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Abstract

Binarization strategies decompose the original multi-class dataset into multiple two-class subsets, learning a dif-
ferent binary model for each new subset. One-vs-All (OVA) and One-vs-One (OVO) are two of the most well-known
techniques: One-vs-One separates a pair of classes in each binary sub-problem, ignoring the remaining ones; and
One-vs-All distinguishes one class from all the other classes. In this paper, we present two new OVA and OVO
combinations where the best base classifier is applied in each sub-problem. The first method is called OVA+OVO
since it combines the outputs obtained by OVA and OVO decomposition strategies. The second combination is named
New One VersusAll

One (NOV@), and its objective is to solve the problems found in OVA when different base classi-
fiers are used in each sub-problem. In order to validate the performance of the new proposal, an empirical study has
been carried out where the two new methods are compared with other well-known decomposition strategies from the
literature. Experimental results show that both methods obtain promising results, especially NOV@.

Keywords: Decomposition Strategies, One against One, One against All

1. Introduction

The goal in a supervised classification problem consists in classifying a new unlabelled example x in its correct
class using a training set. Let TR = {xi, θi}

N
i=1 denote a training set of N well-labelled examples, where xi represents

the i-th individual feature vector and θi represents the class the individual belongs to. In the particular case of the K-
class problem, being θ ∈ {1, ..,K}, the class label is commonly defined as an integer. Based on the TR, the supervised
classification techniques create a “general rule” or a function which is used to classify each new unlabelled case. This
general rule is also known as a classifier.

For some types of classifiers, such as SVM, it is much more easier to build a classifier to distinguish just between
two classes. However, many real world problems are multi-class problems, i.e. K > 2. In view of that, there are
some techniques, known as class-binarization techniques, which divide the original multi-class problem into many
binary classification problems. These techniques are two-step methods: in the first step, called decomposition step, a
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classifier is learned for each of the sub-problems, and in the second step, called combination step, the outputs of these
classifiers are combined to obtain the final prediction.

There are three different class-binarization strategies: ”One-vs-All” (OVA), ”One-vs-One” (OVO) and “Error
Correcting Output Codes” (ECOC). OVA and OVO are the most relevant ones in the literature due to their simplicity
and clarity.

• One-vs-All (OVA) [3]: In each sub-problem one class is compared with the rest of classes.

• One-vs-One (OVO) [13]: In each sub-problem only the cases belonging to two classes are compared with each
other, and the remaining ones are ignored.

• Error Correcting Output Codes (ECOC) [9]: In each sub-problem all the classes are grouped into two groups,
and the two groups are compared with each other.

The procedure followed in the classical binary classification strategies is to use the same base classifiers in each
binary sub-problem. However, if the selected base classifier does not correctly discriminate in some of the sub-
problems, the obtained results will be wrong. To overcome this drawback, each sub-problem can be treated as an
independent classification problem so that a different base classifier can be used for each sub-problem.

In this paper, we propose two new combinations of the methods OVA and OVO. We compare these two methods
with other class-binarization strategies over 20 UCI databases, and obtain promising results. In all methods we
try to find the best base classifiers for each sub-problem. To do so, we have chosen several well-known classifiers
from different Machine Learning paradigms: SVM, C4.5 Decision Tree, Ripper, K-NN, Multilayer Perceptron and
Naive Bayes. The first combination that we have proposed is called OVA+OVO. OVA+OVO basically combines the
sub-problems obtained after the OVA and OVO methods are applied. Comparing this new method with other class-
binarization strategies we have found that strategies – such as OVA – are not suitable when different base classifiers
are used in each sub-problem. Therefore, we propose a second approach that we have called New One VersusAll

One
(NOV@). NOV@ is an extension of OVA: at decomposition time OVA is applied, whereas at combination time the
majority vote is used to make the final decision. In case of a tie among several classes, OVO is applied for tie-breaking
– taking just into account the tied classes.

Although in the specialized literature, there are several proposals that select the best base classifier for each
sub-problem, none of them compares different class-binarization techniques in order to study how each technique
performs. In our work we have compared the two new methods with other state-of-the-art class-binarization strategies
in an empirical study.

The rest of the paper is organized as follows. In Section 2 we review the decomposition techniques, with special
attention to OVA and OVO strategies. In Section 3 we show the compatibility between OVA and OVO strategies and
we present the first proposed method: OVA+OVO. Section 4 describes our second approach and Section 5 shows
the results of the experiments carried out. Finally, Section 6 states the conclusions of our work and suggests future
research lines.

2. Class-Binarization

The first class-binarization strategies were made to solve the problems that some base classifiers have for the
multi-class problems, since algorithms such as Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP),
worked better for binary problems. However, due to the good results obtained, the use of these strategies has been
extended to other base classifiers, such as Ripper [13] or C4.5 [37].

Class-binarization is composed of two steps: decomposition and combination.
In the decomposition step the original problem is divided into several binary sub-problems. The most popular

strategies consist of grouping classes, in this way each binary classifier compares two groups of classes between
them. Commonly the code-matrix is used to represent how the classes are grouped.

