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ABSTRACT
In this work, we present a systematic procedure to build phase diagrams for chemically relevant properties by the use of a semi-supervised
machine learning technique called uncertainty sampling. Concretely, we focus on ground state spin multiplicity and chemical bonding proper-
ties. As a first step, we have obtained single-eutectic-point-containing solid–liquid systems that have been suitable for contrasting the validity
of this approach. Once this was settled, on the one hand, we built magnetic phase diagrams for several Hooke atoms containing a few electrons
(4 and 6) trapped in spheroidal harmonic potentials. Changing the parameters of the confinement potential, such as curvature and anisotropy,
and interelectronic interaction strength, we have been able to obtain and rationalize magnetic phase transitions flipping the ground state spin
multiplicity from singlet (nonmagnetic) to triplet (magnetic) states. On the other hand, Bader’s analysis is performed upon helium dimers
confined by spherical harmonic potentials. Covalency is studied using descriptors as the sign for Δρ(rC) and H(rC), and the dependency on
the degrees of freedom of the system is studied, i.e., potential curvature ω2 and interatomic distance R. As a result, we have observed that there
may exist a covalent bond between He atoms for short enough distances and strong enough confinement. This machine learning procedure
could, in principle, be applied to the study of other chemically relevant properties involving phase diagrams, saving a lot of computational
resources.
© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088784

I. INTRODUCTION

Phase diagrams are graphical representations of functions f
such that, given a state vector x ∈ Rn, they tell us the phase C of such
state being the latter a categorical variable ( f : x ∈ Rn

→ C). These
diagrams are extensively used in physical, chemical, and material
sciences to understand how the properties of macroscopic systems
change with external parameters, such as pressure, temperature,
composition, etc. Hence, it is interesting to have a procedure to
obtain the graphical representations of such f functions.

The brute force approach to obtain the phase diagrams goes
as follows: the parameter space is uniformly discretized such that a
grid composed of state points is obtained. Upon these state points,
experiments or simulations can be carried out to determine the
phase (label) of each point, hence, obtaining a phase diagram of the
desired region. Even though this approach is conceptually simple
and straightforward to automatize, it also carries three main draw-
backs. First, since all points in the grid must be labeled, the process

is expensive in terms of time and resources. Second, the lack of
efficiency since there is no feedback coming from already obtained
results. Finally, there are cases in which assigning a phase to a given
point in the phase diagram is not possible and alternative methods
must be employed.1

As it has also been done in many fields of chemical
sciences,2–14 in order to improve the efficiency of sampling the
discretized parameter space, machine learning techniques have
been employed such that phase boundaries have been accurately
described while evaluating fewer points than in the straightforward
approach.15,16

In this work, we have focused our attention to some spe-
cific machine learning techniques, i.e., semi-supervised learning and
uncertainty sampling, and have used first principle calculations in
order to label each sampled point. Contrary to previous studies,
instead of applying the Label Propagation (LP) algorithm,17 we
employ Random Forests (RF) to compute the required uncertain-
ties. The main advantage of this approach is that, contrary to LP,

AIP Advances 12, 075206 (2022); doi: 10.1063/5.0088784 12, 075206-1

© Author(s) 2022

D
ow

nloaded from
 http://pubs.aip.org/aip/adv/article-pdf/doi/10.1063/5.0088784/16465501/075206_1_online.pdf

https://scitation.org/journal/adv
https://doi.org/10.1063/5.0088784
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0088784
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0088784&domain=pdf&date_stamp=2022-July-5
https://doi.org/10.1063/5.0088784
https://orcid.org/0000-0003-4857-6685
https://orcid.org/0000-0002-2711-3588
https://orcid.org/0000-0002-6342-0649
mailto:jonmattin.matxain@ehu.eus
https://doi.org/10.1063/5.0088784


AIP Advances ARTICLE scitation.org/journal/adv

neither a large inverse matrix nor an iterated Markov chain pro-
cess should be computed. Hence, information can be propagated to
denser grids in a faster way. As a benchmark, we have tested the effi-
ciency of this method on ideal solid–liquid systems that contain a
single eutectic point and a total number of four phases appear in the
neighborhood of such point. In order to extend this procedure to
other chemical properties involving phase diagrams, we have used
two simple systems: a few electron Hooke atoms for studying ground
state magnetic properties and He dimers for studying covalency.

