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Abstract
The N -harmonium boson system, i.e., a completely integrable model of N particles
where both the external confinement and the two-particle interaction are harmonic, is
investigated under the action of sudden time-dependent perturbation. This quench-
like external perturbation of confinement has a quadrupolar space-character. The
time-independent transition probabilities, which characterize the impact of quench
as average occupation numbers, form a complete distribution in the sense of prob-
ability theory. The quench-generated energy shift �E in the correlated many-body
system, and a purity-type Rényi entropy Sα=2 are calculated. Challenging reinterpre-
tations of such an energy change in terms of variables of a classical thermodynamical
system of N (N − 1)/2 pairs are given as well. As in the case of the ground-state cor-
related system, an entropy could characterize a global link to energetically optimized
independent-particle models.

Keywords Correlation · Entropy · Excitations

1 Survey of the unperturbedmodel system

Advances in optical trapping of cold atoms have allowed for an unprecedented manip-
ulation over the size of these quantum systems such that the number N of atoms being
trapped can be [1] precisely specified. In general, operating on quantum many-body
systems provides a way to understanding [2–5]. In particular, for precisely specified
interacting quantum systems, time-dependent tuning (quench) of external harmonic
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confinement seems to be an easily realizable experimental tool to generate dynam-
ics. Remarkably, this external control can be a continuous one, in contrast to the
discrete manipulation of many-body (target) systems with external projectile-impact.
Motivated by the feasibility of experimental access to averages of driven many-body
systems, here we apply a well-analyzed model system to an energetic study. Such a
study on a model system can be considered as a clinical attempt to important energetic
and statistical details, which might generate further efforts.

Following earlier works [6,7], here we take a prototype one-dimensional system
of N identical particles, bosons, with mass m and scalar coordinates xi , where i =
1, 2, .....N . The Hamiltonian, introduced by Heisenberg as the simplest many-body
form to his studies

HN =
N∑

i=1

(
p2i
2m

+ 1

2
m ω2

0 x
2
i

)
− 1

2
�m ω2

0

∑

1≤i≤ j≤N

(xi − x j )
2, (1)

is separable (at � �= 0) and this fact results in independent normal modes. Thus
the basic expectation value in quantum mechanics, the ground-state energy, becomes
additive

E = 1

2
ω1 + (N − 1)

2
ω2 (2)

where, without loss of generality, we take units defined by m = 1 and � = 1.
The frequencies of harmonic normal modes are [6,7] given by ω1 = ω0 and
ω2 = ω0

√
1 − N�. Notice that the stability, for repulsive interparticle interaction

(� > 0), is marked by the N� < 1 condition. There is no such constraint for the
attractive, like in nuclear physics, case.

In the energetically-optimal (e), independent-particle modeling one gets for the
energy

Ee = N

2
ωe = N

2
ω0

√
1 − (N − 1)�, (3)

which is based on the additive structure of Eq. (1) without xi x j product-terms. For
� > 0 the frequency-ordering becomes ω2 < ωe < ω0, and for � < 0 the ordering is
ω2 > ωe > ω0, The difference Ec = (E − Ee) is, according to Wigner [8] pioneering
definition, the correlation energy. It is instructive (c.f., next paragraph) to investigate the
small-coupling (� → 0) limit of the correlation energy. By straightforward expansion
one arrives at, in our units

Ec(� << 1) = −N (N − 1)

2

�2

8
ω0. (4)

The second derivative, in coupling, of the difference of two variational quantity is
negative. This observation on sign is in accord with general statements in quantum
chemistry [9].
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In the second part of this survey, we derive a challenging correspondence for
Ec(� << 1) by using precise result on the one-particle reduced density matrix
[6,7] of the interacting boson system, and its well-known [10,11] formal equivalence
with the statistical density matrix of an ideal system of N oscillators with frequency
ω̄(ω0,�, N ) in thermal equilibrium at temperature T (ω0,�, N ). These oscillators do
not interact with each other, but only with the heat bath. We note that in field-theoretic
attempts to black-hole physics [10,11], the usual association is based on photons.
There, the tracing out of high-energy degrees of freedom yields a low-energy effec-
tive field theory with an accompanying statistical measure of black-body-like entropy
which may be considered as an information loss.

