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Abstract: Reducing the economic and environmental impact of industrial process may be achieved
by the smartisation of different components. In this work, tube smartisation is presented via direct
fabrication of a copper (Cu)-based resistive temperature detector (RTD) on their outer surfaces. The
testing was carried out between room temperature and 250 ◦C. For this purpose, copper depositions
were studied using mid-frequency (MF) and high-power impulse magnetron sputtering (HiPIMS).
Stainless steel tubes with an outside inert ceramic coating were used after giving them a shot blasting
treatment. The Cu deposition was performed at around 425 ◦C to improve adhesion as well as
the electrical properties of the sensor. To generate the pattern of the Cu RTD, a photolithography
process was carried out. The RTD was then protected from external degradation by a silicon oxide
film deposited over it by means of two different techniques: sol–gel dipping technique and reactive
magnetron sputtering. For the electrical characterisation of the sensor, an ad hoc test bench was
used, based on the internal heating and the external temperature measurement with a thermographic
camera. The results confirm the linearity (R2 > 0.999) and repeatability in the electrical properties of
the copper RTD (confidence interval < 0.0005).

Keywords: thin film; RTD; copper sensor; magnetron sputtering; sol–gel; tube

1. Introduction

In an industry that is increasingly moving towards a digital form of business, the
need to be connected to its production processes is increasing. In the Industry 4.0 era, the
acquisition of the information regarding the status of these processes is highly valued. In
sectors as diverse as chemical, power generation, or food, the critical parameters of both
the process and the equipment must be monitored during a large part of the production
process [1–6]. For a long time, the interest of companies in these and other sectors has
focused on knowing the state of the fluids that circulate inside the pipes throughout their
plants and equipment. Continuous monitoring prevents critical system failures, avoids
leaks and energy losses, and thus helps keep costs down [7–10]. Meanwhile, the interest
of the companies supplying this equipment has been to offer this service, justified by the
interest it arouses.

However, most of the monitoring methods on the market are limited by their size
or their high degree of invasion in critical processes. For this reason, in recent years,
sensorisation and monitoring have evolved towards less invasive and more embedded
methods [11–13]. Their benefits include maintaining the integrity of the pipes, thus ensuring
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greater safety, and ultimately lower installation and maintenance costs [14,15]. Among the
existing methods (ultrasound, Eddy current, thermography, etc.) thin-layer sensors have
the advantage of being able to be installed in areas which are difficult to access, in addition
to presenting a faster response to changes in the system [16–18].

As is known from the literature, a resistive temperature detector (RTD) is a device
that changes its electrical resistance value according to the temperature, and it can be
mainly classified in three categories: wire-wound, coiled elements, and thin-film. These
sensors usually present better accuracy compared with other temperature sensors such as
thermocouples. In the case of a sensor based on a thin-film RTD, this can be composed
of various thin layers. A typical example of a multilayer sensor for a tube may have the
following configuration (Figure 1):

• A layer of electrical insulator on the surface of the stainless-steel tube. Its function is
to avoid electrical contact between the sensor layer and the tube.

• An electrically conductive or sensing layer, which is the RTD itself. This metallic layer
has a varied electrical resistance as the temperature changes.

• A protective layer to protect the sensor layer from degradation phenomena such as
high-temperature oxidation.
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Figure 1. Layout of the temperature sensor.

Therefore, in the context of this work, the RTD designation will refer to the sensor
layer; that is, the copper layer. Meanwhile, the device made up of multiple layers will be
defined as the temperature sensor.

Concerning the sensing layer, platinum is commonly used as a sensing material
due to its excellent corrosion resistance and electrical response with good linearity for
wide ranges of temperature [19–23], but its use implies a high economic impact in its
industrial production. As a cheaper alternative, other materials have been studied, such as
nickel [24–27] or aluminium [28,29]. In some of these studies, transfer processes of the
pattern to a curved substrate have been carried out, requiring complex methods and
several materials.

In the current contribution, a copper RTD for ceramic-coated stainless-steel tubes is
introduced. In the past, few works reporting Cu-based [30,31] and combined Ti–Cu [32]
and Cu–Ni [33] systems have been published, although the temperature range covered in
those works is significantly lower. Details on the fabrication of a copper layer and a simple
method patterning are provided, as well as the results of electrical tests carried out on a
home-made prototype.



