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Laburpena
Azkenaldian, arlo medikoan arreta handiagoa jarri da Adimen Artifizialarekin lotutako
tekniketan, medikuei galderak errazago eta azkarrago ebazten laguntzeko. Hori bereziki
garrantzitsua da Ebidentzian Oinarritutako Medikuntzaren arloan, medikuek egituratu

gabeko informazio asko erabili behar baitute erabakiak garaiz hartu ahal izateko.
Testuinguru horretan, Argumentu-Meatzaritzak lagundu egiten du argudio-osagaiak eta
haien arteko harremanak identifikatzen, deliberazio-prozesuak eta azalpen medikoak

dituzten testuetan.
Argumentu-Meatzaritzari buruzko lanen corpus nahiko ona dagoen arren, datu-multzo
gehienak ingeleserako garatu dira, eta gaur egun bat bakarrik dago eremu medikorako.
Eskura ditugun datu idatzien falta hori dela eta, tesi honetan prompting eta fine-tuning
teknikak aztertuko ditugu, few-shot ingurune batean ingelesa ez den beste hizkuntza

baterako eremu medikoan argumentu-meatzaritza egiteko estrategiarik onena ezartzeko.
Gure emaitzek enpirikoki frogatzen dute few-shot prompting bidez sekuentziak

etiketatzeko metodoak oso sentikorrak direla entrenamendu-datuak sortzeko erabilitako
laginketa-metodoarekiko. Izan ere, eta argitaratutakoaren kontra, datuen laginketa

alternatibo baten ondorioz, fine-tuning metodoek few-shot ebaluatzeko inguruneetako
prompting teknikak gainditzen dituzte. Zehatzago esanda, arlo medikoan

Argumentu-Meatzaritzarako entrenamendu-datuen %40 nahikoa da state-of-the-arten
emaitzak lortzeko. Gainera, entrenamendu-datuen %10-20 soilik erabiltzeak (hau da,
pertsona bakoitzak 15 orduz eskuz etiketatuta lan egiteak) oso errendimendulehiakorra

lortzeko aukera ematen du.

Abstract
In recent times, in the medical field, more attention has been paid to techniques related
to Artificial Intelligence to support doctors to solve questions in a simpler and faster way.
This is particularly relevant in the field of Evidence-based Medicine, since doctors need
to deal with a lot of unstructured information to be able to take timely decisions. In this
context, Argument Mining helps to identify argumentative components and the relations

between them in texts containing medical deliberation and explanatory processes.
Although there is a relatively good body of work on Argument Mining, the large majority
of datasets have been developed for English, and only one currently exists for the medical
domain. Due to this lack of available annotated data, in this thesis we explore prompting
and fine-tuning techniques to establish the best strategy to perform argument mining in

the medical domain for a target language different to English in a few-shot setting.
Our results empirically demonstrate that few-shot prompting approaches for sequence

labelling are highly sensitive to the sampling method used to generate the training data.
In fact, and contrary to published work, we show that an alternative data sampling
results in fine-tuning methods outperforming prompting techniques in few-shot

evaluation settings. More specifically, we establish that 40% of the training data for
Argument Mining in the medical domain is enough to obtain state-of-the-art results.
Furthermore, using just 10-20% of the training data (which amounts to 15 hours of
manual labelling work per person) allows to obtain highly competitive performance.
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1 Introduction

In a medical environment, one of the most important tasks is to be able to identify and
diagnose a disease and then prescribe appropriate treatment for it, taking into account
the patient’s health and clinical history. However, deciding which treatment is the most
appropriate can lead to several challenges. One of the challenges is correctly predicting the
disease, as many diseases can produce similar symptoms, making detection difficult.

Thus, in recent times, in the medical field, more attention has been paid to techniques
related to Artificial Intelligence to support doctors to solve questions in a simpler and
faster way. This is particularly relevant in the field of Evidence-based Medicine, since
doctors need to deal with a lot of unstructured information to be able to take timely
decisions. In this context, Argument Mining helps to identify argumentative components
and the relations between them in texts containing medical deliberation and explanatory
processes.

In Figure 1 we can see an example of the Argument Mining task according to Stab
and Gurevych (2014). This task consists of two subtasks: (i) identifying the argument
components and, (ii) extracting the relations between them. In this approach there are
two types of argument components, namely, claims and premises. Claims (in yellow) refer
to the statements made in the text with respect to one topic whereas premises (in blue) refer
to the evidence used in order to support or attack the claims. Thus, relation extraction
amounts to extracting the support or attack relations between claims and premises. It
should be noted that relations can link any kind of argument component.

Automatic Argument Mining techniques have recently been developed for different
domains, such as education (Stab and Gurevych, 2014), news (Reed et al., 2008), law
(Mochales and Ieven, 2009) or science and medicine (Mayer et al., 2021). However, most
of the previously mentioned works only try to solve the problems in English, which means
that there is an urgent need to generate annotated datasets for Argument Mining. This is
particularly true of the medical domain, for which only one English dataset exists to learn
Argument Mining models (Mayer et al., 2021).

Due to this lack of available annotated data, in this thesis we explore prompting and
fine-tuning techniques to establish the best strategy to perform argument mining in the
medical domain for a target language different to English in a few-shot setting. Few-shot
learning is a type of machine learning where the model must perform a task with very
few examples, often just one or a few. This is in contrast to traditional machine learning
approaches, which require a large amount of labeled data in order to perform well. By
using few-shot learning, we aim to reduce the amount of data required for training and
make it possible to learn a wide range of tasks using as little data as possible.

One way to implement few-shot learning is through the use of prompts, which are
short descriptions or examples that provide additional context or guidance to the model.
Prompts can be used to help the model understand the task at hand and make more
accurate predictions, even with very few examples.

We will explore the use of different systems, such as EntLM (Ma et al., 2022), to im-
plement few-shot learning with prompts, and MMCV (Mayer et al., 2021) to implement
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Figure 1: Argument Mining example (Stab and Gurevych, 2014).

few-shot via fine-tuning. We will also examine different methods for generating prompts,
including using Natural Language Processing (NLP) techniques and Entity-Oriented Lan-
guage Models.

Overall, our goal is to demonstrate the effectiveness of few-shot learning via prompting
as a means of improving the performance of automatic argument mining approaches while
reducing the need of manually labelled annotated data. This thesis provides the following
contributions:

1. To the best of our knowledge, this thesis provides the first comprehensive study of
few-shot prompting for argument mining (both argument component detection and
relation extraction).

2. Our results empirically demonstrate that few-shot prompting approaches for sequence
labelling are highly sensitive to the sampling method used to generate the training
data.

3. In fact, and contrary to published work (Ma et al., 2022), we show that an alternative
data sampling results in fine-tuning methods outperforming prompting techniques in
few-shot evaluation settings.

4. We establish that 40% of the training data for Argument Mining in the medical
domain is enough to obtain state-of-the-art results. Furthermore, using just 10% of
the training data (which amounts to around 15 hours of manual labelling work per
person) allows to obtain highly competitive performance.

5. Code and datasets are publicly available1.

The structure of this thesis is the following: In the following section, we describe the
most important previous work done in the field of argument mining. We also review the
most important approaches to address the lack of manually labelled training data, including
few-shot prompting, and cross-lingual approaches.

1https://github.com/jonmanzanal/Sampling-FewShot-ArgumentMining
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Second, in Section 3 we provide a detailed description of the datasets and systems to
perform the experiments. Then in Section 4 the data sampling methods used for few-shot
experimentations are explained, focusing on the resulting dataset structure for each type
of data sampling. We also discuss the way the label words work for prompting approaches.
Finally, the hyperparameters used for experimentation are specified. In Section 5 we report
the experimental results and quantitatively and qualitatively analyze them. An error
analysis is provided in Section 6 and final conclusions and future work are discussed in
Section 7.
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2 Related Work

In this section, we will provide an overview of previous research and studies that are related
to both argument mining and few-shot learning.

2.1 Argument mining

The field of argument mining, also known as argumentation analysis or argumentation
extraction, has seen significant growth and development in recent years. A number of
research efforts have focused on the identification and classification of arguments in text, as
well as the development of techniques for automatically extracting argumentative structure
from the text.

