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Abstract: Temperature is a critical factor that influences the proliferation of pathogens in hosts. One
example of this is the human pathogen Vibrio parahaemolyticus (V. parahaemolyticus) in oysters. Here, a
continuous time model was developed for predicting the growth of Vibrio parahaemolyticus in oysters
under varying ambient temperature. The model was fit and evaluated against data from previous
experiments. Once evaluated, the V. parahaemolyticus dynamics in oysters were estimated at different
post-harvest varying temperature scenarios affected by water and air temperature and different
ice treatment timing. The model performed adequately under varying temperature, reflecting that
(i) increasing temperature, particularly in hot summers, favors a rapid V. parahaemolyticus growth
in oysters, resulting in a very high risk of gastroenteritis in humans after consumption of a serving
of raw oysters, (ii) pathogen inactivation due to day/night oscillations and, more evidently, due
to ice treatments, and (iii) ice treatment is much more effective, limiting the risk of illness when
applied immediately onboard compared to dockside. The model resulted in being a promising
tool for improving the understanding of the V. parahaemolyticus–oyster system and supporting
studies on the public health impact of pathogenic V. parahaemolyticus associated with raw oyster
consumption. Although robust validation of the model predictions is needed, the initial results and
evaluation showed the potential of the model to be easily modified to match similar systems where
the temperature is a critical factor shaping the proliferation of pathogens in hosts.

Keywords: Vibrio; oysters; post-harvest; modeling; temperature; ice treatment

1. Introduction

Oysters, traditionally harvested for thousands of years, are a very important part of
many diets around the world [1] and increasing as aquaculture oyster demands surge [2].
Since 2009, global production has increased from 3 million to over 5.9 million tons [3]. This
is an important factor contributing to the increase in the number of cases of gastroenteritis
caused by the human pathogen Vibrio parahaemolyticus (V. parahaemolyticus) [4,5], a bacteria
endemic to marine environments and present in seafood, including oysters [6]. Among
bivalves, the oyster is the one most-involved in outbreaks because it is traditionally eaten
raw [7,8]. In addition to gastroenteritis, consuming raw oysters with high V. parahaemolyticus
concentrations can lead to primary septicemia in individuals with underlying medical
conditions such as chronic diseases, liver disease, or immune disorders [9].

The first outbreak of V. parahaemolyticus was reported in Osaka (Japan) in 1950, fol-
lowed by a continuing rise of V. parahaemolyticus infections in several countries over the
past few decades [10–13]. In 2020, around half a million V. parahaemolyticus infection cases
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were estimated worldwide [12]. Thus, this pathogen is the leading cause of seafood-related
bacterial illness worldwide [14]. However, it has to be noted that not all V. parahaemolyticus
strains are pathogenic [15].

It is almost impossible to obtain seafood free of these bacteria due to the ubiquitous
nature of Vibrio species in marine and estuarine environments, particularly during warm,
summer months [8,16,17], and the accumulation of Vibrio by oysters through filter-feeding.
Seawater temperature is a major factor determining the concentration, distribution, and
proliferation of V. parahaemolyticus in the coastal environment [16,18]. Higher densities of
V. parahaemolyticus in oysters have been detected in the spring and summer and are posi-
tively correlated with seawater temperature [16,19]. V. parahaemolyticus is rarely detected
during winter, when Vibrio survives in the marine sediment until temperatures rise again to
14 ◦C and it is released to the seawater [2]. Oysters harvested in summer can be associated
with V. parahaemolyticus tissue concentrations approaching 1000 CFU/g, while in winter,
this concentration decreases to less than 10 CFU/g [16,20].

Oysters are harvested, sacked, and left at ambient air temperature on the boat deck
before being dragged to shore. When the air temperature is very high in hot summer
conditions, this exposure can result in an important V. parahaemolyticus growth in oysters
up to 50× 106 cells/g (7.7 log10 CFU/g) [21]. Regarding disease risk, the probability of
illness is relatively low in winter (≤0.00001) for consumption of a serving of 12 oysters
with 100× 103 V. parahaemolyticus cells (∼50 cells/g or 1.7 log10 CFU/g) [22]. However,
in summer, this probability can increase to 0.5 after the consumption of a serving with
100× 106 V. parahaemolyticus cells (∼500× 103 cells/g or 5.7 log10 CFU/g) [22]. In this con-
text, the rising temperature associated with climate change is a factor of concern, due
to the expected influence of prolonged exposure to seawater temperatures supporting
Vibrio proliferation and its impact on V. parahaemolyticus distribution [12,13] and population
dynamics, and eventually the impact on human disease outcomes.

To address this risk, worldwide sanitation programs for shellfish control established
time-to-temperature regulations to limit the growth of V. parahaemolyticus in post-harvest
oysters [23]. An example of this thermal process consists of cooling down the shellfish
harvested for raw consumption to 10 ◦C (50 ºF) within 10, 12, or 36 h when the average
monthly air temperature is higher than 27 ◦C, between 19 and 27 ◦C, respectively [2]. An
absence of refrigeration, non-rapid refrigeration, or breaking the cold chain can lead to
high temperatures during oyster warehousing, leading to the V. parahaemolyticus in vivo
population increase. Resubmersion can also be considered a method for Vibrio control [24].

This effect of temperature on V. parahaemolyticus has been commonly explored by ex-
periments at different constant temperatures [21,25,26]. However, inferring outcomes from
constant-temperature experiments for realistic varying temperature regimes is complex and
problematic [27]. Improving methods in this regard is essential for the understanding of this
and similar temperature-dependent host–pathogen systems while supporting studies about
the public health impact of pathogenic V. parahaemolyticus associated with raw seafood
consumption [23]. Predictive models addressing this for the V. parahaemolyticus–oyster
system are scarce. Fernández-Piquer et al. [28] developed a preliminary stochastic model
at constant temperatures and generated probabilistic distributions and predictions for the
percentage of oysters containing high levels of V. parahaemolyticus for each simulated temper-
ature scenario. Ndraha and Hsiao [17] assessed the risk of V. parahaemolyticus in raw oysters
in Taiwan for different seasons and climate scenarios. Love et al. [29] formulated a simple
iterative temperature-based tow equation model using a temperature threshold of 5.4 ◦C
for estimating bacterial growth/die-off when exposed to temperatures above/below this
refrigeration threshold. For this model, only bacterial growth was temperature-dependent,
and the simulation results were not evaluated against real V. parahaemolyticus data.