Sensors 2023, 23, 5442 3 of 18

2. Background
2.1. Design of the Sensor Layer

An RTD needs an electrical circuit through which electrons circulate, usually made
of a metal that will see its electrical resistance changed with the variation in temperature.
By measuring this electrical resistance change, it is possible to measure the variation
in temperature. In the case of metals, the electrical resistance increases with increasing
temperature [34].

The model that currently best explains the behaviour of metals in solid structures
is the band theory, being based on molecular orbitals and approximating the quantum
state of a solid. Having a high number of valence orbitals, the energy levels together are
considered to form continuous bands. Thus, two types of bands are differentiated: valence
bands, where all the valence electrons of the atoms are found; and the conduction bands,
where free electrons are found and responsible for conducting the electric current. In the
case of a conductive material, these two bands will overlap or the gap between them will
be minimal, allowing the electrons to jump between the bands. As the temperature of the
metallic solid increases, the number of phonons generated within the material increases
and they collide with the electrons, causing them to scatter. At the macroscopic level, this
leads to an increase in the electrical resistivity of the material.

It is known that the resistance at room temperature (20–25 ◦C) of a circuit depends on
its resistivity at that temperature (ρ), and the geometric parameters of the circuit (l: length,
A: cross-section), for a uniform material and a constant cross-section:

R0 = ρ (l/A) (1)

For a wide temperature range, the following linear relationship between resistance
and temperature holds, where α is the temperature coefficient of resistance:

RT = R0(1 + α(T − T0)) (2)

Regarding the design and production of thin film sensing layers, generally, it is
preferred to start with a high electrical resistance value at room temperature, so that it
is possible to minimize the electrical noise in the measurement. From Equation (1), it is
concluded that for the electrical resistance to increase, it is necessary to increase the length
of the circuit and/or decrease its section. The latter happens if, in the case of a circuit with
a rectangular section, both the channel width and the thickness are decreased. However,
these three parameters (length, channel width, and thickness) are limited by total circuit
size, photolithography, and material deposition technique, respectively. It is necessary to
adjust these parameters to obtain the optimal design of the sensing circuit. Taking this into
account, the design and layout of the RTD was made using computer software (EAGLE,
from Autodesk).

2.2. Base Materials

As a worldwide manufacturer and distributor of seamless tubes of a wide variety of
stainless steels and nickel-based alloys, Tubacex has a wide network of experts who are
knowledgeable about industrial processes and their requirements, as well as the needs they
demand [35,36]. Thus, after an exhaustive study by its highly qualified metallurgical staff,
the candidate materials for a given application can be selected.

For this work, due to commercial interests, 310S steel was chosen, making use of both
tube pieces and flat sheets. This material is used, for example, in Waste-to-Energy (WtE) or
biomass boilers, because it has very good resistance to corrosion at high temperatures and
is cheaper than other options (where the chromium and nickel content are what weigh more
in cost). For the environments of the aforementioned applications, where many chlorinated
compounds are generated and, therefore, corrosion in austenitic steels above 500 ◦C can be
very fast, this stainless steel is covered with a special coating that will be discussed in the
next section.
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2.3. Isolation Layer

In order to avoid the electrical contact between the metallic pipes and the sensing
layer, an electrical isolation of the surface of the pipe is needed. Some authors have used
thin-film layers to isolate a metallic substrate via reactive magnetron sputtering with SiO2
and Al2O3 [37,38], or YSZ/Al2O3 multilayered films [39]. Others have used thermally
sprayed alumina [40] and sol–gel deposition, or have applied Chemical Vapor Deposition
(CVD) to fabricate SiOx films [41]. In this work, an advanced thick ceramic coating was
applied. This material is a commercial product from the company Tubacoat SL [42], which
is part of the Tubacex Group. What is sought with Tubacoat is to minimize the adhesion
of any material thanks to its inert composition (Table 1), thus lowering maintenance costs
and times. In addition, the lifetime of the tubes is extended by not exposing the metal to
fouling or corrosive atmospheres and high temperatures.

Table 1. Properties of Tubacoat [43].

