smearing of 10
meV, and a k-mesh of 31×31×1. The resulting interlayer distance is 3.66
Å, and the geometry relaxations slightly increase almost all the intralayer
carbon-carbon bond lengths. We collect these lengths on the histogram
of Fig. B.1. We note that the carbon-carbon distances are slightly larger
than the pristine graphene one (1.42 Å, marked in dashed gray line) on
average.

On the lower panel, we present the lattice structure around the defect-
line with colors representing the bond lengths. The largest bond lengths
are next to octagonal defects, and the smallest ones are in the pentagons.
The bonds of the next layer below the defect-line are similar to the ones
away from the defect line in the top layer.
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Figure B.1: Histogram of the bond lenght in the relaxed defect line array ge-
ometry. The relaxed structure around the defect-line is shown below; the colors
correspond to the bond lengths following the color bar of the histogram.
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B.2 Tight-Binding and non-polarizes DFT Elec-
tronic Structure

We study the origin and behavior of the bands by performing electronic
structure calculations for monolayer and bilayer systems. We include cal-
culations of a monolayer with a defect line for comparison purposes. We
use atomistic calculations using tight-binding (TB) and non-polarized den-
sity functional theory (DFT). Regarding the TB method, we consider an
intralayer hopping factor of γ0 = −2.66 eV and an interlayer hopping fac-
tor of γ1 = 0.1γ0, following Ref. [115]. The hopping factors are taken
up to the first intralayer and interlayer nearest neighbor. In addition, we
use supercells to perform these TB and DFT calculations. We are dealing
with an array of defect lines even in the monolayer case.

We present our results in Figure B.2. We note that the bulk bands
with curvature at the K point split, creating a gap that reveals the defect
states on each panel. These defect states have the same origin as discussed
in Chapter 4, being related to zigzag nodes - at zero energy- and Klein
nodes- in the energy range from -1.0 to -1.5 eV at the Γ point. Following
the tight-binding calculations, the defect states cross below the Fermi level
when approaching the K point in the monolayer case. Around the same
point, we note the main differences with the bilayer case that shows four
bands crossing at the gap.

We note a similar band behavior regarding the DFT calculations than
in the TB predictions. In the monolayer case, the defect band around
the Fermi level gets dispersed because electron-electron interactions are
included in DFT. These interactions move the crossing bands around the
K point above the Fermi level for the monolayer case.
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Figure B.2: Electronic structure of a array of defect lines with the length of
L = 24. Comparison between monolayer and bilayer cases calculated with tight-
binding and non-polarized density functional theory.
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B.3 Fermi Surface Defect-line States

We calculate the Lindhard function using the Fermi surfaces obtained
from DFT calculations. Here we focus on the A and B labeled zigzag
spin-up band surfaces with n-doping (1.0e). A finest Brillouin sampling
is required to assess the Fermi surface correctly. Therefore, we set a fine
k-mesh of 101×15×1 using the Monkhorst-pack procedure [133]. Because
the A and B bands are next to the Fermi level, we use a smaller smearing
broadening factor equal to 0.1 meV for these studies.

Figure B.3 shows the energy colormap of the A and B bands in the
rectangular Brillouin zone, where the lighter regions correspond to the
Fermi surfaces showing a quasi-1D-like shape. From left to right, the
edges of the Fermi surfaces connected by arrows are the ones which yield
the largest contribution in the response function of the A and B bands.

Figure B.3: Fermi surface in the whole rectangular Brillouin zone of the A and
B defect bands shown in Fig. 4.13 of the main text.

Doctoral thesis of Raúl Guerrero 91
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Bibliography

;A<

[50] Frank Herman, John P Van Dyke, and Irene B Ortenburger. Im-
proved statistical exchange approximation for inhomogeneous many-
electron systems. Physical Review Letters, 22(16):807, 1969.

[51] Takao Tsuneda. Density Functional Theory in Quantum Chemistry.
Springer Japan, 2014.

[52] J Harris and RO Jones. The surface energy of a bounded electron
gas. Journal of Physics F: Metal Physics, 4(8):1170, 1974.

[53] LJ Sham. Exchange and correlation in density-functional theory.
Physical Review B, 32(6):3876, 1985.
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Bibliography

;A<

of l=3 chiral quasiparticles in trilayer graphene. Nature Physics,
7(12):953, 2011.