For the former, we build ground state spin multiplicity phase
diagrams for 4 and 6 electrons in a ellipsoidal Hooke atom tak-
ing as parameters the confinement potential curvatures and the
electron–electron interaction screening parameter (ω2

x, ω2
y , ω2

z , λ) in
R4
+ expressed as in Hamiltonian 1. As far as noble gas molecules are

concerned, previous computational works in the field of such dimers
confined in nanoclusters and nanotubes have reported internuclear
distances in the range of [1.265, 2.447]Å for He2 dimers.18–26 All
these works report shorter interatomic distances between the noble
gas atoms. For some of these systems, bond descriptors as in Bader’s
theory, such as Laplacian of the density at the Bond Critical Point
(BCP) Δρ(rC) and total energy density at the BCP H(rC), are nega-
tive; this insinuates there may be covalent bonds between noble gas
atoms under these conditions.22–24,26 In the present work, we study
how covalency descriptors evaluated at the BCP evolve by varying
the spherical confinement strength ω2 as well as the internuclear
distance R, both parameters contained in Hamiltonian 2,

H =
N

∑
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2
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The aim of this work has, therefore, been to set up a proce-
dure in which chemically relevant properties, such as ground state
spin multiplicity and covalency in chemical bonding, change char-
acter induced by external confinement potentials. This procedure
could be systematically generalized to the study of other chemi-
cally relevant properties involving any type of phase diagram. The
obtained results indicate that this process enables to obtain sharper
boundaries between the phases without the need of using any hyper-
parameter. All of these, without losing the efficiency of uncertainty
sampling, which, in our case, has enabled us to build proper phase
diagrams using less than 2% of the points with respect to naive grid
computations.

II. COMPUTATIONAL METHODS
A. Thermodynamic model for eutectic composition

As it is known, when two substances are mixed together their
thermodynamical properties, such as vapor pressure, melting and
boiling temperatures, specific volume, etc., change depending on the

activities of both substances. A mixture is considered to be ideal if
the interactions between the molecules of both substances interact
among them with similar interactions (in nature and strength) such
that the difference in potential energies effects can be neglected. As
a matter of fact, for ideal mixtures, the activities of each component
correspond directly to their molar fraction.

We shall now consider a two component liquid–solid sys-
tem at constant pressure, which has the following properties and
approximations:

● Both components are ideally miscible in the liquid phase.
● Both components are ideally immiscible in the solid phase

(they form a heterogeneous solid).
● Fusion enthalpies do not depend strongly on temperature.

Bearing these properties in mind, one shall derive a relation that
determines the molar fraction of each component xi as a function
of their respective fusion temperatures T fi , fusion enthalpy ΔHf ,i,
and system temperature T for each component as in the following
equation:

ln xi =
ΔH f ,i

R
(

1
T f ,i
−

1
T
),

2

∑

i=1
xi = 1. (3)

The nonlinear system 3 can be solved using previously stud-
ied methods27 such that the eutectic composition vector xeu and
the eutectic temperature Teu are obtained. Now, for two compo-
nent systems, once we obtain (xeu, Teu), we shall label any point in
the (x1, T) plane using the eutectic point coordinates as well as the
melting curves given by Eq. (3), as shown in Fig. 1.

Thus, by using this rather simple scheme, we have been able
to test the uncertainty sampling method on the systems that are of
similar nature as the ones reported in previous studies15,16 and found
out that it is suitable.

B. Quantum chemical methods
1. Hooke atoms

Hooke atoms can be described by a general one body Hamilto-
nian that reads as in (1). Even if there are many works in the bib-
liography that study electronic structure problems based on Hamil-
tonians as (1),28 nowadays it is still an interesting topic that can be

FIG. 1. Decision tree used for labeling each point in the (x1, T) plane using
eutectic point coordinates and melting curves.
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related to confined quantum systems,29,30 electron correlation,31,32

and many body theory.33,34 As far as the symmetry of the Hamilto-
nian (2) is concerned, the diagonalizable matrix W contains infor-
mation of the external (confinement) potential; depending on the
degeneracy of this matrix g, the system may be spherical (g = 3),
spheroidal (g = 2), or tri-axial ellipsoidal (g = 1).