For the equivalent thermodynamical system one has E = F + T SN , where F
is Helmholtz’s free energy, and there is a heat-like product of the temperature T
and the von Neumann entropy SN . These are the variables in the path based on an
ideal canonical-ensemble to thermodynamics [12]. Employing precise [6] mappings
between the formally equivalent one-matrices, we derive to a direct comparison at
weak coupling

T SN ≡ T (ω0,�, N ) SN (ω0,�, N ) = ω0

[
N (N − 1)

2

�2

8

]
, (5)

where common logarithmic factors cancel out in the lhs product. Thus, based on formal
equivalence of two density matrices, we get as partial correspondence T SN = −Ec.

Notice that at N |�| << 1 in the quantum-mechanical case, i.e., at (T /ω0) << 1 in
the thermal case, the thermal part of the Helmholtz free energy, i.e., the part beyond its
zero-point energy (1/2)N ω̄, is exponentially small. To our best knowledge, the above-
derived formal correspondence is novel on a prototype many-body system. Besides,
the quadratic-in-� and the linear-in-number-of-pair characters for the entropy-based
part of the ordered-product in Eq. (5) suggests that the correspondence found might
hold independently of the statistics in weakly correlated systems. We stress that a
proportionality between −Ec and von Neumann entropy SN is known in quantum
chemistry as conjecture [13].

2 Time-dependent perturbation of themodel system

The selected details of the previous Section signal that the complete orthonormal sets
for independent normal modes are oscillator wave functions

φn(ω, u) =
(ω

π

)1/4 1√
2nn! e

− 1
2ωu2 Hn(

√
ωu). (6)

As Eq. (2) shows, there is one mode with ω1 = ω0, and (N − 1) mode with ω2. In
the ideal, i.e., noninteracting (� = 0) case all (N ) modes are equivalent (ω1 = ω2 =
ω0), and that system has zero information-theoretic entropy since its one-matrix is
idempotent. Notice here, that below we will use, to simplify mathematics, a common
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notationω for these frequencies where this is possible and return toω1 andω2 channel-
notation where it is needed to physics.

Themain goal below is to consider the energetic-impact of time-dependent, passing,
perturbations with quadratic space-character in normal coordinates. In fact, the N = 2
case, with such a perturbation of different sign, was already investigated recently in
order to shed light on the sign-dependence of energy shift, a well-known problem in
swift proton and antiproton close-impact on inert helium atom [14]. Besides, that study
addressed few alarming problems inherent in the time-dependent density-functional
method [15] where one works with auxiliary (density-optimal) orbitals instead of
precise independent modes.

In short, with perturbations of finite duration one can calculate the energy shift by
using Dirac’s variation of constant method instead of following in time the evolving
wave functions, since we know the Hamiltonian at the beginning and at the end of
a passing perturbation. Therefore, the energy shift can be calculated in this case by
considering the excitation probabilities as occupation numbers which characterize the
transitions from a given (in our case: ground) state to other elements of the orthonor-
mal complete sets. The sum of these probabilistic occupation numbers satisfy the
normalization condition, as it should be. They weight the mode-energies in summa-
tion over quantum number n to get the total energy change. For a passing (vanishing at
t → ±∞) perturbation the expectation value of the Hamiltonian with evolving states
results in the same [14] time-independent energy change.

Which still remains to our enumeration of tools, is the concretization of the above-
outlined occupation numbers. But an insightful method to that concretization is,
fortunately, also well-documented due to established works [16,17]. In fact, a com-
plete Chapter [18] written by experts is devoted to similar problems. Briefly, that
insightful method rests on an asymptotic analysis via a clever variable-change to map
time-dependence into a stationary scattering problem. In our comparative study we
employ the expressions, deduced for a single oscillator [16–18], to our case with inde-
pendent modes. We stress, however, that we consider N -mode systems with precise
and energetically-optimized modes. In other words, we investigate the interplay of
inherent correlation and external perturbation of quench-character. We believe that
the such-obtained results could contribute to understanding.