Figure 1 shows a code-matrix example, where each row represents a class and each column represents a binary
classifier. Each class takes values in the set {-1,0,+1}, where +1 indicates the classes associated to the positive-class,
-1 indicates the classes associated to the negative-class and 0 indicates that the class is ignored for this binary problem.
In Figure 1 how a 5-class problem {θ1,θ2,θ3,θ4,θ5} is decomposed into 5 binary problems { f1, f2, f3, f4, f5} can be seen.
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classi f iers︷                     ︸︸                     ︷
f1 f2 f3 f4 f5

classes



θ1
θ2
θ3
θ4
θ5


1 0 −1 −1 0
1 1 −1 −1 1
−1 1 1 −1 0
0 −1 0 1 0
−1 −1 0 −1 −1


f1 → θ1, θ2 vs θ3, θ5
f2 → θ2, θ3 vs θ4, θ5
f3 → θ3 vs θ1, θ2
f4 → θ4 vs θ1, θ2, θ3, θ5
f5 → θ2 vs θ5

Figure 1: Example of a code-matrix

For instance, it can be seen that the classifier f1 is constructed in such a manner that the cases belonging to θ1 and θ2
are grouped in class +1 and the cases in θ3 and θ5 in class -1. So this classifier compares θ1 and θ2 classes with θ3 and
θ5, while the cases that belong to θ4 are ignored.

In classification time, each binary classifier returns a prediction. So the combination step consists of combining
these predictions. Therefore, it is crucial to select a proper combination of the outputs in order to make a correct
prediction.

Different decomposition strategies have been developed. Two of the most popular are OVA and OVO, which are
described next.

2.1. One-Vs-All (OVA)

OVA decomposition scheme divides a K class multi-class problem, θ1, ..., θK , into K two-class problems, where
each binary problem discriminates one class from the others.

In Figure 2(a) OVA’s code-matrix for 4 classes is shown: in each classifier one class is represented as positive
class while all the other 3 classes are represented as negative-class.

As one class is compared with all the other classes, most of the binary sub-problems are unbalanced. It is known
that one of the drawbacks of an unbalanced problem is the underestimation for the minority classes, thereby the most
represented class is selected in most cases. In view of that, in OVA it is very common that all sub-problems return a
class-negative prediction, hence, ties are usual in the final decision when the majority vote is used. Thus, it is more
efficient to use the confidence level of each classifier to decide the final output. The class with the highest confidence
is the selected decision.

2.2. One-Vs-One (OVO)

OVO decomposition scheme divides a K class multi-class problem, θ1, ..., θK , into K(K − 1)/2 two-class sub-
problems. In each sub-problem a classifier is learned using only the cases that belong to a pair of classes (θi,θ j), where
θi , θ j; the remaining cases are ignored.

In Figure 2(b) OVO’s code-matrix for 4 classes can be observed: in each classifier one class is represented as +1
class, another one is represented as -1 and the remaining 2 classes are represented as 0.

There are several strategies to combine the output, the simplest way to combine the outputs is to use the majority
vote strategy [13, 12] also called as Max-Wins; the most voted class is the selected one. An immediate extension
is the Weighted Voting (WV): to use the confidence level of each binary problem as a vote. Its robustness has been
shown in [14]. Hastie and Tibshirani [22] proposed a new method called Pairwise Coupling (PC). The aim of the
method is to find the best approximation of the class posterior probabilities given the posterior probabilities of the
pairwise sub-problems. To do so, they transform the problem into an iterative problem where they try to minimize
the average weighted Kullback-Leiber divergence between the obtained pairwise estimates and the true pairwise
probability values.

OVO has several drawbacks 3 of the main disadvantages of OVO are the following:

1. Unclassifiable regions: it is possible that each binary classifier votes for a different class, hence there is no
winner. Thus, some tie-breaking technique has to be applied.
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+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1


(a) One-Vs-All


+1 +1 +1 0 0 0
−1 0 0 +1 +1 0

0 −1 0 −1 0 +1
0 0 −1 0 −1 −1


(b) One-Vs-One

Figure 2: OVA and OVO code-matrix

2. Number of classifiers: Compared with OVA, it can be seen that OVO creates more sub-problems. Moreover,
the disadvantage of having so many sub-problems is that most of them are irrelevant and they are forced to give
wrong answers for many instances, because each classifier must assign every pattern to one of two classes. If a
pattern belongs to class i, all the classifiers that are not trained to differentiate this class will cast wrong votes.
However, OVO uses fewer examples in each sub-problem and, thus, has more freedom for fitting a decision
boundary between the two classes.

3. Weak classifiers: The classical way selects the optimal base classifier for the database and all the sub-problems
are classified with this classifier. As there are too many sub-problems, it is possible that this base classifier has
difficulties to distinguish between all of them, thus, the classifiers return wrong results. This raises the question
– should the same base classifier be used on all sub-problems or should sub-problems be tuned independently?

Several proposals has been developed in the literature in order to solve these problems.
In order to resolve the unclassifiable regions Platt et al. [35] published a new combination proposal called De-

cision Directed Acyclic Graph (DDAG). DDAG builds a rooted binary acyclic graph where in each node a classifier
discriminates between two classes. The final answer is the class assigned by the leaf node. Liu et al. [29] proposed a
tie-breaking technique, where OVO is applied using only the examples in the unclassifiable region.

On the other hand, other approaches try to reduce the number of binary classifiers in OVO using the Dynamic
Classifier Selection [15][5]. Other authors propose the use of hierarchical structure. Fei and Liu [10] proposed a new
architecture called Binary Tree of SVM (BTS). BTS is a binary tree where in each node two classes are distinguished.
The main idea of BTS is to use the separating plane for these two classes, also to distinguish other classes. Chen et
al. [6] proposed a new BTS version where they tried to select the binary SVM with the fewest number of separating
lines. Following the same idea, to reduce the number of classifiers, the hierarchical structure has been extended to
other class-binarization strategies [38, 30, 19, 32].