In this work, we have studied the case where the matrix W
is diagonal with eigenvalues ω2

q that may have three- or twofold
degeneracy and the two body interaction is driven by a screened
Coulomb potential where λ ≥ 0. The necessary two body integrals
were calculated and coded in GAMESS US in previous studies real-
ized in our team.35 From a previous study on spherical Hookean
atoms,36 we have been able to obtain some optimized even tempered
basis sets for describing systems containing even number electrons
(n = 2, 4, 6, 8, 10) with curvature ω2

= 0.25 at MRPT2(n,13) level;
after careful inspection, we reached the conclusion that the best
compromise between size and accuracy was given by the basis set
obtained for 6 electron system in the singlet spin state, namely,
ETBS-6S. Based on this result, in this work, we have used these basis
functions; nevertheless, we have decided to reduce the active space
down to 10 active orbitals. By doing so, electronic structure compu-
tations are faster and the error for ω2

= 0.25 with respect to the large
active space is in the order of 1 × 10−3 hartree for absolute energies
while as for the singlet–triplet gap is of the order of 8 × 10−2 eV.
Either way, for larger or smaller active spaces, the absolute error
with respect to reference values is of the order of 1 × 10−2 hartree,
while the singlet–triplet energy gap is of the order of 5 × 10−2 eV.
Energies for both active spaces and reference values are summarized
in Table I.

2. He dimers
Several authors have studied confined chemically interesting

systems as atoms and molecules by means of harmonic potentials.40

In this study, we have considered systems composed by two He
atoms (Z = 2) with net null charge and singlet spin state. In each
case, the nuclei are treated as in the Born–Oppenheimer approxima-
tion and they are centered in positions R1 and R2 with respect to the
origin. Besides, we include a quadratic potential to model the con-
finement effects; this potential is represented by a diagonal quadratic
form W with elements ω2. The electronic Hamiltonian for such sys-
tem can be written in atomic units as in Eq. (2), where lower case
letters refer to electrons and capital letters refer to nuclei. As a short-
cut, we may name R = ∣R1 − R2∣ as the internuclear distance since
this is the most chemically relevant coordinate. In a first approxima-
tion, we have computed ground state singlet (S = 0) Hartree–Fock
wave functions augmented correlation consistent triple zeta

basis functions aug-cc-pVTZ for spherical harmonic potentials
(ω2

x = ω2
y = ω2

z) in a given point in the feature space (ω2, R). Zoom-
ing into areas of interest, we have also performed CASSCF(4,10)/6-
31++G∗∗ calculations in order to gain a deeper understanding of
these systems. Electronic structure calculations have been carried
out using GAMESS-US software. Once we have obtained the wave-
function, we perform Bader’s analysis upon the electronic density
using AIMPAC software. The main features we extract from this
analysis are the Laplacian of the electron density at the bond critical
point Δρ(rC), kinetic energy density at the bond critical point G(rC),
potential energy density at the bond critical point V(rC), and total
energy density at the bond critical point H(rC).

C. Semi-supervised learning techniques
Semi-supervised learning techniques are halfway between

supervised and unsupervised techniques and are employed to
obtain information connecting the feature set X = {x1, . . . , xn} with
the label set Y = {y1, . . . , yn} despite the small number of avail-
able data.41–43 In the context of phase diagram creation, once
the parameter space has been discretized as a grid X, we may
split these grid points into two set: a labeled set ℒ (for which
the phase is known) and an unlabeled set 𝒰 (for which the
phase is not known). Namely, the labeled set ℒ is composed by
points formed as an ordered Cartesian products (x1, y1), . . . , (xl, yl),
where YL = {y1, . . . , yl} ∈ {1, . . . , C} is the set of possible labels
(categories). Then, we also have the unlabeled set 𝒰 com-
posed by (xl+1, yl+1), . . . , (xl+u, yl+u) points where the labels YU
= {yl+1, . . . , yl+u} ∈ {1, . . . , C} are unknown and the cardinality of
this set is much larger than the former one, l≪ u. By doing so,
we shall know where to map the next experiment to obtain phase
diagrams as it has been done in very recent studies.15,16