In this study, a continuous-time model was developed for predicting the growth of
V. parahaemolyticus in oysters under varying ambient temperatures. Thus, this model is one
step forward for modeling this system: it was constructed by numerically integrating an
ordinary differential equation system with temperature-dependent growth and inactivation
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parameters and a temperature threshold for growth/inactivation of V. parahaemolyticus
adapted from [21]. First, the model was fit, verified, and evaluated against previous ex-
perimental data of V. parahaemolyticus concentrations in Pacific oysters (Crassostrea gigas)
at constant temperatures [21]. Once the model was verified and evaluated, the V. para-
haemolyticus dynamics in oysters were modeled for different post-harvest scenarios under
varying environmental temperatures for winter and summer initial conditions and with
and without dockside ice and onboard ice treatments.

2. Materials and Methods

The predictive model developed in this study for exploring V. parahaemolyticus growth
in oysters under varying environmental temperatures was parameterized with and eval-
uated against experimental data of V. parahaemolyticus concentrations (log10 CFU/g) in
Pacific oysters obtained at different constant temperatures (see the details in [21]). First,
linear and non-parametric regression models were obtained. Second, from the maximum
slopes of these models, the inactivation and growth rates were estimated. Third, using these
rates, our growth model was constructed for predicting the growth of V. parahaemolyticus in
oysters under varying ambient temperatures:

2.1. OLS and LOESS Regression Models for V. parahaemolyticus Growth and
Inactivation Processes

Two models were applied to analyze the relationship of V. parahaemolyticus con-
centration in oysters with time at experimental constant temperatures [21]: the classic
parametric Ordinary Least-Squares regression model (OLS) [30] and the non-parametric
Locally Weighted Least-Squares Regression smoothing technique (LOESS) [31]. As a non-
parametric smoothing technique, the LOESS can model the relationship between Vp and
time more robustly and in a more flexible manner than parametric models such as the
OLS, potentially extracting information (e.g., ecological, biological) from the data that more
restrictive parametric models miss. For V. parahaemolyticus inactivation, the goodness of
fit of the OLS and LOESS regression curves were assessed and compared by analyzing
the Percentage Error (PE); a lower PE means a better prediction accuracy. The PE was
calculated based on the Residual Standard Error (RSE) as follows:

RSE =

√
∑n

i=1(VPCi − V̂PCi)

n
(1)

PE(%) = 100 · RSE
VPC

(2)

where VPCi and V̂PC are, respectively, the observed V. parahaemolyticus and mean V. para-
haemolyticus counts in terms of colony-forming units (log10 CFU/g) and V̂PCi are the
predicted counts by the OLS and LOESS models.

For V. parahaemolyticus growth, the goodness of fit of the LOESS regression curve was
assessed. The obtained curves and the corresponding maximum slopes or growth rates
were compared to the curves obtained by model fitting in [21]. The PE was also calculated
here based on the residual standard error.

Data analysis was conducted with the R statistical software (Version 4.3.0) (R Core
Team, 2018). The “ggplot2” package was used to generate the plots.

2.2. Growth and Inactivation Rates for the Model

For V. parahaemolyticus growth, the classic square root model [32] was applied to
describe the growth rate (r) as a function of temperature as follows:

√
r = a · (T − Tmin). (3)
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The model shows a linear relationship between temperature (T) and the
√

r, where the
regression coefficient is represented by a and Tmin is a hypothetical reference or threshold
temperature between the growth and inactivation of V. parahaemolyticus.

The Arrhenius equation was used for the estimation of the kinetic parameters for the
effect of temperature on bacterial inactivation as follows:

ln r = ln A− Ea

R · T (4)

where r is the reaction rate coefficient or constant, T is the absolute temperature, Ea is the
activation energy (i.e., the minimum amount of energy that must be provided to result in a
reaction), R is the universal gas constant, and A is the collision factor.

2.3. The Model
2.3.1. Model Description, Mathematical Theory, and Assumptions

The model developed here is a V. parahaemolyticus growth model for V. parahaemolyticus
in oysters that accounts for the effect of varying temperature on bacterial growth. It is
a continuous-time model, which results from an Ordinary Differential Equation (ODE)
system solved using a Fourth-order Runge–Kutta method (RK4) [33]. The numerical model
for this ODE system was programmed in Matlab.

The model accounts for both bacterial growth and inactivation. Regarding bacterial
growth, the model is an extension of the logistic model [34], which suggests that the rate
of the bacterial population increase is limited. The logistic model combines the ecological
processes of growth and competition. Both processes depend on population density, and
their rates match the mass–action law [34]. Regarding bacterial inactivation, the model is a
linear decreasing model.

2.3.2. Model Equations

V. parahaemolyticus growth and inactivation are described by the system and conditions
defined by Equations (5) and (6), N = N1 + N2 being the total number of V. parahaemolyticus
counts per gram. That is, to have both V. parahaemolyticus growth and inactivation in the
equation system for the variable, the V. parahaemolyticus population in oysters was divided
into two classes, N1 and N2. The following equations represent the change of these two
classes with time:

d N1

d t
= −γ µmax N1 (5)

d N2

d t
= γ µmax m N1 + µmax N2 (1−

m (N1 + N2)

Nmax
), (6)

where µmax is the maximum growth rate of the V. parahaemolyticus population in oysters
(cells/h). Nmax accounts for substrate competition, that is it represents the carrying capacity
or the maximum total counts, corresponding to 5.5 log10 CFU/g for lower temperatures
(T < 23 ◦C), 7.5 log10 CFU/g for medium-high temperatures (23 ◦C ≤ T < 30 ◦C), and
6.75 log10 CFU/g for high temperatures (T ≥ 30 ◦ C), as observed by [21]. The parameter
m can be 1 or 0, depending on the temperature (see Equations (7) and (8)).