General Composition of the Coating Borosilicate Glass

Thickness range (µm) 100–150
Average roughness, Ra (µm) <0.04
Average of the maximum peak-to-valley height, Rz (µm) 0.2
Emissivity, ε, at 20 ◦C [43] 0.89
Emissivity, ε, at 550 ◦C [43] 0.84

3. Experimental Section
3.1. Isolation Layer Preparation

Due to the anti-adherent property (low roughness and chemically inert borosilicate
composition) that the ceramic coating presents on its surface, the adhesion of any type of
material on it is highly compromised regardless of the thickness applied and the technique
used. Therefore, to improve this property to acceptable values, it was necessary to increase
the effective surface roughness by a process of shot blasting. This modification was carried
out by means of particles of white corundum (particle sizes F220 and F500) and different
surface finishes were obtained over the ceramic coating. In this process, 3 bar of pressure
shot was used while a shot blasting distance from the nozzle to the substrate surface of
0.5 m was kept.

3.2. Sensor Layer

The sensor layer was made of copper due to its linearity in the electrical
response [30,31] and the low cost, compared to other materials such platinum or gold.
In the case of copper, the temperature for which its linearity is maintained according to
Equation (2) ranges from −200 ◦C to 260 ◦C [44]. In this work, its cryogenic properties
will not be tested, not even below room temperature. Therefore, the operating range was
reduced from 25 ◦C to 250 ◦C. For the terminal connections of the RTD, 1 mm diameter
cables of nickel-plated copper and a high-temperature epoxy paste were used.

Before fabricating the sensing layer, its theoretical resistance value at room temperature
was calculated (Table 2) according to Equations (1) and (2) after defining the geometrical
parameters expected from its fabrication.
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Table 2. Parameters for theoretical calculation of the resistance and its value.

Sensor Layer Geometrical Parameters

Length (mm) 500
Channel width (mm) 1
Thickness (µm) 2

Copper electrical properties at 20 ◦C [45]

Resistivity (Ω*m) 1.71 × 10−8

Temperature coefficient of resistance (1/◦C) 0.00393

Theoretical resistance (Ω) 4.278

The coatings corresponding to the sensor layer were deposited via PVD magnetron
sputtering in two different Cemecon units: CC800/8Plus and CC800HiPIMS (batch con-
figuration). The first one uses four mid-frequency (MF) power supplies (Advance Energy
PE II). In the case of the unit CC800HiPIMS, it presents four high-power impulse magnetron
sputtering (HiPIMS) cathodes and two additional cathodes in direct current (DC) mode.
The targets used were Cu (99.9%) in two different rectangular sizes: 200 × 88 mm and
500 × 88 mm (height × width) regarding the unit used (CC800/8Plus and CC800HiPIMS,
respectively).

To study the influence of the roughness of the ceramic substrate on the adhesion
properties of copper over it, a copper layer was deposited with the MF power supply on
different surface finishes. Subsequently, another study was carried out, but in this case
to determine and compare the conditions for the synthesis of copper. The experimental
conditions for the adhesion and sensor layer studies are gathered in Table 3.

Table 3. Deposition conditions for the adhesion study and the sensor layer study.

Layer Power Supply Heating Output Applied Power (W) Thickness (µm)

Adhesion study MF 0 500 1.2

Sensor layer study

HiPIMS 0 500–1000 1.9

MF
0 500 1.1

4000 W 500 1.4

Before the deposition of the copper coating or layer, the samples were cleaned with
acetone, and then immersed in ethanol and cleaned with an ultrasound bath. Finally, the
tubes were dried with compressed air. Pieces of silicon wafer (100) were also cleaned and
introduced into the vacuum chamber to measure the thickness and the X-ray diffractograms.

Using these diffractograms and the Scherrer equation, the mean size of the ordered
crystalline domains for all the copper coatings over silicon samples were calculated accord-
ing to the following equation:

D =
K λ

β cos θ
(3)

where K is the shape factor (=0.9), λ is the X-ray wavelength (=0.15406), β is the line
broadening or full width at half maximum, and θ is the Bragg angle. The width and form of
the peaks of a diffractogram depend on instrumental factors and the sample microstructure.
Therefore, under the same instrumental conditions, the microstructure of different samples
can be compared.