One early example of work in this area is Toulmin’s (2003) model of argumentation,
which provides a framework for identifying the components of an argument and analyzing
their relations. This model has been widely adopted in the field of argumentation studies
and has influenced the development of various argument mining techniques.

More recent efforts in argument mining have focused on the use of natural language
processing (NLP) techniques, based on machine learning and deep learning, to automati-
cally identify and classify argumentative components in text. For this objective, there are
several tasks that try to accomplish it, such as argument component identification (Stab
and Gurevych, 2016; Palau and Moens, 2009), Argument unit segmentation (Ajjour et al.,
2017), and detecting the relations between arguments (Nguyen and Litman, 2016; Mayer
et al., 2021).

In addition to these technical approaches, there has also been a growing interest in the
application of argument mining to various domains. Here we list the most popular ones:

• Education: Stab and Gurevych (2014) developed an argument mining dataset com-
posed of 90 persuasive essays in English.

• News: a corpus composed of English news from different newspapers from around
the world (Reed et al., 2008).

• Law: Mochales and Ieven (2009) created a corpus composed of 45 judgments and de-
cisions collected from CD recordings from August to December 2006. They releseased
it both in English and French.

• Politics: Vivesdebate (Ruiz-Dolz et al., 2021) is a dataset composed of Catalan,
Spanish, and English texts, where Catalan is the source language and English and
Spanish have been automatically translated.

• Scientific/medical: the AbstRCT dataset includes claims and premises of clinical
cases and their relations in English (Mayer et al., 2021). This is the only dataset
annotated with argument components and their relations for the medical domain.
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One of the main sources of training data for argument mining has been annotated
datasets such as the PDTB (Pragmatic Discourse Treebank) by Prasad et al. (2017) and
the Argument Reasoning Corpus (ARC) (Habernal et al., 2018). However, these datasets
are limited in size and coverage and are primarily in English. This has led to a reliance on
methods such as transfer learning (Pathak et al., 2022; Parthipan and Wischik, 2022), and
data augmentation (Perez and Wang, 2017; Park et al., 2019), to improve the performance
of argument mining systems in other languages and domains.

It can be seen that most of the corpora described above are for English, with a no-
table lack of corpora in other languages, such as Spanish for which only an automatically
translated version of Vivesdebate exists. While some efforts have been made to create
multilingual argumentation datasets, such as the Multilingual Argumentation Mining Cor-
pus (MAMC) (Toledo-Ronen et al., 2020) and the Cross-Lingual Argumentation Corpus
(CLAC) by Eger et al. (2018), they are still limited in size and language coverage. This
presents a significant challenge for the development of argument mining systems that can
operate in a wide range of languages and domains.

2.2 Cross-lingual transfer

To overcome the problem of missing data for a given target language, approaches such as
cross-lingual transfer are used. Cross-lingual transfer refers to the transfer of knowledge
learned from one language to another (Garćıa-Ferrero et al., 2022). In this work they study
both model- and data-transfer crosslingual strategies to perform a sequence labelling task
whenever no training data is available for the target language. The crosslingual model-
transfer approach consists of leveraging multilingual language models such as multilingual
BERT (Devlin et al., 2019) or XLM-RoBERTa (Conneau et al., 2020) to learn models in
a source language and predict into a different one. The data-transfer approach from a
cross-lingual perspective consists of translating gold-labelled text from the source into the
target language and then, using automatic word alignments, project the labels from the
source into the target language. This results in an automatically generated dataset in the
target language that can be used for training a sequence labelling model. Furthermore,
Yeginbergenova and Agerri (2023) show that the data-transfer approach is more effective
than the model-transfer to automatically obtain labeled data for argument mining.

Apart from the model- and data-transfer approaches, there are more techniques that
are being tested in recent years to overcome the lack of training data. However, instead
of focusing on transferring knowledge, the focus is placed on measuring how much anno-
tated data is actually necessary to obtain competitive results. One of the most relevant
techniques nowadays on this research topic is few-shot prompting, described in the next
section.

2.3 Few-shot Approaches

One of the methods to address the lack of data is to use few-shot, which is a type of
technique that enables a model to learn and generalize to new tasks with only a small
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amount of the training data. It is particularly useful in situations where there is a scarcity
of labeled data or where collecting and labeling large amounts of data is impractical or
too expensive. In few-shot learning, the model is presented with a few examples for each
new task and is expected to learn from these examples in order to make predictions about
unseen instances of the same task. Wang et al. (2021) reformulate a number of NLP text
classification tasks as textual entailment. They then use this unified method to demonstrate
that standard pre-trained language models are very effective few-shot learners. Another
very interesting approach is from the paper by Brown et al. (2020), where it is shown that
scaling up language models greatly improves task-agnostic, few-shot performance.

Another few-shot approach is to use prompting; few-shot prompting is a variation of
few-shot learning where the model is provided with a “prompt” or a description of the new
class in addition to a few examples. This additional information can help the model to
better understand the characteristics of the new class and improve its ability to generalize
from the few examples it has seen. The prompt can be in the form of natural language text
or other forms of structured data, such as attributes of the objects in the class. The idea
behind few-shot prompting is that by providing the model with additional information, it
can learn to classify new instances more accurately and with fewer examples than with
traditional fine-tuning methods.

A very popular approach is Pattern-Exploiting Training (PET) (Schick and Schütze,
2020a,b), a system which employs a semi-supervised training procedure based on cloze-style
phrases to help language models understand a given task in low-resource settings. This is
done by assigning soft labels to a large set of unlabeled examples. This approach is shown to
significantly outperform regular supervised training and various semi-supervised baselines.
Furthermore, it also has a version called ADAPET (Tam et al., 2021) which modifies the
objective to provide denser supervision during fine-tuning in few-shot learning without any
unlabeled data.

2.3.1 Sequence labeling

Sequence labeling is a task in natural language processing where the goal is to assign a
label to each word or token in a given sequence. This can be done for a variety of appli-
cations, such as named entity recognition, part-of-speech tagging, or argument component
detection. For example, in named entity recognition, the task is to identify and classify
named entities, such as people, organizations, and locations, in a given text, and assign
a label to each word or token that corresponds to the entity it belongs to. This task
can be approached using a variety of machine learning algorithms, such as hidden Markov
models, conditional random fields, and deep neural networks. One of the best-performing
approaches for argument mining is the one obtained in Mayer et al. (2018), obtaining an
F1 of 82.36 by using the mBERT model and applying both a GRU and a CRF.

NNShot and StructShot (Yang and Katiyar, 2020) propose two metrics to perform few-
shot. In NNShot the aim is to increase the nearest classifier to make better predictions.
With respect to StructShot, a Viterbi algorithm is applied at the time of decoding. Another
interesting few-shot prompting approach is that of Template NER (Cui et al., 2021), where
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templates are used to predict the labels. By constructing a template for each class, it
queries each span with each class separately. The result for each request is obtained by
calculating the generalized probability of the request for a pre-trained LM.

In any case, it should be considered that prompting techniques based on templates for
sequence labeling is rather problematic. Given a sequence of type X = {x1, ....., xn}, we
have to achieve a sequence of labels with the same number of elements Y = {y1, ...., xn}.
In addition, a new slot [S] is added in order to fill the first token or a succession of spans,
where it starts at xi and ends at xj. We could construct a simple template, like “[X] [S] is a
[Z] entity”, where an entity label (e.g., Location) must be predicted in [Z] by the LM. The
problem of this approach is that during decoding, obtaining the labels requires enumerating
the spans along the whole sentence, which is a time-consuming process that increases each
time the sentence gets longer. Therefore, while template-based prompting is useful for text
classification tasks, other proposals have appear trying to avoid this cumbersome repetition
of templates. Current recent state of the art approaches are Huang et al. (2021) and EntLM
(Ma et al., 2022), which avoid using templates obtaining state-of-the-art results at a much
lower computational cost.

2.3.2 Relation extraction

Relation extraction is the task of extracting structured relations from unstructured text
data. It is a type of natural language processing (NLP) task that involves identifying and
extracting relations between sequences in a given text. These relations can be between
sequences consisting of people, organizations, events or argument components, for example.
Relation extraction typically involves two main steps:

1. Sequence labeling: This step involves identifying and labeling the main sequences
that are mentioned in the text. For example, if the text mentions “John Smith” and
“Apple Inc.”, then “John Smith” would be identified as a person entity, and “Apple
Inc.” would be identified as an organization entity.