From Equations (3) and (4), the following growth rates (µmax) were obtained:

if T > Tmin, µmax = a2 (T − Tmin) and m = 1 (7)

if T ≤ Tmin, µmax = eln A− Ea
R·T and m = 0 (8)

The growth rate µmax and m depend on the temperature (T), representing the growth
or inactivation of V. parahaemolyticus in oysters. That is, when T is higher than 13.37 ◦C, the
V. parahaemolyticus population growth is defined by Equation (7), being m = 1, so that the
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first term in both Equations (5) and (6) is annulled. In these conditions, the model studies
the change in the total V. parahaemolyticus population N = N1 + N2 or bacterial growth by
the second term in Equation (6), µmax N2 (1− m (N1+N2)

Nmax
). If T is lower than or equal to

13.37 ◦C, the growth rate µmax is defined by Equation (8), being m = 0. In these conditions,
the change in the total V. parahaemolyticus population (N = N1 + N2 or inactivation is only
defined by −γ µmax N1 in Equation (5). The rest of the terms are annulled when m = 0 and
the initial number of N2 = 0.

2.3.3. Model Verification and Evaluation

The probability of illness is relatively low (<0.001 percent) for the consumption of
10× 103 cells/g V. parahaemolyticus cells/serving [22], a serving being 12 oysters or ap-
proximately 16 g of meat. This is equivalent to about 50 cells/oyster meat gram, that is
800 cells/serving. These concentrations are equivalent to the winter CFU/g values [16].
However, the probability of disease increases to 50 percent for consumption of about
100× 106 Vp cells/serving. This corresponds to 8000× 103 cells/oyster [22], which are
body burdens of the same order of magnitude as those found in oysters harvested in
summer [16].

Model verification consisted of showing that the model is correct, complete, and
coherent by means of (i) static tests involving a structured examination of the formulas,
algorithms, and code used to implement the model and (ii) dynamic tests, where the
computer program was run under different conditions to ensure that the results produced
were correct, according to the conceptual model, and consistent with the expectations of
the reviewer experts in oyster pathology, V. parahaemolyticus, and population dynamics.

The parameter values used for model verification were those obtained by fitting
the model growth and inactivation rate equations (Equations (5) and (6)). The model
was run for a series of 100/150 h of simulation for growth scenarios and 300/500 h of
simulations for inactivation scenarios. This simulation time span was chosen (i) to detect
pathogen proliferation and inactivation events and (ii) to evaluate the model against growth
and inactivation experimental data along the same time span [21]. Thus, eight realistic
(experimental) scenarios were simulated to verify and evaluate the performance of the
model regarding the dynamics of the V. parahaemolyticus population (Table 1) [21].

Table 1. Simulations for model verification and evaluation against experimental data of V. para-
haemolyticus (Vp) growth at constant temperatures from laboratory tests [21].

Simulation Scenario Expected Results

Simulation 1 T = 18.4 ◦C,
Vp = 3.4 log10 CFU/g

Logistic (extension)
3.4 to 5.5 log10 CFU/g

Simulation 2 T = 20 ◦C,
Vp = 3.4 log10 CFU/g

Logistic (extension)
3.4 to 5.5 log10 CFU/g

Simulation 3 T = 25.7 ◦C,
Vp = 3.4 log10 CFU/g

Logistic (extension)
3.4 to 7.5 log10 CFU/g

Simulation 4 T = 30.4 ◦C,
Vp = 3.4 log10 CFU/g

Logistic (extension)
3.4 to 6.75 log10 CFU/g

Simulation 5 T = 3.6 ◦C,
Vp = 5.8 log10 CFU/g

Linear
5.8 to 3.0 log10 CFU/g

Simulation 6 T = 6.2 ◦C
Vp = 5.5 log10 CFU/g

Linear
5.5 to 4.0 log10 CFU/g

Simulation 7 T = 9.6 ◦C
Vp = 5.1 log10 CFU/g

Linear
5.1 to 3.0 log10 CFU/g

Simulation 8 T = 12.6 ◦C
Vp = 5.3 log10 CFU/g

Linear
5.3 to 4.0 log10 CFU/g
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2.3.4. Modeling Scenarios

Different simulations were run representing both (i) realistic environmental (water
and air) temperatures for regions with hot summers and mild winters, as in Southern
Europe [35] and the Southern U.S. [36], and (ii) realistic oyster processing temperature
scenarios in terms of refrigeration by ice treatment from harvesting to consumption, in
both summer and winter (Simulations 9–17). For each season, the simulated scenarios
were differentiated by the ice treatment applied to oysters: Non-Iced (NI), Dockside Ice
Storage (DS), and Onboard ice storage (OB). In the NI scenario, there is no pre-consumption
treatment in terms of refrigeration. In the DS scenario, ice treatment starts 10 h after
harvesting. In the OB scenario, ice treatment starts onboard right after harvesting.

Four other realistic scenarios of interest were run in order to explore how V. para-
haemolyticus growth would behave in the event of a potential break in the cold chain
(Simulations 18–21) referring to dockside and onboard situations in both winter and sum-
mer. The last simulation represents the V. parahaemolyticus inactivation scenario in the long
term. The characteristics of this set of modeling scenarios are summarized in Table 2.

Table 2. Realistic scenarios for exploring V. parahaemolyticus (Vp) dynamics in oysters under varying
temperature. Ice treatment types as Non-Iced (NI), Dockside (DS) ice treatment, Onboard (OB) ice
treatment, Breaking Cold Chain (BCC), season (summer, winter), Water temperature at harvest (W),
maximum Air temperature (A), and initial Vp number per oyster gram are defined for each scenario.