Finally other approaches try to solve the weak classifier problem using each sub-problem independently. Szepan-
nek et al. [43] proposed to extend OVO selecting the optimal classifier for each pair of classes, i.e. the base classifier
which obtains the best result. Something similar was proposed by Lebrun [27], where they tried to find the best
hyper-parameters of the SVM for each sub-problem. Due to the high number of hyper-parameters in the SVM, they
proposed to use an evolutionary algorithm. The experimental results of both works showed that they outperformed the
classical individual base-classifier option. Liepert [28] also proposed a similar approach to Lebrun, but she concluded
that the selection of the best models for each binary-classifier does not obtain a significant improvement.

In his PhD thesis, Reid [40] concluded that despite it is better to use the same base classifier for all the sub-
problems when decision boundaries of the sub-problems have similar shapes, in the case where the decision bound-
aries have a different shape it is better to treat sub-problems independently.

2.3. Related Work
In several works in the literature, OVA and OVO have been compared, showing that in most of the cases OVO

outperformed OVA [13, 23]. Rifkin and Klautau [41] did not consider that these experiments were carefully controlled
and they demonstrated that when OVA classifier is well-tuned it performs as well as OVO.

In some recent works, it is possible to find some reviews related with the class-binarization strategies [31]. Other
recent works made empirical studies for different binarization strategies [14, 18]. Both works analyse the behaviour
of OVA and OVO for different base classifiers and the results of both works concluded that OVO outperformed OVA.
However, neither work dares to contradict Rifkin and Klautau [41] arguing that they did not use fine-tuned classifiers.

Some authors proposed new approaches based on the combination of OVA and OVO. On the one hand, Moreira
and Mayoraz [33] proposed to apply OVO taking into account the probability that the new example belonged to each
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pair of classes. This probability was obtained following the OVA idea: creating a classifier that distinguishes between
the two classes and the rest of the classes. On the other hand, Garcı́a-Pedrajas and Ortiz-Boyer [17] and Ko and Byun
[25] proposed a very similar idea to combine OVA and OVO. In an interesting motivation section Garcı́a-Pedrajas
and Ortiz-Boyer [17] showed that in the majority of the cases the correct class was between the two largest confident
outputs of OVA. Thus, in their new method they obtain the two classes with the highest confidence level in OVA first.
After that, OVO is applied and a classifier is built only taking into account the cases that belong to these two classes.
This method was called All-And-One (A&O) [17].

3. Combining OVA and OVO

Hanse and Salomon [21] showed that in order to obtain good performance when classifiers are combined, the
classifiers should be diverse among them. It is said that two algorithms are diverse when they commit different errors.
If two algorithms are not diverse they commit the same errors, whereas if they are diverse they may be able to correct
the committed errors.

It must be said that, although several diversity measures exists in the literature [26], they have been proved to be
ineffective [44]. Hence, instead of applying those measures, we choose to perform a simple experiment using decision
trees as base classifier, in order to conclude if OVA and OVO are compatible.

Twenty databases are used to test our hypothesis. All of them are obtained from the UCI Machine Learning
Repository [4]. The characteristics of the databases are given in Table 1.

Domain Num. of Instances Num. of Attributes Num. of Classes
Abalone 4177 8 29
Annealing 798 38 5
Arrhythmia 452 279 13
Balance 625 4 3
Car 1728 6 4
Cmc 1473 9 3
Dermatology 366 33 6
Ecoli 336 7 8
Flare 1389 11 6
Glass 214 9 6
Iris 150 4 3
Nursery 12960 8 5
Page-blocks 5473 10 5
Optdigits 5620 64 10
Pendigits 10992 16 10
Satimage 6435 36 7
Segment 2310 19 7
Vehicle 846 18 4
Waveform 5000 21 3
Wine 178 13 3
Winequality Red 1599 10 6
Winequality White 4898 10 7
Yeast 1484 8 10
Zoo 101 16 7

Table 1: The characteristics of the 20 databases used in this experiment

In Table 2 we show the results of the compatibility test. In the first two columns we show the accuracy obtained
by OVO and OVA, while in the third the accuracy of OVA is shown considering only the cases where OVO makes
errors. In the fourth column the accuracy of OVO is shown for the cases that OVA has failed.
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Accuracy of Accuracy of Accuracy of OVA Accuracy of OVO
OVO OVA when OVO fails when OVA fails

Abalone 24.946 18.793 12.268 18.910
Annealing 92.383 92.116 25.214 26.508
Arrhythmia 65.885 63.496 29.720 34.319
Balance 78.910 78.910 20.898 20.742
Car 95.914 95.972 34.780 32.725
Cmc 51.460 52.016 24.408 23.597
Dermatology 95.574 91.530 41.702 66.882
Ecoli 81.667 78.571 25.653 35.844
Flare 59.962 56.023 20.195 26.7482
Glass 63.084 60.374 30.566 35.531
Iris 93.467 92.800 1.250 12.500
Nursery 98.622 98.647 6.287 4.172
Optdigits 92.281 87.434 52.325 70.732
Page-blocks 96.824 96.642 17.794 22.202
Pendigits 95.950 94.039 58.541 71.864
Satimage 86.017 83.708 40.617 49.052
Segment 95.039 94.251 45.869 53.228
Vehicle 68.842 68.251 39.939 40.984
Waveform 76.212 74.144 49.187 53.193
Wine 88.202 89.888 54.609 47.018
WineRed 57.486 58.649 29.100 26.977
WineWhite 54.924 53.973 26.774 28.273
Yeast 56.267 55.418 17.459 19.071
Zoo 90.297 90.693 43.222 38.770

Table 2: Compatibility between OVO and OVA

It is interesting to note that in the case where one strategy fails the other gets a hit rate higher than 20% in most of
the cases, which leads us to consider that the methods are compatible and that they could correct some of the errors
made by the other strategy.