Zu and Lafferty developed an algorithm named “Label Propa-
gation Algorithm”17 in which information from labeled data is prop-
agated to unlabeled data in a stochastic process by means of Markov
chains. Here, one defines a graph containing all data—labeled and
unlabeled—and defines the connection strength (weight) by pairs as
in (4). We may observe the closer two points are, the stronger they
interact and the interaction also depends on a hyper-parameter σ
that can be tuned. As it was proved in Ref. 17, the Markov process
5 has a unique solution regardless the initial condition for Y and is
given by 6,

wij = exp
⎛

⎝

−

∑
D
d=1(x

(d)
i − x(d)j )

2

σ2

⎞

⎠

, (4)

TABLE I. Energies in atomic units and energy gaps ΔT−S in eV for singlet and triplet states for spherical Hooke atoms
composed by 4 and 6 electrons with λ = 0.0 and ω2

= 0.25.28,37–39

MRPT2(n,10)/ETBS-6S MRPT2(n,13)/ETBS-6S References

n Singlet Triplet ΔT−S Singlet Triplet ΔT−S Singlet Triplet ΔT−S

4 6.3912 6.3529 −1.04 6.39010 6.3520 −1.04 6.3855 6.3488 −1.00
6 12.0846 12.0479 −1.00 12.0828 12.0461 −1.00 12.0663 12.0313 −0.95
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(n)

, (5)

Yu = (I − T̃ uu)
−1T̃ulYl. (6)

The main drawback of this method is the fact that, for dense
or large enough grids, the computation of the matrix (I − T̃uu )

−1 is
computationally expensive or, in the worst case, the matrix is sin-
gular. This problem may be sidestepped by, instead of using the
closed formula (6), taking an initial label vector and iterating it as
in Eq. (5). Nevertheless, since convergence is reached after several
iterations and large matrices are still involved, this algorithm is still
costly for dense enough grids and this deficiency is more remark-
able as the number of dimensions of the feature space increases.
As an alternative, other, rather cheap, classifiers, such as Random
Forests (RF), can be used to solve the problem. Since RF do not
have over fitting problems, using a large enough number of trees,
the method is universal for all systems studied in this work. There-
fore, the initialization set is employed to train a RF model that will
label the unlabeled points assigning them to each category with
a given probability, that is, an equivalent approach as using label
propagation.

Once information is propagated to all unlabeled points, we
must compute the labeling uncertainty in order to select the next
point to be computed. Since we obtain the probability for each point
x ∈ 𝒰 to belong to each phase P(C∣x) using RF, we compute the
uncertainty of such point u(x) using Shannon entropy44 as in Eq. (7)
where the sum is performed upon all categories (phases),

u(x) = −∑
C

P(C∣x) log P(C∣x). (7)

D. Work procedure and calculation setup
In this work, we have been following some steps repeatedly to

obtain our solid–liquid, magnetic, and covalency phase diagrams; let
us first enumerate them and give a further explanation about them
(see also Fig. 2):

1. Create a suitable grid in the parameter space so that all
categories will, in principle, be represented.

2. Select some initialization points in the grid.
3. Carry out sorting tree or required electronic structure calcu-

lations upon the initialization points and assign them a label
corresponding to the output of the calculations.

4. Propagate the information from already computed grid points
using trained RF model to the rest to obtain the guessed labels.

5. Compute Shannon’s entropy and select the maximum entropy
point to carry the computations in step 3 and repeat until
maximum number of calculations is reached.