Simulation Scenario

Simulation 9 NI, Summer, W = 30 ◦C, A = 40 ◦C, Vp = 3 log10 CFU/g
Simulation 10 DS, Summer, W = 30 ◦C, A = 40 ◦C, Vp = 3 log10 CFU/g
Simulation 11 OB, Summer, W = 30 ◦C, A = 40 ◦C, Vp = 3 log10 CFU/g
Simulation 12 NI, Summer, W = 25 ◦C, A = 32 ◦C, Vp = 3 log10 CFU/g
Simulation 13 DS, Summer, W = 25 ◦C, A = 32 ◦C, Vp = 3 log10 CFU/g
Simulation 14 OB, Summer, W = 25 ◦C, A = 32 ◦C, Vp = 3 log10 CFU/g
Simulation 15 NI, Winter, W = 15 ◦C, A = 16 ◦C, Vp = 1 log10 CFU/g
Simulation 16 DS, Winter, W = 15 ◦C, A = 16 ◦C, Vp = 1 log10 CFU/g
Simulation 17 OB, Winter, W = 15 ◦C, A = 16 ◦C, Vp = 1 log10 CFU/g
Simulation 18 DS, BCC Summer, W = 30 ◦C, A = 32 ◦C, Vp = 3 log10 CFU/g
Simulation 19 OB, BCC, Summer, W = 30 ◦C, A = 32 ◦C, Vp = 3 log10 CFU/g
Simulation 20 DS, BCC, Winter, W = 15 ◦C, A = 18 ◦C, Vp = 1 log10 CFU/g
Simulation 21 OB, BCC, Winter, W = 15 ◦C, A = 18 ◦C, Vp = 1 log10 CFU/g
Simulation 22 DS, Summer, W = 25 ◦C, A = 40 ◦C, Vp = 3 log10 CFU/g

2.4. Risk of Illness

The model results are discussed in terms of the probability of illness. For this, the risk
of illness was estimated in Table 3 by adapting previous dose–response model results [22].

Note that U.S. Food and Drug Administration [22], for example, predicts about
2800 V. parahaemolyticus illnesses from oyster consumption each year. Of infected in-
dividuals, approximately 7 cases of gastroenteritis will progress to septicemia each year for
the total population, of which 2 individuals would be from the healthy sub-population and
5 would be from the immunocompromised sub-population [22].
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Table 3. Probability and Risk of Gastroenteritis ((P(G) and R(G), respectively) and Septicemia (P(S)
and R(S), respectively) as a function of V. parahaemolyticus dose per oyster serving (12 oysters) and
per oyster gram in a serving. Adapted and estimated from results of the Beta-Poisson dose–response
model by [22].

CFU per
Serving Log CFU/g P (G) Risk (G) P (S) Risk (S)

104 1.72 1.0 × 10−4 Extremely
low 2.5 × 10−7 Extremely

low

105 2.72 1.0 × 10−3 Very
low 2.5 × 10−6 Extremely

low

106 3.72 1.0 × 10−2 Low 2.5 × 10−5 Extremely
low

107 4.72 1.0 × 10−1 Moderate 2.5 × 10−4 Extremely
low

108 5.72 5.0 × 10−1 High 1.3 × 10−3 Very
low

109 6.72 9.0 × 10−1 Very
high 2.3 × 10−3 Very

low

1010 7.72 9.6 × 10−1 Extremely
high 2.4 × 10−3 Very

low

1011 8.72 9.9 × 10−1 Extremely
high 2.5 × 10−3 Very

low

2.5. Model Limitations

The ODE system here was solved using the RK4 method. RK4 methods are easy to
implement, very stable, and self-starting; that is, unlike multi-step methods, there is no
need to treat the first few steps taken by a single-step integration method as special cases.
However, the primary disadvantages of RK4 methods are (i) the requirement of significantly
more computation time than multi-step methods of comparable accuracy and (ii) the fact
that they do not easily yield good global estimates of the truncation error. However,
for straightforward dynamical systems such as the one investigated by this model, the
advantage of the relative simplicity and ease of use of RK4 methods far outweighs the
disadvantage of their relatively high computational cost.

The growth and inactivation rate for the model was obtained by integrating the
information obtained by regression models exploring the change in V. parahaemolyticus
concentrations with time at only eight constant temperatures. This is a simplification of
reality and may result in a relative underestimation of V. parahaemolyticus growth and,
consequently, is an underestimation of the risk gastroenteritis and septicemia.

Finally, when modeling realistic scenarios, caution is required to interpret the results
in quantitative terms, since the model deals with multiple dimensions, latent covariates,
and data coming from laboratory experiments, which could result in some situations that
are not entirely realistic.

3. Results
3.1. OLS and LOESS Regression Models for V. parahaemolyticus

For V. parahaemolyticus growth, at higher temperatures (18.4 ◦C, 20.0 ◦C, 25.7 ◦C, and
30.4 ◦C), the LOESS model expresses the V. parahaemolyticus growth in a more flexible
manner than that obtained by the Baranyi model [21]. The maximum V. parahaemolyticus
count level beyond which the V. parahaemolyticus counts remain constant in the Baranyi
model [21] is not that clear and constant for the LOESS model here, showing some increasing
patterns beyond that level (Figure 1A–D). Nevertheless, comparing the maximum growth
rates (initial slopes) there were no differences.

For V. parahaemolyticus inactivation, OLS regression models from experiments [21]
showed significant (p < 0.05) negative linear relationships of V. parahaemolyticus counts
(CFU/g) with time for different constant temperatures between 3.6 ◦C and 12.6 ◦C
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(Figure 2A–D, left). The Pearson correlation coefficient squared was high in all cases
(R2 between 0.769 and 0.913). The LOESS regression curves showed that the response
variable V. parahaemolyticus counts exhibited a progressive inactivation (decrease) with time
(Figure 2A–D, right). In particular, for 6.2 ◦C and 12.6 ◦C, this inactivation showed two
phases: the inactivation in the first phase was faster than that in the second phase. These
LOESS curves adapted in a more flexible manner to the data; however, the differences
in the PE were not significant, and inactivation rates can be considered similar. The OLS
and LOESS showed similar PE, 3.36–8.6% and 3.24–8.89%, respectively. Regarding the
goodness of fit, all studied models were well-fitting regression models (PE < 10%).
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Figure 1. LOESS regression model for 18.4 (A), 20.0 (B), 25.7 (C), and 30.4 ◦C (D). Regression curves
are represented by solid lines with smoothing based on 95% confidence intervals (shaded areas).