3.1. Our First Proposal to Combine OVA and OVO
This new method combines the sub-problems obtained applying OVA and OVO decomposition strategies. To take

the final decision the results obtained for each sub-problem are combined applying the majority vote. We have called
this new method OVA+OVO. Following the idea proposed by Szepannek et al. [43], we apply the most reliable base
classifier for each sub-problem.

3.1.1. Decomposition
In our method, we propose to combine the sub-problems obtained with OVA and OVO; on the one hand, we create

several sub-problems where the classes are compared by pairs, ignoring the other classes, and on the other hand, we
create several sub-problems which compare one class with all the other classes.

Figure 3 shows the code-matrix of the sub-problems obtained in the decomposition phase in a 4-class problem.
The 4 columns of the left are the sub-problems obtained with OVA and the next 6 columns are the sub-problems
obtained with OVO.

We consider that the combination of these methods could obtain a classifier that outperforms both methods sepa-
rately for two reasons:

1. As shown in Section 3 both methods are able to correct the errors committed by the other one.
2. As mentioned before, when majority vote is used for the final decision it is common for both, OVA and OVO,

to produce ties.

6



One − V s − All One − V s − One

︷                 ︸︸                 ︷
+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

︷                             ︸︸                             ︷
+1 +1 +1 0 0 0
−1 0 0 +1 +1 0

0 −1 0 −1 0 +1
0 0 −1 0 −1 −1


Figure 3: Code-matrix of OVA+OVO

NB 3NN C4.5 3NN C4.5 S V M NB S V M S V M 3NN
+1 −1 −1 −1 +1 +1 +1 0 0 0
−1 +1 −1 −1 −1 0 0 +1 +1 0
−1 −1 +1 −1 0 −1 0 −1 0 +1
−1 −1 −1 +1 0 0 −1 0 −1 −1


Figure 4: Different base classifier for each sub-problem

• In the case of OVA, it is possible that all sub-problems return a negative-class prediction.

• In the case of OVO, the most voted class could be more than one.

Therefore, we consider that combining their outputs could serve to break some of these ties.

3.1.2. Best base classifier for each sub-problem
Each sub-problem is treated independently from the others, the optimal base classifier for each one is sought. In

a validation process each binary sub-problem is tested with different base classifiers, and the base classifier which
obtains the best accuracy is selected.

In Figure 4 an example where a different base classifier is applied for each sub-problem can be seen.

3.1.3. Combination
To take the final decision, we have decided to apply the majority vote; the most voted class is that which is selected.

We consider this due to three reasons:

1. As different base classifiers are used for each sub-problem, combination strategies based on the confidence level
are not appropriate because each base classifier confidence level is calculated differently.

2. As stated in Galar et al. [14] the majority vote obtains robust results compared with other combination strategies
in OVO.

3. It is the simplest one.

3.2. Experimental Setup

In this section we show the experimental results obtained with different databases. We compare our method with
other state-of-the-art strategies and we run our experiments over the datasets shown in Tabla 1.

3.2.1. Classifiers
To carry out our experiments we use some classifiers from WEKA (Waikato Environment for Knowledge Analy-

sis) [20].
Among the classifiers that Weka offers, we have selected the following ones:

• Naive Bayes [24], statistical learning algorithm. It is based on Bayesian rules and, given that the value of the
class is known, it assumes independence between the occurrences of feature values to predict the class.

• J48 (C4.5 clone) [39], decision tree algorithm. It makes a post-pruning phase, based on error based pruning
algorithm.
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• IBK (K-NN clone) [2], distance based algorithm. An object is classified by a majority vote of its K nearest
neighbors. The value of K is set to 3.

• SM0 (SVM clone) [34], kernel methods. It creates a hyperplane where the categories are divided by a clear gap
that is as wide as possible.

• JRip (Ripper clone) [7], rule induction classifier. It builds a rule-set by repeatedly adding rules to an empty
rule-set until all positive examples are covered.

• MultilayerPerceptron [42], an artificial neural network. It is a feedforward network of neurons which map input
vectors to output vectors.

As it can be seen, the selected classifiers are from different natures in order to give variability and reliability to the
experimental phase. It is worth saying that in our experiments we have used the default parameters of the classifiers.

3.2.2. Strategies summarized
In this sub-section we briefly describe the class-binarization strategies that are used for the comparison. It is worth

remembering that in all the strategies the best base classifier is selected for each sub-problem.

• One-Vs-All (OVA): Each sub-problem compares one class with the rest of classes. The class with the highest
confidence level is selected.