Step 1: We need all classes phases (in our case, all four phases
concerning the solid–liquid system, at least a ground state singlet
and a ground state triplet or a covalent and non-covalent bond)
in order to start the sampling procedure; thus, we must build a
grid in the parameter space of each system suitable for this. For
the solid–liquid diagram, the composition x is in the range [0,1]

FIG. 2. Flowchart for the general procedure for phase diagram construction.

and the temperature T is in the range [0.25 ×min(T1, T2), 1.25
×max(T1, T2)] with a total number of 50 000 grid points. In the
case of Hooke atoms, the confinement strength parameters ω2

x,y, ω2
z

have been taken in the range [0.20, 0.30] since optimized basis set
for spherical systems with ω2

= 0.25 was available36 and the screen-
ing parameter λ was taken in the range [0.05, 2.55] with the aim of
representing slightly and strongly screened systems accounting for a
total number of 3375 grid points. Finally, in relation to He dimers,
broad ranges in interatomic distance R ∈ [1.0, 4.0] Å and confine-
ment strength ω2

∈ [0.0, 4.0] were employed, giving rise to a total
number of 250 000 grid points.

Step 2: We select the initialization points in the grid built in
step 1. For the solid–liquid system, a total number of 50 uniform
distributed points where selected taking the Cartesian product of
5 equidistant points for x and 10 equidistant points for T. With
respect to Hooke atoms, by hypothesis, the edges of the parameter
grid would contain all different phases; therefore, since three para-
meters were employed, the initialization set was obtained using the
extreme 8 points. Meanwhile, for the He dimers, the extrema of the
grid were considered along with 100 points selected at random.

Step 3: Once a given point in the parameter grid is selected
(either the initialization ones or a new one coming from step 5), we
carry out sorting tree or required electronic structure calculations in
GAMESS US and we assign a label to this point depending on the
result obtained by the sorting tree, the sign of the energy gap ΔT−S,
or density Laplacian or total energy density.

Step 4: We propagate the label information from the data
points to the unlabeled ones using 200 trees to form the RF.

Step 5: With the information from the previous step, we com-
pute Shannon’s entropy to all guessed points in the grid and select
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the one with the highest score. We take this point out of the unla-
beled points pool 𝒰 , perform electronic structure calculations as in
step 3, and update the labeled database ℒ .

III. RESULTS AND DISCUSSION
A. Solid –liquid phase diagrams with a single
eutectic point

In a first step, in order to test the validity and usefulness
of this approach, we have studied several solid–liquid phase dia-
grams for systems that include a single eutectic point considering
the idealizations and approximations stated in Sec. II. Thus, we
have employed the methodology presented in Ref. 27 and have cho-
sen some examples involving binary mixtures: Ag/Si, KNO3/LiNO3,
and K2SO4/Li2SO4. The required data were obtained from the same
source.27

For all cases, as a naive approach, we have computed grids in
the (x1, T) plane taking 100 points for x1 in the [0, 1] range and
500 points for T in the [0.25 ×min(Tf ,1, Tf ,2), 1.25 ×max(Tf ,1, Tf ,2)]

range such that the total number of grid points was 50 000. For the
initialization set, we have taken another grid with 5 points for x1
and 10 points for T in the same ranges as the former ones; then,
we have sampled other 100 points using uncertainty sampling that
gives a total number of 150 sampled points. In other words, in order
to build a rather accurate phase diagram, we have used a 0.3% of
points compared to the naive all grid approach. The obtained phase
diagrams are represented in Figs. 3–5.

FIG. 3. Ag/Si solid–liquid phase diagram. Green is the heterogeneous solid phase
α + β, dark blue is the homogeneous ideal liquid mixture L, light blue is β + L, and
purple is α + L; the white dots represent the sampled points.

FIG. 4. KNO3/LiNO3 solid–liquid phase diagram. Green is the heterogeneous solid
phase α + β, dark blue is the homogeneous ideal liquid mixture L, light blue is
β + L, and purple is α + L; the white dots represent the sampled points.

As it has been observed in all three studied cases, the uncer-
tainty sampling method samples more thoroughly the region where
the larger number of phases coexist, i.e., near the eutectic
point. Finding eutectic compositions is crucial for some
pharmacological45–47 and green chemistry48,49 applications. There-
fore, this method shall be interesting for discovering novel eutectic
formulations.