The results of this comparative analysis between both the OLS and Baranyi models
applied in [21] and the LOESS models here suggested using similar maximum growth rate
values (slopes) for each temperature as in [21] in order to formulate the equations (models)
for the growth and inactivation rates needed for the V. parahaemolyticus growth model in
oysters developed here.

3.2. Growth and Inactivation Rates for the Model

From OLS and LOESS regression models (slopes), maximum growth and inactivation
rates for V. parahaemolyticus were obtained as in [21]. These rates were −0.006, −0.004,
−0.005, −0.003, 0.030, 0.075, 0.095, and 0.282 log10 CFU/h at 3.6, 6.2, 9.6, 12.6, 18.4, 20.0,
25.7, and 30.4 ◦C, respectively. Fitting these rates vs. different temperatures, the following
parameter values for Equations 1 and 2 were obtained: Tmin = 13.37 ◦C, as an intrinsic
property of the Pacific oyster, and a = 0.04, A = 4.81× 10−9, Ea = 4131.2, R = T + 273.5.
Thus, the growth and inactivation rate models as a function of temperature were formulated
as follows:

For V. parahaemolyticus growth, the classic square root model [32] applied to describe
the growth rate is formulated as:

√
r = 0.04 · (T − 13.37). (9)
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The model for growth shows a linear relationship between temperature (T) and the√
r, where the regression coefficient is represented by a and Tmin is a hypothetical reference

or threshold temperature between the growth and inactivation of V. parahaemolyticus. As an
intrinsic property of the Pacific oyster, this temperature is Tmin = 13.37 ◦C [21].

The Arrhenius equation was used for the estimation of the kinetic parameters for the
effect of temperature on bacterial inactivation. The equation used is as follows:

ln r = Ln(4.81 · 10−9 + 4131.2 · ( 1
T + 273.5

)), (10)

where r is the rate constant, T is the absolute temperature, Ea is the activation energy, R is
the universal gas constant, and A is the collision factor.
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Figure 2. OLS (left) and LOESS (right) regression models for 3.6 (A), 6.2 (B), 9.6 (C), and 12.6 ◦C (D).
Regression curves are represented by solid lines with smoothing based on 95% confidence intervals
(shaded areas).
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3.3. Model Verification and Evaluation

Simulations at constant temperatures for model verification and evaluation
(Figures 3 and 4) were run with the initial conditions described in Table 1 and the model
parameter values defined in Sections 2.3.3 and 3.2.

A B

C D

Figure 3. Simulations 1–4 from Table 1 (A–D) for model verification and evaluation using constant
temperatures as in [21].
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Simulation 5: T = 3.6ºC
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Simulation 6: T = 6.2ºC
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Simulation 7: T = 9.6ºC
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Simulation 8: T = 12.6ºC
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Figure 4. Simulations 5–8 from Table 1 (A–D) for model verification and evaluation using constant
temperatures as in inactivation experiments conducted by [21].

For growth scenarios (Simulations 1–4), the results conformed to the expectations
(Table 1) and, thus, were consistent with the real experimental data from [21] using identical
initial conditions and temperatures. Increasing the temperature from Figure 3A–C led to
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more rapid initial growth and eventually to a higher maximum growth rate, conforming to
the expectations (Table 1). Overall, regarding the model evaluation, the model had a very
good fit to the experimental data both for the maximum growth and the V. parahaemolyticus
values at the maximum of the curve (Table 1 and [21]).

The results of model verification for inactivation scenarios conformed to the expectations,
being also consistent with the experimental data from [21]. In this case, the opposite trend to
growth was observed: the lower the temperature, the faster the inactivation of the pathogen
conformed to the expected final values. Regarding model evaluation, the model had a very
good fit to the experimental data for the entire inactivation pattern (Table 1 and [21]).

3.4. Modeling Scenarios under Varying Temperature

Once the model was verified and evaluated against real data [21], a series of theoretical
scenarios was simulated, trying to mirror realistic scenarios. The results obtained for each
scenario tested are described and shown in Table 2 and Figures 5–10.

Very High Risk High Risk
Moderate Risk Low Risk

Figure 5. Simulations 9–11 from Table 2. Summer, (A) Non-Ice (NI), (B) Dockside (DS), and (C) On-
board (OB) post-harvest ice treatment scenarios. Water temperature of 30 ◦C, air temperature of
40 ◦C, and initial V. parahaemolyticus concentration of 1000 CFU/g.
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3.4.1. Simulations 9–11: Summer, Water 30 ◦C, Air (Max) 40 ◦C

In the NI scenario (Simulation 9; Figure 5A, left), the initial V. parahaemolyticus concen-
tration was 1000 CFU/g (3 log10 CFU/g), as found by [16] in summer. The post-harvest air
temperature oscillated between 18 and 40 ◦C, mirroring day/night temperature fluctuations.
Given these varying temperature conditions, a gradual increase in the V. parahaemolyticus
counts was observed with a maximum of 7.5 log10 CFU/g (Simulation 9; Figure 5A, right).
Relatively low temperatures in this simulation led to a slower growth rate. The risk of
illness was high beyond Hour 20 and very high beyond Hour 23.