• All-And-One (A&O) [17, 25]: Combination of OVA and OVO. First OVA is applied and the two classes with
the highest confidence level are selected. A classifier that discriminates between the selected classes is built and
the result of the classifier is the final decision.

• Max-Wins [13, 12]: For decomposition OVO is applied: each sub-problem compares two classes between them,
ignoring the rest. And the majority vote is used to take the final decision.

• Weighted Voting (WV): The weight for the vote is given by the confidence level of the classifier. The class with
the largest sum value is predicted.

• Pairwise Coupling (PC) [22]: PC tries to find the posterior probability of each class (p1..pK) given the posterior
probability of all the pairwise sub-problems (ri j). To do so, the problem is transformed into an iterative problem
where the Kullback-Leibler distance between ri j and µi j is minimized (µi j = pi/(pi + p j)).

• Decision Directed Acyclic Graph (DDAG) [35]: The DDAG is equivalent to operating on a list. A list is
initialized with all the classes. In each step a classifier discriminates between two classes selected from the list,
and the class which is not selected is eliminated. The DDAG terminates when only one class remains in the list.

• OVA+OVO: Combination of OVA and OVO outputs. The majority vote is used to take the final decision.

3.2.3. Experimental Results
In order to give a real perspective, we have applied 5x2 fold cross validation to each database [8]. But firstly

each binarization strategy needs a validation process to select the most accurate base classifiers for each binary sub-
problem. Therefore, we have applied 5-hold out for each fold, where we have used the 70% as training set and the
30% as testing set.

In Table 3 we show the results obtained for our new method and those obtained with state-of-the-art methods. The
best result is highlighted in bold. It can be observed that OVA+OVO obtains the best result in 14 databases. Although
OVA+OVO obtains promising results, we have continued with the experiments and in the next Section we will show
the main proposal of this paper.

4. Proposed Approach: NOV@

In this section we present our new proposal New One VersusAll
One. But before explaining the method, we will show

the reasons that have led us to develop this proposal.
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Database OVA A&O Max-Wins WV PC DDAG OVA+OVO
Abalone 16.553 22.993 26.598 26.589 26.426 25.171 26.598
Annealing 98.062 97.929 98.196 98.196 98.129 98.085 98.307
Arrhythmia 63.850 65.265 69.292 69.292 71.150 68.407 71.018
Balance 90.128 89.840 90.096 90.929 90.865 90.641 91.058
Car 96.273 95.914 95.787 95.984 95.741 95.845 96.296
Cmc 48.350 49.220 52.831 52.492 52.465 51.840 53.646
Dermatology 95.519 97.158 97.541 97.596 97.596 97.541 97.432
Ecoli 82.202 83.452 83.095 83.988 83.869 83.631 83.810
Flare 54.540 58.668 60.094 59.756 59.587 59.606 60.094
Glass 64.206 63.458 64.112 64.486 65.327 63.458 65.140
Iris 95.333 94.800 94.800 94.800 94.800 94.800 94.933
Nursery 99.336 99.384 99.451 99.477 99.452 99.431 99.653
Optdigits 98.456 98.480 98.466 98.463 98.470 98.395 98.473
Page-blocks 96.707 96.799 96.751 96.828 96.667 96.777 96.897
Pendigits 99.250 99.221 99.210 99.214 99.207 99.143 99.238
Satimage 89.958 90.126 90.051 90.058 90.098 89.961 90.256
Segment 95.844 96.017 96.104 96.277 96.329 95.983 96.476
Vehicle 80.567 79.551 78.842 79.362 79.433 79.102 79.905
Waveform 84.152 86.436 86.636 86.636 86.636 86.636 86.276
Wine 95.955 96.404 96.404 96.292 96.404 96.404 96.742
WineRed 57.949 57.423 57.711 57.761 57.811 57.386 58.111
WineWhite 52.748 52.523 54.332 54.075 54.067 53.050 55.039
Yeast 56.631 56.536 57.615 57.655 57.251 57.049 57.803
Zoo 92.875 92.282 93.267 92.875 92.678 93.071 92.875

Table 3: Accuracy using the six compared methods and different base classifiers for each sub-problem

4.1. Motivation through NOV@

In the previous experiment the results obtained by A&O and OVA methods were lower than expected. Rifkin and
Klautau [41] showed the strength of OVA when the classifier was well-tuned and we consider that selecting the best
base classifier for each sub-problem is a good way to tune the sub-problems. Consequently we have made an analysis
in order to find the reason for these low results.

4.1.1. The strength of OVA
In order to analyse the behaviour of OVA, we have carried out a new experiment. Firstly, we have seen how

OVA works by only taking into account the cases where there is only one sub-problem that returns a positive-class
prediction. In other words, there is only one case among all the sub-problems in which one class is selected instead
of the rest of the classes.

In Table 4 it can be seen the percentage of the cases where OVA takes the final decision under the aforementioned
circumstances and which is the accuracy obtained. The results show that a large amount of cases are classified under
these circumstances, obtaining high accuracy. Therefore, we deduce that OVA fails with the remaining cases, so they
are analysed.