In both sputtering equipment, the samples were mounted on a planetary carrousel and
introduced into the vacuum chamber with a rotary table. After achieving a minimum base
pressure of 6 mPa, a process of heating was carried out at 425 ◦C over 2 h (4 kW) to bake
the vacuum chamber, the substrate holders, and all the inner components. This was carried
out by applying 4 kW to the resistance elements installed in the inside of the chamber. The
power applied to the cathodes was 0.5 kW during 1 h of the deposition process. During
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this time and due to the batch configuration (double rotation), the surfaces of the samples
were exposed alternatively to the plasma sources. The working gas used was Argon
280 sccm with a deposition pressure of 625 mPa.

To study the influence of temperature on the structure of copper, certain samples
underwent heat treatment, also known as annealing. This process was carried out in the
same vacuum chamber as the PVD equipment, in vacuum conditions (lower than 10 mPa)
for 4 h at about 450 ◦C.

After the deposition of the sensor layer, it is necessary to generate an electrical pattern
on it. Therefore, the layer will act as an RTD (Figure 2).
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Figure 2. Fabrication of the sensor. (a) Copper deposition. (b) Mask obtention along the tube.
(c) Etching with ferric chloride. (d) Elimination of the mask. (e) Welding of the cables. (f) Protection
with sol–gel. Masks designed with Eagle (Autodesk, Inc., San Rafael, CA, USA).

In a preliminary step, a negative version of the electrical pattern was printed on a
transparent film to act as a light mask in a modified photolithographic process. First, a
negative photoresist paper piece was put over the surface of the copper deposited on the
pipe (over the isolating layer) and was heated to improve the adherence to the surface.
After this, the system was masked with the developed negative pattern mask and UV
radiation was applied. By doing so, the parts of the photoresist paper that were exposed to
light became insoluble, while the masked parts were soluble for a developer with a specific
concentration of a solvent. To eliminate those uncured parts, the piece of tube was then
immersed in a low concentrated sodium carbonate dissolution (1.25% in Vol.). Once a
good-quality mask with the desired pattern was obtained in the surface (Figure 2b), the
rest of the copper material was taken away (Figure 2c). This was achieved by etching it
with an aqueous ferric chloride dissolution (500 g per 1 L of water). Finally, the cured mask
was eliminated (Figure 2d) by a highly concentrated sodium carbonate dissolution (>5%
in Vol.).

To stablish electrical connection with the sensing layer, four wire configurations were
made to obtain an accurate measurement of the electrical resistance. Considering the
temperature range (20–250 ◦C) that was defined in the beginning of the development, a
high-temperature bi-component epoxy solder was used (G6E-HTCTM High Temperature
Carbon-Filled Electrically Conductive Epoxy, G6-EpoxyTM), observing a colour change in
the copper layer after the curing of the epoxy (Figure 2e).

3.3. Protective Layer

To protect the copper RTD from deterioration due to handling with bare hands and to
prevent oxidation at high temperatures (in this work, more than 200 ◦C), it was necessary
to apply a protective coating to the system formed by the isolating and sensor layers.
From a commercial point of view, it was a desirable option to display the logo on the
RTD, so transparent silicon oxide (SiO2) was deposited on the system via two techniques.
Table 4 summarizes the principal parameters of both techniques, along with the obtained
mean thickness.
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Table 4. Principal parameters of the two transparent protective coatings.

Coating Name Mean Thickness (µm) Deposition Technique Synthesis T (◦C) Curing T (◦C) Extraction v (mm/s)

TTW001 1–5 sol–gel RT 200, 300, 450 575

TTD001 5.5 PVD-RMS <300 - -

One of them was PVD magnetron sputtering, but with its reactive variant; that is,
introducing a gas (oxygen, around 50 sccm) that reacts, in this case, with silicon. A Cemecon
CC800/8Plus unit was used with closed-loop mode, voltage monitoring, and SpeedFlo
processing via Gencoa using MF power supplies (Advance Energy PE II). For the deposition
process, 2 kW was applied to the heating elements and the cathodes were set up with
3.5 kW. A poisoning set point of 40% was established.