In the DS scenario (Simulation 10; Figure 5B, left), under the same initial conditions, the
temperature represented a dockside ice treatment some hours after the harvest of the oysters
onboard and transport to the dockside. Here, the ice treatment led to a drastic decrease
in temperature; 4 h were necessary for the oysters at high temperature to reach a low
temperature (7.2 ◦C) [16]. Given these temperature conditions, a gradual V. parahaemolyticus
increase was observed at the beginning of the curve, but the temperatures during cold
storage resulted in a slow inactivation process, reaching a maximum of 6.25 log10 CFU/g
V. parahaemolyticus count (Simulation 10; Figure 5B, right). The risk of illness was high
beyond Hour 10, but thanks to the DS ice treatment, this risk did not continue increasing
and slowly decreased to Hour 50.

Finally, in the OB scenario (Simulation 11; Figure 5C, left), repeating the aforemen-
tioned initial conditions, oysters were stored on ice within two hours after harvesting.
Therefore, considering that oysters stored on ice reached 7.2 ◦C in 4 h, beyond Hour 6 of
this simulation, the temperature was constant. Under these temperature conditions, a slight
increase in the V. parahaemolyticus counts was observed up to Hour 4, after which the counts
started to gradually decrease, with a final total count of 3.5 log10 CFU/g (Simulation 11;
Figure 5C, right). The risk of illness in this scenario was low after the drastic inactivation
caused by the OB ice treatment.

3.4.2. Simulations 12–14, Summer: Water 25 ◦C, Air (Max) 32 ◦C

In the non-ice scenario (Simulation 12; Figure 6A, left), the initial V. parahaemolyticus
concentration was 1000 CFU/g (3 log10 CFU/g), as found by [16] in summer. The post-
harvest air temperature oscillated between 13 and 32 ◦C, mirroring day/night temperature
fluctuations. Given these varying temperature conditions, a gradual increase in V. para-
haemolyticus counts was observed with a maximum of around 6.8 log10 CFU/g (Simulation
12; Figure 6A, right). The minimum temperatures resulted in slower inactivation. The
risk of illness was moderate approximately beyond Hour 25 and high beyond Hour 42,
reaching the very high risk of illness at Hour 49.

The DS scenario (Simulation 13; Figure 6B, left) was performed under the same initial
conditions previously mentioned. In this scenario, the oysters were initially exposed to
temperatures oscillating between 25 and 32 ◦C. Then, the temperature changed drastically
by storing oysters on ice DS for 10 h after harvesting. Then, 4 h were necessary for the
oysters on ice to reach a temperature of 7.2 ◦C, which was maintained to the end of the
simulation. The temperatures during ice storage resulted in a halt in the growth, showing a
final value of 4.1 log10 CFU/g (Simulation 13; Figure 6B, right). The risk of illness increased
to low risk by Hour 5 and stayed, with a descending pattern, in that risk zone until the end
of the simulation.

Referring to the OB scenario (Simulation 14; Figure 6C, left), under identical initial
conditions, after harvesting, it took 2 h for the oysters to be stored on ice. Therefore, after
cooling them down, a constant temperature was maintained from Hour 6 to the end of the
simulation (Hour 50). A small increase of the V. parahaemolyticus counts was observed up
to Hour 4, after which the V. parahaemolyticus counts started to gradually decrease, with a
final total count of 3.1 log10 CFU/g (Simulation 14; Figure 6C, right). The risk of illness in
this simulation was never higher than low risk.
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Very High Risk High Risk
Moderate Risk Low Risk

Figure 6. Simulations 12–14 from Table 2. Summer, (A) Non-Ice (NI), (B) Dockside (DS), and
(C) Onboard (OB) post-harvest ice treatment scenarios. Water temperature of 25 ◦C, air temperature
of 30 ◦C, and initial V. parahaemolyticus concentration of 1000 CFU/g.

3.4.3. Simulations 15–17: Winter, Water 15 ◦C Air (Max) 16 ◦C

First, alluding to the NI scenario (Simulation 15; Figure 7A, left), the initial V. para-
haemolyticus concentration value was 10 CFU/g (3 log10 CFU/g), as found by [16] in winter.
The post-harvest air temperature oscillated between 4 and 16 ◦C. Given these varying
temperature conditions, a gradual decrease in the V. parahaemolyticus concentration was
observed with 0.85 log10 CFU/g at the end of the simulation (Simulation 15; Figure 7A,
right). As the temperature did not exceed 16 ◦C, there was no V. parahaemolyticus growth in
this scenario, so the risk of illness was very low throughout the simulation.

Continuing with the DS scenario (Simulation 16; Figure 7B, left), a similar trend
was observed despite the storage on ice being 10 h after harvesting. A slightly higher
V. parahaemolyticus inactivation than that observed in the NI scenario can be noticed here,
with a final V. parahaemolyticus concentration of 0.8 log10 CFU/g (Simulation 16; Figure 7B,
right). The risk of disease also remained very low throughout the scenario. Finally, with
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regard to the use of ice OB, the decreasing pattern was also similar to the previous two
scenarios; the use of ice after harvesting caused a decrease in the V. parahaemolyticus
counts, reaching 0.76 log10 CFU/g (Simulation 17; Figure 7C, right). The risk of illness also
remained at a very low level during the simulation time.

Very High Risk High Risk
Moderate Risk Low Risk

Figure 7. Simulations 15–17 from Table 2. Winter, (A) Non-Ice (NI), (B) Dockside (DS), and (C) On-
board (OB) post-harvest ice treatment scenarios. Water temperature of 15 ◦C and initial Vp concentra-
tion of 10 CFU/g.

3.4.4. Other Simulations of Interest: Simulations 18–22

In Figure 8, two previously simulated summer scenarios (DS and OB, water 25 ◦C,
air (max) 32 ◦C) were simulated, but in this case, a hypothetical break in the cold chain
occurred. Simulations 18 and 19 (Figure 8A,B, left) reproduced two cold chain break events:
the first event described the oysters moved from a market to the consumer (Hour 24, 32 ◦C),
and the second event, at the end of the simulation, refers to the movement of oysters
from a market to a consumption site (Hour 50, 29 ◦C). The model showed an increase in
the final concentration of the V. parahaemolyticus counts, resulting in V. parahaemolyticus
concentrations of 4.7 log10 CFU/g for the DS scenario (Figure 8A, right) and 3.7 log10
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CFU/g for the OB scenario (Figure 8B, right). The risk of illness was moderate for the DS
scenario and remained low throughout the OB scenario.