B. Ground state spin multiplicity for Hooke atoms
For these systems, we have employed a grid in the (λ, ω2

xy, ω2
z)

space with 15 points for each dimension in the domain [0.05, 2.55]
× [0.20, 0.30] × [0.20, 0.30], therefore a total number of 3375 grid
points. In this case, we have taken just 58 points in the grid to be
computed, which is the 1.72% of all points.

We shall start our discussion by describing the obtained ground
state spin multiplicity phase diagrams. In Fig. 6, we find magnetic
phase diagrams for 4 (left hand side) and 6 (right hand side) electron
systems. The vertical axis represents the electron–electron interac-
tion screening parameter λ, while the horizontal one represents the
ratio between the confinement along the x/y axis and the z axis

ε =
ω2

x,y
ω2

z
. We shall proceed to analyze the obtained diagrams.

On the one hand, for 4 electron systems, one shall observe that
singlets (nonmagnetic states labeled in red) appear in regions for
which ω2

x,y is large, ω2
z is small, and, for some (ω2

xy, ω2
z) points close

to the boundary, they are more abundant as λ increases. Under the
anisotropic potential induced by the fact that ωx,y > ωz , the one body
energies along the z axis are smaller than in the x, y plane and in
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FIG. 5. K2SO4/Li2SO4 solid–liquid phase diagram. Green is the heterogeneous
solid phase α + β, dark blue is the homogeneous ideal liquid mixture L, light blue
is β + L, and purple is α + L; the white dots represent the sampled points.

virtue of the Aufbau principle, the former will be occupied first giv-
ing rise to singlet states. Given an anisotropic enough potential for
which the ground state is still a triplet (as in the spherical case), we
may still obtain a transition to the singlet state by increasing the
screening potential λ as by doing so we are turning off the exchange
interaction that does not compensate the high spin state and one
body interactions will impose singlet spin states.

On the other hand, for 6 electron systems, it is obvious that
some features of the phase diagram differ from the one obtained
for the 4 electron system. First, the ground state spin multiplicity
behaves in the opposite way as compared to the case for 4 electrons;
in this case, singlet states appear for small values for ω2

x,y curvatures
and, at the same time, large values for ω2

z . In addition, the behavior
with respect to the electron interaction screening parameter λ is the
same as in the previous case, the higher it is [for a couple of suitable
curvatures (ω2

x,y < ω2
z)], the most likely it is for that potential to give

rise to a singlet spin multiplicity for the electronic ground state.
In both cases, for large values of the Yukawa-like screening

parameter in the electron–electron interaction λ, quantum exchange
interaction becomes weaker and both systems show ground state
spin multiplicity transition in the close neighborhood of the verti-
cal line ε = 1. In addition, in the low λ values regime where exchange
interaction are not negligible, in both cases, we may observe that spin
transition does not happen as soon as we distort the spherical sym-
metry of the potential; we observe there is an inertia to hold the high
spin state (triplet S = 1 against singlet S = 0). This is a natural con-
sequence of exchange interaction as it lowers the total energy of the

FIG. 6. Sampled points in the (ε, λ) plane for 4 (top) and 6 (bottom) electron
systems. Red indicates singlet ground spin state, while blue indicates triplet ground
spin state.

system via same spin particles; thus, the more particles with same
spin, the more stable the system becomes.

Taking it up to the non-interacting electron system (λ→∞),
the Hamiltonian is only composed by one-particle operators for
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which the orbital energy eigenvalues in atomic units are given by
8. In this case, depending on the asymmetry parameter ε, which is
defined as the ratio between the axial confinement parameters ω2

x,y

and ω2
z , the energy of the p orbitals will split as shown in Fig. 7. Tak-

ing into account the Pauli’s exclusion principle, we may fit up to a
couple of electrons in each orbital, and, according to Hund’s rule, in
case of degeneracy, they will occupy degenerate orbitals such that
total spin is maximized. Keeping these two many-body quantum
rules in mind, it is easy to see that the ground state spin multiplicity
does not only depend on the confinement potential but also in the
number of electrons,