2. Extracting the relations between the entities: Once the entities have been identified,
the next step is to extract the relations between them. For example, if the text
mentions that “John Smith works for Apple Inc.”, then the relations between “John
Smith” and “Apple Inc.” would be “works for”.

In relation to extraction there are several types of relations that can be extracted,
including:

• Nominal relations: These are relations between noun phrases, such as “John is the
father of Mary” where the relation is “father of” and the entities are “John” and
“Mary”.

• Verbal relations: Relations between verb phrases, such as “John gave a book to Mary”
where the relation is “gave to” and the entities are “John”, “book”, and “Mary”.
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• Coreference relations: Formed by entities that refer to the same real-world object,
such as “John gave a book to Mary. She loved it.” where the relation is “coreference”
and the entities are “Mary” in the first sentence and “she” in the second sentence.

• Event-event relations: Relations between events, such as “John won the marathon.
He set a new record.” where the relation is “set” and the entities are “John” and
“new record”.

• Temporal relations: These are relations between events or entities and time expres-
sions, such as “John was born in 1980” where the relation is “born in” and the entities
are “John” and “1980”.

• Modality relations: Consisting of relations between entities and modal verbs or ad-
verbs, such as “John may be a teacher” where the relation is “may be” and the
entities are “John” and “teacher”.

These are some types of relations that can be extracted in relation extraction tasks,
but there may be other types depending on the specific task or domain.

Relation extraction is an important task in NLP because it allows for the automatic
extraction of structured information from unstructured text data. This information can
then be used for various downstream tasks, such as information extraction, question an-
swering, and document summarization. One of the proposals is PET (Schick and Schütze,
2020a,b), which consists of semi-supervised training that uses natural language patterns to
adapt the inputs to predefined sentences. Other approach is PPT (Gu et al., 2022), which
proposes to pre-train prompts by adding soft prompts into the pre-training stage to obtain
a better initialization.

There have been several approaches in the field of relation extraction, including different
types of methods based on supervised (Zelenko et al., 2002; Miwa and Bansal, 2016), semi-
supervised (Chen et al., 2006; Hu et al., 2020), and distantly supervised approaches (Mintz
et al., 2009; Han et al., 2018). However, the above methods have problems in detecting new
types of relations if they arise in a real scenario. Therefore, there are also approaches that
focus on learning relations without predefined types, including open RE (Etzioni et al.,
2008; Gao et al., 2020) and continual relation learning (Obamuyide and Vlachos, 2019; Wu
et al., 2021).
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3 Methodology/Materials and Methods

In this section we introduce the systems and datasets used as well as the metrics applied
to evaluate the systems’ performance on the datasets.

3.1 Systems

All the systems work with transformers, which is a type of neural network architecture
designed to process sequential data, such as natural language, more efficiently than recur-
rent neural networks (RNNs). The key innovation of the transformer architecture is the
use of attention mechanisms to process the input data, which allows the model to paral-
lelize the computation across the input sequence and to handle very long input sequences
more efficiently than an RNN. The transformer architecture was introduced in the paper
“Attention Is All You Need” (Vaswani et al., 2017) and has been successful in a variety of
natural language processing tasks, including machine translation, language modeling, and
text classification.

As mentioned above, the transformers are used in language models, which are trained
to predict the likelihood of a sequence of words. It does this by learning the statistical
patterns that are characteristic of a particular language or document collection. The basic
idea is that, given a sequence of words, a language model assigns a probability to each
possible word that might come next in the sequence. For example, if the language model
is trained on a large corpus of text, it might predict that the word “the” is more likely
to come after the word “cat” than the word “banana”. In the following subsections we
present the systems used in our experimentation.

3.1.1 MMCV

MMCV (Mayer et al., 2018) is a sequence labelling system that uses two bidirectional
transformers in combination with other deep learning architectures such as LSTM, GRU,
and CRF. This tool allows us to perform experiments both for the classification of argument
components and for the detection of their relations. You can use any transformer found in
the Huggingface library, so it allows you to perform experiments with different language
models in a simple way. MMCV is trained by fine-tuning the model on the argument
mining task.

3.1.2 BERT/mBERT

mBERT (Devlin et al., 2019) stands for multilingual BERT. BERT, or Bidirectional En-
coder Representations from Transformers, is a type of language processing model developed
by Google. It is a state-of-the-art method for natural language processing tasks such as
language understanding, translation, and text summarization. mBERT is an extension of
BERT that has been trained on a large amount of text data in 100 languages. mBERT is
both used in the fine-tuning model of MMCV and in the prompting approach of EntLM,
introducted next.
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Figure 2: Difference between the operation of EntLM and a template-based model (Ma
et al., 2022).

3.1.3 EntLM

EntLM (Ma et al., 2022) is a prompting based system for sequence labelling which does not
uses any previously defined template. The system allows to use any transformer found in
the Huggingface library, so it allows performing experiments with different transformers in
a simple way. Instead of using a predefined template it works with a word label that works
as a reference, generalizing the tokens for greater simplicity. For example, when fed with
“[MASK] was born in America”, the LM is pre-trained to predict some label word such as
“John” at the position of the entity (e.g., “Obama”) as an indication of the label “PER”.
While for the none-entity word “was”, the LM remains to predict the original word. This
is illustrated by Figure 2. EntLM obtains better results for sequence labeling few-shot
prompting than other approaches, such as NNShot, StructShot, or Template NER.

3.1.4 PET

PET (Schick and Schütze, 2020a,b) is a prompting-based few-shot system based on provid-
ing a description of the task to be achieved with a template. It consists of semi-supervised
training that uses natural language patterns to adapt the inputs to predefined sentences.
PET works in three steps: First, for each pattern, a separate PLM is fine-tuned on a
small training set T . The ensemble of all models is then used to annotate a large unla-
beled dataset D with soft labels. Finally, a standard classifier is trained on the soft-labeled
dataset. There is also the option of iPET, an iterative variant of PET in which this process
is repeated with increasing training set sizes.

Figure 3 illustrates the way that PET works. More specifically, it can be seen the
process of creating patterns to convert training examples into cloze questions, fine-tuning
a pretrained language model for each pattern, and using an ensemble of the models to
annotate unlabeled data. A classifier is then trained on the annotated data.

3.2 Data

In this section, we will detail which dataset we have used to perform the experiments, as
well as their main characteristics.
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Figure 3: PET operation for sentiment classification task (Schick and Schütze, 2020a).

Train Dev Test

O 67198 9124 16739
B-Claim 790 108 248
B-Premise 1644 218 438
I-Claim 15350 2087 4677
I-Premise 51839 6655 11931
Tokens 136821 18192 34033

NumberSamples 4404 678 1251

Table 1: Distribution of argument components

3.2.1 AbstRCT

The first dataset used to perform the argument mining experiments is the Randomized
Clinical Trials (RCT) of medical abstracts in Mayer et al. (2021).

The dataset is divided according to 5 types of diseases: neoplasm, glaucoma, hepatitis
B, and hypertension, although in our experimentation only the one corresponding to neo-
plasm has been used because we have splits of dev and test. The distribution of abstracts
is 500 for neoplasm, 100 for glaucoma, and 100 in the mix set, which consists of a mix of
20 examples for each disease.

The dataset is annotated separately for argument and relation components, where the
distribution can be seen in tables 1 and 2 respectively.

Argument components are classified with Claim and Premise labels using IOB2 encod-
ing (Tjong Kim Sang and De Meulder, 2003). The number of premises is more than twice
the number of claims, and on average, the premises are longer than the claims, as it can be
seen in Table 3. Claims can be detected by the information that composes them as well as
by specific phrases such as “According to the results” or “The results support”. Premises,
on the other hand, describe different evidences of the study.

In Argument relations, the notation used is used to perform the classification task where
two arguments are given, and you want to predict the type of relation between them in a
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Train Dev Test

Support 1194 185 359
Attack 200 30 60
noRel 12892 1815 3961

NumberSamples 14286 2030 4380

Table 2: Distribution of argument relations

binary classification task. The labels used for this purpose are support, attack, and noRel
when there is no relation between the two previous ones. Each of the possible arguments
has been paired with another, causing a noticeable unbalanced label distribution, as shown
by Table 2. Furthermore, Example 3.1 shows an argument relation sample where each
instance is composed by two argument components.