4.1.2. The weakness of OVA
After the analysis, we have deduced that the reason for the bad results of OVA and A&O is because the type

of classifier used in each sub-problem has a big influence on the final decision. OVA and A&O obtain each class
confidence level taking into account only one sub-problem, and in each sub-problem different base classifiers are
applied. Each type of classifier uses a different methodology to calculate the confidence level, hence, these confidence
levels have different meanings. Some classifiers tend to distribute the confidence level among the classes more equally
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Accuracy Percentage
Abalone 40.146 0.656
Annealing 99.070 97.996
Arrhythmia 79.207 71.593
Balance 95.746 89.327
Car 98.024 94.005
Cmc 63.399 51.677
Dermatology 98.401 95.574
Ecoli 87.537 88.691
Flare 82.237 47.636
Glass 74.842 69.626
Iris 95.830 99.067
Nursery 99.818 98.307
Optdigits 98.545 99.797
Page-blocks 97.809 97.552
Pendigits 99.393 99.556
Satimage 90.873 97.725
Segment 98.240 94.762
Vehicle 87.301 76.809
Waveform 89.241 83.200
Wine 96.901 96.854
WineRed 63.311 69.206
WineWhite 58.871 65.039
Yeast 67.274 59.973
Zoo 97.613 91.287

Table 4: Accuracy and percentage of the cases where OVA takes the final decision when in only one sub-problem the class is selected instead of
the rest of the classes

C1 C2
Sub-problem θi All θi All
θ1 − vs − All 0.33 0.67 0.17 0.83
θ2 − vs − All 0.20 0.80 0.11 0.89
θ3 − vs − All 0.07 0.93 0.05 0.95

Table 5: Confidence levels obtained in OVA for each sub-problem for C1 and C2 classifiers

than others. As a consequence, in the cases where all the output of OVA is negative, the classes obtained using these
classifiers are more likely to be selected. We will try to clarify this problem with the following example:

Example: Let us consider a 3-class problem {θ1, θ2, θ3} and a new case to be classified. The confidence levels
obtained for each OVA sub-problem for classifiers C1 and C2 can be seen in Table 5.

It can be observed in Table 5 that in both classifiers, θ1 obtains the highest confidence levels; as a consequence, θ1
should be assigned to the new case. Moreover, it is possible to observe that all the classes obtain higher confidence
levels with C1 than with C2. So, let us consider that after the validation phase, C2 is selected for θ1 − vs − all and C1
for θ2 − vs − all and for θ3 − vs − all. In this case, θ2 is the class with the highest confidence level (0.20), so θ2 is
assigned to the new case.

In this example, it can be seen that the classes classified with C1 have higher probability to be selected than the
classes classified with C2. Hence, the final decision could be different, depending on the type of classifier selected in
each sub-problem. That is why we consider it is not fair to compare the confidence levels among them.

In order to avoid this problem, the accuracy obtained for each classifier of the sub-problems in the validation phase,
could be used as a confidence level. But we do not consider this appropriate because the accuracy depends on how the
classes are distributed. The best differentiated classes are more likely to be selected, because the sub-problems where
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they take part obtain a higher accuracy in the validation phase.

4.2. New One VersusAll
One (NOV@)

We have shown that it is not a sound alternative to depend on the confidence levels when different base classifiers
are used, moreover we show the strength of OVA in the case that among the sub-problems in only one of them one
class outperforms the rest. Furthermore, previously was shown that OVO is able to correct some errors made by OVA.

Considering these three facts, we propose a new version of OVA where the confidence level is not taken into
account; instead the majority vote is used. As previously mentioned, the problem of the majority vote in OVA is
that it is common for there to be ties. In this case, the ties are broken by applying OVO only taking into account the
tie-classes. We have denoted this new method as New One VersusAll

One (NOV@). When a new case to be classified
arrives there are 3 possibilities:

• If only one of the sub-problems gives a positive result, we consider that it is sufficiently reliable, therefore
NOV@ returns this class.

• If in more than one case a positive result is obtained, then there is a tie. Hence, Max-Wins is applied only taking
into account the tie classes.

• If all the sub-problems obtain a negative result, we consider that OVA has not enough reliability to take the final
decision, so Max-Wins is applied with all the classes.

With this new algorithm our aim is to improve OVA’s performance. Moreover since the majority of instances are
classified applying OVA (Table 4), the new algorithm reduces the number of sub-problems of OVO.

5. Experimental Results

We run this new method with the same characteristics as run in the previous experiments (Section 3.2). Table
6 shows the obtained results. It can be seen that NOV@ obtains the best result in 15 of the databases, whereas
OVA+OVO obtains the best result in 5. Moreover NOV@ obtains the best mean followed by OVA+OVO.

We have shown in the previous section (Section 4.1) when different base classifiers are being used, care must
be taken when strategies that depend on the confidence level are used. However WV and PC also depend on the
confidence levels of the sub-problems and, oddly, WV and PC are the state-of-the-art algorithms that obtain the best
mean results. The difference between A&O and OVA with WV and PC is that A&O and OVA obtain the confidence
level of each class only taking into account one sub-problem, while WV and PC take into account the confidence
levels of the different sub-problems. This leads us to think that this combination tends to compensate the confidence
levels.

In order to obtain a meaningful conclusions, we carry out statistical analysis to find whether significant differences
among the results obtained exists or not. According to [16], we have used the Iman-Davenport test to detect statistical
differences among the different strategies. This test rejects the null hypothesis of equivalence between algorithms
since p-value (0.0001) is lower than our α-value (0.1). Thus, we have applied Shaffer post-hoc test in order to find out
which algorithms are distinctive among them. Table 7 shows the most relevant results of the test, where “+” symbol
implies that the first algorithm is statistically better than the confronting one, whereas “=” means that there are not
significant differences between the compared algorithms. The method having the best performance is NOV@, closely
followed by OVA+OVO. Both methods significantly improve all the remaining strategies, except WV. However, it
can be seen that our proposed methods obtain more robust results since WV only outperforms significantly OVA and
A&O. Moreover if we compare the rank of NOV@, OVA+OVO and WV, our two methods obtain more stable results.