The required statistical weights to energy averaging, i.e., the occupation (transition)
probabilities W2n,0 are given by [16–18] the following expression

W2n,0(R) = (2n)!
22n(n!)2

√
1 − R (R)n = 1√

π

�(n + 1/2)

�(n + 1)

√
1 − R (R)n, (7)

which reflects the selection rule for allowed (upward) transition with a quadratic
perturbation. This complete distribution function is normalized since in general

1

(1 − x)η
=

∞∑

n=0

�(n + η)

n! �(η)
xn .
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The reflection coefficient R of the mentioned (auxiliary) scattering problem (see,
above) canbe calculated in the knowledgeof time-details on aquadrupolar perturbation
[14,16].

In our work on a confined boson system we restrict ourselves to the quench-like
situation. In this abrupt case at t = 0, where ω2 ⇒ ω2

f = (ω2 + λω2
0), one gets [17]

for the reflection

R(ω, λ) =
[
ω − ω f

ω + ω f

]2

in terms of initial (ω) and final (ω f ) frequencies which characterize the normal modes
before and after the quench, respectively. It should be noted that the occupation num-
bers in Eq. (7) are now simply the squares of expansion coefficients obtained by
expanding a given stationary ground-state φ0(ω, u) in terms of a complete set of sta-
tionary orthonormal φn(ω f , u) functions. The selection rule mentioned is based on
parity-consideration in expansion.

Thus, for one mode we have ω = ω1 and for the other (N − 1) modes we have
ω = ω2. The parameter λ measures the strength of a sudden-change in external
confinement. It can have both sign, within the stability range [ω2 > −|λ| ω2

0] of
the system. Furthermore, in the stability range, there is a duality in R(λ) under the
mathematical constraint ofω1ω2 = ω2

f . Under such a special constraint, themagnitude
of reflection R can not distinguish between physical cases with corresponding λ > 0
or λ < 0, i.e., up- or down-tuning.

This duality clearly signals, similarly to earlier observations [19,20] with eigen-
values of one-matrices of the unperturbed system, that simple probabilistic measures
alone can not characterize completely the physics. We add here based on Eq. (7)
(mode i , with Ri , where i = 1, 2, e) the so-called purity �(R), a frequently [19]
applied information measure

�(R) =
∞∑

n=0

[W2n,0(R)]2 = (1 − R)
2

π
K (R2) ≤ 1, (8)

where K (x) is the complete elliptic integral of the first kind. An other measure, the so-
called Rényi’s min-entropy [21], is given by Sα=∞(R) = ln[1/(1− R)]. His Sα=2(R)

is related to a purity via � = exp(−S2) in mode i . Such a connection was considered
earlier [22] as a promising path to S2 via an experimental estimation for �. In Rényi’s
classification Sα is a measure of order α of the amount of information. We consider
[23] such mathematical measures as potentially useful ones even to not-scale-less
problems, and return to physics.

Despite the above-mentioned duality in occupation numbers (statistical weights),
the total final energy (E f ) of the system after quench, and thus the �E = (E f − E)

total energy shift, reflect the informations (energy scales) encoded in the Hamiltonian.
Keeping in mind the remark at Eq. (6) on simplification in notations, we continue
with the determination of channel-contributions, denoted by �Ei where i = 1, 2. To
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�E = (�E1 + �E2) we obtain

�E1(ω1, R1) = ω1

∞∑

n=0

(2n)W2n,0(R1) = 1

2
ω1

2R1

1 − Ri
, (9)

�E2(ω2, R2) = (N − 1) ω2

∞∑

n=0

(2n)W2n,0(R2) = (N − 1)

2
ω2

2R2

1 − R2
. (10)

In the knowledge of this precise result, we add the one, denoted by �Ee, which is
based on an energetically (e) pre-optimized independent-particle modeling outlined
in Section I, under the impact of the same change (∼ λω2

0) in external confinement.
We arrive at

�Ee(ωe, Re) = N ωe

∞∑

n=0

(2n)W2n,0(Re) = N

2
ωe

2Re

1 − Re
. (11)