Example 3.1 Argument relation sample

label noRel No study arm effect was observed for function discussions −− but not
for function discussion, suggesting that potentially serious problems may remain unad-
dressed.

label Attack No study arm effect was observed for function discussions. −− Train-
ing oncologists in responding to patient-reported functional concerns may increase the
impact of this intervention.

label noRel Clinic discussions were associated with severity of patient-reported
symptoms but not with patient-reported functional concerns. −− Patients in the inter-
vention arm discussed more symptoms over time compared with patients in the attention-
control (P = .008) and control (P = .04) arms.

label noRel Clinic discussions were associated with severity of patient-reported
symptoms but not with patient-reported functional concerns. −− No study arm effect was
observed for function discussions.

label noRel Clinic discussions were associated with severity of patient-reported
symptoms but not with patient-reported functional concerns. −− A positive longitudinal
impact of the intervention on symptom discussion was observed,

label noRel Clinic discussions were associated with severity of patient-reported
symptoms but not with patient-reported functional concerns. −− but not for function
discussion, suggesting that potentially serious problems may remain unaddressed.

label Support Clinic discussions were associated with severity of patient-reported
symptoms but not with patient-reported functional concerns. −− Training oncologists
in responding to patient-reported functional concerns may increase the impact of this
intervention.

label noRel A positive longitudinal impact of the intervention on symptom discus-
sion was observed, −− Patients in the intervention arm discussed more symptoms over
time compared with patients in the attention-control (P = .008) and control (P = .04)
arms.
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Train Dev Test

O 170524 42975 38554
B-PER 0 0 0
B-LOC 11 0 6
B-ORG 24 0 5
B-MISC 37 4 9
I-PER 11128 3149 2773
I-LOC 8286 2094 1919
I-ORG 10001 2092 2491
I-MISC 4556 1264 909
Tokens 204567 51578 46666

NumberSamples 14987 3467 3684

Table 3: Distribution of CoNLL 2003

3.2.2 CoNLL 2003

CoNLL 2003 (Conference on Natural Language Learning) (Tjong Kim Sang and De Meul-
der, 2003) is a shared task evaluation campaign for natural language processing systems,
specifically for the task of language-independent named entity recognition. The CoNLL
2003 shared task provided a standard data set and evaluation framework for researchers to
compare the performance of their named entity recognition systems. The data set consists
of news articles from the Reuters Corpus, annotated with named entities and syntactic
chunk tags.

For experimentation, we have been used the original CoNLL 2003 instead of the one
in the EntLM paper repository. The labels use IO2 encoding following the distribution of
data presented in Table 3. In the IO2 format I-PER, I-LOC, I-ORG, and I-MISC are used
if a token belongs to one of the categories, B-PER, B-LOC, B-ORG and B-MISC are only
used if two contiguous tokens belong to a category, in order to distinguish where one ends
and the other begins; O is used when the token does not belong to any of the categories.

In general, most NER sequences are only a few tokens long, usually not exceeding three
tokens. The longest-named entities are the ones related to persons, as there is a noticeable
difference in the number of I-PER labels compared to the others.

3.3 Evaluation

We use F1 score to evaluate sequence labelling and relation extraction. This is calculated
as the harmonic mean of the precision and recall of a model, where precision is the number
of true positive predictions divided by the total number of positive predictions, and recall
is the number of true positive predictions divided by the total number of actual positive
examples. F1 can be calculated from a micro or macro perspective.
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F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

=
2 ∗ TP

2 ∗ TP + FP + FN

F1 macro is calculated by treating each class in the dataset separately and averaging
their F1 scores. This is useful for datasets where the class distribution within each group
is balanced, but the overall dataset is imbalanced.

MacroF1 =
sum(F1 scores)

number of classes

F1 micro is calculated by treating all instances in the dataset as a single group, regard-
less of their class labels.
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Figure 4: Examples in K5-shot for relations.

4 Experimental setup

In this section, we will first explain how the samplings for few-shot learning are created
using the datasets mentioned in the previous section. Secondly, we will detail the experi-
mental details to train the different models. Finally, we will discuss the label words used
in the systems where they are needed.

4.1 Sampling

The sampling of the datasets used to perform the few-shot experiments was done in two
ways, K-shot, and percentage split 2. The first was performed using the sampling method-
ology used in the EntLM paper. This is based on creating 4 or 3 shots of a given number.
For example, for K5-shot we use 3 documents where each document contains 5 sentences
or tokens as an example for each label.

K-shot has been used both for argument components and argument relations, for which
we have obtained 5, 10, 20, and 50-shots respectively. Figure 4 shows the K-5 sampling
generated for relation extraction. If we apply the K-shot method to the AbstRCT (argu-
ment component detection and relation extraction) and to the CoNLL 2003 datasets then
we obtain the samplings depicted in the following tables. First, Table 4 shows the distri-
bution per argument component (claims and premises) from AbstRCT, while the sampling
obtained for the relations is shown in Table 5.

Finally, the K-shot sampling generated for NER in the CoNLL 2003 dataset is described
by Table 6 corresponds to the CoNLL 2003 sampling. As it can be seen, with K-5 sampling
the first document is composed of 8 sentences where there are 5 instances for each NER
class.

For the second sampling, we propose an alternative and simple way to generate few-shot
data based on a percentage that represents the number of example sentences with respect
to the whole dataset. For example, for a 5% sampling we have 5% of example sentences

2GitHub repo: https://github.com/jonmanzanal/Sampling-FewShot-ArgumentMining.
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O B-Claim B-Premise I-Claim I-Premise Tokens Number Sentences

K 5
1 109 6 6 97 118 336 15
2 136 5 5 115 191 452 15
3 117 5 5 102 82 311 13
4 126 5 8 102 144 385 14
K 10
1 219 13 11 201 373 817 30
2 316 10 13 215 349 903 30
3 234 10 10 187 333 774 28
4 215 10 14 225 344 808 26
K 20
1 515 24 25 471 841 1876 59
2 683 21 24 496 632 1856 60
3 508 23 20 447 627 1625 56
4 575 23 24 485 657 1764 56
K 50
1 1284 60 63 1144 2031 4582 147
2 1552 56 58 1230 1609 4505 147
3 1320 57 59 1101 1697 4234 145
4 1325 61 58 1308 1825 4577 142

Table 4: Distribution for the K-shot sampling in AbstRCT in the component detection
task

noRel Attack Support Num Sentences

K 5
1 5 5 5 15
2 5 5 5 15
3 5 5 5 15
K 10
1 10 10 10 30
2 10 10 10 30
3 10 10 10 30
K 20
1 20 20 20 60
2 20 20 20 60
3 20 20 20 60
K 50
1 50 50 50 150
2 50 50 50 150
3 50 50 50 150

Table 5: Distribution for the K-shot sampling in AbstRCT in the relation detection task
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O B-PER B-LOC B-ORG B-MISC I-PER I-LOC I-ORG I-MISC Tokens Num Sentences

K 5
1 168 0 5 0 5 2 0 3 4 187 8
2 148 0 5 0 5 2 9 0 10 179 8
3 150 0 5 0 5 0 14 1 8 183 8
K 10
1 350 0 10 0 10 9 23 1 21 424 18
2 342 0 10 0 10 8 25 0 20 415 18
3 309 0 10 0 10 6 23 8 18 384 17
K 20
1 489 0 11 0 20 14 37 6 28 605 23
2 474 0 11 0 20 11 30 9 31 586 24
3 576 0 11 0 20 15 39 10 41 712 26
K 50
1 811 0 11 0 39 23 49 18 66 1017 37
2 811 0 11 0 39 23 49 18 66 1017 37
3 811 0 11 0 39 23 49 18 66 1017 37

Table 6: Distribution for the K-shot sampling in CoNLL 2003

based on the whole dataset. This is illustrated by Table 7, where the complete dataset of
AbstRCT is composed of 4404 sentences, 5% of 4404 is 220, the same examples as in the
5% sampling. Following this, we have created 5 splits increasing up to 40% of the dataset,
the splits being 5%, 10%, 20%, 30%, and 40% respectively. These splits have been made
by multiplying the total number of sentences of the dataset by the respective percentage in
order to divide it and save the part of the examples respective to the percentage. It should
be noted that our method mantains the original distribution of argument components and
relations across classes.