The other chosen technique was sol–gel, in which a formulation based on a molar
ratio of 1:2:5 of TEOS, MTES, and nitric acid, respectively, in ethanol (as the solvent) was
deposited via dip-coating. First, the solution was prepared with the mentioned reagents,
which has required a process of hydrolysis and condensation to form the sol. Subsequently,
the sample was introduced into the sol, and after a controlled speed extraction (using an
automatic robot), the solvent of the xerogel layer formed on the surface of the sample was
evaporated at room temperature. A curing time of one hour was necessary and different
temperatures were applied and compared (200 ◦C, 300 ◦C, and 450 ◦C). The selection of this
technique configuration was made considering that in this way the coverage is maximize
since it is an immersion technique.

3.4. Film Characterization

Properties such as roughness or film thickness were measured using contact profilom-
etry using a Dektak 150 (from Dektak company) profilometer. For a rapid evaluation of
the metallographic preparation of the sensor, a Leica DM6000M optical microscope was
required. A field emission scanning electron microscope (FESEM) from the ZEISS Sigma
family was used to measure and compare the thickness of the sensing layer between silicon
wafer and pipe deposition. In the case of the semi-quantitative chemical composition
measurements, an energy-dispersive X-ray spectroscopy (EDS) technique was used, with
an X-ray detector from Bruker attached to the FESEM equipment (working distance of
9 mm and a voltage of 15 kV). X-ray Diffraction (XRD) (Bruker D8 Advanced) was utilized
to measure the crystalline phases of the coatings by using Cu-Kα radiation (λ = 1.544 Å) at
a glancing angle of incidence of 7.5◦ (step time = 1 s, step = 0.03◦).

3.5. Electrical Characterization

To characterize the temperature sensors on the tube in an adequate way, a custom test
bench was developed (Figure 3). The heating system uses three resistive cartridge elements
inserted into a cylindrical copper holder (with the same diameter as the internal one of
the tubes tested) that heat the tube from the inside. The electrical power applied to these
resistors is controlled by a commercial PID controller (proportional–integral–derivative
controller) and a thermocouple placed next to the three resistors.

On the other hand, the measurement of the temperature of the surface of the pipe
was carried out using a thermographic camera (Optris PI) and the known emissivity of
Tubacoat [43]. In this way it was achieved a more accurate measurement on the surface. The
electrical resistance is acquired with a multimeter (Keysight 34461A) with an acquisition
rate of 1.9 s/point. These two measurements, the external temperature of the tube and the
electrical resistance, are recorded and saved using a custom LabVIEW program installed
on a computer.
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4. Results/Discussion
4.1. Adhesion Study

Due to the low roughness of the Tubacoat isolating layer (Ra < 0.04 µm), the first
attempts to deposit copper showed a total lack of adhesion. In consequence, it was necessary
to perform an optimization process of this property by means of surface modification.
Thanks to the high thickness of the isolating layer, the best option was to increase the
surface roughness by means of shot-blasting processes using two types of particle size:
F500, with an average particle diameter of 12.8 µm (FEPA Grain Size) (Ra after blasting
0.19–0.22 µm); and F220, with a mean diameter of 58 µm (Ra after blasting 1.1–1.3 µm), as
is shown in Table 5.

Table 5. Roughness of different surface finishes.

Surface Treatment Particle Diameter (FEPA) Ra (µm) Rz (µm) Adhesion

Original - <0.04 0.2 Null
F500 12.8 µm 0.19–0.22 1.5–2.5 Very good
F220 58 µm 1.1–1.3 6.7–11.7 Excellent

In addition, the synthesis conditions applied in the magnetron sputtering processes
was optimized, heating the substrates (with a minimum of 500 W applied) to increase the
energy and the surface diffusion of the copper particles that arrive at the substrates. As
can be seen in Figure 4, three copper lines were deposited on the three different surface
finishes to carry out the test. To evaluate the adhesion of the copper, a qualitative method
was performed using an adhesive tape on each copper line, the F220 particle size treatment
being the best option with minimal material transferred from the coating to the adhesion
tape. Therefore, in consequence, all the sensor layers developed in this work were produced
using this shot-blasting treatment for the isolating layer.
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4.2. Sensor Layer Study

Temperature is one of the most important synthesis parameters, not only for properties
such as adhesion, but also for microstructure, mechanical, or electrical properties. In this
work, the effect of synthesis temperature on the electrical properties, derived from the type
of structure they present, was studied.