Motivated by Wigner’s definition of correlation energy Ec(�) = [E(�) − Ee(�)]
in the ground-state situation,we are tempted to introduce a quench-related termdefined
as

�Ec(�, λ) = [�E(�, λ) − �Ee(�, λ)]

which also reflects the difference between exact and energetically pre-optimized
independent-particle descriptions. Now we take the perturbative limit where λ → 0
at fixed N , ω0 and (small) �, thus all Ri << 1. To a useful comparison with Eq. (4)
we obtain

�Ec(�, λ) = + N (N − 1)

2

�2 λ2

64
ω0 (12)

The positivity is expected on physical grounds since the quench acts as an external
agent which tries to diminish rigid individual behaviors (i.e., difference in modes)
reflected in Eq. (4) into the direction of a common behavior (i.e., similar, energetically
optimized modes). Precisely, it is this observation which suggests us to make finally
a somewhat cavalier conjecture via �Ec(�, λ) = �[T SN ]. By such a conjecture,
which is motivated by the first law of macroscopic thermodynamics as well, we are
tempted to view �Ec as the result of certain heat-transfer (�Q) to a classical system
of pairs.

3 Summary, remarks and outlook

In this work the N -harmonium boson system, i.e., a completely integrable model
of N particles where both the external confinement and the two-particle interaction
are harmonic, is investigated under the action of a quench-like-in-time perturbation.
This external perturbation of confinement has a quadrupolar space-character. The
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time-independent transition probabilities, which characterize the impact of quench as
average occupation numbers, are used to calculate analytically the energy shift �E
in the many-body system, and the purity-related Rényi’s entropy Sα=2. Challenging
reinterpretations, Eqs. (4) and (12), of characteristic energy differences, in terms of
variables of a classical thermodynamical system of N (N − 1)/2 pairs, are given as
well for both the ground- and exited-state situations.

We stress, as first remark, that our controllable quench is in the external [14] confine-
ment and not in the particle-particle interaction. Their coupling (∼ �) is not changed.
However, controllable quench in that coupling could also be interesting to a general,
detailed understanding. Indeed, such a change is in the focus of efforts in [2–5] at
fixed confinement. Our previous experience [23] with such a quench in the simpler
two-particle (N = 2) harmonic model suggests that a similar connection as the one in
Eq. (12) for the important difference of stationary energies, i.e., quantum mechanical
expectation values, can be found as well. Details due to different quenches, and their
possible interplay, require a dedicated study.

We add for completeness, that the time-dependence (after sudden quenches at
t = 0) of the evolving wave functions and associated time-dependent one-matrices
[23] contain, via their time-dependent eigenvalues, useful probabilistic information on
inherent dynamics in isolated interacting systems. Comparison of the such-obtained
time-dependent entropic measures, say a time-dependent system purity [23], with sta-
tionary quantities characterized in this study based on independent modes, could allow
important [14] conclusions on observable quantities. As a final remark, we note that it
would be interesting to extend the present approach with abrupt confinement-tuning,
to cases with other particle-particle interaction. Say, for the contact interaction which
seems to be realistic and externally tunable (via Feshbach resonances) in Bose systems
of harmonically confined atoms [24,25].

As an outlook we turn to a really theoretical challenge. According to earlier insights
on the black-hole aspect of matter [26], there one also has a large number of unob-
servable internal configurations which may reflect, via an entropy, the end of certain
processes. Our quench-mediated changes, generated in a given closed entangled sys-
tem, in its energy and an associated entropy, already suggest that one may identify
realistic processes, and their modulating role, in that fascinating field as well. For
instance, a process inwhich there is a suddenly captured cloud ofmatterwhich changes
the internal energy of a black-hole. In our modeling this would correspond to situation
with total (t) energy E (t)(ω0,�, N1 + N2) ≡ [E1(ω0,�, N1) + E2(ω0,�, N2)] ≡
F (t) + T (t)S(t)

N . A future analysis of this situation, along the second law of thermo-
dynamics, is desirable. Indeed, the "thermalization process" from subsystem’s T1 and
T2 to a common T is quite challenging.
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