O B-Claim B-Premise I-Claim I-Premise Tokens Number Sentences

100% 67198 790 1644 15350 51839 136821 4404
5% 3358 36 81 671 2885 7031 220
10% 6578 77 164 1507 5800 14126 440
20% 13455 161 318 3052 10534 27520 880
30% 20123 236 501 4667 15938 41465 1321
40% 26756 312 664 6153 21162 55047 1761
5% balance 3358 36 26 671 756 4847 174
O less 3010 36 26 671 756 4499 162
10% balance 6577 77 58 1507 2288 10507 352
O less 5887 77 58 1507 2288 9817 330

Table 7: Distribution for the percentage sampling in AbstRCT in the component detection
task

As our percentage-based method maintains the original distribution among argument
component classes between models, we thought it could also be interesting to generate
samplings to obtain more balanced data. This is because if we look at, for example,
CoNLL 2003 or AbstRCT, there is one label whose representation is notably inferior to
the others. In CoNLL 2003 it is I-MISC, as it can be seen in the Table 9 that for the
whole dataset, there are 4556 tokens classified with I-MISC in comparison with the more
than 11128 classified as I-PER. With respect to the AbstRCT dataset, Table 7 shows that
B-Claim label is underrepresented.
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noRel Attack Support Num Sentences

100% 12892 1194 200 14286
5% 656 7 51 714
10% 1297 16 115 1428
20% 2582 39 236 2857
30% 3901 56 328 4285
40% 5189 74 451 5714
10% less 780 16 115 911

Table 8: Distribution for the percentage sampling in AbstRCT in the relation detection
task

O B-PER B-LOC B-ORG B-MISC I-PER I-LOC I-ORG I-MISC Tokens Num Sentences

100% 170524 0 11 24 37 11128 8286 10001 4556 204567 14987
5% 8290 0 1 0 5 811 584 424 294 10409 749
10% 18474 0 1 0 8 1487 1132 839 586 22527 1498
20% 37845 0 1 0 14 2991 2260 1616 1217 45944 2997
30% 54880 0 1 0 14 3851 2990 2942 1606 66284 4496
40% 69443 0 1 0 21 5065 3722 4056 2063 84371 5994
5% balance 6141 0 1 0 5 585 434 265 294 7725 507
O less 5436 0 1 0 5 554 402 238 265 6901 477
10% balance 13311 0 1 0 8 1164 799 500 586 16369 982
O less 11964 0 0 0 8 1111 745 445 533 14806 903

Table 9: Distribution for the percentage sampling in CoNLL 2003

With this idea of balancing, we try to balance the dataset across labels for the 5% and
10% samplings. If we look at Table 9, it can be seen that we have been able to achieve in
CoNLL 2003 to lower all the labels closer to I-MISC. In the case of AbstRCT, the difference
is more remarkable, as can be seen in the Table 7, reducing the B-Premise up to 26 in 5%
and up to 58 in 10%, closer to the frequencies reported to B-Claim.

We also performed an alternative sampling by reducing the number of sentences com-
posed of tokens that are not classified with any particular label, namely, classified as O. In
both CoNLL 2003 and AbstRCT, the most frequent label is Os, as it can be seen in Table
9 and Table 7, so we reduced by 10% and 5% the number of sentences composed of only
tokens with the label O for the already balanced of 5% and 10% splits created previously.
Thus, for CoNLL2003 Table 9 shows that we have reduced the Os from 8290 to 5436 for
5% and 10% from 18474 to 11964. With respect to AbstRCT, Table 7 reports that at 5%
they have been reduced to 3010 and at 10% to 5887.

Finally, we also rebalanced the relations in the AbstRCT dataset. As the task is
formulated as a pair-wise classification task between two arguments, this means that we
need to consider, for a given document, all possible relations (support, attack, norel) with
each other. This means that the resulting dataset is heavily biased towards noRel. The
result of this, as seen in Table 8, is that for the 10% split there are 1297 examples classified
as noRel while for attack there are just 16, and for the support relation 115. With this
in mind, we raised the idea that this could negatively affect the performance of language
models for the relation extraction task, so it would be interesting to mitigate this issue by
removing 40% of examples with the noRel relations. We test this with the 10% split. The
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MMCV BERT EntLM

Sequence length 128 128 128
Train batch size 32 4 4
Eval batch size 8 8 32

Lr 5e-5 1e-4 1e-4
Epochs 3 20 5
Model BERT BERT BERT

Table 10: Hyperparameters for the CoNLL 2003 dataset.

result can be seen in the Table 8, where the examples of noRel are reduced from 1297 to
780.

4.2 Training details

In this section we will explain how the experiments have been set up, detailing which
hyperparameters have been used, and which dataset with the system has been used. To
perform these experiments we have used two GPUs, a Titan Xp and a Titan V, both of
which have a VRAM of 12 GB.

4.2.1 CoNLL 2003

We used three systems to experiment with CoNLL 2003: MMCV, BERT, and EntLM. We
have done experiments with each of the splits with both the data in its original form and
by lowercasing it. We have made 4 runs with a random seed in each one of them and the
final reported result is based on the average of the 4 experiments. The results are reported
on the development split.

For the MMCV system, the same hyperparameters have been used for both the CoNLL
2003 and the AbstRCT datasets (Mayer et al., 2021): sequence length of 128, a batch size
of 32, and an eval batch size of 8. We have fine-tune the model and evaluated it in 3 epochs
in CoNLL 2003 dataset with a learning rate of 5e-5.

For fine-tuning the BERT model we followed Ma et al. (2022): 128 sequence length,
a train batch size of 4 and an eval batch size of 8, and a learning rate of 1e-4. We have
trained the model and evaluated it in 20 epochs.

The EntLM prompting system is trained following the method of its original paper (Ma
et al., 2022). Thus, we have used the default hyperparameters, which are 128 sequence
length, a training batch size of 4 and an eval batch size of 32, and a learning rate of 1e-4.
The model is trained and evaluated after 5 epochs.

Sequences are represented using the IO encoding because the EntLM authors claimed
that results were better in this way (Ma et al., 2022).
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MMCV-Train MMCV-Test mBERT EntLM

Sequence length 128 128 128 128
Train batch size 32 32 16 16
Eval batch size 8 8 32 20

Lr 5e-5 2e-5 5e-5 5e-5
Epochs 3 1 5 20
Model mBERT mBERT mBERT mBERT

Table 11: Hyperparameters for the AbstRCT dataset in the component detection task

MMCV PET iPET

Sequence length 128 256 256
Train batch size 32 16 16
Eval batch size 8 24 24

Lr 5e-5 1e-5 1e-5
Epochs 3 3 3
Model SciBERT SciBERT SciBERT

Table 12: Hyperparameters for the AbstRCT dataset in the relation detection task

4.2.2 AbstRCT

We use the three same systems for argument component detection: MMCV, mBERT, and
EntLM. We have made a run for each sampling with a predefined seed. We have only made
one run for each system, and we evaluated it on the test split.

As it can be seen in Table 11, for fine-tuning MMCV we defined a sequence length of
128, a train batch size of 16 and an eval batch size of 20, and a learning rate of 5e-5. We
fine-tune the model for 20 epochs.

With respect to mBERT system, used a sequence length of 128, a train batch size of
16 and an eval batch size of 32, and a learning rate of 5e-5. The model was fine-tuned for
5 epochs.

Finally, the EntLM system we used the default hyperparameters: 128 sequence length,
a training batch size of 16 and an eval batch size of 20, and a learning rate of 5e-5. The
models is trained over 20 epochs.

To extract argument relations we used two systems: MMCV, PET and its iPET vari-
ation. We make a run for each sampling with a predefined seed. We have only made one
run for each system, and we evaluated it on the test split.

For MMCV we used the default parameters where we defined a sequence length of 128,
a batch size of 32, and a learning rate of 5e-5. We have trained the model for 3 epochs
(Mayer et al., 2021).