εnx ,ny ,nz = ωx,y(nx + ny + 1) + ωz(nz +
1
2
). (8)

When the confinement is sharper along the z direction than in
the x and y directions (ω2

z > ω2
x,y) (this is sphericity parameter ε < 1),

the degeneracy of the p orbital splits into two main groups, the pz
orbital (higher in energy) and the plane composed by the still degen-
erate px and py (lower in energy). Therefore, when we distort the
spherical symmetry in this way, nothing essential happens to 4 elec-
tron systems as far as ground state spin multiplicity is concerned.
However, for six electron systems, as ε gets smaller, the energy of the
pz orbital goes higher and we obtain a point in which all px and py
orbitals are doubly occupied while pz orbital is empty. If we are to
fit all 6 electrons in this potential, we shall see that the ground state
spin multiplicity is the singlet; thus, magnetic properties are altered
in the process of comprising the sphere.

On the contrary, instead of compressing the sphere if we stretch
it along the z axis, we obtain a smaller curvature along this direc-
tion (ω2

z < ω2
x,y) and the sphericity parameter becomes ε > 1. Once

again, according to the one-body energy formula (8), this implies
that the orbital energies, degenerating in the spherical case, split into
two branches: the pz orbital (this time lower in energy) and the plane
composed by the degenerating px and py (higher in energy). Apply-
ing the occupancy rules, one shall see that, for 4 electron systems,
the ground state multiplicity is the singlet (all paired electrons),
while, for 6 electron systems, there is no change as long as ground
state multiplicity is concerned. As opposed to the previous case, the

FIG. 7. Schematic atomic orbital energy splitting along asymmetry parameter ε.

magnetic properties for the 4 electron system alter along this trans-
formation, while the 6 electron system is able to keep its magnetic
properties.

C. Detecting covalent bonding in spherically
confined He2 systems

In a first step, we have built the covalency phase diagrams
shown in Fig. 8 at HF/aug-cc-pVTZ level using as label the sign (red
for negative and blue for positive) of the Laplacian of the density
at the bond critical point Δρ(rC) and the total energy density at the
bond critical point H(rC). In total, we have computed 500 × 500 grid
points in the [0.10, 4.00] × [1.00, 4.00] interval in the (ω2, R) plane
taking 104 points for initialization and 200 more for building the
diagram, therefore, using 0.1216% of all grid points.

In these diagrams, we represent the confinement curvature ω2

in the vertical axis and the interatomic distance R in the horizontal
one. As it can be seen for Δρ(rC), negative values are obtained in
regions where the interatomic distance lays around 1.00 and 1.52 Å
and confinement curvatures larger than 2.00. On the other hand,
as far as H(rC) is concerned, we have found negative values for all
interatomic distances shorter than 1.50 Å. Beyond this threshold, we
may observe that, for large enough harmonic confinement curva-
ture, the sign of the total energy density at the BCP switches from
positive to negative; the curvature required to make this switch hap-
pen is larger as we increase the interatomic distance between the He
atoms.

At this level of theory, for the range in which there are cova-
lency indicators, our model comes in terms with previous studies
based on all-atom calculations on similar systems. For example,
for He2@C20H20, the He–He distance is reported to be 1.265Å and
positive value for Δρ(rC)

18 is compatible with our calculations for
ω2
< 2.00. Also for interatomic distances smaller than 1.60Å, for

He2@B12N12 and He2@B16N16 systems, 1.306 Å and 1.456 Å dis-
tances are reported.24 For these two systems, positive Δρ(rC) are
reported, while total energy density is negative in the former (around
1 × 10−2 a.u.) and zero in the latter that comes along with our results.
For larger distances, in a recent study, 1.520 Å and 1.546 Å distances
are reported for He2@C36 and He2@C40, respectively;20 the reported
sign of Δρ(rC) and H(rC) are positive (of the order of 5 × 10−3 a.u.).
Finally, He atom couples confined in B40 cages have been reported