Very High Risk High Risk
Moderate Risk Low Risk

Figure 8. Simulations 18–19 from Table 2. Summer, (A) Dockside (DS) and (B) Onboard (OB) post-
harvest ice treatment scenarios, breaking the cold chain. Water temperature of 25 ◦C, a maximum air
temperature of 32 ◦C, and initial Vp concentration of 1000 CFU/g.

Such breaks in cold storage were also tested in winter scenarios (Simulation 20 (DS)
and Simulation 21 (OB), water 15 ◦C, air (max) 18 ◦C). Although a slight rise in temperature
in Hours 24 and 50 was simulated due to those breaks in the cold chain (Figure 9A,B, left),
here, the sudden increase in temperature led to a slight increase in V. parahaemolyticus
that did not compromise the consumer’s health, as the risk of disease remained below the
low-risk zone to the end of the simulation (Figure 9A,B, right).

Finally, Figure 10 (DS in summer, air (max) 40 ◦C) shows how long the use of ice
was necessary to reduce the risk of illness to the low-risk zone for gastroenteritis and
extremely low for septicemia (Table 3). This simulation was the same as Simulation 10,
(Figure 5A, right), but here, applying a more prolonged ice treatment. In this Simulation
22 (Figure 10, left), the oysters were subjected to cooling at 2 ◦C after the first 10 h of
harvesting DS. Referring to [16] and remembering the above, the temperature scenario was
constructed as follows: oysters in ice can take an average of 4 h in summer to descend to
temperatures equal to 7.2 ◦C, which is why a temperature equal to 2 ◦C was reached in
Hour 18. This temperature was maintained until the end of the simulation (Hour 300). A
gradual inactivation was observed in this simulation, ending with a V. parahaemolyticus
concentration of 4.5 log10 CFU/g, implying a decrease from a high-risk zone to a low-
risk zone.



Microorganisms 2023, 11, 1169 16 of 21

Very High Risk High Risk
Moderate Risk Low Risk

Figure 9. Simulations 20–21 from Table 2. Winter, (A) Dockside (DS) and (B) Onboard (OB) post-
harvest ice treatment scenarios, breaking the cold chain. Water temperature of 15 ◦C, a maximum air
temperature of 18 ◦C, and initial V. parahaemolyticus concentration of 10 CFU/g.

Very High Risk High Risk
Moderate Risk Low Risk

Figure 10. Summer Dockside (DS) post-harvest ice treatment scenario, 300 h duration (Table 2).
Water temperature of 30 ◦C,maximum air temperature of Air 40 ◦C, and initial V. parahaemolyticus
concentration of 1000 CFU/g.

4. Discussion

Varying temperatures critically shape the V. parahaemolyticus proliferation dynamics of
oysters [22,37]. However, empirically testing all possible varying temperature scenarios
for a comprehensive study of their effects on V. parahaemolyticus proliferation is unachiev-
able. Modeling V. parahaemolyticus growth under varying temperatures mirroring ambient
temperatures and the effect of ice treatments is crucial to both predict the magnitude of
human illnesses and identify the temperature-related dynamics that are most important,
particularly in the face of environmental change [12,38].
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Our model generalizing from constant to time-varying temperatures was fed by
growth and inactivation rate equations, both being temperature-dependent functions.
These equations were obtained by means of analyzing the slope of the regression models of
the relationship between V. parahaemolyticus counts and time under different constant tem-
peratures obtained in previous experiments [21]. The slope for inactivation was identical
to that obtained by [21] as the same linear model was applied. The slope for the growth
rate (maximum slope) obtained by the non-parametric LOESS regression model was very
similar to that obtained by the Baranyi models in [21]. However, the LOESS curve adapted
in a more flexible manner to the data and has the potential to extract more information from
it than the Baranyi model. That is, the main advantage of using these types of models is the
flexibility and the ease of interpretation of the smoothing function [39]. Although further
biological/ecological analysis of these non-parametric curves is required, non-parametric
curves seem to provide valuable information to study the dynamics of bacterial growth in
oysters in detail.

The model verification results conformed to the expectations of mathematical theory,
behavior, and population dynamics. Moreover, the model evaluation against real exper-
imental data showed a favorable match with particularly well-documented growth and
inactivation dynamics from constant-temperature experiments [21]. The predicted growth
rates were also consistent with other experimental studies [25,26]. Once the model has been
verified and successfully evaluated, it can be considered for simulating different scenarios
with the objective of improving the understanding of the V. parahaemolyticus–oyster system
to support studies about the public health impact of pathogenic V. parahaemolyticus asso-
ciated with raw oyster consumption. However, the risk assessment results of this model
need to be taken with caution until a more robust validation of the model can be performed
using experimental V. parahaemolyticus growth data under varying temperature scenarios.
As far as we know, there are no published data in this regard. In this context, the two
main equations of the model (growth/inactivation) performed adequately and showed a
satisfactory validation at constant temperatures, so that satisfactory model validation is
also expected against V. parahaemolyticus growth data under varying temperatures when
both equations “work” together. This predictive initiative has the purpose of support-
ing identifying options for managing diseases caused by the consumption of any type of
seafood. In addition, the model has also space to be adapted to and provide insights into
other pathogen systems responding to varying temperatures [40].