In PET, as we do for the rest of the systems, we also use the default script where a train
batch size of 16, an eval batch size of 24, and a gradient accumulation of 4, are defined.
We train the model for 3 epochs. Experiments have also been run with iPET, a system
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based on iterating several times the PET system to achieve better results; iPET is used
using the same hyperparameters as for PET.

4.3 Label words

Both EntLM and PET need a label word that allows them to relate a token with a possible
label in order to generalize to the other tokens and correctly predict the corresponding label.

In the case of EntLM, different label words were made using the code released by
EntLM. To generate the label words, we define the percentage of token selection, how
many tokens we want and the filtering method according to three methods: timesup, data,
and LM.

• Data: in this method, we select the most frequent word of the given label in the
corpus.

• LM: in this method, we leverage the pre-trained language model for label word search-
ing.

• Timesup: in this method, we select the label words while considering the data dis-
tribution and LM output distribution.

After trying the three methods to obtain the label words, with a 0.95 and 0.6 filter
ratio and 10 elements and 6 elements respectively, it was found that depending on the
split, one label word method performed better than the others. For CoNLL 2003 the best
method is the timesup, 0.6 ratio, and getting 6 tokens per label for all splits, using both
the percentage and K-shot samplings. For AbstRCT this is a little bit more complicated:
for the 100% and 40% splits the most best method is based on the same parameters as for
CoNLL 2003, but for 5%, 10%, and 20%, the most useful is the one using LM as a method,
0.95 ratio, and 10 tokens per label. For K-shot, the best choice is LM for all, but for K-5
and K-50 it is a 0.6 ratio and 6 tokens, while for K-10 and K-20 it corresponds to 0.95 and
10 tokens. In addition to using the EntLM method, we created our own label words by
detecting the 20 most frequent tokens for each class and obtaining the unique tokens for
each of them.

In the case of PET, we use two methods to obtain label words: the one that is used
for NLI, provided in the PET system, and our own method which generates label works
by using the 20 most frequent tokens per label and obtaining the unique labels for each of
them.
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5 Results

In this section we will show the results obtained in the experiments. First we will report
the sequence labelling results for NER with CoNLL 2003 and argument mining using the
AbstRCT dataset. Second, in Section 5.3 we present the results obtain for few-shot learning
for the argument relation extraction task.

5.1 CoNLL 2003

Table 13 reports the results with the whole dataset, and with both the percentage and
K-sampling for the three systems used for sequence labelling, namely, MMCV, BERT and
EntLM.

First, we note that fine-tuning MMCV achieves very poor results when train on a few-
shots using the K-shot sampling. However, this changes substantially when trained on the
percentage-based samples, were this model obtains quite good results, obtaining 0.8340 of
F1 micro using only 5% of the data. We can also observe that with splits as small as 10%
and 20%, the results are very good, so doing few-shot with the MMCV system allows us
to achieve good results, without the need of having a large dataset. When we balance the
dataset there is a notorious loss of performance, achieving with 5% of the data a result
of 0.7130 and with 10% a result of 0.8600. This constitutes a loss of 12 and 5 points
respectively. Reducing the number of Os does not help either.

In the case of BERT, we can observe that for the K-shots the results are quite good,
especially for K-50, where we obtained 0.6280 of F1 score. With the percentage splits, it
maintains a fairly stable learning curve with results around 0.86, so the increase of sentences
considered as examples does not affect the performance of this system. With the balanced
dataset, there is no noticeable difference between the 5% balanced and unbalanced, losing
only 3 points.

The EntLM system achieves similar results to those obtained with BERT for K-shot
sampling. In fact, they are best across all the systems, achieving with K-50 a score of
0.5781. When using percentage sampling obtains good results but not as good as those
achieved by MMCV. As with previous methods, balancing the samplings results also in
loss of performance.

When analyzing the results obtained lowercasing the dataset, the overall trend is similar
to the one observed with the dataset in its original form except for a couple of differences:
(i) performances across systems and type of sampling worsen considerably and, (ii) EntLM
degrades most when trained on lowercased data with the K-sampling.

Summarizing, and contrary to published results (Ma et al., 2022), the few-shot exper-
iments show that fine-tuning MMCV on the percentage-based sampling outperforms any
other option, including EntLM. This is further illustrated in Figures 5 and 6 (ECAI 2020
refers to the MMCV system), where MMCV obtains the best results overall. Furthermore,
while EntLM is best in K-shot settings, those results remain well below the ones obtained
using only 5% of the data.
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Dataset
Original Lower Avg

MMCV Bert EntLM MMCV Bert EntLM

100% 0.9646 0.8697 0.9099 0.9512 0.8771 0.8649 0.9151
K5 0 0.2005 0.2453 0.0001 0.2056 0.0043 0.1486
K10 0.0016 0.4689 0.4904 0.0001 0.2797 0.1704 0.3198
K20 0.0005 0.5642 0.5781 0.0009 0.3602 0.1857 0.3808
K50 0 0.6280 0.6326 0 0.4127 0.2384 0.4202
5% 0.8340 0.8069 0.8282 0.6863 0.7114 0.7201 0.8142
10% 0.9182 0.8562 0.8745 0.8391 0.7582 0.7791 0.8815
20% 0.9410 0.8736 0.8837 0.8917 0.8093 0.8159 0.8996
30% 0.9509 0.8824 0.8886 0.9167 0.8308 0.8265 0.9064
40% 0.9541 0.8769 0.8942 0.9204 0.8356 0.8275 0.9082
5%‡ 0.7130 0.7718 0.7784 0.5960 0.6542 0.6543 0.7521

O less‡ 0.6896 0.7594 0.7816 0.5845 0.6410 0.6195 0.7357
10%‡ 0.8600 0.8059 0.8137 0.7600 0.7078 0.7200 0.8237
O less‡ 0.8517 0.7993 0.8085 0.7585 0.7057 0.7099 0.8172
Avg % 0.9271 0.8610 0.8799 X X X X

Avg K-shot 0.0005 0.4654 0.4866 X X X X
Avg balanced 0.7786 0.7841 0.7956 X X X X

Table 13: CoNLL 2003 results with dev data.‡Results with balanced and balanced data
with 10% fewer tokens classified as O. Avg only of the results with the original dataset.

Figure 5: Learning curve for CoNLL 2003 dataset.
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Figure 6: Max values comparison for CoNLL 2003 dataset.

5.2 AbstRCT

The argument component detection evaluation is performed in the in the same way done
for the CoNLL 2003 data. Table 14 shows that best results are again obtained by MMCV,
although for competitive performance at least 10% of the data is needed. Furthermore,
MMCV outperforms EntLM also using K-sampling, although K-sampling results are in
general quite poor.

As an example, with K-10 we obtain a very bad result of 0.0002 F1 score, but with
K-50 the results are already decent, achieving 0.5804 F1 score. Balancing the dataset also
affects negatively. For example, fine-tuning on the balanced 5% split, we obtain a result
of 0.4897 for F1 score, a difference of 18 points compared to the original 5% split.

If we check the results obtained using mBERT, with both K-shot and percentage-based
sampling the results are quite bad but more stable than those of MMCV. As it is the case
for any other evaluation setting, any kind of balancing results in worse performance results.

The EntLM results are quite bad for every setting, including those based on K-shot
sampling. While its performance is a bit better using the percentage sampling it still
remains far from MMCV.

When testing our method to obtain the label words, we can see that in general it
does not improve over the original EntLM’s technique. In any case, the trend previously
mentioned with respect to other system is maintained.

Finally, the performance when lowercasing the dataset is similar to the one we observed
for CoNLL 2003. Thus, results are in general lower and the trends already discussed
in previous paragraphs remain the same. It is true that the results obtained using the
percentage splits are quite competitive and that in some cases they even improve over
those obtained using the original data. Thus, using 20% MMCV obtains a F1 score of
0.8462 while for 10% we have achieved 0.8395 as a result, which is a little higher than that
achieved with the original dataset. Another difference is that balancing slightly improves
results.