FIG. 8. Sign of total energy density for He2 system computed at HF/aug-cc-pVTZ
level: red is for negative and blue for positive.
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FIG. 9. Covalency indicators for MMPT2(4,8)/aug-cc-pVTZ calculated densities for
spherical confinement. From left to right: Δρ(rC), H(rC), and −G(rC)/V(rC).
Red shades indicate low values, white indicates medium, and blue shades indicate
high values.

to be 1.672 − 1.640 Å apart,25 and Δρ(rC) and H(rC) both turned
out to be positive, which is compatible with our results for small ω2

values.
So far, results concerning the nature of bonding in helium

dimer obtained by our harmonic confinement model seem to agree
with all atom models for several cages. Bearing in mind that real
cages may induce a rather small potential curvature ω2 and the fact
that switch in the sign of H(rC) happens somewhere in the interval
[1.40, 2.60] Å for internuclear distance, we shall focus our attention
to studying this region and include electron-correlation effects in
our calculations. Hence, we have performed CASSCF(4,8)/aug-cc-
pVTZ calculations in this region. To do so, we have taken a 20 × 20
grid points in the (ω2, R) plane with evenly separated points in the
(0.00, 1.00) × (1.40, 2.6) domain. Using these points, we have com-
puted level maps as in Fig. 9. In the three maps, we indicate the
interatomic distance in the horizontal axis, the confinement cur-
vature in the vertical axis, and we have computed level maps for
three Bader descriptors (from left to right), Δρ(rC), H(rC), and
−G(rC)/V(rC), which take values in different range according to
each descriptor labeled in red for low values and in blue for higher
ones. As we can see for Δρ(rC), we have found positive values in this
domain and it increases as the interatomic distance is shorter and it
is not highly dependent on ω2, especially for rather short interatomic
distances. For H(rC), we have found negative values that get smaller
(more negative) as we shorten the internuclear distance and increase
the confinement curvature that is compatible with prior HF calcula-
tions as well as with all-atom calculations in which more negative
values for this parameter appear when the size of the confining cage
is smaller.

IV. CONCLUDING REMARKS
In this work, we have been able to produce computationally

affordable magnetic and covalency phase diagrams for some few
electron Hooke atoms and helium dimers confined in harmonic
potentials, respectively, by sampling the potential feature space by
means of semi-supervised learning technologies. Contrary to the
conventional way of explicitly calculating every point in a grid, we
have taken several initialization points and have propagated their

information using classifiers based on Random Forest, which, com-
pared to label propagation algorithm, has enabled us to study dense
grids. By just calculating the points where information is maximal,
we have been able to reduce the number of required computations
(in our case, the required points for computation were below 2% of
all grid points).

The validation of the method employing RFs was performed
by computing analytical ideal solid–liquid phase diagrams involving
a single eutectic point. As it has been shown, this method samples
all interphases, especially the neighborhood of the eutectic point in
which all four phases coexist.

From previous studies on 4 and 6 electron systems confined in
spherical harmonic potentials with curvature ω2

= 0.25, it is known
that the ground state spin multiplicity of these systems is a triplet
(S = 1) and the first singlet (S = 0) lays around 1 eV above in energy.
If we consider the electrons do not interact among them, the whole
system behaves as a system composed by n bodies that still must ful-
fill basic many-body systems features as Pauli’s exclusion principle,
Aufbau filling principle, and Hund’s rule. Under these assumptions,
we state that ground state spin multiplicity will be imposed by the
symmetry of the confining potential and, by altering the symme-
try of it, we may obtain ground state multiplicities, either singlet
or triplets, depending on the potential parameters, the strength of
interelectronic interactions, and the number of electrons.

On the other hand, Bader analysis performed upon confined
helium dimers by means of harmonic potential seems to be a rather
good model that captures the main features of all atom approaches.
As far as sign of density Laplacian and total energy density is con-
cerned, all trends have been correctly described by this simple model
that shows that effective confinement potentials can be employed
to capture the essence of complex confined systems and rather sim-
ple models can be employed to describe them. This fact enables the
usage of high theoretical level computations upon these systems.

As a first step for many other applications of chemical interest,
we conclude these machine learning techniques may be useful for
classification and exploration.
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