5.1. Computational Load

In order to measure the computational cost and complexity of our proposals, in Tables 8, 9 and 10 we show the
training and testing times and the number of binary classifiers used in each strategy.

Table 8 shows the training time of each strategy for the different databases. It is observed that the strategies are
divided into three groups: OVA, OVO aggregations(Max-Wins, WV, PC and DDAG) and combinations of OVA and
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Database OVA A&O Max-Wins WV PC DDAG OVA+OVO NOV@
Abalone 16.553 22.993 26.598 26.589 26.426 25.171 26.598 26.560
Annealing 98.062 97.929 98.196 98.196 98.129 98.085 98.307 98.396
Arrhythmia 63.850 65.265 69.292 69.292 71.150 68.407 71.018 72.124
Balance 90.128 89.840 90.096 90.929 90.865 90.641 91.058 90.994
Car 96.273 95.914 95.787 95.984 95.741 95.845 96.296 96.563
Cmc 48.350 49.220 52.831 52.492 52.465 51.840 53.646 53.863
Dermatology 95.519 97.158 97.541 97.596 97.596 97.541 97.432 97.377
Ecoli 82.202 83.452 83.095 83.988 83.869 83.631 83.810 84.643
Flare 54.540 58.668 60.094 59.756 59.587 59.606 60.094 59.794
Glass 64.206 63.458 64.112 64.486 65.327 63.458 65.140 67.009
Iris 95.333 94.800 94.800 94.800 94.800 94.800 94.933 95.467
Nursery 99.336 99.384 99.451 99.477 99.452 99.431 99.653 99.671
Optdigits 98.456 98.480 98.466 98.463 98.470 98.395 98.473 98.452
Page-blocks 96.707 96.799 96.751 96.828 96.667 96.777 96.897 97.003
Pendigits 99.250 99.221 99.210 99.214 99.207 99.143 99.238 99.221
Satimage 89.958 90.126 90.051 90.058 90.098 89.961 90.256 90.030
Segment 95.844 96.017 96.104 96.277 96.329 95.983 96.476 96.667
Vehicle 80.567 79.551 78.842 79.362 79.433 79.102 79.905 80.922
Waveform 84.152 86.436 86.636 86.636 86.636 86.636 86.276 85.948
Wine 95.955 96.404 96.404 96.292 96.404 96.404 96.742 96.629
WineRed 57.949 57.423 57.711 57.761 57.811 57.386 58.111 58.487
WineWhite 52.748 52.523 54.332 54.075 54.067 53.050 55.039 55.300
Yeast 56.631 56.536 57.615 57.655 57.251 57.049 57.803 58.679
Zoo 92.875 92.282 93.267 92.875 92.678 93.071 92.875 93.267
Mean 79.394 79.995 80.720 80.795 80.852 80.475 81.087 81.378
Rank 6.2 6.0 4.6 4.0 4.5 5.8 2.5 2.3

Table 6: Accuracy using the seven compared methods and different base classifiers for each sub-problem

OVO (A&O, OVA+OVO and NOV@). It can be seen that the combinations of OVA and OVO need more training
time. On the other hand, the classification time needed by OVA is slightly longer than OVO aggregations for problems
with few classes. Although OVA uses less sub-problems than OVO, the size of the sub-problems is higher in OVA and
that is why the time required to train the classifier is longer. However, it can be noted that when the number of classes
is high, the training time of OVA is shorter than in OVO.

Table 9 shows the testing time of each strategy for the different databases. It can be seen that NOV@ tends to be
one of the fastest among the 8 methods. Only DDAG and OVA tend to be faster closely followed by A&O. Moreover
except for in Abalone database, NOV@ spends a bit more time than OVA. Immediately below them on the table
are OVO and WV that need similar time, while PC needs slightly more time since it follows an iterative procedure.
Finally, OVA+OVO tends to be the slowest method.

Table 10 shows the mean number of classifiers needed in each strategy for the different databases. The obtained
results tend to be similar to those found in Table 9. However, this time NOV@ needs slightly more classifiers than
A&O.

Viewing the results obtained in Tables 8, 9 and 10, although NOV@ is one of the slowest strategies to train,
it is one of the fastest strategies at classification time, only outperformed by OVA and DDAG. On the other hand,
OVA+OVO is the slowest strategy.
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Hypothesis p-value
NOV@ vs OVA +(1.1904E-006)
OVA+OVO vs OVA +(3.2931E-006)
NOV@ vs A&O +(5.2983E-006)
NOV@ vs DDAG +(1.5605E-005)
OVA+OVO vs A&O +(1.8148E-005)
OVA+OVO vs DDAG +(5.0998E-005)
NOV@ vs Max-Wins +(0.0250)
WV vs OVA +(0.0376)
NOV@ vs PC +(0.0376)
OVA+OVO vs Max-Wins +(0.0424)
OVA+OVO vs PC +(0.0682)
WV vs A&O +(0.0820)
WV vs DDAG =(0.1524)
PC vs OVA =(0.2552)
NOV@ vs WV =(0.2552)
Max-Wins vs OVA =(0.3269)
OVA+OVO vs WV =(0.4067)
PC vs A&O =(0.4309)
Max-Wins vs A&O =(0.5548)
PC vs DDAG =(0.5709)
Max-Wins vs DDAG =(0.6998)