On one hand, the HiPIMS technique, in general terms, is based on developing short
duration pulses on the targets, maintaining the equivalent RMS power. The main conse-
quence is the generation of a higher density of ionized species from the target, so, it is
possible to achieve much denser layers, and in terms of mechanical properties best per-
formance compared with classical DC mode [46,47]. After depositing copper via HiPIMS
on a silicon wafer at a low temperature (HiPIMS Low T) and carrying out the appropriate
characterization, this sample underwent a vacuum heat treatment for 4 h at about 450 ◦C
(HiPIMS Low T + Anneal).

On the other hand, MF technique presents great versatility, and it can sputter materials
with low electrical conductivity or deposit metal oxides or nitrides in a reactive synthesis
process. In this case, the sample was also deposited at low temperature (MF Low T) and
then thermally treated under the same conditions (MF Low T + Anneal). However, in
addition, a third sample was manufactured by providing energy through the heating
resistances located inside the vacuum chamber during growth or synthesis of the copper
layer, so the effect of temperature could be studied (MF High T).

Figure 5 shows the diffractograms of both the samples deposited via HiPIMS and via
MF. Besides observing a sharpening of the peaks in those samples with heat treatment, two
smaller peaks around 45◦ are observed in the high-temperature MF sample. According to
the literature, these peaks correspond to the Cu3Si intermetallic phase, which is formed due
to the interdiffusion of these elements at high temperatures [48–50]. This observation is in
good agreement with the FESEM images of this sample in Figure 6, where an interaction
between copper and silicon can be seen in the cross-section image.
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Figure 6. Copper thin films deposited at different conditions in MF.

Table 6 lists the mean size of the ordered crystalline domains (D) calculated by full
width (β) at half maximum (2θ). It can be observed clearly that increasing temperature
leads to growth of the crystals, in good agreement with data reported previously [51]. Even
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so, a smaller increase due to the annealing process is also deduced for the case of HiPIMS,
because this technique applies enough energy to the copper to make it grow (small pulses,
but high energy) even at low temperature [52,53]. On the other hand, it is evident that
the coating obtained by the MF unit needs temperature to increase its grain size, either by
applying it during the synthesis or in a subsequent treatment. Finally, for these materials
(Cu and Si), there is a temperature limit to be applied, since diffusion effects occur which
may not be of interest to maintain the good performance of the RTD.

Table 6. The mean size of the ordered crystalline domains.

Sample β (rad) 2θ (◦) D (nm) Increment *

HiPims Low T 0.0052 43.35 29 -
HiPims Low T + Anneal 0.0044 43.38 34 18%
MF Low T 0.0088 43.32 17 -
MF Low T + Anneal 0.0052 43.38 29 69%
MF High T 0.0055 43.38 27 59%

* Compared to Low T.

For better understanding of the high increment on the domain size of the MF samples,
a microstructural analysis was carried out using an FESEM microscope. Figure 6 shows
the top view of the sample surfaces and their cross-sections. An evident coarsening of
the grains can easily be observed considering the larger voids in the Low T + Anneal
sample but in lower density than in the Low T sample. A possible correlation between
this fact and the grain growth promoted by applying a tempering process is attributed to
this observation. In addition, the large grain size induced by temperature during growth
is observed for the High T sample, even though it has the worst appearance in terms
of continuity.

In these results, the positive effect of temperature during synthesis was observed since
it helped to obtain stable layers. In the electrical response of the sensors shown hereafter,
the technique with which the copper layers were deposited will not be a variable of interest,
and therefore it will not be referred to. Some were made with HiPIMS, and others with MF
with heating during or after the process. That is, in all samples characterized electrically,
only stable copper layers with a similar crystal size were investigated.

4.3. Electrical Response

Over a piece of pipe coated with Tubacoat and shot-blasted on the surface with F220,
the sensor layer of copper was manufactured satisfactorily. Subsequently, photolithography
was carried out on the copper with the designed mask and four cables were soldered with
the epoxy paste. After curing the paste, it was covered with the coating TTW001 (sol–gel
technique, Table 4) and cured at 200 ◦C for 1 h.