Since the EntLM paper mentions that better results are achieved with IO encoding, we
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Dataset
Original Lower Avg

MMCV mBert EntLM EntLMm MMCV mBert EntLM EntLMm

100% 0.8916 0.5661 0.5859 0.5381 0.8837 0.5652 0.4366 0.4319 0.6454
K5 0 0.0768 0.1210 0 0 0.0653 0.1417 0 0.0495
K10 0.0002 0.1501 0.1585 0.0039 0.0001 0.1359 0.1782 0.0116 0.0782
K20 0.0841 0.2254 0.2203 0 0.0959 0.2146 0.2042 0.1853 0.1324
K50 0.5804 0.4180 0.3749 0.1502 0.5835 0.4063 0.3210 0.2903 0.3809
5% 0.6701 0.4548 0.3980 0.1341 0.6774 0.4642 0.2538 0.2087 0.4142
10% 0.8378 0.5094 0.5327 0.3593 0.8395 0.5003 0.3056 0.2673 0.5598
20% 0.8575 0.5436 0.5328 0.4212 0.8462 0.5291 0.3577 0.3442 0.5888
30% 0.8639 0.5102 0.5761 0.5065 0.8628 0.5013 0.3846 0.3821 0.6142
40% 0.8746 0.5247 0.5527 0.4972 0.8736 0.5289 0.4058 0.3840 0.6123
5%‡ 0.4897 0.3966 0.1959 0 0.4903 0.3699 0.1112 0.0945 0.2706

O less‡ 0.4976 0.3499 0.2272 0 0.4907 0.3317 0.1209 0.0948 0.2687
10%‡ 0.7603 0.3754 0.2965 0.2148 0.7640 0.3698 0.1885 0.1359 0.4118
O less‡ 0.6884 0.3497 0.3142 0.1389 0.7169 0.4564 0.2456 0.2298 0.3728
Avg % 0.8326 0.5181 0.5297 0.4094 X X X X X

Avg K-shot 0.1662 0.2176 0.2187 0.0385 X X X X X
Avg balanced 0.6090 0.3679 0.2585 0.0884 X X X X X

Table 14: AbstRCT results using IOB encoding with test data.‡Results with balanced and
balanced data with 10% fewer tokens classified as O. Avg only of the results with the
original dataset.

have done the experiment with the AbstRCT dataset. The results obtained are presented
in Table 15, consisting first of the result with the whole dataset, then the sampling used
in EntLM, based on K-shots, followed by our sampling based on percentages.

First, modifying the encoding does not affect the results obtained with mBERT. On
the other hand, with EntLM there is an improvement in the results. Thus, if we look at the
K-shot splits, there is a 7 point improvement with K-5 shot and a more noticeable 10 point
improvement for the K-50 split, obtaining a value of 0.4781. If we look at the percentage
splits, the improvement is also quite good. For example, for the 5% split, there is a
difference of 14 points while when training on the 40% split there is an improvement but not
as noticeable, achieving a result of 0.5937. Finally, and contrary to what happened when
using the IOB encoding, in this case balancing the splits actually benefits the performance
of the models.

EntLM’s results are also substantially improved when using our own method to obtain
the label words together with the IO encoding. For example, for K-50 we obtain an
improvement of 21 points, achieving a result of 0.3698. If we look at the percentage splits,
the most noticeable improvement is in the 10% split with a difference of 17 points with
respect to those obtained using the IOB encoding.

In any case, the main result is that MMCV is the best system to perform few-shot
learning for argument component detection when used on our percentage-based sampling.
This is further illustrated by the learning curve in Figures 7 and 8, where we represent the
maximum scores obtained for each system.
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Figure 7: Learning curve for AbstRCT dataset (ECAI 2020 refers to the MMCV system.)

Figure 8: Max values comparison for AbstRCT dataset (ECAI 2020 refers to the MMCV
system.)
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mBERT mBERT† EntLM EntLM† EntLMmine EntLMmine†
100% 0.5661 0.5661 0.5859 0.6401 0.5381 0.5997
K5 0.0768 0.0612 0.1210 0.1945 0 0.0066
K10 0.1501 0.1209 0.1585 0.2168 0.0039 0.0922
K20 0.2254 0.2158 0.2203 0.3487 0 0.0341
K50 0.4180 0.4088 0.3749 0.4781 0.1502 0.3698
5% 0.4548 0.4548 0.3980 0.5417 0.1341 0.2062
10% 0.5094 0.5094 0.5327 0.5944 0.3593 0.5226
20% 0.5436 0.5436 0.5328 0.5869 0.4212 0.5043
30% 0.5102 0.5102 0.5761 0.6095 0.5065 0.5278
40% 0.5247 0.5247 0.5527 0.5937 0.4972 0.5453
5%‡ 0.3966 0.3836 0.1959 0.2522 0 0.0769

O less‡ 0.3499 0.3328 0.2272 0.2933 0 0.0394
10%‡ 0.3754 0.4007 0.2965 0.4040 0.2148 0.2814
O less‡ 0.3497 0.4069 0.3142 0.4296 0.1389 0.2483

Table 15: Comparison of results using IOB encoding and †IO encoding for Ab-
stRCT.‡Results with balanced and balanced data with 10% fewer tokens classified as O.

5.3 Argument relation extraction

We report the results obtained for relation extraction into two different tables. First,
Table 16 presents the results with K-shot sampling using both F1-micro and F1-macro for
each system used, namely, MMCV, PET, and iPET. Second, Table 17 includes the results
obtained using percentage-based sampling.

First, we can see that by doing percentag-based sampling we obtain much better results
across systems. Second, while performance in K-shot settings improves as we augment the
size of the training data, this is not the case for the splits generated by the percentage
method, as 5% is enough to obtain results close to those obtain using the full size dataset.
Third, while the difference between the two variants of PET and MMCV are not significant
when trained generating the splits by percentage of sentences, this is not the case in the
K-shot setting, in which MMCV clearly outperforms the other systems.

For relation extraction we also used our own method to generate the label words. Thus,
if we observe the results obtained using PET but with the NLI label words, the results are
slightly worse than those obtained with our label words.

If we look at iPET for K-shot sampling, the system achieves worse results than PET
and MMCV. This is also the case when training on the splits by percentage, although the
difference is not very large. With the balanced split, the behavior is similar to what was
achieved in both MMCV and PET, obtaining a result of 0.9010, slightly lower than what
was achieved with the corresponding unbalanced split.

After commenting on the results, we can conclude that PET and iPET with their own
label words achieve better results than MMCV, as it has been commented or as it can be
observed in Figure 9, in which we can see the learning curve, and in Figure 10, where we
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Dataset
MMCV PET iPET

F1-micro F1-macro F1-micro F1-macro F1-micro F1-macro
K5
1 0.4064 0.2553 0.0537 0.0483 0.0163 0.0178
2 0.5956 0.3445 0.2828 0.1739 0.0163 0.0162
3 0.3419 0.2402 0.0749 0.0656 0.0468 0.0369

K10
1 0.4621 0.3002 0.0921 0.0566 0.0581 0.0589
2 0.6099 0.3570 0.0911 0.0557 0.0931 0.0723
3 0.4453 0.2939 0.0911 0.0557 0.7409 0.3144

K20
1 0.4567 0.3076 0.3394 0.2011 0.0207 0.0287
2 0.4941 0.3281 0.2552 0.1574 0.0433 0.0687
3 0.3808 0.2775 0.5650 0.2638 0.0315 0.0409

K50
1 0.7123 0.4610 0.5842 0.3860 0.6946 0.4152
2 0.7522 0.4823 0.4266 0.2906 0.2557 0.2027
3 0.7818 0.4910 0.6399 0.4040 0.4690 0.3207

Avg K5 0.4479 0.2800 0.1371 0.0960 0.0264 0.0237
Avg K10 0.5057 0.3170 0.0915 0.0560 0.2974 0.1485
Avg K20 0.4438 0.3044 0.3865 0.2074 0.0319 0.0461
Avg K50 0.7488 0.4781 0.5502 0.3602 0.4731 0.3128

Table 16: Argument relations with K-shot sampling on test data.
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MMCV PET PET† iPET iPET† Avg

100% 0.9113 0.9143 0.9108 0.9177 0.9177 0.9144
5% 0.9143 0.9084 0.9054 0.9000 0.9049 0.9066
10% 0.9099 0.9089 0.9089 0.9059 0.9113 0.9090
20% 0.9049 0.9172 0.9099 0.9113 0.9138 0.9114
30% 0.9118 0.9133 0.9138 0.9113 0.9108 0.9122
40% 0.9118 0.9167 0.9163 0.9158 0.9148 0.9151

10% less‡ 0.9044 0.9030 0.9049 0.9010 0.9069 0.9040
Avg 0.9107 0.9131 0.9109 0.9103 0.9122 X

Table 17: Argument relations results with percentage-based sampling on the test
data.†Results obtained using the NLI label word.‡Results with 10% with 40% fewer exam-
ples classified as noRel.