The model here is able to incorporate varying temperature conditions and day/night
temperature oscillations to reproduce their effect on the temporal dynamics of V. para-
haemolyticus. In this study, the model initial conditions mirrored realistic summer/winter
V. parahaemolyticus concentrations in oysters [16], with summer V. parahaemolyticus counts
well above those in winter, as high-temperatures favor V. parahaemolyticus proliferation,
causing a higher number of bacteria at the time of collection. The model results are dis-
cussed here in terms of realistic air temperatures for zones with hot summers and mild
winters as in Southern Europe [35] and the Southern U.S. [36]. Increasing ambient tem-
perature in summer favors V. parahaemolyticus growth in oysters from 3 log10 CFU/g up
to 7.5 log10 CFU/g, resulting in a very high risk of gastroenteritis after consumption of
a serving (12 oysters), particularly in hot summers reaching 40 ◦C (Simulation 9). The
model was developed and evaluated with real data of pathogenic V. parahaemolyticus to
ultimately predict the risk of illness. However, in a more realistic scenario, pathogenic and
nonpathogenic V. parahaemolyticus can coexist and TDH+ Vibrio spp. growth is slower than
that of TDH- Vibrio spp. [41,42]. Thus, the application of the model here to a more realistic
scenario with TDH- V. parahaemolyticus can overestimate the risk of illness. A future version
of this model will incorporate this characteristic.

The model also reflects pathogen inactivation due to day/night oscillations, partic-
ularly due to ice treatments. Ice treatment is much more effective in limiting the risk of
illness due to its strong control on ambient oyster temperatures and, hence, V. parahaemolyti-
cus proliferation. Ice is especially effective when applied onboard compared to dockside,
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where this treatment can exert strong external constraints on initial V. parahaemolyticus
proliferation following oyster harvest. Although not explicitly considered in our model,
immediate onboard icing may reduce the competitive advantage of V. parahaemolyticus in
oyster-tissue-associated microbial communities, particularly in response to acute changes
in temperature [43]. With onboard icing, the gastroenteritis risk decreases to the low-risk
zone (Simulation 11), corresponding to an extremely low risk for sepsis (Table 3). For
dockside ice treatment, the risk of gastroenteritis after the consumption of a serving of raw
oysters is high and the risk of sepsis is very low (Table 3). These results can be extrapolated
to milder summers (30 ◦C) in terms of dynamic patterns (Simulations 12–14) showing a
rapid increase of V. parahaemolyticus followed by a maximum plateau. However, in this
case, both onboard and dockside ice treatments limit the disease risk to the low-risk zone.

The model results were realistic; consuming raw oysters during hot summer months
is inherently risky and requires onboard icing, while in mild summers, dockside ice can
be an acceptable control measure. The benefit of ice in hot summer scenarios is clear
in our model results, but it should be emphasized that late cooling of oysters may not
sufficiently inactivate the V. parahaemolyticus generated in the first few hours to guarantee
safe consumption. These model results were consistent with oyster industry criteria [22]
and previous experimental studies [44,45].

For mild winter scenarios (Simulations 15–17), the model showed V. parahaemolyticus
counts starting from 1 log10 CFU/g and remaining consistently below the low-risk zone
throughout the tested simulations. The effect of ice on inactivation was slight by Hour 50.
Here, the model detected the tiny variations of each scenario; the final concentration of
V. parahaemolyticus was slightly higher in the non-ice scenario than that observed for the
dockside ice treatment scenario and relatively higher when compared to the onboard
ice treatment scenario. The model also reproduced the effect of the cold chain breaking
in summer (Simulations 18–19), showing an oscillating pattern with V. parahaemolyticus
growth and inactivation events. This effect was negligible in winter (Simulations 20–21).

A longer preservation time is essential to explore the real extent of cooling oysters
down to minimize V. parahaemolyticus concentrations. For this, Simulation 22 was per-
formed with initial conditions as in Simulation 10, but running the model for 300 h (almost
13 days) instead of 50 h (2 days). The model reproduced cooling down dockside, decreasing
the oyster temperatures to 2 ◦C. In this long-term simulation, the risk of gastroenteritis
decreased from high risk to low risk by Hour 300. Even if the prolonged ice treatment effect
seemed to work best for treating oysters for raw consumption, the ice treatment duration
needs to be applied with caution. Very long ice treatments risk the marketability of har-
vested oysters; they may collapse and eventually open, influencing product placement and
sales and limiting their consumption [46]. Consequently, conclusions from this simulation
result need to be balanced in terms of market quality. In winter, for example, prolonged
and strong ice treatments may have little impact on inactivation compared to a non-ice
scenario, while the performance of oysters can jeopardize sales.

This obviously cannot be extrapolated to higher-temperature scenarios, where it
is necessary to assess the most-appropriate ice treatment timing (onboard or dockside)
without posing a risk to human health. In this context, research on new treatments that
minimize human health risks is essential. However, achieving this goal will not be an easy
task as climatic anomalies are becoming more common, with long summer and winter
seasons, thus increasing the seasonal risk of seafood illness. Under such circumstances, it is
necessary to consider adjustments in industry practices and regulatory policy, especially
for shellfish consumed raw, such as bivalve mollusks [47]. Modeling approaches such as
the one presented, verified, and evaluated here can be valuable tools with the necessary
adjustments for simulating near-future scenarios under both varying ambient temperatures
and the umbrella of climate change [48,49]. In addition, this modeling tool can support
predictive studies under irregular and occasional temperature regimes, caused by weather
events or the thermoregulatory behaviors of organisms [40]. Overall, this approach will
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help not only to improve our predictions of how organisms perform in varying temperature
environments, but also gain an understanding of how temperature impacts organisms.

5. Conclusions

The model for exploring V. parahaemolyticus dynamics performed satisfactorily un-
der varying ambient temperatures. The effect of seasons, day/night, and ice-treatment-
associated temperature oscillations on the V. parahaemolyticus growth patterns was ade-
quately detected and reproduced by the model. Thus, the predictive tool here can serve
(i) to improve the understanding of the V. parahaemolyticus–oyster system and provide
insights into similar marine and terrestrial systems, for which temperature is crucial, and
(ii) to support studies about the impact of pathogenic V. parahaemolyticus associated with
raw oyster consumption on public health, particularly in the face of global change.
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