[61] Chun Hung Lui, Zhiqiang Li, Zheyuan Chen, Paul V. Klimov,
Louis E. Brus, and Tony F. Heinz. Imaging stacking order in few-
layer graphene. Nano Letters, 11(1):164, 2011.

[62] A C Ferrari, J C Meyer, V Scardaci, C Casiraghi, M Lazzeri,
F Mauri, S Piscanec, D Jiang, K S Novoselov, S Roth, and A K
Geim. Raman spectrum of graphene and graphene layers. Physical
Review Letters, 97(18):187401, 2006.

[63] D Graf, F Molitor, K Ensslin, C Stampfer, A Jungen, C Hierold,
and L Wirtz. Spatially resolved raman spectroscopy of single- and
few-layer graphene. Nano Letters, 7(2):238, 2007.

[64] Jonathan S. Alden, Adam W. Tsen, Pinshane Y. Huang, Robert
Hovden, Lola Brown, Jiwoong Park, David A. Muller, and Paul L.
McEuen. Strain solitons and topological defects in bilayer graphene.
Proceedings of the National Academy of Sciences, 110(28):11256,
2013.

[65] Wenjing Zhang, Jiaxu Yan, Chang-Hsiao Chen, Liu Lei, Jer-Lai
Kuo, Zexiang Shen, and Lain-Jong Li. Molecular adsorption in-
duces the transformation of rhombohedral- to Bernal-stacking order
in trilayer graphene. Nature Communications, 4(1):2074, 2013.

[66] Masato Aoki and Hiroshi Amawashi. Dependence of band structures
on stacking and field in layered graphene. Solid State Communica-
tions, 142(3):123, 2007.

[67] Natalia Cortés, Oscar Negrete, Francisco J. Peña, and Patricio Var-
gas. Gate-tunable charge carrier electrocaloric effect in trilayer
graphene. Scientific Reports, 11(1):1, 2021.

[68] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I.
Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A. K. Geim. Un-
conventional quantum hall effect and berry’s phase of 2π in bilayer
graphene. Nature Physics, 2(3):177, 2006.

Doctoral thesis of Raúl Guerrero 99
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[75] T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia,
A. Ballestar, and A. Setzer. Can doping graphite trigger room tem-
perature superconductivity? evidence for granular high-temperature
superconductivity in water-treated graphite powder. Advanced Ma-
terials, 24(43):5826, 2012.

[76] Minoru Otani, Yoshiteru Takagi, Mikito Koshino, and Susumu
Okada. Phase control of magnetic state of graphite thin films by
electric field. Applied Physics Letters, 96(24):242504, 2010.

[77] G Kresse and J Hafner. Ab initio molecular dynamics for liquid
metals. Physical Review B, 47(1):558, 1993.

100 Doctoral thesis of Raúl Guerrero
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[80] Jǐŕı Klimeš, David R Bowler, and Angelos Michaelides. Van der
Waals density functionals applied to solids. Physical Review B,
83(19):195131, 2011.

[81] E. Mostaani, N.D. Drummond, and Fal’ko. V. I. Quantum Monte
Carlo Calculation of the Binding Energy of Bilayer Graphene. Phys-
ical Review Letters, 115(11):115501, 2015.

[82] Adolfo De Sanctis, Jake D Mehew, Saad Alkhalifa, Freddie With-
ers, Monica F Craciun, and Saverio Russo. Strain-engineering of
twist-angle in graphene/hBN superlattice devices. Nano Letters,
18(12):7919, 2018.

[83] Stefan Wakolbinger, Fabian R Geisenhof, Felix Winterer, Samuel
Palmer, Juri G Crimmann, Kenji Watanabe, Takashi Taniguchi,
Frank Trixler, and R Thomas Weitz. Locally-triggered hydropho-
bic collapse induces global interface self-cleaning in van-der-waals
heterostructures at room-temperature. 2D Materials, 7(3):035002,
2020.

[84] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min
Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi,
and Byung Hee Hong. Large-scale pattern growth of graphene films
for stretchable transparent electrodes. Nature, 457(7230):706, 2009.

[85] Lujun Wang, Simon Zihlmann, Andreas Baumgartner, Jan Over-
beck, Kenji Watanabe, Takashi Taniguchi, Péter Makk, and Chris-
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Javier Junquera, Pablo Ordejón, and Daniel Sánchez-Portal. The
SIESTA method for ab initio order-n materials simulation. Journal
of Physics: Condensed Matter, 14(11):2745, 2002.
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