Figure 7 shows the results of the electrical characterization. For each of the measure-
ments (curves M1 to M3), several points were taken in steady state throughout the heating
process in the temperature range between room temperature and 250 ◦C. The transitory
values of this heating process are indicated by the colour gradient that goes from yellow
to maroon. Meanwhile, each stationary point corresponds to the mean value of 10 min of
acquired data. The confidence interval for these calculations in the case of the electrical
resistance is also plotted. Since these errors are so small, they cannot be seen on the graph
even after increasing them 100 times. This is indicative that the steady state was reached.
Additionally, linear regressions were plotted for each of the measurements (R2 > 0.999 for
the three of them). From the plots of the complete heating test, a fast response of the RTD
to changes in temperature is deduced.
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To test the thermal stability of the sensor in the limit of the temperature range, it was
maintained for at least 1 h at around 250 ◦C. The results show a very small increase of the
resistance value at room temperature (R [20 ◦C]) after the whole set of measurements, with
the corresponding annealing-like treatment, in comparison with the starting resistance at
room temperature. A slight increase in the slope after each test can also be observed. This
is a very good feature of the sensor, because it is very stable even after a few cycles. Later
in the text, these results together with the value of the temperature coefficient (TCR) are
graphed. It is worth mentioning that a slight colour change of the sensor was observed
after the thermal tests.

To see the changes that occurred during the electrical characterization, the sensor
was cut crosswise, and, after an exhaustive and careful metallographic preparation, it was
characterized by optical microscopy and FESEM. Figure 8 compares the microstructure
of the sensors before and after an electrical test. Figure 8a,b refer to a RTD that has just
passed a curing of 200 ◦C for the TTW001 protective coating. In the enlargement shown
in Figure 8b, it is observed that the thickness of the copper is about 2.5 µm throughout
the whole sensor layer. As the Magnetron Sputtering is a conformal synthesis method,
the thickness is very uniform along the surface of the tube and replicates the shot-blasted
ceramic surface. Meanwhile, in the case of the sol–gel layer, as it is not a conformal
fabrication method, the measured thickness ranges between 1 and 5 µm, covering all the
copper RTD and smoothing out the roughness in the surface.

Figure 8c shows an interphase region between the sensor layer and the protective
coating that appeared after the electrical characterization of Figure 7. A semi-quantitative
EDS line profile acquired on this interphase region is depicted in Figure 8d. It clearly
shows the appearance of an interdiffusion layer occurring upon the thermal treatment
experienced during the curing/electrical characterization. Therefore, the evidence indicates
that between 200 ◦C of curing and 250 ◦C of maximum working temperature, there is a
threshold temperature for which the copper and TTW001 layers interact.

To check the influence of the curing temperature of the TTW001 coating, this value
was increased above the defined working temperature of the sensor, choosing curing
temperatures of 300 ◦C and 450 ◦C. However, after performing the FESEM characterization,
not only was the formation of this diffusion layer confirmed in both cases (Figure 8e,f),
but also a significant thickness increase with increasing temperature. Furthermore, in the
case of 450 ◦C, the copper layer was almost completely consumed. Therefore, the sol–gel
formulation (TTW001) proposed in this work is limited to be used in applications with
service temperatures below 200 ◦C to avoid the degradation of the RTD.
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Figure 8. Cross-sections of different curing temperatures of the sol–gel applied over the sensing
layer. (a,b) Optical microscope and SEM images, respectively, of the sensor after a 200 ◦C curing.
(c) Same sensor after all the electrical characterization. (d) Compositional analysis of the diffusion
layer. (e) SEM image of the sensor after a 300 ◦C curing. (f) SEM image of the sensor after a
450 ◦C curing.

Looking for an alternative to the sol–gel method, a protective layer of silicon oxide
was deposited using the PVD-RMS technique with a thickness of 5 µm on a new RTD. The
coating referenced by TTD001 (Table 4) was applied at a temperature lower than 300 ◦C.
Figure 8 shows the curves M0′ and M1′ that correspond to the electrical response of the
first two measurements that were made on this sensor. In addition, this graph includes
the thermal stability tests of the sensor at a temperature of around 250 ◦C for at least
1 h. The linearity of the resistance of the copper RTD as a function of the temperature
(R2 > 0.997) and its fast response time during transient periods is again observed. However,
it is observed that the electrical resistance at high temperature is less stable during the first
heating than during the second one.