Table 7: Shaffer test

6. Conclusion

This paper has presented a new approach to combine pairwise classifiers which aims to improve classification
accuracy in supervised classification multi-class problems. Starting from a single combination of two well-known
approaches (One-vs-All and One-vs-One), a new procedure to make a classifier combination is presented, NOV@, in
which both OVA and OVO are combined in a different way than found in the rest of literature. The results obtained by
the new approach on different datasets are subjected to in-depth analyses and compared with those of the most used
state-of-the-art methods. From the comparison, it is shown that the results are very competitive, ranking in the first
position from the accuracy point of view, and among the best in classification time; this last due to a low number of
classifiers.

It has also been shown that OVA and OVO strategies are compatible and can be combined with each other, even
when different base classifiers are used for each sub-problem. This is possible because each sub-problem has been
tackled as an independent one, and hence it is treated as a new classification problem in which two classes are to be
discriminated. The proposed methods –the single one, OVA+OVO, and NOV@– have been implemented and tested
over 20 databases from the UCI repository, obtaining significant improvements over other state-of-the-art strategies.
In addition to this, the two methods maintain the simplicity that has made of OVA and OVO the most used class-
binarization methods. Furthermore, comparing our methods with other state-of-the-art algorithms, we have made an
empirical study in order to analyse how different class-binarization strategies work when different base classifiers are
applied in each sub-problem.

A further analysis of the computational load of the used approaches has shown that the proposed approach –
NOV@– has competitive classification times compared with the state-of-the-art approaches, and that it has a lower
computational cost with respect to the most powerful classifiers. When training time is compared, though, the results
were worse than those of other approaches. However, this was expected given that all the sub-problems decomposed
by OVA and OVO have to be trained.

As future works, we are planning to apply more single classifiers in the best classifier selection phase as well as
other approaches to combine the different results. In this sense, the method proposed by K. Polat [36] seems to set the
right direction for future experiments.

On the other hand, real applications of the proposed model are to be analysed. We are going to test the approach
with real problems related data, for example we are trying to obtain new data related to our previous work [11] in
order to carry on with the experiments. Other application of the proposed approach can be website phishing, which
is considered one of the crucial security challenges for the online community due to the massive numbers of online
transactions performed on a daily basis. We are also planning to perform an experiment similar to the one proposed
by Abdelhamid et al. [1].
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Database OVA A&O OVO WV PC DDAG OVA+OVO NOV@
Abalone 752,004 2,00,0680 1,248,676 1,248,676 1,248,676 1,248,676 2,000,680 2,000,680
Annealing 168,841 304,570 135,729 135,729 135,729 135,729 304,570 304,570
Arrhythmia 5,401,826 10,538,305 5,136,479 5,136,479 5,136,479 5,136,479 10,538,305 10,538,305
Balance 3,782 6,611 2,829 2,829 2,829 2,829 6,611 6,611
Car 12,948 22,779 9,831 9,831 9,831 9,831 22,779 22,779
Cmc 15,569 25,635 10,066 10,066 10,066 10,066 25,635 25,635
Dermatology 46,394 86,553 40,159 40,159 40,159 40,159 86,553 86,553
Ecoli 6,182 13,078 6,896 6,896 6,896 6,896 13,078 13,078
Flare 34,020 63,916 29,896 29,896 29,896 29,896 63,916 63,916
Glass 3,889 7,656 3,767 3,767 3,767 3,767 7,656 7,656
Iris 777 1,362 585 585 585 585 1,362 1,362
Nursery 516,714 857,053 340,339 340,339 340,339 340,339 857,053 857,053
Optdigits 3,734,410 7,035,312 3,300,902 3,300,902 3,300,902 3,300,902 7,035,312 7,035,312
Page-blocks 286,433 534,925 248,492 248,492 248,492 248,492 534,925 534,925
Pendigits 1,731,714 3,190,942 1,459,228 1,459,228 1,459,228 1,459,228 3,190,942 3,190,942
Satimage 1,622,867 2,789,917 1,167,050 1,167,050 1,167,050 1,167,050 2,789,917 2,789,917
Segment 203,956 371,821 167,865 167,865 167,865 167,865 371,821 371,821
Vehicle 33,051 57,489 24,438 24,438 24,438 24,438 57,489 57,489
Waveform 298,047 470,827 172,780 172,780 172,780 172,780 470,827 470,827
Wine 2,563 4,298 1,735 1,735 1,735 1,735 4,298 4,298
WineRed 48,824 91,505 42,681 42,681 42,681 42,681 91,505 91,505
WineWhite 323,583 591,057 267,474 267,474 267,474 267,474 591,057 591,057
Yeast 51,559 103,720 52,161 52,161 52,161 52,161 103,720 103,720
Zoo 3,501 7,313 3,812 3,812 3,812 3,812 7,313 7,313
Mean 637,643.92 1,215,721.83 578,077.92 578,077.92 578,077.92 578,077.92 1,215,721.83 1,215,721.83

Table 8: Comparison of the training time of 8 methods (in milliseconds)
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