Figure 9: Learning Curve for relations (ECAI refers to the MMCV system).

see the maximum value for each system. On the other hand, NLI’s label words achieve
quite good results, so using NLI’s own label words for argument relations would be a good
idea, saving the time of making one of our own. It should be mentioned that this system
has a very long execution time as several of them have to be executed iteratively, so it may
be that other systems are more recommendable in some situations.
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Figure 10: Max values comparison for relations (ECAI refers to the MMCV system).
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6 Error Analysis

From the results obtained in previous sections, it has been clear that the model MMCV
consisting of SciBERT with GRU layer is the best-performing model for argument mining.
In this section, we will provide a qualitative analysis of the predictions produced by the
models, with the aim of identifying the most important errors.

6.1 Argument Component Detection

Before diving into a detailed analysis of outputs generated under each individual setting,
there are some errors in the predictions throughout all the experiments that can be more
or less generalized. Overall, the identification of Premise was more accurate compared
to Claim. In fact, the majority of the misclassifications happened in determining Claim
arguments. It should be noted that by using IO encoding with EntLM using mBERT, these
errors are reduced since all labels start with I, thus eliminating the errors of predicting
whether they are B-Claim or B-Premise.

After commenting and analyzing the errors in a generalized way, we will proceed to
an analysis of the errors for each of the systems. For this purpose, we have collected the
predictions for each system of the percentage split corresponding to 10%. The results have
been represented in Table 18.

For the MMCV system we can observe that among the most frequent errors are those
corresponding to classify as Premise or Claim tokens that are classified as O. This could
be due to the fact that in many sentences O is interspersed between Premise or Claims,
and the system classifies the whole sentence with a label without differentiating these Os
mentioned. The second most frequent error is not knowing how to differentiate between
Claim and Premise (2487 cases).

With respect to mBERT, we can verify that a total of 5551 errors have occurred, the
most frequent error being the one that corresponds to the detection of Premise or Claims
labels that are actually O, with a number of 2188. The reason must be the same as the one
previously described, eliminating the O’s that are interspersed throughout the sentence
and not differentiating these. The second most frequent error, with a number of 2091, is
the one corresponding to the erroneous classification between Claim and Premise. This
being a system that is not capable of clearly differentiating between these two labels.

Looking at the EntLM system we have detected a total of 5020 errors. The most
frequent error is the same as previously described in both the MMCV and mBERT systems,
i.e., the prediction of Claim or Premise instead of O, with a number of errors of 2505. The
second most frequent error is not being able to differentiate between Claim and Premise,
with an error rate of 1360.

EntLM using IO encoding performed better so the number of errors is lower. The
most frequent error is the same as for the other systems, namely, detecting as Premise or
Claim tokens that should be classified as O (2097). The second most frequent error, with
a number of 1546, is to missclasify O labels as Premise or Claim. Lastly, the least frequent
is mislabel Claim as Premise. This is due to the fact that having only IO encoding means
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System Total O-Premise/Claim Premise/Claim-O Premise-Claim

MMCV 10% 7717 3294 1900 2487
mBERT 10% 5551 2188 1272 2091
EntLM 10% 5020 2505 1155 1360

EntLMIO 10% 4941 2097 1546 1298
EntLMMine 10% 5790 2214 2031 1545

EntLMMineIO 10% 5299 2319 1457 1523

Table 18: Prediction errors made by the systems used for AbstRCT.

System Total noRel-Sup/Att Sup/Att-noRel Sup-Att

MMCV 10% 180 50 128 2
PET 10% 185 59 123 3
iPET 10% 191 64 124 3

PETNLI 10% 193 68 122 3
iPETNLI 10% 190 47 141 2

Table 19: Prediction errors made by the systems used for AbstRCT in the relation detection
task.

that there are fewer errors since it only has to predict whether it is Claim or Premise.
EntLM using our method to obtain the label words, for both IO or IOB encodings, incurs
into more errors than when using the EntLM technique.

6.2 Argument Relation Extraction

As we have done previously we have identified that most of the classification errors are
related to misclassifying support or attack relations as noRel, due to the manner in which
the dataset has been built.

If we look at the specific errors of each system by looking at the predictions on the test
corresponding to the 10% split, we can observe the following issues, summarized in Table
19. Thus, for the MMCV system, we can verify that only 180 errors have occurred, a very
small number, the most frequent error being the prediction of noRel instead of Support
or Attack. The second most frequent error is the opposite of the previous one, namely,
detecting Support or Attack instead of noRel (50 times). The pattern described for MMCV
above is repeated for PET and iPET systems, be that using our method for generating the
label words or the PET NLI-based technique.

6.3 Other Experiments

In this section we carry out a small experiment to determine how much actual data is
required to annotate in order to obtain competitive results using few-shot learning for ar-
gument mining in Spanish. Since for this language we do not have any manually annotated
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Neoplasm Glaucoma Mixed

10% 0.5686 0.5772 0.5679
20% 0.5841 0.5810 0.5801
30% 0.6974 0.6896 0.6988
40% 0.7622 0.7499 0.7610

50-shot 0.1737 0.1806 0.1768

Table 20: Results of F1 macro obtained for argument component detection on the AbstRCT
dataset in Spanish.

data, we use the automatically translated and projected version of AbstRCT published by
Yeginbergenova and Agerri (2023).

In order to do so, we first sample the 10%-40% range and 50-shot of the training data
and then evaluating on the test data of neoplasm, glaucoma, and mixed datasets. This
experiments has been undertaken using MMCV, since it has been the best system for the
English version of this dataset. We used the same script and the same hyperparameters
that have been used to perform the experiments previously described. The results are
presented in Table 20 below.

We can see that few-shot using the 40% of the data is enough to achieve very good
results, saving the need to label the full dataset to achieve competitive performance. Taking
this result into account, we perform an exercise consisting of manually annotating during
1 hour (after some previous training to get familiarize with the task) a random sample
of 1000 sentences from the neoplasm train set. After one hour, we had annotated 58
sentences3. Thus, by extrapolating this result we could conclude that in around 10 hours we
could obtain around 600 sentences (between 10% and 20% using our percentage sampling
method) which is the amount of data required to obtain competitive performance for the
argument component detection task. This is considerably less than the effort required to
annotate the whole dataset, which would amount to more than 80 hours.

3We did check with their gold standard version to check our annotations were in sync.
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7 Conclusion

This is thesis is the first comprehensive study, as far as we know, of few-shot learning for
argument mining. Our work shows that when performing few-shot learning for sequence
labelling and relation extraction tasks the data sampling method has a big influence in
the results obtained. For example, it can be observed that fine-tuning MMCV if the best
method if trained when percentage-based sampling. This contradicts previous results on
few-shot learning for sequence labelling (Ma et al., 2022), suggesting that more work is
required to understsand exactly the behaviour of sequence labelling systems in few-shot
settings.

Thus, our experimental results show that for argument component detection annotating
training data for around 15 hours is enough to obtain state-of-the-art results. Furthermore,
we have also shown that 40% of the data allows us to obtain 0.8746 in F1 score, only 2
points less than when fine-tuning MMCV with the 100% of the data.

For relation extraction the results are even more encouraging, as the few-shot methods
we have tested were approximating the state-of-the-art using as little as 5% of the training
data.

Thus, we must conclude that we need to think more carefully the way we sample our
data to perform few-shot learning, as it significantly impacts the results. Thus, future
work should explore the effectiveness of different sampling approaches in different few-shot
learning scenarios, as well as the development of new sampling methods that can better
capture the underlying structure of the data. Another task to be performed would be the
utilization and generation of different label words that are more optimal when carrying
out this type of task, such as the detection of components in arguments. It would also be
interesting to carry out few-shot experiments in cross-lingual settings.
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