After observing an increase in resistance at room temperature after the first test (from
M0′ to M1′), it was decided to proceed with the deposition of a second layer of silicon
oxide in order to seek an improvement in its electrical stability. The results of the electrical
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characterization are also shown in Figure 9 (curves M0 to M3). In this case, the same
phenomenon observed in M0′ is also observed for the M0 test, again detecting an unstable
behaviour at high temperature, but a significantly greater stability and repeatability were
detected in the subsequent measurements M1, M2, and M3 (R2 > 0.999).
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Figure 9. Electrical characterization for the copper RTD with TTD001 protection by PVD-RMS. M0′

and M1′ refer to the characterization after the first protecting coating. M0 to M3 correspond to the
response after the second coating. Error bars *100.

The electrical parameters of interest for these curves are found in Figure 10 where
they are compared with those of the sensor produced with the sol–gel method. As in the
previous results, the confidence interval was multiplied by 100 for better interpretation.
It can be seen how the three characteristic curves (M1, M2, and M3) of the sensor were
obtained for each protective material, with the same slope, R [20 ◦C], and TCR, all indicating
the good repeatability of the copper RTD in the working range. The confidence interval
was calculated for the mean values of the slope and TCR, in both sol–gel and PVD cases,
resulting in values below 0.0005 and 3 × 10−5, respectively.
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To better understand the phenomenon behind the increase in electrical resistance that
occurs at high temperature, it was metallographically prepared in two cross-sectional areas
of the tube sensor: one in the sensor itself and another in the part of the terminals. Images
(a) and (b) in Figure 11 show the copper sensing layer on Tubacoat with the silicon oxide
deposited on it. It can be seen how there is a very thin layer of copper separated from the
rest of the sensing layer which belongs to the protective layer. It appears that there was
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diffusion from the copper through the protecting layer. EDS analysis of the protective layer
SiOx shows a silicon/oxygen ratio of 30/70, with x equal to 2.33.
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Figure 11. SEM images in transversal section of a copper RTD with TTD001 protecting layer. (a) and
(b) Sensor zone. (c) Thin solder epoxy zone. (d) Thick solder epoxy zone.

For the area of the terminals, the interaction of the epoxy with the copper was analysed
(images (c) and (d)). A considerable difference in this interaction was identified depending
on the thickness of the epoxy paste, observing how in image (c) that there is no apparent
change in the copper layer (40 µm of epoxy); while image (d), which corresponds to the
area with more epoxy paste (1 mm of epoxy), shows how the surface of the copper in
contact with said paste was modified, probably during its curing.

The diffusion phenomena observed in this work between copper and the two protec-
tive layer options (silicon oxide both by sol–gel and by PVD) could be assigned to the high
diffusivity of copper in silicon and silicon oxide. This problem becomes serious at tempera-
tures above 200 ◦C and was reported previously, mainly in electronic applications [54–57].
The most common solution is to create diffusion barriers based on other materials between
the implied layers (copper- and silicon-based), to prevent interaction between these two ma-
terials. Likewise, the temperature range in which this barrier is stable will be conditioned
by the materials used to create it. Results were reported with the use of alloys with copper
and other metals such as aluminium, calcium, or tantalum [58–63], or with various types
of oxides, carbides, or nitrides [49,64]. To work at very high temperatures, high-entropy
alloys were also been deposited at the interface of copper with silicon [65].

5. Conclusions

In this work, thin-layer copper resistive temperature detectors were fabricated over
real pipes with a ceramic coating using the magnetron sputtering technique, observing
the importance of temperature in the case of the MF power supply, and to a lesser ex-
tent for the HiPIMS. Therefore, considering the energy efficiency and the optimization
of the number of steps, the HiPIMS technology seems more promising. After protecting
the copper RTD with silicon oxide using sol–gel and reactive magnetron sputtering tech-
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niques and electrically characterizing it on a custom-made bench, the linearity of copper
(R2 > 0.999) in the operating range between room temperature and 250 ◦C was confirmed.
In addition, after several heating tests, the repeatability of the sensors was demonstrated
by observing that the mean values of the slope and TCR have a confidence interval below
0.0005 and 3× 10−5, respectively. Even so, the presence of a threshold temperature between
the chosen materials (copper and silicon/silicon oxide) is evident, which would be around
190–200 ◦C. This requires optimization and incorporation of new materials between these
two layers to extend the proper operating range beyond 200 ◦C.
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